
Citation: Leng, P.C.; Aw, S.B.; Ali,

N.E.H.; Ling, G.H.T.; Lee, Y.L.;

Ahmad, M.H. Solar Chimneys as an

Effective Ventilation Strategy in

Multi-Storey Public Housing in the

Post-COVID-19 Era. Buildings 2022,

12, 820. https://doi.org/10.3390/

buildings12060820

Academic Editor: Dirk

H.R. Spennemann

Received: 22 April 2022

Accepted: 1 June 2022

Published: 13 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Solar Chimneys as an Effective Ventilation Strategy in
Multi-Storey Public Housing in the Post-COVID-19 Era
Pau Chung Leng 1,* , Siew Bee Aw 1, Nor Eeda Haji Ali 2, Gabriel Hoh Teck Ling 1,* , Yoke Lai Lee 1

and Mohd Hamdan Ahmad 1

1 Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia;
awsiewbee@gmail.com (S.B.A.); lylai@utm.my (Y.L.L.); b-hamdan@utm.my (M.H.A.)

2 Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA Perak Branch,
Seri Iskandar 32610, Perak, Malaysia; noree038@uitm.edu.my

* Correspondence: pcleng2@utm.my (P.C.L.); gabriel.ling@utm.my (G.H.T.L.)

Abstract: This paper studies the effectiveness of a solar chimney for improving ventilation and
air-exchange rates in multi-storey public housing in tropical climates for the potential mitigation
of airborne disease transmission. Virtual models of a typical apartment room with natural cross-
ventilation, replicated across four levels to mimic a multi-storey block, were set up with six internal
wind velocity sensor points per floor. The simulation software Energy2D was then used to evaluate
the performance of the models, first testing the presence of a solar chimney, and then additionally
the degree to which the solar chimney model was affected by a complementary ceiling fan. Wind
velocity was also measured, as this is a variable that affects ACH rates. Using a non-parametric
Wilcoxon signed-rank test, the introduction of a solar chimney was found to have a significant impact
on air-flow rates (a variable that positively affects air-exchange rates), resulting in a p-value of 0.000
and Z-value of −3.920. Regression analysis determined that the solar chimney’s effect was enhanced
when complemented by a ceiling fan (R-squared value of 0.4687). Consequently, we propose several
design strategies that may enable the adoption of the solar chimney concept to improve natural
ventilation in residential units.

Keywords: solar chimney; natural ventilation; air-exchange rate; multi-storey housing; tropical
climate

1. Introduction

The Spanish flu pandemic in 1918 and, more recently, the global COVID-19 pandemic,
serve to highlight the importance of air circulation for the mitigation of airborne contagious
diseases—especially in high-density living environments. The inflow of fresh, outdoor air
helps to minimise the accumulation of virus particles in indoor spaces [1]. Epidemiological
data show a much higher incidence of COVID-19 in developed European countries—such
as Slovenia—and North American countries during the autumn and winter seasons than in
African or Asian countries, which have milder climates that allow people to spend more
time outdoors, where airborne spread is less significant [2].

According to the World Health Organization, airborne viruses spread in poorly venti-
lated or crowded indoor spaces, as aerosols can remain airborne and travel within such
confined settings. As modern building façades use more glazing and fixed glass panels,
indoor air circulation is assisted by heating, ventilation, and air conditioning (HVAC)
systems or air conditioning mechanical ventilation (ACMV) systems in countries that do
not require heating [3].

Despite the acknowledgement of the importance of good air circulation, there are
limited references for specific ventilation and filtration targets beyond a need to increase
the air-exchange rate, especially in multi-storey buildings in the tropics [4,5]. This pa-
per assesses the current ventilation performance of a multi-storey residential building in
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Malaysia and, through virtual simulations, explores the effectiveness of the concept of a
solar chimney to promote natural ventilation for the aforementioned building typology.

The American Society of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE) has established ventilation guidelines for most interior environments [6]. How-
ever, these guidelines are meant to achieve basic levels of acceptable indoor air quality,
rather than passive infection control [7]. This is achieved by encouraging the air-exchange
rate in a space, commonly expressed in units of air changes per hour (ACH), although it
can also be measured as total volumetric flow, volumetric flow per person and area, or
outdoor air ventilation rates [8].

