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A B S T R A C T   

Excessive of carbon dioxide (CO2) emission and water pollution have been identified as the two primary chal
lenges to humans and environment. Hence, biological carbon sequestration by microalgae is recommended as an 
environmentally friendly approach to capture and convert this CO2 into value-added products. However, 
research related to the development of efficient system to concurrently overcome low CO2 solubility in water and 
reduction of water footprint in microalgae cultivation is still limited in the literature. In this study, the CO2 
capture by Chlorella vulgaris in a recycled cultivation medium was exploited using a sequential flow photo
bioreactor system. The study revealed that nutrient replenished recycled medium did not significantly affect the 
growth performance and lipid content of C. vulgaris. It was also observed that the CO2 capture efficiency and 
protein content were gradually increased from the first (SFB-RWN1) to the third (SFB-RWN3) cycle of cultivation 
due to the increment of carbon and nitrogen content in the microalgae cell. Besides, the lipid profile of C. vulgaris 
cultivated in the recycled medium comprised of high concentration of saturated (up to 32.41%) and poly
unsaturated (up to 43.21%) fatty acid methyl ester (FAME). The present study suggested that growing C. vulgaris 
in a recycled medium is a feasible solution to fix CO2 from the atmosphere and help to reduce water footprint in 
the microalgae cultivation system.   

1. Introduction 

In developing countries, greater emphasis is given to economic 
growth, which comes at the expense of environmental sustainability [1]. 
The high energy demand for rapid urbanization and industrialization in 
developing countries is primarily accomplished by petroleum, coal and 
natural gas sources [2]. High dependency on these non-renewable re
sources has resulted to several serious environmental issues that we are 
facing now in this 21st century [3]. The unregulated combustion of fossil 
fuels caused rapid increment of carbon dioxide (CO2) concentration in 
the atmosphere since the 18th century, which directly contributing to 

climate changes and global warming [4]. Although COVID-19 pandemic 
lockdowns have resulted in the decline of CO2 emission in 2020, the 
impact is likely to be temporary [5,6]. Therefore, continuous efforts are 
required to maintain the global carbon balance. Carbon capture and 
storage (CCS) and carbon capture and utilization (CCU) are the two most 
promising methods to stabilize the current atmospheric CO2 concen
tration [7]. However, the risk of secondary pollution and high operation 
cost have made CCS less attractive than the CCU technologies [8]. 

Among the CCU technologies, biological conversion of CO2 into 
value-added products through photosynthetic microalgae is a plausible 
approach to mitigate CO2 emission and to promote circular bioeconomy 
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[9,10]. Microalgae fix CO2 via the Calvin cycle and convert the CO2 into 
beneficial cellular compounds, such as lipid, carbohydrate, protein, and 
pigments [11,12]. Besides, microalgae exhibit higher photosynthetic 
efficiency and could accumulate substantial amount of lipid within their 
cells (~20–50 wt%) for potential biodiesel production [3]. However, 
high operational cost due to enormous water demand during microalgae 
cultivation has further limited the commercialization potential of 
microalgae-based bioproducts [13]. According to Yang et al. [14], the 
production of 1 kg of microalgae biodiesel in an open system requires 
about 3726 kg of fresh water. Furthermore, these requirements may vary 
depending on the microalgae cultivation system (e.g., open pond, bub
ble column, and tubular) [15]. Thus, reuse of wastewater from aqua
culture industry [16], including fish [17] and shrimp farm [18] to grow 
microalgae have been identified as an effective way to improve eco
nomic and environmental sustainability of microalgae cultivation in
dustry [19]. Accordingly, recycle use of microalgae cultivation medium 
for multiple cycles is a sustainable approach to reduce the operating cost 
and water footprint of microalgae biomass production [20,21]. 

