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A B S T R A C T   

Human memory stores various information and events that can be retrieved when needed. Many factors can 
influence memory performance which either provide positive or negative feedback. This research investigates the 
effect of audiovisual stimulation on adult memory based on electroencephalography (EEG) analysis. Sixty college 
students are participating in this experimental study. They must memorize visual assessment at two different 
levels in Mozart’s Sonata music and white noise stimulation. During memorizing duration, the EEG machine 
records brain electrical activity based on 10–20 electrode placement. The collected raw brain signals are pro-
cessed using the wavelet-based method. The stationary wavelet transform (SWT) is used for artifact elimination, 
whereas discrete wavelet transform (DWT) is applied to obtain alpha, beta, theta, and gamma rhythms. The 
time–frequency domain features are collected from the EEG signals to discover the influence of audiovisual 
stimulation. The findings showed a different increasing and decreasing trend of mean, standard deviation, and 
peak-to-peak EEG signal amplitude before and after audiovisual stimulation exposure. The theta and alpha 
rhythms showed the most influence with the highest relative power. Suppression of relative gamma and beta 
power is vital for improving visual information processing and attention level. Memorizing in audio stimulation 
has suppressed the relative alpha, beta, theta, and gamma power, leading to better visual memorizing ability. The 
white noise stimulation provides more influence on adult visual memory.   

1. Introduction 

Numerous studies on memory have identified the primary factors 
that influence its performance [1–6]. However, the neurobiology of 
memory has not been fully elucidated and discovered, necessitating 
additional research. Atkinson and Shiffrin classify memory according to 
its storage capacity and duration [7]. Each memory is uniquely capable 
of storing, retaining, and recalling the information it receives. The 
human memory system is comprised of three primary storage areas: 
sensory memory, short-term memory, and long-term memory. Sensory 
memory, alternatively referred to as the sensory register. It is a tempo-
rary storage location for information received via the human senses 
[8–10]. The success of encoded information is retained in short-term 
memory; however, if interference occurs, the information may be 
permanently lost from consciousness. Sensory memory is a prelude to 
short-term memory, allowing the individual to process and recall the 
sensations. The sensory memory is critical for scientific understanding of 
consciousness, individual differences, and memory control. Short-term 
memory, also called active or primary memory, is a type of memory in 

which a small amount of information is stored in the mind for a brief 
period of approximately 20 to 30 s (<1 s) [8–10]. If the information is 
not subjected to rehearsal or active maintenance, it can be retained in a 
matter of seconds and decays over time. 

Previously, psychologist George Miller suggested that people retain 
between five and nine items in short memory [11]. However, recent 
research indicates that humans can hold approximately four chunks of 
information in short-term memory [7]. As a result, additional research 
should be conducted to determine the precise storage capacity of short- 
term memory. Long-term memory is the storage of information for an 
extended period of time. This type of memory is relatively stable and can 
last for an extended period of time, frequently years. According to the 
Atkinson-Shiffrin or multi-modal model, all short-term memories are 
automatically retained in long-term memory after a period of time 
[12–14]. However, interference, time, and environmental conditions 
can all have an effect on the encoded information in memory. The 
simplest analogy for memory operation is that of a computer. Human 
senses first pick up on the information and store it in sensory memory. 
The information is then encoded into short-term memory, and some of it 
is transferred to long-term memory. The flow of information acquired by 
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the human senses until it is stored in specific memory is depicted in 
Fig. 1. 

To scientifically deduce the factors and influences affecting memory, 
a quantitative approach using brain imaging tools is preferred. Elec-
troencephalography (EEG) is a non-invasive brain imaging technique 
that is widely used in research and clinical settings to study and diagnose 
brain diseases and functions. The EEG is non-harmful and painless for 
the patient, has a short acquisition time, excellent temporal resolution, 
and is inexpensive, but has a high noise level and poor spatial resolution 
[15–20]. Thus, a method for removing artifacts and enhancing the 
quality of EEG signals is required. The EEG signal can be processed in a 
variety of ways. A wavelet-based method is an extremely effective 
technique for processing non-stationary signals such as EEG. 

Wavelet method is a time–frequency analysis technique that is based 
on the Wigner-Ville distribution and linear transformation, which de-
composes the input signal into low-frequency and high-frequency do-
mains [21–25]. Therefore, it is advantageous to separate the required 
brain rhythms from the input signal. Brain rhythms must be extracted 
from recorded EEG signals in order to ascertains individuals’ responses 
to provided stimulation. Additionally, to investigate the brain’s behav-
iour and activities. Alpha rhythm (8–13 Hz), beta rhythm (13–30 Hz), 
delta rhythm (0.5–4 Hz), theta rhythm (4–8 Hz), and gamma rhythm 
(0.5–2 Hz) are the five major types of brain rhythms [26–28]. Typically, 
the delta rhythm is omitted from analysis because it is constantly 
confused with a low-frequency artifact that results in eye blinking and 
movement. The delta rhythm is, however, still used in research 
involving sleep patterns and eye movement activities [29–31]. The 
following Table 1 details the brain rhythms. 

The audiovisual stimulation is selected as a factor to explore the 
brain activities based on EEG analysis. In this research, the Mozart’s 
Sonata music and pure white noise have been chosen as audio stimu-
lation. Several research on the influence of Mozart’s music on cognitive 
performance have revealed improvements in spatial reasoning abilities 

[34], spatial–temporal performance [35], oddball visual task [36], vi-
suospatial rotation task [37], trigonometry task [38], and science test 
[39]. For instance, Jausovec et al., [37] examined the effect of Mozart’s 
Sonata music and Brahms Hungarian music on adult visuospatial per-
formance. The researchers discovered that listening to Mozart’s Sonata 
music enhanced gamma, theta, and alpha activity. The activation of 
these rhythms was found to increase visuospatial skills. The subject 
performed better under Mozart’s music circumstances than under 
Brahms’s Hungarian and quite conditions. Additionally, Taylor and 
Rowe [38] discovered that listening to Mozart’s music improved sub-
jects’ performance on a mathematics test when compared to quite 
circumstance. Similar findings are reported by Perlovsky et al. [39] who 
found that adolescents were more adept at answering science questions 
when listening to Mozart’s music than Koto Music. There is, however, 
evidence that Mozart’s music impairs cognitive performance [40,41]. 
They assert that there were no significant variations in student groups’ 
scores on Raven’s Progressive Matrices – Advanced Form and paper 
folding and cutting tests prior to and following exposure to Mozart’s 
music. Motivated by this distinction in Mozart’s music’s effect on 
cognitive function, this latest experiment examined the influence on 
visual memory, determining if it has a beneficial or detrimental effect. 