The formula for calculating ACH is expressed as follows:

ACH = 3600 × Q / Vol (1)

where ACH = air changes per hour, measured in cu.m/h; Q = volumetric flow rate, in
cu.m/s, derived from air-flow velocity (m/s) × cross-sectional area (sqm); and Vol = the
volume of the space, in cu.m.

Notwithstanding factors such as wind effect ventilation, buoyancy effect, and loss
coefficient, which may affect the velocity of natural ventilation, an increase in air-flow
velocity (measured in m/s) increases the volumetric flow rate in a fixed space which, in
turn, increases the achievable ACH rate.

According to ASHRAE Standard 62.1-2019, a single-family home with three bedrooms,
a default occupancy of 213.77 m2 (2301 sqft), and 2.4 m (8 ft) spatial height is recommended
to have an ACH rate of at least 4.0–6.0 ACH, or 0.32–0.35 ACH per person [6,8]. Fisk [9]
highlighted the effectiveness of higher ACH rates as an infection control mechanism, in line
with ASHRAE’s minimum ACH recommendations for public buildings such as hospitals,
at almost 10 times more than the recommendations for residential use.

In Malaysia, the ACH recommendations in the Third Schedule of the Uniform Building
By-Laws 1986 (Amendment 2012) (UBBL) are concerned primarily with fresh air ventilation
in spaces that are windowless and without access to external walls or fenestrations. Such
habitable rooms should have a minimum fresh air change rate of 0.28 cmm, or 16.8 cmh
per person, while bathrooms and toilets should have either 0.61 cmm per square metre or
10 ACH (whichever is lower) [10]. The UBBL do not include ACH recommendations for
naturally ventilated spaces.

There are several passive strategies to promote natural ventilation in indoor environ-
ments, including atria, courtyards, and solar chimneys, the latter of which are the focus of
this paper. Solar chimneys are typically utilised on southwest- and south-facing buildings
for the purposes of ventilation, heat insulation, and/or heat preservation, depending on the
underlying intent of the designer. A solar chimney uses the thermal pressure differentiation
between indoor and outdoor spaces to generate natural airflow [11]. When the external
wall of the solar chimney is heated by the sun, the air density within the solar chimney
drops. Air is sucked up through a low opening on the internal wall and expelled from an
opening high on the external wall.

Various studies have been conducted to determine the efficiency of the Trombe wall—a
type of solar chimney—using field measurements or software simulations [12,13]. This
includes research by Du et al., who studied the effectiveness of the Trombe wall by integrat-
ing mathematics and modelling to predict, derive, and examine patterns of air velocity [11].
Solar chimneys drive airflow through thermal buoyancy; by maximising solar gain on its
external façade, the chimney acts as a thermo-syphoning air channel to draw indoor air out
of the building [14].

However, while solar chimneys have been relatively well researched in Western
countries, research on their effectiveness in tropical climates is still nascent. Previous
studies on solar chimneys have tended to focus on industrial buildings, singular buildings
such as residential homes, or large public buildings [15,16]. Tan and Wong [15] determined
that a solar chimney was able to naturally improve interior air speed and expedite changes
in air temperature when tested in a single-storey classroom in Singapore. Hassanein and
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Abdel-Fadeel [17] found that the use of multiple solar chimneys, oriented in different
directions, further improves air-flow rates and reduces indoor temperatures, although their
effectiveness is greatest when directly facing the sun. A quicker passive reduction in indoor
temperature reduces the need and the time required for cooling demand. Furthermore,
Gong et al. [18] determined that users in tropical climates can accept air velocity rates
ranging from 0.3 m/s to 0.9 m/s, while Roghanchi et al. [19] ascertained that 1.0–2.0 m/s is
ideal for thermal comfort.

This paper therefore focuses on two research gaps in solar chimney studies: their
effectiveness in improving interior air speed and circulation in tropical climates, and their
application in multi-storey public housing, where the addition of such a substantial element
may incur critical cost implications.

Firstly, we propose that solar chimneys can be an effective passive method to improve
natural ventilation in tropical buildings. By achieving the above objective, the findings of
this study are not only beneficial from an architectural standpoint, but also advantageous
for future health policies, as improved fresh outdoor air circulation in multi-storey housing
may potentially slow down the spread of airborne contagious diseases.