Nevertheless, the use of recycled culture medium is not commonly 
practiced due to the accumulation of extracellular substances (e.g., 
polysaccharides, lipids, proteins, and organic acids) released during 
growing phase of microalgae [20]. Several studies had reported on 
reduction of microalgae biomass productivity and lipid content due to 
the presence of “aging” cell walls and polysaccharides in the recycled 
cultivation medium [22,23]. Besides, organic matters (e.g., poly
saccharides) that released during cell division caused formation of ag
gregates and thereby reduced nutrient and light absorption by 
microalgae cells to attain high biomass productivity [22]. On the other 
hand, a study conducted by Farooq et al. [21] had demonstrated 
increment in biomass and lipid productivity of C. vulgaris when culti
vated in recycled medium. Nevertheless, research information are still 
limited in the literature on the effect of using recycled cultivation me
dium on the biochemical composition of microalgae. 

In our previous work [24], we had examined the feasibility to grow 
C. vulgaris in sequential flow photobioreactor system. Meanwhile, the 
present work was aimed to extend the study on the growth behaviour, 
carbon capture efficiency and lipid accumulation by C. vulgaris when 
cultivated in nutrient replenished recycled culture medium. This 
approach is more applicable in industry to reduce the overall water 
footprint of microalgae cultivation process. Besides, the composition of 
fatty acid methyl ester (FAME) was assessed to determine the quality of 

produced biodiesel. 

2. Material and methods 

2.1. C. vulgaris feedstock 

Green microalgae C. vulgaris strain was procured from the Centre for 
Biofuel and Biochemical Research, Universiti Teknologi PETRONAS 
(CBBR). The microalgae strain was cultured in Bold’s Basal Medium 
(BBM) with a constant light intensity of 60–70 μmol m− 2s− 1 (Philip TL-D 
36 W-965, cool-white) at 25 ◦C to 28 ◦C in a 5 L Duran bottle. The 
inoculum pH was adjusted to 6.8 value and continuously sparged with 
atmospheric air [25]. 

2.2. Experimental setup and operation 

Experiments were conducted in a sequential flow cultivation system 
(SFB-PBR) (Fig. 1) which consisted of five photobioreactors (PBR) con
nected in series. The PBRs are made up of borosilicate glass with a 
working volume of approximately 5 L each (33.5 cm in height and 18.2 
cm in diameter). Each PBR in the sequential system was numbered 
consecutively as PBR1, PBR2, PBR3, PBR4 and PBR5. Microalgae cul
tures in all five PBRs in series were aerated with continuous flow of 
atmospheric air (9 L min− 1). Fresh medium (FM) was prepared by 
mixing 400 mL of C. vulgaris seed culture with 4200 mL of water and 
400 mL of organic fertilizer (TANI Organic Brand, a product by Nilai 
Landscape Sdn. Bhd., Malaysia) containing all essential plant nutrients 
(Table 1) to support their growth [24]. The pH of the cultivation me
dium was adjusted to 3 with either sulfuric acid (H2SO4, 1 M) or sodium 
hydroxide (NaOH, 1 M) to avoid contamination of culture by invasive 
fungi [24]. Meanwhile, the SFB-PBR was continuously irradiated from 
one side using cool-white fluorescent light (Philip TL-D 36W-865, 
resulting in light intensity of 60–70 μmol m− 2 s− 1) at a temperature of 
25 ± 5 ◦C. 

The microalgae biomass was collected after 14 days of cultivation 
through gravity sedimentation method, in which nearly 90% of the 
cultivation medium was recovered for subsequent use. The recovered 
cultivation medium (supernatant) was then replenished with 400 mL of 
organic fertilizer (TANI Organic Brand, a product by Nilai Landscape 
Sdn. Bhd., Malaysia) and reused in the next batch of the cultivation 
cycle. The nutrient replenished recycled medium (RWN) was 

Fig. 1. Schematic representation of sequential flow setup used for CO2 capture and culture medium recycling.  
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reintroduced into the SFB-PBR system with similar cultivation condi
tions as the FM. The supernatant was recycled up to three times (RWN1, 
RWN2, and RWN3) with an identical parameter setup to evaluate their 
performances. The water lost due to evaporation was replenished daily 
to maintain the cultivation volume at constant value. The mass flow (%) 
of microalgae cultivation system using fresh and recycle medium is 
illustrated in Fig. 2 (Sankey diagram). 