White noise is another type of audio that has been shown to boost 
cognitive performance in specific studies, where it was found to improve 
visuospatial working memory [42,43] and verbal memory tests [44,45]. 
Soderlund et al., [42] examined the effect of white noise on children 
with normal and attention deficit hyperactivity disorder (ADHD) doing a 
visuospatial working memory test. When ADHD children were exposed 
to white noise versus silence, a beneficial effect on visuospatial perfor-
mance was observed. However, the normal children that exposed to 
white noise, they demonstrated less effect on task performance than the 
ADHD groups. Additionally, Helps et al., [44] established the effect of 
white noise on three distinct child groups: the sub-attentive, the normal, 
and the super-attentive. The findings indicated that when exposed to 
white noise, sub-attentive children performed better on delayed recog-
nition and verbal episodic recall tests than when exposed to silence. 
However, white noise has little effect on the performance of typical 
children. The majority of past research has examined the effect of 
Mozart’s music and white noise on visuospatial skills. Thus, this study 
employs visual memory assessments of varying degrees of difficulty as a 
form of visual stimulation or cognitive testing. Apart from visuospatial 
memory, having an excellent visual memory is equally critical, as the 
majority of daily activities require this sort of memory. Visual memory is 
described as a person’s capacity to recall or recollect information or 
events captured in the past. Additionally, these stimuli were chosen 
because few studies have examined the effectiveness of Mozart’s Sonata 
music against white noise stimulation on cognitive assessments based on 

Nomenclature 

A approximation 
AgCl silver chloride 
ASCII American Standard Code for Information Interchange 
αp absolute power of alpha rhythm 
βp absolute power of beta rhythm 
D detail 
dB decibel 
db daubechies 
Hz hertz 
n total number of observations 
μm mean of the dataset 
n r total number of observations 
μsd mean of the dataset 
PD absolute rhythms power 

Max maximum or the highest value in the dataset 
Min minimum or the lowest value in the dataset 
ms milliseconds 
μpp mean of the dataset 
x observe value 
X mean value 
xsd dataset value 
γp absolute power of gamma rhythm 
σm standard deviation of the dataset 
θp absolute power of theta rhythm 
DWT discrete wavelet transform 
EEG electroencephalography 
SWT stationary wavelet transform 
MSE mean square error  

Fig. 1. The flow of information in the human memory.  
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visual memory. 
The majority of studies chose to conduct their research using one of 

these. The remaining challenge is which of them is the most useful for 
visual memory improvement? Do Mozart’s Sonata music and white 
noise have identical effects on visual memory performance, or does one 
have a more positive effect? To the best of author’s knowledge, the only 
study that compared the effectiveness of both of these audios is Bottiroli 
et al., [46]. The purpose of this study was to determine the effect of 
Mozart’s music, white noise, Mahler’s music, and no-audio on older 
people’ declarative memory and processing speed. It had been discov-
ered that when Mozart’s music was played, the processing speed task 
performed better than under other situations. Additionally, music cir-
cumstances resulted in a considerable performance advantage over no- 
audio and white noise conditions which had a similar effect on declar-
ative memory tests. According to Bottiroli et al., [46], Mozart’s music 
performed better than white noise and other conditions for older in-
dividuals’ declarative memory based on score performance. However, in 
Bottiroli et al., [46] the influence of audios on subjects was established 
only on task score performance, without regard for brain activity. 
Therefore, in this current research, brain analysis and task score per-
formance are used as the researched factors in order to determine their 
relationship to auditory stimulation. The primary explanation is that the 
activation and inhibition of specific brain activity may have an effect on 
adults’ visual memory abilities. This comparison study enables the 
determination of the trend and pattern of brain activity in response to 
the stimulations with the greatest and least influence. 

2. Materials and methods 

This section details the data acquisition equipment and procedure 
used in this study, as well as the presented stimulation, denoising pro-
cess, and feature extraction methods. As seen in Fig. 2, there are four 
major stages of data processing involved in achieving research 
objectives. 

2.1. Experimental setup and data acquisition 

This study enrolled a total of 60 healthy volunteers (40 females and 
20 males, mean age: 23 years). All participants signed informed 
permission forms prior to the experiment’s procedures beginning. The 
Malaysian National Medical Research Register (21–02365-GVD) 
authorised all techniques used in this study. Each participant attended 
one data collecting session lasting approximately 50 min and was seated 
comfortably 90 cm away from the screen displaying the visual presen-
tation and external speaker exposing them to the audio. The participant 
is urged to maintain a relaxed demeanour with little movement in order 
to avoid unnecessary changes in the wave patterns caused by bodily 
activity. 

The EEG equipment (Nihon Kohden, Neurofax 9200) was utilised to 
acquire EEG data using a 10–20 electrode placement scheme. The par-
ticipant’s scalp is covered with the EEG cap. Electrodes were placed at 
Fp1 [47,48], Fz [49], Pz [50,51], T3 [52], and T4 [52]. These five 
electrodes were chosen because they are associated with human mem-
ory and the auditory region of the brain [53]. The reference electrode 
was placed over the left mastoid, and the ground electrode was attached 
over the right mastoid. The Ag-AgCl gel binds the electrode to the 

Table 1 
Classification of EEG brainwaves with their properties [32,33].  