The remainder of the paper is structured as follows: Section 2 presents the method-
ology covering field measurements, coupled with validation of the Energy2D software,
followed by a simulation of four scenarios; Section 3 presents the results and discussions of
the simulated scenarios; finally, Section 4 provides our conclusions and recommendations.

As a passive method to accelerate ACH, increase fresh air inflow, and displace airborne
contaminants, it is hoped that a more widespread acknowledgement and adoption of this
strategy may limit the impact of future airborne diseases, such as the SARS-CoV-2 virus.

2. Methodology
2.1. Case Study

A four-storey public housing development in Taman Pulai Flora, Skudai, Johor,
Malaysia, was selected to study the ventilation performance of typical multi-storey residen-
tial buildings in a tropical climate. Details of the development are included in Table 1.

Table 1. Case study building.

Parameters Description/Value

Physical Program 3 blocks of 4–5 storey mid–low-cost apartments

Coordinates 1◦33′01.29” N, 103◦37′20.30” E

Selected Block Block B

Orientation of Selected Case Study Block 182◦ (South)

Unit Layout 975 sqft, 3-bedroom unit with kitchen and
utility space

Type of Roofing Clay roof tiles

Outdoor Air temperature 30 ◦C

Outdoor Wind Velocity 1.0 m/s (constant)

Shading System Not available

A typical apartment unit is approximately 975 sqft, with 3 bedrooms (a master bed-
room with an attached bathroom, and two normal bedrooms), an open living and dining
space, a kitchen, and a utility room. A unit on Level 3 of Block B became the case study (see
Figure 1). The orientation of the unit was such that it faced south, along the front façade of
the building (see Figure 2). The south-facing openings served as air-flow inlets, while the
air-flow outlets faced north. The illustrated diagram of the master bedroom with attached
bathroom is shown in Figure 3.
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In order to study the performance of the solar chimney, the master bedroom was
chosen for simulation modelling and analysis, as it had direct access to both north- and
south-facing openings by virtue of its attached bathroom (see Figure 4). The bathroom
served as a solar chimney for the master bedroom. Details of the case study room are
included in Table 2.
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2.2. Field Measurements and Software Validation
2.2.1. Field Measurements

Field measurements were conducted for 8 full days between 26 March 2022 and
2 April 2022 in the selected case study unit, which was located on Level 3 in Block B. The
field measurements were carried out for at least 1 week to sufficiently cover variations in
climatic conditions in Malaysia, which is hot and humid throughout the year. The indoor
air velocity (m/s) of the bedroom was recorded with a single-probe Delta Ohm HD31.1
Portable Multifunction Instrument and Data Logger, which has a measuring accuracy of
±0.02% (excluding probe-related errors) at 20 ◦C. The data logger was set up in the middle
of the room at 1.5 m above the floor level and 1.8 m away from the external-facing window
of the room, as illustrated in Figures 5 and 6. The corresponding software, installed on a
personal computer, was used to set the data logger to read measurements at 5-min intervals.



Buildings 2022, 12, 820 6 of 18

Table 2. Description of the case study room (master bedroom with attached bathroom).

Parameters Master Bedroom Bathroom

Location Level 3 Level 3

Dimensions Max. 4 m (L) × 2.825 m (W) ×
2.86 (H)

2.075 m (L) × 1.35 m (W) ×
2.86 m (H)

Area (sqm) 10.3 sqm 2.8 sqm

Volume (cu.m) 29.458 cu.m 8.008 cu.m

Air-Flow Direction Inlet Outlet

Opening Orientation South North

Opening Size
1.8 m × 1.165 m (2.097 sqm)

with sill height 900 mm above
floor level

0.6 m × 0.6 m (0.36 sqm) with
sill height 1.6 m above floor

level

Glazing Type Single-layer clear glazing
(untinted)

Single-layer clear glazing
(untinted)

Assumed Window Opening
Position 100% opened 100% opened

Wall–Window Ratio (WWR) 38% 38%

Type of Wall 115 mm thick brick wall with
plastering on both sides

115 mm thick brick wall with
plastering on external side

and wall tiles on internal side

Type of Ventilation Natural ventilation with
ceiling fan

Natural ventilation via
window

Cross-Ventilation Yes (when bathroom door is kept open)
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Figure 6. Position of the wind velocity sensor in the case study room (master bedroom in a Level
3 apartment unit).

