
ALMA MATER STUDIORUM

UNIVERSITÀ DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING

ARTIFICIAL INTELLIGENCE

MASTER THESIS

in
Applied Deep Reinforcement Learning

DeafultVR: the AI Expansion

An application of artificial intelligence in

competitive gaming and virtual reality

CANDIDATE:

Luca Levita

SUPERVISOR:

Prof. Andrea Asperti

Academic Year 2022-2023

Session 1st

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor Professor

Andrea Asperti, that steered me in the right direction. Thanks to him, I

was routed toward the performance of an excellent overall work, despite

our two different mindsets, one more theoretical-based and one more prac-

tical and experimental prone.

I am deeply indebted to my parents, that enabled me to study and reach

this important finish line, always showing me their support. Finally now I

will be able to remove my financial burden from their shoulders and delete

the stress of my exams that they always felt, more than me for some poorly

understandable reasons. Thank you.

Words cannot express my gratitude to Sofia, my fellow traveler, the one

who made possible the awesome graphical presentation of this project, the

amazing 3D models and the immersive map. She is and was always near

me, offering her hand whenever I need(ed), helping me to pass through

every problem and showing me how to be a better person. I love you,

thank you for being with me and for your patience.

A special thanks to my grandparents, that continued to show me their sup-

port even with this long distance relationship, without any complaints

about the few times we meet each other. I’m sorry that my party boy grandpa

is not here; he would for sure appreciate the goal reached and the related

celebrations. I know you are happy for me, even if you are not here.

My last words are dedicated to all the friends, relatives and all the people

who stayed and supported me in this long journey. This goal was possible

thanks to them too.

Honorable mention: my PC. It has seen and knows the worst and the best

of me from the start to the end of this journey. It made possible the phys-

ical realization of all my projects (in the real sense of the word). As my

mother says, it is, for sure, my third lung.

Abstract

This works presents the development of DefaultVR: The AI Expansion, an

expansion of the first degree thesis DefaultVR, a virtual reality tactical shooter

online game. In particular, this expansion aims to include an artificial agent,

called Eve, capable of learning to play in the virtual reality world through

reinforcement learning techniques. The agent learns to navigate the game

environment, make decisions based on pseudo-visual information, and op-

timize its actions to maximize rewards. The development utilizes a deep

reinforcement learning framework with the Proximal Policy Optimization

algorithm included with Units’s ML-Agents.

Extensive experiments were conducted to evaluate the agent’s perfor-

mance, comparing it against itself and human players. The results demon-

strate the agent’s ability to adapt and improve over time, achieving com-

petitive gameplay skills comparable to both new and experienced human

VR players. The training process involved iterative optimization and anal-

ysis of various hyperparameters, observations’ and actions’ spaces, and

training configurations.

The successful development of the artificial agent has significant implica-

tions for the field of gaming AI, showcasing its potential for creating en-

gaging and challenging gameplay experiences. The research contributes to

the broader understanding of reinforcement learning techniques and their

application in training intelligent agents for real-world tasks.

Contents

Introduction 7

Related Works 12

1 Chapter 1 17

1.1 The Project . 17

1.2 A gentle introduction to Reinforcement Learning 18

1.2.1 Deep Reinforcement Learning 20

1.3 A gentle introduction to Imitation Learning 22

1.4 A gentle introduction to Unity 23

1.4.1 Components . 23

1.4.2 The MonoBehaviour Workflow 25

1.4.3 OpenXR as virtual reality framework 26

2 Chapter 2 30

2.1 ML-Agents, the Unity’s machine learning framework 30

2.1.1 Observations and Actions 31

2.1.2 Reinforcement Learning in Unity 33

2.1.3 Imitation Learning in Unity 38

2.2 Supported Trainers . 39

2.2.1 Proximal Policy Optimization 39

2.2.2 Soft Actor-Critic . 40

2.2.3 MultiAgent POsthumous Credit Assignment 42

2.3 Network(s) and Training Configuration 44

2.3.1 Common Trainer Configurations 44

2.3.1.1 Networks Configurations 45

2.3.2 PPO-specific and MA-POCA-specific Configurations . 46

CONTENTS CONTENTS

2.3.3 SAC-specific Configurations 46

2.3.4 Reward Signals . 46

2.3.4.1 Extrinsic Rewards 47

2.3.4.2 Intrinsic Rewards 47

2.3.5 Other Options . 47

2.3.5.1 Behavioral Cloning 47

2.3.5.2 Self-Play . 48

2.3.5.3 Training Options 48

3 Chapter 3 49

3.1 Network Tests . 49

3.2 Eve . 52

3.2.1 The 3D Model . 54

3.2.2 The Brain . 54

3.2.2.1 Shooter: Observations, Network structure

and Actions . 55

3.2.2.2 Explorer: Observations, Network structure

and Actions . 58

3.2.2.3 Final Training and Hyperparameters 63

3.2.3 An attempt to make the agent damage aware 66

4 Chapter 4 70

4.1 An Overview of the other game’s elements 70

4.1.1 Human Inputs . 70

4.1.2 Weapons . 72

4.1.3 The Map . 73

5 Chapter 5 75

5.1 Optimizations . 75

5.1.1 Network query optimizations 75

5.1.2 CPU optimizations . 76

5.1.2.1 Static Batching 76

CONTENTS CONTENTS

5.1.2.2 Adjusting the Rendering Method 76

5.1.3 GPU optimizations . 79

5.1.3.1 Quality Setting Tuning 79

5.1.3.2 Light Baking 79

Occlusion Culling . 80

5.2 Performance . 81

5.2.1 Game Performance . 81

5.2.2 Eve’s Performance . 83

Conclusion 87

Bibliography 93

Introduction

Artificial intelligence is quickly coming in contact with everyone and with

everything, making life easier and safer, since dangerous jobs and difficult

tasks are gradually being accounted for by them.

The gaming field is not excluded from this rising new world. In fact, AIs

could be used to improve or substitute a lot of things in this scenario, such

as non-playable characters (NPC), bot enemies, bot competitive players and

teams and so on and so forth. In the past gaming epoch, smart competitive

bots were just a fancy idea that no one in the field would expect to become

real or, at least, not this fast. For single-player games, instead, all the NPC

and enemies were (and are) controlled by a deterministic and ad hoc algo-

rithm developed for that particular character or game. This was the safer,

easier and the cheapest way that companies had to give life to their heroes

or villains. But nowadays AI’s and the relative developing methods became

more stable, affordable and the knowledge about them accessible to every-

one: creation of intelligent non-human players is not a research topic only

anymore.

This work is aimed to be located in the stated context. Precisely, De-

faultVR: The AI Expansion is an expansion for my original project, DefaultVR

[1], developed as first cycle degree thesis. It was born as an online tacti-

cal shooter competitive game in a virtual reality environment, aimed to be

a realistic team military simulator. An update before this work consisted

in adding a realistic physics approach, in a way the VR world has rarely

seen in the current games offer. The VR software’s catalogue shows solu-

tions based on 1:1 mapping of the controllers and/or hmd (head-mounted

display, or headset) with their relative virtual objects in the virtual world,

ignoring collision with solid objects and reducing eventually the possible

actions the player could do (for instance, if a grabbed weapon is located into

one solid object, such as a wall, the user may be not able to shoot, but the

7

Introduction

Figure 1: Physics simulation

unrealistic “passing through” action keeps the simulation far from the real-

ity). DefaultVR was thought and designed to remove these fake approaches

to the simulation cutting away the 1:1 mapping that the standard VR pro-

duction offers (Figure 1), making the behavior of the player’s virtual body

the most similar possible to what a real body in the real world would act.

This implies a better immersive experience in exchange of a little growing

difficulty cost that the user must pay for adapt his mind to think that the

virtual world is less virtual than the previous XR experiences he dived into.

Another important feature DefaultVR offers is the full body simulation, in-

serting a full body avatar in the virtual world that is supposed to move

realistically without the need of extra trackers but the three main commer-

cial VR systems objects (hmd and controllers), through a technique called

Inverse Kinematics, a mathematical inference method of the bone’s angles

given a certain number of known end points. Current VR games uses a sim-

ple method to overcome the problem of lack of extra trackers: showing just

the player’s virtual hands, without arms, without legs and without body.

In the expansion I will present in this thesis, there is the idea of over-

coming the one big problem the original work had: it requires necessarily

an internet connection in order to make the player deep dive into the sim-

ulation for a realistic feeling and an optimal immersion level, through the

8

Introduction

creation of an intelligent agent. This project tries to expand the previous ver-

sion through the idea of playing without an internet connection and let the

player feel like he is playing against another person, someone that learned

how to play and trained its skills, and not against a simple classic bot. The fi-

nal goal is that there should be no differences between real multiplayer and

enemy AI. Everyone that owns this game should enjoy it regardless of the

capacity to connect to the network. (Virtual reality requires a lot of space,

and often these areas are far away from an access point, such as a garage for

example.)

The goal of this project is not closed to the development of a game with a

neural network-based agent, but it aims to give the user a contact point be-

tween reality and artificial beings, through a realistic physical environment

and an engaging enjoyable military-sim scenario.

The transition between classic bot approach and AI approach in com-

mercial games is not immediate and, probably, will be neither taken as a

possibility in the near future from gaming companies, since AIs are not

fully trusted yet given their stochasticity and difficulty in having an expla-

nation of why they took a particular decision. This is the reason why the

DefaultVR’s AI expansion is here in this transition period.

Moving away from the commercial gaming field, lot of studies have been

done regarding the application of AI in this field, not only taking them as

active entities (e.g., characters), but also as passive supervisors or helpers,

such as way to full body tracks without extra trackers but the controllers

and the headset in a virtual reality scenario. In general, gaming is a complex

concept for an AI system, so the development of these smart agents is a good

challenge and a good benchmark for researchers.

One of the early challenging examples of smart bots is the ViZDoom

project, started in 2015 and still ongoing. The agent is supposed to learn

how to play the 1993 game Doom, taking as input just the visual information

(the screen buffer), exactly how a human would do.

Regarding the newer horizons of the research field, a new interesting

topic is the development of an esports games’ player, which is a good chal-

9

Introduction

lenge and an arduous task for artificial intelligence agents. The research

community has sought games with increasing complexity that capture dif-

ferent elements of intelligence required to solve scientific and real-world

problems, such as real-time strategy (RTS) virtual competitions.

In 2016, OpenAI started an ambition project: develop a neural network-

based bot able to play a long-term planning, real time strategy game called

Dota2, an esport that can be played 1v1 or 5v5, where characters have each

one a special role and every teammate must cooperate in order to win the

∼ 45 minutes match. This is an extremely challenging task, since the artifi-

cial being must deal with about 30 FPS for a long time, for a total of about

80k ticks each game to be analyzed each one in real time before taking a de-

cision in a large action space. In 2018, the artificial guy successfully learned

how to play the game and was able to beat some of this game’s pro players

more times. A particularly good result, even if it does not need to cooperate

with anyone else. A perfect evolution of this model came in 2019, where

OpenAI developed an agent with the last piece missing for a team game

player: the ability to play as a team. OpenAI Five [2] was the first model

able to play a long horizon strategy team game, compete and win against

the world champions of Dota2. This result was obtained through an ap-

proach based on reinforcement learning.

The same year, another strategy game agent was introduced from Deep-

Mind to the public: AlphaStar [3]. This AI learned to play 1v1 matches in

the game StarCraft II. The tricky parts are the same as the previous game:

long term planning, bunch of different strategies, real time decision, large

action space and imperfect observations (unlike games like chess, the player

does not have the full information about what is happening and what the

opponent is doing). Also this model was able to beat pro players, such as

Team Liquid’s Grzegorz Komincz, known as MaNa.

This topic is far from being considered completed, and this project is an

example of a revolution in XR gaming as it is known today.

A game driven by an AI would be a huge news in this deep-rooted

deterministic-based world. And what if it is even settled in virtual reality?

10

Introduction

People could stay in contact with these new artificial beings and interact

with them in a comparable way they interact with other humans. DefaultVR

aims to be the missing link between artificial intelligence, virtual reality, re-

alistic physics simulation and competitive gaming world.

The dissertation is going to be structured as it follows:

Firstly, there will be the general idea of the project, followed by some gen-

tle introductions of the main tools employed, such as Unity, Reinforcement

Learning and Imitation Learning. Then there will be a study on Unity’s

machine learning framework ML-Agents. From this point on, there will

be a deep focus on the development of the project with, at the end, a brief

analysis of the optimizations performed and the game’s statistics in some

different VR ready PC architectures.

11

Related Works

Artificial intelligence plays a key role in giving new types of experiences

and feelings to players. Virtual reality offers the same behavior but in a

separate way. The idea of joining these two worlds and adding physics sim-

ulation to them brings the player to a new level of immersion. The overlap

of those topics, both partial and total, was widely explored by the research

community and industry.

Live tournament solutions achieve physical immersion in VR games recre-

ating a simplified version of the virtual environment in the real-world arena

(https://www.youtube.com/watch?v=QJXpHp_iQF4&ab_channel=UploadVR),

as happens in the old Oculus Connect [4] (now called Meta Connect). This

solution is not feasible for a generic VR system owner, since it requires a

large space and a custom area for every game he would like to simulate.

Another possible restricted solution is proposed in [5], where the authors

present a special controller able to emulate in real life the virtual weapon

recoil, and this is a possible future expansion idea of this project. In general

XR games overcome to this level of immersion ignoring it, since it would

require an extra development section. Framework such as HurricaneVR [6]

for Unity or VR Physical Hand [7] for Unreal Engine allows the physical and

realistic interaction between the real player and the virtual world, breaking

the direct and rigid connection among the real controller position with the

tracked position in the virtual environment. Same thing can be achieved

by creating this non-rigid link manually. DefaultVR uses a custom heavily

modified version of HurricaneVR [6] system that allows the player to have a

physical virtual body and a physical multiplayer management, used to sim-

ulate the virtual VR system for the AI players. For the full body animation,

an important problem is the lack of extra trackers in the commercial VR sys-

tems. Devices with this objective are sold separately and usually their price

is not affordable for all the VR users. Neural3Points [8] proposes a model

12

https://www.youtube.com/watch?v=QJXpHp_iQF4&ab_channel=UploadVR

Related Works

that aims to achieve realistic full-body movements using the three included

trackers (HMD: head-mounted display; hand controllers) with the commer-

cial system. Conversely Neural Inverse Kinematics [9] propose a model that

works on finding the best Inverse Kinematic output for each limb. Inverse

Kinematics is a mathematical technique that, given as input the final end-

point of a limb and the arrival point, it outputs the angles of the constrained

joint(s) of the limb itself in order to put the final end in a position the closest

possible to the wanted point. This technique was created for robotic arms

and later applied to 3D animation. The problem with those projects is the

complexity that would be added to the final software: my project links VR,

AI and physical interaction, creating an enormous workload for the hard-

ware, especially for the GPU, the core for both the VR rendering and the

AI inference. Adding another network (or even more) to be queried would

drastically limit the set of PCs ready to run the game. So the solution I pre-

ferred to adopt was the classic Inverse Kinematics. For the development of

the agent, I reviewed several aspects, such as trainers, exploration, imitation

learning etc. The framework used is ML-Agents [10], an open-source library

made by Unity Technologies for the Unity game engine in continuous evo-

lution, granting an optimized way for developing intelligent agents in the

Unity environment. It supports three trainers: Proximal Policy Optimiza-

tion (PPO) [11], Soft Actor-Critic (SAC) [12] and MultiAgent Posthumous

Credit Assignment (MA-POCA or just POCA) [13]. Among them i chose

PPO for single agent training and POCA for collaborative multi agent train-

ing. I excluded SAC since PPO grants more stable single agent training and

POCA was purposely developed for collaborative multi-agent behaviours.

These trainers will be briefly analyzed in 2.2.

