
Atmospheric Research 265 (2022) 105927

Available online 15 November 2021
0169-8095/© 2021 Elsevier B.V. All rights reserved.

Inconsistency in historical simulations and future projections of 
temperature and rainfall: A comparison of CMIP5 and CMIP6 models over 
Southeast Asia 
Mohammed Magdy Hamed a,c,*, Mohamed Salem Nashwan b, Shamsuddin Shahid c, Tarmizi 
bin Ismail c, Xiao-jun Wang d,e, Ashraf Dewan f, Md Asaduzzaman g 

a Construction and Building Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), 
B 2401 Smart Village, 12577 Giza, Egypt 
b Construction and Building Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), 
2033 Elhorria, Cairo, Egypt 
c Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudia, Johor, 
Malaysia 
d State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China 
e Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China 
f Spatial Sciences Discipline, School of Earth and Planetary Sciences, Curtin University, Kent Street, Bentley, Perth 6102, Australia 
g Department of Engineering, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, UK   

A R T I C L E  I N F O   

Keywords: 
Tropical climate 
GCM 
CMIP5/CMIP6 
Uncertainty 
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A B S T R A C T   

The objective of this research was to assess the difference in historical simulations and future projections of 
rainfall and temperature of CMIP5 (RCP4.5 and 8.5) and CMIP6 (SSP2–4.5 and 5–8.5) models over Southeast 
Asia (SEA). Monthly historical rainfall and temperature estimations of 13 global climate models common to both 
CMIPs were evaluated to assess their capability to reproduce the spatial distribution and seasonality of European 
Reanalysis (ERA) rainfall and temperature. Models were used to determine uncertainty with spatiotemporal 
variability of rainfall and temperature projections. The CMIP6 GCMs did not appear to perform better than the 
older CMIP5 in SEA unlike other parts of the globe, except for rainfall. The CMIP6 models showed Kling-Gupta 
Efficiency (KGE) values in the range of −0.48-0.6, 0.21-0.85 and 0.66-0.91 in simulating historical rainfall, 
maximum temperature and minimum temperature compared to 0.13-0.46, 0.3-0.86 and 0.42-0.92 for CMIP5. 
The improvement in CMIP6 models in SEA was in the low uncertainty in ensemble simulation. The projections of 
CMIP5 and CMIP6 showed a relatively smaller increase in temperature with the CMIP6 ensemble when compared 
to CMIP5 models, while rainfall appeared to decrease. The geographical distribution of the changes indicated a 
greater increase in temperature in the cooler region than in the warmer region. In contrast, there was increase in 
rainfall in the wetter region and a smaller improvement in the drier region. This indicates increased homogeneity 
in temperature spatial variability, but more heterogeneity in rainfall, in the SEA region under climate warming 
scenarios.   

1. Introduction 

Climate change is a global issue due to the damaging effects on 
various sectors, including water resources, public health, energy, and 
agriculture (Lee et al., 2017; Muhammad et al., 2019; Shahid, 2010; 
Shahid et al., 2017). Mapping possible changes in the climatic 

parameters is crucial for planning climate change adaptation and miti-
gation strategies. It is particularly important in environmentally-critical 
locations, where subtle changes in weather parameters may significantly 
impact the service sector. Global Climate Models (GCMs) have the 
ability to simulate the effects of greenhouse gas (GHG) emissions on 
climatic systems and realistically predict future conditions (Flato et al., 
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2013; Hartmann, 2016). These models are widely used to model past 
climatic conditions and project future responses to increased GHG 
emissions and land-use changes (Chen et al., 2014; Taylor et al., 2011; 
van Vuuren et al., 2011). A major advantage of GCMs is their ability to 
predict future climate in response to various atmospheric GHG con-
centration scenarios. These GCMs are available publicly as part of the 
Coupled Model Intercomparison Project (CMIP). 

Most GCMs incorporate a large degree of uncertainty, primarily due 
to inadequate model descriptions of the physical processes driving the 
climate system and climate scenarios (Gao et al., 2019; Hamed et al., 
2021a; Weigel et al., 2010). Certain models, however, are capable of 
resolving regional climatic events, thereby increasing their usefulness in 
predicting future climate change scenarios for a given region. It is nor-
mally a good idea to utilize all available climate models to reflect a 
complete range of future changes. CMIP models have rigorously 
improved over the years to overcome these uncertainties, from CMIP1 to 
the latest version, CMIP6 (Eyring et al., 2016). 

CMIP6 GCMs differ from previous CMIPs in that the newest version 
provides a more accurate depiction of the Earth’s physical processes. 
Additionally, the CMIP6 model forecasts additional scenarios using 
shared socioeconomic pathways (SSPs) (O’Neill et al., 2016; Schlund 
et al., 2020). These updated climate projections take socioeconomic 
developments, technological advancement, and other environmental 
factors (such as land use) into account (Moss et al., 2010), enabling the 
development of new scenarios to better evaluate the consequences of 
climate change policies. CMIP6 places a premium on coordinated ex-
periments to gain a better understanding of the processes behind climate 
variability. As a result, CMIP6 GCMs are expected to minimize possible 
bias to a greater extent than their predecessors (Arias et al., 2021; Iqbal 
et al., 2021; Song et al., 2021b). 