2.3. C. vulgaris growth performances and carbon fixation analysis 

The growth of C. vulgaris in FM and RWN medium was determined 
based on the optical density (OD) at 688 nm using UV–Vis Spectro
photometer (UV-2600 Shimadzu). A linear regression relationship was 
established to determine the biomass concentration (X, g.L− 1) using 
OD688 (Eq. (1)): 

X= 0.532(OD688)+ 0.0333, R2 ​ = ​ 0.972 (1) 

Specific growth rate (μ, day− 1) of C. vulgaris was determined ac
cording to Eq. (2): 

μ=(lnX2 − lnX1)

t2− t1
(2)  

where X1 and X2 are the biomass concentration (g.L− 1) of C. vulgaris at 
the beginning (t1) and end (t2) of the logarithmic growth phase (day). 

The CO2 fixation rate by C. vulgaris in FM and RWN medium was 
calculated based on Eq. (3): 

CO2 fixation rate
(
gL− 1day− 1)=BP ×Cbiomass ×

MCO2

MC
(3)  

where BP is the biomass productivity of C. vulgaris (g.L− 1.day− 1), Cbiomass 
is the carbon content in C. vulgaris determined using PerkinElmer 2400 
CHNS element analyzer and MCO2 and MC are the molar mass of CO2 and 
carbon. 

Meanwhile, the carbon fixation efficiency (%) [26] by microalgae 
was determined based on Eq. (4): 

Carbon fixation efficiency (%)=
CO2 input − CO2 output

CO2 input
× 100% (4)  

where, CO2 input and CO2 output (g.L− 1) are the initial and output con
centration of total CO2 at the end of C. vulgaris cultivation, respectively. 

2.4. Protein content analysis 

The protein accumulation in Chlorella vulgaris was estimated based 
on Eq. (5) below: 

Protein Content (%)= N (%) × 6.25 (5)  

where N (%) is the total nitrogen content determined using CHNS 
analyzer (PerkinElmer Model 2400) [27]. 

2.5. Lipid content determination 

The total lipid was extracted from dried microalgae biomass via the 
Soxhlet extraction method. This method was partially adapted from a 
previously published work, in which 0.2 g of microalgae dried biomass 

Table 1 
Composition of macronutrients in organic compost medium (TANI) [24].  

Test Descriptions Amount Method or Equipment used 

Nitrogen (as N) (wt%) 5.9 MS417: Part 3: 1994a 

Phosphorus (as P2O5) 
(wt%) 

1.2 MS417: Part 4: 1994a 

Potassium (as K2O) (wt 
%) 

11.0 MS417: Part 5: 1994a 

Calcium (as CaO) (wt%) 15.1 MS417: Part 5: 1994a 

Magnesium (as MgO) 
(wt%) 

2.9 MS417: Part 6: 1994a 

Sulphur (as S) (wt%) ND <
0.1 

AOAC 980.02, 17th Edb 

Boron (as B2O3) (wt%) 0.3 AOAC 980.01, 17th Edb 

Chloride (as Cl− ) (wt%) 12.9 MY-STP-043 based on Methrohm Manual 
Method 21 D 3c 

Iron (as Fe) (wt%) 0.2 AOAC 965.09, 17th Edb 

Zinc (as Zn) (mg.kg− 1) 218.3 AOAC 965.09, 17th Edb 

Manganese (as Mn) (mg. 
kg− 1) 

368.6 AOAC 965.09, 17th Edb 

Copper (as Cu) (mg. 
kg− 1) 

76.8 AOAC 965.09, 17th Edb  

a SIRIM Malaysian standard, www.msonline.gov.my/catalog.php?find=m 
s&sort_mode=effective_date_desc (2019). 

b Official Methods of Analysis (2005) 17th Ed., AOAC INTERNATIONAL, 
Gaithersburg, MD, Method 980.01/02 and 965.09, www.aoac.org/(2019). 

c EPA Method 21, Determination of Volatile Organic Compound Leaks, 
CFR40, Part 60. 