Brain rhythms Amplitude 
(μV) 

Frequency 
(Hz) 

Brain states 

Delta  100 – 200 0.5 – 4 Deep sleep or awake state 

Theta  5 – 10 4 –8 Drowsiness, the initial stage of sleep, access to unconscious material, creative 
inspiration, and deep meditation 

Alpha  20 – 80 8 – 13 Relaxed awareness without attention and concentration 

Beta  1 – 5 13 – 30 Active thinking, a high level of arousal, alertness, and attention 

Gamma  0.5 – 2 > 30 Mental activity at a higher level, including awareness and consciousness, is associated 
with movement and sensory processing.  

Fig. 2. Stage of data processing in this research.  
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patient’s skin and distributes electrical stimulation efficiently to the 
target area. The EEG cap connector is then connected to the EEG ma-
chine’s electrode board adapter. The EEG system is controlled by setting 
the data acquisition sensitivity to 10 µV, the time constant to 0.3 s, the 
high pass filter to 70 Hz, the EEG pattern and reference to an average 
level, and the signal sampled to 500 Hz. The captured EEG signal was 
imported into ASCII format to assist data processing. Fig. 3 depicts the 
experimental procedure used in this study. 

The participants were randomly assigned into two groups named 
Group A and Group B. Each group consisted of 30 participants were 20 
females and 10 males. They must listen to the audio while observing the 
visual presentation. The order of audio stimulation was reversed to 
rebalance the participant’s response to audio. In comparison to the 
audio stimulation setting, the quiet environment is used as a control 
condition. The participants were given 2 min to perform and 30 s to rest 
between the 1st and 2nd levels of assessment. They are asked to rest for 
1 min during audio changes. The EEG datasets were collected while 
participants observed the visual presentation and listened to audio 
stimulation. 

2.2. Audiovisual stimulation 

Each participant was instructed to listen to Mozart’s Sonata 2 pianos 
in D Major, K448, and pure white noise, as well as see the visual pre-
sentation during EEG data collection. The audios were played at a vol-
ume of 40 – 55 dB, as assessed by decibel meter software, to minimize 
the detrimental influence on participants’ hearing perceptions. The vi-
sual presentation consists of object images and numbers that the 
participant must memorize. The visual assessments were presented in 
black, grey, and white to reduce the effect of color on participant per-
formance. Two levels of visual assessments were chosen: 1st level and 
2nd level. The 1st level consists of an image with two-digits, whereas the 
2nd level contains a picture with four-digits. The audiovisual stimula-
tion programme was created using CapCut software to standardize the 
time of the experiment for each participant. Fig. 4 depicts the visual 
assessment that was used. 

2.3. Elimination of artifacts from EEG datasets 

Denoising of the raw EEG datasets (time-point: 60 000, sampling 

interval: 2 ms) from the Fp1, Fz, Pz, T3, and Pz channels was performed 
using the stationary wavelet transform (SWT) in Matlab version R2021b, 
which used the db3 mother wavelet and five levels of decomposition. 
Through the convolution procedure, the imported EEG signal was 
broken into low-pass and high-pass filters with impulse responses 
dependent on selected wavelet criteria. Low-pass filters generate 
approximation coefficient, whereas high-pass filters yield detail co-
efficients. Since the input EEG signal was 500 Hz, thus the frequency of 
signal was divided in half for each filter. Therefore, the low-pass and 
high-pass filters will have a frequency of 250 Hz. However, the EEG 
signal’s final output has an initial frequency sampling of 500 Hz. Similar 
frequency sampling is achieved for the initial and final EEG signals by 
upsampling the signal by two as it goes through the sample. 

The SWT is a powerful method for EEG processing because its 
properties are time-invariant and provide improved time resolution for 
artifacts identification, pattern recognition, change detection, and 
feature extraction [54,55]. The main reason for utilizing SWT filter to 
remove artifacts from EEG datasets is that it may retain the signal’s 
original frequency sampling, which contains the actual information. 
Additionally, the SWT can preserve the signal’s time-invariance prop-
erties, which are critical for localizing and identifying the changes or 
transient properties in the EEG signal [56–58]. Furthermore, the db3 
mother wavelet has spiky characteristics, making it well-suited for 
removing muscle movements and eye movements/blinks artifacts 
[59–61]. The flow chart in Fig. 5 illustrates the filtering procedure for 
removing artifacts from an EEG signal using the SWT approach. 

Selection of the mother wavelet and decomposition level is critical 
because to their effect on denoising performance. The wrong choice of 
mother wavelet and decomposition level resulted in the failure to 
remove artifacts and loss of desirable features. According to Sarkela 
et al., 2007 [62], any Daubechies (db) type higher than three is unde-
sirable for EEG denoising due to its sinusoidal shape and more stretch in 
time-axis. The best decomposition level 5 was determined based on the 
lowest mean square error (MSE) value. The decomposition level of the 
SWT filter was chosen from levels 2 to 8. Level 1 decomposition was 
omitted because to its inadequacy for EEG denoising. Table 2 shows the 
result of MSE for denoising of selected EEG channels. 

According to Table 2, the MSE value decreased as the level of 
decomposition increased. However, when decomposition level 6 was 
used, the MSE value increased almost half and continued to rise until 

Fig. 3. Illustration of the data acquisition process.  
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level 8. A small MSE score indicates that a significant amount of noise 
has been eliminated from the raw signal through filtering. The lowest 
MSE of 2.189 was found from decomposition level 5. Therefore, the SWT 
filter with a db3 mother wavelet and a decomposition level of 5 was 
utilized in this study to filter out artifacts in the EEG signal. 

