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Abstract 
Cancer remains a major burden on global public health with high mortality rates 

worldwide. Current diagnosis can detect cancer in late stages when therapy options 

become limited. Early diagnosis is broadly recognized as the key to a better treatment 

to save lives. The metabolomics approach provides a better understanding of the 

different types of cancer. They offer promising and potential interventions in 

biomarkers discovery which eventually will be better suited for individualized 

medicine. It elucidates endpoint products for other omic processes while significantly 

improving the understanding of pathogenesis and mechanisms yet to be discovered. 

Metabolomics offers a less-invasive, cost-effective for predicting, screening, diagnosis, 

prognosis, and monitoring therapeutic responses of the disease. There are two methods 

to study the metabolism and metabolites: targeted and untargeted. The workflow of 

these approaches requires different analytical platforms, such as Nuclear Magnetic 

Resonance spectroscopy (NMR), Mass Spectrometry (MS), and different bioinformatic 

tools. This review provides a systematic summary of metabolomics methods in 

identifying metabolic biomarkers of cancers (colorectal, prostate, breast, bladder, 

pancreas, lung, and buccal cancers). In addition, the current review will try to shed light 

on DNA lesions as a potential metabolic biomarker for cancer. 
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Introduction 
 

The cancer incident rates, and mortality are steadily 

increasing, making cancer a leading death cause 

worldwide. Available data from Globocan, 2018 

stated that 1 in 5 men and 1 in 6 women are likely to 

develop cancer, and 1 in 8 men and 1 in 10 women 

risks dying from it before the age of 75. These findings 

make this disease a major public health concern (Bray 

et al., 2018; Cai and Liu, 2019). In 2020, the number 

of new cancer cases was estimated to be 19 million, 

and the number of cancer deaths is 10 million. Such 

data represents an increase of 5% in cancer incidence 

and 5.2% in cancer mortality compared to 2018. 

Notably, the number of new cancer cases and deaths 

per year is expected to rise to 29 and 16 million, 

respectively, in the coming two decades (IARC, 

2018). 

While the cancer burden is noticeable worldwide, low, 

and middle-income countries have been experiencing 

increasing cancer-related mortality because of a weak 

health care system and infrastructure. In addition, 

large numbers of cancer patients in these countries do 

not have access to timely, high-quality diagnosis or 

treatment. Moreover, the number of deaths due to 

cancer in Low- and Middle-Income Countries 

(LMICs) surpasses those due to HIV/AIDS, malaria, 

and tuberculosis combined and account for two-thirds 

of global cancer deaths. These consequences are 

related to poor diagnosis and a lack of accessibility to 

proper cancer treatment. The likelihood of death and 

disability from cancer increase significantly as the 

disease progresses (WHO, 2017a; WHO, 2017b; 

Boumehira et al., 2016). That is why an early 

diagnosis and timely treatment can help in reducing 

mortality and improving the outcomes and quality of 

life of cancer patients. However, the radiographic 

techniques typically used in cancer detection do not 

allow an early diagnosis. 

Conversely, cancer is frequently detected at an 

advanced stage where limited therapeutic options 

(Gowda et al., 2008). Therefore, alternative, novel and 

chemically based detection methods are more 

convenient options. In this regard, metabolomics 

offers a powerful technique to observe cancer-

associated metabolism. Thus, fostering the 

understanding of the pathogenesis of the disease, the 

knowledge of the scale of metabolism deregulation of 

cancer, and finding promising early diagnostic 

biomarkers and therapeutic monitoring (Ellero-

Simatos et al., 2019; Gowda et al., 2008).  

 

Cancer: a metabolic or genetic disease?  

Cancer is a general word applied to many 

heterogeneous diseases linked to hereditary, 

environmental, inflammatory, or other factors that can 

affect any part of the body. It is a non-communicable 

disease (NCD) characterized by the rapid proliferation 

of abnormal cells that can spread into other organs to 

form metastases. It is known for its heterogeneity, with 

several anatomical and molecular subtypes, each 

requiring a specific diagnosis (Cai and Liu, 2019; Bray 

et al., 2018; WHO, 2017a). This condition has been 

widely considered a proliferation disorder and a 

genetic disease linked to nuclear mutations in 

oncogenes and tumor suppressor genes (Coller, 2014). 

However, since Otto Warburg’s original theory that 

respiratory failure is the cause of cancer, new proof 

proposes that cancer should be considered a 

mitochondrial metabolic disease (Zhang et al., 2019; 

Seyfried, 2015; Warburg, 1956). According to this 

concept, cancer cells form from normal cells, having 

adapted to a decrease in energy, resulting from an 

irreversible dysfunction of cellular respiration in the 

mitochondria and modifying their morphology to 

differentiate and grow anarchically (Razungles et al., 

2013).   

In cancer cells, the observed metabolic profile often 

includes an increased glutamine and glucose 

consumption, increased secretion of lactate, increased 

glycolysis, and changes in the use of metabolic 

enzyme isoforms (Coller, 2014). In his study “Cancer 

as a mitochondrial metabolic disease," Seyfried 

supported the theory of the Warburg effect and 

reported that “cancer originates from damage to 

mitochondria in the cytoplasm instead of damage to 

the genome in the nucleus. The genomic damage in 

tumor cells follows rather than precede the 

disturbances in cellular respiration.” while stressing 

that real progress in cancer management and 

prevention will emerge once the field of cancer 

abandons the theory of somatic mutations and 

recognizes the role of mitochondria in the origin, 

management, and prevention of the disease (Seyfried, 

2015). 

In summary, although metabolic changes that happen 

in cancer cells have long been measured as a 

secondary phenomenon, lately, they are reconsidered 

as being more essential to the disease itself (Coller, 

2014). Therefore, metabolomic studies in cancer can 

be interesting to understand better the mechanisms 

involved in cancer and its early diagnosis. 
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Early diagnosis, best hope for recovery 

While cancer's global profile is narrowly associated 

with lifestyle and socioeconomic development factors, 

its mortality is more closely due to late diagnosis. 

Moreover, two-thirds of cancer deaths globally occur 

in less developed countries due to its diagnosis at 

advanced stages where the response to treatment is 

less efficient. As cancer progresses, patients' 

probability of mortality and disability keeps arising. 

However, most cancer types need several years to 

grow like a malignant disease, which offers the chance 

of early detection and better survival chances. In this 

context, an efficient early diagnosis enables 

identification and recovery at an early stage by 

detecting precancerous lesions or malignant tumors at 

the right time and intervening rapidly with less 

complex, less morbid, more efficient treatments which 

avoid unnecessary pain and premature death (Cai and 

Liu, 2019; WHO, 2017a; WHO, 2017b).  

Notably, in a study by Mandel et al., 2000, an 

association between colorectal cancer screening and 

its incidence decrease has been demonstrated due to 

adenomatous polyps’ detection and elimination within 

patients with such antecedent lesions (Curry et al., 

2003). Likewise, one of the reasons for 25% global 

cancer mortality decrease (1990-2015), in the USA, 

with a more important mortality rates decrease of 

colorectal cancer (47 % for men and 44 % for women) 

and breast cancer (39% within woman), is certainly the 

implementation of screening and early detection of 

colorectal and breast cancers (Corinne, 2017; Smith et 

al., 2018). Furthermore, other studies reported the 

occurrence and death rates of cervix cancer decreased 

since the introduction of the Pap test (Papanicolaou 

test) in the middle of the twentieth century. Also, 

buccal cancer screening allowed a significant 

mortality reduction (Nagao and Warnakulasuriya, 

2020; Smith et al., 2018; Chuang et al., 2017). In 

addition, early diagnosis noticeably reduces its 

financial consequences because, at early stages, 

treatments are less costly, allowing people to afford 

them and still be able to provide for their needs. In 

2010, the annual cancer economic cost (healthcare 

expenditure and loss of productivity) in USA was 

estimated to be $1.16 billion (WHO, 2017b). 

However, what's more, interesting about early 

diagnosis, is the possibility to proceed with a liquid 

biopsy, which allows the detection of a large variety 

of circulating biomarkers in easily accessible and less 

invasive ways, in the contrast to conventional tissue 

biopsy (Bellassai et al., 2019). 

