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ABSTRACT 

Cleaning accumulated deposits inside pipe cavity are by disassembling and 

cleaning it part by part. Hydrodynamic cleaning of the cavity is an alternative method 

to clean accumulated deposits or contaminants inside the pipe cavity instead of 

dissembling them part by part is a tedious process or using a solvent which is not 

suitable in the food processing industry. This study aims to investigate the 

contaminants removal process from a cavity by resorting to natural flow to clean the 

deposits in different cavity sizes and includes different heating locations with different 

flow configurations. An experimental method is used to visualize the flow behaviour 

inside the cavity of a channel at a large aspect ratio in isothermal conditions. These 

results are used to validate numerical results obtained in isothermal flow conditions. 

For numerical study, Constrained Interpolated Profile (CIP) method is used for the 

advection phase of momentum and energy equation, and central difference is used to 

solve the non-advection phase of momentum and energy equations. The numerical 

studies include different aspect ratios (AR), 1 to 4, various Reynolds numbers (Re), 50 

to 1000, and different locations of the heated wall inside the cavity (left wall, bottom 

wall, & right wall) for three different Grashof numbers (Gr), 1000, 10 000, and 100 

000. The particles removal percentage at the transient and steady states are then 

compared and discussed. A larger aspect ratio and a more significant Reynolds number 

for isothermal conditions will give a higher percentage of contaminants removal 

except for AR = 4 and Re = 50. This particular flow shows a higher percentage of 

contaminant removal than AR = 4; Re = 100, 200, and 400. For mixed convection 

flow, one typical result can be concluded: at small Gr, the contaminant removal 

percentage is not changing significantly for all different heated wall positions. It is also 

shown that a more significant aspect ratio will produce a better contaminant removal 

process, and a higher Grashof number will improve the contaminant removal process. 

It is also found that when Gr equals 1000 and 10000, there is no significant change in 

the contaminant removal process and constant heat flux from the bottom wall for Gr = 

100,000 gives the highest contaminant removal percentage for every aspect ratio. The 

highest percentage removal of contaminant is 98.94% for Gr =100 000, AR=4. 
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ABSTRAK 

Membersihkan mendapan terkumpul di dalam rongga paip adalah dengan 

membuka dan membersihkannya pada setiap bahagian. Pembersihan rongga 

hidrodinamik adalah kaedah alternatif untuk membersihkan mendapan atau bahan 

cemar yang terkumpul di dalam rongga paip dan tanpa membuka setiap bahagian yang 

merupakan proses yang membosankan atau menggunakan pelarut yang tidak sesuai 

dalam industri pemprosesan makanan. Kajian ini bertujuan untuk menyiasat proses 

penyingkiran bahan cemar dari rongga dengan menggunakan aliran semula jadi untuk 

membersihkan mendapan dalam rongga yang berbeza saiz dan termasuk lokasi 

pemanasan yang berbeza dengan konfigurasi aliran yang berbeza. Kaedah eksperimen 

digunakan untuk menggambarkan kelakuan aliran di dalam rongga saluran pada nisbah 

aspek yang besar dalam keadaan seisoterma. Keputusan ini digunakan untuk 

mengesahkan keputusan berangka yang diperoleh dalam keadaan aliran isoterma. 

Untuk kajian berangka, kaedah Constrained Interpolated Profile (CIP) digunakan 

untuk fasa adveksi momentum dan persamaan tenaga, dan pembezaan pusat digunakan 

untuk menyelesaikan fasa bukan adveksi bagi persamaan momentum dan tenaga. 

Kajian berangka termasuk nisbah aspek (AR), 1 hingga 4, pelbagai nombor Reynolds 

(Re), 50 hingga 1000, dan lokasi dinding dipanaskan yang berbeza di dalam rongga 

(dinding kiri, dinding bawah, & dinding kanan) untuk tiga dinding yang berbeza. 

