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Abstract

Cosmological inflation is a period of accelerated expansion of the early universe.
Nowadays there are plenty of inflationary models which agree with experimental con-
straints but a complete microscopic understanding of this quasi de Sitter phase is still
missing.
In this thesis, after reviewing the present situation in Cosmology and Supersymmetry,
we present the main possibilities to embed inflation in a UV complete framework com-
ing from String Theory. In particular, we present the main virtues and limitations of
RG-induced modulus stabilisation, focusing on D3−D3 inflation and discussing whether
slow-roll can be obtained in the regime of validity of the effective field theory.
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Chapter 1

Introduction

The universe is expanding. And it is expanding at an accelerating pace, as it had done
once before in its earliest of stages.
Since Einstein published his theory of General Relativity (GR), lots of attempts have
been made in order to describe our universe as a whole via the field equations which
relate the curvature of spacetime to the content of matter and energy. Einstein himself
tried and, in order to find a static solution, introduced for the first time the cosmolog-
ical constant (Λ) term ad hoc (what he later defined as his greatest mistake). Later
on, Hubble discovered experimentally that our universe is not static but is instead ex-
panding exponentially with a positive acceleration. This process is well described at a
classical level by the de Sitter solution to Einstein equations: Λ > 0 is a constant and
represents physically what is called dark energy. From a microscopic point of view
there are lots of candidates for dark energy and there is no general consensus among
the community since a theory of quantum gravity is needed to properly address the
problem. Nonetheless, string theory, being the only consistent theory able to describe
gravity at a quantum level, allows to study and better understand certain issues.
Therefore, we now have evidence that our universe is undergoing a phase of accelerated
expansion. What is interesting is that something very similar happened for a very short
period (∆t ∼ 10−38 − 10−37 s) of the early universe. This period is called cosmological
inflation and is the main topic of this thesis.
From Einstein equations, we know that the universe contracts going back in time, until
it reaches zero size and both space and time emerge at the singularity of the standard
Big Bang. Of course, this singularity does not have a physical meaning and we expect
that an appropriate UV completion of General Relativity (e.g. via string theory) would
cure this meaningless result. Moreover, a simple extrapolation of Einstein equations
implies other important experimental and conceptual problems that must be addressed
(e.g. the horizon problem). Inflation was introduced in order to solve these issues in
the simplest and most elegant possible way. It is in great agreement with observational
results and is able to make highly non trivial predictions (e.g. anisotropies in the power
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spectrum of the Cosmic Microwave Background radiation). Nevertheless, we should say
that inflationary models do not have an appropriate UV embedding and a microscopical
description (situation analogous to the case of dark energy: on the one hand it is simpler
to construct a model for the latter case since for inflation ∼ 60 e-foldings are necessary,
while only around a single e-folding of accelerated expansion is needed for dark energy;
on the other, more experimental constraints have to be satisfied to appropriately describe
the current acceleration).
Furthermore, the successes of the Standard Model of particle physics are accompanied by
issues related to incompleteness, technical problems, why questions, naturalness. Nowa-
days, the most prominent candidate for physics beyond the Standard Model is Super-
symmetry, a prediction of string theory (notice that the other fascinating theoretical
prediction of string theory, i.e. extra dimensions, had already been introduced in a dif-
ferent context by Kaluza and Klein, immediately after Einstein wrote down the field
equations of gravity, in order to unify electromagnetism and gravity).
String theory has a plethora of fields that could be candidates for the inflaton (the field
that drives slow-roll inflation) and recent experimental results are constraining some of
the string inflation models and ruling out others. The variety of consistent models comes
from the richness of the geometries of Calabi-Yau manifolds and compactifications.
Hence, in this work, we will review the standard Hot Big Bang theory and its related
issues and Supersymmetry and Supergravity in the following two chapters. Chapter 4
is dedicated to a brief introduction to string theory and to its motivations, quantising
the bosonic string, the superstring and then introducing the most basics mathematical
concepts and techniques necessary to better understand some geometrical aspects of this
higher-dimensional theory. The chapter that follows is dedicated to the stabilisation of
moduli: moduli are scalar degrees of freedom in the 4D effective action and describe
low energy excitations in the extra dimensions, such as size and shape of the extra di-
mensions; they are gauge singlet scalars, usually with gravitational strength interactions.
In the simplest supersymmetric compactifications, the potential is flat and moduli are
massless. These models are ruled out because these massless moduli would mediate
unobserved long-range scalar gravitational-strength interactions (fifth forces). We then
focus on models of inflation in string theory and, particularly, on brane inflation (branes
are extended objects in string theory). Chapters 7 and 8 are probably the core of this
work, since we focus on a particular and very recent way of stabilising the moduli via
renormalization group (RG) techniques evading the Dine-Seiberg problem and we apply
this framework on a possible realisation of inflation with warped branes, following [1].
Then we discuss in an innovative fashion whether it is possible to obtain slow-roll in the
regime of validity of the EFT using this setup and conclude introducing some aspects
and some references related to reheating (the Hot Big Bang at the end of inflation, how
the Standard Model degrees of freedom are excited after slow-roll), cosmic strings and
eternal inflation. Our final results, remarks and comments are in Chapter 10.
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Conventions

Natural units: ~ = c = 1.
Reduced Planck mass: M2

p = 1
8πG

= (2.4 · 1018GeV)2.
Minkowski metric: ηµν = diag(−1,+1,+1,+1).
String scale: Ms = 1

ls
= 1√

α′
.
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Chapter 2

Cosmology

The Cosmological Principle is the assumption that our universe is homogeneous and
isotropic. This principle is experimentally verified for large enough scales (larger than
250 million light years) and is usually assumed to be true in most cosmological models
(even relaxing only the condition of isotropy makes the models way more difficult to
treat; in the following, we will always assume the Cosmological Principle to hold). Recent
observations of the Cosmic Microwave Background (CMB) have detected anisotropies in
about 1 part in 104−105 (Fig. 2.1): inflationary models are able to predict both isotropy
and the temperature fluctuations. In this chapter we will mainly focus on why and how
to introduce inflation.

Figure 2.1: Anisotropies of the Cosmic Microwave Background radiation. Source: ESA.
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2.1 Standard Big Bang Theory

Assuming that the Cosmological Principle is valid, the most general metric we can write
down is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (2.1)

where t is the proper time of an observer moving along with the homogeneous and
isotropic cosmic fluid, r is a positive radial distance (notice that r = 0 does not have a
particular physical meaning given the properties of the system), θ and φ are respectively
the polar angle and the azimuthal angle, a(t) is the cosmic scale factor and k is the
curvature constant. Given that General Relativity is invariant under general coordinate
transformations, we can always redefine our coordinates such that k has values 0, +1 or
−1.

Flat Universe

A universe for which k = 0 is said to be flat: indeed we have that the spatial slice
of the metric is proportional to dσ2 = dr2 + r2dΩ2

2 = dx2 + dy2 + dz2, where dΩ2
2 =

dθ2 + sin2 θdφ2.

Closed Universe

A universe for which k = +1 is said to be closed: choosing χ such that r = sinχ,
dσ2 = dχ2 + sin2 χdΩ2

2 (3-sphere).

Open Universe

A universe for which k = −1 is said to be open: choosing ψ such that r = sinhψ,
dσ2 = dψ2 + sinh2 ψdΩ2

2 (3-hyperboloid).

Describing the content of the universe as a cosmic fluid with energy-momentum tensor
T µν = diag(−ρ, p, p, p), energy and momentum conservation are expressed in the context
of GR as ∇µT

µ
ν = 0, where ∇µ is the covariant derivative calculated using the FLRW

metric. This translates into

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (2.2)

where a dot indicates a derivative with respect to t.
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Up to now we have used only the symmetries of our model; Einstein equations

Rµν −
1

2
Rgµν = 8πGTµν , (2.3)

using the FLRW metric and the energy–momentum tensor for the cosmic fluid, imply
the Friedmann equations:

3

[(
ȧ

a

)2

+
k

a2

]
= 8πGρ (2.4)

and

3
ä

a
= −4πG(ρ+ 3p). (2.5)

Defining the Hubble parameter

H =
ȧ

a
(2.6)

and the density parameter Ω = 8πG
3H2ρ = ρ

ρcritical
, where ρcritical = 3H2

8πG
, we find Ω−1 = k

H2a2 ,
so that ρ < ρcritical for an open universe, ρ = ρcritical for a flat universe and ρ > ρcritical
for a closed universe. We know from observations that k ' 0 and we will assume this to
be true in the following.

A common assumption is the equation of state

p = ωρ, (2.7)

where ω is a constant; in this way ρ̇
ρ

= −3(1 + ω) ȧ
a
.

Dust

For dust p = 0, so that ω = 0 and ρ ∝ a−3. Recalling that for a flat universe Ω = 1 and
H2 ∝ ρ, we find that a ∝ t2/3.

Radiation

For radiation the trace of the energy-momentum tensor is 0, so that ω = 1
3
, ρ ∝ a−4 and

a ∝ t1/2.

Vacuum or dark energy

For dark energy ρ = Λ
8πG

and ω = −1, so that a ∝ eHt.

8



ΛCDM

It is an experimental result the fact that our universe is nowadays accelerating (ä > 0):
this and other observations can be described by introducing dark energy (Λ) and cold
dark matter (CDM) such that Ωvisible ' 5%, ΩCDM ' 25% and ΩΛ ' 70% and ρ0 '
ρcritical ' 10−29g/cm3.

2.2 Problems of the Hot Big Bang

The first issue of standard cosmology is the initial singularity given the expressions of
the cosmic scale factor for dust and radiation. Some of the other issues are the flatness
problem and the horizon problem.

The flatness problem is related to the fine-tuning of the initial conditions in order
to have a so small spatial curvature of the universe [2].

The Horizon Problem

Following [2], we define the (comoving) particle horizon

d =

∫ t

0

dt′

a(t′)
(2.8)

as the greatest comoving distance from which an observer at time t will be able to receive
signals travelling at the speed of light if the Big Bang singularity is at time 0 (and for 0
cosmic scale factor).
Since the size of a causally-connected patch of space is determined by the maximal
distance from which light can be received and

d =

∫
da

aȧ
=

∫
(aH)−1d ln a, (2.9)

the comoving Hubble radius is (aH)−1, a monotonically increasing function of time for
ordinary matter sources, and d is dominated by the contributions from late times. There-
fore, most parts of the CMB have non-overlapping past light cones and never were in
causal contact considering that the comoving horizon at the time of recombination was
much smaller than the comoving distance to the last-scattering surface.
This argument already applies to any two points in the CMB that are separated by
more than 2 degrees in the sky, while we observe that two opposite directions are at
almost exactly the same temperature (and, again, according to the model that we are
discussing, there was not enough time to erase differences in the initial temperatures by
heat transfer).
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2.3 Cosmological Inflation

Historically introduced to solve the monopole problem, cosmological inflation is prob-
ably the most natural and simple way to solve the issues of the hot big bang theory:
there was a phase before the hot Big Bang during which the homogeneity of the universe
and its correlated fluctuations were generated.
Mathematically, we need a decreasing Hubble radius:

d

dt
(aH)−1 < 0⇔ ä > 0; (2.10)

inflation is then a period of accelerated expansion. This latter requirement is satisfied
for ω < −1

3
; from observations, ω ' −1, which implies that ρ is almost constant and

a(t) = eHi(t−ti), where Hi is the Hubble parameter during inflation (almost constant)
and ti is the time at the beginning of inflation.
Requiring (a0H0)−1 < (aiHi)

−1, with ai the cosmic scale factor at the beginning of
inflation and a0 and H0 the cosmic scale factor and the Hubble parameter now, and
defining the number of e-foldings as

Ne = ln

(
ae
ai

)
, (2.11)

where ae is the scale factor at the end of inflation (notice that He ' Hi), it is possible
to find that N & 60 (model dependent result).

Slow-Roll parameters

Therefore, inflation is a very short period (of order 10−38 - 10−37s) of quasi exponential
expansion, during which ρ is almost constant. This translates into a condition for the
dimensionless parameter

ε = − Ḣ

H2
, (2.12)

which is
ε� 1 (2.13)

(notice that for ε = 0 exactly we get de Sitter spacetime, but inflation has to end).
On the other hand, for inflation to last enough time to have N & 60, we require

η = − ε̇

2Hε
+ 2ε (2.14)

to satisfy
|η| � 1. (2.15)
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Scalar Inflaton

The simplest assumption we can make is that a single scalar field φ(t, ~x) drives inflation.
Its lagrangian is

L = −1

2
(∂φ)2 − V (φ), (2.16)

the action is S =
∫

d3xdt
√
−gL and the energy-momentum tensor is Tµν = − 2√

−g
δS
δgµν

.

Given the validity of the Cosmological Principle, φ = φ(t), the spatial derivatives of the
field vanish and we introduce energy density and pressure via Tµ

ν = diag(−ρ, p, p, p).
Taking the variation of the action and imposing it to be 0, we get the equation of motion

φ̈+ 3Hφ̇+ Vφ = 0, (2.17)

where 3Hφ̇ is a friction term due to the expansion of the universe; moreover, it is possible

to find that ρ = φ̇2

2
+ V (φ) and p = φ̇2

2
− V (φ). Since ω ' −1, the kinetic energy has to

be almost negligible with respect to the potential energy. Therefore, H2
i ' 8πG

3
V (φ) and

3Hφ̇+ Vφ ' 0. As a consequence,

ε =
M2

p

2

(
Vφ
V

)2

(2.18)

and

η = M2
p

Vφφ
V
. (2.19)

Moreover,

Ne =

∫ ae

ai

d ln a =

∫ te

ti

H(t)dt =

∫ φe

φi

H

φ̇
dφ '

∫ φe

φi

1√
2ε

|dφ|
Mp

. (2.20)

For models of inflation in the context of string theory, see Chap. 6.
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Chapter 3

Supersymmetry

The Standard Model (SM) of particle physics is probably the greatest triumph of all
science, given its powerful and accurate experimental predictions. Nevertheless, it suffers
from important problems that cannot be ignored, both from a theoretical and from a
phenomenological point of view. In this chapter, we will briefly review why and how to
introduce Supersymmetry (SUSY) and how to include general coordinate transformations
in Supergravity (SUGRA).