When the exploration phase part of the agent was faced, lot of litera-

ture was analyzed since this task is a well-known problem in reinforcement

learning. The only one point was try to convert the information gained from

papers in something ML-Agents allows. “Advanced Mechanisms of Per-

ception in the Digital Hide and Seek Game Based on Deep Learning” [14],

an Hide and Seek project develop with ML-Agents, shows some key points

in the development of a target searcher agent, that brought some tests for

13

Related Works

this project, such as the observations’ types and the general network struc-

ture. I analyzed and adapt this last, making it larger, since my map is way

larger and complex than the one used in this paper, while some of the other

hyper-parameters have been just tried and slightly adapted to my specific

case. Furthermore, it uses the Curiosity [15] method to push the agent "to be

curious" and visit new states, rewarding it if it discover new physical areas

or new behaviours. This kind of rewarding is called "intrinsic reward" and

it is a part of a larger notion, namely intrinsic motivation (see [16], [17]). I

modified the Curiosity module with the Random Network Distillation [18]

(RND), an advanced exploration method built over Curiosity (more infor-

mation are provided in chapter 3). Multiple are the uses of this innovative

module, both for research purposes and real life utility, such as some of the

robots presented as case studies in [19] and even for the development of

OpenAI Five [2]. This module swap is because Curiosity suffers of a prob-

lem known as Noisy TV problem [20], an issue that keeps the agent focused

on a noisy unpredictable area (like in front of a noisy tv) being continuously

rewarded for these unpredictable glitches that makes the module observe

new unexplored states that curiosity have to reward. In DeafultVR’s map

there are a lot of advertisement panels that flash random images, while also

random objects spawn in unpredictable areas: in this case, curiosity would

bring the agent not to learn anything but observing these phenomena. In the

paper "Exploration in Deep Reinforcement Learning: A Survey" [21], the au-

thors analyze and compare several deep reinforcement learning exploration

techniques. Among all of the studied methods, they analyzed the imitation-

based one, claiming that they saw an impressive performance using it as a

starting point for complex exploratory games, such as Montezuma’s Revenge

(see also [22] [23]). However, that was not my case: I tried this idea for the

exploration training phase but I did not find an acceptable result, even wast-

ing hours in recording demonstrations. Also in [21], authors state that the

actual best exploration method is the novel concept that sees diversity [24] (a

branch of the notion of intrinsic motivation, that rewards the agent if they dis-

cover a new behaviour instead of a new state) in policy-based approaches.

Even if this concept is still being developed, a careful design of a diversity

14

Related Works

criterion beats the standard reinforcement learning with a non-trivial mar-

gin [25], probably making it the near future state of the art method. The

approach I chose to follow is the goal-based method, more precisely the ex-

ploratory goal type (well explained in [21]), where the agent learn to explore

the environment while travelling toward a goal [26].

In order to overcome the problem of learning a complex and large map

with limited hardware resources, I performed a "manual" curriculum learn-

ing [27] [28], a technique that allows the agent to learn a tricky task starting

from a simplified version of it, making its job harder each time it reaches a

certain score. ML-Agents supports and offer an automated way to achieve

curriculum learning, but this needs a stable metric to work on, and this

task has not a stable reward in my case, given by multiple factors that will

be reviewed later. In [29] and [30] authors tries to mitigate the problem

of rare sparse rewards in complex exploration environments through auto-

matic and adaptive curriculum learning, especially [29], that faced my same

problem, where the primary metric is not stable. However, they used an ad-

versarial technique that requires more model to be trained and my limited

resources did not allow this path. The cheapest way to achieve an adaptive

curriculum learning in my case was the creation of a deterministic algo-

rithm that raises the difficulty of the exploration when a human supervisor

decides to do so.

To achieve the shooting task, a first idea was to create a neural autore-

gressor, following the networks proposed in these financial prediction’s pa-

pers [31], [32] [33] and projects contained in [34]. In this way, the hands’

random positions that the recoil would have induct, could be predicted as

a time series of a six features, namely (x, y, z) of both hands. A further

concept was planned for this task, changing a bit the idea of the financial re-

gressors: a residual network. In this way the model could move its predic-

tions among a perturbation of the original positions, i.e. the human aiming

pose, keeping the resulting visual agent’s posture credible. However this

network structure resulted in non-acceptable predictions. Using as starting

point the proposed models in [34], the concept adopted was to remove the

"autoregressor" idea and make the agent aim, shoot and kill before the recoil

15

Related Works

becomes unmanageable. In case this last scenario would appear, the agent

was pushed to learn that stopping its fire barrage would result in a recoil

state reset, with the relative precision restored.

Lastly, in order to prepare an "enemy-aware" agent, I used the self-play

technique [35], a method created for the development of self-supervised

competitive agents. It lets the agent play against a snapshot of itself, pro-

moting the achievement of smart techniques to beating the enemy. ML-

Agents supports the original algorithm [36] with the possibility of switching

"enemy’s brain" in run-time with an older or newer version of it, avoiding,

in this way, the overfitting. I widely used soft-play with this anti-overfitting

technique for the second phase of the exploration training, where opponent

agents are supposed to search each other; for the weapon fire management,

where agent need to kill the other one before this will do it first; and in the

end for the union of these two primary tasks. The problem of self-play is

that has been designed for symmetric games (i.e. where both agents have

the same goal). Creating agents with different roles at a certain time would

require the training of two different networks and the swap of the brains

during the changing role time. There is no problem for the deathmatch

mode of this project, but when this will be extended with the "search and de-

stroy" mode as the common tactical shooters, attacker and defender brains

need to be trained. OpenAI worked on a project that expands the self-play

to asymmetric goals too: in "Asymmetric self-play for automatic goal dis-

covery in robotic manipulation" [37] they showed how two ai-based robots

learned to play an asymmetric game where one agent asks the other to solve

a challenging task (known or unknown) to the other. The current limitation

of this approach is that it requires a resettable environment, since the solver

needs to start from the same initial state of the problem proposer. In my

case this is not a real drawback, since the role swap would take place in a

completely scene reset scenario.

16

1. Chapter 1

1.1 The Project

This project is an expansion to the DefaultVR game, a VR application devel-

oped two years ago in my first degree thesis. [1]

The original project aimed to develop a multiplayer shooter VR game

with the "team deathmatch" and "search and destroy" modes. In both cases,

a specialized handmade matchmaking algorithm creates teams automati-

cally taking in account the skill level of each component in order to make a

balanced game instance.

An interesting feature was added to this game after the first gradua-

tion: the physics simulation. This means that grabbable objects (such as

weapons) and hands are not able to pass through virtual physics objects

(such as walls or other grabbables). So the controllers real position and vir-

tual relative are not in a 1 by 1 mapping, but the second just tries to reach

the target position without the pretension to coincide.

In this expansion, I try to overcome the problem of the play-space with-

out an internet connection: virtual reality requires lot of space in order to

freely move the hands and often these spaces are not in range of access

points (just imagine a garage for example). With the growth of artificial in-

telligence in games, I thought that a single-player mode with the same hype

of a multiplayer match could be made real. This project is about the devel-

opment of an artificial player that learns how to play as a human would

do, understanding how to move hands for aim and how to explore and find

targets in a complex map.

The designed mode is the team deathmatch, or better, the deathmatch,

since for now it is supposed to be a 1v1 game, where a human player will

challenge the artificial being, called Eve. The rules are simple: explore the

17

Chapter 1

map, find the enemy and kill him before it does it. At least one rifle will be

provided to each player every time a spawn occurs. Each weapon deals a

different amount of damage depending on the body area the projectile hits

and the type of weapon itself. The one who kills more time the other before

the time expires, wins the match.

In addition, an extra mini-mode will be available where the player and

artificial being will challenge each other to a mini-game in the range. Each

participant will have an unlimited number of rounds in their magazine and

the one who kills more enemies within a certain amount of time wins the

match. Other variants could be also included in the final game.

Eve’s brain has been trained using deep reinforcement learning, making

her training path the most similar possible to the human learning process,

but restricting a bit her range of actions in order to overcome the problem

of limited resources available for the training.

1.2 A gentle introduction to Reinforcement Learn-

ing

Reinforcement learning (RL) is a branch of the machine learning’s field. It

deals with sequential decision-making problems. Training an agent with

this technique means interacting with an environment, taking action in it

and possibly modifying its state. After playing some of the possible actions,

it receives feedback under the form of rewards and penalties, improving

its decision-making process considering this score. The goal of the agent

is to maximize its cumulative reward over time selecting the best possible

action in its current situation. This is done using a function that maps states

to actions, called policy. This function can be established in various ways,

depending on the problem.

Reinforcement learning is based on the Markov decision process’s (MDP)

concept, which is a mathematical framework that models sequential decision-

making problems. An MDP consist in a set of states, actions, reward and

transition functions that describes the probability of moving from one state

18

Chapter 1

Figure 1.1: Reinforcement Learning Workflow [38]

to another when an action is taken. Formally, consider a set of states S, a set

of possible actions A, a reward function R(s, a) with s ∈ S, a ∈ A, a transi-

tion probability function P(s′, r|s, a) and a discount factor γ. At each time

step t, the agent takes observations from the environment in the current

state st, selects an action at from the set of allowed actions and it receives a

reward rt = R(st, at), making it transit from the current state to a new state

st+1 with a probability of P(st+1, rt+1|st, at).

Reinforcement learning can be split in two big categories:

• Model-based. Model-based RL algorithms aim to learn a model of the

environment, which includes the transition probabilities and rewards

associated with each state-action pair. Once the model is trained and

ready to use, the agent will use it to plan the future actions and deter-

mine the optimal one to take in each state. An example of a model-

based algorithm is the Monte Carlo tree search. [39]

• Model-free. Model-free RL algorithms, on the other hand, directly

learn a policy of a value function without explicitly creating a model

of the environment. They also splits in two families:

– Policy-based, methods that learn a parameterized policy that maps

states to actions directly (for instance PPO [11]);

– Value-based, methods that learn an optimal value function’s es-

timate, which models the expected cumulative reward that can

be obtained by following a particular policy (such as Q-Learning

[40]).

Model-based methods tend to be more sample-efficient wrt the model-free

alternative, because they can use the learned model to infer the possible tra-

19

Chapter 1

jectories and estimate the expected cumulative reward. In general, model-

free algorithms are simpler and more flexible, but they usually require more

samples before convergence. Model-based methods can require less sam-

ples, but they are intrinsically more complex to implement and require good

model of the environment in order to learn something.

A further classification in RL can be made regarding the training process:

• Online RL;

• Offline RL.

In online RL the agent gather data directly, collecting data from experience

interacting with the environment and using them, immediately or adding

them to a small buffer, to learn the policy. On the other hand, in offline RL,

the agent uses data and demonstrations previously collected (for instance

by humans), learning from them without interact with the environment at

training time. Both methods presents pros and cons. Online RL requires

the agent to be trained on the real world or in a simulator, which requires a

complex pre-training phase, i.e. the building of the environment, but in this

way it is free to explore and try all the possible actions, taking a direct feed-

back from them. Offline RL does not require a training environment, but

it can fall in the the so called counterfactual queries problem, where the agent

decides to do something for which there is no data available (for instance,

a robot can decide to turn right in a certain intersection and our data does

not contemplate such choice). More information about online and offline

RL methods can be found here: [41] [42].

1.2.1 Deep Reinforcement Learning

A winning choice for complex task is for sure a method that combines rein-

forcement learning with deep neural networks: Deep Reinforcement Learning

(DRL). It has been successfully applied to a wide range of applications, such

as robotics and gaming. One of the most famous projects that used this tech-

nique to train its agent is OpenAI Five, previously mentioned [2]. The main

advantage of DRL consist in the ability of a neural network (NN) in learning

a good representation of the state and action spaces that suits perfectly for

20

Chapter 1

Figure 1.2: Online reinforcement learning vs Offline reinforcement learning

the task it is working on. For example, in game like Go, the state space con-

sist in the position of the pieces on the board, while the action space in the

possible moves. A DRL can learn an optimal representation of these spaces

in a way that capture the relevant feature of the game and making the agent

take effective decisions.

The key components of a DRL algorithm are:

• the policy network (pn): it takes the current state s as input and out-

puts a probability distribution over the possible actions Ā ∈ A (some

actions may be not allowed in a certain state);

• the value network (vn): it requires the current state s and returns an

estimate of expected future reward;

• the replay buffer: a memory of the past experience the agent observed

that can be use to learn also from the previous interactions with the

environment.

During training, the agent queries the policy network and performs the ac-

tion this last returns, while the value network outputs its prediction. The

policy is updated wrt the rewards received and what the vn returned. In

21

Chapter 1

fact, the error is typically defined as the difference between the predicted

cumulative future reward value and the discounted actual one, where the

discount factor γ hyper-parameter determines how much the agent should

weight and learn from the actual reward versus the future ones.

1.3 A gentle introduction to Imitation Learning

Imitation learning (IL) is also a machine learning’s branch where an agent

is supposed to learn its policy or behaviour imitating someone, that could

be a human or another agent as well. In other words, rather than learning

from scratch in a "trial and error" way, IL tries to make the agent learn from

demonstrations of the task. There are several methods for achieving IL, here

it follows a brief introduction to the two tested in this project.

• Behavioral Cloning. It is a simple approach that aims to train a pn to

directly mimic the given demonstrations. It takes the current state st

and returns the action the expert would perform in that state. The re-

quired data is a supervised set of state-actions pair. The hugest draw-

back of this method is the needing of a massive amount of demon-

strations, since in order to let the pn learn what an expert would do,

the dataset should exhaustively cover all the possible states the agent

could meet. It also could not generalize well, bringing the network in

an overfitting status.

• Generative Adversarial Imitation Learning (GAIL) [43]. It is a pow-

erful technique that applies Generative Adversarial Networks (GANs)

[44] to IL. In fact, the main idea behind GAIL is to use a discriminator

network to distinguish the demonstrations to the behaviour generated

by the pn. The reward function is given by the miss-classification of

the discriminator: when this last starts classifying the generated tra-

jectories as they were the expert ones, it means the policy is more or

less ready, therefore the pn learned its task. The overfitting problem is

not avoided by this method neither.

Imitation learning is considered to be a great starting point for complex task

22

Chapter 1

learning, creating a non-optimal policy that behave well in certain situations

and expanding it through a second training based on classical reinforcement

learning.

1.4 A gentle introduction to Unity

Unity is a powerful game engine that allows the development of high qual-

ity applications for each possible genre, from classical arcade games to vir-

tual reality immersive experiences. In this section it will be a brief presen-

tation and analysis of Unity, in order to better understand the development

of all the project in the next chapters.

1.4.1 Components

Application development through Unity is based on the concept of Compo-

nent. To each object present in the scene are automatically linked a certain

number of components that allow its correct visualization and correct func-

tionality. Furthermore, optional components can be added or customized

to extend or modify the entities behaviour. In fact, even a developer’s im-

plemented C# script become a component, which can be freely assigned to

each object (the designed ones) in the scene. Certain components may re-

quire some services from others of them. In order to automatize this check,

it is possible to declare in the script code the list of the dependencies, mak-

ing the engine automatically add in the scene what it is needed, ensuring the

script will have all the required working services. Obviously, the editor will

just add these extra components without setting them in the proper way:

this is up to the programmer, either via code or graphically using the editor

itself. Components are also able to call some specific named functions in

a custom script, as reply to an event, such as the OnCollisionEnter(Collision

collision) that is automatically called when the following conditions are met:

• the object that is running this script has a Rigidbody component (the

one that control the basic physics simulation) attached to it;

• the same object must have a collider component (the one that manages

23

Chapter 1

the hitboxes);

• the object is entering in collision with another one which contains a

collider object;

• both objects lies on a layer that can physically interact with the other

one. (Layers are attributes of a GameObject that allow them to act in

complex ways, such as ignoring collisions or avoiding a camera ren-

ders them).

So, even if the programmer does not subscribe its scripts to any service,

some events trigger these function calls anyway.

The standard Unity registry offers a wide range of components for each

possible complex behaviour where this is shared among all the common

requests of game-plays, such as the basic physics simulations, the basic an-

imation management, hitbox design, UI auto-organizer layout (for instance

grid or column collection of UI objects) and so on. Furthermore, it is pos-

sible to download extra packages with extra behaviour typically not com-

mon among basic games, such as the machine learning framework and the

OpenXR library, or for try in advance some experimental features the Unity

Technology is working on. In addition is even possible to buy other devel-

opers’ components, 3D models, SFX and all the possible useful entities a

game could need under the name of game assets.

using UnityEngine;

public class ClassName : MonoBehaviour

{

void Awake() {}

void Start() {}

void Update() {}

void FixedUpdate() {}

}

All the custom components must inherit from the class MonoBehaviour or

from a class that descend from it. This primordial class creates and makes

possible the execution of a custom component. A C# script that inherit from

24

Chapter 1

this key class has the above basic structure, where the Awake function is a

function that is automatically called when the script object is initialised, re-

gardless of whether or not the script is enabled; the Start function is called

in the first frame the object containing it is enabled and, as the Awake, it will

be called exactly once in the life time of the script; Update is called once per

graphic frame while the FixedUpdate can run once, zero, or several times per

frame, depending on how many physics frames per second are set in the

time settings, and how fast/slow the framerate is. It manages the physics

simulation update of the object. These four are just a small set of all the cus-

tomizable functions that the engine calls automatically, more information

can be found in 1.4.2 and in [45].

1.4.2 The MonoBehaviour Workflow

All the MonoBehaviour scripts’ lifetime follows a precise flow of function

calling and internal updating. The official chart in figure 1.4 (and 1.3) shows

the structure of this lifecycle. It follows a brief explanation of the various

sub-phases of this flow.

• Initialization and Editor. In this first phase there is the initialization

of everything in the script and, while in development, in the editor. It

concludes with the execution of the Start function.