Nombor Grashof (Gr), 1000, 10 000, dan 100 000. Peratusan penyingkiran zarah pada 

keadaan sementara dan mantap kemudiannya dibandingkan dan dibincangkan. Nisbah 

aspek yang lebih besar dan nombor Reynolds yang lebih ketara untuk keadaan 

isoterma akan memberikan peratusan penyingkiran bahan cemar yang lebih tinggi 

kecuali AR = 4 dan Re = 50. Aliran tertentu ini menunjukkan peratusan penyingkiran 

bahan cemar yang lebih tinggi daripada AR = 4; Re = 100, 200, dan 400. Untuk aliran 

perolakan bercampur, satu keputusan tipikal boleh disimpulkan: pada Gr kecil, 

peratusan penyingkiran bahan cemar tidak berubah dengan ketara untuk semua 

kedudukan dinding dipanaskan yang berbeza. Ia juga menunjukkan bahawa nisbah 

aspek yang lebih ketara akan menghasilkan proses penyingkiran bahan cemar yang 

lebih baik, dan nombor Grashof yang lebih tinggi akan meningkatkan proses 

penyingkiran bahan cemar. Juga didapati bahawa apabila Gr bersamaan dengan 1000 

dan 10000, tiada perubahan ketara dalam proses penyingkiran bahan cemar dan fluks 

haba malar dari dinding bawah untuk Gr = 100,000 memberikan peratusan 

penyingkiran bahan cemar yang tertinggi bagi setiap nisbah aspek. Peratusan tertinggi 

penyingkiran bahan cemar ialah 98.94% untuk Gr =100 000, AR=4. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Overview  

 

 Cavity flow can be found in flow past a panel, flow in organ pipes, flow past a 

sunroof of vehicle, flow past a window, flow around a weapon bay, landing gear of an 

aircraft and etcetera. There is a lot more applications on cavity flow such as flow over 

street canyon which involving environmental study related to air pollutant control.  

 Details on properties and effects of cavity onto main flow have been reported 

by many researchers such as effect of oscillation from cavity flow onto main flow 

(Meganthan, 2000), flow acoustic effect resulting from circulation past cavity as 

shown in Figure 1.1 (Ebrahimi, 2011) and many more. These studies focusing on effect 

of cavity onto flow itself. Parameter use for cavity flow such as depth of cavity, D and 

length of cavity, L will results different flow structure inside cavity. Different inlet 

velocity will produce different free stream velocity, U0 and different boundary layer 

thickness, 𝛿. On the other hand, there is also research on contaminated cavity flow 

(Saadun et al, 2013; Jahanshaloo et al, 2014) where the contaminated cavity is studied 

on their particle removal process.  

 

 

 

Figure 1.1 Geometry resulting acoustic effect on cavity flow (Ebrahimi, 2011) 

 

U0 = free stream 

velocity 

ᵟ = boundary layer 

thickness 

D = depth 

L = length 
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A contaminated cavity can be seen inside hydraulic components such as metal 

exposed to water and resulting rust particle accumulate inside cavity (Figure 1.2) 

(Gannon, 2018). Another example of a contaminated cavity is contaminated pipeline 

resulting from improper fitting of pipe joint. Therefore, cleaning process of the 

contaminated cavity becomes an important process to maintain hydraulic and pipeline 

to working properly. Furthermore, cleaning contaminated cavity can be a tedious 

process because need to dissemble them and clean them part by part.  

 

 

Figure 1.2 Rust particles due to water contamination in hydraulic spool. 

(Gannon, 2018) 

 

 

Focusing on the poor fitting of pipeline, hydrodynamic cleaning is one of 

simple methods to clean the contaminated cavity without dissembling it part by part. 