 

Metabolomics: a promising member of the “Omic” 

family  

The «omics» have developed the current mantra of 

molecular research as they detect metabolites 

(metabolomics), genes (genomics), proteins 

(proteomics), and mRNAs (transcriptomics) in a non-

targeted and unbiased manner (Figure 1). The 

approach represents the second call of “high-

dimensional biology” (Ellero-Simatos et al., 2019; 

Narad and Kirthanashri, 2018; Debnath et al., 2010). 

The analysis will holistically decipher the different 

cellular populations, tissues, and the body while 

promoting the understanding of their functions and the 

various mechanisms and interactions implemented 

during normal physiological processes or in case of 

pathology (Narad and Kirthanashri, 2018). Moreover, 

they have been explored in numerous branches of 

health and medical sciences to know the etiology of a 

disease. It is also used to monitor its condition through 

screening, diagnosis, and prognosis while focusing on 

new therapeutic targets, which has made them very 

useful for drug discovery and toxicity assessment. In 

addition, further studies, and the simultaneous analysis 

of several molecules, provided by omics approaches 

have opened new avenues to identify novel biomarkers 

and early diagnostics for cancer (Narad and 

Kirthanashri, 2018; Debnath et al., 2010). The use of 

experimental models to assess toxicity is very useful 

(Gouva et al., 2020; Rehma et al., 2020). 

Metabolomics is an omic technology that has been 

developed since the late 1990s and is particularly used 

to study metabolomes biofluids in cells, tissues, or 

organisms at a given time and under given 

circumstances. It is formally defined as the high-

throughput study of metabolites and represents a 

fundamental tool for their overall assessment within a 

biological system. The technique is the downstream 

endpoint of all biological processes, giving the closest 

measurement to the molecular phenotype (Figure 1) 

compared to transcriptomics and proteomics 

(Boumehira et al., 2019; Andrisic et al., 2018). In 

addition, since the metabolic alteration is the last step 

in cellular reaction to disease, metabolomics can be 

beneficial for identifying new biomarkers (Dufour-

Rainfray et al., 2020). Nevertheless, it is not the only 

term used; we also find metabonomics.  
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Figure-1. The metabolomic is omic that best modulates the molecular phenotype. 

 

Metabolomics or metabonomics?  

In the literature, metabolomic and metabonomic are 

two terms used interchangeably to describe the holistic 

study and unbiased analysis of metabolites in a known 

biological sample using sophisticated analytical 

methods including nuclear magnetic resonance 

spectroscopy (NMR) and mass spectrometry (MS) and 

data mining and modeling procedures (Ellero-Simatos 

et al., 2019; Gika et al., 2014). However, both terms 

slightly differ as they are not the same techniques. 

Metabolomics, described by Fiehn as “a complete and 

quantitative investigation of all metabolites,” 

corresponds more precisely to the exhaustive and non-

selective identification and quantification of all 

metabolites in a biological system for the detection, 

monitoring, characterization, and determination of a 

metabolic phenotype. On the other hand, 

metabonomics, described by Nicholson and Lindon 

(2018) as “the quantitative measurement of the 

dynamic multiparametric metabolic response of living 

systems to physiopathological stimuli or genetic 

modification”, refers more specifically to the study of 

a global and dynamic metabolic response of an 

organism to biological stress (disease, exposure to a 

toxic agent, etc.) or genetic manipulation, in contrast 

to more targeted methods of metabolic profiling to 

comprehend the mechanism involved in response to 

the studied biological phenomenon and to understand 

systemic change (Athersuch, 2019; Jobard et al., 

2010). In short, metabonomics considers the notion of 

a “dynamic” metabolic response and formally includes 

metabolomics (Ellero-Simatos et al., 2019).  

 

From metabolites to metabolome  

Metabolites are molecules of low molecular weight 

(less than 1500Da), covering an extensive array of 

chemical classes, such as oligopeptides, lipids, sugars, 

amino acids, organic acids, nucleotides, etc. They are 

classified according to their origin into two categories: 

endogenous and exogenous (Figure 1). The first is the 

intermediaries and the products of the metabolism, 

described as the whole of the biochemical reactions, 

involving either processes of degradation of the 

organic matter (catabolism) or processes of synthesis 

(anabolism). On the other hand, the latter comes from 

the interaction of the body with the external 

environment (xenobiotics, toxins, etc.) and 

temporarily constitutes part of the chemical medium 

(Athersuch, 2019; Andrisic et al., 2018; Jobard et al., 

2010). These molecules of low molecular weight 

participate in regulating a good number of cellular 

processes and can act as indicators of homeostatic 

imbalance; these are the substrates, products, or 

cofactors of diverse biological reactions. Both 

endogenous and exogenous, they integrate into a 

plethora of cellular and systemic functions and 
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collectively contribute to the mechanistic link between 

exposures, responses, and related adverse reactions 

(Athersuch, 2019, Donovan et al., 2019). The whole 

and complete collection of these small molecules in a 

biological entity constitute the metabolome, the 

metabolic analogy of the genome or proteome. It is 

described as the metabolic structure of a cell, tissue, 

organ, or organism at a given time. It is dynamically 

modified according to lifestyle and exposure to 

external factors, which directly reflects alterations and 

connections among protein expression, gene 

expression, and the environment. In addition, since 

metabolites are the endpoints of the biomolecular 

cascade (genes-protein-metabolites), the metabolome 

is the last level of cell regulation and thus comes 

closest to the phenotype, which makes his study very 

interesting (Figure 1) (Ellero-Simatos et al., 2019; 

Sengupta and Narad, 2018).  

 

Metabolomics approaches: targeted and non-

targeted metabolomics 

Metabolomic/metabonomic approaches have a wide 

potential, both in terms of object of study and the 

variety of fields of application (toxicology, 

physiology, medicine, cell biology, 

pharmacometabolomics, etc.). They are common tools 

in discovering biomarkers, generally suitable for the 

study of fluids (cerebrospinal liquid, bile, amniotic 

liquid, seminal liquid, cell culture supernatant, etc.), 

biological tissues, or intact model organisms (biopsies, 

cells, etc.). These methods seek to describe the 

metabolic outline of multifaceted structures over a 

mixture of high-throughput analytical techniques and 

multivariate data analysis (Figure 1) and thus allow the 

arrangement and/or classification of illness or 

treatment-associated molecular forms produced from 

metabolites and the identification of different 

metabotypes of disease brutality and make positive 

clinical and molecular phenotyping and patient 

stratification) (Chen et al., 2016; Johnson et al., 2016; 

Jobard et al., 2010).  

Metabolomic studies can be carried out using two 

main approaches, a so-called targeted approach, and 

another so-called non-target (metabolite 

fingerprinting or profiling). The first is concerned 

only with studying a specific type of metabolites. It 

measures one or more well-defined metabolite(s) and 

therefore requires a pre-selection of the compound(s) 

to be detected. A complete or partial understanding of 

the molecule(s) to be targeted, hence the name of 

"targeted metabolomics”. The choice of metabolites is 

usually depicted by pathophysiology and could be 

inadequate to exact metabolic pathways. Thus, prior 

knowledge of physiological disorders occurring 

during the disease is necessary. This quantitative and 

validated method offers higher sensitivity and 

selectivity than the non-target. However, the potential 

for missing information due to the inadequate quantity 

of metabolites in the analysis is an important matter 

and may constitute a false negative. 

On the other hand, the second does not target specific 

metabolites; it measures the widest variety of 

metabolites present in a sample, in the absence of 

necessarily a prior knowledge of the metabolome. Its 

main concern is to obtain a maximum of information 

by comparing profiles between several groups of 

samples to detect or not the presence of a metabolic 

fingerprint characteristic of a given biological state, 

hence the second term "metabolite fingerprinting”. 

This unbiased study is then a strategy of choice for 

generating hypotheses and an effective first step for 

discovering biomarker metabolites. However, even 

though it allows the non-biased detection of 

metabolites, it is semi-quantitative (profiling) and little 

validated. Furthermore, due to the wide range of 

analytes detected, non-significant and disease-

unrelated signals can be confused with directly related 

ones and thus constitute a false positive. Therefore, no 

approach is flawless, and there is value in combining 

both. The non-targeted one can then verify the results 

obtained through the targeted approach to ensure no 

missing information. At the same time, the 

assumptions/results of the not-targeted approach can 

be invested, tested, and confirmed by the targeted with 

the aim of their validation and development (Böhme et 

al., 2019; Ellero-Simatos et al., 2019; Cheung et al., 

2019; Christians et al., 2017; Johnson et al., 2016).   