• Physics. In this second part, the physics cycle (that loops not necessar-

ily in sync with the rest of the MonoBehaviour cycle) works, updating

the internal status of the simulation, the animations and calls the colli-

sions callbacks if the requirements previously described are met. The

loop’s time depends by a user defined parameter fixedTimestep (f t) and

by the quantity of physics interactions must be computed, making it

occurs from zero to 1/ f t times each second.

• Input Events. An old small phase dedicated to the call of the mouse

input events from the old Unity’s input system.

• Game Logic. It is the main phase of the cycle, where the the Update

function and a large subset of coroutines (a thread like process) com-

mand returns are executed.

25

Chapter 1

• Scene Rendering. In this section, all the graphics rendering and culling

are performed for each camera present in the scene, calling the relative

callbacks methods.

• Gizmo rendering. Phase where the gizmos (graphic overlays visible

in development, for debug or simplicity purposes) are computed and

rendered.

• GUI rendering. Rendering the UI graphics and calling the relative

callbacks.

• End of frame. Returns the command to the coroutines that were wait-

ing for the end of the frame.

• Pausing. This phase manages the forced pause from the application,

such as when the "home" button in Android phones is pressed.

• Decommissioning. The last phase of the cycle, where the destruction

or the disabling of the object occurs, or even when the whole applica-

tion is closed. This part is usually used for unsubscribe from events.

1.4.3 OpenXR as virtual reality framework

OpenXR (Open Extended Reality) [46] is an open standard for extended real-

ity applications which aims to provide an unified API for developers work-

ing on VR and AR software.

The main goal of this framework is to overcome the problem of fragmen-

tation and lack of compatibility in the current XR developing environment.

With the rapid growth of devices offer, developers keep facing the chal-

Figure 1.3: Script lifecycle flowchart legend

26

Chapter 1

Figure 1.4: Script lifecycle flowchart
27

Chapter 1

lenge of creating applications that can run on all the platforms available on

the market (Figure 1.5). The solution that OpenXR propose is a new layer

of abstraction that allows the automatic conversion and convergence of the

hardware inputs in a unified API, and vice versa each command from the

software to the device in the correct format that the target platform is wait-

ing for (Figure 1.6).

Thanks to this standard API, OpenXR simplifies the development pro-

cess and the maintenance phase, reducing the need for developers to write

and maintain multiple code sources for different XR platforms.

Using this standard, several benefits are granted to the developer, such as:

• support for all the commercial XR systems;

• automatic support for all the known devices, such as external trackers;

• the possibility for unknown or startup hardware developers to build

their own device and write a firmware that works with the OpenXR

API, making third-party systems compatible with the big XR ecosys-

tem;

• interoperability across all the supported devices, ensuring (under the

condition of hardware compatibility) the use of different brand de-

vices at the same time (for instance an HMD from brand A and con-

trollers from brand B);

• full control of special devices that are not common (or even new at

all) to the XR world, such as haptic gloves, finger trackers or smell

generators.

Unity proposes its own implementation of this standard that can be eas-

ily downloaded and imported in the project from its libraries and frame-

works manager (the Unity Package Manager). However it still supports the

classic development with XR companies’ SDK, including in its main settings

the most popular brands.

28

Chapter 1

Figure 1.5: Development without OpenXR

Figure 1.6: Development with OpenXR

29

2. Chapter 2

2.1 ML-Agents, the Unity’s machine learning frame-

work

The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source

initiative that allows the use of games and simulations as training environ-

ments for developing intelligent agents. This project offers PyTorch-based

implementations of state-of-the-art algorithms, enabling game developers

and enthusiasts to train their own smart agents effortlessly across 2D and

3D games. Moreover, researchers can leverage the user-friendly Python

API to train agents through reinforcement learning, imitation learning, neu-

roevolution, or other applicable methodologies. These trained agents have

diverse applications, including NPC behavior control in various scenarios

such as multi-agent and adversarial settings, automated testing of game

builds, and pre-release evaluation of different game design choices. By serv-

ing as a centralized platform, the ML-Agents Toolkit fosters a mutually ben-

eficial relationship between game developers and AI researchers, allowing

for the evaluation of AI advancements on Unity’s immersive environments

and subsequent accessibility to the broader research and game development

communities.

The main features this package offers are:

• Support for training single agents, multi agent cooperative and multi

agent competitive using deep reinforcement learning algorithms;

• Support learning through imitation learning, specifically behavioural

cloning and GAIL;

• It allows to easily integrate itself in an already completed game;

• Support for custom training algorithms;

• Automatic curriculum learning possibility;

30

Chapter 2

• Train using multiple concurrent Unity environment instances;

• Furnish a Unity built-in inference engine (Unity Inference Engine) to

provide native cross-platform support for models trained with ML-

Agents official trainers;

• Offers some built-in sensors, such as the Camera Sensor which provides

a visual input, and allows the creation of custom ones, in addition to

the possibility to give as input just some basic types, such as float,

booleans but even vectors, quaternions and collections;

• You can wrap the Unity learning environments as a Gym [47] (for sin-

gle agent training) or a PettingZoo [48] (for multi agent training) envi-

ronment.

2.1.1 Observations and Actions

The final goal of a ML-Agent user is to create an intelligent NPC, called

Agent, training a neural network, called Brain. This agent needs a simula-

tion area where he can make its error-trial learning path, namely the Envi-

ronment. Three entities must be defined at every moment of the game:

• Reward Signal: a single numerical value that is utilized to assess the

performance of the agent. It is important to note that the reward signal

is not necessarily provided continuously but rather when the charac-

ter executes actions that are deemed positive or negative. For instance,

if the character dies, a significantly negative reward can be assigned,

while a moderately positive reward can be given whenever the char-

acter progresses toward its target. Similarly, a modest negative reward

can be assigned when the character deviates from the correct path. The

reward signal plays a crucial role in communicating the task objectives

to the agent, ensuring that it is structured in a way that maximizing re-

ward leads to the desired optimal behavior.

• Observations: the agent’s perception of the environment. They can

be either numeric or visual. Numeric observations quantify the at-

tributes of the environment as perceived by the agent. For example,

in the case of our character, it would involve the attributes of the vis-

31

Chapter 2

ible area. In many complex environments, an agent typically requires

multiple continuous numeric observations to effectively understand

its surroundings. On the other hand, visual observations consist of

images generated by the agent’s attached cameras, providing a visual

representation of what the agent sees at a given moment. It’s impor-

tant to note that there is often a tendency to confuse an agent’s ob-

servation with the environment or game state. The environment state

encapsulates information about the entire scene, including all game

characters, whereas the agent’s observation only comprises the infor-

mation that the agent is aware of, typically forming a subset of the

overall environment state.

• Actions: the character has a range of actions it can take within the

environment. Similar to observations, actions can be categorized as

either continuous or discrete, depending on the complexity of the en-

vironment and the agent. Continuous actions are characterized by

a continuous range of possibilities, allowing for a smooth and fine-

grained control over the agent’s behavior. On the other hand, dis-

crete actions represent a finite set of distinct choices that the agent

can make. These actions are often used in environments where the

decision-making space is more limited or can be easily quantized.

Once these three entities are defined, the next step is to train the agent’s

behavior. This is made possible by simulating the environment through

multiple trials. Over time, the character learns the optimal actions to take

for each observed state by maximizing its future rewards. Through this it-

erative process, the agent gradually improves its decision-making abilities

and develops strategies that lead to the most favorable outcomes. By learn-

ing from past experiences and striving to maximize cumulative rewards,

the agent fine-tunes its behavior and becomes more adept at navigating the

environment.

The training phase is based on an interaction between the following five

high-level components:

• Unity learning environment, which contains the Unity scene and all

32

Chapter 2

the game characters. Here the agent can observe, take actions and

learn;

• Python Low-Level API, an external component that lives outside Unity,

that manipulates the learning environment through the Communicator;

• Communicator, a pipe-like concept that connects the previously two

components;

• Trainer, the training core of the process. It is a user chosen machine

learning algorithm which lies on the Python Low-Level API and that

does not communicate directly with the learning environment;

• Optionally a Gym or PettingZoo Wrapper (not showed in figure).

Figure 2.1: ML-Agents High-Level diagram

ML-Agents provides multiple ways for an Agent to make observations:

• Overriding the Agent.CollectObservations() method and passing

the observations to the provided VectorSensor;

• Adding the [Observable] attribute to fields and properties on the

Agent;

• Using a component that implements the ISensor interface.

These possibilities will be analyzed in the next section.

2.1.2 Reinforcement Learning in Unity

Designing an Agent in Unity requires these steps:

• create a learning environment;

• define the observations;

33

Chapter 2

• define the possible actions;

• implement a function that maps the brain’s outputs to physical ac-

tions.

After the physical character is ready, the agent’s neural network can be de-

fined in the training configuration file (2.3) with all the hyper-parameters:

the training process now begins.

In order to create an intelligent agent, for first it is required the creation

of the environment where it will learn. After the design of this first block,

here it comes the creation of the agent itself. As for every non-static objects

in the scene, our character should contain a behavioral component, a C#

script that inherit from the Agent class (obviously it derives from MonoBe-

haviour), included with ML-Agent package. Adding our custom compo-

nent will trigger the auto-dependencies inserting, attaching a Behaviour

Parameters component to the object. Through this entity, some preliminary

configuration of our brain will be possible:

• Behavior Name, the name of the brain we want to implement;

• Vector Observation, here it is possible to define the number of basic

inputs for our network, such as boolean, floats, Vector3, Vector2,

Quaternions and collections. The first sub-field is the number of el-

ement we want to manually feed the brain, overriding the method

Agent.CollectObservations(). Note that a Vector3 is composed by

three floats, so the voice "Space Size" must be incremented by 3, so the

Quaternion by 4. The second sub-field, Stacked Vectors is the number

of previous observations we want to give to the network in an array-

like format. For instance, if I want to keep trace of the last 3 float ob-

servations, obs0, obs1, obs2 respectively collected during the time steps

t0, t1, t2, the inputs will be in this form:

t0[obs0, 0.0, 0.0]

t1[obs1, obs0, 0.0]

t2[obs2, obs1, obs0]

34

Chapter 2

This is a simple way to give an Agent limited sort of "memory" with-

out the complexity of adding a recurrent neural network.

• Actions. In this field is possible to define the output layer of the brain,

declaring how many continuous actions and/or discrete actions we

want. The first one always return a value between -1 and 1, it is up the

developer to extend this range through a mapping if needed, while

the discrete actions requires an additional parameter each, namely the

number of possible actions for branch. For example, one branch could

be used to move the agent toward is forward direction, so the possible

actions would be 2 ([0, 1], 0 for no movement, 1 for forward), while

a second branch could make it rotate left and right and the relative

actions would be 3 ([0, 1, 2], 0 for no rotation, 1 for left and 2 for right).

• Model. This field is used to put the agent in the inference mode, after

the training, when our model is ready. It is also possible to chose the

inference device.

• Behaviour Type. Allows three choices:

– if set to Default and a model is available, the agent will run infer-

ence; if there is no model and the Python back-end is available, it

will train, else it will go for the heuristic (if defined);

– if set to Heuristic Only, it will run the heuristic algorithm;

– if set to Inference Only, it will run inference if a model is provided.

• Team Id is used for competitive agents. Two agent with different team

id will act as enemies;

• Use Child Sensors, if set, it will use the sensors in the children objects;

• Observable Attribute Handling defines which observable attributes

must be used as input for the network. If set to ignore, no observable

attribute will be used; if Exclude Inherited is selected, it will ignore

the parents observable attributes, taking just the ones declared in the

class; Examine All uses all the observable possible.

Before the analysis of the Agent script, other observation methods should

35

Chapter 2

be examined. As previously said, another way to make the agent observe

the environment is the use of a SensorComponent or a custom sensor which

implements the ISensor interface. ML-Agents offers some useful ready-to-

use sensors, including:

• RayPerceptionSensorComponent, that uses information gain from a

set of ray casts as observations;

• CameraSensorComponent and RenderTextureSensorComponent, that

create visual observations from respectively a Camera rendering and

a RenderTexture;

• GridSensorComponent, that uses a set of box queries in a grid shape

as observations.

Internally, both Agent.CollectObservations and [Observable] attribute

use an ISensors to write observations, although this is mostly abstracted

from the user.

To implement a custom intelligent character, our new script should nec-

essarily implement the method OnActionReceived, from the original Agent

class. In this function it is possible to make the character acting in the

scene. This method is called automatically by the Python API or by the

Unity Inference Engine whenever an action is ready to be performed, pass-

ing an ActionBuffers object as parameter. This element contains the brain

decision, which can be accessed through the two public collection proper-

ties DiscreteActions and ContinuousActions, respectively for discrete and

continuous actions. It is up to the developer to give a meaning to these

numerical values, writing in the same function a certain activity the agent

should perform given the decision. The super class Agent contains these

others overridable methods, useful in some situation:

• OnEpisodeBegin, a function that is called before the start of a new

episode, useful to reset the scene;

• CollectObservations, seen before, as a possible input method;

• Heuristic, where it is possible to define a heuristic based behavior.

This is useful for testing the code in the OnActionReceived since it

36

Chapter 2

plays the role of the brain, making possible the creation of a "fake net-

work output". For instance, if I said that with a 1 in the first discrete

branch my agent should move forward, through the Heuristic method

I can say that if "w" is pressed, the output should be 1, so I can see if

my agent will go forward; if not, there are some errors in the main

method;

• WriteDiscreteActionMask, an advanced case method that restricts the

action space to a limited subset. It is used in case an action is forbid-

den in a certain state (for example, if the possible actions are ["Shoot",

"Reload", "DoNothing"] and the weapon’s magazine is empty, I can

prohibit the first action, forcing my network to take a different deci-

sion).

using UnityEngine;

using Unity.MLAgents;

using Unity.MLAgents.Actuators;

using Unity.MLAgents.Sensors;

public class TestAgent : Agent

{

//Optional

[Observale] float _f0;

//Optional methods

public override void OnEpisodeBegin() {}

public override void CollectObservations

(VectorSensor sensor) {}

public override void WriteDiscreteActionMask

(IDiscreteActionMask actionMask) {}

public override void Heuristic

(in ActionBuffers actionsOut) {}

//Required

public override void OnActionReceived

(ActionBuffers actions) {}

}

37

Chapter 2

This is an example of a basic agent script.

In order to add rewards or penalties to the agent, ML-Agents offers two

functions: SetReward and AddReward. The first one sets the reward score to

the given float parameter, regardless if some scores occurs before it, while

the second one adds the given reward to the total of the iteration. Passing

a positive number means giving a reward, while a negative number will

penalize the agent.

When the agent completes or fails its task, it possible to call the method

EndEpisode, which will terminate the current episode, starting a new one

and calling the OnEpisodeBegin function.

Sometimes, an agent could be unable to continue its adventure not for its

fault. For cases like this, there is the EpisodeInterrupted method, which

acts identical to the EndEpisode, but affects the training in a different way.

The Agent super class offers an attribute which tells the agent the maximum

number of steps it can perform. When the time expires, the EpisodeInterrupted

is invoked. If this property is set to 0, there will not be a maximum amount

of steps.

When an agent takes a decision? It is possible to manually ask the agent

to query the brain using the Agent.RequestDecision method, which will

trigger the observation-decision-action-reward cycle. In a slow environ-

ment or in certain tasks could not be necessary to collect observations at ev-

ery steps, speeding up the simulation: it is possible to take an action without

query the network calling the Agent.RequestAction, that will use the last

return. If you need the Agent to request decisions on its own at regular in-

tervals, ML-Agents offers a component that automatically queries the brain

at regular steps interval: the DecisionRequester component. In general this

is a recommended methodology for physics-based simulations.

2.1.3 Imitation Learning in Unity

In order to enable IL, a set of demonstrations is required. So, the first thing

to do is recording some of these. It is important that the agent is fully imple-

mented and its observation and action spaces defined. Using the Heuristic

38

Chapter 2

function, it is required to provide a code that makes the user act as it was

the agent (through keyboard inputs for example). At this point, add the

Demonstration Recorder component to the agent gameobject, specifying

the demo name, the destination folder, the number of steps to be recorded

(leave 0 if you don’t want a limit) and your intention to record in the next

simulation. Completed this step, just begin the simulation and record as

many successful episodes it is possible.

Now that the demonstrations are ready, just specify the intention to use

IL in the configuration file (see the configuration file section in 2.3) and lo-

cate where the demonstrations are stored;

2.2 Supported Trainers

ML-Agents comes with three state-of-the-art DRL algorithms: Proximal Pol-

icy Optimization (PPO), Soft Actor-Critic (SAC) and MultiAgent POsthu-

mous Credit Assignment (MA-POCA or just POCA). It follows a brief ex-

planation of each method.