There are many studies on hydrodynamics cleaning of components, parts and pipelines 

that known as one research area as a method in cleaning process in pipes. One of them 

is by using a restrained ball and let lateral vibration of the ball clean the wall of pipe 

as done by Grinis and Korin (1997). They were focusing on harvesting the levitation 

effect of a ball inside a pipe to clean sediment and rust inside a pipeline as shown in 

Figure 1.3.  The components of the experiment as follow: item 1 is tank, item 2 is 

pump, item 3 is valve to control flow rate, item 4 & 8 are manometer, item 5 is flow 

meter, item 6 is ball used for cleaning purpose, item 7 is pipe and item 10 is flexible 

wire to restrain the ball. The ball will rotate due to effect of wall of pipe and provide 

lateral vibration of the pipe to clean the pipe. 
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Figure 1.3 Experiment equipment sketch by Grinis and Korin (1997) 

 

On the other hand, the effect of mixed convection flow in enhancing 

contaminant removal process is also one of the research areas in hydrodynamic 

cleaning in pipe. Zain (2012) has studied the effect of heated bottom wall to the particle 

removal process from cavity. Similar study as shown in Figure 1.4 reported by Fang 

(2003), where the bottom wall of cavity supplied with constant heat flux to enhance 

the removal process inside the cavity. The constant heat flux will change the flow 

structure inside cavity due to thermal buoyant effect to the fluid flow. 

 

 

 

 

 

 

1 - Tank 

2 - Centrifugal pump 

3 - Valve 

4 - Manometer 

5 - Flow meter  

6 - Ball 

7 - Pipe 

8 - Manometer 

9 - Integrating 

vibrating meter 

10 - Flexible wire 
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(a) 

 

 

(b) 

Figure 1.4 Work by Fang (2003) (a) Sketch of a contaminated cavity with constant 

heat flux at the bottom wall of cavity, (b) Remaining contaminant of cavity for aspect 

ratio 4 at steady state.  

 

 Another examples of application-related on problem arise from flow over 

cavity with thermal effect is cooling computer chip and computer hardware. In order 

computers to function properly, cooling process of its hardware is crucial as advanced 

computer chip provides faster processing time but also will produce heat faster. As the 

computer component such as processor can be costly to replace if it is burned due to 

overheating, cooling system for computer components is also has become an interest 

in the computer industry. In cooling system of computer, there are many methods such 

as blow cooler air to the heated component and sometimes air conditioner is used to 

provide faster cooling to the computer. Due to the importance of application related to 

flow over cavity, it is become one of interest field to further study to expanding 

knowledge.  

 

 

 

D – Depth 

H – Height 

g – Width 

qs – Constant heat flux 

U – Inlet velocity  
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 Aforementioned above regarding problem arise on cavity flow, it is important 

to explore and study them for better understanding. In order to study on flow over the 

cavity, there is three methods can be used to get the results. There are 3 types of method 

to solve fluid dynamics as shown in Figure 1.5 which are doing analytical calculation 

for solution, experimental analysis and numerical method analysis. For analytical 

calculation can be solved by some mathematical calculation by applying correct 

boundary and initial condition. Results obtained were due to simplification of Navier-

Stokes equation and match to the real situation but it is can only apply to very simple 

cases such as inviscid flow. Experimental analysis is very reliable because it is done 

according to the real-life situation with minimal simplification and assumptions. The 

major concern of conducting experiment is that the test rig can be so expensive that 

researcher always tries to do non-destructive test to their test rig. For numerical 

method, it is a cheaper method to use as it can produce significant results together with 

the ability to control the boundary condition and parameter of study easily. There is a 

lot of available numerical methods, which can be used to study flow over cavity and 

this will be discussed in detail in Chapter 2. 

 

 

 

 

Figure 1.5 Fluid dynamics solution 

 

 

Fluid 
Dynamics 
Solutions

Analytical

solution

experimental

analysis

Numerical 
analysis
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Recently, Abdelmassih, Vernet and Pallares (2016) have studied the flow over 

cavity with heated bottom wall inside the cavity by using a numerical method which 

is a three-dimensional direct numerical simulation and experimentally for channel 

flow over cavity. They have reported that there is periodic flow at Re=100 and Ri=10 

in their mixed convection flow which related to heat removal process from the bottom 

of the cavity. Nevertheless, they captured the fluid velocity by using Particle Image 

Velocimetry (PIV) where small particles are seeded in the water and motion of the 

particles were captured and flow velocity was obtained. The summary of the result is 

shown in Table 1.1 and they reported that Re>500 will experience turbulent behaviour 

to the flow for Richardson number, Ri=1 and Ri=10.  