Southeast Asia (SEA), located between two oceans (the Pacific to the 
east and the Indian to the west) and two continental regions (Asia and 
Australia), is considered the largest archipelago in the world (Chang 
et al., 2005). The climate in this region is tropical, with high tempera-
tures and well-distributed monthly rainfall of >200 mm. The climate is 
determined by latent heat release near the equator and convective 
tropical air masses. The rainfall distribution is controlled by a land-sea 
breeze process, resulting from the interaction of elevated island topog-
raphy and synoptic winds (Hamed et al., 2021b; Qian, 2008). 

SEA has experienced different climatic extremes over the last 50 
years (including droughts during El Nino events and heavy rains in La 
Nina periods) especially in the Indonesian region (Nasional, 2012; Dewi, 
2010). The mean temperature has risen by 0.1–0.03 ◦C per decade over 
the past 50 years, and the sea level has risen by 1–3 mm per year (IPCC, 
2007). The severity and frequency of climatic extremes are likely to 
increase, putting the SEA region at risk of climate change impacts 
(Thirumalai et al., 2017; Ge et al., 2019; Nashwan et al., 2018a; 
Raghavan et al., 2017). Significant changes in seasonal rainfall patterns 
and an increase in the frequency of flooding and water shortage would 
profoundly affect many service sectors (Nashwan et al., 2018b; Nashwan 
and Shahid, 2022; Ziarh et al., 2021). In order to be prepared for these 
increased impacts, policymakers must be informed about the climate 
change implications for these areas and the adaptation methods 
required to mitigate impacts and increase industry resilience. 

Numerous studies have examined both the historical and potential 
future climate change in SEA and adjacent areas using GCMs (Desmet 
and Ngo-Duc, 2021; Iqbal et al., 2021; Kang et al., 2019; Khadka et al., 
2021; McSweeney et al., 2015; Noor et al., 2019; Salman et al., 2020; 
Supari et al., 2020; Supharatid et al., 2021; Tangang et al., 2020). For 
example, Iqbal et al. (2021) used compromised programming to rank 35 
CMIP6 GCMs for Mainland Southeast Asia (MSEA). Analysis revealed 
that three GCMs could accurately reproduce annual mean rainfall over 
central and southern regions. Desmet and Ngo-Duc (2021) investigated 
rainfall, near-surface temperature and wind for 28 CMIP6 models in 
SEA. They ranked GCMs by combining two different scores (spatial and 
temporal) to generate each variable score. A final global score, 

combining all variables, is then reported. Khadka et al. (2021) compared 
28 CMIP5 and 32 CMIP6 GCMs to assess their ability to replicate large- 
scale atmospheric circulations over the SEA summer monsoon domain. 
These showed better performance for the CMPI6 GCMs than for CMIP5. 
These studies evaluated the historical performance of GCMs in regards of 
simulating climate over SEA. Only Supharatid et al. (2021) investigated 
the change in rainfall and temperature in SEA using CMIP6, although 
their study was confined to MSEA. They utilized two SSP scenarios to 
examine changes in climate parameters. It appears that a comprehensive 
assessment involving a comparison of CMIP5 and CMIP6 historical 
simulations and future projection over the entire SEA (comprising both 
mainland and maritime continents) is lacking. Despite the governments 
in this region having already taken steps to reduce climate change ef-
fects based on the CMIP5 modelling, this planning could be negatively 
impacted by population growth and large-scale economic development. 
So the risk associated with climate change would not be uniform over 
the whole region. Governments in the region need current, detailed 
information to inform the adaptation strategies selected for various 
SSPs. A comparative evaluation of the projections, based on CMIP5 and 
CMIP6 models, is essential for the region in order to streamline all 
existing adaptation measures. 

This study aims to evaluate the difference in previous historical es-
timations and projections of CMIP5 and CMIP6 models over Southeast 
Asia. Both rainfall and temperature data are examined and evaluated to 
assess the validity of the decision-making process based on the various 
projections. 

2. Description of the study area and data 

2.1. Southeast Asia (SEA) 

SEA lies between latitude −10◦–30◦N and longitude 90◦–141◦E 
(Fig. 1). SEA covers an area of about 4,550,000 km2. It includes eleven 
countries and is made up of two main regions (Mainland and Maritime 
Southeast Asia). SEA is located within the zone of the Asian monsoon 
cycle, located between the Pacific and Indian Oceans. It is one of Asia’s 
most active regions affected by convective heating processes. SEA has a 
generally level topography apart from some parts of Myanmar and 
Indonesia, where the elevation rises to 4000 m above sea level. The 
average yearly rainfall for the region varies between 750 and 5000 mm 
(Khan et al., 2019; Peel et al., 2007; Yang et al., 2021), and the mean 
temperature is 25 ◦C. As a result of the diverse spatiotemporal atmo-
spheric processes occurring within the region, climate extremes such as 

Fig. 1. Southeast Asian topography.  
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droughts and floods are common in most parts of SEA. 

2.2. Gridded rainfall and temperature dataset 

To assess the ability of the GCMs’ to simulate annual rainfall, and 
maximum and minimum temperatures, ERA5 - a global high-resolution 
reanalysis dataset, is used. ERA5 is the fifth edition of the Copernicus 
Climate Change Service’s (C3S) atmospheric, oceanic, and land-surface 
reanalysis product of the European Centre for Medium-Range Weather 
Forecasts (ECMWF) (Hersbach et al., 2020). This provides data on 240 
atmospheric variables for different pressure level settings. ERA5 is 
generated by combining an enhanced version of the Integrated Fore-
casting System (IFS) cycle 41r2 with high-quality global observations. 
This study used the hourly ERA5 dataset of two climatic variables (e.g., 
rainfall and near-surface temperature) with a 0.25-degree spatial reso-
lution, spanning the period from January 1979 to December 2005. The 
hourly rainfall is used to estimate the total monthly rainfall, while the 
highest and lowest diurnal temperatures were used to extract the 
average maximum and minimum temperatures. SEA is considered a 
data-scarce region due to the unavailability of high-quality long-term 
observation data (Li, 2020). The evenly spaced gridded dataset is 
generally used for model validation in data-scarce regions. ERA5 is a 
reanalysis climate data product that provides consistent high-resolution 
hourly data of several climate variables. It should be noted that several 
studies have reported the use of ERA5 as a reference dataset near SEA 
(Khadka et al., 2021; Zhai et al., 2020; Zuluaga et al., 2021). 