Along with the targeted and non-target approach, there 

is a semi-targeted strategy, which consists of screening 

many specific key metabolites through several 

dosages. It is a more quantitative than non-targeted 

approach and can thus minimize interference and false 

positives (Christians et al., 2017).  

 

Analytical approach in metabolomics (Workflow):  

The metabolomic analysis strategy should be tailored 

to the addressed biological issue and the available 

resources. However, all metabolomic research adhere 

to a mutual procedural pipeline from sample 

gathering, preparation, and analysis to spectral data 

acquisition, processing, and translation (Figure 1) 

(Dufour-Rainfray et al., 2020; Andrisic et al., 2018; 
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Boudah et al., 2012).  

The first step is the assembly and composition of 

samples, mostly blood, urine, and tissue. The choice 

of the biological matrix should be based on the 

assumption made since each kind of sample provides 

diverse and complementary data. To avoid 

degradation, the samples must be obtained and treated 

quickly. The collection of specimens requires special 

attention; it is necessary to guarantee that all samples 

are gained under similar environments in various pool 

or packing. Clinical details should also be gathered 

that could influence the previous metabolism of the 

patient. In addition, one of the key difficulties in 

interpreting the data is that various variables such as 

age, sex, diet, medication, and chronobiological 

variability affect metabolic trends. 

On the other hand, the preparation of the sample is a 

critical step in determining the quality of the results 

obtained, especially in the context of targeted analyses 

where selective metabolite extraction is required to 

increase the sensitivity of detection. In contrast, in the 

global approach, the treatment of the sample must be 

reduced to a minimum to limit any source of external 

variability, especially the loss of information (Dufour-

Rainfray et al., 2020; Boudah et al., 2012). The 

samples are then analysed using sophisticated 

analytical platforms, including NMR, which senses 

the particular resonance interest patterns of the 

metabolites in a magnetic field and the MS measuring 

the mass/load ratio of metabolites in their ionized form 

while separating them. The data obtained in spectra are 

then analysed (Cheung et al., 2019).  

Spectral analysis allows the characterization of a 

specific metabolic signature (metabolite 

fingerprinting); however, the metabolites from the 

signals or peaks are still not recognized at this phase. 

It prevents the validation/qualification of the resulting 

molecular markers. The data is first processed 

automatically to design a matrix to produce the desired 

information. It is then subjected to statistical analyses 

to identify the differences between the sick and 

healthy samples. At this level, metabolites of interest 

can be identified through databases and/or analytical 

technologies that elucidate their three-dimensional 

structure, such as 2D-NMR or MS/MS (metabolic 

profiling). Once the molecular marker(s) of interest 

has been recognized, it is finally possible to proceed to 

the next step of establishing targeted and validated 

tests to quantify these exact compounds with a sum of 

acceptable sensitivity and imprecision, allowing 

subsequent clinical use (Figure 1). However, in 

addition to sample preparation, careful attention 

should be paid to the analytical and statistical methods 

used, since variances can hamper the comparability of 

outcomes among studies and consequently 

compromise the discovery of novel biomarkers) 

(Dufour-Rainfray et al., 2020; Cheung et al., 2019; 

Andrisic et al., 2018; Christians et al., 2017; Boudah 

et al., 2012).  

The different steps are similar between the targeted 

and non-target approaches; the biggest difference is in 

the discovery of metabolites (Figure 1). Metabolites 

are selected and recognized from the outset in the 

targeted workflow; only these metabolites are studied, 

while metabolite detection is the last step in the non-

targeted approach: only statistically relevant signals 

between different patient groups are detected (Dufour-

Rainfray et al., 2020). 

The metabolic phenotype of individuals results from the 

expression of genes and their interactions with the 

environment. Exposome: all exposures to 

environmental factors, as well as lifestyle (physical 

activity, emotional stress, etc.), are both environmental 

pressures that can alter it through epigenetics (red 

arrows), which may be the cause of a tumor phenotype. 

Metabolomics is downstream of genomics, 

transcriptomics, and proteomics (omics technologies). 

These four main levels of biological investigation are 

concerned with the study of the central dogma of 

molecular biology (DNA, RNA, proteins, and 

metabolites) using NGS –based analysis (green 

rectangle) in the case of genomics and transcriptomics 

or Analytical techniques–based analysis (salmon 

rectangle) in the case of proteomics and metabolomics. 

Of the four, metabolomics confers the measure that is 

the closest to the phenotype (arrow in salmon), it studies 

the metabolome: the last level of cell regulation, located 

after the genome, transcriptome, and proteome and the 

complete collection of metabolites from the organism 

(in green) or the environment (in red). These small 

molecules contribute to the regulation of several 

cellular processes, the allosteric regulation of proteins, 

post-transcriptional modification of RNA, and 

epigenetic modifications of DNA (purple arrows). 

Metabolomic studies follow a fairly similar 

methodological pipeline (black arrows). The difference 

between the targeted and non-targeted metabolomics 

workflow are highlighted through blue (targeted 

approach) and green (non-targeted approach) arrows. 

The green arrow in dashes shows the value of using the 

targeted approach in validating the results of the non-

target approach. 
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Metabolomics is a novel source of biomarkers 

Several metabolomic studies were conducted aiming 

at the discovery of novel prospective biomarkers 

permitting timely detection of different types of 

cancers, based on the analysis of biofluids (urine, 

serum, plasma, saliva, seminal fluid, and sweat) and 

tissues. These attempts were performed by the usage 

of robust, sophisticated analytical platforms, such as 

NMR and MS.  

Table 1 outlines certain research based on cancer type 

while quoting different techniques used and 

highlighting metabolites with significantly modified 

expression in cancer samples. To begin with, in breast 

cancer, different biological matrices have been 

explored (blood, tissue, urine, saliva, exhaled breath) 

by resorting to diverse analytical techniques, mainly 

NMR and MS with their different variants, aiming to 

evaluate metabolites concentration levels that 

significantly changed in a cancer case. Thereby, an 

increase in certain metabolites rates such as creatine, 

glutamine, lysine, valine, glucose, and creatinine, 

accompanied by a decrease of rates of lipoproteins, 

glycoproteins, unsaturated lipids, lipids, acetone, and 

glycerol-derived compounds, have been observed in 

tumor tissues, by an NMR-based analysis. Another 

analysis based on the GC-MS technique emphasized a 

cytidine-5-monophosphate / pentadecanoic acid 

metabolic ratio as a significant discriminator between 

cancer and normal tissues (Cheung et al., 2019, 

Budczies et al., 2012). Elsewhere, 14 potentially 

interesting metabolites (proline, alanine, lactate, 

threonine, glutathione, glutamine, leucine, taurine, 

isoleucine, glutamate, valine, choline, Myo-inositol, 

and glucose) were distinguished and quantified in a 

record time (20 minutes) from cancer cell extracts 

analysis based on 2D NMR that be dependent on a 

spatial encoding procedure, qualified as a robust tool 

that allows quantitative analysis of complex matrices 

(Le Guennec et al., 2012).   

Otherwise, for biofluids, blood samples became an 

attractive source of many breast cancer studies. 

Notably, Lécuyer et al., 2018; 2019, demonstrated 

respectively, using NMR-based and LC-MS-based 

analysis of blood samples from a cohort of women 

attenuated by breast cancer and healthy subjects, 

higher fasting plasma levels of creatine, lysine, valine, 

glutamine, arginine, glucose, creatinine, norvaline and 

lower fasting plasma levels of lipids, glycoproteins, 

lipoproteins, glycerol, acetone, unsaturated lipids, 

derived compounds, and o-succinyl-homoserine, 

constituted a plasma metabolic signature associated to 

a higher risk of developing breast cancer as well as, 

lower rates of o-succinyl-homoserine and higher rates 

of valine, glutamine, γ-glutamyl-threonine, norvaline, 

isoglutamine, 5-aminovaleric acid, phenylalanine, 

tryptophan, acetyl tributyl citrate, and pregnene-triol 

sulfate were also related by lasting breast cancer threat 

(Lécuyer et al., 2019; Lécuyer et al., 2018).  