 

 

Table 1.1: List of studied cases of Abdelmassih et al. (2016). 

 

 

 There are also such similar cases study on flow over the cavity but the cavity 

is contaminated and hydrodynamic flow is used for contaminant removal from the 

cavity such as done by Fang (2003). In this case, the heated wall inside cavity is located 

at the bottom wall of the cavity. His study was focused on the effect of aspect ratio of 

cavity and effect of Grashof number to the contaminant removal effectiveness. He 

found that higher Grashof number will significantly improve the contaminant removal 

from cavity. His study includes different aspect ratio from 0.25 to 4 and Grashof 

number 1 to 4000. His conclude that different flow pattern can be found by imposing 

heat flux from bottom of cavity. It is also shows that different aspect ratio provide 

different contaminant removal percentage but only limited for heated bottom wall of 

cavity. 
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In different study (Farsani, Ghasemi and Aminossadati, 2014), the removal of 

contaminant and flow behaviour due to magnetohydrodynamic effect was studied. 

They were using numerical method to study the heat transfer performance and the 

removal process of fluid particles. In general, stronger buoyant flow is reported to 

improve the removal process from the cavity at higher Grashof number and higher 

Reynolds number. However, their report provided very limited cases which are only 3 

cases for different Reynolds number and 3 cases for different Grashof number.  

 

 As mixed convection flow is known by applying constant heat flux from the 

bottom wall of the cavity can change the flow structure, there are also right vertical 

wall and left vertical wall of the cavity that also can contribute to changing the flow 

structure. There is literature available such as the one done by Stiriba et al. (2010) 

where the right vertical wall of the cavity is remaining at constant temperature that 

higher than ambient temperature as shown in Figure 1.6. Another study by 

Aminossadati & Ghasemi (2009), the heated wall is at same location but only part of 

the wall is heated which reported only half of the wall is heated in the middle of the 

wall as shown in Figure 1.7. Their study provides data on the effect of different heated 

wall inside the cavity to the flow behaviour without contaminant inside the cavity. 

 

 

 

 

 

Figure 1.6 Sketch of cavity flow with heated right wall Stiriba et al. (2010) 

 

L – Length 

D – Depth 

H – Height 

g – Gravity 

TH – Constant temperature 

TC – Ambient temperature 

U0 – Inlet velocity  
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Figure 1.7 Heat source inside cavity at (a) left wall, (b) right wall, and (c) bottom 

wall (Aminossadati et al, 2009) 

 

 

 

 Manca,et al. (2003) has study numerically for temperature distribution and 

stream function using air for 3 different heated wall position for aspect ratio 2. Three 

different heated wall location set up as shown in Figure 1.8 where H is channel height, 

ui is inlet velocity, D is cavity depth, L is cavity length and q is heat flux. Experimental 

study was done later by Manca, Nardini & Vafai (2006) for heated left wall of cavity. 

Nevertheless, they also provide experimental study for heated right wall of cavity in 

Manca Nardini & Vafai (2008). Eventhough their study focused on temperature 

distribution, their studies also shown that different heated wall will produced different 

vortex structure inside cavity but their studies are limited for temperature distribution 

and flow structure without contaminant removal process. It also didn’t includes data 

for heated bottom wall of cavity. 
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Figure 1.8 Three different heated wall position by Manca et al (2003) (a) Left wall, 

(b) Right wall & (c) Bottom wall. 

 

It appears from the aforementioned study that investigation has been conducted 

regarding mixed convection cavity flow but some of their studies are more on heat 

removal process efficiency and flow structure inside cavity. It is appeared that removal 

of contaminant from cavity with mixed convection flow study can be broaden in term 

of different flow condition such as different Reynolds number and Grashoff number. 

It is also can be notify various study that used different aspect ratio of cavity and 

different heat source location can change the flow structure and flow behavior. 

Therefore, research on contaminant removal inside cavity by utilizing mixed 

convection flow sources from cavity wall is still a gap of knowledge in engineering 

and it is necessary to go for deep research on effect of Grashof number and location of 

heated wall to the effect of contaminant removal from the cavity. 