The spatial distribution of mean annual rainfall, Tmx and Tmn over 
SEA is shown in Fig. 2. Hkakabo Razi Mountains in the north and Papua 
in the south experience the highest annual rainfall (>5000 mm), while 
the lowest can be found in the middle of Myanmar. Tmx is homogeneous 
in SEA except for the high mountainous regions. Tmn ranges from 15 to 
30 ◦C over SEA. However, Tmn in the northern region of SEA can be a low 
as −5 ◦C. 

SEA is subject to a wide variability in climatic conditions. The region 
is classified into six climate zones based on Köppen climate classification 
(Peel et al., 2007): tropical rainforest climate (Af), tropical monsoon 
climate (Am), tropical Savannah climate (Aw), temperate without dry 
season (Cf), temperature dry summer (Cs), and temperature dry winter 
(Cw). Due to small areal coverage of Cf, Cs, and Cw, they are combined 
and included in zone C (Fig. 3). Af is major climate zone over the SEA, 
covering 47% of total area, whereby annual rainfall varies from 2000 to 
4000 mm. During winter, the temperature drops to near freezing point 
(−5 to 0 ◦C), particularly in zone C, however it often rises to above 35 ◦C 
during some summer days, particularly in Thailand in the Aw zone. 
Annual rainfall ranges from 760 to 1000 mm in most of the Aw zone. In 
general, the temperature in both Af and Am zones is greater than 18 ◦C, 
however the total rainfall amounts received are different (Alvares et al., 
2013). 

2.3. Global climate models (GCMs) 

This study assesses the performance of 13 CMIP5 GCM’s (Taylor 
et al., 2012) and their updated versions, CMIP6 (Eyring et al., 2016) over 
SEA. The output of the models have been downloaded from the open- 
access platform https://esgf-node.llnl.gov. This site provides historical 
and future projections of monthly rainfall, Tmx and Tmn. The models 
details are presented in Table 1. Out of several variant labels available, 
the first one, r1i1p1 for CMIP5 and r1i1p1f1 for CMIP6, is chosen to 
simplify the evaluation process. CMIP5 investigates several greenhouse 
gas emissions scenarios through the radiative concentration pathways 
(RCPs). In CMIP6, new SSPs are used which consider possible changes in 
the Earth’s environment, as well as global economic and demographic 
trends. Future projections of the RCP 4.5 and 8.5 of CMIP5 are compared 
with their equivalent radative forcing in CMIP6, SSP2–4.5 and SSP5–8.5 
in this study. 

3. Methodology 

ERA5 0.25◦ × 0.25◦ reanalysis dataset is used as a reference to 
evaluate CMIP5 and CMIP6 GCMs. The evaluation process entails 

Fig. 2. Spatial variability of yearly mean (a) Tmx and (b) Tmn, and (c) annual 
total rainfall over SEA during 1979–2005, estimated via ERA5. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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examining past performance of the three climatic variables (e.g., mean 
annual rainfall, Tmx and Tmn). This is carried out using statistical and 
graphical metrics. Ultimately the model ensemble mean is used to 
project future changes for each climate zone of SEA for different CMIPs. 
GCMs have spatial resolution ranges from 0.70◦ to 3.70◦ (Table 1), so 
they are normally interpolated to a common spatial resolution of 1.0◦ ×

1.0◦ using bilinear interpolation technique. The ERA5 data is also 
aggregated to the resolution of 1.0◦ × 1.0◦, so all datasets have similar 
grid sizes and therefore provide an unbiased comparison. Methodolog-
ical details are presented below. 

3.1. Statistical and graphical analyses 

The Kling-Gupta efficiency (KGE) is employed to estimate the rela-
tive performance of the two CMIPs (Gupta et al., 2009; Kling et al., 
2012). The KGE is a single metric designed to evaluate three statistical 
characteristics together (e.g., Pearson’s correlation (r), spatial vari-
ability ratio and the normalized variance) as shown in eq. (1). The 
combination of three metrics provides valuable diagnostic information 
about the model’s performance. KGE is less susceptible to extremes and 
has greater capability to describe and quantify the overall fitness of 
GCMs (Radcliffe and Mukundan, 2017). The KGE value varies between 1 
and -∞, where 1 represents a complete match. There is no specific 
meaning attached to the KGE value when it equals zero. However, 
Knoben et al. (2019) compared the KGE with the Nash-Sutcliff efficiency 
index and noted that KGE values above −0.41 represented a reasonable 
performance, while values closer to 1 generally indicated high perfor-
mance. The KGE is calculated for three climate variables of each GCM 
compared to the reference dataset (1979–2005). 

KGE = 1−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(1)  

where μGCM and μref are the mean, and σGCM and σref are the standard 
deviation for GCM and ERA5 data, respectively. 