2.2.1 Proximal Policy Optimization

PPO is a policy-based model-free DRL algorithm. The idea behind PPO [11]

is to improve the training stability of the policy without moving away too

much from the previous status during each epoch. The key is avoid large

policy changes in a short update period for two main reasons: it is empir-

ically proved that smaller policy updates tends to converge to an optimal

solution, while big steps during the update can fall in a very bad policy

that could take a lot of time or no chance to recover to the previous better

one. For this reasons PPO is known to be a "conservative" trainer. Before

moving on with PPO, let’s introduce the general Policy Objective Function in

reinforce:

LPG(θ) = Et[log(πθ(at|st)) ∗ At]

39

Chapter 2

where log(πθ(at|st)) is the log probability of taken the action at at the state

st, while At is the advantage coefficient (if A > 0, the selected action is better

than the other possible actions). The idea is performing a gradient descent

step of the negative of this function (i.e. the gradient ascent), so our agent

will be pushed to take more rewarding actions and avoiding harmful ones.

PPO re-design this function in a way that prevents destructively large

updates, constraining the policy not to change too much: the PPO’s Clipped

surrogate objective function.

LCLIP(θ) = Ēt[min(rt(θ)Āt, clip(rt(θ), 1 − ϵ, 1 + ϵ)Āt)]

rt(θ) is called the Ratio function which represent the ratio between the prob-

ability of taking actions at|st in the current policy and the same for the pre-

vious policy status, and it is defined as

rt(θ) =
πθ(at|st)

πθold(at|st)

If rt(θ) > 1, at|st is more likely in the new policy version;

If 0 ≤ rt(θ) ≤ 1, at|st is more likely in the old policy version.

This ratio is a simple way to deduce which policy version is better.

The second section of this new function, called the Clipped objective ensure

rt(θ) ∈ [1 − ϵ, 1 + ϵ], where ϵ is an hyper-parameter that should be tuned

(in [11] is proposed a value of 0.2).

In the end, the formula takes the minimum value between the clipped and

unclipped section, making the final objective a lower bound of the unclipped

objective.

2.2.2 Soft Actor-Critic

SAC [12] is a value-based model-free actor-critic algorithm that uses double

Q-learning. It works as it follows:

40

Chapter 2

it initializes a policy network (the actor) π(a|s) and a value function net-

work (the critic) Q(s, a). The policy network outputs a probability distribu-

tion over actions given a state, and the value function network estimates the

state-action value function. During data collection, SAC interacts with the

environment to collect trajectories (st, at, rt, st+1). The policy network sam-

ples actions from the distribution defined by the exploration policy. The

value function network is updated by minimizing the mean squared Bell-

man error:

LQ = E[(Q(st, at)− yt)
2] yt = rt + γ(1 − dt)Q′(st+1, at+1)

where Q′ is a target network with delayed updates, γ is the discount factor,

and dt is a binary indicator for episode termination. The policy is updated

by performing gradient ascent on the expected reward and entropy objec-

tive function:

J(π) = E[rt + γ(1 − dt)V(st+1)− αlog(π(at|st))]

where V is the value function network, α is a temperature parameter con-

trolling the level of exploration, and log(π(at|st)) represents the entropy of

the policy. The final update formula is:

∇θ J(π) = E[∇θ log(π(a|s))(Q(s, a)− αlog(π(a|s)))]

A replay buffer is used to store past experiences, and mini-batches of experi-

ences are sampled during updates to improve sample efficiency and reduce

correlations.

SAC iteratively performs data collection, value function updates, soft

Q-function updates, and policy updates to improve the policy and value

41

Chapter 2

estimates over time, balancing exploration and exploitation.

2.2.3 MultiAgent POsthumous Credit Assignment

MA-POCA [13] is an innovative approach to train multiple agents devel-

oped by Unity Technologies, employing a centralized critic as a neural net-

work acting as a "coach" for the entire group. With MA-POCA, rewards can

be assigned to the team as a whole, enabling agents to learn how to col-

lectively contribute toward achieving that reward. Additionally, individual

agents can receive rewards separately, and the team collaborates to support

each individual in accomplishing their specific goals.

In the course of an episode, agents can be dynamically added or re-

moved from the group, which may occur when agents spawn or are elimi-

nated in a game scenario. Even if agents are removed from the game mid-

episode (such as due to death or removal from the game), they still con-

tinue to learn whether their actions contributed to the team’s ultimate vic-

tory. This allows agents to make decisions that benefit the group, even if

it involves self-sacrifice or potential removal from the game. The posthu-

mous credit assignment aspect of MA-POCA ensures that agents under-

stand the impact of their actions on the team’s success, fostering cooper-

ative and strategic behavior among the agents. In fact, the "posthumous

credit assignment" title is given by what the authors calls the posthumous

Credit Assignment problem. In cooperative settings with shared rewards, an

agent’s primary objective is to maximize the expected future reward of the

entire group. However, there are situations where an agent’s set of actions

could contribute to the group in a first moment, requiring then the termina-

tion of the agent itself for the the final task’s objective, i.e. a self-sacrificial

event. From the perspective of a reinforcement learning agent, being re-

moved from the environment means it will no longer receive the reward

that the group might achieve later. Moreover, the agent lacks the ability to

observe the state of the environment when the group eventually receives the

reward. This presents a critical credit assignment problem for the agent. The

challenge lies in the fact that the agent needs to learn how to maximize re-

42

Chapter 2

wards it cannot directly experience. It must understand that its actions can

have long-term consequences for the group, even if it is not there to witness

or benefit from the reward. Effectively addressing this credit assignment

problem requires the agent to develop the capability to make decisions that

take into account the collective interest of the group, balancing individual

sacrifices for the overall benefit of the team. By mastering this skill, the

agent can contribute to achieve future rewards, even if it means foregoing

immediate personal gains.

MA-POCA objective function J(ψ) and the advantage Adv for agent j

are defined in this way:

J(ψ) = (Qψ(RSA(gj(o
j
t), fi(oi

t, ai
t)1≤i≤kt,i ̸=j))− y(λ))2

Advj = y(λ) − Qψ(RSA(gj(o
j
t), fi(oi

t, ai
t)1≤i≤kt,i ̸=j))

where

• Qψ is the general baseline parameterized by ψ for agent j;

• RSA is a residual self-attention block;

• gj : Oi → E is an encoding network for observations oi ∈ Oi, where E

is the embedding space. Oi = Oj =⇒ gi = gj;

• kt is the number of active agents at time step t, such that 1 ≤ kt ≤ N,

where N is the maximum number of agents that can be active at any

time;

• i is the index of the other active agents;

• oi
t, ai

t are respectively the observations and the actions of the agent i at

time t;

• oj
t are the observations of the agent j at time t;

• fi : Oi × Ai → E is an encoding network for observation-action pairs;

43

Chapter 2

• y(λ) is the value function update defined as:

y(λ) = (1 − λ)
∞

∑
n=1

λn−1G(n)
t

Gt(n) =
n

∑
l=1

γl−1rt+l + γnVϕ(RSA(g(ii
t+n)1≤i≤kt+n))

where kt+n is the number of active agents at time t + n, V is the cen-

tralized state value function and r is the shared reward function.

2.3 Network(s) and Training Configuration

ML-Agents requires a configuration file where the user can design his own

networks (policy, reward, rnd and so on) and define the hyper-parameters

for the training. Some voices are common among all the supported trainers,

while others are trainer-specific. In this section I will perform an explana-

tion of the most important fields of this file.

2.3.1 Common Trainer Configurations

• trainer_type: the name of trainer we want use (ppo, sac, poca);

• time_horizon: the number of experience steps the agent should per-

form before adding them to the buffer. A long time horizon brings to

a less biased but higher variance estimate, while a short time horizon

the opposite;

• max_steps: the max number of steps (observations + actions) that can

be performed during the training;

• summary_freq: the number of experiences before generating the statis-

tics for the Tensorboard’s plots;

• checkpoint_interval: the number of experiences collected between

each checkpoint;

• keep_checkpoints: the max number n of checkpoints saved. When

the new checkpoint CPt is created, the old CPt−n is deleted;

44

Chapter 2

• init_path: if you want to initialize this model with a previously trained

one, the target checkpoint path must be defined here;

• threaded: by default, when the network is being updated by the Python

API, the environment stops. If this value is set to true, Unity will con-

tinue to perform steps;

• learning_rate: the initial learning rate for the optimizer, ADAM in

ML-Agent case;

• learning_rate_schedule: the scheduler for the learning rate. It can

be either linear wrt max_steps or constant for the whole training;

• buffer_size: the number of experiences that must be collected before

a network update;

• batch_size: the number of experience used in each iteration of the

optimizer step.

2.3.1.1 Networks Configurations

• num_layers: the number of hidden fully connected layers the network

will have;

• hidden_units: the number of hidden units per hidden layer;

• normalize: if set to true, a running average normalization of the vector

observations is performed on vector data;

• vis_encode_type: the encoding type of visual observation, usually a

known CNN structure;

• conditioning_type: if set to true and the agents contains some kind

of goal-marked observations, an HyperNetwork is used to generate

some weights of the policy. This brings to faster training but an higher

memory and resources are requested, resulting often in an OOM ex-

ception.

Recurrent Neural Networks In order to use an LSTM-based RNN, the

memory field must be added under network_settings, specifying the fol-

lowing parameters:

• memory_size: size of the memory the agent must keep;

• sequence_length: the number of LSTM blocks.

45

Chapter 2

2.3.2 PPO-specific and MA-POCA-specific Configurations

PPO and MA-POCA shares the same configurations.

• beta: strength of the entropy regularization, which ensure the agents

properly explore the action space;

• beta_schedule: the scheduler of the previous hyper-parameter. As for

the learning rate one, it can be either constant or linear;

• epsilon: the ϵ of the PPO objective function;

• epsilon_schedule: same as the previous schedulers;

• lambd: regularization value for the Generalized Advantage Estimate;

• num_epoch: the number of epochs the optimizer should work when

performing the network updates.

2.3.3 SAC-specific Configurations

• buffer_init_steps: number of experiences to collect into the buffer

before updating the policy network;

• init_entcoef: the initial entropy coefficient;

• save_replay_buffer: if set to true, the replay buffer will be saved and

loaded between training interruptions;

• tau: corresponds to the magnitude of the target Q update during the

network update;

• steps_per_update: average ratio of actions taken to updates made of

the agent’s policy;

• reward_signal_num_update: number of steps per mini batch sampled

and used for updating the reward signals.

2.3.4 Reward Signals

All the possible reward signals, both intrinsic and extrinsic, must specify at

least the following two parameters:

• strength: coefficient for the reward given by the environment, de-

pending by the signal;

• gamma: the discount factor for future rewards.

46

Chapter 2

2.3.4.1 Extrinsic Rewards

Extrinsic reward requires just the two field described above. Usually the

strength value is set to 1, in order to make the weight of the environment-

based rewards greater than the intrinsic rewards.

2.3.4.2 Intrinsic Rewards

Curiosity

• network_settings: the network specs for the curiosity model;

• learning_rate: lr used to update the curiosity network.

RND

• network_settings: the network specs for the RND module;

• learning_rate: learning rate for the RND network.

GAIL

• network_settings: the network specs for the GAIL discriminator;

• learning_rate: learning rate for the discriminator;

• demo_path: the path where the demo file/folder is located;

• use_actions: if set to true, the discriminator will use the demo’s ac-

tions (other than observation) to take its prediction;

• use_vail: if set to true, it adds a variational bottleneck in the discrim-

inator, forcing it to generalize better, making the training more stable

at price of higher time.

2.3.5 Other Options

2.3.5.1 Behavioral Cloning

• strength: it corresponds more or less to how strongly BC should in-

fluence the policy;

• demo_path: the path where the demo file/folder is located;

• steps: the number of steps BC should play. Usually BC is used in

order to make the agent "see" the rewards, as a starting point for the

47

Chapter 2

policy, letting then all the work to RL;

• batch_size: number of demostration experiences used for one itera-

tion of optimizer update;

• num_epoch: number of passes through the experience buffer during

the optimizer step;

• samples_per_update: maximum number of samples to use during

each imitation update.

2.3.5.2 Self-Play

In order to create a competitive training environment, the Self-Play module

can be added.

• save_steps: number of steps before a new snapshot;

• team_change: number of steps before switch control to the opposite

team of the current agent;

• swap_steps: number of steps (from another counter, not the training

one) before swapping the opponent policy;

• play_against_latest_model_ratio: the probability of playing against

the latest policy’s snapshot;

• window: size of the sliding window of past snapshots from which the

agent’s opponents are sampled.

2.3.5.3 Training Options

• --torch-device: [cpu, cuda, mkldnn, opengl, opencl, ideep, hip,

msnpu, xla], the device where you want the training be performed

on;

• --time-scale: the speed of the environment. Note this parameter

speeds-up the Unity’s graphic loop but not the physics one. This

means that the agent will go faster, observing less close states, bring-

ing then a slightly different behaviour during inference. For physics-

based simulation it is recommended to use 1.

48

3. Chapter 3

3.1 Network Tests

Before dive into the proper project, I performed an extensive study and mul-

tiple tests on the ML-Agent framework. In this first part I will summarize

them and what were the take-home concepts from each of those trials.

The first tests consisted in training simple cube agents capable of find

and touch a yellow sphere target without colliding against the walls of their

fields. The following tests share the same reward function: +1 for touching

the target, -1 for touching the walls, -0.0001 each step, in order to force the

agent not to stay still. The first two outcome cases bring with them the end

of the episode.

• With Basic Vector Observations (Figure 3.1a):

– action space defined as two discrete branches with three possible

values each: [forward, stop, backward], [strafe-left, stop, strafe-

right];

– observation space defined as the agent position (x,y,z) and the

target position;

– result: agent learned to move against the target (without the aware-

ness of the existence of the walls) in about 25 minutes of training

and 1m steps.

• With Ray Perception Sensor (Figure 3.1b):

– action space defined as two discrete branches with three possible

values each: [forward, stop, backward], [strafe-left, stop, strafe-

right];

– observation space defined using 12 sphere casts all around the

agent. They could detect both the target and the walls;

– result: agent learned to move against the target in about 13 min-

49

Chapter 3

(a) Basic Observations (b) Ray Perception Sensor

(c) Camera Sensor

Figure 3.1: First tests

utes of training and 800k steps.

• With Camera Sensor (Figure 3.1c):

– action space defined as two discrete branches with three possible

values each: [forward, stop, backward], [rotate-left, stop, rotate-

right];

– observation space defined using am RGB camera placed in an hy-

pothetical eyes-position of the cube agent. Walls and target have

a different color to make them distinguishable;

– result: agent learned to rotate and move against the target in

about 5.5 minutes of training and 200k steps.

Additional tests based on variant of the above described ones were per-

formed, such as adding an obstacle in the middle of the field, limiting the

agent’s perception of the environment (Figure 3.2a), and making the field as

huge as possible in order not to show the target to the agent immediately

(spawning them far from each other) forcing the agent to explore (Figure

3.2b).

The last study case was the Lovers behaviour (Figure 3.3), where the

agent was supposed to explore a random generated maze in order to find

another freezed agent. It took me a bit to make the agent work, testing cur-

riculum learning (to adding complexity to the maze) and RND module (see

50

Chapter 3

(a) Camera with obstacle (b) Camera with a huge field

Figure 3.2: Examples of test variants

Figure 3.3: Lovers’ maze

Random Network Distillation below). At the end, the agent mastered its

task finding always its lover. Initializing another model from this, I tried the

cooperative setup, where the other agent was supposed to execute the task

too, make the average episode length shorter.

Random Network Distillation RND [18] is a technique used in RL to

promote exploration in environments with sparse rewards. It provides in-

trinsic rewards to the agent that guide its learning process.

At the start, two NNs have to be initialized: the target network Y and

the exploration network E. The first mentioned is fixed and usually pre-

trained on prediction tasks, while the second one is randomly initialized

and has no knowledge on the environment. Y is used to extract features

from the agent’s observed states. Let Yg(st) represent the extracted features

from the state st using Y. The exploration network takes the observed state

as input and tries to predict the corresponding Y’s generated features. Let

g(st) denote the output of this network. At this point, the intrinsic reward

rintrinsic computation can be performed: it is calculated as the prediction

51

Chapter 3

error between g(st) and Yg(st), in this way:

rintrinsic = ||g(st)− Yg(st)||2

where ||.|| is the Euclidean distance between vectors.

During training, E is updated, trying to predict as well as possible the Y’s

outputs. It is possible to consider the E network as an encoder observations-

features and Y as a "dataset generator". Encoders performs in an optimal

way with data that they have already seen or with something similar, while

their predictions are terribly inaccurate with new data. So if a state was

never seen before, the exploration network will predict something wrong,

resulting in an elevated error value. This produces an high intrinsic reward,

indicating the agent that it is exploring new states. More the exploration

model is wrong with its result, more the agent is "surprised".

