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ABSTRACT 

The classical boundary element method (BEM) has emerged as a powerful 

alternative to the finite element method particularly in cases where better accuracy is 

required due to problems such as stress concentration or where the domain extends to 

infinity. In numerical calculation, the BEM has been widely used to solve acoustic 

problems since BEM offers excellent accuracy due to the discretization only on the 

structure's boundaries and easy mesh generation. However, BEM has some 

disadvantages. It suffers from certain drawbacks in terms of computational efficiency. 

Since most of the BEM leads to a linear system of equations with dense coefficient 

matrix, this prevents the BEM from being applied to large-scale problems or high-

resolution mesh. Due to these disadvantages, according to the acknowledged literature, 

some researchers use hybrid BEM coupling with other methods to improve the 

computational efficiency or to improve the computational time. This research uses a 

different technique from the existing hybrid BEM which will improve both the 

computational efficiency and time. This study highlights that BEM is less accurate for 

high gradient problem and consumes more computational time. To overcome this 

problem, a new technique known as multiscale boundary element method (MBEM) is 

introduced for solving two dimensional acoustic problems. MBEM is introduced in 

order to reduce the computation time and improve numerical accuracy using the 

localised multiscale boundary element method (LMBEM) with the help of the 

FORTRAN language and parallel routine OpenMP. In addition, the truncated Newton 

method and Newton interpolation are introduced in this multiscale technique. The 

multiscale technique produces the results faster because of interpolation and accurate 

initial guess value in a linear system while the mesh refinement for particular elements 

based on gradient produces more accurate results. Numerical calculation is given to 

illustrate the efficiency of the proposed method and the solutions have been validated 

and compared with the BEM. The results show that the MBEM is indeed faster than 

BEM, with the computational time reduction is almost 33.01%. When the 38 elements 

are solved using LMBEM, it is more accurate as it gives an average error that is almost 

similar to a ratio of 38:36 with the 1024 elements using MBEM and BEM. In addition, 

this research is solving the problem on the boundary. It is suggested that the current 

study be expanded to solve the problem for the internal nodes of the domain since the 

internal node value is needed.  
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ABSTRAK 

Kaedah unsur sempadan klasik (BEM) telah muncul sebagai alternatif yang 

kuat kepada kaedah unsur terhingga terutamanya dalam kes di mana ketepatan yang 

lebih baik diperlukan disebabkan masalah seperti penumpuan tekanan atau di mana 

domain meluas sehingga tak terhingga. Dalam pengiraan berangka, BEM telah banyak 

digunakan untuk menyelesaikan masalah akustik memandangkan BEM 

mencadangkan ketepatan yang sangat baik kerana diskret hanya pada sempadan 

struktur dan penjanaan jaring yang mudah. Walau bagaimanapun, BEM mempunyai 

beberapa kekurangan. Ia mengalami kekurangan tertentu dari segi kecekapan 

pengiraan. Oleh kerana kebanyakan BEM menghala kepada sistem persamaan linear 

dengan matriks pekali yang padat, ini menghalang BEM daripada digunakan pada 

masalah berskala besar atau jaringan resolusi yang tinggi. Oleh kerana kelemahan ini, 

menurut kesusasteraan yang diakui, beberapa penyelidik menggunakan gandingan 

BEM hibrid dengan kaedah lain untuk meningkatkan kecekapan pengiraan atau untuk 

meningkatkan masa pengiraan. Penyelidikan ini menggunakan teknik yang berbeza 

daripada BEM hibrid sedia ada yang akan meningkatkan kecekapan pengiraan dan 

masa. Kajian ini menekankan bahawa BEM adalah kurang tepat untuk masalah 

kecerunan yang tinggi dan mengguna lebih banyak masa pengiraan. Untuk mengatasi 

masalah ini, teknik baharu yang dikenali sebagai kaedah pelbagai skala unsur 

sempadan (MBEM) diperkenalkan untuk menyelesaikan masalah akustik dua dimensi. 