The results of the field measurements are shown in Figure 7. The results from the initial
set-up day on 25 March 2022 were disregarded, as the recordings only commenced in the
evening. The average wind velocity measured in the case study unit was 0.019 m/s, with a
range of 0–1.1 m/s. Based on the recorded data, 69.56% of the total field measurements
recorded 0 m/s. The wind velocity exceeded 1 m/s only thrice—at 14:44 and 14:29 on
27 March 2022, and also at 14:34 on 28 March 2022—due to increased wind flow during
rainy periods. This represented 0.13% of the measured duration.
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Figure 7. Field measurement results of the indoor wind velocity (m/s), taken at 5-min intervals.

Out of the 2314 recorded data values logged during the 8 days, there were only
39 instances detected of wind velocity exceeding 0.2 m/s, and 17 instances of wind velocity
exceeding 0.4 m/s. Therefore, it can be inferred that the indoor airflow was poor, and the
probability of the air velocity exceeding 1.0 m/s in the current case study unit’s layout,
without the aid of fans, was very low.

2.2.2. Software Validation

The field measurement results were also used to validate the Energy2D [20] simulation
software for its ability to simulate wind velocity in tropical environments. Energy2D
was used to conduct a theoretical evaluation of solar-induced ventilation in this study.
This software has already been used to conduct simulations for research, and is widely
recommended in the previous literature [21–23].
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This study evaluated natural ventilation in two ways: firstly, by determining the
average air velocity along the horizontal plane in the case study room and the solar chimney
space (attached bathroom), illustrated in section view; and secondly, by determining
the ACH rate, which calculates all velocity vectors that pass through apertures into an
indoor space.

The master bedroom of the case study unit was modelled and then imported into
Energy2D. Wind velocity sensors were located at the centre of the bedroom on each level
of the apartment block, as illustrated in Figure 8. The settings used in Energy2D were as
described in Table 3.
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Figure 8. A sectional view of the simulation setup in Energy2D. The results of Sensor A3C3 (Level 3
simulation) were compared against the field measurements shown in Section 2.2.1.

The comparisons between the field measurements and simulation results were made
through the Pearson’s correlation coefficient, root-mean-square error (RMSE), and mean
bias error (MBE), using the equations shown below. The r coefficient was used to determine
the correlation between two groups of measured values from the field measurements and
simulated results. A direct relationship is stronger when the R-value is close to 1 or −1,
which were the highest values from both datasets. The RMSE reveals the degree of spread
within the sample set. Finally, the MBE indicates how well the sample is predicted, and
whether the model is over- or underestimated.

Although the feasibility of RMSE and MBE is not governed by any guidelines, both
have been extensively used by researchers to calibrate study processes and compare simu-
lated and field measurement results [24–26].

Pearson’s correlation coefficient, RMSE, and MBE were calculated using Equations (2)–(4),
respectively.

r = (n
(
∑(xy)−

(
∑ x

)(
∑ y

))
/ (

√([
n ∑ x2

)
−∑ x

)2
][n ∑ y2 − (∑ y)2]) (2)

RMSE =

√
((∑ x−y)2) / n) (3)

MBE =
∑ (x− y)

n
(4)

where y = the simulation-generated value, x = the measured value from field measurements,
and n = the total number of measurements.
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Table 3. Properties settings for the simulation in Energy2D.

Medium Settings

Background Temperature 30 ◦C

Conductivity 0.026341001 W/(m ◦C)

Specific Heat 1.006500006 J/(kg ◦C)

Density 1.164899945 kg/m3

General Settings

Convective Yes

Sunny Yes

Time-step Length 0.1

With × Height 20 × 30 m

Sunlight Settings

Sun Angle 130◦

Solar Power Density 1000 W/m3

Thermal Boundary Settings

Thermal Boundary Condition Dirichlet (constant temperature)

Upper Boundary Temperature 30 ◦C

Right Boundary Temperature 30 ◦C

Lower Boundary Temperature 15 ◦C

Left Boundary Temperature 30 ◦C

The summary of the comparison of results between the simulated and field mea-
surements is tabulated in Table 4. The R-value obtained ranged between 0.123 and 0.647.
Although the R-value seemed to indicate a weak correlation due to differences in the
total decimal values recorded from the field measurement data (2 decimal points) and the
simulation data (4 decimal points), the wind velocity was considered consistent, as both
scenarios achieved nearly static air movement rates—almost 0 m/s—as well as a significant
result based on Pearson’s correlation coefficient. Overall, the Pearson’s correlation between
the variables indicated a positive relationship between both sets of data.