Additionally, analysis based on UPLC-MS-MS, LC-

MS and NMR of blood (serum) also allowed, 

respectively, the highlighting of an increase of acetyl-

L-alanine, indoxyl sulfate and kynurenine and a 

decrease of 5-oxo-L-proline post-chemotherapy in a 

cohort of women diagnosed with early-stage breast 

cancer, offering a better elucidation of biological 

mechanisms associated with the development of 

psychoneurological symptoms post-chemotherapy 

(Lyon et al., 2018) ; the identification of 9 metabolites 

(prostaglandin C1, ricinoleic acid, oleic acid amide, 

ethyl docosahexaenoic, hulupapeptide, 

lysophosphatidylethanolamine, cysteinyl-lysine, 

methacholine, and vitamin K2) that were used as a 

model allowing the prediction of chemotherapy 

response, with a specificity of 100% and sensitivity of 

81.2% (Lin et al., 2019a) ; the discovery of a metabolic 

panel significantly correlating with breast cancer 

recurrence after surgery within early-stage patients, 

characterized by significantly lower levels of histidine 

and higher levels of glucose and lipids compared with 

patients with no relapse. Based on that, a predictive 

risk model that predicted relapse with 90% sensitivity, 

67% specificity, and 73% predictive accuracy was 

proposed to evaluate relapse risk and avoid 

unnecessary adjuvant treatments and their associated 

toxicities within patients presenting low recurrence 

risk (Tenori et al., 2015).  

Another study (Playdon et al. 2017) claimed to be the 

first to utilize metabolomics to agnostically assess 

prediagnostic circulating diet-related metabolites 

about breast cancer hazard, the analysis of blood 

samples by GC-MS and LC-MS-MS techniques 

demonstrated an association of 3 nutritional 

metabolites caprate (decanoic acid); γ –carboxyethyl 

hydrochroman (γ –CEHC); and 4-androstane-3b,17b-

diol-monosulfate with overall breast cancer risk in a 

post-menopausal cohort, and a significant correlation 

between higher levels of metabolites related to 

alcohol, butter and fried food such as α-

hydroxyisovalerate, caprate, some androgynes and 2-

hydroxyoctanoate and estrogen receptor (ER)–

positive (ER+) breast cancer (Playdon et al., 2017). 

Furthermore, discriminatory metabolites between 
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different breast cancer subtypes have been identified 

through an NMR-based analysis of cancer patients' 

blood and tissues. Increased serum levels of valine, 

carnitine, proline, lysophosphatidylcholine, and 2-

octenedioic acid characterized the HER2-positive 

subtype, whereas higher concentrations of 

glycochenodeoxycholic acid characterized the ER-

positive sub-type (Chen et al., 2019). Otherwise, lower 

rates of glutamine and higher rates of glutamate, 2-

hydroglutarate, xanthine, and particularly β-alanine 

have been observed in tissues of patients diagnosed 

with ER-negative sub-type when compared to ER-

positive patients (Budczies et al., 2013).   

Moreover, reported studies based on urine and saliva 

provided evidence of significant changes in 

metabolites rates that could represent potential 

biomarkers (Dinges et al., 2019; Tsutsui et al., 2013). 

Besides, exhaled breath from a cohort of healthy 

individuals and breast cancer patients’ analysis using 

SESI-MS permitted the identification of 8 

discriminatory features corresponding to m/z 106, 

126, 147, 78, 148, 52, 128, 315, with a sensitivity and 

a specificity above 0.9. This pilot study assumed that 

the detection of cancer–related metabolic volatile 

profile is possible (Sinues et al., 2015). Ultimately, 

according to Yang et al, 2020, in their review, where 

they analyzed High frequency clinical metabolic 

biomarkers related to BC diagnosis, tyrosine was 

found to be the most frequent biomarker metabolite in 

multiple studies, followed by alanine, glutamic acid, 

valine, phenylalanine, glutamine, lysine, isoleucine, 

histidine, choline, glycine, and arginine respectively, 

thus composing the top ten most frequent clinical 

metabolic biomarkers (Yang et al., 2020).   

In the colorectal cancer case, several studies were 

established on different biological samples, namely, 

tumoral tissues, fecal samples, blood, urine, as shown 

in Table 1. First, tumor tissues analysis engaged the 

use of robust analytical platforms for instant HR-

MAS-NMR that was solicited by different studies, 

including Jiménez et al., 2013; Tessem et al., 2010 and 

Chan et al., 2009 where multiple potential biomarkers 

have been elucidated, such as choline, tyrosine, 

phenylalanine, and isoglutamine Jiménez et al., 2013); 

glycerophosphocholine (GPC) and  Myo-inositol  

(Tessem et al., 2010); PEG (polyethyleneglycol), 

glucose and scylloinositol (Chan et al., 2009). More 

particularly, the noticed increase in taurine and lactate 

rates was common in all three studies; on top of that, 

high rates of glycine were also commonly 

demonstrated in the works of (Tessem et al., 2010) and 

Chan et al., 2009). More of that, decreased levels of 

lipids were observed in both (Jiménez et al., 2013) and 

(Chan et al., 2009) studies. Moreover, GC-MS-based 

tumor tissue analysis demonstrated higher levels of 

lactate and L-phenylalanine and lower glucose levels 

(Chan et al., 2009). Likewise, in a MALDI-TOF-MS 

and 2D-MS-MS-based analysis of tumor tissues, 

results obtained were characterized by higher 

fucosylation and sialylation and lower acetylation, 

sulfation, and reduced expression of globo-type 

glycans (Cheung et al., 2019, Holst et al., 2013).  

Regarding the use of fecal samples, they presented a 

potential biomarker source, as many prior works that 

linked fecal metabolites from healthy and colorectal 

cancer (CRC) patients were able to discriminate them, 

for instant Phua et al., 2014, established proof-of-

principle for GC-TOF-MS-based fecal metabonomic 

detection of CRC (Phua et al., 2014). However, the 

complete mechanistic association among colonic 

tissues and feces of CRC patients is still restricted (Lin 

et al., 2019b). Whereas, in a similar study of colonic 

tumor tissues and their normal adjacent tissues 

alongside patient-matched feces study, using 1H-

NMR, a set of overlapping discriminatory metabolites 

were recognized, together with higher levels of 

alanine, succinate, glutamate, lactate, and decreased 

levels of butyrate in both tumoral tissues and fecal 

samples. Besides, fecal acetate levels are certainly 

linked to Myo-inositol and glucose alterations in 

tumoral tissues. Therefore, the fecal metabolic 

signature could reflect the microenvironment of the 

CRC tissue, highlighting the importance of the 

separate fecal metabolic profiles as potential novel and 

non-invasive relevant CRC detection indicators as the 

findings appeared to be promising (Lin et al., 2019b).   

Many investigations were performed to improve lung 

cancer's usually late diagnosis, following the lack of 

initial signs and the absence of effective screening 

tools. Among them, the Miyamoto et al., 2015 study 

found through a GC-TOF-MS analysis significantly 

altered levels of certain metabolites in the blood of 

cancerous patients, reflecting alterations in lipid 

metabolism, fatty acid, amino acid, and energy 

(Miyamoto et al., 2015). On the other hand, the review 

study by Dinges et al., 2019, which was interested in 

metabolomic markers in urine, reported significantly 

altered urinary levels of creatinine, phenylalanine, and 

hippurate in patients with lung cancer, demonstrated 

in two studies (Dinges et al., 2019). In addition, the 

LC-Q-TOF-MS/MS sweat analysis highlighted the 

ability of some metabolites, mainly trisaccharide 
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phosphate, to differentiate among healthy controls and 

lung cancer patients, together with active smokers 

with high specificity and sensitivity (Calderón-

Santiago et al., 2015). Biofluids are an interesting 

source of non-invasive or minimally invasive 

metabolic markers.  

As far as prostate cancer (PCa) is concerned, 

metabolomic studies using NMR and MS have also 

been carried out on different matrices (tissue, blood, 

urine) to find novel biomarkers that are more specific 

and sensitive. Indeed, tissue studies have shown 

significant accumulation of certain metabolic 

intermediates in the tricarboxylic acid (TCA) cycle, 

indicating hyperactivation of the Tricarboxylic Acid 

(TCA) cycle in tumor tissues (prostate cancer). 