3.1 SUSY

For this chapter we will mainly follow [3].

Motivation

Before dealing with the SUSY algebra and supersymmetric lagrangians, it is fundamen-
tal to understand from a physical point of view why SUSY and extra dimensions are
introduced conceptually. The SM of particle physics is not able to address the following
issues:

� Quantum Gravity: the SM describes electromagnetic, weak and strong inter-
actions from a microscopical perspective; but gravity cannot be explained in the
context of a Quantum Field Theory (QFT), since the Einstein-Hilbert action is
non-renormalizable and therefore incapable of predictions.

� Neutrino masses.

� Dark Matter.

� Gauge Coupling Unification.

12



� GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y : the SM is not elegant (it needs around 20
parameters which we should put by hand and it doesn’t explain why it has its
particular group structure, why there are 3 families of fermions, why there are 4
spacetime dimensions, why our world is chiral).

� Confinement.

� The hierarchy problem: Mew ' 102GeV, Mp ' 1018GeV; a so big fine tuning
between the electroweak scale and the cutoff scale (notice that the cutoff scale of
the SM is at most Mp since we know that we cannot neglect gravitational effects
at that scale) represents a naturalness issue.

� The strong CP problem.

� The cosmological constant problem: Λ ' 10−120M4
p ; this so small value (mea-

sured from the accelerated expansion of the universe) is another naturalness issue.

SUSY algebra

Recalling that the generators P µ and Mµν of the Poincaré group satisfy the algebra

[P µ, P ν ] = 0,

[Mµν , P σ] = i(P µηνσ − P νηµσ),

[Mµν ,Mρσ] = i(Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ),

(3.1)

we define a graded algebra via the following equation:

OaOb − (−1)ηaηbObOa = iCc
abOc, (3.2)

where ηa = 0 if Oa is a bosonic generator and ηa = 1 if Oa is a fermionic generator.

At this point, considering the No-go theorem by Coleman and Mandula [4] and its
generalization by Haag, Lopuszanski and Sohnius [5], we can at most generalise the
Poincaré algebra by adding the spinor generators QA

α and Q̄A
α̇ , where A = 1, ...,N ,

α = 1, 2, α̇ = 1̇, 2̇: if N = 1, we talk about simple SUSY ; if N > 1, we talk about
extended SUSY. In the following we will always (unless differently specified) deal with
simple SUSY.

The Poincaré algebra together with the commutation relations between the spinor
generators and the Poincaré generators and with the anticommutation relations between

13



the spinor generators themselves constitute the SUSY algebra:

[Qα,M
µν ] = (σµν)α

βQβ,

[Qα, P
µ] = [Q̄α̇, P µ] = 0,

{Qα, Qβ} = 0,

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ.

(3.3)

Superfields

We define a general scalar superfield S via the following expansion:

S(xµ, θα, θ̄α̇) =ϕ(x) + θψ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄N(x) + (θσµθ̄)Vµ(x)

+ (θθ)θ̄λ̄(x) + (θ̄θ̄)θρ(x) + (θθ)(θ̄θ̄)D(x),
(3.4)

where θα and θ̄α̇ are Grassmann variables.

S transforms as
δS = i[S, εQ+ ε̄Q̄] = i(εQ+ ε̄Q̄)S, (3.5)

where Qα = −i ∂
∂θα
− (σµ)αβ̇ θ̄

β̇ ∂
∂xµ

and Q̄α̇ = +i ∂
∂θ̄α̇

+ θβ(σµ)βα̇
∂
∂xµ

.

It is now useful to introduce a covariant derivative Dα such that DαS is a superfield:

Dα = ∂α + i(σµ)αβ̇ θ̄
β̇∂µ, D̄α̇ = −∂̄α̇ − iθβ(σµ)βα̇∂µ. (3.6)

At this point we can define a chiral superfield Φ as a superfield that satisfies

D̄α̇Φ = 0. (3.7)

This implies that
Φ(yµ, θα) = ϕ(yµ) +

√
2θψ(yµ) + θθF (yµ), (3.8)

where yµ = xµ + iθσµθ̄.

A vector superfield V instead satisfies the condition

V (x, θ, θ̄) = V †(x, θ, θ̄). (3.9)

Noticing that i(Λ − Λ†) is a vector superfield if Λ is a chiral superfield, defining a gen-
eralised gauge transformation via V 7→ V − i

2
(Λ − Λ†) and choosing appropriately the

components for Λ, we write V in the Wess Zumino gauge as

VWZ(x, θ, θ̄) = (θσµθ̄)Vµ(x) + (θθ)θ̄λ̄(x) + (θ̄θ̄)θλ(x) +
1

2
(θθ)(θ̄θ̄)D(x). (3.10)
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4D SUSY Lagrangians

Since the D term of a general scalar superfield and the F term of a chiral superfield
transform as total derivatives, the most general Lagrangian for a chiral superfield Φ is

L = K(Φ,Φ†)|D + (W (Φ)|F + h.c.), (3.11)

where K is called the Kähler potential (arbitrary real function of Φ and Φ†, it is a real
superfield) and W is called the superpotenatial (arbitrary holomorphic function of Φ,
it is a chiral superfield).
For example, for the Wess Zumino model, K = Φ†Φ and W = α + λΦ + m

2
Φ2 + g

3
Φ3.

Introducing a vector superfield in the Lagrangian means that K = Φ†e2qV Φ (to make
it invariant under generalised gauge transformations) and that we should add the ki-
netic term Lkin = f(Φ)(WαWα)|F + h.c., where f is the gauge kinetic function and
Wα = −1

4
(D̄D̄)DαV is the abelian field strength superfield, and the Fayet Iliopoulos

term LFI = ξV |D.

We now want to only quote the important results of the non-renormalization
theorems ([6] and [7] for details; and also notice that these are not claims about non-
perturbative corrections):
K gets corrections order by order in perturbation theory;
f gets corrections only at one loop;
W and ξ are not renormalized in perturbation theory.

SUSY breaking

We speak of broken SUSY if the vacuum state |vac〉 satisfies

Qα |vac〉 6= 0. (3.12)

From eq. 3.3, the energy E = P 0 satisfies E ≥ 0 for any state and E > 0 for broken
SUSY.
Moreover, given a chiral superfield Φ, we talk about F term breaking if 〈F 〉 6= 0: in this
case ψ is the goldstino.
Given instead a vector superfield V , we talk about D term breaking if 〈D〉 6= 0: in this
case λ is the goldstino.

Non-linear SUSY

Let us consider a chiral superfield

X = X0(y) +
√

2ψ(y)θ + F (y)θθ̄ (3.13)
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that satisfies a nilpotency constraint:

X2 = 0. (3.14)

This implies that the scalar component of X is not a propagating field:

X0 =
ψψ

2F
(3.15)

([8] for further details). We will use this construction in Chapter 7, where this sector
breaks supersymmetry and the fermionic component of X is the goldstone fermion.

3.2 SUGRA

Supergravity is the extension of SUSY to a local symmetry. From a physical point of
view, given eq. 3.3, local supersymmetry implies local Poincaré and so general coordinate
transformations (GCT) and gravity; the superpartner of the graviton (spin 2, gµν) is the
gravitino (spin 3

2
, ψαµ).

Using the superfield formalism [9],

Stot = SSUGRA + S[K,W, f, ξ], (3.16)

where S[K,W, f, ξ] is the SUSY action properly covariantised under GCT and

SSUGRA = −1

2

∫
d4x
√
−g[M2

pR+εµνρσ(ψ̄µσ̄νDρψσ−ψµσνDρψ̄σ)]+(terms with auxiliary fields).

(3.17)
The action is Kähler invariant under the transformations

K 7→ K + h(Φ) + h∗(Φ∗),

W 7→ e−h(Φ)W,
(3.18)

since it depends only on the invariant combination G = K + ln |W |2.
Defining the Kähler covariant derivative as

DiW = ∂iW +
W

M2
p

∂iK (3.19)

(notice that i is a field index), Kij̄ = ∂i∂j̄K as the Kähler metric and Kij̄ its inverse, the
scalar potential can be written as

VF = e
K

M2
p

(
Kij̄DiWDj̄W − 3

|W |2

M2
p

)
. (3.20)

16



Moreover, F i = e
K

2M2
pKij̄Dj̄W and the square of the gravitino mass is

m2
3/2 = e

K

M2
p
|W |2

M4
p

, (3.21)

so that VF = Kij̄F
iF

j̄ − 3m2
3/2M

2
p .

SUSY breaking in SUGRA

Differently from the global case, the energy is not positive definite (note by the way that
m3/2 → 0 as Mp →∞). Therefore, if SUSY is preserved, 〈F 〉 = 0 and we can have AdS
or Minkowski; if SUSY is broken, 〈F 〉 6= 0 and we can have AdS, Minkowski or dS.1

1dS stands for de Sitter solution: Λ > 0; AdS stands for anti-de Sitter solution: Λ < 0; Λ = 0 for
Minkowski spacetime.
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Chapter 4

String Theory

In this chapter we will briefly introduce the theory of strings, review what are the main
consequences of quantising the bosonic and the supersymmetric strings and discuss the
basic concepts related to Kaluza-Klein compactification and Calabi-Yau manifolds.

4.1 Bosonic String

In this section we will mainly follow [10].

Relativistic String

The action of a relativistic point particle is S = −m
∫
γ

ds, where γ is its worldline

and ds2 = ηµνdX
µdXν . In complete analogy, the Nambu-Goto action for a string

measures the surface area of the worldsheet embedded in target spacetime (see Fig. 4.1):

SNG = −T
∫

Σ

df = −T
∫

Σ

d2ξ
√
−G, (4.1)

where T is the string tension, ξ = (ξ0, ξ1) = (τ, σ) parametrises the worldsheet, Gab is
the induced metric defined via ds2 = ηµνdX

µdXν = ηµν∂aX
µ∂bX

νdξadξb = Gabdξ
adξb

and G = det(Gab).
Because of the factor

√
−G, it is hard to quantise the system using this action and we

instead introduce the Polyakov action:

SP = −T
2

∫
Σ

d2ξ
√
−hhab∂aXµ∂bX

νηµν , (4.2)

where hab is the worldsheet metric; solving its equations of motion, we find that this
action is equivalent to the Nambu-Goto one for hab = αGab ∀α.
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Figure 4.1: Worldline of a point particle, worldsheet of an open string and worldsheet of
a closed string. Source: [11].

The worldsheet theory can be seen as a 2d QFT with metric hab and D free scalars
Xµ; its symmetries are:

� diffeomorphism: ξa → ξ′a(ξ0, ξ1);

� Poincaré symmetry : Xµ → X ′µ = Λµ
νX

ν + V µ, Λ ∈ SO(1, D − 1);

� Weyl rescaling : hab(ξ) → h′ab(ξ) = e2ω(ξ)hab(ξ), where ω is an arbitrary real func-
tion.

We now define the Regge slope as

α′ =
1

2πT
(4.3)

and the energy-momentum tensor on the string worldsheet as

T ab =
−4π√
−h

δSP
δhab

. (4.4)

Note that T aa = 0 is an identity and T ab = 0 is the equation of motion of hab.
Since diffeomorphisms and Weyl rescalings are gauge redundancies, it is always possible
to choose the flat gauge, such that hab = diag(−1, 1). In this case, using light-cone
coordinates σ± = τ ± σ, the equations of motion read

(∂2
τ − ∂2

σ)Xµ = 0, ∂−∂+X
µ = 0. (4.5)
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The general solution to eq. 4.5 is of the form

Xµ(σ+, σ−) = Xµ
L(σ+) +Xµ

R(σ−). (4.6)

Imposing the constraint Xµ(τ, σ) = Xµ(τ, σ + π) and integrating we find the mode
decomposition

Xµ
L =

1

2
xµ +

l2

2
pµσ+ +

il

2

∑
n6=0

1

n
α̃µne

−2inσ+

,

Xµ
R =

1

2
xµ +

l2

2
pµσ− +

il

2

∑
n6=0

1

n
αµne

−2inσ− ,

(4.7)

where l =
√

2α′. Reality of Xµ implies that xµ and pµ are real and that (αµn)∗ = αµ−n.

Open String Quantisation

An open string is parametrised by σ ∈ (0, π). Varying the string action, we see that it
is possible to introduce two different types of boundary conditions:

� Neumann BCs: ∂σX
µ = 0;

� Dirichlet BCs: δXµ = 0.

For Neumann BCs the string end moves freely, while for Dirichlet BCs the string end is
confined to lie in a fixed hyperplane (see sect. 4.2, D-branes). As usual, Πµ = ∂L

∂Ẋµ .
To quantise the system, we impose the equal-time commutation relations

[Π̂µ(τ, σ), X̂ν(τ, σ′)] = −iδ(σ − σ′)δµν , [X̂µ, X̂ν ] = [Π̂µ, Π̂ν ] = 0; (4.8)

these imply that

[p̂µ, x̂ν ] = −iηµν , [α̂µm, α̂
ν
n] = mδm+n,0η

µν , [ ˆ̃αµm, ˆ̃ανn] = mδm+n,0η
µν . (4.9)

Introducing the Fourier modes of T++ and T−− as

Lm =
1

2

∞∑
n=−∞

αm−n · αn, L̃m =
1

2

∞∑
n=−∞

α̃m−n · α̃n, (4.10)

we can find that they satisfy the Virasoro algebra [Lm, Ln] = (m−n)Lm+n+A(m)δm+n,0,
where A(m) = (m3−m)D

12
. Moreover, H = L0, where H is the hamiltonian of the system.