2.4. Decomposition of brain rhythms 

After filtration process, the brain rhythms are decomposed from EEG 
signal using the DWT method. The DWT decomposition process was 
chosen as the rhythmic extractor since it is more computationally effi-
cient than other transformations because of its superior localization 
properties, which resulted in a higher extraction accuracy. Several 
earlier research have proven the efficiency of DWT for feature extrac-
tion, including Jothimani et al., [17], Choudhry et al., [63], 

Balamareeswaran et al., [64] and Li et al., [65]. Five distinct brain 
rhythms are obtained: alpha, beta, theta, and gamma. The mother 
wavelet’s Daubechies order 4 (db4) and seven levels of decomposition of 
DWT was chosen. This mother wavelet was selected because it is well- 
suited for detecting changes in EEG signals and provides a better accu-
racy than other wavelets. 

The DWT method has a similar execution process as SWT, but the 
input signal of DWT will be downsampled by two each time passes 
through the low-pass and high-pass filters. Low-pass filtering generates 
approximation (A) coefficients with low-frequency components. Addi-
tionally, the high-pass filter produces the detail (D) coefficients, which 
contain components with a high-frequency components. Therefore, the 
DWT is an appropriate method for obtaining brain rhythms with 
different frequency components. Since, the 500 Hz sampling rate of the 
EEG input employed in this study, seven decomposition levels are 
necessary to decompose the desired brain rhythms. Fig. 6 illustrates the 
DWT tree structures used to decompose an EEG signal with a frequency 
sample of 500 Hz. It can be seen that decomposition level 4 (D4) has a 
frequency of 31–63 Hz, which corresponds to the gamma rhythm. 
Meanwhile, D5 (16–31 Hz), D6 (8–16 Hz), and D7 (4–8 Hz) correspond 
to the beta, alpha, and theta rhythms, respectively. 

2.5. Features extraction and analysis of EEG dataset 

This section discusses the features and analysis method used in this 
research. Two primary parameters are used as benchmark features based 
on EEG datasets and score evaluation. The t-test and sign test analysis 
are used to determine the significant relationship between the variables 
under investigation. 

2.5.1. EEG dataset features 
This research extracts four major features from EEG signals in order 

to ascertain the influence of audiovisual stimulation on adult memory. 
The features are the mean of EEG signal amplitude, the standard devi-
ation of the EEG signal amplitude, the peak-to-peak of EEG signal 
amplitude, and absolute rhythms. Each of the features is normalized to 
standardize the final results. The specified features are denoted by the 
following Eqs. (1)–(6): 

Mean =

∑
x

n
(1)  

Fig. 4. Visual assessment at various levels: a) First level and b) Second level.  

Fig. 5. Artifacts elimination process from EEG signal using a stationary wavelet 
transform filter. 

Table 2 
Mean square error of decomposition level for Fp1, Fz, T3, T4, and Pz using stationary wavelet transform filter of db3 mother wavelet.  

Decomposition Mean square error (MSE) Average MSE 

Channel Fp1 Channel Fz Channel T3 Channel T4 Channel Pz 

Level 2  2.551  2.550  2.149  2.412  2.459  2.424 
Level 3  2.634  2.562  1.720  2.351  2.412  2.336 
Level 4  2.593  2.511  1.981  2.154  2.303  2.308 
Level 5  2.500  2.390  1.883  2.022  2.149  2.189 
Level 6  2.414  2.310  1.942  1.920  14.500  4.617 
Level 7  2.462  2.347  1.894  1.881  14.555  4.628 
Level 8  2.490  15.031  1.895  1.857  14.590  7.173  
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Normalize mean =
xm − μm

σm
(2)  

where x refers to observe value, n refers to the total number of obser-
vations, xm refers to the dataset value, μm refers to the mean of the 
dataset, and σm refers to the standard deviation of the dataset. 

Standard deviation =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(Xi − X)2

n

√

(3)  

Normalize coefficient of variation =
xsd − μsd

σsd
(4)  

where Xi refers to observe value, X refers to mean value, n refers to the 
total number of observations, xsd refers to dataset value, μsd refers to 
mean of the dataset, and σpp refers to standard deviation of dataset. 

Peak − to − peak amplitude = Max − − Min (5)  

Normalize peak − to − peak amplitude =
xpp − μpp

σpp
(6)  

where Max refers to the maximum or the highest value in the dataset, 
Min refers to the minimum or the lowest value in the dataset, xpp refers to 
dataset value, μpp refers to mean of the dataset, and σpp refers to standard 
deviation of dataset. 

The absolute rhythms power is obtained to determine the energy 
produced by the signal in a given amount of time. The absolute rhythms 
power can be estimated as represented in (7): 

PDi =
∑N

j=1

|Dij|
2

N
i = 4, 5, 6, 7 (7)  

where, 
∑N

j=1|Dij|
2 represents the energy value to the number of detail 

coefficient (N) at each decomposition level. Eqs. (8)–(11) represent the 
normalized rhythms power or relative rhythms power that was obtained 

from Park et al., (2011) study [66]. 

Normalize alpha power = Relative alpha power =
αP

αP + βP + γP + θP
(8)  

Normalize beta power = Relative beta power =
βP

αP + βP + γP + θP
(9)  

Normalize gamma power = Relative gamma power =
γP

αP + βP + γP + θP

(10)  

Normalize theta power = Relative theta power =
θP

αP + βP + γP + θP
(11)  

where αp refers to the absolute power of alpha rhythm, βp refers to the 
absolute power of beta rhythm, γp refers to the absolute power of gamma 
rhythm, and θp refers to the absolute power of theta rhythm. 

2.5.2. Score evaluation 
The second measurement is the score evaluation, which is used to 

test the subject’s memory following audiovisual stimulation. The sub-
ject’s ability to accurately recall the material is assessed. To begin, 
subjects must memorize the object and its corresponding number within 
the allotted time period. Then, as illustrated in Fig. 7, the answer sheet 
was distributed. Following that, they must finish each object’s missing 
number. It will be considered correct when the object is paired with its 
corresponding number. The accurate pairing of object-number elements 
earns the student a point. If subjects could memorise everything, the 
total valid score was ten. The sign test is utilized to investigate the sig-
nificance of score differences between conditions. This score evaluation 
was used to assess respondents’ memory performance. The higher visual 
assessment score indicates that the subjects were capable of memorizing 
the items. This measurement is critical for determining the relationship 
between the scores and brain activities. This relationship reveals the 
pattern of EEG properties associated with excellent and poor visual 

Fig. 6. Decomposition of brain rhythms using the discrete wavelet transform method for an EEG signal with a sampling rate of 500 Hz.  
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assessment scores. 