MBEM diperkenalkan untuk mengurangkan masa pengiraan dan meningkatkan 

ketepatan berangka dengan menggunakan kaedah lokasikan pelbagai skala unsur 

sempadan (LMBEM) dengan berbantukan bahasa FORTRAN dan rutin selari 

OpenMP. Di samping itu, kaedah Newton terpangkas dan interpolasi Newton 

diperkenalkan dalam teknik pelbagai skala ini. Teknik pelbagai skala menghasilkan 

keputusan lebih cepat kerana interpolasi dan nilai tekaan awal yang tepat dalam sistem 

linear manakala penghalusan jaring untuk unsur tertentu berdasarkan kecerunan 

menghasilkan keputusan yang lebih tepat. Pengiraan berangka diberikan untuk 

menggambarkan kecekapan kaedah yang dicadangkan dan penyelesaiannya telah 

disahkan dan dibandingkan dengan BEM. Hasil kajian menunjukkan bahawa MBEM 

sememangnya lebih pantas daripada BEM, dengan pengurangan masa pengiraan 

adalah hampir 33.01%. Apabila 38 unsur diselesaikan menggunakan LMBEM, ianya 

adalah lebih tepat kerana ia memberikan ralat purata yang hampir sama dengan nisbah 

38:36 dengan 1024 unsur menggunakan MBEM dan BEM. Di samping itu, 

penyelidikan ini menyelesaikan masalah di sempadan. Kajian semasa ini dicadangkan 

dapat diperluaskan bagi menyelesaikan masalah untuk nod dalaman domain 

memandangkan nilai nod dalaman diperlukan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The focus of this research is to improve the boundary element method (BEM), 

because BEM is less accurate for high gradient problems and consumes more 

computational time. Two-dimensional acoustic problem is considered and can be 

written as 

                                  𝛻2𝜙 −
1

𝑠2

𝜕2𝜙

𝜕𝑡2
+ 𝑄𝛿(𝑥, 𝑥𝑄) = 0, ∀𝑥 ∈ 𝐿,                           (1.1) 

where 𝜙 = 𝜙(𝑥, 𝑡) is the complex acoustic pressure, 𝑥 is the coordinate, 𝑡 is the time, 

𝑠 is the speed of the sound in the medium and 𝑄𝛿(𝑥, 𝑥𝑄) represents a possible point 

source located at 𝑥𝑄 inside domain 𝐿. The acoustic domain 𝐿 is considered to be 

isotropic and homogeneous and can be an infinite domain interior to a body or a finite 

domain interior to a closed surface. For time harmonic waves, the time dependent 

velocity potential 𝜙 can be reduced to a sum of components, the point source intensity 

𝑄 = �̃�𝑒−𝑖𝜔𝑡 and the solution to the governing equation can be written as: 

                                                  𝜙(𝑥, 𝑡) = �̃�(𝑥, 𝜔)𝑒−𝑖𝜔𝑡,                                               (1.2) 

in which �̃�(𝑥, 𝜔) is the complex acoustic pressure in the frequency domain, 𝜔 is the 

circular frequency, 𝑖 = √−1 and for convenience, the tildes are dropped in the 

preceding equation. Substituting Equation (1.2) into Equation (1.1), the governing 

equation for acoustic wave problem is written as:  

                                        𝛻2𝜙 + 𝑘2𝜙 + 𝑄𝛿(𝑥, 𝑥𝑄) = 0,   𝑥 ∈ 𝐿,                                   (1.3) 
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where 𝑘 =
𝜔

𝑠
  is the wavenumber (Liu, 2009). Equation (1.3) is the physical 

representation of the problem. The source point will produce the vibrations. This 

research focuses on pressure and velocity on the boundary of the problem which is the 

solution of the problem on the boundary. Equation (1.1) is reduced to Equation (1.3) 

which is time independent and depend on frequency 𝜔,𝜔 = 𝑘𝑠.  

1.2 Research Background 

There are various methods for solving numerical computations such as the 

Finite Element Method (FEM) and the BEM. The FEM and the BEM are similar in 

using elements and nodes, but only on the boundaries. The FEM is a method of 

breaking down a physical structure into smaller parts for analysis, while the BEM is 

obtained by discretizing an integral equation. The discretization in the BEM is only 

done on the boundary, which eases the computation since there are fewer elements and 

nodes compared to when using the FEM. 

The BEM is often used to solve boundary value problems for systems of partial 

differential equations. Its ability to reduce the dimension of a problem by one is the 

principal advantage of the BEM over other numerical methods. This property is 

advantageous as this means that the size of the system of the problem will also be 

reduced, leading to improved computational efficiency (Grecu and Vladimirescu, 

2009).  