The equation of motion Tab = 0 has to be implemented as a constraint on the physical
states as Lm |phys〉 = 0 for m ≥ 0. Writing L0 as L0 =: L0 : −a where a = D−2

24
, we

obtain two very important results:
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� D = 26 (critical dimension) in order to preserve Poincaré invariance;

� the mass-shell condition, H |phys〉 = 0, can be written as M2 = N−1
α′

, where N =∑
n>0 α−nαn.

Notice the presence of a tachyon at level 0 and of a massless vector (photon) at level 1.

Closed String Quantisation

In a completely analogous fashion to what was done for the open string, for the closed
string H = L0 + L̃0, a = 1, D = 26, the physical states satisfy the condition (N −
Ñ) |phys〉 = 0 and M2 = 2(N+Ñ−2)

α′
.

At level 0 we get again a tachyon; at level 1 we have the graviton Gµν (symmetric and
traceless tensor), the Kalb-ramond field Bµν (antisymmetric tensor) and the dilaton φ
(trace part).

4.2 Superstring

The bosonic string theory has two main problems:

� it predicts the existence of a tachyon, hence the vacuum is unstable;

� it does not contain fermions but only bosons, in contradiction with our experience.

The solution to these issues is the introduction of worldsheet supersymmetry (to the
ordinary coordinates σa we add fermionic coordinates θα). Making SUSY local (SUGRA,
Sect. 3.2) and exploiting diffeomorphism and Weyl invariance (so to choose a flat metric
and vielbein), we will need to quantize the action

S = − 1

2π

∫
d2σ[(∂aX

µ)(∂aXµ)− iψ̄µγa∂aψµ]. (4.11)

In a way similar to the bosonic case,

ψ =

(
ψ−
ψ+

)
. (4.12)

Since ψ± are fermionic, we can choose two different types of boundary conditions:

� Ramond BCs: ψ±(σ + π) = +ψ±(σ);

� Neveu-Schwarz BCs: ψ±(σ + π) = −ψ±(σ).
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Therefore, there will be 4 different sectors (R-R, R-NS, NS-R, NS-NS) and

ψµ+ =
∑
r

ψ̃µr e
−2ir(τ+σ), ψµ− =

∑
r

ψµr e
−2ir(τ−σ), (4.13)

where r ∈ Z for R BCs and r ∈ Z + 1
2

for NS BCs. Reality of ψ requires (ψµr )∗ = ψµ−r.
To quantize the system, we add to the commutation relations for α the condition

{ψµr , ψνs} = δr+s,0η
µν . (4.14)

Moreover,

Lm =
1

2
:

[∑
n∈Z

α−n · αm+n +
∑
r

(
r +

m

2

)
ψ−r · ψm+r

]
:, Gr =

∑
n∈Z

α−n · ψr+n.

(4.15)
Physical states are such that (Lm − aδm,0) |phys〉 = 0 for m ≥ 0 and Gr |phys〉 = 0 for
r ≥ 0.
Furthermore, a(R) = 0, a(NS) = D−2

16
and the critical dimension is D = 10. The

tachyonic scalar at level 0 is removed through the GSO projection [12].

Consistent Superstring Theories

There are 5 consistent superstring theories in 10 dimensional spacetime [13]:

� type I: theory of unoriented open and closed strings with N = 1 supersymmetries;

� heterotic SO(32): theory of closed strings (supersymmetrising only the left- or
right-moving half of the worldsheet theory) with N = 1 supersymmetries and
giving rise to an SO(32) Yang-Mills theory;

� heterotic E8 × E8: theory of closed strings (supersymmetrising only the left-
or right-moving half of the worldsheet theory) with N = 1 supersymmetries and
giving rise to an E8 × E8 Yang-Mills theory;

� type IIA: theory with N = 2 supersymmetries and stable Dp-branes for even p
(Sect. 4.2, D-branes);

� type IIB: chiral theory with N = 2 supersymmetries and stable Dp-branes for
odd p (Sect. 4.2, D-branes).

It is now known that these theories are not different but are instead different limits
of an 11 dimensional theory called M-theory [14]: M-theory is a theory of membranes
(M2-branes) whose UV behaviour is not well understood yet. Figure 4.2 shows a visual
representation of these relations between theories. In the following we will always deal
with type IIB superstrig theory since this is chiral and hence phenomenologically viable.
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Figure 4.2: The 5 consistent 10D superstring theories and the 11D M-theory are related
as depicted. Source: [15].

Type IIB String Theory

The field content of the type IIB string contains the metric GMN , the dilaton Φ and
the two-form B2 for the NS-NS sector and a zero-form (scalar) C0, a two-form C2 and a
four-form C4 for the R-R sector (the NS-R and R-NS sectors contain spinors and vector-
spinors, but we will only focus on the bosonic degrees of freedom). Following [15], we
write the action as

S = SNS + SR + SCS. (4.16)

SNS reads

SNS =
1

2κ2

∫
d10X

√
−Ge−2Φ

(
R + 4(∂Φ)2 − 1

2
|H3|2

)
, (4.17)

where R is the Ricci scalar, H3 = dB2 and 2κ2 = (2π)7(α′)4. SR and SCS are instead

SR = − 1

4κ2

∫
d10X

√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
(4.18)

and

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3, (4.19)

where Fp = dCp−1, F̃3 = F3 − C0 ∧ H3, F̃5 = F5 − 1
2
C2 ∧ H3 + 1

2
B2 ∧ F3 and we must

impose the self-duality constraint F̃5 = ∗F̃5 (these mathematical technicalities will be
discussed in the next section).
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We define the string coupling gs = eΦ and the combinations τ = C0 + ie−Φ and G3 =
F3− τH3. In the Einstein frame, i.e. performing the Weyl rescaling GE,MN = e−Φ/2GMN

(more on Jordan frame and Einstein frame in Sect. 8.1, String frame and Einstein
frame),

S =
1

2κ2

∫
d10X

√
−GE

(
RE −

|∂τ |2

2(Im τ)2
− |G3|2

2 Im τ
− |F̃5|2

4

)
− i

8κ2

∫
C4 ∧G3 ∧ Ḡ3

Im τ
.

(4.20)

D-branes

D-branes are solitonic objects charged under the gauge symmetry of the R-R fields. A
Dp-brane has p spatial dimensions and is charged under Cp+1; in type IIB, stable Dp-
branes have p odd (plus the NS5-brane, magnetically charged under B2).
The bosonic action for D-branes is

SDp = SDBI + SCS. (4.21)

The Dirac-Born-Infeld action is

SDBI = −gsTp
∫

dp+1σe−Φ
√
− det(Gab + Fab), (4.22)

where Gab = ∂XM

∂σa
∂XN

∂σb
GMN is the pullback of the metric of the target spacetime,

Tp =
1

(2π)pgs(α′)(p+1)/2
(4.23)

is the tension of the membrane and Fab = Bab + 2πα′Fab is the gauge-invariant field
strength. The Chern-Simons action is instead

SCS = iµp

∫
Σp+1

∑
n

Cn ∧ eF , (4.24)

where µp = gsTp.
An antibrane is an extended object which has the same tension as the corresponding
brane but with opposite R-R (Ramond-Ramond) charge.

4.3 Compactification

Superstring theory predicts that the number of spacetime dimensions is 10; since the
world in which we live seems to be 4 dimensional, this means that the other 6 spatial
dimensions must be compactified in some way.
The idea of extra dimensions is old almost as GR and in the following we will introduce
the Kaluza-Klein idea.
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Kaluza Klein theories

Following [3], let us imagine, for the sake of simplicity, our spacetime to be M4 × S1.
If the extra dimension x4 = y defines a circle of radius r, then y ≡ y + 2πr. A mass-
less scalar field ϕ(xM), M = 0, 1, 2, 3, 4, has action S5D =

∫
d5x∂Mϕ∂Mϕ and can be

expanded as ϕ(xµ, y) =
∑

n∈Z ϕn(xµ)einy/r. Its equation of motion ∂M∂Mϕ = 0 implies

∂µ∂µϕn(xµ) − n2

r2ϕn(xµ) = 0. This means that each Fourier mode ϕn is a 4D particle

with mass m2
n = n2

r2 and they constitute the Kaluza-Klein tower. Since S5D = S4D + ...,
keeping only the zero mode is called dimensional reduction, whether keeping all the
massive modes is called compactification.

Now let us consider the graviton GMN in D dimensions:

GMN =

{Gµν graviton
Gµn vectors
Gmn scalars

, (4.25)

where µ, ν = 0, 1, 2, 3 and m,n = 4, ..., D − 1. For D = 5, the Einstein-Hilbert action
reads S =

∫
d5x
√
|G|(5)R and in vacuum (5)RMN = 0. Considering excitations in addi-

tion to the background metric, GMN = φ−1/3

(
(gµν − κ2φAµAν) −κφAµ

−κφAν φ

)
;

in Fourier expansion

S4D =
∫

d4x
√
|g|(M2

p
(4)R− 1

4
φ(0)F

(0)
µν F (0)µν+ 1

6

∂µφ(0)∂µφ(0)

(φ(0))2 )+(∞ tower of massive modes):

this is a unified theory of gravity, electromagnetism and scalar fields.

From this toy model, we can now focus on the study of the 10 dimensional case;
following [15], we will consider geometries of the form

M10 =M4 ×X6, (4.26)

where X6 is a compact six-manifold: this procedure is called compactification of string
theory on X6.
An ansatz for vacuum configurations (i.e. Rµν = Rmn = 0) is

GMNdXMdXN = ηµνdx
µdxν + gmndymdyn, (4.27)

where ym are coordinates on X6, m = 1, ..., 6 and gmn is a metric on X6.
For non-vacuum configurations with maximal symmetry in the non-compact spacetime,
the ansatz is

GMNdXMdXN = e2A(y)ηµνdx
µdxν + e−2A(y)gmndymdyn, (4.28)

where gµν is the metric of a maximally symmetric spacetime, the warp factor A(y) is
a function on X6 and the internal metric gmn is not necessarily Ricci-flat.

25



We can now consider a simple example of dimensional reduction. Given the 10
dimensional geometry GMNdXMdXN = e−6u(x)ηµνdx

µdxν + e2u(x)ĝmndymdyn, where∫
X6

d6y
√
ĝ = V (4.29)

and the factors of the exponentials of u(x) are chosen so that the gravitational ac-

tion in 4 dimensions will appear in Einstein frame, S
(10)
EH = 1

2κ2

∫
d10X

√
−Ge−2ΦR10 =

1
2κ2

∫
d4x
√
−g
∫
X6

d6y
√
ĝe−2Φ(R4 +e−8uR̂6 +12∂µu∂

µu). If the string coupling is constant

over the internal space, S
(4)
EH =

M2
p

2

∫
d4x
√
−gR4 and

M2
p =

V
g2
sκ

2
. (4.30)

Calabi-Yau manifolds

Let us now introduce the very basics of the geometrical and mathematical aspects nec-
essary for compactification in string theory (we will only claim the main useful results,
without proving them; [10], [16] and [17] for further details).
The very first thing that is needed to say is that Calabi-Yau manifolds are complex man-
ifolds: complex manifolds are manifolds that locally look like Cn. Local bases of tangent
and cotangent space are ∂

∂zi
, ∂
∂z̄ī

and dzi, dz̄ ī, with zi = xi + iyi.

J := idzi ⊗ ∂

∂zi
− idz̄ ī ⊗ ∂

∂z̄ ī
(4.31)

is a tensor interpreted as a map T ∗p → T ∗p ∀p ∈ X. Moreover, a Calabi-Yau manifold is a
Kähler manifold: a Kähler manifold is a manifold with a metric (Riemannian manifold)
which is compatible with J (J is covariantly constant). For a Kähler manifold, the metric
can be locally written as

gij̄ =
∂2K

∂zi∂z̄ j̄
, (4.32)

where K is a real function defined in every patch and gij = gīj̄ = 0.
Lowering the second index of J with the metric, we get a rank-2 lower-index antisym-
metric tensor defining the Kähler 2-form:

J = igij̄dz
i ∧ dz̄ j̄. (4.33)

∀p ∈ X and any closed curve C (beginning and ending in p), we have a linear map
R(C) : Tp → Tp or R(C) ∈ SO(2n). The set of all R(C) forms the holonomy group
(which does not depend on the choice of p assuming X is connected).
Therefore, we define a Calabi-Yau 3-fold as a compact, complex Kähler manifold with
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SU(3) holonomy (SU(3) holonomy is equivalent to the existence of a covariantly con-
stant spinor and so to 4D unbroken SUSY; furthermore, SU(n) holonomy implies Ricci
flatness).
Let us now consider the curvature 2-form R(TX) = dzi∧dz̄ j̄Rij̄

k
l; defining the multi-form

c(X) = det(1 +R(TX)), we expand it as c(X) = 1 + c1(X) + c2(X) + ...; we say that
the 1st Chern class is 0 if c1 is exact (0 in cohomology). At this point, we quote Yau’s
theorem:
let X be a Kähler manifold and J its Kähler form. If the 1st Chern class vanishes, then
a Ricci flat metric with Kähler form J ′ in the same cohomology class (J − J ′ is exact)
can be given. This so called Calabi-Yau metric is unique.

A p-chain is defined as the formal sum of p-dimensional submaifolds of the compact
manifold X via cp =

∑
i αiSp,i. The boundary of each Sp,i, and so of cp, is a (p − 1)-

dimensional submanifold. A cycle is defined to be a chain without boundary: ∂cp = 0.