3. Results 

This section summarised the research findings. The effect of audio-
visual stimulation on EEG features for selected EEG channels of 
normalizing mean, normalizing standard deviation, normalizing peak- 
to-peak amplitude, and relative rhythms power is described compre-
hensively. Additionally, the score evaluation result was presented to 
substantiate these conclusions. 

3.1. Normalized mean, normalized standard deviation, and normalized 
peak-to-peak amplitude of EEG voltages 

Table 3 shows the normalized mean value of EEG voltage for 1st and 
2nd level visual assessment under audio stimulation. In general, voltage 
is the quantitative measure of the charge potential difference between 2- 
points in an electrical field [67–69]. The voltage is classified into direct 
and alternating. EEG voltage represents the ionic current flowing 
through the brain’s neurons and is categorized as alternating voltage. 
The greater EEG voltage shows a larger flow of ionic current from 
activated neurons. The control condition’s result is utilised to compare 
to the auditory stimulation condition. 

As can be seen, the Fp1 channel had the highest normalized mean for 
1st level visual assessment when Mozart’s Sonata music and white noise 
conditions were used. Meanwhile, the greatest normalized mean for the 
2nd level of visual assessment was observed in the T4 channel for 
Mozart’s Sonata music and the Fp1 channel for white noise. The lowest 
normalized mean value for 2nd level of visual assessment was found in 
the Fz channel for Mozart’s Sonata music and the T4 channel for white 
noise. In comparison to the silence condition, Mozart’s Sonata music of 
1st level visual assessment exhibited a higher normalized mean in the 
Fp1, Fz, T4, and Pz channels. In contrast, the T3 and Pz channels showed 
the highest normalized mean for white noise. For the T4 channel that 
correlated with emotional memory, the white noise condition resulted in 

the lowest normalized mean for both visual assessment levels. According 
to the normalized mean of EEG voltage, particular channels are sup-
pressed and attenuated when the subject is exposed to audiovisual 
stimulation in comparison to the control condition. 

The standard deviation is used to measure the dispersion of a dataset 
relative to its mean [70]. It indicates the degree to which the data de-
viates from the mean value. The larger standard deviation indicates that 
the dataset is more dispersed relative to the mean. Meanwhile, the 
lowest standard deviation suggests that the dataset has the least fluc-
tuation. According to Table 1, the Fp1 channel had the highest 
normalized standard deviation across all tested audiovisual stimula-
tions. Therefore, it implies that the Fp1 channel dataset has a greater 
dispersion relative to the mean. The lowest normalized standard devi-
ation was found in the T4 channel for white noise stimulation for both 
assessments associated with emotional memory. The lowest standard 
deviation was seen for Mozart’s Sonata music in the Pz channel for the 
1st level of visual assessment and in the Fz channel for the 2nd level of 
visual assessment. This suggests that listening to Mozart’s Sonata music 
resulted in little variation in the Pz and Fz channels relative to the mean 
of the dataset. 

The term “peak-to-peak amplitude” refers to the difference between 
the maximum and minimum values of the datasets. The normalized 
peak-to-peak amplitudes for the highest and lowest difference in EEG 
voltage for various audiovisual stimulations were determined in this 
study. The outcome of normalizing the peak-to-peak amplitude is shown 
in Table 4. As can be observed, the highest amplitude difference was 
discovered in the Fz channel for 1st level visual assessment and the Fp1 
channel for 2nd level visual assessment when Mozart’s Sonata music 
was used. Meanwhile, the white noise EEG dataset demostrated the 
highest amplitude difference in the Fp1 channel for 1st visual assess-
ment and the Pz channel for 2nd visual assessment. 

The analysis of EEG voltage features such as normalized mean, 
normalized standard deviation, and normalized peak-to-peak amplitude 
shows that the audiovisual stimulation has a dinstinct effects on these 
features, as previously mentioned. However, these features showed only 
the highest and the lowest trends of dataset, which is insufficient to 
assess and explain the influence of audiovisual stimulation on adult 
memory. As a result, this research yields conclusions based on brain 
rhythms, which can help explain the effects of stimulation on memory. 

Fig. 7. Example of visual assessment: a) answer sheet and b) score evaluation.  

Table 3 
Normalize mean ± standard deviation of EEG voltage under various audiovisual 
stimulation.  

1st level visual assessment 2nd level visual assessment 

Channels Control Mozart’s 
Sonata 
music 

White 
noise 

Control Mozart’s 
Sonata 
music 

White 
noise 

Fp1 39.6 ±
38 

42.9 ± 23 38.3 
± 38 

32.8 ±
44 

20.0 ± 25 32.7 
± 38 

Fz 30.0 ±
18 

37.0 ± 21 28.6 
± 19 

35.7 ±
22 

18.6 ± 19 28.0 
± 20 

T3 36.3 ±
25 

35.9 ± 21 37.9 
± 30 

29.3 ±
31 

19.3 ± 22 28.9 
± 29 

T4 32.9 ±
22 

36.1 ± 22 10.8 
± 16 

23.8 ±
16 

26.2 ± 23 13.2 
± 15 

Pz 34.7 ±
25 

40.1 ± 20 37.8 
± 29 

35.7 ±
29 

19.2 ± 23 30.8 
± 25  

Table 4 
Normalize peak-to-peak amplitude of EEG voltage under various audiovisual 
stimulation.  