Fig. 2. Sankey diagrams showing the microalgae mass flows (%) to the FAME for the fresh and recycled cultivation medium.  
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were placed in a cellulose extraction thimble along with methanol, 
chloroform and water (2:1:0.25 vol ratio). The solvent mixture was then 
refluxed for 8 h at 75 ◦C and the resulting crude lipid extract was 
recovered using rotary evaporator. The crude lipid was oven-dried at 
105 ◦C for 24 h to remove the remaining moisture content [28,29]. Lipid 
content (Y, %) and productivity (Plipid, gL− 1day− 1) was calculated using 
Eqs. (6) and (7): 

Y(%)=
WL
WDA

× 100 % (6)  

Plipid
(
gL− 1day− 1)=

Y(%) × Xf
Cultivation time (day)

(7)  

where WL, and WDA are the weights of the extracted lipids (g), the initial 
weight of dry microalgae biomass (g), respectively. Meanwhile, Xf is the 
final biomass concentration (g.L− 1), respectively [24]. 

2.6. Transesterification and fatty acid profile analysis 

The crude lipid (3 mg) extracted from C. vulgaris were dissolved in 3 
mL of methanol containing 10 μL of concentrated sulfuric acid (H2SO4) 
and agitated in an incubator shaker (200 rpm) at 60 ◦C for 6 h. In order 
to purify the reaction mixture, 3 mL of each potassium chloride solution 
(KCl, 10%) and water were added to the cooled reaction mixture, fol
lowed by centrifugation for 10 min at 4000 rpm. Meanwhile, 3 mL of 
hexane containing internal standard (0.76 mg of heptadecanoate in 1 mL 
of hexane) was added to the reacted mixture for FAME composition 
quantification analysis. The top layer containing hexane and fatty acid 
methyl esters (FAME) was transferred into another vial for fatty acid 
profile analysis by gas chromatography (Shimadzu GC-2010, Japan). 
The quantity of individual FAMEs, CFAME (%) were calculated based on 
Eq. (8): 

CFAME (%)=
Acomp
AT − AI.S

(8)  

where AT and AI.S are the total peak area from C14 to C24 and peak area 
of internal standard (methyl heptadecanoate), respectively; Acomp is the 
peak area of individual component exist in the FAME profile [24]. 

3. Results and discussion 

3.1. Biomass production and CO2 fixation efficiency of C. vulgaris in 
recycled culture medium 

Fig. 3a and b shows the effect of recycled culture medium on the 
growth behaviour of C. vulgaris. As shown in Fig. 3a, the growth trend of 

microalgae in RWN was similar to those obtained in FM, indicating that 
RWN was able to support the growth of C. vulgaris without any pre- 
treatment or purification process. Besides, no lag phases were 
observed for C. vulgaris grown in all three RWN (1–3) mediums due to 
the remaining microalgae cells that had been adapted well in the 
cultivation medium [30]. Based on Fig. 3a, the highest biomass con
centration of 1.494 g L− 1 was attained for C. vulgaris that grown in 
SFB-RWN2-PBR1, which was 3.57% higher than that of the 
SFB-FM-PBR1. Meanwhile, the lowest microalgae biomass (1.224 g L− 1) 
produced in SFB-RWN3-PBR5 was probably caused by the accumulation 
of organic matter (e.g., polysaccharides), thus inhibited the microalgae 
growth [31]. Despite their high biomass concentration, the growth rate 
in RWN (1–3) mediums was way lower than in the FM (Fig. 3b). This was 
due to the remained microalgae cells from earlier cultivation cycle that 
resulted in variation of initial cell composition (higher initial cell den
sity), thus contributed to the low growth rates in the RWN (1–3) me
diums [31]. 