Note that ∂2 = 0. The homology groups are Hp = Ker(∂p)

Im(∂p+1)
.

p-forms are dual with respect to chains: ωp(cp) =
∫
cp
ωp =

∑
i αi
∫
Sp,i

ωp; and we in-

troduce the exterior derivative d as dp : ωp → ωp+1 = dωp, d
2 = 0. The cohomology

groups of the de Rham cohomology are Hp = Ker(dp)

Im(dp−1)
. A p-form ωp is called closed

if dωp = 0 and exact if ωp = dωp−1.
Homology and cohomology classes are dual vector spaces: Hp(X) = Hp(X)∗ and their
dimensions coincide: bp(X) = dimHp(X) = dimHp(X) (Betti numbers). If dimX = n,
[ωp] · [ωn−p] =

∫
ωp ∧ ωn−p and Hp(X) ∼= Hn−p(X) (Poincaré duality). A p-form ωp is

Poincaré dual to an (n− p)-cycle cn−p if
∫
cn−p

ωn−p =
∫
ωp ∧ ωn−p ∀ωn−p.

We define the Hodge star operator ∗ : ωp → (∗ω)n−p, (∗ω)µp+1...µn =
√
g

p!
ωµ1...µpεµ1...µn ,

(ωp, αp) =
∫
X
ωp ∧ ∗αp, the co-differential d† = (−1)p ∗−1 d∗ and the Laplace operator

∆ = d†d + dd†. A form is called harmonic if ∆ω = 0. It is possible to prove that on a
compact manifold X any form has a unique decomposition in an exact, a coexact and a
harmonic piece: ω = dα + d†β + γ with ∆γ = 0 (and β = 0 if ω is closed).
On a complex manifold of complex dimension n a 1-form can be expressed as ω(z, z̄) =
ω(z, z̄)idz

i+ω(z, z̄)īdz̄
ī = ω(1,0) +ω(0,1) and d = dzi ∂

∂zi
+dz̄ ī ∂

∂z̄ī
= ∂+ ∂̄, with ∂2 = ∂̄2 = 0.

The Dolbeault cohomology is defined via Hp,q = Ker(∂̄p,q)

Im(∂̄p,q−1)
with Hodge numbers

hp,q(X) = dimHp,q(X) and Hodge decomposition Hk = ⊕p+q=kHp,q.

The Hodge numbers are usually arranged in a Hodge diamond, which for a Calabi-
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Yau 3-fold (due to SU(3) holonomy) reads

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

. (4.34)

This implies the existence of a unique harmonic, holomorphic 3-form:

Ω = Ωijk(z)dzi ∧ dzj ∧ dzk. (4.35)

Let us consider the deformation of the metric gij̄dz
idz̄ j̄ → gij̄dz

idz̄ j̄ + δgij̄dz
idz̄ j̄ +

δgijdz
idzj + h.c. (maintaining Ricci-flatness would imply the existence of moduli): a

change of the metric of type δgij̄ can be directly interpreted as a change of the harmonic
representative of the Kähler form J . The number of these independent Kähler deforma-
tions is h1,1. h1,1 ≥ 1 since it is always possible to simply rescale the metric.
It is now useful to define a (2,1)-form representing a one-to-one map between distinct
complex structure deformations and linearly independent Dolbeault cohomology classes
of type (2,1):

δχ = Ωij
k̄δgk̄l̄dz

i ∧ dzj ∧ dz̄ l̄, (4.36)

or, equivalently,

δgij̄ = − 1

||Ω||2
Ω̄ī

klδχklj̄, (4.37)

with δΩ = δχ, ||Ω||2 = 1
3!

ΩijkΩ̄
ijk and δgij̄ = −iδJij̄.

A real projective space RP n is Rn+1 \ 0̄ modulo the equivalence relation x̄ ∼ λx̄ with
λ ∈ R \ 0. Analogously, the complex projective spaces CP n are the set of all (n + 1)-
tuples of complex numbers (not all zero) with the equivalence relation (z0, ..., zn) ∼
(λz0, ..., λzn) with λ ∈ C \ 0 (all CP n are compact). A chart φi : {class of (z0, ..., zn)} →
( z

0

zi
, ..., z

i−1

zi
, z

i+1

zi
, z

n

zi
) ∈ Cn is provided for the subset Ui of all equivalence classes in which

zi 6= 0. K(i)(x) = 1
2

ln
(

1 +
∑n

j=1 |xj|2
)

, where {x1, ..., xn} = { z0

zi
, ..., z

i−1

zi
, z

i+1

zi
, z

n

zi
}, is a

Kähler potential in Ui and gives rise to the Fubini-Study metric.

The Kähler form can be decomposed as

J = tαωα, (4.38)

where α = 1, ..., h1,1. The volume of the Calabi-Yau manifold is

V =
1

6

∫
X

J ∧ J ∧ J =
1

6
καβγt

αtβtγ. (4.39)
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The components of the vector tα measure the volumes of the different 2-cycles present in
the manifold. καβγ are integers called triple intersection numbers of the 4-cycles Poincaré
dual to ωα. The volumes of the dual 4-cycles are

τα =
1

2

∫
cα4

J ∧ J =
1

2
καβγt

βtγ. (4.40)

For the type IIB string,

cα =

∫
cα
C4, (4.41)

Tα = τα + icα, (4.42)

KK = −2 lnV , (4.43)

Kcs = − ln

(
i

∫
X

Ω ∧ Ω̄

)
, (4.44)

S = C0 + ie−φ = C0 +
i

gs
(4.45)

and
K = KK(Tα, T̄ ᾱ) +Kcs(z

α, z̄ᾱ)− ln
(
−i(S − S̄)

)
, (4.46)

where S is called axio-dilaton and za =
∫
Aa

Ω, with Aa cycles and a = 0, ..., h2,1.

Orientifolds

A requirement for flux compactifications with D-branes is cancellation of all tadpoles
associated with the charge and tension of the sources: the gravitational tadpole asso-
ciated to the positive tension of a D-brane requires the presence of a negative-tension
source. Orientifold planes (O3/O7 planes) are negative-tension extended objects that
are non-dynamical and appear at the fixed point loci (points or four-cycles in X6) of an
involution which reverses the orientation of the string worldsheet.
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Chapter 5

Moduli Stabilisation

Moduli are zero-energy deformations arising from the multitude of topologically different
cycles in usual Calabi-Yau manifolds. In the next section, we will briefly explore why
they are usually problematic [21].

5.1 No-scale structure

We talk about no-scale structure when the Kähler potential satisfies∑
I,J=Ti

KIJ̄∂IK∂J̄K = 3. (5.1)

If the superpotential is independent of the Kähler moduli, this implies that the potential
becomes

VF = eK
∑
I,J 6=Ti

KIJ̄DIWDJW. (5.2)

It is positive semi-definite, VF = 0 when DI 6=TiW = 0 and the minimum is not super-
symmetric if DTiW 6= 0.

No-scale model

Let us consider a particular example of no-scale structure. Let S, T and C be three
chiral superfields: S is the dilaton (closed string), ReS = 1/gs and ImS is an axion
with perturbative shift symmetry; T is the volume mode (closed string), vol(Y6D) =
(ReT )3/2l6S and ImT is an axion with perturbative shift symmetry; C denotes MSSM
fields (open string).
For this model, working in units so that Mp = 1, the Kähler potential

K = − ln
(
S + S̄

)
− 3 ln

(
T + T̄ − C̄C

)
(5.3)
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is at tree-level. On the other hand, the superpotential

W = W0 + C3 + Ae−aS (5.4)

is the sum of its tree-level contribution (W0 + C3, where C3 is a Yukawa-like term) and
its non-perturbative correction (Ae−aS).
In this case, the no-scale cancellation reads

KT T̄KTKT̄ +KTC̄KTKC̄ +KCT̄KCKT̄ +KCC̄KCKC̄ − 3 = 0, (5.5)

hence the potential is

VF = eK [(S + S̄)2DSWDS̄W̄ +KCC̄WCW̄C̄ ] ≥ 0; (5.6)

the minimum is at WC = 0 ⇔ 〈C〉 = 0 and DSW = 0 ⇔ −aAe−aS − W
S+S̄

= 0. The
first thing to notice is that if A = 0 the system in unstable because we get a run-away.
Since in general the non-perturbative expansion is Wnp =

∑
n≥1Ane

−naS, if we want

Wnp ' Ae−aS, we must require that aRe(S) � 1. For W0 > 0, 〈Im(S)〉 = (2k + 1)π
a
,

with k ∈ Z, and a 〈Re(S)〉 e−a〈Re(S)〉 ' W0

2A
: this means that W0 has to be tuned to be

exponentially small.
Therefore, 〈VF 〉 = 0 and T is a flat direction (modulus);

〈
FC
〉

= 0,
〈
F S
〉

= 0 but〈
F
T̄
〉

= −W0

2

√
gs
〈τ〉 , with T = τ + iθ: this implies that SUSY is broken (it is preserved

in the decompactification limit); T = (φT , ψT , FT ), ψT is the goldstino eaten up by the

gravitino and m3/2 =
√
gs
4

W0

〈τ〉3/2
.

The presence of the T flat direction is a problem for the following two main reasons:

� lack of predictability: it is not possible to compute the value of m3/2 nor the one
for V ;

� T is massless and would mediate long-range unobserved fifth force:
let us consider a stack ofN D7-branes wrapped around a 4-cycle: the theory in 4D is
a SUSY SU(N) with gauge kinetic function f = T ; therefore, Re(f) = 1

g2
SU(N)

= τ .

The 4D EFT lagrangian L ⊃ −[Re(f)FµνF
µν + Im(f)FµνF̃

µν ]. Writing τ(x) =

〈τ〉 + τ̂(x) and θ(x) = 〈θ〉 + θ̂(x) and since Lkin = ∂2K
∂Φi∂Φ̄j̄

∂µΦi∂
µΦ̄j̄, we define

the canonically normalised fields Gµν = 2
√
〈τ〉Fµν , σ(x) =

√
3
2
τ̂(x)
〈τ〉 and φ(x) =√

3
2〈τ〉C(x). Reintroducing factors of Mp, we find that Lint ⊃ 1

2
√

6
σ
Mp
GµνG

µν +

m2
φ

Mp
σ|φ|2.

This proves that σ couples gravitationally with everything and, since a fifth force
has not been seen, we need mτ & 1 meV.
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Therefore, we need to develop a potential for τ by including sub-leading corrections,
which could be: higher derivative corrections to K (α′ corrections), loop corrections to
K (gs corrections), non-perturbative corrections to W . In the following, we will partly
explore some of these possibilities.

Cosmological moduli problem

During inflation, the positive vacuum energy tends to induce instabilities of massless
scalar fields, quantum fluctuations of moduli contribute to the primordial perturbations
and the impact on cosmology is complex and profound: moduli can affect Big Bang
nucleosynthesis (BBN), overclose the universe, comprise some of the dark matter, decay
to dark radiation or mediate long-range interactions.
The equation of motion for σ is σ̈ + 3Hσ̇ + m2

σσ = 0. Hi � mσ during inflation,
subsequently the Hubble parameter H and the temperature T decrease, SM particles
are produced, H ∼ T 2

Mp
and σ starts oscillating when H ∼ mσ. Since σ interacts with

radiation as stated above, we need it to decay before BBN to not spoil its successes.

Considering that σ decays when H ∼ Γ and Γ ∼ 1
M2
p
m3
σ, Tdecay ∼ mσ

√
mσ
Mp

& TBBN ∼
1 MeV and so mσ & 30− 50 TeV, which is much more stringent than what found above
to evade the fifth force issue.

5.2 KKLT scenario

In the KKLT proposal [18], perturbative corrections are not considered and instead
non-perturbative contributions to the superpotential are used for constructing stabilized
vacua.
The constant Gukov-Vafa-Witten flux superpotential ([19] and [20]) is

W0 =
c

α′

∫
G3 ∧ Ω, (5.7)

where c is a constant. Non-perturbative effects can be due to strong gauge dynamics
(e.g. gaugino condensation) on D7-branes or to instanton contributions from Euclidean
D3-branes:

W = W0 +

h1,1
+∑
i=1

Aie
−aiTi + ...1. (5.8)

Under these assumptions,
K = −2 ln(V). (5.9)

1h1,1 = h1,1+ + h1,1− , where the subscript denotes the parity of the corresponding two-forms under the
orientifold action; Sect. 4.3, Orientifolds.
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Figure 5.1: Potential in a KKLT scenario with h1,1
+ = 1. The blue line shows the potential

without uplifting, the orange one with uplifting to de Sitter. Source: [21].

Considering for simplicity h1,1
+ = 1, V = (T + T̄ )3/2, the vacuum solution is supersym-

metric anti-de Sitter space (Fig. 5.1); moreover, the volume is stabilised in a controlled
limit only for an exponentially small value of the flux superpotential (W0 � A).

5.3 Large Volume Scenario

A perturbative correction to the Kähler potential comes from an (α′)3 curvature correc-
tion in 10D; this term is part of the classical, higher-curvature 10D SUGRA theory and
arises via a four-loop correction to the β-function of the worldsheet, rather than from a
loop in spacetime. In the 4D EFT

K = −2 ln

(
V +

ξ

2g
3/2
s

)
, (5.10)

where ξ = −χ(X6)ζ(3)
2(2π)3 , with χ(X6) the Euler characteristic of X6 and ζ(3) ' 1.202 is

Apéry’s constant.
In the Large Volume Scenario, stabilization of the Kähler moduli is achieved by balancing
the leading α′ correction to K against the non-perturbative superpotential.
Under these assumptions, the perturbative term dominates over the non-perturbative
terms at very large volume; competition between these can occur if one or more cycles are
exponentially smaller than the largest cycles. Requiring h1,1

+ > 1 and dividing the Kähler
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moduli into two classes, those corresponding to big and small cycles {Ti} = {T ρb }
⋃
{T rs },

with r = 1, ..., Ns and ρ = 1, ..., Nb = h1,1
+ − Ns, we consider the large volume limit

V → ∞ with arsτ
r
s = lnV (a canonical class of examples of LVS vacua arise in the so

called Swiss-cheese Calabi-Yau manifolds). All of this implies the existence of a
minimum at exponentially large volume: this vacuum solution is non-supersymmetric
AdS.