1st level visual assessment 2nd level visual assessment 

Channels Control Mozart’s 
Sonata 
music 

White 
noise 

Control Mozart’s 
Sonata 
music 

White 
noise 

Fp1  25.8  32.7  41.0  35.9  25.3  35.3 
Fz  31.6  35.6  26.3  28.9  24.3  31.6 
T3  22.1  28.9  40.0  28.5  25.0  23.1 
T4  26.4  30.3  25.9  29.8  27.3  26.1 
Pz  26.7  27.3  38.5  29.4  27.8  39.4  
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3.2. The relative power of EEG rhythms 

Brain rhythms are distinct patterns of aggregated neuronal activity 
associated with particular actions, sleep states, and arousal levels 
[26,71]. The overall relative power for each rhythm at various audio-
visual stimulus levels is shown in Table 5. 

The gamma rhythm is associated with sensory processing, move-
ment, and activities requiring a high level of cognition [71,72]. The 
Figs. 8 and 9 show the relative gamma power in response to various 
audiovisual stimulation. As expected, white noise stimulation exhibited 
the highest relative gamma power at both visual assessment levels. The 
white noise facilitates the processing of sensory input information better 
than other situations. In this case, the visual item can be encoded and 
registered more successfully in the memory when listening to white 
noise. The high activation of gamma rhythm is vital for activities related 
to memory since it reflects the human sense’s greater ability to keep up 
with provided information. In comparison to the control condition, both 
audio stimulations resulted in a significant increase in relative gamma 
power in nearly all selected channels. However, the Fp1 and T3 channels 
of Mozart’s Sonata music stimulation achieved the lowest relative 
gamma power for 1st level of visual assessment. For 2nd visual evalu-
ation level, the lowest relative gamma power was found in Fp1 and T4 
channels. The Fp1 channel is associated with people’s attention state, 
whereas T3 and T4 are related to verbal memory/remembering what we 
see and emotional memory. The main reason that led to the attenuation 
at specific channels in Mozart’s Sonata music is caused by disruption of 
subject attention and emotion, which reduces sensory processing. Based 
on summation from the selected channel, it can be seen that the relative 
gamma power of Mozart’s Sonata music stimulation for the 1st level was 
higher than the 2nd level of visual assessment. The reduction of relative 
gamma power for the 2nd level may disrupt sensory processing to reg-
ister/encode an increased number of items that must be memorized 
when listening to Mozart’s Sonata music. Meanwhile, the relative 
gamma power for white noise stimulation increased from the 1st to 2nd 
level of visual assessment. It can be stated that the sensory processing of 
the subject was raised when more items needed to be memorized under 
white noise stimulation. 

Beta rhythm is related to active thinking, high wakefulness, alert-
ness, and focus [73,74]. The high relative beta power represents the high 
alertness and focused level toward provided visual assessment in this 
study. From the total relative beta power in Table 5, it can be observed 
that for 1st level visual assessment, the value is approached each other 
for the three tested conditions. The difference was 3.12% for Mozart’s 
Sonata music and 2.33% for white noise relative to the control condi-
tion. Therefore, it can be stated that the alertness and focus level of the 
subject in audio stimulation is almost similar with no audio. This may 
happen because the fewer items in 1st level visual assessment need to 
remember, which does not require a high attention level. Therefore the 
audio does not have a significant influence on relative beta power. Based 
on the percentage difference, Mozart’s Sonata music had a higher 
distinction than white noise because the subject needs to give great 
attention to tasks when listening to Mozart’s music. This may be caused 
by a different audio tone, frequency, and rhythm arrangement. Mozart’s 
Sonata music and white noise showed higher relative beta power in Fp1, 

Fz, T3, and Pz channels except for the T4 channel compared to control 
condition for 1st level visual assessment (Figs. 10 and 11). The white 
noise stimulation showed the highest relative beta power in all selected 
channels for the 2nd level of visual assessment compared to Mozart’s 
Sonata music and control condition. However, Mozart’s Sonata music 
had different attenuation and suppression trends than the control con-
dition for the 2nd level of visual assessment, where the relative power 
beta in Fp1, Fz, T3, and Pz channels were attenuated, and T4 was 
suppressed. 

Alpha rhythm is a neural oscillation of 8–12 Hz frequency. The 
positive influences of boosting the alpha rhythm include reducing anx-
iety, lowering stress, decreasing depression, and improving creative 
thinking [36,73,75]. Figs. 12 and 13 show that performing 1st level of 
visual assessment under audio stimulation had increased the relative 
alpha power. Mozart’s Sonata music and white noise stimulations ach-
ieved the highest value for all selected channels relative to the control 
condition. The highest total relative alpha power for 1st visual assess-
ment was found in white noise stimulation (Table 5). Therefore, it in-
dicates that the subjects feel enjoy and less stressed when listening to 
audio stimulation while memorizing 1st level of visual assessment. 
However, different influences were found for 2nd level of visual evalu-
ation. The white noise stimulation obtained the lowest value based on 
the total relative alpha power. This may happen because the subject feels 
disrupted and a bit stressed while performing the 2nd level visual 
assessment. However, when Mozart’s Sonata music was played, the 
relative alpha power was improved than control and white noise con-
ditions. This showed that the subjects enjoyed and felt less stress in 
Mozart’s Sonata music. The highest relative alpha power was found in 
the Fp1 channel, followed by the Fz channel for tested audiovisual 
stimulation. These two channels are associated with attention and the 
working memory process. These findings parallel the other studies 
where the alpha rhythm is always activated at the frontal brain region 
when involved with the attentional assessment [36,73,75]. Based on 
relative alpha power, it can be concluded that listening to Mozart’s 
Sonata music and white noise stimulation while memorizing fewer vi-
sual items able to help subjects more relaxed and calm. However, the 
selected audio stimulation gave different influences when the number of 
visual items to remember increased. 