Table 4. Comparison between field measurements and computer-simulated results.

Date Time (Hour) Pearson’s Correlation
(R-Value) RMSE MBE

25 March 2022 1800 0.364 0.046 0.020

1900 0.331 0.011 0.003

2000 0.647 0.043 0.013

2100 0.303 0.009 0.002

2200 0.335 0.046 0.013

2300 0.349 0.103 0.059

26 March 2022 0000 0.123 0.113 0.054

0100 0.167 0.155 0.075

0200 0.236 0.155 0.075
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Table 4. Cont.

Date Time (Hour) Pearson’s Correlation
(R-Value) RMSE MBE

0300 0.167 0.158 0.066

0400 0.181 0.108 0.05

0500 0.158 0.119 0.058

0600 0.2801 0.027 0.02

0700 0.1287 0.009 0.004

0800 0.4466 0.007 0.003

0900 0.5093 0.094 0.034

1000 0.2309 0.052 0.018

1100 0.163 0.108 0.05

1200 0.169 0.093 0.04

1300 0.383 0.108 0.053

1400 0.198 0.104 0.042

1500 0.142 0.193 0.108

1600 0.529 0.171 0.075

1700 0.1795 0.158 0.083

1800 0.16 0.091 0.033

The RMSE results ranged between 0.007 and 0.193, while MBE revealed low error
values (0.003–0.108) and a significant correlation coefficient, indicating a high level of
importance. Therefore, the results of the simulations produced using Energy2D for tropical
climates were considered to be reliable and consistent with the actual onsite environ-
ment [27].

3. Results and Discussion: Scenario Simulations

Four different scenarios were simulated in Energy2D, varying in the presence of a solar
chimney (SC), ceiling fan, and an aperture design that allows airflow. In all scenarios, the
bathroom-cum-solar-chimney was positioned on the leeward side, and the inlet aperture
in the bedroom was positioned on the windward side. The scenarios are summarised
in Table 5.

Table 5. Summary of four simulated scenarios based on opening type, presence of solar chimney
elements, and presence of a ceiling fan.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Description Bathroom with 0.6 m × 0.6 m window at 1.6 m sill
height

Bathroom with 2.7 m height internal wall and
full-height external wall

Solar Chimney No Yes (external wall acts as a solar chimney element)

Ceiling Fan No Yes (consistently 3 m/s) No Yes (consistently 3 m/s)

Outdoor Wind Source 1 m/s (consistent)

All four bedroom and bathroom scenarios were modelled and then replicated on four
levels, to mimic the typical repetitive section of an apartment building. Eight wind velocity
sensors were then positioned on every level, yielding a total of thirty-two sensors. At
each level, two sensors were located outside the building model, on the windward and
leeward sides, respectively, while another six were distributed across the bedroom and the
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bathroom-cum-solar-chimney, as illustrated in Figure 9. The results of the simulations were
as shown in Figure 10.
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The means of the scenarios with solar chimneys (Scenarios 3 and 4) indicated positive
improvements in air velocity within the room in comparison with scenarios without solar
chimneys (Scenarios 1 and 2), as described in Table 6. The results measured on Level 3
exhibited the greatest increase in the mean, from 1.392 to 1.427.

The Wilcoxon signed-rank test was conducted to ascertain the degree of impact the
induction of a solar chimney effect has on air velocity. As described in Tables 6 and 7, the
Wilcoxon signed-rank test of the SC and non-SC options based on 20 data points (amounting
to 200 s of observation) revealed that the installation of the SC elicited a significant positive
change in air speed across all levels of the simulated apartment, with a Z-value of −3.920
and a p-value of 0.000 (refer Table 8). The results were further analysed via a regression
model to determine whether SC effectiveness could be affected by the presence of a ceiling
fan, which provides a constant means to direct the airflow within the space.
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Figure 10. Simulation results for all 4 scenarios: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4.