Fig. 4 demonstrates variation in the CO2 fixation rate and efficiency 
by microalgae with regards to the number of recycle. The maximum CO2 
fixation of 58.1 ± 0.2% was obtained for C. vulgaris cultivated in FM 
medium. Meanwhile, in the RWN1 medium, the CO2 fixation efficiency 
declined by 10.03% in comparison to FM, and the percentage started to 
gradually increase to 54.79 ± 0.11% for the RWN3 medium. Similar 
trends were observed in term of carbon fixation rate, in which the values 
of fixation rate in RWN3 increased by 13.98 wt% compared to the RWN1 
medium. The differences in the CO2 fixation efficiency were closely 

Fig. 3. (a) Biomass concentration (g.L− 1) and (b) growth rate (day− 1) of C. vulgaris grown in fresh and nutrient repleted recycled culture medium.  

Fig. 4. Effect of recycling culture medium on carbon fixation efficiency 
by C. vulgaris. 
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related to the variation of biomass productivity and carbon content of 
C. vulgaris cell (Eq. (4)). Although all the RWN mediums recorded low 
biomass productivity, the increment of carbon content in the microalgae 
resulted to the improvement of CO2 fixation efficiency. Furthermore, the 
carbon fixation rate of C. vulgaris obtained in this study (640–780 mg 
L− 1.day− 1) was among the highest as compared to the literature 
[32–34]. 

3.2. Lipid accumulation in recycled culture medium 

Fig. 5 summarizes the lipid content of C. vulgaris grown in fresh and 
nutrient replenished recycled medium. As shown in Fig. 5, the total lipid 
content of C. vulgaris gradually decreased from FM to RWN3 with an 
increasing number of culture medium recycles. Previous studies showed 
that nitrate limited conditions induced lipid accumulation in microalgae 
cell (e.g. Chlamydomonas reinhardtii, Scenedesmus subspicatus, Chlorella 
vulgaris and Scenedesmus bijugus) [35–38]; meanwhile, in some cases, 
lipid accumulation could be induced by excessive nitrate level in some 
microalgae species (e.g. Isochrysis zhangjiangensis and Tetraselmis sp.) 
[39,40]. However, in the present study, lipid content of C. vulgaris 
showed a declining trend, although the RWN medium was supple
mented with equal nutrient concentration as the FM. This result was in 
accordance with that of Nigam et al. [41], where the lipid content of 
Chlorella pyrenoidosa was observed to reduce when the nitrate concen
tration was doubled. 

Furthermore, the presence of high nitrogen concentration in the 
supernatant was found to transform the organic matter of Microcystis 
aeruginosa and Scenedesmus obliquus into protein instead of lipid [42,43]. 
The highest lipid content and productivity were attained for microalgae 
cultivated in the FM-PBR1 and slowly decreased in the subsequent four 
PBRs in the series due to the reduction in the carbon concentration in the 
inlet air [44]. Fan et al. [45] demonstrated that key metabolic factor 
which controlled the lipid and starch accumulation rate in Chlamydo
monas was carbon supply, thus carbon limited conditions could inhibit 
microalgae product biosynthesis. Although the obtained lipid content 
could be slightly overestimated due to the present of impurities, how
ever, the amount of non-lipid materials were insignificant as according 
to the standard extraction method used in the present work [29]. In fact, 
the total lipid contents determined in the present work were consistent 
with the available literature (Fig. 5) [39,46–52]. 