Theta rhythms are usually strong during meditation, internal focus, 
prayer, spiritual awareness, learning, and memory retrieval [36,69,75]. 
The experts believe that the theta waves are essential for processing 
information and making memories. Figs. 14 and 15 show the relative 
theta power for selected channels at different audiovisual stimulation. It 
can be seen that the Fp1 channel showed the highest relative theta 
power, which indicates that this rhythm is related to people’s internal 
focus. The maximum relative theta power was found in white noise 
stimulation for both levels of visual assessment. Therefore, it recom-
mended that the subject’s internal focus on visual assessment was higher 
when listening to white noise than Mozart’s Sonata and control condi-
tion. The Fz channel associated with working memory function showed 
that white noise stimulation improved relative theta power relative to 
control condition in 1st level visual stimulation. However, for 2nd level 
visual assessment, reduction of relative theta power was found for white 
noise stimulation compared to the control condition. Listening to white 
noise in 1st level can improve visual information processing, but the 
performance was reduced for 2nd level, which may cause by interrup-
tion of audio with stimuli which causes a bit relative theta power 
reduction. The relative theta power for T3, T4, and Pz, the trend of 
increasing and decreasing, was different for each stimulation. Based on 
total relative theta power, the highest value was obtained from white 
noise stimulation for both levels of visual assessment (Table 5). Besides, 
Mozart’s Sonata music also had better relative theta power than the 
control condition. Therefore, it revealed that the audios gave better 
internal focus and information processing than the control condition. 

Table 5 
Relative power of brain rhythms in response to various audiovisual stimulation.   

1st level visual assessment 2nd level visual assessment 

Brain 
rhythms 

Control Mozart’s 
Sonata 
music 

White 
noise 

Control Mozart’s 
Sonata 
music 

White 
noise 

Gamma  29.13  30.11  31.98  28.06  29.96  32.13 
Beta  53.66  55.33  54.91  53.67  53.89  57.32 
Alpha  83.59  84.83  84.87  86.20  86.29  83.68 
Theta  114.24  114.35  115.38  114.48  115.58  116.72  
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3.3. Score evaluation 

To discover the relation between relative rhythm power activation 
with visual memory performance, the score evaluation result was 
included (Figs. 16 and 17). The sign test analysis was performed to 
determine the significant difference in visual assessment performance in 
tested audiovisual stimulation. A p-value lower than 0.05 is considered 
the audio stimulation significantly influences score performance relative 
to the control condition. The highest percentage score was found from 

white noise stimulation for both levels of visual assessment (1st level: 
36% and 2nd level: 39%). Meanwhile, Mozart’s Sonata music score 
performance was 34% for the 1st level and 34% for the 2nd level. The 
scores showed that subjects’ performance was better in audio stimula-
tion than the control condition (1st level: 30% and 2nd level: 27%) for 
both groups of visual assessment. Based on sign test analysis, the scores 
of white noise stimulation showed a significant difference with a p-value 
of 0.009 for the 1st level and 0.001 for the 2nd level visual assessment 
relative to the control condition. However, no significant influence was 
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Fig. 8. Relative gamma power for 1st level visual assessment at different audio stimulation.  
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Fig. 10. Relative beta power for 1st level visual assessment at different audio stimulation.  
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obtained for Mozart’s music stimulation for both assessments. There-
fore, it is recommended that the white noise stimulation significantly 
influenced subject memory more than Mozart’s Sonata music. The 1st 
level visual assessment achieved better scores than the 2nd level for all 
audio stimulations in terms of task level. This happens due to the 
different number of items that need to be remembered. The 2nd level 
had more items than the 1st level, which reduced the subject’s memo-
rizing ability. However, by listening to the audio, the memorizing 

performance of the subject was improved than the control condition. 
The difference in score performance of the subject under the different 
influences of audio stimulation was caused by attenuation and sup-
pression of relative rhythm power. Activation of certain brain rhythms 
led to the improvement of adult memory. In this case, four major types of 
rhythms are focused. It found that the white noise stimulation had the 
highest relative gamma and theta powers, improving subject memory. 
As discussed earlier, these rhythms are essential for sensory processing 
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Fig. 11. Relative beta power for 2nd level visual assessment at different audio stimulation.  
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Fig. 12. Relative alpha power for 1st level visual assessment at different audio stimulation.  
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Fig. 13. Relative alpha power for 2nd level visual assessment at different audio stimulation.  
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and internal focus. Therefore, the main reason the subject performed 
better in white noise stimulation was caused by improvement of sensory 
processing and inner focus. 

4. Discussion 

This research investigates the influence of audiovisual stimulation on 
adult memory. Two types of audio were used: Mozart’s Sonata music 
and white noise. These audios were chosen by professionals because 
they have been shown to increase memory and cognitive processes in 
humans. However, relatively few research have been conducted on their 

effects on visual memory. Visual memory is one of the vital parts of the 
brain that stores visual information. Therefore, improving visual mem-
ory is crucial for increasing the ability to remember or recall previously 
viewed information such as words, pictures, and activities that have 
been viewed in the past [14,76]. In this research, we used two different 
assessment task levels that consist of a different amount of items. The 
memory capacities of subjects are determined using EEG features and 
assessment test scores. The EEG datasets were processed using SWT and 
DWT methods to extract the required features. 

From score evaluation, the subjects performed better in white noise 
stimulation than Mozart’s Sonata music and control condition at both 
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Fig. 14. Relative theta power for 1st level visual assessment at different audio stimulation.  
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Fig. 16. Score evaluation for 1st level visual stimulation.  
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levels of visual assessment. Sign test analysis revealed a substantial 
relationship between the score result of white noise and control condi-
tions. The 2nd level had more impact than the 1st level, which indicates 
the white noise assists people in focusing their attention on the job. This 
could contribute to the increased quantity of items that need to be 
remembered in the 2nd level of the assessment task. In comparison to 
control conditions, both audio stimulation positively influenced adult 
memory as their scores are better. The extraction of EEG features is 
discussed to scientifically understand the correlation between audio 
stimulation and visual memory performance. 