Boundary Integral Equations (BIE)s for partial differential equations are a 

classical tool for the analysis of boundary value problems. BEM denotes any method 

for the approximate numerical solution of these BIEs (Costabel, 1986). The dimension 

reduction in the BIE formulations makes the BEM mesh much easier to generate for 

three dimensional problems or infinite domain problems. Besides that, the BEM is a 

semi-analytical method that is more accurate, especially for stress concentration 

problems such as fracture of structures, and can be applied along with other domain-

based methods to verify solutions to problems for which there is no analytical solution. 
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However, BEM has several disadvantages. BEM suffers from certain 

drawbacks in terms of computational efficiency. There is a serious issue regarding its 

efficiency in solutions for analyzing large-scale models since the conventional BEM, 

in general, produces dense and nonsymmetric matrices (Liu, 2009). Since the BEM 

leads to a linear system of equations with dense coefficient matrix, this prevents the 

BEM from being applied to high-resolution mesh or large-scale problems. 

Besides that, BEM produces a dense linear system in solving inhomogeneous 

and non-linear problems because the resulting matrices are asymmetric and fully 

populated. Thus, it increases the computational time significantly. BEM also requires 

more knowledge about suitable fundamental solutions.  

In order to achieve more successful results, various researchers have modified 

the BEM formulation. Guminiak (2016) investigated static and free vibration analysis 

of thin plates with curved edges by using the BEM with an alternative formulation of 

boundary conditions. The successful application of the BEM in solving the thin plate 

bending issue demonstrated the sufficient effectiveness and efficiency of the proposed 

approach. In 2019, Carrer et al. (2019) developed two different BEM formulations for 

the dynamic analysis of Euler-Bernoulli continuous beams. Their results showed that 

both BEM formulations can produce accurate results for the dynamic analysis of 

continuous beams. Based on their study, they did not focus on computational time, 

which leads to this research.  

Lee and Polisoc (1990) stated that the gradients are produced by numerically 

differentiating the potentials. As a result, the gradients are significantly less accurate 

and frequently discontinuous between elements. Karlis et al. (2000) developed an 

advanced BEM for solving two-dimensional and three-dimensional static problems in 

Mindlin’s strain gradient theory of elasticity. The solution of a simple two-dimensional 

gradient elastic problem has demonstrated the importance of paying close attention to 

how the problem's boundary conditions are handled, particularly when non-smooth 

boundaries are taken into consideration.  
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Other researchers investigated the high gradient problem by using other 

techniques such as Akeremale et al. (2021) determined that the h-adaptive FEM is 

preferred or superior to the classic FEM in high gradient problems in terms of accuracy 

and computation cost.  

Acoustic waves often exist in vibration or are impinged on by incident waves, 

which is also known as an infinite medium outside of the structure. In acoustic wave 

analysis, there are two types of problems. A radiation problem occurs when a structure 

vibrates and causes disturbances in the acoustic field outside or inside the structure. 

The second type is called a scattering problem, in which an incoming disturbance 

interacts with the structure causing the waves to be scattered. In this study, the general 

form of acoustic wave problem is discussed. 

Solving acoustic wave problems can also be used in other fields, such as for 

predicting noise control in the study of sound.  

1.3 Statement of the Problem 

BEM has been widely used to solve numerical problems as it offers excellent 

accuracy. BEM discretization only on the domain boundary, and easy for mesh 

generation. However, the accuracy of a results vicinity to a high gradient is low.  Lee 

and Polisoc, 1990 stated that the gradients are produced by numerically differentiating 

the potentials and they observed that the computed results are significantly less 

accurate and frequently discontinuous between elements. For high gradient problem, 

the solution change drastically with small changing of coordinate. Thus, this will 

induce inaccurate results. In order to improve the accuracy and reduce the computation 

cost, some researchers had investigated the high gradient problem by using other 

techniques (Akeremale et al., 2021). Gao and Hu (2011) stated that BEM have the 

disadvantage in limiting the scope and speed. BEM also shows less accurate for high 

gradient problems based on current simulation results.  
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The acoustic problem that has been focused in the present thesis is a high 

gradient problem.  To overcome the inaccuracy and time consuming in computing the 

results, the present research introduces a new multiscale technique coupled with the 

BEM for solving the two-dimensional acoustic problems. Some researchers have 

investigated the integration of the multiscale technique and BEM. However, the 

dimension of matrices affects the computational efficiency of the method. Thus, a 

longer time is taken to calculate the results when more elements that are picked up in 

the inlet and outlet of each substructure, (Yang and Ji, 2013). The truncated Newton 

method and Newton interpolation are implemented here as a new multiscale technique. 