3.3. Protein content analysis 

The protein content within C. vulgaris in repetitive recycling of 
cultivation medium (RWN) is illustrated in Fig. 6. The results indicated 
that protein content of C. vulgaris gradually increases in the repeated 
recycled medium (RWN 1 to 3), with the highest protein content of 
61.63% was attained in PBR1 of RWN3. As reported in the literature that 
almost 55% of essential nutrients (e.g., nitrate and phosphate) are likely 
left unused at the end of the cultivation cycle [14]. Thus, the increase in 
protein content in the current study could be linked to the high nitrate 
concentration accumulated in repeated recycled mediums. Neverthe
less, the protein content in the third recycled medium (RWN3) was 
reduced due to the limited ability of microalgae to convert nitrogen in 
the medium into cellular proteins [53]. A similar observation was re
ported by Xie et al. [54], in which higher nitrogen concentration in the 
medium (more than 1.25 g L− 1) were found to lower protein content in 
microalgae cells. On the other hand, the protein content was observed to 
reduce in the consecutive PBRs in series. According to Tan et al. (2020), 
sugar produced during the conversion of CO2 and water via photosyn
thetic activity is an essential source of energy for protein synthesis; thus, 
the reduction in protein accumulation was observed from PBR2 to PBR5 
as a result of low CO2 availability [55]. Accordingly, the present finding 
suggested that an optimal supply of carbon and nitrogen source could 
promote the accumulation of cellular protein content in C. vulgaris. 

3.4. Fatty acid profile analysis 

Fig. 7a and b illustrate the FAME composition of produced biodiesel 
from the fresh and recycled medium. As shown in Fig. 7a, biodiesel 
produced from microalgae consisted of C16:0 (palmitic), C16:1 (pal
mitoleate), C18:0 (stearic), C18:1 (oleic), C18:2 (linoleic), and C18:3 
(linolenic) fatty acids. C. vulgaris grown in FM medium had shown lipid 
composition of oleic acid (27.53–40.13 ± 0.3%), linoleic acid 
(14.48–28.83 ± 0.18%), palmitic acid (17.49–19.20 ± 0.11%) and 
linolenic acid (7.44–14.47 ± 0.23%) as the major contributing fatty 
acids. Meanwhile, for microalgae in RWN (1–3) medium, the major fatty 
acids were palmitic acid (21.48–32.21 ± 0.12%), palmitoleate acid 
(7.43–14.91 ± 0.22%) and linoleic acid (26.93–31.81 ± 0.32%). The 
results indicated that recycling culture medium resulted in significant 
increment in palmitic, palmitoleic, and linoleic acid composition. On the 
other hand, the oleic acid composition was observed to decrease from 
FM to RWN3 by 3.5-fold. It was reported that FAME composition varied 
according to nutrient concentration in culture media [56]. Particularly, 

Fig. 5. Comparison of Chlorella vulgaris lipid content values from literature 
with the present work. 

Fig. 6. Protein content of C. vulgaris grown in fresh and nutrient repleted 
recycled culture medium. 
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under nitrate-rich cultivation conditions, C. vulgaris was found to favour 
the accumulation of palmitic acid rather than oleic acid [57]. Similar 
observations were reported for two other microalgae strains, including 
V. stellate and E. vischeri, wherein nitrate repleted cultivation conditions 
demonstrated a reduction in oleic acid compositions compared to nitrate 
limited environment [58,59]. However, the composition of stearic acid 
(1.01–3.25 ± 0.2%) did not vary significantly when the cultivation 
conditions changed. 