5.4 Uplifting to de Sitter

Summarising, in KKLT the cycles are not hierarchically different in size, the classical
flux superpotential W0 is fine-tuned to be exponentially small and the AdS vacuum is
supersymmetric; in LVS some cycles are exponentially larger than others, W0 is of order
unity and the AdS vacuum is non-superymmetric. However, in both scenarios some form
of uplifting effect is necessary to achieve a dS vacuum.
Therefore, both vacua are stabilised (there are no instabilities or flat directions) but are
unsuitable for a realistic cosmology, since to describe the early universe (inflation) and
the late universe (dark energy) we need de Sitter solutions (i.e. vacua with positive
energy).
In order to have uplift, it is needed a sector that breaks SUSY dynamically in a parametri-
cally controlled manner and makes a positive contribution to the vacuum energy without
disrupting the stabilisation of the AdS vacuum (a computation of physical parameters
in the original anti-de Sitter vacuum will not necessarily give an accurate prediction for
these quantities in the de Sitter solution) [22].
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Chapter 6

Brane Inflation

Before exploring the possible inflationary scenarios in the context of string theory (fol-
lowing [15]), let us recall that the fundamental scale of string theory is the string scale
Ms = (α′)−1/2. At energies below Ms, only the massless states of the string are excited
and the theory reduces to an effective SUGRA in ten dimensions. Compactification on
an internal space of volume VM−6

s introduces the Kaluza-Klein scale MKK = MsV−1/6.
It is usually assumed that MKK � Ms, so that the theory is a 10D supergravity for
intermediate energies, while it reduces to a 4D effective theory at energies lower than
MKK . The 4D Planck scale is a derived scale (eq. 4.30): Mp ∼ 1

gs
( Ms

MKK
)3Ms � Ms

if assuming that the metric in the Einstein frame and the metric in the string frame
are the same at the vacuum and Mp ∼ ( Ms

MKK
)3Ms � Ms if assuming that volumes are

frame dependent also in the vacuum (Sect. 8.1, String frame and Einstein frame).
The scale of supersymmetry breaking MSUSY in the early universe is instead the highest
scale of SUSY breaking that is unrelated to inflation. If H > MSUSY , supersymmetry
is only spontaneously broken during inflation and can partially protect against radiative
corrections.
In this chapter we will only explore models of brane inflation, other interesting possibil-
ities are axion inflation, Kähler modulus inflation and dissipation inflation.

6.1 Unwarped Brane Inflation

In this section we will consider inflationary models in unwarped regions.

D3/D7 Inflation

Let us work in a background geometry which is a compactification on the orientifold
K3 × T 2/Z2. At each of the four fixed points there are four D7-branes atop an O7-
plane, all of which wrap the K3 manifold. Adding a spacetime-filling D3-brane sitting
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on T 2/Z2, its position on T 2/Z2 relative to the stack of D7-branes is proposed to be the
inflaton φ. N = 2 SUSY is preserved in 4D, there is no potential for D3-brane motion
and the inflaton is massless.
But introducing the two-form flux F2 in the D7-brane worldvolume, when the flux is not
self-dual in the worldvolume, breaks SUSY and the D3-brane feels a force: the world-
volume flux corresponds to a field dependent Fayet-Iliopoulos D-term ξ. It is possible to
prove that

VD(φ) =
g2ξ2

2

(
1 +

g2

16π2
U(x)

)
, (6.1)

where g is the coupling of the U(1) gauge field, x = φ√
ξ

and U(x) = (x2 +1)2 ln(x2 + 1)+

(x2 − 1)2 ln(x2 − 1)− 4x4 lnx− 4 ln 2.
Mixing of D3-brane position moduli with Kähler moduli implies that stabilisation of the
volume generically leads to stabilisation of the D3-brane position; moreover, there are
no inflaton mass terms from Kähler potential couplings.
A model of D-term inflation in a compactification stabilised by superpotential terms for
the moduli is not a pure D-term scenario and the moduli sector introduces masses in the
inflaton sector:

V (φ) = VD(φ)− m2

2
φ2 +

λ

4
φ4. (6.2)

Inflation in the D3/D7 model is possible once moduli stabilization is properly incorpo-
rated but necessarily involves fine-tuning; the kinematical field range ∆φ of the canonically-
normalized inflaton can be super-Planckian (∆φ > Mp) if the T 2/Z2 is highly anisotropic.

Fluxbrane Inflation

A possibility to obtain inflation with D-branes is to consider a pair of branes separated in
the compact space, almost parallel and misaligned by a small relative angle θ. θ leads to
controllably small SUSY breaking and to a force that draws the branes together, merging
and reheating the universe.
Generically, the potential for the interaction of a brane-antibrane pair is too steep for
successful inflation in an unwarped compact space. Weak SUSY breaking by θ � 1
would diminish the Coulomb force so that the interaction potential could drive slow-roll
for non-compact internal dimensions, but the effect of compactification is to make the
interaction potential for the branes comparable to the vacuum energy.
In a compactification on an O3/O7 orientifold of a Calabi-Yau three-fold X6, let us
suppose that there is a continuous family Σ4 of four-cycles, on any representative of
which a D7-brane can be wrapped. The inflaton coordinate is the effective separation of
a pair of intersecting D7-branes:

V (φ) = VF (φ) + VD(φ), (6.3)
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where VF (φ) results from moduli stabilisation and

VD(φ) = V0

(
1 + α ln

(
φ

φ0

))
, (6.4)

with V0, α and φ0 constants.
The D7/D7 interaction potential due to flux can be made flat enough for inflation to
happen.

6.2 Relativistic Brane Inflation

Inflation in systems driven by slowly moving D-branes suffers from the η problem (i.e.
|η| ∼ O(1)). Therefore, in this section we will consider D-branes that move relativisti-
cally.

Dirac-Born-Infeld Inflation

Let us imagine a framework with a spacetime-filling D3-brane probing AdS5 × S5:

ds2 =
( r
L

)2

ηµνdx
µdxν +

(
L

r

)2

(dr2 + r2dΩ2
S5), (6.5)

where L4

(α′)2 = 4πgsN and N is the total D3-brane charge of the background. The D3-
brane lagrangian reads

L = −φ
4

λ

(√
1 +

λ

φ4
(∂φ)2 − 1

)
− V (φ), (6.6)

with
φ =

√
T3r (6.7)

and λ = T3L
4 = N

2π2 .
In this spacetime, a probe D3-brane does not feel any force, but a potential for its
motion is generated by physical effects related to the IR and UV deformations of the
spacetime (see Sect. 6.3 for more details on the Klebanov-Strassler geometry). Both
SUSY breaking in the IR (for example by an anti-D3-brane) and SUSY breaking and
moduli stabilisation in the UV lead to a potential for the D3-brane position.
Considering warped backgrounds,

L = −T (φ)

(√
1 +

(∂φ)2

T (φ)
− 1

)
− V (φ), (6.8)
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where T (φ) = T3e
4A(φ) and e4A(φ) is the warp factor. Generalizing the metric in eq. 6.5,

we use Calabi-Yau cones approximating finite warped throat regions:

ds2 = e2A(r)ηµνdx
µdxν + e−2A(r)(dr2 + r2dΩ2

X5
), (6.9)

where X5 is an arbitrary Einstein manifold, e−4A(r) ' L4

r4 , L4

(α′)2 = 4π4gsN
Vol(X5)

and Vol(X5) is
the volume of X5 in string units. In this case, as in eq. 6.32,

∆φ

Mp

≤ 2√
N
. (6.10)

Defining the Lorentz factor

γ =

(
1− φ̇2

T (φ)

)−1/2

, (6.11)

relativistic brane dynamics occurs for γ � 1. From the lagrangian in eq. 6.6, we compute
the stress-energy tensor and it is the one of a perfect fluid with ρ = (γ − 1)T + V and

p = (γ − 1)T
γ
− V . Therefore, 3M2

pH
2 = (γ − 1)T + V (φ) and φ̇ = −2M2

pH
′

γ
, where

H ′ = dH
dφ

.

We can now find that ε = − Ḣ
H2 =

2M2
p

γ
(H
′

H
)2 and η̃ = ε̇

Hε
=

2M2
p

γ
[2(H

′

H
)2 − 2H

′′

H
+ H′γ′

Hγ
].

The slow-roll parameters are suppressed for large γ. Accelerated expansion occurs if
the potential energy dominates over the kinetic energy: V

γT
� 1. From these relations

we find that γ2 =
M2
p

3
(V
′

V
)2 V
T
� 1 (notice that, since the D3-brane is relativistic and is

accelerated by the potential, it will emit gravitational and scalar synchrotron radiation
into the compact dimensions; losses due to bremsstrahlung dominate the dynamics in a
significant fraction of parameter space, including the regime of weak string coupling and
large volume).
DBI inflation is a particular case of P (X) theories:

S =

∫
d4x
√
−g
(
M2

p

2
R + P (X,φ)

)
, (6.12)

where X = −1
2
(∂φ)2 and P is an arbitrary function. For DBI inflation

P (X,φ) = −T (φ)

(√
1− 2X

T (φ)
− 1

)
− V (φ). (6.13)

A non-trivial warp factor can lead to a field dependence of the sound speed. DBI inflation
in a CY cone cannot have both detectable non-Gaussianity and detectable tensors.
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6.3 Warped Brane Inflation

The positions of localized sources in a string compactification correspond to scalar fields
in the 4D EFT. Recall that a D3-brane and an anti-D3-brane attract each other both
gravitationally and through the C4 potential. The Coulomb interaction of the brane-
antibrane pair decreases with increasing distance: in order to drive slow-roll inflation,
the distance between the branes should be larger than the size of the compact space [25].
The KKLMMT proposal [26] consists in noticing that warping of extra dimensions
suppresses the Coulomb force between the brane-antibrane pair (flattening the potential
even for small separations) and that the leading contributions to the curvature of the
inflaton potential come from the physical effects that stabilise the moduli.

AdS

For a stack of N D3-branes in 10D Minkowski spacetime, the metric is

ds2 = e2A(r)ηµνdx
µdxν + e−2A(r)(dr2 + r2dΩ2

S5), (6.14)

where e−4A(r) = 1+L4

r4 and L4 = 4πgsN(α′)2. For r � L, this metric reduces to AdS5×S5

(eq. 6.5). For a D3-brane

SD3 = −T3

∫
d4σ
√
− det(GE

ab) + µ3

∫
C4. (6.15)

The D3-brane is filling the spacetime and r is its radial location in AdS. Therefore,

L = −T3e
4A(r)

√
1 + e−4A(r)gµν∂µr∂νr + T3e

4A(r). (6.16)

The canonically normalised field is

φ =
√
T3r (6.17)

and, for small velocities (ṙ2 � e4A(r)),

L ' −1

2
(∂φ)2. (6.18)

The electrostatic repulsion from the four-form background cancels the gravitational at-
traction in the AdS background: a single D3-brane does not experience any force.1

1For the antibrane the force exerted by gravity and the four-form field are of the same sign and add.
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Conifold

A 6D Calabi-Yau cone X6 for which, in C4,

4∑
A=1

z2
A = 0 (6.19)

is called singular conifold ; it describes a cone, topologically equivalent to S2×S3, whose
base is the Einstein manifold2 T 1,1:

T 1,1 = [SU(2)× SU(2)]/U(1), (6.20)

dΩ2
T 1,1 =

1

9

(
dψ +

2∑
i=1

cos θidφi

)2

+
1

6

2∑
i=1

(
dθ2

i + sin2 θidφ
2
i

)
, (6.21)

where θi ∈ [0, π], φi ∈ [0, 2π] and ψ ∈ [0, 4π] [27].
Therefore,

k(zα, z̄α) =
3

2

(
4∑

A=1

|zA|2
)2/3

. (6.22)

A stack of N D3-branes at zA = 0 backreacts on the geometry:

ds2 = e2A(r)ηµνdx
µdxν + e−2A(r)(dr2 + r2dΩ2

T 1,1), (6.23)

where e−4A(r) = 1 + L4

r4 and L4

(α′)2 = 27π
4
gsN .

The base manifold in the singular conifold has zero size for zA = 0. To avoid this
curvature singularity, we introduce the deformed conifold via

4∑
A=1

z2
A = ε2. (6.24)

Far from the tip of the cone the metric is approximately that of the singular conifold, at
the tip the S3 is finite and S2 has zero size.

The deformed conifold contains two independent three-cycles, i.e. the S3 at the tip
(A-cycle) and the Poincaré dual three-cycle (B-cycle). The background three-form fluxes
are quantized:

1

(2π)2α′

∫
A

F3 = M (6.25)

2An Einstein manifold is a manifold satisfying Rab ∝ gab.
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Figure 6.1: Klebanov-Strassler is the part of the warped throat in this geometry. Source:
[28].

and
1

(2π)2α′

∫
B

H3 = K, (6.26)

with M and K integers such that M � 1, K � 1. Under these conditions,

ds2 = e2A(r)ηµνdx
µdxν + e−2A(r)ds̃2, (6.27)

where ds̃2 is the metric of the deformed conifold: this is the Klebanov-Strassler ge-
ometry.
This 10D solution involving a non-compact warped deformed conifold does not give rise
to dynamical gravity when dimensional reducing to 4D; hence, we study a flux compact-
ification with a finite warped throat region approximated by a finite portion of the KS
solution: from r = rIR (the tip) to r = rUV (an ultraviolet cutoff). The throat attaches
to a bulk space (Fig. 6.1).
The IR geometry is smooth and the A-cycle has radius rA =

√
gsMα′. Far from the tip

e−4A(r) =
L4

r4

(
1 +

3gsM

8πK
+

3gsM

2πK
ln

(
r

rUV

))
, (6.28)

with L4

(α′)2 = 27π
4
gsN and N = MK. The warp factor is minimal for r = rIR:

eAIR = e−
2πK
3gsM . (6.29)
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The total compactification volume is

V = VB + VT , (6.30)

where VB is the volume of the bulk space and VT is the throat volume:

VT =

∫
dΩ2

T 1,1

∫ rUV

rIR

drr5e−4A(r) = 2π4gsN(α′)2r2
UV . (6.31)

From eq. 4.30, M2
p >

Nr2
UV

4(2π)3gs(α′)2 and, since ∆φ2 < T3r
2
UV =

r2
UV

(2π)3gs(α′)2 ,

∆φ

Mp

≤ 2√
N

(6.32)

(see eq. 6.10). Considering that N � 1 for the SUGRA approximation to be valid,
observable gravitational waves are not allowed because of the Lyth bound, i.e. ∆φ &(

r
0.01

)1/2
.