Besides that, amounts of malate and fumarate were 

greatly associated with the tumor phase) (Shao et al., 

2018). Altered levels of metabolites primarily 

involved in fatty acids, energy metabolism, amino 

acids, choline, and uridine were observed at tissue 

levels, serum, and urinary tract of Pca patients and thus 

provided potential biomarkers diagnosis. Citrate and 

glutamine have been downregulated in all three 

samples (Zheng et al., 2020). Furthermore, NMR, GC-

MS, and LC-MS analyses of biofluids have also 

identified many potential diagnostic biomarkers of 

PCa, including the syringe, tryptophan, tyrosine, 

citrulline, and leucine (Dinges et al., 2019), some TCA 

intermediates, fatty acids, and carnitines (Struck-

Lewicka et al., 2015) and some volatile compounds at 

the urinary level (Khalid et al., 2015) as well as citrate, 

spermin, myoinositol at the level of prostatic and 

seminal fluids of cancerous patients (Lima et al., 

2016).  

As far as bladder cancer is concerned, studies on 

biofluids via NMR and MS have shown very 

encouraging results for its non-invasive diagnosis and 

early detection. Indeed, the analysis of blood samples 

by NMR has revealed distinct serum profiles between 

cancerous patients, individuals suffering from calculi, 

and healthy controls. Serum samples from bladder 

cancer patients have shown decreased levels of citrate, 

lactate, isoleucine/leucine, glycine, tyrosine, and 

higher levels of glucose and lipids compared to those 

of healthy individuals (Cao et al., 2012). In addition, 

in the urine analyses, the Cheng et al., 2018 study 

conducted via the LC-HRMS has revealed a panel of 

metabolites allowing the distinction between high-

grade Non-Muscle-Invasive Bladder Cancer NMIBC 

patients and healthy controls, low-grade NMIBC 

patients and healthy controls, as well as high-grade 

NMIBC and low-grade NMIBC patients. Moreover, 

this study has reported high urinary stages of 

metabolites complicated in the metabolism of fatty 

acids and low levels of those involved in their 

oxidation in cancerous patients compared to healthy 

controls, which reinforces the Warburg theory (Cheng 

et al., 2018). At the same time, Dinges et al., 2019 have 

reported in their review significantly altered urinary 

levels of 18 metabolites, including main citrate, ribitol, 

and 2,5-furan dicarboxylic acid, which have been 

encountered in more than three studies and that 5 MS 

studies have been able to differentiate successfully, the 

different stages of tumors, their grades as well as 

recurrence in bladder cancer (Dinges et al., 2019).  

Moreover, in pancreatic cancer studies, the Luo et al., 

2020 study has found significant variations in plasma 

levels of different metabolites through LC-TQ-MS 

analysis in plasma and tissue specimens of cancerous 

and healthy control patients while highlighting the ten 

main discriminatory metabolites, including five 

validated: sphinganine, beta-sitosterolcreatine, 

inosine, and glycocholic acid, which when integrated 

into one pattern offer a much greater detailed and 

specificity to directly diagnose this cancer compared 

to common biomarkers. Gluconic acid and succinic 

acid have shown a huge ability to observe the 

development and metastasis of pancreatic cancer at 

dissimilar phases (Luo et al., 2020). At the same time, 

the metabolomic NMR of blood has revealed a 

significant difference in serum concentrations of 

certain metabolites, including lactate, creatinine, and 

3-hydroxybutyrate between cancerous pancreatic 

patients and normal controls (Yang et al., 2011) and a 

variation in plasma levels of a group of potentially 

biomarker metabolites, distinguishing between PC 

patients, those with chronic pancreatitis and healthy 

individuals. Besides, CE-TOF-MS saliva analyses 

have revealed eight metabolites that distinguish 

between healthy individuals and pancreatic cancer 

patients. Thus, metabolomics approaches based on 

NMR and MS seem promising in the non-invasive 

diagnosis of pancreatic cancer and its early detection 

(Sturque et al., 2019, Zhang et al., 2012). 

Metabolomics work is a relevant source of various 

potential and non-invasive biomarkers for oral cancer 

cases. Indeed, the Ishikawa et al., 2019 study was the 

first of its kind to identify salivary metabolites 

distinguishing between patients with oral squamous 

cell carcinoma/epithelial dysplasia (OSCC/OED) and 

those with suspected persistent oral mucosal lesions 

(PSOML), instead of differing only between patients 
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with oral cancer and healthy individuals (Ishikawa et 

al., 2019). In particular, the CE-TOF-MS analysis of 

saliva and tumor tissue has revealed significant 

alterations in the expression of several metabolites, 

including 17 metabolites whose increase was 

perceived at the tissue level as well as in saliva 

(Ishikawa et al., 2016). Finally, about stomach, liver, 

and esophageal cancers, metabolomics has been an 

effective means to discover various potential and non-

invasive metabolic markers for early diagnosis (Table 

1). 

 

 

Table-1: Summary of metabolites related to cancer 
Cancer type Technique Biological sample Metabolite References 

*Colorectal 

cancer 

HR-MAS NMR Tumoral tissue 

Increase: isoglutamine, choline, phosphocholine, 

taurine, lactate, tyrosine, and phenylalanine. 

Decrease: lipids and triglycerides 

(Jiménez et al., 

2013) 

HR-MAS NMR Tumoral tissue 

Increase: lactate, glycine, taurine. 

Decrease: Myo-inositol, glycerophosphocholine 

(GPC) 

(Tessem et al., 

2010) 

MALDI-TOF-MS 

2D LC-MS/MS 
Tumoral tissue 

Increase: fucosylation and sialylation 

Decrease: acetylation, sulfation, glycans 

(Holst et al., 2013) 

 

GC-MS Tumoral tissue 

Increase: lactate, phosphate, l-glycine, 2-Hydroxy-3-

methyl valerate, L-proline, L-phenylalanine, 

palmitic acid, margaric acid, oleic acid, stearic acid, 

uridine, 11,14-eicosadienoic acid, 11-eicosenoic 

acid,1-monooleoyglycerol, 1-O-heptadecylglycerol, 

propyl octadecanoic, cholesterol 

Decrease: fumarate, malate, D-mannose, D-glucose, 

D-galactose, 1-hexadecanol,  arachidonic acid. 

(Chan et al., 2009) 

 

 

HR-MAS NMR Tumoral tissue 

Increase: ChoCC (choline-containing compounds), 

taurine, scyllo-inositol, glycine, PE 

(phosphoethanolamine), lactate, PC 

(phosphocholine) 

Decrease: lipids, PEG (polyethylene glycol), 

glucose 

NMR 

Tumoral tissue 

Increase: lactate, glutamate, alanine, choline, 

succinate, taurine, glycine 

Decrease: butyrate, glutamine, myoinositol, creatine, 

glucose 
(Lin et al., 2019b) 

 

Fecal sample 
Increase: glutamate, lactate, alanine, succinate 

Decrease: butyrate, propionate, acetate 

GC-TOF-MS Fecal sample Decrease: fructose, linoleic acid, nicotinic acid (Phua et al., 2014) 

GC-MS Blood L-alanine, glucuronoic lactone, L-glutamine (Ikeda et al., 2012) 

GC-TOF-MS 

UPLC-Q-TOF-MS 
Blood 

Increase: 2-aminobutyrate, 2-hydroxybutyrate, 2-

oxobutyrate 

Decrease: indoxyl, indoxyl sulfate, N-acetyl-5-

hydroxytryptamine 

 

(Tan et al., 2013) 

NMR Blood 

Increase: 3-hydroxybutyrate, acetate, formate, 

glycerol, lipid (-CH2-OCOR), N-acetyl signal of 

glycoproteins, phenylalanine, and proline 

Decrease: alanine, citrate, creatine, glutamine, 

peptide NHS, lactate, leucine, pyruvate, tyrosine, 

valine 

 

(Bertini et al., 

2012) 