The final reward the agent will receive is

rtotal = ϕextrinsic ∗ (γextrinsic ∗ rextrinsic) + ϕintrinsic ∗ (γintrinsic ∗ rintrinsic)

where ϕ is the corresponding reward’s strength and γ the corresponding

discount factor.

3.2 Eve

Eve (Exploratory Virtual Executor) (Figure 3.4a) is the name of the artificial

player, given after the two main tasks she is employed on and the optimizer

used to train her, ADAM (ADAptive Moment estimation). The objective of

this agent is to learn to explore the map, finding the enemy, aim to vital

parts and kill the player before he does it. Due to the physical realism of

the simulation, she has to learn that not all the actions are possible, such as

make the weapon (that it is an external object from the agent perceptions)

passing through a wall. Another difficulty is the physical weapon recoil,

52

Chapter 3

(a) Eve 3D model (b) Eve’s hitbox

Figure 3.4: Eve

that makes the projectile not to go precisely where she is aiming at and this

issue should be understand and mastered.

The original idea was to create a wide complex network structured like

this (Figure 3.5):

• Observations:

– a visual observation from a camera placed near her eyes;

– a one hot encoding observation of what she is aiming at;

– her position;

– last known enemy position;

– the current position of both hands.

• Actions:

– 3 discrete branches for movement [forward, stop, backward], [strife-

left, stop, strife-right] and [rotate-left, stop, rotate-right], emulat-

ing in this way the controllers’ joystick inputs;

– one boolean output for fire or not [not-fire, fire];

– 6 continuous actions for (∆x, ∆y, ∆z) of both the hands bounded

by the physical arms’ limits.

Due to a limited set of resources available for training, this plan was not fea-

sible, forcing me to design her brain in a different and simpler way, reducing

53

Chapter 3

Figure 3.5: Eve’s original brain idea

and changing inputs and outputs.

3.2.1 The 3D Model

As preliminary point, all that concern the graphic models of the character

and the dummy enemy was created, except the final visual form that was

added as the final step of all the project, in order not to make the training

environment more resources-hungry than it already was. It is important to

set those things, since she must learn which are the vitals points and what

is the enemy shape. So, both the 3D models were rigged (the phase where

the skeleton is created and each vertex of the mesh is constrained to one or

more bones, to create the animations) and all the hitboxes were placed to

each bone (Figure 3.4b), with a different tag relative to the type of body part

(for weapon damage purposes).

3.2.2 The Brain

With the new trainer MA-POCA released recently, a new possibility opens

for training this complex character: split the brain in two different parts, in

a way these two are strictly related to the sub-task they need to learn: the

Shooter and the Explorer. The first one is the hand manager, the one who

learns how to place the virtual controllers in the space and, if it is the case,

when to shoot. The second one is delegated to the exploration of the map

and target finding, keeping it in sight when found.

Further changes to the original project will be described in the next sections.

Eve will automatically grab her rifle and there is no way she can release

54

Chapter 3

Figure 3.6: Shooter Learning Environment

the grip. This is both a necessary and a reasonable choice, since it can be

seen as a deterministic behavior: no rifle no win, and letting her the deci-

sion when to grab or not would lead her to lose the weapon due to a prob-

able outlier in the network’s output (if the release is performed, the physics

simulation would make the weapon fall, and she is not able to crouch. In

addition, the time required to teach her how to recover a grabbable would

take ages before the certainty she would not lose it somewhere in the map).

This simplification was planned since the beginning, before the presented

original idea.

3.2.2.1 Shooter: Observations, Network structure and Actions

The first brain component I worked on was the Shooter. The learning envi-

ronment was built as a shooting range (Figure 3.6), where the enemy spawns

with a random position and with a random crouch height.

The initial plan was to create a residual network-like model for weapon

recoil random movement prediction, following some papers for financial

time-series regression with deep neural networks (more specifically these:

[31], [34], [32], [33]). Residual because the starting position of the hand is

fixed (i.e. the aiming pose) and the brain was just supposed to predict the

∆(x, y, z) of each hand, in order not to lose the correct pose.

What I designed as first try was a couple of LSTM-based regressor (one

55

Chapter 3

for each hand) that take as input the current position of the hands, what

the weapon was aiming at and some rays that tells the network what is

surrounding the aimed point. The expected output would be the ∆(x, y, z)

of the attached hand and, just in the right hand case, the trigger status. So

even the Shooter behaviour was splitted in two and trained as cooperative

agents task. The reward function ¯rshooter(at, st) was defined as it follows:

• +0.5 + 0.1 * (number of saved rounds in the magazine) for the kill;

• +0.1 for hit the enemy’s head;

• +0.025 each hit to the enemy’s chest;

• +0.017 each hit to the enemy’s legs;

• -0.1 for each missed round;

• -0.0001 for each step the enemy is available, to force the agent to take

a decision;

• -1 if the magazine is empty and the enemy alive.

After some training trials with several hyper-parameters, the best behaviour

obtained was not an acceptable one, since the kill rate was lower than the

50%; So, the next step was to add a new simplification: remove the z coor-

dinate from the prediction of both hands, taking it fixed. This is reasonable,

since the backward and forward movement while aiming plays a tiny role.

Without any change to the network, I restarted the training and a slightly

better result came out, something acceptable with a kill rate of about 75%.

The expected behaviour must be almost perfect, so I re-designed the whole

network. Precisely the Shooter brain was reduced to a one agent task, mak-

ing both hands controlled by one model (using the PPO trainer this time). I

kept the idea of the residual-like NN, but I changed the regression concept:

the new brain was supposed to aim and kill with the minimum number of

rounds (i.e. performing head-shots), without the requirement to predict an

advanced-state recoil. If the enemy dies within the first 4 or 5 projectiles,

the recoil remains more or less controllable, besides the fact the agent can

learn that stopping his fire barrage would bring back the weapon to a qui-

escence state in a small amount of time. This new network showed good

56

Chapter 3

(a) Cumulative reward over steps (b) Policy loss over steps

Figure 3.7: Shooter Plots

performance since the first training steps, but it seemed to require a lot of

time to master perfectly this skill. So other simplifications were performed:

• the right hand position is completely fixed. This is reasonable since

is the left hand the one who controls mainly the weapon orientation,

and what a human would do is take the right hand steady as a pivot

to better control the backward recoil force;

• the observations were reduced to three elements:

– a boolean that indicates if the enemy is available (a communica-

tion pipe between the Shooter and the Explorer)

– what the agent is aiming at (a one hot encoding);

– if the enemy is visible, the angle between the correct aiming di-

rection and the current one.

• while the actions are:

– ∆(x, y) of the left hand;

– weapon related [Shoot, Not-Shoot].

In addition, the space where the left hand (x, y) can move on was re-

duced to the physical reachable one and a new possible reward was added

to the ¯rshooter function: +0.001 if the left hand delta is tiny when the enemy is

not available. This is just to make the agent move its hands the less possible

while not needed. This new model (Figure 3.8) reached the initial desired

goal: 95% of kill rate within the first 4/5 rounds and, in general, the 100%

57

Chapter 3

within 10 bullets.

Figure 3.8: Shooter model

3.2.2.2 Explorer: Observations, Network structure and Actions

The objective of the Explorer is, as said previously, to explore the map search-

ing the enemy. The learning environment consist of a simplified version of

the official map, where "simplified" means lighter in terms of GPU render-

ing, but the difficulty is exactly the same. The design of the network was

not trivial, since the observation space was not so simple to define for an

optimal result while the action space received lot of simplifications. Even

the inner architecture of the NN was not easy to structure and the hyper-

parameters tuning delayed a lot the final model training phase.

As already mention, the initial plan for the agent was to give as obser-

vation the rendering of the camera placed near her eyes. The problem is the

time and the memory required to learn CNN kernels, that was not feasible

with the resources available. So, instead of a visual observation, the input

choice became a ray perception vector observation with "FOV" similar to

the one the human eyes would provide. It is possible to consider this as an

higher level information that a CNN would learn. This input method brings

58

Chapter 3

with him two main problems:

• sphere casts returns what a sphere collided with, giving not precise

information, since the enemy could be visible behind the corner hitted.

This could be easily solved setting to 0 the sphere radius, making them

classic ray casts;

• more the ray is long, more distant areas will not be visible, since all

the rays start from the mid-eyes point of the agent, spreading around

him. So the areas between lines will not be visible. The final solution

for this issue was adding the maximum number of rays (50) and use

an LSTM to remember something about the past observations.

Another possibility to overcome the second problem is to feed the NN with

info about when the enemy is within the FOV of the sensor and the angle

between the current agent direction and the correct enemy direction, using

the function CollectObservations. In fact, lot of trials have been made with

this idea, resulting in a sub-optimal solution that saw the agent intercepting

the target but, after a bit, preferring to explore the map instead of continuing

approaching him. This seems due to a wrong reward function, but it was not

the case, since the same reward function was used to train the final working

model.

The analyzed possibilities before the solution of the observation diffi-

culty were the following:

• three Ray Perception Sensors, one all around the agent, useful for ob-

serving and exploring the environment without the possibility to de-

tect the target, the second with 180° FOV to check corners without

losing the actual path, and the third with a restricted FOV just to bet-

ter track the enemy when found. The problem was the huge amount

of inputs that would require a massive network to well-understand

them;

• two variation of the previous solution, one without the environmen-

tal Ray Perception Sensors, and the other without the 180°FOV one.

These solutions suffers of the same issue of the previous, always too

59

Chapter 3

many inputs for a mid-sized network;

• one environmental Ray Perception Sensor, a boolean that tells the agent

that the enemy is somewhere in sight, maybe in a blind spot and the

standardized number of degree between the agent direction and the

correct direction toward where the enemy is. The number of inputs in

this case is acceptable, but the fact the sensor is not able to reveal the

target position fools the agent, making it ignoring more or less the two

other inputs;

• a variant of the previous one where, instead of the environmental sen-

sor, a 180°FOV was provided and it was able to perceive the target too.

So the two manual observations where there just to cover the blind ar-

eas. For some reason, this solution lead to a sub-optimal model that

was not able to focus for too long on the enemy;

• just one Ray Perception Sensor with 180°FOV able to detect both walls

and enemy (as the previous ones).

• iterations of previous sets with stacked vectors, to achieve a simple

kind of memory of the past observations, increasing the number of

inputs.

All those steps were tried plenty of time with several hyper-parameters

set and different network structures in a simplified learning environment

(a small area with just some corner to check). I tried Imitation Learning to

create a good starting point for the pn, mixing both Behavioral Cloning and

GAIL with PPO’s reinforcement learning, spending a lot of time in record-

ing as many demonstrations as I could each time a new change affected the

observation space (since the demonstrations preserve the observations of

the expert). I tried a lot of network types, spacing from recurrent neural

networks to plain ones, using normalization or avoiding it. The solution

seemed to be really far.

This problem required me to reduce the action space as well. The first cut

applied targeted the strafe branch. From that moment, the agent was able

only to go forward, backward and rotate itself. All the previous solutions

60

Chapter 3

were tried again but the results were not good. A second reduction was

performed, removing the backward action. Now the agent can just move

forward and rotate. Some better results appear with all the previously men-

tioned tests. With a bit more complex network structure, the solution with

one sensor with 180° FOV looks like the outstanding one: the agent was able

to perfectly complete its task in the simplified field. A better performance

was achieved limiting lateral perception angle to 80° instead of 90. Through

a slow curriculum learning process, this model could reach the optimal de-

sired form.

The final reward function ¯rexplorer(at, st) is defined as follow:

• +1 for keep the enemy exactly in the agent forward direction for at

least ne steps;

• +1/ne for every step the agents keeps the enemy exactly in its forward

direction;

• +1/ne for every step the angle between the agent forward direction

and the correct direction is less than 1 degree;

• -1/nw for each step the agent stays in collision against a wall;

• -0.0002 for each step to force the agent to take a decision;

• -1 if the number of steps the agent stayed in collision with a wall is

grater than nw (only for the first two curriculum lessons);

where ne is the number of steps the agent should look precisely toward the

enemy, while nw is the maximum number of steps the agent can touch the

walls in the first two lessons, and a simple coefficient for the penalties from

the thrid phase on.

A previous version of ¯rexplorer rewarded the agent if the rotation it was

performing decreased the angle between it and the enemy (when found),

but it was removed because it was both unnecessary and harmful for the

agent, since it started to make big rotation over the target in order to gain

more rewards.

Five curriculum lessons were designed, where the map increases on each

61

Chapter 3

(a) Lesson 1 (b) Lesson 2

(c) Lesson 3 (d) Lesson 4

(e) Lesson 5

Figure 3.9: Curriculum Lessons

of them. As said previously, an automatic curriculum learning (CL) was not

possible, since the reward function is not stable (Figure 3.10a) (it depends

on how many walls the agent requires to touch to complete its task in an

optimal way and how many exploration steps are required to find the en-

emy, since the map is huge) . The manual CL consisted on visually check the

quality of the policy in that lesson and initialize a new model from the pre-

vious weights enabling the new phase. The difficulty increment is showed

in the Figure 3.9. In addition, before swap to the next stage, the ne is also

incremented in order to teach the agent to look at the target more time as

possible.

The exploration part, after a deep analysis of the literature and lot of

trials in the ML-Agents study phase, was quietly easy to achieve. The key

role is played by the Random Network Distillation module that pushes the

62

Chapter 3

(a) Cumulative reward over steps (b) Policy loss over steps

Figure 3.10: Explorer Plots

agent to the exploration of newer states with intrinsic rewards. Finding a

good network for RND was not too easy, but this problem was faced dur-

ing the extensive tests on the ML-Agent framework; so the design of this

secondary model was quietly rapid for this final brain. It consists in three

fully-connected hidden layers with 512 units each, without normalization.

The final model for the Explorer is described in Figure 3.11.

Before and after joining the two brain components, Explorer has been

trained alone again to make it faster. A slightly adjusted reward function

has been applied, penalizing the agent with the double amount of negative

points for each step. A tiny enhanced version slowly started to appear. After

about 500 hours of extra training, the exploration seems more stable, the

agent learned to keep its "forward" output for most of the time, denying

the physics controller to slow down its movement, and it understand to be

faster in turning itself toward the enemy when he is in sight, without losing

time and without let the torque friction decelerate too much its rotation.

The final result is a great "hide and seek" agent, able to find its target almost

everywhere (even in narrow corners, where a human player could decide to

"camper") in a relative small amount of time and in the complex and wide

environment like the game’s map.

3.2.2.3 Final Training and Hyperparameters

With the Shooter and Explorer models ready and well trained with PPO, a last

small group fine-tuning is required. Since the two brains must cooperate to

63

Chapter 3

Figure 3.11: Explorer model

kill the target, it is time to use MA-POCA. It was necessary to re-initialize the

optimizer, since MA-POCA works different from PPO, but the two models

are already correctly weighted and the policy cannot change too much. The

extrinsic reward function is the union of ¯rexplorer and ¯rshooter, while the RND

intrinsic function is the same as the one used for the Explorer model. At this

point the Self-Play module was used, making two agents play against each

other in an AI deathmatch. In a limited number of steps, the agent became

faster and her aim more accurate, showing some new strategies have been

acquired (Figure 3.12).

Figure 3.12: Final Training Elo Plot
Orange Shooter;
Gray Explorer

64

Chapter 3

Hyperparameters All the trainings were performed using up to 32 con-

current environment instances, collecting more observations in a relative

small amount of time.

I tried several sets of hyper-parameters that pushed the training to a

better or worse situation. In order to address the agent to force itself to

collect the rewards it finds on its way, I set the gamma hyper-parameter to

be almost 1: do not think on future possible rewards, all you can achieve

is already in your sight. In this way, it learned to fast focus on the enemy,

avoiding the search of a new hypothetical reward source. It follows the

complete and final set of hyper-parameters used for the final training.

• Explorer:

– batch_size: 2048

– buffer_size: 20480

– policy learning_rate: 3.0e−4

– beta: 1.0e−2

– epsilon: 0.2

– lambd: 0.95

– num_epoch: 3

– learning_rate_schedule: constant

– extrinsic reward strength: 1.0

– extrinsic reward gamma: 0.99

– rnd strength: 0.05

– rnd gamma: 0.99

– rnd learning_rate: 1.0e−4

• Shooter:

– batch_size: 128

– buffer_size: 2048

– policy learning_rate: 3.0e−4

– beta: 5.0e−2

– epsilon: 0.2

– lambd: 0.99

– num_epoch: 3

– learning_rate_schedule: linear

65

Chapter 3

– extrinsic reward strength: 1.0

– extrinsic reward gamma: 0.99

• Self-Play (in common):

– window: 10

– play_against_latest_model_ratio: 0.5

– save_steps: 2.0e4

– swap_steps: 1.0e4

– team_change: 1.0e5

3.2.3 An attempt to make the agent damage aware

One big problem with the Eve’s brain’s structure is the impossibility to give

her the perception of someone who is shooting at her out of her field of view.