Table 6. The mean and standard deviation in the air velocities measured across all 4 simulated scenarios.

Descriptive Statistics

n Mean Std. Deviation Minimum Maximum

Lv1_WSC2 20 1.1926711850 0.00004079415 1.19254920 1.19272670

LV2_WSC2 20 1.1786533300 0.00028823077 1.17852620 1.17980440

LV3_WSC2 20 1.3918028400 0.00086532815 1.39152810 1.39540420

LV4_WSC2 20 1.4909670350 0.00013830683 1.49091960 1.49155140

Lv1_SC2 20 1.2408699950 0.00005342968 1.24068400 1.24090390

LV2_SC2 20 1.4806610100 0.00017530665 1.48057120 1.48122070

LV3_SC2 20 1.4273691850 0.00067709360 1.42715330 1.43018340

LV4_SC2 20 1.5131995450 0.00009076602 1.51316340 1.51357600
Note: SC = with solar chimney, WSC = without solar chimney.
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Table 7. Mean and total ranks of the 20 data points used to conduct the Wilcoxon signed-rank test.

Ranks

n Mean Rank Sum of Ranks

Lv1_SC2–Lv1_WSC2

Negative ranks 0 a 0.00 0.00
Positive ranks 20 b 10.50 210.00

Ties 0 c

Total 20

LV2_SC2–LV2_WSC2

Negative ranks 0 d 0.00 0.00
Positive ranks 20 e 10.50 210.00

Ties 0 f

Total 20

LV3_SC2–LV3_WSC2

Negative ranks 0 g 0.00 0.00
Positive ranks 20 h 10.50 210.00

Ties 0 i

Total 20

LV4_SC2–LV4_WSC2

Negative ranks 0 j 0.00 0.00
Positive ranks 20 k 10.50 210.00

Ties 0 l

Total 20
Note: SC = scenarios with solar chimney, WSC = scenarios without solar chimney. a Lv1_SC2 < Lv1_WSC2;
b Lv1_SC2 > Lv1_WSC2; c Lv1_SC2 = Lv1_WSC2; d LV2_SC2 < LV2_WSC2; e LV2_SC2 > LV2_WSC2;
f LV2_SC2 = LV2_WSC2; g LV3_SC2 < LV3_WSC2; h LV3_SC2 > LV3_WSC2; i LV3_SC2 = LV3_WSC2; j LV4_SC2 <
LV4_WSC2; k LV4_SC2 > LV4_WSC2; l LV4_SC2 = LV4_WSC2.

Table 8. The results of the Wilcoxon signed-rank test reveal a significant relationship between the
performance of SC and non-SC scenarios.

Test Statistics a

Lv1_SC2–
Lv1_WSC2

LV2_SC2–
LV2_WSC2

LV3_SC2–
LV3_WSC2

LV4_SC2–
LV4_WSC2

Z −3.920 b −3.920 b −3.920 b −3.920 b

Asymp. Sig., p
(2-tailed) 0.000 0.000 0.000 0.000

Note: SC = scenarios with solar chimney, WSC = scenarios without solar chimney; a Wilcoxon signed-rank test;
b based on negative ranks.

Figures 11 and 12 compare the performance of the SC with and without the assistance
of a ceiling fan. The scenarios with ceiling fans not only demonstrated higher wind
velocities of up to 1.5 m/s within the room, but also encouraged a greater inflow of air
from the inlet aperture (Sensor A1C1), although the degree of impact varied depending on
the altitude of the level from the ground. However, the introduction of the SC in Scenarios
3 and 4 additionally encouraged higher wind velocities within the SC (Sensor A1C7),
implying that the Bernoulli principle was in effect. The use of ceiling fans alone to assist
with natural ventilation had a less pronounced effect on air convection that would have
encouraged the SC effect and, thus, better ventilation.

We determined an R-squared value of 0.4687 for the scenarios with the SC, suggesting
that the induction of the SC effect is able to improve natural airflow by over 45% in an
apartment unit in Malaysia. However, the absence of a ceiling fan negatively affected
the performance of the SC (see Figure 11), with the exception of Level 2, in which several
sensors closer to the windward aperture still generated a positive effect, and a room with
neither a ceiling fan nor SC performed better than an SC-only room.
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Figure 11. Comparison of indoor air speed between a room with an SC and a room without an SC,
without the assistance of a ceiling fan.
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Figure 12. Comparison of indoor air speed between a room with an SC and a room without an SC,
with the assistance of a ceiling fan.