GC-TOF-MS Blood 

Increase: pyruvate, lactate, 2-hydroxybutyric acid, 

3-hydroxybutanoic acid, malic acid, oleic acid 

Decrease: urea, valine, leucine, proline, threonine, 

threonic acid, 4-hydroxyproline, citrulline, 2-

Piperidinecarboxylic acid, ornithine, hippurate, 

lysine, tyrosine, tryptophan, oleamide, uridine 

 

(Qiu et al., 2009) 

UPLC-Q-TOF-MS Blood 

Increase: glycerol phosphate, pyruvic acid, lactate, 

carnitine 

Decrease: tyrosine, uridine, phenylalanine, 
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tryptophan, mysti acid, palmitic acid, nervonic acid, 

arginine, glutamic acid, nicotinamide, dopamine 

GC-TOF-MS 

 
Urine 

Increase: fumarate, putrescine, 4-hydroxybutyrate, 

two aminobutyrate 

Decrease: pyruvate, myristate citrate, homovanillate, 

phenol, p-cresol, hippurate, uracil, hydroxy acetate, 

xylose, arabitol, glucuronate, sorbose, threonine, 

alanine 
 

(Cheng et al., 

2012) 

UPLC-Q-TOF-MS Urine 

Increase: acetyl-creatinine, histidinol 

Decrease: urea, myristate, tryptophan, kynurenate, 

5-hydroxy-tryptophan, indole-acetate, indole, 

tyrosine, 4-aminohippurate, trimethylamine N-

oxide, uridine, pyridoxal (B6 vitamin), 2-

hydroxyestradiol, N-acetyl-l-lysine, creatinine 

GC-MS Urine 

Increase: 5-hydroxyindoleacetate, 5-

hydroxytryptophane, tryptophan, 5-oxoproline, N-

acétyl-aspartate, 2-hydroxyhippurate, phenylacetate, 

phenylacetylglutamine, hydroxyphenylacetate 

Decrease: succinate, isocitrate, citrate, 3-methyl-

histidine, histidine 

 

(Qiu et al., 2010) 

NMR/MS Urine Decrease: alanine, hippurate 
(Dinges et al., 

2019) 

*Prostate cancer 

GC-MS 

Tumoral tissue 

Blood 

Urine 

Increase: uridine, formate 

Decrease: citrate, creatinine, acetate, leucine, valine, 

glycine, lysine, histidine, glutamine, choline 

(Zheng et al., 

2020) 

 

GC-MS Tumoral tissue 

Increase: Glycerol-3-phosphate, proline, malate, 

fumarate, succinate, 2-Hydroxyglutaric acid (2-HG), 

fatty acids, glycerolipids, Myo-inositol, alanine, 

uracil 

(Shao et al., 2018) 

 

GC-MS 

LC-MS 

 

Blood 

Increase: palmitic acid, myristic acid, linolenic acid, 

aspartic acid, choline, vitamin B2, alanine, 

isoleucine, lysine, cysteine, cholate, glycocholate, 

sarcosine, alanine, pyruvate 

Decrease: acid stearic, lysophosphatidic-choline, 

serotonin, methyl-malonic acid, glutamine, valine, 

tryptophan, carnitine, glycine. 

 

(Lima et al., 2016) 

GC-MS 

LC-TOF-MS 
Urine 

Increase: sphingolipids hydroxysphinganine, C16 

sphingosine. 

Decrease: glycine, serine, threonine, alanine indole, 

hippurate, hydroxyhippurate, tryptophan, 

kynurenate, tyrosine, indole acetate, indolelectate, 

quinate, phenylacetamide, isocitrate, aconitate, 

succinate, sucrose, sorbose, arabinose, arabitol, 

inositol, galactaric acid, dimethylheptanoyl 

carnitine, propanoylcarnitine, butyrylcarnitine, 

octanoyl carnitine 

 

(Struck-Lewicka et 

al., 2015) 

 

 

GC-MS Urine 

Increase: pentanal 

Decrease: 2,6-dimethyl-7-octen-2-ol, 3-octanone, 

and 2-octanone 

 

(Khalid et al., 

2015) 

NMR 

MS 
Urine 

Decrease: serine, tryptophan, tyrosine, citrulline, 

leucine 

 

(Dinges et al., 

2019) 

NMR 
Seminal liquid 

Prostatic liquid 
Decrease: citrate, spermine, myoinositol 

 

(Serkova et al., 

2008) 

 

*Breast cancer NMR Tumoral tissue 

Increase: valine, lysine, arginine, glutamine, 

creatine, creatinine, glucose 

Decrease: lipoproteins, lipids, glycoproteins, 

acetone, glycerol derived compounds, unsaturated 

lipids 

 

(Cheung et al., 

2019) 
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GC-MS Tumoral tissue 
Cytidine monophosphate 

Pentadecanoic acid 

 

(Budczies et al., 

2012) 

NMR Cellular extract 

Alanine, lactate, leucine, threonine, taurine, 

glutathione, glutamate, glutamine, choline, valine, 

isoleucine, Myo-inositol, proline, glucose 

 

(Le Guennec et al., 

2012) 

NMR Sang 

Increase: valine, lysine, arginine, glutamine, 

creatine, creatinine, glucose, norvaline 

Decrease: lipoproteins, lipids, glycoproteins, 

acetone, glycerol derived compounds, unsaturated 

lipids, o-succinyl-homoserine 

 

(Lécuyer et al., 

2019; Lécuyer et 

al., 2018) 

UPLC-MS-MS Blood 

Increase: acetyl-L-alanine, indoxyl sulfate, 

kynurenine 

Decrease: 5-oxo-L-proline 

 

(Lyon et al., 2018) 

LC-MS Blood 

Prostaglandin C1, ricinoleic acid, oleic acid amide, 

ethyl docosahexaenoic, hulupapeptide, 

lysophosphatidylethanolamine, cysteinyl-lysine, 

methacholine, vitamin K2 

 

(Lin et al., 2019a) 

NMR Blood 
Increase: glucose, lipids 

Decrease: histidine 

 

(Tenori et al., 

2015) 

GC-MS 

LC-MS-MS 
Blood 

Decanoic acid (caprate), γ-carboxyethyl 

hydrochromane (γ-CEHC; saturated fatty acid), -

tocopherol (vitamin E derivative), 4-androsten-

3β,17β-diol-monosulfate (androgen) 

Metabolites related to ER+: androgens, α-

hydroxyisovalerate, caprate, 2-hydroxyoctanoate 

 

(Playdon et al., 

2017) 

NMR 

Blood 

1-HER2-positive: increase of carnitine, 

lysophosphatidylcholine, proline, valine, 2-

octenedioic acid 

2-ER-positive: increase of glycochenodeoxycholic 

acid 

 

(Chen et al., 2019) 

 

 

Tumoral tissue 

3-ER-negative: 

Increase: beta-alanine, glutamate, xanthine, 2-

hydroyglutarate 

Decrease: glutamine 

 

(Budczies et al., 

2013) 

LC-MS-MS 

GC-TOF-MS 

Tumoral tissue 

Blood 

Phosphatidylcholines 

Cytidine-5 monophosphate, pentadecanoic acid 

 

(Jacob et al., 2019) 

RMN 

MS 
Urine 

Increase: 5-hydroxymethyl-2-deoxyuridine, 8-

hydroxy-2-deoxyguanosine, succinyladenosine 

Decrease: valine, leucine, succinate, hippurate, 

sucrose, uracile, alanine 

 

(Dinges et al., 

2019) 

UPLC-ESI-MS/MS Urine Increase: 8-oxo-dG 

 

(Guo et al., 2017) 

 

ESI-MS-MS Urine 

Increase: hydroxymethyl-2′-deoxyuridine, 8-

hydroxy-2′-deoxyguanosine, 1-methyladenosine, N 

,N -dimethylguanosine 

 

(Cho et al., 2009) 

UPLC-MS-MS Saliva 
Increase: Ac-SPM, DAC-SPD, DAC-SPM 

(polyamines) 

 

(Tsutsui et al., 

2013) 

CE-LC-MS Saliva Increase: Spermine 

 

(Murata et al., 

2019) 

SESI-MS Exhaled breath 
8 discriminatory features corresponding to to m/z 

106, 126, 147, 78, 148, 52, 128, 315 

 

(Sinues et al., 

2015) 

MS 

NMR 

Tumoral tissue, 

blood, urine, saliva 

Tyrosine, alanine, glutamic acid, valine, 

phenylalanine, glutamine, lysine, isoleucine, 

histidine, choline, glycine, arginine 

 

(Yang et al., 2020) 

Liver cancer NMR Blood Increase: very-low-density lipoprotein, ketone  
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MS bodies (such as acetone and beta-hydroxybutyrate), 

2-oxoglutarate, bile acids ( glycochenodeoxycholic 

acid, glycocholic acid, deoxycholic acid,  cholic 

acid). 