The human player is able to understand that someone is shooting at him

thanks to sounds and visual effects, but the Explorer network observes only

what is shown in front of it. From the human player’s point of view, watch-

ing the enemy going for her path completely ignoring the danger is unre-

alistic. Since the learning time required for the Explorer to became super-

reactive was massive, re-train a new network with a new observations was

not an option. Transfer-learning is not allowed by ML-Agents, and an exter-

nal change to the network (like in a custom python script) would make the

model incompatible with the Unity Inference Engine (so no cross-platform

support and more GPU workloads, as described in the optimization section

5.1).

After some further studies on the framework, I found two possible solu-

tions:

• ignoring the problem, since, from statistics performed during train-

ing and at test time, the probability that a human successfully hits the

agent on great distances is really low, while with a closer distance, Eve

usually rotates herself a bit and she is able to locate the enemy. The

only exception occurs when the enemy lies precisely in the opposite of

her noisy forward direction, but this is a risk case that I could accept;

• forcing Eve to rotate until her field of view includes the enemy posi-

66

Chapter 3

tion. This event will occur only when and only if someone is shooting

at her and he does not hide after the shot. The negative side of this

solution is that it sounds like a cheat, but if we think at it, it is not,

since she will not be forced to turn until the enemy is in front of her,

but just to bring the foe in one of the extremes of her FOV. This means

that she is free to decide if intentionally keep her rotation or ignor-

ing the enemy, which will be FOV/2 degrees away from Eve’s aiming

direction.

In order to implement the second solution, the WriteDiscreteActionMask

function was used.

It follows a slice of the Explorer’s script, so it has to be considered from

the Eve’s point of view.

• beingHitted is a boolean variable that is set to true when Eve’s enemy

is shooting at her;

• (enemyPosition - cameraPosition).normalized is the versor which

connects Eve’s position to the enemy’s position;

• HittablesLayers is a LayerMask which specifies the hittables layers,

such as walls and the players hitboxes;

• TargetLayer is a LayerMask that specifies which is/are the layer/s

where the enemy’s hitbox/es lies;

• TargetLayer==TargetLayer | 1<<hit.collider.gameObject.layer is

a bit-by-bit check of the mask that tells if the Raycast’s hitted object is

the enemy or if the direction between Eve and the opponent is oc-

cluded by something. This is necessary in order to understand if the

other player hid himself after the shot, so Eve will not rotate toward

him since she does not have idea where the shot came from;

• if the previous condition is satisfied, then all the Explorer’s actions are

masked with the exception of one side rotation, which depends by the

directionAngle, a variable that indicates the signed angle between

Eve’s forward direction and the enemy direction. If this value is grater

than zero, then it means that the opponent is located to her current

67

Chapter 3

right direction, so the left rotation is masked, if it is lower than zero,

then the right rotation is masked. This until the enemy enters her FOV,

then is Eve that choose what to do.

public override void WriteDiscreteActionMask

(IDiscreteActionMask actionMask)

{

if (beingHitted) {

if(!(Physics.Raycast(cameraPosition,

(enemyPosition - cameraPosition).normalized,

out RaycastHit hit, Mathf.Infinity, HittablesLayers)

&& TargetLayer ==

(TargetLayer | 1 << hit.collider.gameObject.layer)))

{

beingHitted = false;

} else {

if (Mathf.Abs(directionAngle) > FOV) {

actionMask.SetActionEnabled(0, 1, false);

actionMask.SetActionEnabled(1, 0, false);

actionMask.SetActionEnabled(1,

directionAngle > 0 ? 2 : 1, false);

}

}

}

}

This new model structure is shown in figure 3.13.

With this new network, a novel training session started. I was interested

in keeping the original Explorer’s optimizer state, so I used ppo once again,

initializing the weights to the latest ppo version of this brain component.

In order to force the agent to check corners, I disabled self-play - to make

the dummy target stationary - and I increased the probability that the en-

emy spawns in those areas. In order to train this advanced behaviour, the

68

Chapter 3

Figure 3.13: Explorer model with action mask

dummy agent should "shoot" against the AI somehow. To do so, I made this

entity always re-spawn pointing toward the largest empty area that sur-

rounds it, increasing in this way the probability to "see" the real agent’s

back. Furthermore, I gave it a small FOV (15 degrees for side) where to

use some Raycasts. In case one of these rays hits the AI outside its FOV,

the agent would be warned about an hypothetical shot, making it start its

"forced turn routine". However, the probability that the dummy target hits

the back are not so high, so it is really hard to completely train and test this

kind of conduct. The learning session lasted for some days and it will be

pursued even after this application’s first release.

Since this second solution is still experimental and it was not exhaus-

tively tested, the final application gives the user the opportunity to chose

which Eve’s version he wants to use.

69

4. Chapter 4

4.1 An Overview of the other game’s elements

In this section I will provide a small picture of the other elements that rule

this game, such as the human user inputs, weapons settings and so on.

4.1.1 Human Inputs

To play this game, users must own a VR system with not only the HMD but

also the two hand controllers, no matter the system brand. For the sake of

simplicity I will use as example the Meta Quest 2 and the Valve Index [49]

(Figure 4.1).

The movement in the virtual environment can be achieved by physically

walking in the real world, making the HMD tracker works for this purpose,

and/or using the secondary joystick. A similar concept is for the rotation:

it is possible either to physically turn in real world or using the primary js.

These are the two types of movement input that Eve uses. Furthermore, the

headset is able to track all the three Cartesian axes, so human players can

crouch in real life and their action will be mapped in the virtual environ-

ment.

Controllers are tracked, so any motion the user performs in real life, it

will impact the position of the virtual hands, under the condition that move

is physically possible in both the simulated and the real worlds. Using the

grip buttons it is possible to perform a grab action, called Grab, on a grab-

bable object, making the hand gameobject and the grabbable related. For

the most common remotes, like the Meta Quest ones, the grip button is a

physical toggle, while for the Valve Index’s system it is a capacitive sensor,

similar to a touchpad. All the grabbable and the grabbers (such as hands,

sockets and bags) contains two event lists for the Grab action, one when the

70

Chapter 4

action is performed and one when release happens. They are useful in case

something must be activated when there is a grab state change. An example

will be provided in 4.1.2.

Some grabbables have some intrinsic capacity that the user can exploit,

for example, a flashlight can be turned on and off. This action is called

Activate, and it also comes with two events: OnActivate and OnDeactivate,

respectively for the pre-post activation phases. This action is induced by the

"trigger" backside button.

Many controllers are built with two buttons each, but some VR system

provides just one for remote. To better generalize and allow a multiple range

of ecosystems, I implemented a behaviour only for the primary button, com-

mon in every VR SDK. More specifically, in this case, it is responsible to

manage the jump in the virtual world. However, in the AI-based mode, this

action is not allowed for the moment.

With the new Unity Input System, it is trivial to link a physical action

to the name of the relative virtual one. Using the OpenXR framework, it is

even possible to link functions’ names with actions. Furthermore, if some

action is related to a grabbable object, relative events will be triggered if

and only if that grabbable is controlled by the user during the call time. For

instance, pressing the trigger with nothing in the hands, will not turn on

the flashlight lying on the floor, vice-versa, if this was in the user hands, it

would work as expected.

Last but not least, it must be considered the set of "inputless" actions: this

project includes some kind of actions that can be only performed making a

particular movement with the hands. For example, there are no physical

buttons requested to release the magazine attached to a weapon. To reload

the gun you can chose either to grab the current magazine and pull it out or

to hit the old one with a new one, using a certain force.

At the end, it was prepared the finger tracking. More or less, all the

recent controllers includes a capacitive sensor on each of their buttons. So,

the thumb position is inferred by the area it is touched on the main board

of the controller (where the joysticks lies), the index finger by the trigger

71

Chapter 4

Figure 4.1: Example Controllers

button, and the other three are in general considered as one tracked entity,

by the grip button. In the Valve Index’s controllers, this tracking is more

precise, since all the area where the grip button should be located, is a large

sensor, designed for an accurate single finger tracking. In fact, if you are

using this headset, the virtual avatar will be able to replicate with a good

precision how you are moving all your fingers separately.

Figure 4.2: Motion-Action Map File

4.1.2 Weapons

Only two types of weapon are available with this release: an automatic rifle

and a semi-automatic pistol. The creation of a new gun requires lot of time

and studies: in order to give a realistic feeling to the user, the 3D model

must be lifelike, the hitbox must be a good trade-off between accuracy and

computational costs, the type of recoil must recall the true motion of a firing

72

Chapter 4

gun and so on. Let us assume the 3D model is delivered perfectly as we

want and ready to be made alive, and its shape is not too complex and

can be approximated with some cubic hitboxes, that are not computational

expensive, the last cited requirements remains not trivial. For each weapon

it must be designed two types of recoil, one for a one hand grab and the

other for the two hands case. To model the recoil I used information gained

by an interesting recoil forces dataset [50] collected utilizing a wrist worn

accelerometer. Taking as example the entries relative to the type of weapon

I was working on (such as automatic rifles or handguns) and watching some

demonstration videos about similar weapon barrages, I was able to recreate

something similar in the virtual simulation.

In figure 4.3 it is shown the rifle that the AI uses, including the approxi-

mated hitbox.

Each player will have a limited set of magazines per weapon in their left

pocket. This shows a clear example of a possible use of the actions’ events:

when a player grabs a gun, OnGrab method will spawn the correct type of

magazine in the pocket, while OnRelease will despawn everything, in order

to reduce the rendering and collision detection workloads. In case a player

grabs two guns, one for each hand, what will be the magazine contained

in the pocket? The answer is always the type of the second entity grabbed:

to reload a weapon it is necessary to use both hands (one to keep the gun

and the other to pick the new magazine), so there will never be a scenario

where the bag contains the wrong type of ammo. Another example of the

OnGrab and OnRelease functions is the following: some type of rifles uses

magazines that remain outside the body of the weapon itself (as the one

showed in Figure 4.3). When these external structure is attached, a new

hitbox is required, and this job is performed in those methods.

4.1.3 The Map

For this project, only one map is provided, the one where Eve learned her

task, More immersive and suggestive environments will be added in a near

future. The one included with this first release consists in a futuristic dystopian

73

Chapter 4

Figure 4.3: Example of weapon

cybernetic city. The player can enjoy this charming environment and all

the elements that the real world cannot offer yet, such as giant mechs, self-

controlled security drones and so on. The structure of the map was designed

to make all the players at the same level of difficulty, regardless where they

spawn, avoiding deep corners and too different height walkable levels. This

last property was thought specifically for this first prototype of artificial

agent, making it enjoy a fair match with its restricted vertical field of view.

The map’s bounds are showed in the last curriculum lesson in the previous

chapter (Figure 3.9e). A set of high-resolution view examples of the final

aspect are showed in figure 4.4.

Figure 4.4: The Map

74

5. Chapter 5

5.1 Optimizations

It is well known that PCs for virtual reality require some high specifications.

In addition, to bring the user to a new way of interaction and gaming expe-

rience, the development of VR devices has further boosted the demand for

high-performance hardware. If you add a superior quality graphic and a

realistic physic simulation, the hardware problems start to be more promi-

nent, with low FPS and glitches. To make matters worse, my game includes

two neural networks to query, burden more on the GPU. It is required a

massive software optimization step. This work was analyzed and branched

in three parts: network query optimization, CPU optimization and GPU opti-

mization.

5.1.1 Network query optimizations

Shooter and Explorer models are already the smallest possible and a query

through them is acceptably fast. However, the problem is the workload

the GPU has to perform for an inference each physical step (around 60/70

times per second). A graphic card plays the hardest role in a VR setup and

it should not be commissioned with other tasks. So, the only two possible

optimizations applicable in this case are the following:

• use the Unity Inference Engine as inference process. This grants not

only a cross-platform integration for neural network queries, but also

a faster response from the brain, since the possible model blocks are

limited to some types of layer, and the UIE is optimized to query those

types;

• use CPU + Burst as inference device. The processor is way slower

than the GPU in terms of inference time, but C# provides a special

75

Chapter 5

algorithm, called Burst, that makes network’s calls faster. Correctly

set the inference device to the voice Burst, will relieve the GPU from

the inference job, while an acceptable query time is kept.

5.1.2 CPU optimizations

CPU workload is strictly related with the GPU one. Methods for the two

hardware optimizations are linked: apply that method to improve perfor-

mance of that component, and you will improve a bit the other one too.

5.1.2.1 Static Batching

Static batching in Unity provides performance improvements for both the

GPU and CPU, with a greater impact on CPU performance. By marking

stationary objects as static, Unity combines them into a single large mesh,

resulting in faster rendering. This optimization reduces the number of draw

calls and decreases the amount of CPU processing required. Static batch-

ing offers benefits beyond rendering efficiency. By tagging objects as static,

Unity recognizes that these objects will not move and excludes them from

physics calculations. This further reduces the computational load on the

CPU, particularly when dealing with complex physics simulations. If your

application is primarily limited by CPU performance, marking more objects

as static can be an effective technique. By reducing the number of individual

objects that require physics calculations and optimizing rendering through

static batching, you can improve overall application performance and alle-

viate CPU bottlenecks.

5.1.2.2 Adjusting the Rendering Method

Unity supports three rendering methods for virtual reality:

• Multi-Pass;

• Single-Pass;

• Single-Pass Instanced.

Multi-Pass (Figure 5.1). An easiest explanation can be done with an ex-

76

Chapter 5

ample: the Google VR. In this context, Unity needs to render a scene twice

because there are two textures, one for each eye. However, to optimize

performance and avoid duplicating unnecessary work, Unity employs var-

ious techniques. To prevent duplicating work, it identifies elements such

as shadows that do not require rendering twice and avoids redundant cal-

culations. However, for most objects, it still performs a multi-pass render-

ing approach, rendering each entity twice but creating the scene graph only

once. This technique ensures more accurate lighting and visual consistency

between the left and right eye views. Although multi-pass rendering comes

at a computational cost. Since the two renderings do not share GPU work

across textures, this method is considered less efficient in terms of GPU uti-

lization. Despite this, multi-pass rendering is compatible with a wide range

of devices and is a common rendering path used in Unity for Google VR

applications.

Figure 5.1: Multi-Pass rendering

Single-Pass rendering combines the two eye textures into a double-wide

texture, resulting in faster CPU performance. It requires fewer processor

computations by going through the scene graph only once. However, this

approach necessitates additional GPU state changes, which can impact this

component’s efficiency.

Single-Pass Instanced (SPI) (Figure 5.2) is a powerful technique that of-

fers simplified integration and improved performance in rendering. It ad-

77

Chapter 5

dresses the CPU and GPU overhead concerns by reducing both more ef-

fectively than single-pass rendering. Similar to this last, SPI lowers CPU

overhead by reducing the number of draw calls. This optimization stream-

lines the rendering process, resulting in improved CPU performance. How-

ever, the key advantage of single-pass instancing lies in its ability to further

minimize GPU overhead compared to traditional single-pass rendering. By

leveraging instancing, the GPU can efficiently process multiple draws in

a more optimized manner. Not having to change the viewport between

draws, which is required in traditional single-pass rendering, reduces state

updates and enhances GPU efficiency. SPI is the most performant among

the three described (as shown in figure 5.3), but it is not available on all

devices.

Figure 5.2: Single-Pass Instanced rendering

The choice of rendering path depends on the specific requirements of the

VR application, the performance capabilities of the target devices, and the

desired balance between visual accuracy and computational efficiency. In

my case, I used SPI since it is fully compatible with Oculus.

Figure 5.3: Rendering Method CPU/GPU performance comparison [51]

78

Chapter 5

5.1.3 GPU optimizations

The greater amount of work is related to the most important component in

VR setups: the GPU. The first steps were achieved during the optimization

phases above, in particular making more object possible marked as static

and redirecting the inference job to the CPU.

The next steps work around the graphics optimizations.

5.1.3.1 Quality Setting Tuning

Quality settings in Unity allow you to control the graphical quality of the

rendered objects in your application. These settings come pre-configured

with options such as pixel light count, light map resolution, and other pa-

rameters that directly impact the visual fidelity and performance of your

scene. By adjusting the quality settings, you can choose between maximiz-

ing graphical quality or optimizing performance. Increasing the first one

enhances the visual fidelity of objects by enabling features like higher reso-

lution textures, more detailed lighting effects, and increased particle effects.

This results in a visually stunning experience but can potentially impact

performance by requiring more GPU resources. On the other hand, maxi-

mizing performance settings prioritize efficient resource usage and render-

ing speed. By lowering quality settings, such as reducing the pixel light

count or lowering the light map resolution, you can achieve better perfor-

mance by reducing the computational workload and memory requirements.

This is particularly useful for applications targeting lower-end hardware or

aiming for smoother performance on a wider range of devices. The choice

of quality settings ultimately depends on the specific requirements and the

hardware capabilities of the target platforms. Striking the right balance be-

tween graphical quality and performance is crucial to provide an optimal

user experience and ensure smooth application performance.