The Taylor diagram (Taylor, 2001) is employed to visually represent 
the performance of each GCM. The diagram is a robust graphical plot 
that integrates three statistical metrics, degree of correlation (R), 
centered root-mean-square error (CRMSE) and ratio of spatial standard 
deviation (SD). CRMSE determines the discrepancies between two 
CMIPs and the ERA5 observed data. The blue line in the diagram rep-
resents constant CRMSD values, with values increasing with distance 
from the center. 

Statistical tests were employed to estimate the similarity between the 
seasonal variability of CMIPs and ERA5 rainfall, Tmx and Tmn, following 
Baker and Huang (2014). The tests include 1) t-test to show the simi-
larity in the mean, 2) F-test to assess the similarity in data variance, and 

Fig. 3. Köppen climate classification of SEA based on ERA5 (1979–2005). 
Köppen climate classes are Tropical rainforest climate (Af), Tropical monsoon 
climate (Am), Tropical Savannah climate (Aw), Temperate without dry season 
(Cf), Temperature dry summer (Cs), and Temperature dry winter (Cw). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Detailed description of the CMIP5 and CMIP6 GCMs used in this research.  

Institution/Country Abbreviation  Model Resolution 

Australian Research Council Centre of Excellence for Climate System Science, Australia ACCESS CMIP 5 ACCESS1–3 1.90 × 1.20◦

CMIP 6 ACCESS-CM2 1.87 × 1.25◦

Beijing Climate Center, Beijing, China BCC CMIP 5 BCC-CSM1.1-M 2.80 × 2.80◦

CMIP 6 BCC-CSM2-MR 1.12 × 1.12◦

Canadian Centre for Climate Modelling and Analysis, Victoria, Canada CANESM CMIP 5 CANESM2 2.80 × 2.80◦

CMIP 6 CanESM5 2.79 × 2.81◦

Euro-Mediterranean Centre on Climate Change coupled climate model, Italy CMCC CMIP 5 CMCC-CM 0.70 × 0.70◦

CMIP 6 CMCC-ESM2 0.94 × 1.25◦

EC-Earth Consortium, Europe EC-EARTH CMIP 5 EC-EARTH 1.10 × 1.10◦

CMIP 6 EC-Earth3 0.35 × 0.35◦

Chinese Academy of Sciences Flexible Global Ocean-Atmosphere–Land System model, China FGOALS CMIP 5 FGOALS-g2 2.80 × 2.08◦

CMIP 6 FGOALS-g3 2.00 × 2.00◦

Geophysical Fluid Dynamics Laboratory, NJ, USA GFDL-ESM CMIP 5 GFDL-ESM2G 2.50 × 2.00◦

CMIP 6 GFDL-ESM4 1.00 × 1.25◦

Institute for Numerical Mathematics, Russia INMCM CMIP 5 INMCM4.0 2.00 × 1.50◦

CMIP 6 INM-CM5–0 2.00 × 1.50◦

Institute Pierre Simon Laplace (IPSL), Paris, France IPSL-CM-LR CMIP 5 IPSL-CM5A-LR 3.70 × 1.90◦

CMIP 6 IPSL-CM6A-LR 2.50 × 1.27◦

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan MIROC CMIP 5 MIROC5 1.40 × 1.40◦

CMIP 6 MIROC6 1.40 × 1.40◦

Max Planck Institute for Meteorology (MPI-M), Germany 
MPI-ESM-HR CMIP 5 MPI-ESM-MR 1.90 × 1.90◦

CMIP 6 MPI-ESM1–2-HR 0.94 × 0.94◦

MPI-ESM-LR CMIP 5 MPI-ESM-LR 1.90 × 1.90◦

CMIP 6 MPI-ESM1–2-LR 1.87 × 1.86◦

Meteorological Research Institute, Ibaraki, Japan MRI CMIP 5 MRI-CGCM3 1.10 × 1.10◦

CMIP 6 MRI-ESM2–0 1.12 × 1.12◦
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3) Kolmogorov–Smirnov (KS) test to evaluate the similarity in data 
distribution (Sardeshmukh et al., 2000). 

3.2. Future projections 

Future projections of annual rainfall, Tmx and Tmn using GCMs of two 
CMIPs are compared with the historical period (1979–2005) to evaluate 
possible future climate changes in SEA. Two projections are considered: 
the medium (RCP4.5 and SSP2–4.5) and high (RCP8.5 and SSP5–8.5) 
impact scenarios. For a detailed comparison, future horizon was divided 
into near (2020–2059) and far (2060–2099) futures. The median and 
95% confidence band of the projection interval are considered for each 
scenario in order to quantify the associated uncertainty of the different 
CMIP models. The seasonal variability of different climate zones for 
rainfall, Tmx and Tmn are measured for each model. Finally, maps are 
prepared to depict percentage of change in rainfall and absolute change 
in temperatures (◦C). 