Decrease: lysophosphatidylcholines (LPC) 

(Kim et al., 2016) 

Urine 

Increase:  methylated purines (7-methylguanine, 1-

methylguanine, N-dimethylamine, 1-

methylhypoxanthine, adenine, nucleosides 

adenosine, cytidine, and inosine) 

NMR 

MS 
Urine 

Increase: creatine, glycocholic acid, acetylcarnitine, 

carnitine, glycine, spermidine, spermine, 

hypoxanthine, oxoglutarate, threonine, α-N-

Phenylacetyl-L-glutamine 

Decrease: phosphate, urea, hippurate, citrate, cysteic 

acid, xylonate, glycine, xylitol, trimethyl-amine-N-

oxide, creatinine 

 

(Dinges et al., 

2019) 

Esophagus 

cancer 

GC-MS Blood Malonic acid, L-serine 
 

(Ikeda et al., 2012) 

NMR Blood 

Increase: β-hydroxybutyrate, acetoacetate, creatine, 

creatinine, lactate, glutamate, glutamine, histidine 

Decrease: tyrosine, α-glucose, β-glucose, acetate, 

unsaturated lipids, LDL/VLDL 

 

(Zhang et al., 

2013) 

Stomach cancer 

 

 

GC/MS Blood 
3-hydroxy propionic acid 

Pyruvic acid 

 

(Ikeda et al., 2012) 

NMR 

MS 

 

 

Urine 

Increase: lactate, alanine, phenyl acetyl glycine, 

arginine, taurine, tyrosine, leucine, valine, 3-indoxyl 

sulfate, formate 

Decrease: citrate, méthylnicotinamide, succinate 

 

(Dinges et al., 

2019) 

 

Bladder cancer 

RMN Sang 

Increase: lipids and glucose. 

Decrease: isoleucine/leucine, tyrosine, lactate, 

glycine, citrate 

 

(Cao et al., 2012) 

 

RMN 

MS 
Urine 

Increase: acetylcarnitine, adipate, lactate, taurine, 

valine, 3-hydroxysebacic acid, erythritol 

Decrease: ribonic acid, 2,5-furan dicarboxylic acid, 

7-methylxanthine, succinate, hippurate, citrate, 

phenylacetylglutamine, ribitol, gluconate, fructose, 

glycerol 

 

(Dinges et al., 

2019) 

LC-HRMS Urine 

High-grade NMIBC / healthy control: 

Dopamine 4-sulfate, aspartyl-histidine, tyrosyl-

methionine 

Low-grade NMIBC / healthy control:  3-

hydroxytetradecanoyl carnitine, 3-hydroxy-5, 8-

tetradecadiencarnitine, 3-hydroxy-cis-5-

tetradecenoylcarnitine, and O-decanoyl-L-carnitine 

High-grade NMIBC/ Low-grade NMIBC: 

5-hydroxyindoleacetaldehyde 

L-3-hydroxykynurenin 

 

(Cheng et al., 

2018) 

 

Pancreas cancer 

NMR 

MS 
Sang 

Increase: isoleucine, triglyceride, leucine, creatinine 

Decrease: 3-hydroxybutyrate, 3-hydroxyisovalerate, 

lactate, trimethylamine-N-oxide 

 

(Yang et al., 2011) 

 

Increase: N-acetyl glycoprotein (NAG), 

dimethylamine (DMA), very low-density lipoprotein 

(VLDL), acetone 

Decrease: 3-hydroxybutyrate, lactate, high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), 

citrate, alanine, glutamate, glutamine, histidine, 

isoleucine, lysine, valine 

 

(Zhang et al., 

2012) 

CE-TOF-MS Saliva 
Leucine, isoleucine, tryptophan, valine, glutamic 

acid, phenylalanine, glutamine, aspartic acid 

 

(Sturque et al., 

2019) 

LC-TQ-MS Tumoral tissue Increase: taurocholic acid, taurochenodeoxycholic  
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Blood acid, taurodeoxycholic acid, tauroursodeoxycholic 

acid, glycocholic acid, melatonin, 

taurohyodeoxycholic acid, malonic acid, 

sphinganine, beta-sitosterol, glycochenodeoxycholic 

acid, uridine 5'-monophosphate, caproic acid, 

gluconic acid, succinic acid, dehydrocholic acid, 

methylmalonic acid, agmatine 

Decrease:  spermidine, inosine, hippuric acid, D-

fructose, glucose, hypoxanthine, creatine, L-aspartic 

acid 

(Luo et al., 2020) 

*Lung  cancer 

RMN 

MS 
Urine 

Increase: creatinine, phenylalanine 

Decrease: hippurate 

 

(Dinges et al., 

2019) 

LC-Q-TOF-MS-MS Sueur 

Trisaccharide phosphate, trihexose, nonanedioic 

acid, and a tetrahexose, suberic acid, monoglyceride 

MG 

 

(Calderón-Santiago 

et al., 2015) 

 

GC-TOF-MS Blood 

Increase: maltose, palmitic acid, glycerol, 

ethanolamine, glutamic acid, lactic acid 

Decrease: tryptophan, lysine, histidine 

(Jacob et al., 2019; 

Miyamoto et al., 

2015) 

Oral/buccal 

cancer 

CE-TOF-MS Saliva 

Decrease:  ornithine, carnitine, arginine, o-

hydroxybenzoate, N-acétylglucosamine-1-phosphate 

et ribose 5-phosphate (R5P) 

(Ishikawa et al., 

2019) 

 

CE-TOF-MS 

Tumoral tissue 

Increase: lactate, arginine, ornithine, S-

Adenosylmethionine 

Decrease: glyceraldehyde 3-phosphate (3PG) and 

phosphoenolpyruvate (PEP), homocysteine 
(Ishikawa et al., 

2016) 

Saliva 
Increase: 43 saliva metabolites (such as S-

adenosylmethionine  (SAM) and pipecolate) 

Notes: 

HR-MAS-NMR : high resolution magic-angle spinning nuclear magnetic resonance spectroscopy / MALDI-TOF-MS : Matrix-

assisted laser desorption ionization-time of flight mass spectrometry / 2D LC-MS/MS : 2 Dimentional Liquid Chromatography Tandem 

Mass Spectrometry / GC-MS : Gas chromatography-mass spectrometry / RMN : Nuclear Magnetic Resonance / GC-TOF-MS : Gas 

chromatography- Time-of-Flight-mass spectrometry / UPLC-Q-TOF-MS : ultra-high performance liquid chromatography-quadrupole 

time-of-flight mass spectrometry / LC-MS : liquid chromatography-mass spectrometry / LC-TOF-MS : liquid chromatography time of 

flight mass spectroscopy / UPLC-MS-MS : ultra-performance liquid chromatography tandem mass spectrometry / UPLC-ESI-MS/MS :  

ultra-performance liquid chromatography -Electrospray Ionization- tandem mass spectrometry / ESI-MS-MS : Electrospray Ionization- 

tandem mass spectrometry / CE-LC-MS : Capillary electrophoresis–liquid chromatography-mass spectrometry / SESI-MS : Secondary 

electro-spray ionization-mass spectrometry / LC-HRMS : liquid chromatography–hight resolution mass spectrometry / CE-TOF-MS : 

Capillary electrophoresis–time of flight-mass spectrometry / LC-TQ-MS : liquid chromatography coupled with a triple quadrupole 

electrospray tandem mass spectrometry / LC-Q-TOF-MS-MS : liquid chromatography quadrupole time of flight tandem mass 

spectrometry / NMIBC : Non-muscle invasive bladder cancer. / * this indicates the top 4 most widespread cancers in the world in the 

respective incidence order: lung 11.6%, breast 11.6%, colorectal 10.2%, prostate 7.1%. Globocan, 2018. 