5.1.3.2 Light Baking

Light baking (Figure 5.4) is a technique that helps to decrease the computa-

tional resources required for rendering a scene. It involves pre-calculating

79

Chapter 5

Figure 5.4: Before and after bake

the illumination of the scene before run-time, resulting in no additional

computational overhead for baked lights. In Unity, by default, each ob-

ject is rendered for every light that affects it. This means that if an object is

affected by five lights, Unity will render the object five times when it’s in

view. This process can significantly increase the tri count and the number of

draw calls, leading to decreased application performance. By utilizing light

baking, you can effectively reduce the number of tri and draw calls since

these calculations are performed prior to run-time. To bake all the lights in

the game’s map with medium lightning quality settings, the time required

with my hardware was 21 hours. This optimization step was the most im-

portant one from the FPS’ point of view: it allowed a massive increment of

the graphics performances, reaching up to 90 FPS from a previous value of

27.

Occlusion Culling

Occlusion Culling (Figure 5.5) is a feature in Unity that prevents the ren-

dering of objects that are not within the view of the Camera. By default,

Unity excludes objects that are outside the camera’s viewing frustum from

the rendering process. However, objects that are blocked by foreground en-

tities are still rendered, resulting in unnecessary overdraw or pixel overlap.

Overdraw occurs when pixels are drawn multiple times, layered on top of

each other, which adds unnecessary computational load. To address this

issue, it is possible to utilize Occlusion Culling, which effectively "culls" or

removes objects that are obstructed by other objects in the scene. By analyz-

ing the scene’s geometry and visibility, Unity determines which objects are

80

Chapter 5

not visible and can be safely excluded from rendering. This optimization

technique helps to minimize overdraw and reduces unnecessary rendering

work, improving overall rendering performance and efficiency.

Figure 5.5: Before and after occlusion culling, from the Unity3D Subreddit

For more information, Unity Technologies wrote a step by step optimization

guide on VR and AR applications [52]. Additional studies were on [53], [51].

5.2 Performance

5.2.1 Game Performance

In a virtual reality experience the most important quality metric is the FPS.

A poor FPS VR application defeats its "full dive" role, since the player could

not appreciate well the virtual environment, while the motion sickness could

gain the upper hand. It is important to keep the minimum number of frame

per seconds at least above 60, and this was the objective reached with all

the GPU optimization shown above. In particular, before the long process

for light baking, the game was not able to reach 30 stable FPS. This opti-

mization step was the most important among all the others, since alone was

able to bring the overall frames up to the upper limit set, namely 72. This

value, tuned during the development of the original DefaultVR, allows the

FixedUpdate to loop 72 times per second, regardless the speed of the Update

(that keeps 72 executions per seconds as well on the most performant tested

setup), necessary for a good physics simulation in the multiplayer modes.

Table 5.1 shows the number of FPS divided by the VR system and hard-

81

Chapter 5

ware specs used for that experiment. Obviously, particular stressful scenar-

ios (such as a long fire fight in a heavy graphics effects area) could cause a

brief FPS drop (during tests, the max drop detected was not below 60 FPS),

but this is not a real problem, since the physics routine keeps its normal

throughput, while the smoothness of the video is restored in a very short

amount of time, usually imperceptible.

It follows the specs list for each computer used for testing the application.

• Hardware 1:

– CPU: Intel Core i9-9900k

– GPU: NVidia RTX 2080 Super

– RAM: 32 GB Dual Channel

• Hardware 2:

– CPU: Intel Core i7-10870H

– GPU: NVidia RTX 3060 for laptops

– RAM: 32 GB Single Channel

• Hardware 3:

– CPU: Intel Core i7-7700HQ

– GPU: NVidia GTX 1070 for laptops

– RAM: 16 GB Dual Channel

Hardware 1 Hardware 2 Hardware 3
Meta Quest 2 68 to 72 FPS Not suitable Not suitable
Oculus Rift CV1 70 to 75 FPS Not suitable Not suitable
Valve Index 67 to 70 FPS Not suitable Not suitable

Table 5.1: FPS per VR systems and PCs

The main problem is the high specs requirement necessary to run smoothly

the whole application: as it is possible to notice from the above table, only

the most performant hardware available was able to run in an acceptable

way the program. After a long secondary optimization analysis, it was

found that the problem was not in the heavy map graphics and VFX, but

in the Unity Inference Engine during the query of the Explorer network, re-

ally resource-hungry while performing the forward step, since the NN is

not small as the Barracuda library expects. This problem points a massive

issue with the inference engine and/or the Python external API. In order

82

Chapter 5

to play against Eve, the minimum requirements for the PC is a RTX 2080

Super linked to a powerful CPU, at least an I7 of 9th generation, broadly

comparable with the I9 9900K. Fortunately, recent VR ready PCs present

these elements or even better ones, so the requirements are not inhibitors.

The slightly difference in average values between the headsets considered

are given by the computation cost that those devices requires: the Oculus

Rift, namely one of the first VR headset system available with tracked con-

trollers, works with an internal resolution of 1080x1200 px per eye, the Meta

Quest 2 work with 1832x1920 px (per eye too), while the Valve Index uses

two 1440x1600 displays with a huge amount of data sent to the PC with its

finger tracking controllers values. The weakest device requires less graphic

data to be computed, so it receive a slightly higher amount of FPS, while the

other two expects some computation more.

As a general and exhaustive information, the other two hardware analyzed

reported a final FPS value included between 25 and 45 FPS, unplayable and

with possible motion sickness problem to non-experienced VR users. How-

ever, this issue is not present in the secondary modes included with the

application, such as the "Range vs AI", which makes the human player able

to challenge Eve to a mini-game where the winner is the one who kills more

dummy targets in the range with a fixed amount of time available. The

Shooter network is slimmer and faster to query, enabling an excellent game-

play lag-free with more then 90 FPS on all the analyzed hardware.

5.2.2 Eve’s Performance

An adequate way to perform a quality evaluation for the trained agent is to

compare the number of episodes successfully completed and failed.

All the tests that do not concern a human player were performed run-

ning for 6 hours straight and with 32 parallel instances, regardless of the

type of task (exception for Eve’s whole brain, that used just 4 parallel in-

stances in order not to introduce lag, since 4 networks to query for instance

starts to be computational expensive). This is the reason for the difference

in terms of episodes’ number. Human-based tests are more difficult and

83

Chapter 5

expensive (in term of time), so the total amount of episodes is significantly

lower than the one automatically performed.

All these tests were run on the "Hardware 1", described in 5.2.1.

Table 5.2 collects the total number of episodes, the number of completed

ones as well as the expired occurrences (the failure case, since there is not

a precise event that closes the episode with a bad response) for the Ex-

plorer component only. The same table shows the results for both the AI

vs Dummy and AI vs AI tests. In this second case, the voices "AI1 Won"

and "AI2 Won" tells us how many episodes a certain agent found the other

agent for first. An episode is considered expired when it reaches 50k en-

vironmental steps. The first noticeable thing is the difference between the

total number of episodes between the two test cases. In a certain way, this is

almost obvious, since in the first scenario the agent have to search along all

the map and, in the worst case, more than one time, if it miss the one nar-

row corner where the dummy target lies; while in "AI vs AI", there are two

agents, both active searchers that never hide, so the convergence happens

in lower time.

Analyzing the results, it is possible to notice that only 4 over 2411 episodes

expired, so the Explorer has a 99.84% of successes. In the second case, it is

possible to understand the speed the agent solves its task, since in a sym-

metric and fair target searching task, it (they) was able to find the enemy the

double of occasions (wrt the previous test) in the same amount of total time.

In addition, looking to the number of episodes won by each agent, the two

values are very similar between them (almost equals, talking about of large

numbers): this confirms the fairness of the test.

Table 5.3 shows the results for the Shooter model only. It collects the

number of times the agent slays the dummy agent in the range, the num-

ber of times it consumes the whole magazine without reaching its goal and

the average number of bullets used for each kill, everything ordered and

divided for sets of distances where the dummy target spawned. Magazines

contain 25 bullets and, at the beginning of each episode, they are automat-

ically refilled. The enemy spawns in a random moment between 0 and 10

seconds from the start of the episode and its position is random on all the

84

Chapter 5

three space axes, y included since it comes with an always different crouch

level, exposing the head at diverse altitudes. As previously mentioned, this

brain component never fails in the range, meaning that no magazine is emp-

tied without score a kill. In 42818 episodes, the agent struck 42818 kills with

an average use of 3 bullets for each enemy. Observing the other table rows,

it is possible to notice that more the target is far and more bullets are needed

to execute it. This is because, on long distances, it is easier to hit the body,

which presents a grater area respect the head. The Shooter observes the an-

gle between the vector "aiming direction" and the vector which connect the

agent y-axis to the target’s one, parallel with the floor. This means that the

cited input can only lead to find where the enemy is sideways, but it does

not provide any information about where the head is. Obviously, during

training, it was learned that the head is above body and legs, and below

the upper "miss area", but even a very small movement, on long distances,

results in a huge change, making the task a bit harder. However, an average

of 3 rounds to strike a kill in all the possible tested distances (between 0 and

about 60 meters) is a great achievement.

Table 5.4 displays the statistics for the entire Eve’s brain, the coopera-

tion of Explorer and Shooter. The structure includes the number of episodes

won by Eve and the number of the ones won by her opponent (which can

be a human or another AI agent), divided by the matches AI vs AI (the sec-

ond one is the immediately previous model checkpoint) and AI vs Human.

In the first test I removed the limited magazine constraint, allowing both

artificial players to challenge each other without the need to reload. This

constraint alleviation is not kept in AI vs Human and, in general, the offi-

cial deathmatch mode. A strange behaviour occurs in the first test, the AI

vs AI scenario. Even if both entities are querying similar networks, the one

whom id is 0 performed better. The only two explanations to this could be

either that in those 6 hours, the AI1 was luckier than the second one or that

the newer version is much better than the previous one; or maybe both. Re-

garding the AI vs Human, it is clear the skill gap between the agent and

the player. This test involved 5 beta testers, one of which was an experi-

enced VR user. Each game lasted for 10 minutes (a global timer was there

85

Chapter 5

to ensure this constraint and to terminate the simulation upon expiry of the

period) and, as in the real Deathmatch mode, both AI and Human had un-

limited magazines supplies. What these tests revealed is that sometimes, in

particularly stressful situations for the hardware, the models inference was

a bit slower than the usual, causing a poorer performance for that single fire

trade. However, for most of the time, Eve performed much better compared

to her opponents. For a total of 30 matches (6 for player, namely one hour of

trials for each tester), Eve was defeated 5 times with a tiny score difference.

The worst score she obtained was 10-9 (on the left there is the number of

kills obtained by the human, while on the right the amount of Eve’s), while

the better one was 3-16. Table 5.4 shows the total number of kills and not

the amount of won/lost matches.

Explorer Episodes Completed Expired AI1 Won AI2 Won
AI vs Dummy 2411 2407 4 - -
AI vs AI 4450 4450 0 2251 2199

Table 5.2: Explorer test results

Shooter Episodes Completed Failed Avg rounds employed
All dist. 42818 42818 0 2,96805
0-10 m 4778 4778 0 1,848052
10-20 m 7980 7980 0 2,138717
20-30 m 7988 7988 0 2,726966
30-40 m 7996 7996 0 3,302649
40-50 m 7914 7914 0 3,63912
50+ m 6162 6162 0 3,932819

Table 5.3: Shooter test results

Explorer +
Shooter (Eve)

Episodes AI’s kills Opponent’s
kills

AI vs AI 1532 1235 297
AI vs Human 475 330 145

Table 5.4: Eve test results

86

Conclusion

I presented DefaultVR: the AI Expansion, an innovative virtual reality game

that includes realistic physics simulation and, in particular with this expan-

sion, the possibility to play offline against Eve, an intelligent agent trained

through reinforcement learning. Challenging a self-trained enemy creates

the illusion that you are playing against another human player and not

against an artificial being, concept that classic bots’ algorithms are not able

to satisfy completely.

Eve learned to explore a complex map with the goal of finding, as fast as

possible, the enemy, and learned how to shoot with an automatic rifle, mas-

tering aim and the recoil management without wasting bullets. The com-

plex environment and the physics simulation required some more atten-

tions during the development and the training, but the agent successfully

fulfills these challenges, despite the limited hardware resources available

for her training.

Eve reached the initial objective, at the cost of some adjustment with

respect to the very original network idea, but still her results are pretty im-

pressive. For now, she is able to play against a human without any fear

even with some disadvantages, but her journey is not over: those handi-

caps needs to be overtaken in the near future.

Future planned works and ideas for this game consists in:

• Perform an Explorer network optimization through the use of a NAS

(Neural Architecture Search) system, designing a complex model in

terms of human comprehension but with a lower internal complexity

(in terms of employed units) in order to make it slimmer and faster to

query;

• Replace the Ray Perception Sensor with an high-res Camera Sensor, giv-

ing the agent an acceptable vertical field of view;

87

Conclusion

• Adding more observations to this model, such as the perception some-

one is shooting at it and the sound position awareness when a weapon

fires;

• Adding the right hand management;

• Re-introduce the z axis in both the hands, letting the agent more phys-

ical actions available;

• The capacity to use semi-automatic guns;

• The decision of changing among a set of available weapons when re-

quired;

• Making the agent crouch to pick up something from the floor or just

for hiding behind small objects;

• Team-based game modes, where agents must cooperate with other ar-

tificial guys and human players to reach the final goal, exploring new

single-player and multiplayer gameplays;

• New maps and new weapons both the human player and the agent

can learn and enjoy;

• A custom hardware, able to emulate the recoil of all the weapons in-

cluded with this game, adding a new layer of immersion.

Playing against Eve is a challenging experience: she is good in what she

learned, but, like human players, she makes some mistakes too, leaving to

her opponents the impression that he/she is playing against another real

player and not against an artificial being: this was indeed the goal of this

project.

88

Bibliography

[1] L. Levita, “Gaming client-server in realtà virtuale basato su libreria
openxr,” Univeristy of Bologna, 2021.

[2] C. Berner, G. Brockman, B. Chan, et al., “Dota 2 with large scale deep
reinforcement learning,” CoRR, vol. abs/1912.06680, 2019. arXiv: 19
12.06680. [Online]. Available: http://arxiv.org/abs/1912.06680.

[3] K. Arulkumaran, A. Cully, and J. Togelius, “Alphastar: An evolu-
tionary computation perspective,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2019, Prague,
Czech Republic, July 13-17, 2019, M. López-Ibáñez, A. Auger, and
T. Stützle, Eds., ACM, 2019, pp. 314–315. DOI: 10.1145/3319619.
3321894. [Online]. Available: https://doi.org/10.1145/3319619.
3321894.

[4] “Meta connect,” Meta. (2023), [Online]. Available: https://www.
metaconnect.com/it-it.

[5] A. Rahimi, J. Zhou, and S. Haghani, “A VR gun controller with re-
coil adjustability,” in 2020 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, January 4-6, 2020, IEEE, 2020,
pp. 1–2. DOI: 10.1109/ICCE46568.2020.9043008. [Online]. Avail-
able: https://doi.org/10.1109/ICCE46568.2020.9043008.

[6] “Hurricane vr - physics interaction toolkit,” Cloudwalkin Games.
(2023), [Online]. Available: https://assetstore.unity.com/pa
ckages/tools/physics/hurricane- vr- physics- interaction-
toolkit-177300.

[7] “Vr physical hand,” VR Physical Hand. (2020), [Online]. Available:
https://www.unrealengine.com/marketplace/en-US/product/
vr-physical-hand.

[8] Y. Ye, L. Liu, L. Hu, and S. Xia, “Neural3points: Learning to gen-
erate physically realistic full-body motion for virtual reality users,”
Comput. Graph. Forum, vol. 41, no. 8, pp. 183–194, 2022. DOI: 10.
1111/cgf.14634. [Online]. Available: https://doi.org/10.1111/
cgf.14634.

[9] R. Bensadoun, S. Gur, N. Blau, T. Shenkar, and L. Wolf, “Neural
inverse kinematics,” CoRR, vol. abs/2205.10837, 2022. DOI: 10.48
550/arXiv.2205.10837. arXiv: 2205.10837. [Online]. Available:
https://doi.org/10.48550/arXiv.2205.10837.