Based on EEG features, it was discovered that the audiovisual stim-
ulation produced different increasing and decreasing patterns of mean, 
standard deviation, and peak-to-peak amplitude. To have a better un-
derstanding of the effect of stimulation, the relative power of four major 
types of brain rhythms such as alpha, beta, theta, and gamma is deter-
mined. As illustrated in Table 5, the most influential rhythms are theta 
and alpha, which exhibit the highest relative power. The activation of 
these rhythms may be due to the subjects’ increased internal focus, 
attention, and awareness in response to stimuli [36,37]. For instance, 
white noise stimulation used in the 2nd level visual assessment gains a 
lower relative alpha power than others, indicating that subjects are 
paying attention to the task. This could be because the sensation disturbs 
the white noise, necessitating increased concentrate to memorize the 
items. However, in 1st visual evaluation, white noise has the highest 
relative alpha, indicating that the subject is in a relaxed and tranquil 
state when memorising the items, as opposed to Mozart’s Sonata music 
and the control condition. 

Most people believe that remembering in the quiet state is the best 
place to avoid external distraction, but this research proved that the 
quiet/control condition is not efficient for learning. As we can see, the 
relative alpha power of the control condition was the lowest among the 
others, which revealed that the subject feels a little bit distracted or 
bored. The other possible reason was the difference in relative gamma 
and beta power. The relative gamma power was higher in white noise 
than Mozart’s Sonata music and control condition, indicating that visual 
information captures by eyes can be processed more effectively in white 
noise at both visual assessment levels. Additionally, the relative beta 
power was greater under audio stimulation than under control. This 
suggested that subjects were more attentive and concentrated when 
listening to audio. As a result, it may be concluded that Mozart’s Sonata 
music and white noise altered brain activity that resulted in improved 
visual memory in subjects. Thus, white noise is the optimal audio 
stimulus for assessing visual memory. 

The fact that Mozart’s Sonata music and white noise perform better 
visually can be explained using the Trion model and stochastic reso-
nance concept. Mozart’s Sonata music is classified as classical music 
because composed of the high organization structure necessary for 

stimulating the cortical firing patterns associated with in-memory pro-
cessing [38,77,78]. This kind of classical music consists of three char-
acteristics: eight-bar phrases of harmony, the beats are separated at a 
fixed tempo, and a single composition of various voices and equipment. 
Trion model state that the music modified the neuron’s synaptic weight 
in a particular pattern based on Hebbian learning principles [34,79]. 
These principles describe the involvement of brain regions during the 
cognitive process, which believes listening to music can strengthen the 
neuron firing. Thus, the input information transmitted into memory can 
be processed successfully, decreasing information loss. The involvement 
of noises is usually associated with stochastic resonance concept or noise 
improve signaling. Prior, this concept was found in any non-linear dy-
namic system, but the newest is observed in the nervous system. 
Soderlund, 2007 [42] stated that stochastic resonance could improve 
auditory, touch, and visual stimuli processing. This concept explained 
that the input information caught by human senses is considered a weak 
signal requiring force to make it more detectable. The addition of white 
noise led to the interaction with weak stimuli, which increased the 
signal-to-noise output. The stochastic noise improves human sensory 
discriminability [80]. 

This study included three significant strengths. First, it investigates 
the influence of music and noise source on adult visual memory. The 
majority of past research has relied solely on audio-based music or noise 
genres rather than incorporating both. This research can determine the 
best audio for adult visual memory. Second, this study evaluates the 
effect of audiovisual stimulation using two parameters which are score 
performance and EEG analysis, which offers comprehensive information 
about the influences. This overcomes the constraint of Bottiroli et al., 
[46], who only considers score performance as the major variable. The 
activation and suppression of selected EEG features can be known 
through EEG analysis, and their relation with good and bad score per-
formance is determined. Finally, this research also investigates the in-
fluence of audios on the difficulty of visual memory tests. Therefore, the 
exact impact of audios can be discussed for both difficulties, and the 
effect can be investigated. This research suggested that listening to white 
noise can help adults improve their visual memory. It is a relatively low- 
cost, non-invasive technique that can be incorporated into regular habits 
that boost memory. 

5. Conclusion 

This research successfully investigated the effect of audiovisual 
stimulation on adult memory performance. Brain activity and score 
analysis revealed that audio stimulation improved visual memory per-
formance when compared to the control/no audio condition. This was 
explained using the Trion model and the concept of stochastic reso-
nance. Due to the presence of audio, weak signals become more 

Fig. 17. Score evaluation for 2nd level visual stimulation.  
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detectable, resulting in improved memory performance. This occured as 
a result of the subject’s increased attention, alertness, and internal focus. 
This contributes to Mozart’s Sonata music and white noise receiving the 
highest score for visual stimulation. On the other hand, increasing the 
number of visual items to memorize resulted in a decrease in subject 
performance. The 2nd level of visual assessment yielded fewer scores. 
The relative beta rhythm associated with attention level was reduced in 
the 2nd level of visual evaluation when Mozart’s Sonata music and 
white noise were compared to the 1st level. However, in the 2nd level of 
visual stimulation, the relative beta rhythm of white noise stimulation 
was improved. This suggests that when the number of items increases, 
white noise stimulation can help the subject maintain their attention. 
Additionally, gamma and alpha activation revealed that white noise is 
the most appropriate type of noise to listen to while memorizing visual 
items. This research indicated that white noise can be heard during 
learning and non-learning activities. The limitations of this recent 
research are that it focuses exclusively on adult visual memory and ex-
tracts fewer types of EEG features. Future research should consider the 
influence of white noise and Mozart’s Sonata music on children’s and 
older people’s cognitive and memory functions. This allows for the 
investigation of the effect of audio stimulation on other cognitive or 
memory abilities and on different age groups to determine whether it 
has a similar effect on adults. Another suggestion is to classify EEG 
features into three domains: time domain, frequency domain, and 
time–frequency domain. Additional extracted features will result in a 
more complete representation of the information contained in EEG 
signals. 
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