Potential

An anti-D3-brane added to the compactification minimises its energy being stabilised at
the tip of the conifold; it perturbs the background SUGRA solution and the D3-brane
experiences a force described by the Coulomb potential

VC(φ) = D0

(
1− 27

64π2

D0

φ4

)
, (6.33)

where
D0 = 2T3e

4AIR , (6.34)

with D0 � 2T3. According to the KKLMMT proposal, this potential is flat enough
for slow-roll inflation to happen even for modest separations. To couple the system to
dynamical gravity, we need to include

VR(φ) =
1

12
Rφ2. (6.35)

In 4D dS, R = 12H2. Therefore,

V (φ) = VC(φ) + VR(φ) + ... ' V0 +H2φ2 (6.36)

and η ' 2
3
: the curvature coupling causes the eta problem.

Notice that the volume of the compactification is pertubed by the D3-brane and so
depends on its position: V = V(φ).
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Backreaction

The backreaction of a D3-brane on the compactification volume leads to

V = (T + T̄ − γk(zα, z̄α))3/2, (6.37)

where γ = T3

6
(T + T̄ )|rIR , and

K(ZI , Z̄I) = −3 ln
(
T + T̄ − γk(zα, z̄α)

)
. (6.38)

On the other hand,

|∆W | ∝ e−
2π
Nc
V4 , (6.39)

under gaugino condensation on a stack of Nc D7-branes, with V4 the volume wrapped
by the D7-branes.

Quasi-Single-Field Inflation

The natural mass scale of the EFT for D3-brane inflation is the Hubble parameter. The
D3-brane position is parametrised by six real scalar fields that hence will in general have
masses of order H. For inflation to occur, a scalar field should have, for some reason,
a mass m � H. If the others have masses m � H, inflation is effectively governed by
single-field dynamics, but generically their evolutions and fluctuations are not negligible
and therefore quasi-single-field inflation happens.

Phenomenology

In all explored models, inflation is confined to a small part of the throat, where the poten-
tial is tuned flat, and the tensor amplitude is much smaller than the maximum permitted
by the geometric bound. Therefore, in warped D-brane inflation, gravitational waves are
unobservable.
As already announced, a proper description of warped brane inflation needs us to take
into account multi-field effects. We now want only to state three important points:
(i) multi-field effects are usually exponentially suppressed after 10 e-folds but are signifi-
cant before; (ii) the lightest field is often tachyonic, while one field has mass m ∼ H and
the others have masses m > 3

2
H. So there is one instability, two fields fluctuate and five

entropic perturbations decay exponentially after exiting the horizon (adiabatic limit);
(iii) if Ne � 70 for a model, single-field is a valid approximation; if Ne < 70, multi-field
effects influence the observable anisotropies.
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Chapter 7

RG-Induced Modulus Stabilisation:
Perturbative de Sitter Vacua

Mainly following [1], in this chapter we will adapt to string theory a perturbative method
for stabilising moduli without leaving the domain of perturbative control. The standard
renormalization-group resummation of leading logarithms allows us to work at fixed
order in the perturbative parameter α and to all orders in α ln τ , where τ is an extra-
dimensional modulus, minimising the potential at τ ∼ e1/α. This formalism can be
applied to warped D3−D3 inflation, evading the η-problem and providing a dynami-
cal mechanism whereby inflationary scales are much larger than late-time physical (for
instance SUSY breaking) scales.

7.1 The Dine-Seiberg problem

Weak string coupling is an expansion in powers of the string dilaton eφ̂ = 1/s and the
extra-dimensional size is expressed via the volume modulus V = τ 3/2 (it measures its
overall volume in string units). Fields like s and V are moduli and need to be stabilised to
make practical predictions (since particle masses and couplings depend on the stabilised
values). The potential to be minimised is generically an expansion of the form

V (s, τ) =
∑
n,m

Anms
−nτ−m. (7.1)

As pointed out by Dine and Seiberg in [24], this leads to a problem:
if the leading term is positive, the scalar potential goes to zero as 1/s→ 0 and τ →∞,
but this corresponds to 10 dimensional flat spacetime (it does not describe what we
see around us and lies beyond the reach of the 4D effective theory). Dine and Seiberg
claimed in their paper that, if the potential has a non trivial minimum (required to avoid
the runaway), different orders in the expansion must compete with one another, but this
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would signal the breakdown of the perturbative expansion itself. Therefore, the generic
weak-coupling situation is a runaway without a non trivial minimum and, on the other
hand, if it exists, a non trivial minimum should generically be at strong coupling with
an extra-dimensional volume of order the string scale (s ∼ τ ∼ O(1)).
Let us now consider, instead, the expansion

V (τ) =
∑
n

An(s)τ−n, (7.2)

where An depends on all of the other moduli. The key observation is that An is not
independent on τ but generically can depend logarithmically on it (quantum corrections
introduce anomalous scalings into effective interactions that, in a perturbative regime,
become logarithmic dependences on ratios of particle masses and imply logarithmic de-
pendences on τ , since in string theory particle masses depend on it).
Therefore, standard renormalization group (RG) methods can be used to resum leading-
log effects. For weak coupling, τ is stabilised at exponentially large values (explaining
large hierarchies) without losing perturbative control.

7.2 de Sitter vacua

As already anticipated, in this section we will show how RG techniques can be used to
stabilise moduli maintaining perturbative control and how accidental approximate scale
invariance allows, in this context, SUSY breaking and dS solutions with large hierarchies.

4D perspective

The minimal supersymmetric and accidental approximate scaling symmetric low energy
4D EFT requires the gravity multiplet and a chiral superfield T containing the complex
scalar

T =
1

2
(τ + ia), (7.3)

where τ is the dilaton and a is an axion. This SUGRA effective theory is described at the
two-derivative level by the Kähler potential, the superpotential and (if there are gauge
multiplets) the gauge kinetic function. We consider for the moment

W = w0 (7.4)

to be a constant and, according to what already stated,

e−K/3 = τ − k +
h

τ
+ ..., (7.5)
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where we neglect higher order in 1/τ and we do not track the s dependence; we will search
for minima of the potential where this approximation is valid, i.e. for τ � 1. In a string
context, the field τ is the extra-dimensional volume (a Kähler modulus) and hence the
effective theory condition is equivalent to having geometries that are much larger than
the string scale. Notice also that we are working in units such that Mp = 1 and we will
reinsert the appropriate factors when useful for an appropriate physical interpretation.
Since quantum effects could complicate the scaling properties of subdominant terms in
the lagrangian, we consider that k = k(ln τ) and similarly for the terms that we are now
going to neglect. The scalar potential is

V = eK(K T̄ TDTWDTW − 3|W |2), (7.6)

where DTW = WT +KTW ' − 3
τ
w0. Therefore

V ' −3kT T̄
P2
|w0|2 '

3(k′ − k′′)
τ 4

|w0|2, (7.7)

where we neglect terms of order O(τ−5), define

P = e−K/3 (7.8)

and denote differentiation with respect to x = ln τ with primes. Note that, if h and
other subdominant terms (first arising at order O(τ−5)) vanish and k is independent on
T , V has a no-scale structure and becomes zero. Notice also that the kinetic terms are
given by

− Lkin√
−g

=
1

2
R +KT T̄∂µT∂

µT̄ ' 1

2
R +

3

τ 2
∂µT∂

µT̄ . (7.9)

We can then write

V (τ) ' U(ln τ)

τ 4
(7.10)

and let us assume that k acquires its dependence on ln τ via a perturbative expansion in
a running dimensionless coupling αg � 1:

k = k0 + k1αg +
k2

2
α2
g + .... (7.11)

In general, the RG evolution introduces logarithms of mass ratios which could develop a
dependence on P (e.g. particles localised on D3 and D7-branes have masses that depend
differently on the volume modulus in IIB compactifications) and therefore the running
of αg is expressed through

τ
dαg
dτ

= β(αg) = b1α
2
g + b2α

3
g + .... (7.12)
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Neglecting the sub-leading terms,

αg(τ) =
αg0

1− b1αg0 ln τ
, (7.13)

where αg0 is an integration constant. This implies that

U = U1α
2
g − U2α

3
g + U3α

4
g + .... (7.14)

We now assume that U1, U2 and U3 are positive and satisfy

U1

U2

∼ U2

U3

∼ ε, (7.15)

where ε � 1 is a numerical parameter. In this case ∂V
∂τ
|τ0 = 0 for α0 ∼ ε and τ0 ∼ e1/ε

if ε � αg0 and b1 < 0, validating the expansion in 1/τ a posteriori. There is a local
minimum for the potential at τ0 and a local maximum at τ1 > τ0 if 9U2

2 > 32U1U3; the
potential is positive at the minimum for U2

2 < 4U1U3 (this is the case in which we are
interested). Moreover, U(τ0) ∼ ε5 and SUSY is broken since F T 6= 0 (notice that WT = 0
and KTW

M2
p
→ 0 as Mp →∞: SUSY is not broken in the global case).

10D perspective

The action for the massless bosonic fields in the 10D SUGRA below the string scale, at
the two-derivative level, is

S =

∫
d10x

√
−g̃
(
R̃− |∂S|2

(ReS)2
− |G3|2

ReS
− F̃ 2

5

)
+

∫
C4 ∧G3 ∧G3

ReS
, (7.16)

where S = s − iC, C is an axionic scalar, G3 = H3 + iSF3, H3 = dB2, F3 = dC2 and
F̃5 = dC4 + 1

2
C2 ∧H3 + 1

2
B2 ∧ F3.

This action has an accidental SL(2,R) symmetry under which S → aS−ib
icS+d

and G3 →
G3

icS+d
with ad − bc = 1 and an accidental approximate scale invariance under which

g̃MN → λg̃MN , S → S, B2 → λB2, C2 → λC2 and C4 → λ2C4 (the tree-level action
scales like S → λ4S and the volume modulus scales like V → λ3V). These symmetries
are broken by α′ (in 4D the α′ expansion is in inverse powers of V) and loop (in 4D the

string loop expansion is in powers of eφ̂) corrections to the effective action (the volume
modulus and the string dilaton are their pseudo-Goldstone dilaton modes).
The leading form for K is

K(T, T̄ ) = −2 lnV = −3 ln τ. (7.17)

The no-scale structure (KĀBKĀKB = 3) and the condition WT = 0 (due to the axionic
shift symmetry of a; notice that W could depend on T exponentially if this symmetry
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is anomalous) imply that the scalar potential does not depend on τ , which is then a
modulus not fixed at leading order in α′ and gs. Stabilisation can occur via mechanisms
such as those described in Chapter 5, but we here consider only perturbative corrections
(in powers of 1/s and 1/τ) to K and no dependence on T for W :

e−K/3 = s1/3τ
∑
n,m,r

Anmr
(

1

s

)n (s
τ

)(m+r)/2

, (7.18)

with Anmr functions of all the other moduli and of ln τ . Being interested only in the
volume dependence,

K(T, T̄ ) = −3 lnP , (7.19)

with

P(τ) = τ

(
1− k

τ
+

h

τ 3/2
+O

(
1

τ 2

))
, (7.20)

where we assume g = 0 in the expansion P = τ(1+ g√
τ
− k
τ
+...) since no known Calabi-Yau

produces these terms and the corresponding corrections to the scalar potential, which
are of order τ−7/2, are not generically present at leading order in string loops. Note that
if k were T independent, KĀBKĀKB = 3 for P ' τ − k, which is the extended no-scale
property; in this case, the leading contribution to the scalar potential would come from
h at order τ−9/2 ((α′)3 corrections).
In this approach, instead of balancing (and hence possibly ruining the validity of the
expansion) different powers of 1/τ , powers of αg ln τ are balanced to obtain the minimum
via the requirement that k = k(ln τ). This gives an exponentially large volume and 1/s
acquires naturally the role of αg; hence, similarly to LVS, a second expansion modulus
is required (but this does not need to be a Kähler modulus and an uplifting mechanism
to dS is not necessary).

Yoga models

As explored in [29], in order to have the minimum of the scalar potential at the value of
the observed dark energy density, τ0 & 1026 is needed and so the τ field and its axionic
partner are light enough to be cosmologically active in the recent universe (notice also,
from eq. 7.9, that the axion decay constant is of order Mp

τ0
). Moreover, so large values

for τ0 are problematic in the present context since

Ms ∼
Mp

V1/2
∼ Mp

τ 3/4
(7.21)

and

MKK ∼
Ms

V1/6
∼ Mp

V2/3
∼ Mp

τ
. (7.22)
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The constraint from MKK can be evaded if not all extra dimensions have the same
size because the lower bound on MKK can be much smaller than 104GeV if these extra
dimensions can only be probed using gravitational strength interactions. On the other
hand, Ms & 10 TeV implies τ0 . 1020.