[10] A. Juliani, V. Berges, E. Vckay, et al., “Unity: A general platform for
intelligent agents,” CoRR, vol. abs/1809.02627, 2018. arXiv: 1809.
02627. [Online]. Available: http://arxiv.org/abs/1809.02627.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,

89

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
https://doi.org/10.1145/3319619.3321894
https://doi.org/10.1145/3319619.3321894
https://doi.org/10.1145/3319619.3321894
https://doi.org/10.1145/3319619.3321894
https://www.metaconnect.com/it-it
https://www.metaconnect.com/it-it
https://doi.org/10.1109/ICCE46568.2020.9043008
https://doi.org/10.1109/ICCE46568.2020.9043008
https://assetstore.unity.com/packages/tools/physics/hurricane-vr-physics-interaction-toolkit-177300
https://assetstore.unity.com/packages/tools/physics/hurricane-vr-physics-interaction-toolkit-177300
https://assetstore.unity.com/packages/tools/physics/hurricane-vr-physics-interaction-toolkit-177300
https://www.unrealengine.com/marketplace/en-US/product/vr-physical-hand
https://www.unrealengine.com/marketplace/en-US/product/vr-physical-hand
https://doi.org/10.1111/cgf.14634
https://doi.org/10.1111/cgf.14634
https://doi.org/10.1111/cgf.14634
https://doi.org/10.1111/cgf.14634
https://doi.org/10.48550/arXiv.2205.10837
https://doi.org/10.48550/arXiv.2205.10837
https://arxiv.org/abs/2205.10837
https://doi.org/10.48550/arXiv.2205.10837
https://arxiv.org/abs/1809.02627
https://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1809.02627

Bibliography

2017. arXiv: 1707.06347. [Online]. Available: http://arxiv.org/
abs/1707.06347.

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, J. G. Dy and A. Krause, Eds., ser. Proceedings of
Machine Learning Research, vol. 80, PMLR, 2018, pp. 1856–1865.
[Online]. Available: http://proceedings.mlr.press/v80/haarnoj
a18b.html.

[13] A. Cohen, E. Teng, V. Berges, et al., “On the use and misuse of ab-
sorbing states in multi-agent reinforcement learning,” CoRR, vol. abs/2111.05992,
2021. arXiv: 2111.05992. [Online]. Available: https://arxiv.org/
abs/2111.05992.

[14] Č. Livada and D. Hodak, “Advanced mechanisms of perception in
the digital hide and seek game based on deep learning,” in 2022 In-
ternational Conference on Smart Systems and Technologies (SST), 2022,
pp. 135–140. DOI: 10.1109/SST55530.2022.9954814.

[15] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Work-
shops 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer So-
ciety, 2017, pp. 488–489. DOI: 10.1109/CVPRW.2017.70. [Online].
Available: https://doi.org/10.1109/CVPRW.2017.70.

[16] A. Aubret, L. Matignon, and S. Hassas, “A survey on intrinsic moti-
vation in reinforcement learning,” CoRR, vol. abs/1908.06976, 2019.
arXiv: 1908.06976. [Online]. Available: http://arxiv.org/abs/
1908.06976.

[17] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic mo-
tivation (1990-2010),” IEEE Trans. Auton. Ment. Dev., vol. 2, no. 3,
pp. 230–247, 2010. DOI: 10.1109/TAMD.2010.2056368. [Online].
Available: https://doi.org/10.1109/TAMD.2010.2056368.

[18] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration
by random network distillation,” CoRR, vol. abs/1810.12894, 2018.
arXiv: 1810.12894. [Online]. Available: http://arxiv.org/abs/
1810.12894.

[19] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: Lessons
we have learned,” Int. J. Robotics Res., vol. 40, no. 4-5, 2021. DOI:
10.1177/0278364920987859. [Online]. Available: https://doi.
org/10.1177/0278364920987859.

[20] L. Weng, Exploration strategies in deep reinforcement learning, 2020.
[Online]. Available: https://lilianweng.github.io/posts/2020-
06-07-exploration-drl/#the-noisy-tv-problem.

[21] P. Ladosz, L. Weng, M. Kim, and H. Oh, “Exploration in deep re-
inforcement learning: A survey,” Inf. Fusion, vol. 85, pp. 1–22, 2022.

90

https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/2111.05992
https://arxiv.org/abs/2111.05992
https://arxiv.org/abs/2111.05992
https://doi.org/10.1109/SST55530.2022.9954814
https://doi.org/10.1109/CVPRW.2017.70
https://doi.org/10.1109/CVPRW.2017.70
https://arxiv.org/abs/1908.06976
http://arxiv.org/abs/1908.06976
http://arxiv.org/abs/1908.06976
https://doi.org/10.1109/TAMD.2010.2056368
https://doi.org/10.1109/TAMD.2010.2056368
https://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1810.12894
http://arxiv.org/abs/1810.12894
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/#the-noisy-tv-problem
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/#the-noisy-tv-problem

Bibliography

DOI: 10.1016/j.inffus.2022.03.003. [Online]. Available: https:
//doi.org/10.1016/j.inffus.2022.03.003.

[22] Y. Aytar, T. Pfaff, D. Budden, T. L. Paine, Z. Wang, and N. de Fre-
itas, “Playing hard exploration games by watching youtube,” in
Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018,
pp. 2935–2945. [Online]. Available: https://proceedings.neurip
s . cc / paper / 2018 / hash / 35309226eb45ec366ca86a4329a2b7c3 -
Abstract.html.

[23] T. Salimans and R. Chen, “Learning montezuma’s revenge from a
single demonstration,” CoRR, vol. abs/1812.03381, 2018. arXiv: 181
2.03381. [Online]. Available: http://arxiv.org/abs/1812.03381.

[24] Z. Hong, T. Shann, S. Su, Y. Chang, and C. Lee, “Diversity-driven
exploration strategy for deep reinforcement learning,” in 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings,
OpenReview.net, 2018. [Online]. Available: https://openreview.
net/forum?id=BJsD7L1vz.

[25] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all
you need: Learning skills without a reward function,” in 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=SJx63jRqFm.

[26] S. Forestier, Y. Mollard, and P. Oudeyer, “Intrinsically motivated
goal exploration processes with automatic curriculum learning,”
CoRR, vol. abs/1708.02190, 2017. arXiv: 1708.02190. [Online]. Avail-
able: http://arxiv.org/abs/1708.02190.

[27] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learn-
ing: A survey,” Int. J. Comput. Vis., vol. 130, no. 6, pp. 1526–1565,
2022. DOI: 10 . 1007 / s11263 - 022 - 01611 - x. [Online]. Available:
https://doi.org/10.1007/s11263-022-01611-x.

[28] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4555–4576,
2022. DOI: 10.1109/TPAMI.2021.3069908. [Online]. Available: http
s://doi.org/10.1109/TPAMI.2021.3069908.

[29] K. Fang, Y. Zhu, S. Savarese, and L. Fei-Fei, “Adaptive procedural
task generation for hard-exploration problems,” in 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021, OpenReview.net, 2021. [Online]. Available: http
s://openreview.net/forum?id=8xLkv08d70T.

[30] C. Colas, P. Oudeyer, O. Sigaud, P. Fournier, and M. Chetouani,
“CURIOUS: intrinsically motivated modular multi-goal reinforce-
ment learning,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Califor-

91

https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
https://doi.org/10.1016/j.inffus.2022.03.003
https://proceedings.neurips.cc/paper/2018/hash/35309226eb45ec366ca86a4329a2b7c3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/35309226eb45ec366ca86a4329a2b7c3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/35309226eb45ec366ca86a4329a2b7c3-Abstract.html
https://arxiv.org/abs/1812.03381
https://arxiv.org/abs/1812.03381
http://arxiv.org/abs/1812.03381
https://openreview.net/forum?id=BJsD7L1vz
https://openreview.net/forum?id=BJsD7L1vz
https://openreview.net/forum?id=SJx63jRqFm
https://arxiv.org/abs/1708.02190
http://arxiv.org/abs/1708.02190
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1109/TPAMI.2021.3069908
https://openreview.net/forum?id=8xLkv08d70T
https://openreview.net/forum?id=8xLkv08d70T

Bibliography

nia, USA, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 1331–
1340. [Online]. Available: http://proceedings.mlr.press/v97/
colas19a.html.

[31] O. Kelany, S. Aly, and M. A. Ismail, “Deep learning model for fi-
nancial time series prediction,” in 14th International Conference on
Innovations in Information Technology, IIT 2020, Al Ain, United Arab
Emirates, November 17-18, 2020, IEEE, 2020, pp. 120–125. DOI: 10.
1109/IIT50501.2020.9299063. [Online]. Available: https://doi.
org/10.1109/IIT50501.2020.9299063.

[32] N. Pai and V. Ilango, “Lstm neural network model with feature se-
lection for financial time series prediction,” in 2020 Fourth Inter-
national Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud) (I-SMAC), 2020, pp. 672–677. DOI: 10.1109/I-SMAC49090.
2020.9243376.

[33] S. Reddy Beeram and S. Kuchibhotla, “A survey on state-of-the-
art financial time series prediction models,” in 2021 5th International
Conference on Computing Methodologies and Communication (ICCMC),
2021, pp. 596–604. DOI: 10.1109/ICCMC51019.2021.9418313.

[34] M. Lombardi, Rul-based maintenance policies, 2023. [Online]. Avail-
able: https://github.com/a3i-2022-2023.

[35] H. Face, Self-play: A classic technique to train competitive agents in ad-
versarial games, 2021. [Online]. Available: https://huggingface.
co/learn/deep-rl-course/unit7/self-play?fw=pt.

[36] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emer-
gent complexity via multi-agent competition,” in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net,
2018. [Online]. Available: https://openreview.net/forum?id=
Sy0GnUxCb.

[37] OpenAI, M. Plappert, R. Sampedro, et al., “Asymmetric self-play for
automatic goal discovery in robotic manipulation,” CoRR, vol. abs/2101.04882,
2021. arXiv: 2101.04882. [Online]. Available: https://arxiv.org/
abs/2101.04882.

[38] MATLAB, What is Reinforcement Learning? The MathWorks Inc., 2010.
[Online]. Available: https://mathworks.com/discovery/reinforc
ement-learning.html.

[39] M. Swiechowski, K. Godlewski, B. Sawicki, and J. Mandziuk, “Monte
carlo tree search: A review of recent modifications and applications,”
Artif. Intell. Rev., vol. 56, no. 3, pp. 2497–2562, 2023. DOI: 10.1007/
s10462-022-10228-y. [Online]. Available: https://doi.org/10.
1007/s10462-022-10228-y.

[40] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algo-
rithms: A comprehensive classification and applications,” IEEE Ac-
cess, vol. 7, pp. 133 653–133 667, 2019. DOI: 10.1109/ACCESS.2019.
2941229.

92

http://proceedings.mlr.press/v97/colas19a.html
http://proceedings.mlr.press/v97/colas19a.html
https://doi.org/10.1109/IIT50501.2020.9299063
https://doi.org/10.1109/IIT50501.2020.9299063
https://doi.org/10.1109/IIT50501.2020.9299063
https://doi.org/10.1109/IIT50501.2020.9299063
https://doi.org/10.1109/I-SMAC49090.2020.9243376
https://doi.org/10.1109/I-SMAC49090.2020.9243376
https://doi.org/10.1109/ICCMC51019.2021.9418313
https://github.com/a3i-2022-2023
https://huggingface.co/learn/deep-rl-course/unit7/self-play?fw=pt
https://huggingface.co/learn/deep-rl-course/unit7/self-play?fw=pt
https://openreview.net/forum?id=Sy0GnUxCb
https://openreview.net/forum?id=Sy0GnUxCb
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2101.04882
https://mathworks.com/discovery/reinforcement-learning.html
https://mathworks.com/discovery/reinforcement-learning.html
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1109/ACCESS.2019.2941229
https://doi.org/10.1109/ACCESS.2019.2941229

Bibliography

[41] T. Simonini, Offline vs. online reinforcement learning. [Online]. Avail-
able: https://huggingface.co/learn/deep-rl-course/unitbonu
s3/offline-online.

[42] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” CoRR,
vol. abs/2005.01643, 2020. arXiv: 2005.01643. [Online]. Available:
https://arxiv.org/abs/2005.01643.

[43] J. Ho and S. Ermon, “Generative adversarial imitation learning,”
in Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, D. D. Lee, M. Sugiyama, U. von Luxburg, I.
Guyon, and R. Garnett, Eds., 2016, pp. 4565–4573. [Online]. Avail-
able: https : / / proceedings . neurips . cc / paper / 2016 / hash /
cc7e2b878868cbae992d1fb743995d8f-Abstract.html.

[44] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative ad-
versarial networks,” CoRR, vol. abs/1406.2661, 2014. arXiv: 1406.
2661. [Online]. Available: http://arxiv.org/abs/1406.2661.

[45] U. Technologies, Unity user manual, 2023. [Online]. Available: https
://docs.unity3d.com/Manual/index.html.

[46] T. K. O. W. Group, The openxr™ specification, version Version 1.0.27,
2023. [Online]. Available: https://registry.khronos.org/OpenXR
/specs/1.0/html/xrspec.html.

[47] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” CoRR,
vol. abs/1606.01540, 2016. arXiv: 1606.01540. [Online]. Available:
http://arxiv.org/abs/1606.01540.

[48] J. Terry, B. Black, N. Grammel, et al., “Pettingzoo: Gym for multi-
agent reinforcement learning,” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 15 032–15 043, 2021.

[49] V. Corporation, Valve index headset, 2019. [Online]. Available: https:
//www.valvesoftware.com/en/index/headset.

[50] D. Welsh, M. A. A. H. Khan, and N. Roy, Gunshot recoil dataset, https
://doi.org/10.21227/2k8c-tm65, Oct. 2021. DOI: 10.21227/2k8c-
tm65. [Online]. Available: https://doi.org/10.21227/2k8c-tm65.

[51] U. T. Rob Srinivasiah, How to maximize ar and vr performance with
advanced stereo rendering, 2017. [Online]. Available: https://blog.
unity.com/technology/how-to-maximize-ar-and-vr-performan
ce-with-advanced-stereo-rendering.

[52] U. Technologies, Optimizing your vr/ar experiences, 2020. [Online].
Available: https : / / learn . unity . com / tutorial / optimizing -
your-vr-ar-experiences.

[53] U. Technologies, Optimizing graphics in unity, 2018. [Online]. Avail-
able: https://learn.unity.com/tutorial/optimizing-graphics
-in-unity.

93

https://huggingface.co/learn/deep-rl-course/unitbonus3/offline-online
https://huggingface.co/learn/deep-rl-course/unitbonus3/offline-online
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/cc7e2b878868cbae992d1fb743995d8f-Abstract.html
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html
https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://www.valvesoftware.com/en/index/headset
https://www.valvesoftware.com/en/index/headset
https://doi.org/10.21227/2k8c-tm65
https://doi.org/10.21227/2k8c-tm65
https://doi.org/10.21227/2k8c-tm65
https://doi.org/10.21227/2k8c-tm65
https://doi.org/10.21227/2k8c-tm65
https://blog.unity.com/technology/how-to-maximize-ar-and-vr-performance-with-advanced-stereo-rendering
https://blog.unity.com/technology/how-to-maximize-ar-and-vr-performance-with-advanced-stereo-rendering
https://blog.unity.com/technology/how-to-maximize-ar-and-vr-performance-with-advanced-stereo-rendering
https://learn.unity.com/tutorial/optimizing-your-vr-ar-experiences
https://learn.unity.com/tutorial/optimizing-your-vr-ar-experiences
https://learn.unity.com/tutorial/optimizing-graphics-in-unity
https://learn.unity.com/tutorial/optimizing-graphics-in-unity

	Introduction
	Related Works
	Chapter 1
	The Project
	A gentle introduction to Reinforcement Learning
	Deep Reinforcement Learning

	A gentle introduction to Imitation Learning
	A gentle introduction to Unity
	Components
	The MonoBehaviour Workflow
	OpenXR as virtual reality framework

	Chapter 2
	ML-Agents, the Unity's machine learning framework
	Observations and Actions
	Reinforcement Learning in Unity
	Imitation Learning in Unity

	Supported Trainers
	Proximal Policy Optimization
	Soft Actor-Critic
	MultiAgent POsthumous Credit Assignment

	Network(s) and Training Configuration
	Common Trainer Configurations
	Networks Configurations

	PPO-specific and MA-POCA-specific Configurations
	SAC-specific Configurations
	Reward Signals
	Extrinsic Rewards
	Intrinsic Rewards

	Other Options
	Behavioral Cloning
	Self-Play
	Training Options

	Chapter 3
	Network Tests
	Eve
	The 3D Model
	The Brain
	Shooter: Observations, Network structure and Actions
	Explorer: Observations, Network structure and Actions
	Final Training and Hyperparameters

	An attempt to make the agent damage aware

	Chapter 4
	An Overview of the other game's elements
	Human Inputs
	Weapons
	The Map

	Chapter 5
	Optimizations
	Network query optimizations
	CPU optimizations
	Static Batching
	Adjusting the Rendering Method

	GPU optimizations
	Quality Setting Tuning
	Light Baking
	Occlusion Culling

	Performance
	Game Performance
	Eve's Performance

	Conclusion
	Bibliography