When complemented with a ceiling fan, the overall resultant air speed improved in a
parabolic pattern, where areas closest to the fan exhibited the greatest improvement. The
use of a ceiling fan alone returned an R-squared value of 0.3962, making it a slightly less
reliable indicator of fresh air exchange.

However, the impact of an SC varied with the altitude of the simulated level from
the ground, regardless of the presence of a ceiling fan. The effect was most pronounced
at Level 2, which is the level immediately above Level 1 (ground level). When an SC was
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used in conjunction with a ceiling fan, the overall wind velocity within the room improved,
achieving air speeds of approximately 1.3–1.5 m/s near the ceiling fan (see Figure 12).
Areas further from the windward aperture exhibited greater improvements, suggesting a
better distribution of natural ventilation throughout the room.

4. Conclusions and Recommendations

This paper determined that the introduction of a solar chimney, or the elements that
induce its effect, is an effective passive means of improving natural ventilation in public
housing in tropical climates. Overall, this study proved that the solar chimney—especially
when used in conjunction with a ceiling fan—is a viable and effective means of improving
natural ventilation in tropical public housing via enhanced ACH, achieved by promoting
natural air-flow rates within and through an indoor space. The combination of the solar
chimney and ceiling fan achieved a 45% improvement in indoor air velocity and a minimum
ACH of 92.42 in the case study room, which is well above the minimum recommended
ACH for hospitals. Having thus virtually ascertained that its incorporation demonstrates a
statistically significant improvement over current layout design practices, we may devise
further strategies to enable the solar chimney effect through innovations in construction
material choices and spatial arrangements.

However, the empirical simulations assume that the space is capable of cross-ventilation,
and it must be noted that apartment layouts may result in spaces that enjoy only single-sided
ventilation, so the solar chimney should be positioned for maximum impact. Further studies
would be required to extrapolate these findings for other building typologies and climates.
Other factors that affect natural ventilation—such as fenestration design and positioning,
opening altitude, and the presence of adjacent structures—also merit consideration for future
policymaking exercises. Future research into the correlations between air velocity, ACH, and
indoor air quality (IAQ) merits consideration.

This paper ultimately proposes several recommendations as follows:

4.1. Improve Thermo-Syphonic Effect

The layout of typical high-rise residential units can be improved to induce the thermo-
syphonic effect in addition to cross-ventilation. The positions and dimensions of the
apertures should be given due consideration. Scenarios 3 and 4 allowed for a 0.16 m high
gap lengthwise across the external wall of the intended solar chimney (i.e., the bathroom),
although further simulations may discover alternate dimensions. The simulated aperture,
when combined with a ceiling fan, was able to improve air velocity by over 45%. Generally,
the inlet of the solar chimney should be lower than the outlet.

The passiveness of the solar chimney makes it a cost-effective option for public housing,
which tends to be constructed on a limited budget. Instead of a monofunctional solar
chimney, natural ventilation may be optimised through strategic spatial planning and
modifications to the external wall’s materials or design, using basic construction techniques
that are readily available on the market. This would make its adoption more cost-effective.

The solar chimney concept may be implemented using spaces meant for transitions or
temporary occupation, in order to avoid prolonged negative user comfort within the solar
chimney space. Possible innovations include permanent, built-in openings in intermediate
spatial dividers, such as fixed louvres at the bottom sections of doors or walls. These should
be weighed against user privacy and noise insulation needs.

4.2. Considerations of SC External Wall Materials

Although this study assumes that the external wall of the designated solar chimney is
made of brick, which is a common practice in Malaysia, alternative materials with higher
thermal conductivity may be considered for better performance. Materials with higher
thermal conductivity (such as metal), or those with higher thermal mass (such as concrete),
may increase the effectiveness of the SC. However, designers will also need to consider
strategies to mitigate radiant heat transfer into habitable spaces.
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Alternatively, a secondary façade skin, distanced from the external walls and win-
dows of the building, may serve to induce the solar chimney effect without necessitating
significant modifications to internal layouts and specifications.
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