These two approaches are among the methods for reduce the computation time. 

MBEM is introduced in order to reduce the computation time. Based on the 

acknowledged literature, this new multiscale technique has not yet been explored by 

any researchers. To improve the developed MBEM, the study designed a localised 

multiscale for certain elements based on the gradient for a better accuracy. 

Furthermore, parallel routine OpenMP with the help of FORTRAN language is 

introduced to further reduce the time consumption for generating the mesh and 

computing the solutions.  

1.3.1 Research Question 

To achieve the objectives, the following questions need to be answered: 

(a) How to develop a numerical algorithm of BEM and MBEM using FORTRAN 

language for two-dimensional acoustic problems?   

(b) How to improve MBEM by introducing a localised approach? 

(c) What is the accuracy of LMBEM, BEM and MBEM?   

(d) What is the speed of MBEM using a parallel technique? 

(e) How to validate and compare LMBEM with the BEM? 
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1.4 Research Objectives 

This study embarks on the following objectives: 

1. To introduce new multiscale technique with BEM for improvement of BEM in 

term of reduce the computation time.  

2. To speed up the proposed method by introducing the parallel technique. 

3. To improve the developed MBEM using LMBEM for higher accuracy 

solutions with less total mesh. 

4. To introduce error analysis in order to calculate real-time error and it is useful 

for adaptive numerical method in the future research. 

1.5 Scope of the Study 

This research focuses on a method known as MBEM, a combination of a new 

multiscale technique and BEM. This study attempts to make use of the truncated 

Newton method and Newton interpolation as a new multiscale technique. In addition, 

LMBEM is used to improve the developed MBEM. The effectiveness of the proposed 

method is illustrated in the application of the numerical computation of the two-

dimension acoustic wave. A program is developed with the help of the FORTRAN 

language and parallel routine OpenMP. Lastly, the numerical computation of the two-

dimension acoustic wave problem is validated, the exact solution is computed and a 

comparison between the new proposed method with the BEM is conducted.  

1.6 Significance of the Study 

This research can enhance the understanding of the concept of a new multiscale 

technique in BEM. This new multiscale technique introduces the truncated Newton 

method and Newton interpolation. The MBEM is used to reduce the computation time 
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and improve numerical accuracy using the localised multiscale boundary element 

method (LMBEM) with the help of the FORTRAN language and parallel routine 

OpenMP. Since a linear system uses the interpolation technique and accurate initial 

guess value, the multiscale approach will yield fast computational results, whereas 

mesh refinement for specific elements based on gradient will produce more accurate 

results. 

The faster and more accurate numerical algorithm for the numerical 

computation of acoustic wave problems can be applied using the proposed method. 

Besides that, this study is expected to establish a numerical library for the solution of 

the numerical computation of acoustic wave problems. In addition, the study includes 

an analysis on the boundary of the acoustic wave problem. The numerical results 

obtained can serve as reference and be used for validation purposes against other 

(future) investigations and numerical results. It can also be used in other fields, such 

as for predicting noise control in the study of sound. The proposed method can also be 

used as a reference for future studies in other various fields of science and engineering. 

1.7 Outline of the Thesis 

This thesis consists of six chapters. Chapter 1 presents the general introduction 

and overview of the research, including the research background, statement of the 

problem, research objectives, as well as scope and significance of the study. In Chapter 

2, a literature review of previous research works regarding the research area is 

reviewed and discussed. The brief review is divided into several sections which discuss 

the topics of BEM, multiscale schemes, acoustic wave problems, parallel computation 

and critical analysis of the literature. 

Chapter 3 discusses the research methodology consisting of the overall 

research framework. This chapter starts with a description of the derivation of BEM 

for a simple two-dimensional problem. This chapter gives the research methodology, 

the multiscale technique and theoretical proof of the error analysis. Afterwards, 
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Chapter 4 solves the acoustic wave problem using BEM and MBEM. The application 

of parallel computation and boundary condition involved is discussed.  

Meanwhile, Chapter 5 discusses the localised multiscale for acoustic wave 

problems with BEM. The solution algorithm and fundamental results in Chapters 4 

and 5 provide the answers to the research questions. The complexity of the numerical 

schemes is also provided in Chapter 4. 

Chapter 6 summarizes the whole work and draws a conclusion on the findings. 

This chapter also discusses future research that may be conducted for a deeper 

understanding of the problems considered. 
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