Supersymmetry breaking

As already seen, in order to avoid the cosmological modulus problem, we must require
mτ & 30 TeV, where

mτ ∼
(
τ 2∂

2V

∂τ 2

)1/2

∼ ε5/2|w0|
τ 2

. (7.23)

Given the Kähler potential and the superpotential,

m3/2 ∼
|w0|
τ 3/2

, (7.24)

where |w0| . τ
1/2
0 , since for a 4D SUGRA EFT the gravitino mass has to be smaller

than the Kaluza-Klein scale. If a Standard Model multiplet ψi appears via k(ψ, ψ̄) (e.g.
for states sequestered in local D3 or D7 branes), soft SUSY breaking masses are

mψ = (m2
3/2 − F iF j̄∂i∂j̄ lnZψ)1/2 ∼ w0

τ 2
, (7.25)

where Zψ ∼ ∂ij̄K ∼ −
kij̄
τ

and F T = eK/2KT T̄KTW ∼ w0

τ1/2 and F S ' eK/2KSS̄KSw0 ∼
w0

τ5/2 ; gaugino masses are

MG =
F i∂if

Re f
∼ w0

τ 5/2
. (7.26)

Therefore, gauginos are lighter than scalars and both of them and τ are lighter than
the gravitino. Considering the constraint for τ coming from the cosmological modulus
problem, MG ∼ O(1)TeV for τ0 ∼ 106 (notice anyway that the contribution from the
Standard Model cycle could ruin the sequestering making all soft terms of order the
gravitino mass).

Field expansions, perturbation theory, runaway

As already seen at the beginning of this chapter, a potential of the form V (τ) =
∑

n
Vn
τn

leads to the Dine-Seiberg problem, since V ′(τ0) = 0 needs at least two terms of the
series to compete in size. Nonetheless, this does not necessarily mean that solutions only
occur outside the perturbative domain because some coefficients of the expansion could
be unusually small (this is essentially equivalent to the requirement that |w0| must be
tuned to be small in KKLT with a single modulus).
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Differently, in the LVS context, the potential is a multiple expansion in two small func-
tions of the two independent moduli, so that the minimum can be found through balanc-
ing different terms without spoiling the validity of the perturbative control or assuming
hierarchies for some coefficients.
On the other hand, RG-induced modulus stabilisation allows to use a fixed order in 1/τ ,

V (τ) ' U(ln τ)
τ4 , where U acquires its dependence on ln τ via an expansion in a second

parameter αg(τ). A minimum for V exists if different orders in αg balance, consistently
with αg(τ0) � 1. The renormalization group assures the reliability of the solution for
αg ln τ ∼ O(1).

Let us now note very briefly that the expansion in 1/τ (and analogously for 1/s) is
valid only for large enough τ , but the limit τ → ∞ corresponds to 10 dimensional flat
spacetime and the tower of the higher dimensional Kaluza-Klein modes descend into the
low energy theory, ruining its validity, since MKK → 0. This means that it is never a
good approximation to include some KK states in the 4D theory and neglect the heaviest
ones, because this would correspond to an expansion in n

n+1
for example if these states

have masses Mn = n
L

, with n an integer and L an extra dimensional length. But this
problem is not there if we only include moduli (n = 0 states) in the 4 dimensional EFT,
since neglecting all the other states is justified for τ � 1. Therefore, the EFT is reliable
for large but finite τ .

7.3 Inflaton potential and Inflationary evolution

In order to obtain inflation in the scenario of RG-induced modulus stabilisation, a large
source of positive potential energy, which breaks SUSY (Sect. 3.2, SUSY breaking in
SUGRA), is needed. The minimal such sector at low energy is the goldstone fermion
G, incorporated into a nilpotent chiral superfield X to remove any scalar superpartners
of G (Sect. 3.1, Non-linear SUSY):

X2 = 0. (7.27)

We call φ the would be inflaton, the field that slowly evolutes between the regime where
the large SUSY breaking energy is dominant and the one where it is not. A chiral
superfield Φ such that

D̄(XΦ̄) = 0 (7.28)

represents a non-supersymmetric scalar φ, removing the fermionic and auxiliary field
components of Φ.
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Scalar potential

Using the superfields T , X and Φ in this supersymmetric framework with approximate
accidental scale invariance1, the Kähler potential reads

e−K/3 = τ − k +
h

τ
+ ..., (7.29)

where
k = κ(Φ, Φ̄, ln τ) + (X + X̄)κX(Φ, Φ̄, ln τ) + X̄XκXX̄(Φ, Φ̄, ln τ) (7.30)

and we neglect higher powers of 1/τ . Moreover,

W ' w0(Φ) +XwX(Φ, Φ̄), (7.31)

recalling that XΦ̄ is left chiral.
Defining zI = {T ,Φ}, since the scalar component of X does not propagate,

− Lkin√
−g

= KIJ̄∂µz
I∂µz̄J

' 3

P2

(
1 +

k′′ − 2k′

P

)
∂µT∂

µT̄−
(

3

P2
(kφ − k′φ)∂µφ∂

µT̄ + h.c.

)
+

3

P

(
kφφ̄ +

kφkφ̄
P

)
∂µφ∂

µφ̄.

(7.32)

We now instead denote zA = {T , X}, so that

V = eK(KĀBDAWDBW − 3|W |2) (7.33)

because Φ has no auxiliary field and where X = 0 must be chosen after differentiation.
Noticing that each T derivative of k costs a power of 1/P given that k = k(lnP), with
P ' τ − k, the scalar potential is

V =
A|wX |2

P2
− 2 Re(Bw̄Xw0)

P3
+
C|w0|2

P4
, (7.34)

where

A ' κX̄X

3
,

B

P
' κX̄XκXT̄ ,

C

P2
' −3(κT T̄ − κX̄XκTX̄κXT̄ )2. (7.35)

Note that both κXT̄ and κT T̄ are O(α2
g). For the leading term to be positive, we require

A > 0.

1Although scale invariance can be sufficient for no-scale supersymmetry, it is actually not necessary.
Accidental scale invariance is incorporated by assuming the theory has an expansion in powers of 1/τ .

2Notice that the denominator for the C term in eq. (3.9) in [1] is actually not present. Some typos
in Appendix A of [29] led to this mistake.
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The inflationary regime is the one where the A term of the scalar potential dominates.
Defining

δ =
|wX |
|w0|

(7.36)

and assuming for simplicity B, wx and w0 to be real, we extremise the potential with
respect to P , since, as will be shown later, inflation occurs when φ evolves and τ sits at
a local minimum of the potential, finding that

1

P±
=
D±wX
w0

, (7.37)

where

D± =
3B

4C
±
√

9B2

16C2
− A

2C
. (7.38)

For the physics we are interested in, we need to require both A/C and B/C to be positive
and 8

9
AC < B2 for P+ to be a local minimum and P− to be a local maximum and to

require B2 < AC for V (τ+) > 0. Recalling that B
A
∝ α2

g ∼ ε2 and C
A
∝ α2

g ∼ ε2 and given

that it is needed to have B2

C2 ∼ A
C

, we assume that κT T̄ is numerically suppressed so that
κT T̄ ∼ α2

gε
2. Therefore

P± ∼
ε2

δ
(7.39)

and P± � 1 for δ � ε2.
From eq. 7.32, the mixing for τ and φ in the kinetic terms is subleading and, for kφφ̄ ∼
O(1), the canonical fields are dχ ∼ dτ

τ
and dϕ ∼ dφ√

τ̄
near a semiclassical background

τ = τ̄ .
As already anticipated, we imagine that the A term of the scalar potential dominates
during the early universe, and so

ετ ∼
(
Vχ
V

)2

∼
(
τ
Vτ
V

)2

∼ O(1) (7.40)

and

m2
τ =

(
∂2V

∂χ2

)
τ+

∼ τ 2∂
2V

∂τ 2
∼ V ∼ H2

I . (7.41)

This suggests that inflation can be studied using single-field dynamics.

Let us analyse this model from a string theory point of view: we consider warped
D3 − D3 inflation and the inflaton field is the separation between the two. At large
distances, the potential is the sum of the brane tension and of the brane-antibrane
Coulomb interaction. In the past, the challenge to obtain slow-roll from such a scenario
was that the separation between the branes needed to be bigger than the size of the
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extra dimensions, rendering this model unusable.
The solution to this problem is considering warped geometries (KKLMMT proposal):
fluxes backreact on the metric so that the compactification is a conformal CY threefold:

ds2 =

(
1 +

e4A

V2/3

)−1/2

ds2
4 +

(
1 +

e4A

V2/3

)1/2

ds2
CY , (7.42)

where A(y) is a function of the coordinates of the extra dimensions and the warp factor is

W = (1 + e4A

V2/3 )−1/2 (there are some little differences for certain conventions with respect

to the preceding chapter). Highly warped regions are defined via e4A � V2/3 � 1.
Moreover, to have a reliable EFT, the KK scale should be smaller than the warped
string scale [30], that is

eA . V2/3. (7.43)

Due to supersymmetric BPS cancellation of bulk forces, a space filling D3 brane does not
experience position dependent forces and is free to move in the CY space. On the other
hand, an anti-D3 brane energetically prefers to minimise the warp factor and moves to
the tip of the throat, where

e4Atip := e4ρ = e8πK/(3gsM), (7.44)

with K and M integers. The brane tension (eq. 4.23) reads

T3 =
1

8π3gsα′2
(7.45)

and its contribution to the potential is what allows a dS solution. The canonically
normalised would be inflaton field is

ϕ =
√
T3y, (7.46)

where y is the brane separation and, from eq. 6.33,

V = 2T3e
−4ρV2/3

(
1− 27

64π2

2T3e
−4ρV2/3

|ϕ|4

)
. (7.47)

It is now a good point to recall that the number of inflationary e-foldings between
horizon exit and the end of inflation is

Ne =

∫ ϕ∗

ϕend

dϕ√
2ε

=

∫ ϕ∗

ϕend

dϕ
V

Vϕ
, (7.48)

the amplitude of primordial scalar density perturbations is

δH =
1

π
√

75

(
V 3/2

Vϕ

)
ϕ∗

, (7.49)
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the spectral index is
ns = 1 + 2η∗ − 6ε∗ (7.50)

and the tensor to scalar ratio is
r = 16ε∗; (7.51)

experimentally, from [1], δH = 1.9× 10−5 and 1
2
(ns − 1) ' −0.015.

Let us now compare the potential in eq. 7.47 with the A term of the one in eq. 7.34.
Recalling that P ' V2/3, we choose κ as

κ(φ, φ̄, lnP) ' γ(φ, φ̄) + κ̂(lnP) (7.52)

and coordinates such that γ ' φ̄φ. In order to describe warped brane inflation within
our framework, we use

wX(Φ, Φ̄) = t− g

|Φ|4
+ .... (7.53)

Therefore, the A term of the scalar potential reads

V =
κX̄X

3P2

(
|t|2 − 2 Re(̄tg)

|φ|4
+ ...

)
. (7.54)

Assuming t and g to be real and rescaling X to have κX̄X warping independent, t ∝ e−2ρ

and g ∝ e−6ρ.

The eta problem

Generically, let us consider the Kähler potential K = −3 ln
(
τ − k(φ, φ̄) + ...

)
with

k(φ, φ̄) ' φ̄φ and that τ is fixed via Wnp(T ):

V = eK V̂0 '
V̂0

(τ − φ̄φ)3
' V̂0

τ 3

(
1 +

3φ̄φ

τ

)
' V̂0

τ 3
(1 + ϕ̄ϕ). (7.55)

This shows that H2
I ' V ' V̂0

τ3 and m2
φ ∼ V̂0

τ3 ∼ H2
I , which implies that η = Vϕϕ

V
'

m2
φ

H2
I
∼ O(1). In the standard construction it is necessary to include a large unwarped

φ̄φ contribution into V̂0 and to tune it against the term coming from eK to obtain slow-
roll. This fine tuning problem arises because K depends only on P , but W , being a
holomorphic function, can depend only on T and φ separately. This problem is evaded
if, instead of considering corrections to the superpotential, modulus stabilisation arises
from corrections to the Kähler potential, stabilising P (instead of τ).
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Annihilation and the tachyon superpotential

Including a Higgs scalar field H, the superpotential is modified through

wX = t− g

|Φ|4
− λ|H|2. (7.56)

The A term of the scalar potential becomes

V = A

(
(t|φ|4 − g)2

P2|φ|8
+

2λ(t|φ|4 − g)|H|2

P2|φ|4
+
λ2|H|4

P2

)
. (7.57)

When t − g
|φ|4 > 0, H has a positive mass and the potential is minimised at H = 0; on

the other hand, if it were possible for φ to be small enough to have t − g
|φ|4 < 0 in the

regime of validity of the effective field theory, H would have a tachyonic mass

m2 =
2λ

P

(
t− g

|φ|4

)
. (7.58)

This phenomenon would be what we expect from a string theory point of view: a mode
of an open string stretching between the antibrane and the brane becomes lighter as the
branes approach one another until it becomes tachyonic at a critical distance (of order
the string length). This tachyon could give rise to topological defects such as cosmic
strings (Sect. 9.2).3

Equations of motion

In presence of more than one scalar, the lagrangian generically reads

L = −
√
−g
(

1

2
Gij(φ)∂µφ

i∂µφj + V (φ)

)
(7.59)

and, defining the Christoffel symbol as

Γijk =
1

2
Gil(∂jGkl + ∂kGjl − ∂lGjk), (7.60)

3Let us briefly say that the superposition of a Dp-brane and an anti-Dp brane is a non-BPS system
whose instability is the existence of a complex tachyonic mode in the open strings stretched between
the pair. If its phase acquires a winding number when the tachyon rolls down to its true minimum, a
magnetic vortex soliton is created because of its coupling to the U(1) vector field. This vortex solution
carries D(p − 2)-brane charge. A D(p − 2)-brane is left as a topological soliton because of charge
conservation: through the Higgs mechanism, the U(1) vector field acquires a mass by eating the phase
of the tachyonic field (removed from the low energy spectrum). The overall U(1) vector field, under
which the tachyon is neutral, remains however unbroken, posing a puzzle [32].
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the classical equations of motion are

φ̈i + 3Hφ̇i + Γijkφ̇
jφ̇k +Gij∂jV = 0. (7.61)

Furthermore,

ρ =
1

2
Gijφ̇

iφ̇j + V (φ), p =
1

2
Gijφ̇

iφ̇j − V (φ), H2 =
ρ

3
. (7.62)

In a slow roll situation, 1
2
Gijφ̇

iφ̇j � V (φ) and so H2 ' V
3

and 3Hφ̇i +Gij∂jV ' 0.