4. Results 

4.1. Evaluating skills of CMIP5 and CMIP6 GCMs 

Fig. 4 depicts the ability of two CMIPs to replicate annual rainfall, 
Tmx, and Tmn in terms of KGE. A single radar chart is used to present KGE 
of CMIP5 (in light green) and CMIP6 (in light red) GCMs for each climate 
variable. KGE values less than zero on the rainfall radar chart are defined 
as zero for illustration purposes. It shows that GCMs are able to estimate 
Tmn better than Tmx and rainfall in SEA. The performance of the CMIP5 
models and their improvements in CMIP6 are almost the same in 
simulating Tmx and Tmn. Few models of CMIP6 simulated Tmx better than 
previous versions, namely: MPI-ESM-HR, IPSL-CM-LR, GFDL-ESM, EC- 
Earth, CanESM and MRI. Both versions of FGOALS simulated a lower 
value of Tmx than other models, indicating poor modelling capability. 
For Tmn, only five models of CMIP6 indicated better performance than 
their predecessors, including MPI-ESM-HR, INM-CM, GFDL-ESM, EC- 
Earth and CanESM. INM-CM showed the largest improvement in CMIP6 
for Tmn. Although the performance of the models of both CMIPs was 
nearly identical in replicating historical temperatures, CMIP6 GCMs 
displayed an enhanced ability to simulate historical rainfall in all cases 
apart from FGOALS and IPSL-CM-LR. Among the CMIP6 models, EC- 
EARTH was best in replicating all variables. ACCESS of CMIP6 exhibi-
ted the best performance in replicating rainfall (KGE 0.59) and CMCC of 
CMIP5 in replicating Tmx and Tmn (KGEs 0.86 and 0.92, respectively). 
KGEs of both FGOALS and IPSL-CM-LR were poor (KGEs −0.31 and 
−0.48, respectively) for rainfall, therefore indicating poor capability. 

KGE is the integration of three statistical metrics, namely Pearson’s 
correlation (r), mean of GCM to mean of ERA5 (β) and variability ratio 
(γ). Fig. 5 presents the three components of KGE in terms of r, β-1 and γ-1 
aiming to illustrate the most influencer component of the final KGE 
score. The r, β, γ and KGE of CMIP5 and CMIP6 GCMs in simulating 
historical rainfall are presented in blue and red bars. The result indicates 
that all the components contribute significantly to a higher value of 
KGE. However, models that have near optimum values of β and γ (e.g., 
MPI-ESM-LR) showed a low KGE due to low r, indicating a bit higher 
influence of spatial correlation on model performance. 

4.2. Taylor diagram 

The ability of the two CMIP models to estimate annual rainfall, Tmx 
and Tmn are presented (along with their MME means) as Taylor diagrams 
(Fig. 6). Hollow circle on the x-axis presents reference data (i.e., ERA5). 
The CMIP5 and CMIP6 models are represented using coloured circles 
and triangles, respectively. The model symbol nearest to the hollow 

circle indicates the best performing model. The correlation of the models 
with the reference data is best for Tmn (0.85). This is followed by Tmx 
(0.75) and then rainfall (0.45). A strong correlation for Tmn indicates 
better capability of GCMs of both CMIPs in modelling Tmn. Model over 
and underestimation, however, is noted. FGOALS of both CMIPs 
underestimated Tmx and Tmn variability, while INM-CM5–0 over-
estimated Tmn variability. The majority of models, of both CMIPs, 
simulated observed rainfall variability reasonably well, except for a 
large overestimation by IPSL-CM6A-LR and FGOALS-g3. 

4.3. Seasonal variability 

The multimodel ensemble (MME) medians of the available 13 GCMs 
for both CMIPs have been used to show bias in the seasonal variability of 
temperature and rainfall for each climatic zone when compared to 
ERA5. Fig. 7 shows the month-to-month bias in Tmx. This is estimated by 
subtracting the CMIPs MME from ERA5. The dashed red line represents 
the bias in the CMIP5 MME median, while the dashed blue line repre-
sents the bias in the CMIP6 MME median. The horizontal black dashed 
line represents the zero bias. The 95% confidence interval band of 
GCMs’ bias has also been provided to show simulation uncertainty. 

Overall, the bias in MME median of CMIP6 was more aligned to the 
zero line than CMIP5. The 95% confidence interval band of the CMIP6 
ensemble was also thinner, suggesting lower uncertainty in their esti-
mates of Tmx than for CMIP5. The results also indicated that the inner 
model differences of CMIP6 were far less than for CMIP5. Both versions 
of CMIPs displayed higher uncertainties in simulating seasonal vari-
ability of Tmx in climate zone C than in other zones. Both CMIPs 
underestimated Tmx in zone Af. CMIP6 overestimated Tmx in Am for all 
months, except January and February. Both versions also under-
estimated Tmx in the Aw climate zone for all months, except for the April 
to June period. 

Fig. 8 presents the month-to-month viability of bias in Tmn, estimated 
by the two CMIPs. Like Tmx, CMIP5 shows larger inter-modality in Tmn 
than CMIP6. This indicates low uncertainty in the CMIP6 simulations 
when compared to CMIP5. For most months, a subtle overestimation by 
GCMs of both CMIPs was noticed for the Af and Am zones, especially by 
CMIP6. The median bias for the MMEs was nearly identical with ERA5 
for the climate zone C, while the bias confidence interval band of CMIP5 
was between −11 and 4 ◦C. 

Similar results are seen for rainfall. Uncertainty in the CMIP6 rainfall 
bias (Fig. 9) band is thinner than CMIP5 bias for all climate zones. 
However, CMIP6 MME overestimated rainfall for the Af zone to a greater 
degree than for CMIP5 MME. In the Am and Aw zone, MME of both 
CMIPs under and overestimated monsoon rainfall, respectively. The 
differences were greater for CMIP6 MME. The highest underestimation 
by both CMIP MMEs was noted in zone C. Both CMIPs MME median and 
confidence interval band were below zero for most of the months. This 
indicates an underestimation of rainfall by all GCMs for both CMIPs in 
this zone. 