Generally, the quality of microalgae biodiesel is evaluated based on 
the percentage ratio of saturated (SFA), monounsaturated (MUFA), and 
polyunsaturated (PUFA) fatty acids [60]. Present analysis (Fig. 7a and b) 
showed the presence of PUFAs (37.90–43.21 ± 0.11%) and SFA 
(22.65–32.41 ± 0.12%) for C. vulgaris cultivated in the recycled me
dium. Furthermore, the saturation degree of FAME composition derived 
from the recycled medium was found to increase from RWN1 to RWN3 
by 7.53 ± 0.3%. The ratio of saturated to unsaturated fatty acids of 
C. vulgaris also dropped significantly with an increase in the number of 
recycles. On the contrary, the FM had shown a high amount of PUFA 
(34–37.6 ± 0.22%) and MUFA (35–42 ± 0.12%), but lower SFA 
(19–22.44 ± 0.33%) composition. Evidently, the composition of PUFA 
was sensitive to the changes in nitrate concentration owing to its role in 
maintaining the stability of the organelle membrane by minimizing 
oxidative stress [61]. Therefore, increment of SFAs (palmitic acid) and 
PUFAs (linoleic acid) compositions could be due to the stress imposed by 
the presence of an extracellular substance in the recycled medium, 
thereby influenced the partitioning of fatty acid composition [23,62]. 
Similar patterns were observed in other studies, in which high per
centage of PUFA values were recorded for microalgae cultivated in 
recycled medium (Table 2). A higher percentage of PUFA from 
C. vulgaris lipids grown in RWN medium could enhance the lubricity and 
cold flow properties of produced biodiesel by delaying crystallization 
process in cold weather [40,63]. In addition, the high SFA concentration 

could result in high oxidative stability and cetane number of biodiesel 
[39,60,64,65]. Besides, high cetane number was found to be beneficial 
for good ignition quality and combustion properties [66]. Accordingly, 
the presence of a high percentage of SFA and PUFA in the RWN medium 
indicated good quality of the produced biodiesel. 

4. Conclusion 

The present study demonstrated the feasibility of growing C. vulgaris 
in recycled culture medium under nutrient-repleted conditions. It was 
found that biomass concentration was maintained at around 1.3–1.5 g. 
L− 1, but the growth rate reduced with the increase in the number of 
recycles. The accumulation of elemental carbon content of C. vulgaris 
improved the CO2 capture efficiency in the recycled medium. Mean
while, lipid accumulation of microalgae in recycled medium seemed to 
be affected by the high concentration of nutrients (e.g., nitrate). The 
nutrient-rich environment in the recycled medium was observed to 
significantly alter the fatty acid composition of C. vulgaris, in which the 
microalgae in RWN (1–3) tended to produce PUFA and SFA as compared 
to the FM. Overall, the results suggested that cultivation of microalgae in 
the recycled medium represents a viable option to reduce the operating 
cost and water consumption of microalgae biorefinery. However, the 
main challenge of long-term utilization of recycle medium is potential 
accumulation of toxic metabolites which can halt the microalgae 
growth. Future exploration into the biochemical composition of micro
algae as a function of nutrient concentration in the recycled medium 
could be helpful to understand the metabolic pathway of microalgae 
under nutrient repleted and depleted conditions. 
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Fig. 7. (a) Fatty acid composition and (b) degree of saturation of C. vulgaris grown in fresh and nutrient repleted recycled culture medium.  

Table 2 
FAME profile of microalgae cultivated in recycled medium reported in previous work.  

Microalgae Species Cultivation condition Catalyst FAME Composition Reference    

SFA MUFA PUFA  
S. quadricauda Heterotrophic – 13.82 42.84 43.32 [67] 
T. suecica Mixotrophic – 30.58 22.83 46.59 [67] 
Chlorella vulgaris Autotrophic (50x dilution) H2SO4 26.6 11.9 61.5 [68] 
Chlorella vulgaris Autotrophic (100x dilution) H2SO4 29.5 9.0 61.5 [68] 
Chlorella vulgaris Autotrophic (200x dilution) H2SO4 22.9 10.0 67.1 [68] 
Chlorella sp. Autotrophic (Autoclaved centrate) H2SO4 37.90 25.36 36.73 [69] 
Chlorella sp. Autotrophic (Raw centrate) H2SO4 37.73 19.33 42.94 [69] 
Chlorella vulgaris Autotrophic H2SO4 21.6–24.6 23.7–34.1 41.3–54.5 [70]  
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