 

DNA lesions, a potential biomarker for different 

cancer types 

Humans are frequently exposed to numerous 

exogenous or endogenous agents that simultaneously 

damage DNA (ultraviolet UV radiation, chemical 

carcinogens, free radicals, cellular metabolites, etc.). 

This exposure generates a complex set of DNA 

lesions, affecting a huge cell number in the body and 

occurring at a rate of 10000 to 1000000 molecular 

lesions per cell per day (Alhmoud et al., 2020; 

Figueroa‑ González and Pérez‑ Plasencia, 2017). As 

a result of this damage, cellular responses allowing the 

cell to eliminate the various lesions formed through a 

variety of repair processes are induced to maintain the 

integrity of the genome. In certain cases, however, 

these genetic modifications cause changes in the 

physiology of cells (Interruption of replication, 

mutations, etc.) and disrupt the function of vital 

enzymes (decrease in DNA repair capacity) and the 

stability of the genome. This, in turn, promotes the 

accumulation of non-voluminous lesions and initiates 

the tumor (Figueroa‑ González and Pérez‑ Plasencia, 

2017; Ignatov et al., 2017; Mouw et al., 2017; You and 

Wang, 2016).  In addition, it has been identified that 

DNA oxidative damage is involved in cancer. Highly 

reactive • OH able to react straight with DNA and 

cause the development of a range of lesions such as 

sole nucleoside lesions. These include 8-oxo-7,8-
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dihydro-2'-deoxyguanosine (8-oxo-dG), 2,6-diamino-

4- hydroxy-5-formamidopyrimidine-2'-

deoxynucleeoside (Fapy-dG ), 8-oxo-7,8-dihydro-2'- 

deoxyadenosine (8-oxo-dA), 4,6-diamino-5-

formamidopyrimidine 2'-deoxynucleeoside (Fapy-

dA), guanidinohydantoïne 2'-désoxynucléoside (dGh), 

spiroiminodihydantoïne 2'-désoxynucléoside (dSp) et 

5,6-dihydroxy-5,6-dihydrothymidine (thymidine 

glycol) (Yu et al., 2018; Guo et al., 2017; 

Figueroa‑ González and Pérez‑ Plasencia, 2017; 

Krokidis et al., 2017).  

Other studies also indicate that reactive oxygen 

species (ROS) and reactive nitrogen species (RNS), 

produced by inflammatory cells, cause the formation 

of oxidative DNA lesions and mutagenic nitratives, 

such as 8-oxo-7,8-dihydro-2 '- deoxyguanosine (8-

oxodG) and 8-nitroguanine, which are commonly 

involved in molecular mechanisms that induce cancer. 

These studies also state that infection and 

inflammation account for about 25% of cancer-

causing factors and suggest that DNA damage 

associated with inflammation in cancer stem cells 

leads to the development of cancer (Murata, 2018; 

Kawanishi et al., 2017). In addition, because of their 

elevated metabolism, cancer cells have been 

documented to be at a level of high oxidative stress. 

Most accumulate hundreds to thousands of genomic 

aberrations that differentiate them from normal non-

cancerous cells. Although the appearance of a tumor 

phenotype may be responsible for only a fraction of 

these genetic alterations, the study of DNA damage is 

important for the diagnosis and prognosis of many 

cancers (Alhmoud et al., 2020; Murata, 2018; Mouw 

et al., 2017). To recognize the presence or absence of 

possible biomarkers that allow for early cancer 

detection, several studies have been carried out to 

demonstrate the association between the levels of 

DNA lesions developed and the development of 

certain forms of cancer.  

Among them were those interested in the link among 

the levels of 8-oxodG in urine, serum or cancer tissue, 

and breast cancer. It was then found that the rise in 8-

oxodG in serum and urine can help as a possible 

biomarker for screening and prompt discovery of breast 

cancer while allowing the distinction between early-

stage and benign lesions. Whereas its low 

immunohistochemical expression was linked with an 

aggressive cancer phenotype, its negative 

immunolabeling was a strong prognostic factor for 

cancer-related deaths in breast cancer patients (Nour 

Eldin et al., 2019; Guo et al., 2017; Sova et al., 2010). 

Other studies of the same type of cancer brought to high 

light levels of succinyl adenosine, 5-hydroxymethyl-2-

deoxyuridine, N-dimethyl-guanosine, and 1-

methyladenosine (methylated purines) in addition to 8-

oxodG in urine samples of cancer patients. Moreover, a 

targeted metabolic analysis of 14 urinary nucleosides 

including 8-oxodG revealed lower levels of 8-oxodG 

and the last three lesions previously cited, in post-

operative patients (tumor removal) and normal controls 

than the preoperative patients. This demonstrates that 

operation decreases oxidative stress and proves 

profiling of targeted metabolites is useful to better 

understand the pathogenesis of breast cancer and 

facilitate monitoring and evaluation of its medical 

treatment (Dinges et al., 2019; Cho et al., 2009).   

The involvement of 8-oxodG and 8-nitroguanidine in 

the triggering of cholangiocarcinoma associated with 

inflammation has also been reported after observing 

their production, which is much more important in 

cancerous tissues than in non-cancerous, via the multi-

tagging immunofluorescence technique (Double- 

immunofluorescence staining). A decrease in the 

urinary rate of 8-OHdG in the progressive phases of 

lung cancer associated with the preliminary phases 

was reported in the study by Yano et al. (Yano et al., 

2009; Kawanishi et al., 2017). In addition, an 

association between low tissue levels of 5-

Hydroxymethylcytosine (5-hmC) and various human 

cancers, including pancreatic, lung, liver, breast, and 

prostate cancers, has been demonstrated and suggests 

5-hmC is a potential molecular biomarker useful for 

cancer recognition and diagnosis (Yu et al., 2018). 

Furthermore, low levels of hypoxanthine were found 

in the plasma of individuals with pancreatic cancer. 

Meanwhile, upper levels of the same metabolite have 

been observed in the urine of those with liver cancer 

(Luo et al., 2020; Dinges et al., 2019) and higher stages 

of the methylated purines (1-methylhypoxanthine, 7-

methylguanine, N-dimethylguanine, 1-methylguanine) 

and adenine in the urine of patients with Hepatocellular 

Carcinoma (HCC), was also observed (Table 1) (Kim et 

al., 2016). 

It can then be concluded that DNA lesions are 

potential biomarkers for prompt diagnosis and 

continuation of cancer treatment, with 8-oxodG as the 

most common lesion in various types of cancer. 

Besides, it has been reported that residues of 8-oxodG 

may be the main contributor to carcinogenesis due to 

their ability to associate with adenine and cytosine 

during DNA replication, which cause transverse 

mutations (GC in TA), the second most common 
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somatic mutation found in human cancers. Therefore, 

the presence of 8-oxodG in cells can lead to 

mutagenesis and cause cancer, so its detection in urine 

could be the first choice for estimating cancer risk, its 

early detection, treatment, and prognosis in a non-

invasive manner (Guo et al., 2017). Moreover, many 

methods are available to analyze and quantify DNA 

lesions, such as Mass spectrometry coupled to liquid 

chromatography HPLC-MS, which provide 

information about the location and quantity of DNA 

damage. UPLC-MS, which is a strong method in the 

alkylated DNA lesions quantification and NMR 

spectroscopy, can monitor the base pair at the 

molecular level and has already allowed the 

description of the structure of many duplexes with 

mismatches, which favors lesion detection (Yu et al., 

2018; Figueroa‑ González and Pérez‑ Plasencia, 

2017; Lukin and de Los Santos, 2006). 

 

Figure-2: DNA lesions structures from Chemspider (Pence and Williams, 2010). 
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Conclusion 
 
Even though metabolomics is a relatively emerging 

field compared to genomics, transcriptomics, and 

proteomics, it has a significant impact in finding 

biomarkers linked with several diseases, including 

cancer. It provides crucial information about different 

metabolic changes (alterations) occurring throughout 

cancer and thus reveals certain pathways involved in 

its manifestation. In addition, it pinpoints various 

onco-metabolites of which numerous new potential 

biomarkers can be used to make an early diagnosis and 

therapeutic monitoring, including DNA lesions 8-

oxoguanine, which has manifested in diverse cancers 

besides breast cancer. 
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