Overall, the results support the findings determined in statistical 
evaluations of the models. Table 2 presents the results of the t-test, KS 
test and F-test for seasonal rainfall, Tmx and Tmn of CMIPs seasonal 
median and ERA5 in different climate zones. Both CMIP5 and CMIP6 
seasonal MME were statistically indistinguishable at the 95% level based 
on all three tests in all climate zones, except zone Af for the t-test and KS 
test. The results indicate no significant difference in CMIP5 and CMIP6 
models in SEA. Inter-model variability of CMIP6 GCMs, however, was 
less than for the CMIP5 GCMs. The uncertainty in simulations in CMIP6, 
therefore, was lower than for the CMIP5 GCMs. 

M.M. Hamed et al.                                                                                                                                                                                                                             



Atmospheric Research 265 (2022) 105927

6

Fig. 4. Performance of CMIP5 and CMIP6 GCMs in estimating historical annual average: (a) Tmx, (b) Tmn; and (c) rainfall during 1979–2005. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.4. Projected Tmx, Tmn and rainfall 

Fig. 10 shows the temporal evolution of Tmx (plots a and b) and Tmn 
(plots c and d) averaged over SEA by the MMEs of CMIP5 and CMIP6 for 
differing scenarios. The upper plots (e.g., a and c) show the projection 
for medium emission scenarios; RCP4.5 for CMIP5 and SSP2–4.5 for 
CMIP6, respectively, while the lower plots (e.g., b and d) show the 
projection for high-end scenarios; RCP8.5 for CMIP5 and SSP5–8.5 for 
CMIP6, respectively (Fig. 10). The MME median projection is presented 
using an intermediate solid line for the applicable historical period 
(1979–2005 for CMIP5 and 1979–2014 for CMIP6) and the dashed line 
for the future period, while the band presents the 95% confidence in-
terval of the projections. The blue line represents CMIP6, and the brown 
line represents CMIP5. A 30-year moving average is used to smooth the 
lines. 

Fig. 10 shows a much thinner confidence band (less uncertainty) in 
the projections for CMIP6 than its predecessors, CMIP5. For Tmx, both 
versions show nearly the same future projection for different scenarios 
for 2020–2059. CMIP6 shows a greater increase in Tmx for SSP2–4.5 and 
a reduced increase for SSP5–8.5 compared to RCP4.5 and 8.5 projections 
for 2060–2099. Tmx is projected to reach 30.2 ◦C and 31.74 ◦C for 
SSP2–4.5 and 5–8.5, while 29.9 ◦C and 31.97 ◦C for RCP4.5 and 8.5 by 
2100. The CMIP5 MME median shows an abrupt shift in Tmx between the 
historical estimations and the modelling forecasts. This is not seen in the 
CMIP6 modelling. A gradual increase in Tmx from historical to future 
periods indicates a realistic projection by CMIP6. 

The MME median of CMIP6 shows a slight decrease in Tmn in the 
future (when compared to the CMIP5) for both scenarios (Fig. 10). The 
Tmn is projected to reach 25.11 ◦C and 26.6 ◦C for SSP2–4.5 and 5–8.5, 
and 25.29 ◦C and 26.7 ◦C for RCP4.5 and 8.5 by 2100. As is the case for 
Tmx, CMIP6 also shows reduced uncertainty in the Tmn projection when 

compared to CMIP5. 
Fig. 11 shows rainfall projections generated by CMIP5 and CMIP6 

MME. The MME median of CMIP6 indicates the potential for a greater 
increase in rainfall in the future than does CMIP5. The uncertainty in the 
projections of both CMIPs, however, is similar. The CMIP6 MME pro-
jected an increase in rainfall from nearly 2500 mm from the present day 
to 2700 mm by 2100 for SSP2–4.5, while CMIP5 MME indicated a po-
tential for 2577 mm for RCP4.5 (Fig. 11 (a)). For the higher scenario, the 
MME of both CMIPs projected the rainfall to reach 2640 mm by 2100 
(Fig. 11 (b)). Results indicate a greater decrease in rainfall for SSP5–8.5 
than for SSP2–4.5, and a greater increase in rainfall for RCP8.5 than 
RCP4.5. 

4.5. Spatial changes of temperature and rainfall 

Changes in annual Tmx, Tmn and rainfall were estimated using the 
MME mean of CMIPs for both the near and far futures, and for both the 
medium and high scenarios. These were compared to the historical 
period (1979–2005). 

Fig. 12 depicts the geographical distribution of projected change (◦C) 
in Tmx. Both CMIPs projected a rise in Tmx for the two future periods. 
However, CMIP6 MME projected a smaller rise in Tmx than did CMIP5 
MME. The projections of both CMIPs are highly consistent. Both MMEs 
projected a maximum increase in Tmx in the north (> 4.0 ◦C), and a 
minimum to the southeast (Papua), with a temperature of 1.0–1.33 ◦C in 
the near future and 1.59–3.01 ◦C in far future. Tmx projections also show 
a reduced rate of temperature increase in the central parts of SEA. 

The increase in Tmn was similar to Tmx (Fig. 13). In contrast to Tmx, 
however, the CMIP6 MME modelling projected a greater increase in Tmn 
than for CMIP5 MME, for both projection scenarios in both periods. 
Overall, Tmn is projected to increase more than Tmx. The greatest 

Fig. 5. Bar charts show the performance of CMIP5 and CMIP6 in simulating historical rainfall based on KGE and its components. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

M.M. Hamed et al.                                                                                                                                                                                                                             



Atmospheric Research 265 (2022) 105927

8

increase is seen in the north (5.02 ◦C), while the lowest is in the 
southeast, 0.96–1.27 ◦C in near future and 1.57–3.08 ◦C in far future. 
Both Tmn and Tmx show the greatest increase in regions where historical 
temperatures are less and vice versa. 