 

 

 

 

 

 

 

 

L – Length 

D – Depth 

H – Channel Height 

q –  Heat flux 

ui – Inlet velocity  
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1.2 Problem of statement 

 

  Conventional method to clean pipe with accumulated deposits is to dissemble 

it and clean it part by part. This happened where cavity flow occurred inside a pipe. 

There is a lot of methods to clean pipe such as hydrodynamic cleaning, vibrating of a 

restrain ball inside a pipe, using solvent and many more to remove the accumulated 

deposit and to clean the pipes. When working with food industries, the solvent is not 

recommended as it will affect the taste or composition of the products (Zain, 2012). 

Hydrodynamic cleaning can be used instead of using solvent or dissemble the pipes 

for cleaning. Cavity flow problem such as poor-fitting of pipe joint in two-dimensional 

flows in a pipe with square cavity still need to study extensively. This included various 

sizes of cavity flow and will be represented by various aspect ratios. Introducing 

constant heat flux at different cavity wall is still a question whether this can improve 

the removal of contaminant and accumulated deposits. Fang (2003) found that higher 

Grashoff number will improved the contaminant removal from cavity but this is only 

limited for heated at bottom wall. Study by Striba et al (2010) shown that different 

location of heated wall (right vertical wall) can also change the flow structure although 

they use air as the fluid. On the other hand, numerical study (Manca et al., 2003) and 

experimental studies (Manca et al., 2006 & Manca et al., 2008) on three different 

heated wall but limited to temperature distribution and without contaminant removal 

process. Therefore it is a gap in knowledge to know the best heating wall location to 

get better contaminant removal. This study aims to find the percentage of contaminants 

removal from cavity by using different heated wall properties such as different 

Grashoff number and different heated wall such as left vertical wall, bottom wall and 

right vertical wall of the cavity. In addition, flow criteria such as different Reynolds 

number and cavity geometry such as different cavity length to height ratio also will be 

included in this study to determine the effectiveness of contaminant removal process 

from cavity.  
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1.3 Objective of the study 

 

 For the hydrodynamic cleaning in pipes, several aspects of variable is included 

in the research. These include various aspect ratio of cavity inside pipe, various 

Reynolds number and location of thermal effect. To get a better understanding of the 

flow structure and numerical prediction, experiment set up for isothermal flow will be 

included in this study. To utilize cheaper research cost and flexibility, simulation and 

numerical study will be implemented more within this study. These ideas can be 

accomplished by following these objectives. 

 

1. To experimentally investigate the flow behaviour in the cavity at a large aspect 

ratio by capturing the flow structure inside cavity using water and dye. 

2. To numerically develop the flow structure in the cavity using CIP method by 

using streamlines plot. 

3. To analyse the interaction of particle and flow structure in the process of 

particle removal in the cavity. 

4. To evaluate the thermal boundary effect on the rate of particle removal from 

heated cavity. 
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1.4 Scope of the study 

 

 In order to achieve the aforementioned objectives, several assumption and 

limitation of study need to define so that the study can be narrowed and focussed. The 

scope of this study is defined as follow: 

i. Two-dimensional flows will be implemented along the study so Navier-Stokes 

equation is written and discretize based on two-dimensional method with 

dimensionless parameter.  

ii. Laminar flow is considered for whole study and parabolic flow (fully 

developed flow) will be the flow profile before the flow enters the cavity for 

isothermal and mixed convection cases. The flow is limited to a Reynolds 

number of 50 to 1000.  

iii. Grashof number will be used for Mixed convection and the maximum of 

Gr=100,000 is simulated to show that natural convection is dominant in the 

flow. 

iv. A number of changes in parameter during simulation are neglected as the 

change is insignificant such as Prantl number will remain constant at 7.0 at 

any temperature distribution along the simulation. This is also implemented to 

density of water (incompressible flow). 

v. The contaminants (particles) is treated as a hard-sphere model. The size of 

contaminants is considered relatively small and will be treated as a point in 

the numerical grid. 
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