Fig. 14 shows the geographical variability in the projected changes in 
annual rainfall in percent. Both the CMIPs MME provided projections for 
annual rainfall for both the medium and high scenarios. The greatest 
increase is projected for the near future for SSP2–4.5. Both CMIPs, 
however, display a 25% decrease in rainfall in the south (Java) and 
southwest (Sumatra) parts of SEA. Rainfall increases in the northwest 
(Borneo and Indonesia) and the southeast (Papua). A 10 to 20% increase 
in rainfall in those regions is projected in the far future, for all scenarios. 
Rainfall would increase in the higher rainfall regions of SEA. 

5. Discussion 

A large number of studies have examined the ability of CMIP5 and 
CMIP6 GCMs to estimate the historical climate in different regions of the 

globe (Jain et al., 2019; Gusain et al., 2020; Kamruzzaman et al., 2021; 
Song et al., 2021a; Yazdandoost et al., 2021). Overall, these studies have 
revealed an improvement in the CMIP6 models compared to previous 
versions, i.e. CMIP5. Improvements in CMIP6 modelling have been 
noted in studies of the Tibetian Plateau (Lun et al., 2021), Central and 
South America (Ortega et al., 2021), Columbia (Arias et al., 2021), 
Meditteranean region (Bağçaci et al., 2021). The superiority of CMIP6 
models over the older CMIP5 models was also reported for extreme 
indices work over East Africa (Ayugi et al., 2021), extreme rainfall and 
temperature in major river basins of China (Zhu et al., 2021), extreme 
precipitation over the whole of China (Luo et al., 2021), Australia (Deng 
et al., 2021), and Western North Pacific and East Asia (Chen et al., 
2021). CMIP6 models were found to simulate climatic variables more 
accurately than CMIP5 models. For example, Jiang et al. (2021) found 
improved measurement of clouds and vapor over the tropical ocean 
using CMIP6. In the nearby region of SEA, Jain et al. (2019) reported 
enhancement of CMIP6 GCMs over Central and North India. Gusain et al. 
(2020) reported the higher capability of CMIP6 GCMs in estimating the 

Fig. 6. Taylor diagrams, showing skill of the GCMs of two CMIPs in simulating: (a) Tmx; (b) Tmn; and (c) rainfall. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Indian summer rainfall. Song et al. (2021b) showed an improvement in 
CMIP6 modelling over South Korea. Kamruzzaman et al. (2021) found 
there was an enhanced ability of CMIP6 MME to replicate spatial vari-
ability of rainfall and temperature over Bangladesh when compared 
with CMIP5 MME. 

The current study findings were different to those noted in other 
parts of the world, with the performance of CMIP6 GCMs found to be 
similar to that of CMIP5. The KGE showed an improvement in some of 
the CMIP6 GCMs in simulating historical rainfall, however, the Taylor 
diagram indicated similar performance of GCMs for both CMIPs. The 
major difference in the CMIP6 models when compared to the CMIP5 
models was less inter-model variability. Due to this, the uncertainty 

bond in CMIP6 ensemble was much narrower than in the CMIP5 
ensemble. A comparable finding is reported by Deng et al. (2021) when 
comparing the performance of CMIPs in simulating temperature ex-
tremes over Australia. These showed narrower ensemble ranges for 
CMIP6 models when compared to CMIP5 models (Deng et al., 2021). 
These results indicate more consistency in simulations using CMIP6 
GCMs when compared to CMIP5 GCMs. All CMIP6 GCMs used the same 
forcing datasets and boundary conditions (Taylor et al., 2018). There-
fore, the simulations of CMIP6 GCMs are more consistent. 

The results reported here also contradict the findings from Khadka 
et al. (2021) over SEA. That study did not use common models to 
compare both CMIPs and also used different subsets of the CMIP5 and 
CMIP6 GCMs. In the current study, common GCMs for both CMIPs were 

Fig. 7. Seasonal variability in mean bias in Tmx of CMIP5 and CMIP6 GCMs 
compared to ERA5 dataset for four different climate zones (AF, Am, Aw and C) 
of SEA. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 8. Same as Fig. 7, but for Tmn. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 9. Same as Fig. 7, but for rainfall. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  

Table 2 
The results obtained using Student’s t-test, KS and F-test for historical seasonal Tmx, Tmn and rainfall of CMIP5 and CMIP6 against ERA5 in different climate zones. Zero 
(0) indicates that the test supports the null hypothesis of no difference, while one (1) indicates rejection of the null hypothesis at the 5% significance level.  

Variable Month Zone Af Zone Am Zone Aw Zone C 
t KS F t KS F t KS F t KS F 

Tmx CMIP5 vs ERA5 1 1 0 0 0 0 0 1 0 0 0 0 
CMIP6 vs ERA5 0 0 0 0 0 0 0 1 0 0 0 0 

Tmn CMIP5 vs ERA5 1 1 0 0 0 0 0 0 0 0 0 0 
CMIP6 vs ERA5 1 1 0 0 0 0 0 0 0 0 0 0 

Rainfall CMIP5 vs ERA5 0 0 0 0 0 0 0 0 0 0 0 0 
CMIP6 vs ERA5 1 0 0 0 0 0 0 0 0 0 0 0  
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used and so provided an estimation of the relative performance of the 
GCMs. Khadka et al. (2021) also used correlation and RMSE for 
measuring the performance of the GCMs. So two metrics were used to 
estimate different properties of the model performance. It should be 
noted that making decisions using multiple statistical metrics is always 
problematic, as using different metrics can often provide different out-
comes. For this reason, the current study used an integrated metric 
(KGE). This measures the ability of the model to construct spatial dis-
tributions, variables and bias, and thus has provided a reliable assess-
ment of GCM capability. 

The SEA is comprised of both mainland and maritime continents. 
Shallow and deep marginal seas, with complex land-sea distribution and 
topography, have resulted in a complex climatic regime (Robertson 
et al., 2011). Atmospheric circulation patterns (resulting from the land- 
sea configuration) make seasonal temperatures and rainfall asymmetric 
over the region (Yoneyama and Zhang, 2020). These factors may have 
influenced CMIP6 modelling performance and affected the improved 
capability noted in other studies when comparing performance against 
the older CMIP5 models. 

This study reported some inconsistencies in the projection of tem-
perature and rainfall for both the CMIP5 and CMIP6 models. CMIP6 
showed a large increase in Tmx for SSP2–4.5 and a small increase for 
SSP5–8.5, compared to RCP4.5 and 8.5, for the far future projections 
(2060–2099). The MME mean of CMIP6 showed a slight decrease in Tmn 

in future than CMIP5 for both scenarios. In contrast to Tmx, CMIP6 MME 
projected an increase in Tmn compared to CMIP5 MME for both pro-
jection scenarios in all periods. This has also contradicted the findings 
available for other regions. SSP scenarios have previously been reported 
as indicating a greater increase in temperature than their equivalent RCP 
scenarios (Ortega et al., 2021). However, both CMIPs have reported a 
greater increase in Tmn when compared to Tmx, as noted in other regions. 
The greatest inconsistency in the CMIP5 and CMIP6 GCMs was in the 
rainfall projections. The results showed a decrease in rainfall for 
SSP5–8.5 as compared to SSP2–4.5, with an increase in rainfall noted for 
RCP8.5 compared to RCP4.5. This indicated an increase in rainfall with 
increase in temperature for CMIP5 MME in the region. In contrast, 
CMIP6 MME showed a decrease in rainfall for SSP5–8.5 despite a rise in 
temperature. 

The spatial distribution of temperature and rainfall changes revealed 
a greater increase in temperature in the cooler regions and a reduced 
increase in the warmer regions. This was in contrast to the rainfall 
projections. Increased rainfall was noted in the high rainfall regions and 
reduced rainfall in the current low rainfall regions. The results indicated 
more homogeneity in the geographical variability of temperature, but 
more heterogeneity in the spatial distribution of rainfall. The current 
temperature in the region is more homogeneous than in any other part of 
the world and the present study indicates that this would continue into 
the future. In contrast, the current spatial distribution of rainfall in SEA 

Fig. 10. Temporal evolution of Tmx (◦C) (a and b) and Tmn (◦C) (c and d) for CMIP5 (yellow) and CMIP6 (blue) under different scenarios (upper row) RCP4.5 and 
SSP2–4.5 and (lower row) RCP8.5 and SSP5–8.5. Shadings signify 95% projections confidence interval. The vertical line indicates the end of the historical esti-
mations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

M.M. Hamed et al.                                                                                                                                                                                                                             



Atmospheric Research 265 (2022) 105927

12

is highly diverse, ranging from 750 mm to >6000 mm. Some parts of 
Papua in the southeast receive the highest rainfall globally (~ 11,000 
mm). The SEA has the highest density of animal life on the planet with 
the various species inhabiting a narrow climatic niche. Climate change is 
expected to increase species diversity. 

6. Conclusion 

The present study evaluated the use of CMIP5 and CMIP6 in devel-
oping present and future climate projections for the Southeast Asia re-
gion. Uncertainties in historical simulation and future projections of the 
CMIPs were also examined as part of determining overall model per-
formance. The study revealed no significant improvement in GCMs 
(from CMIP5 to CMIP6) in simulating present-day temperature and 
rainfall over SEA. However, the CMIP6 ensemble did display less 

uncertainty in the simulation work than CMIP5. This indicated a greater 
degree of confidence could be assumed in any decision-making based on 
the CMIP6 projections. Both CMIPs revealed that a rise in temperature 
and rainfall in most of SEA would occur. Some inconsistencies in the 
CMIP5 and CMIP6 models projections were noted. This has emphasized 
the need to streamline existing adaptation measures, particularly those 
arising from CMIP6 SSP scenarios. The study projected a decrease or an 
insignificant increase in rainfall in the low rainfall region. This may 
increase both flood and water stress in the region. Any changes in the 
homogeneity in temperature and rainfall could significantly affect the 
biodiversity in the region. Future modelling should take account of the 
increased availability of GCMs both CMIPs, and utilize the ability to 
compare and contrast the various model iterations. 

Fig. 11. Annual rainfall (mm) projection by CMIP5 (yellow) and CMIP6 (blue) 
models for different scenarios: a) medium scenario (RCP4.5 and SSP2–4.5); and 
b) high scenario (RCP8.5 and SSP5–8.5). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) Fig. 12. Geographical variability of the change in Tmx (◦C) over SEA based on 

MME of CMIP5 and CMIP6 for two futures in medium and high projec-
tion scenarios. 
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