For the supersymmetric case, the target space is a Kähler manifold with complex
coordinates φa and φā: Gab = Gāb̄ = 0 and Gab̄ = ∂a∂b̄K. Therefore,

φ̈a + 3Hφ̇a + Γabcφ̇
bφ̇c +Gb̄a∂b̄V = 0, (7.63)

where

Γabc =
1

2
Gd̄a(∂bGcd̄ + ∂cGbd̄ − ∂d̄Gbc) = Gd̄a∂b∂c∂d̄K. (7.64)

In our context, φa = {T, φ}, K = −3 lnP , P = T + T̄ − φ̄φ and τ = T + T̄ , therefore

KT = − 3
P , KT̄ = − 3

P , Kφ = 3φ̄
P , Kφ̄ = 3φ

P , KT T̄ = 3
P2 , KT φ̄ = − 3φ

P2 , KφT̄ = − 3φ̄
P2 ,

Kφφ̄ = 3τ
P2 , K T̄ T = τP

3
, K T̄ φ = Pφ

3
, K φ̄T = Pφ̄

3
, K φ̄φ = P

3
, KTT T̄ = − 6

P3 , KTT φ̄ = 6φ
P3 ,

KTφφ̄ = − 3
P2 − 6φ̄φ

P3 , KφT T̄ = 6φ̄
P3 , KφφT̄ = −6φ̄2

P3 , Kφφφ̄ = 6τφ̄
P3 , ΓTTT = − 2

P , ΓφTφ = − 1
P ,

ΓTTφ = φ̄
P , Γφφφ = 2φ̄

P , ΓφTT = 0 and ΓTφφ = 0. The equations of motion are then

T̈ + 3HṪ − 2Ṫ 2

P
+

2φ̄φ̇Ṫ

P
+
PτVT̄

3
+
Pφ̄Vφ̄

3
= 0 (7.65)

and

φ̈+ 3Hφ̇+
2φ̄φ̇2

P
− 2φ̇Ṫ

P
+
PφVT̄

3
+
PVφ̄

3
= 0. (7.66)

Notice that for the potential in eq. 7.34, considering the first of the two equations above,
the Vφ̄ term is smaller than the τVT̄ term; this and the absence of φ̇2 terms mean that
an initially motionless T will evolve towards the zero of VT , justifying a single field
treatment.
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Chapter 8

Improved D3− D3 Inflation

Observations have become more constraining on theoretical models [33]. According to
the latest Planck results [34], we will consider

ns = 0.9649± 0.0042 (8.1)

(68%, Planck TT,TE,EE+lowE+lensing) and

δH = 1.9× 10−5. (8.2)

In this chapter, the inflationary model introduced in Chap. 7 will be analysed in further
detail, taking into account all of the numerical details and describing the EFT constraints
and their physical meaning from a string theory point of view.

8.1 Slow-roll and EFT constraints

Recalling the discussion following eq. 7.38, we can choose κXX̄ , κXT̄ and κT T̄ so that

κXX̄ = 1, κXT̄ = b
α2
g

P
, κT T̄ = a

ε2α2
g

P2
, (8.3)

where a and b are numerical parameters to be fixed below and ε = α0 at the minimum
of the potential in the τ direction, where P ∼ ε2

δ
. Working near this point (as we will

always do in the following unless differently specified), αg ' ε and, from eq. 7.35,

A ' 1

3
, B ' bε2, C ' −3ε4(a− b2) (8.4)

and

P−1 =
δ

ε2

(
3b

12(b2 − a)
+

√
9b2

144(a− b2)2
− 1

18(b2 − a)

)
, (8.5)
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as can be seen from eq. 7.37 and eq. 7.38.
The condition 8

9
AC < B2 < AC, required to have a local positive minimum for the

potential in the P direction, now translates into − b2

8
< a < 0. Without any lose of

generality, we choose a = − b2

10
and impose b = 1

3
.

From the kinetic terms of the lagrangian in eq. 7.32 and for κ ' φ̄φ, the canonically
normalised fields read

ϕ =

√
3

P
φ (8.6)

and
χ =
√

3 ln τ. (8.7)

Since the field ϕ (the would be inflaton) represents physically the brane-antibrane
separation and since ϕ =

√
T3y, where y is a physical distance (of dimensions of length

when reintroducing factors of Mp), we must require

ls < y < lKK . (8.8)

The brane-antibrane separation has to be smaller than the Kaluza-Klein length

lKK =
1

MKK

(8.9)

because this represents the size of the extra dimensions, while y has to be bigger than
the string length

ls =
1

Ms

(8.10)

to avoid stringy corrections: otherwise, the massive states of the string are excited and
must be integrated in. Notice that the first condition is a physical requirement, while
the second one is an assumption made in order to trust our effective 4-dimensional
supergravity description.
Moreover, the Kaluza-Klein scale is related to the string scale via

MKK = 2π
Ms

V1/6
s

, 1 (8.11)

where Vs is the extra-dimensional volume in the string frame. We define y∗ via ϕ∗ =√
T3y∗, where ϕ∗ is the field ϕ at horizon exit.

The gravitino mass m3/2 = eK/2|W | is

m3/2 =

√
gsw0

P3/2
(8.12)

1For an isotropic compactification, MKK = 1/R, with R = Rsls and Vs = (2πRs)
6.
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for e−K/3 ' s1/3τ and
m3/2 .MKK (8.13)

needs to be satisfied in order to have a reliable low energy effective supersymmetric 4D
description.

String frame and Einstein frame

In the string frame the gravitational part of the action is not in the canonical Einstein-
Hilbert form, while in the Einstein frame the Ricci scalar does not couple to anything
other than

√
−GE and the dilaton is canonically normalized. Following [35] and [37], the

two frames are related via a conformal transformation of the 10-dimensional metric:

GE = e2ΩGS, (8.14)

where

Ω = −Φ− Φ0

4
. (8.15)

The conformal transformation is fixed up to a constant Φ0.

A choice to fix this constant is to require that the metric in the Einstein frame and
the metric in the string frame are the same at the vacuum:

Φ0 = 〈Φ〉 . (8.16)

This implies that
Vs = VE, (8.17)

where VE is the extra-dimensional volume in the Einstein frame,

Ms = gs

√
π

V
, (8.18)

MKK = 2πgs

√
π

P
, (8.19)

T3 =
g3
s

8πV2
(8.20)

and m3/2 .MKK implies

w0 . 2π
√
πgsP . (8.21)

Comparing (and requiring them to be equal) the potential in eq. 7.47 with the one in
eq. 7.54, we obtain that

t =

√
3κXX̄

4π
g3/2
s e−2ρ (8.22)
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and

g =
1

128π2κXX̄
t3. (8.23)

Another possible choice is to assume that volumes are frame dependent also in the
vacuum, that is

Φ0 = 0. (8.24)

Therefore,
Vs = VEg3/2

s , (8.25)

Ms =

√
π

V
, (8.26)

MKK =
2π
√
π

g
1/4
s P

, (8.27)

T3 =
1

8πgsV2
(8.28)

and m3/2 .MKK becomes [36]

w0 .
2π
√
πP

g
3/4
s

. (8.29)

Comparing eq. 7.47 with eq. 7.54,

t =

√
3κXX̄
4πgs

e−2ρ (8.30)

and

g =
1

128π2κXX̄
t3. (8.31)

Notice that these two possible choices are not just a matter of convention but have a
precise physical interpretation, therefore only experiments and observations could allow
to make this situation clearer.

8.1.1 Ms ∝ gs

Let us first consider the case Φ0 = 〈Φ〉. Fixing the coefficients A, B, C, a and b as
discussed above, we use the entire potential given in eq. 7.34. The parameters that we
choose to vary so to match the experimental values for ns and δH are ε, δ and w0, since
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t ∼ δw0 (notice that δ is technically a function of the field φ, so that, every time that we
will claim that δ has a fixed numerical value, that is actually to be referred to t

w0
, i.e. to

the warping). Moreover, from now on we will consider

gs = ε� 1, (8.32)

that is to say, 1/s plays the role of αg, as already suggested in [1]: the condition αg � 1
from the previous chapter is equivalent to weak string coupling. It is needed to underline
the fact that to avoid α′ corrections, as can be seen from eq. 5.10,

(Pgs)3/2 � 1. (8.33)

These initial considerations will apply without any change for the case Ms ∝ g0
s .

For the next paragraphs, it will be useful to remember that δ � ε3 and w0 . 2π
√
πgsP .

Therefore, we parametrise δ as

δ = 10−xε3, x > 0 (8.34)

and, since for our choice of a and b, 2π
√
πgsP ' 13

√
ε3

δ
, w0 is parametrised as

w0 = 13× 10−y+x/2, y > 0. (8.35)

Furthermore, in order to find the values for ε, δ and w0 that allow slow-roll inflation, we
will require δH ' 1.9× 10−5 and ns ' 0.965.

Ms ∝ gs : y∗ . lKK

When fixing y∗ ' lKK , it is possible to find that δH ' 7.8 × 10−11
√
δ

w0
√
ε

and 1 − ns '

90
(

4.9× 108w
2
0δ

ε
− 1.2× 1014w

4
0δ

3

ε3

)
, which, finding suitable values for x and y, are solved

by ε ' 0.49 (we could discuss whether this allows perturbative control or not, but we
present all best and worst scenarios to show that our conclusions will always be the
same), δ ' 0.11 and w0 ' 1.9×10−6. But this implies that eρ ' 900 and P ' 2.8, which
would mean that the Kaluza-Klein scale is higher than the warped string scale, spoiling
the validity of the treatment.

Ms ∝ gs : y∗ & ls

When fixing y∗ ' ls (notice that this is an extreme case, inflation cannot start at this
point since it would mean that the would be inflaton cannot roll in the EFT; we study
this case only to prove that the situation described above for Ms ∝ gs and y∗ . lKK is

happening for the whole range of y), it is possible to find that δH ' 5.7× 10−7 δ7/4

w0ε3
and
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1−ns ' 90
(

1.1× 104w
2
0ε

2
√
δ
− 2.4× 106w4

0

√
δε2
)

. A possible solution is given by ε ' 0.17,

δ ' 0.0031 and w0 ' 2.5×10−4. But this implies that eρ ' 210 and P ' 12. Considering
the lower bound and the upper bound for ε, here, the latter is ε ' 0.41, so that δ ' 0.01
and w0 ' 1.4× 10−4. This means that eρ ' 300 but P ' 21.

8.1.2 Ms ∝ g0
s

For the choice Φ0 = 0, δ � ε3 and w0 . 2π
√
πP

g
3/4
s

. Therefore, we parametrise δ as

δ = 10−xε3, x > 0 (8.36)

and, since for our choice of a and b, 2π
√
πP

g
3/4
s

' 13
√

ε1/2

δ
, w0 is parametrised as

w0 = 13× 10−y+x/2 1

ε5/4
, y > 0. (8.37)

Furthermore, in order to find the values for ε, δ and w0 that allow slow-roll inflation, we
will require again δH ' 1.9× 10−5 and ns ' 0.965.

Ms ∝ gs : y∗ . lKK

When fixing y∗ ' lKK , it is possible to find that δH ' 7.8 × 10−11
√
δ

w0ε17/4 and 1 − ns '
90
(
4.9× 108w2

0δε
7/2 − 1.2× 1014w4

0δ
3ε9/2

)
, which, finding suitable values for x and y, are

solved by ε ' 0.26, δ ' 7.3× 10−3 and w0 ' 1.1× 10−4. But this implies that eρ ' 1100
and P ' 12, spoiling again the validity of the treatment.

Ms ∝ gs : y∗ & ls

For y∗ ' ls, it is possible to find that δH ' 5.7×10−7 δ7/4

w0ε8
and 1−ns ' 90(1.1×104w

2
0ε

8
√
δ
−

2.4× 106w4
0

√
δε12), which are solved by ε ' 0.38, δ ' 2.6× 10−3 and w0 ' 2× 10−3. But

this implies that eρ ' 390 and P ' 71.

62



Chapter 9

Inflation and its end

Thse remaining sections are dedicated to a very brief introduction to reheating, cosmic
strings and eternal inflation from a general perspective in the context ofD3−D3 inflation.

9.1 Reheating

Since warped brane inflation occurs in a warped throat, we have the freedom to choose
whether to situate the Standard Model on D-branes in the unwarped bulk region or in
another warped throat because, if it was in the inflationary throat, relic cosmic strings
would disintegrate when at contact with SM branes (Sect. 9.2). Following [15] and [31],
in this section we will briefly discuss what happens at the end of inflation and how the
SM is excited for generic models of warped brane inflation.

Accelerated expansion ends when the D3-brane falls towards the tip of the throat,
where the anti-D3-brane is: when their separation is sufficiently small, a tachyon devel-
ops; this instability is the reason for the decay of the pair of branes into massive KK ex-
citations of massless string modes in the inflationary throat. The wavefunctions of these
KK modes peak exponentially in the IR and their mutual interactions (Kaluza-Klein
modes are self-interacting) are suppressed by eAIRMp �Mp; moreover, their coupling to
KK zero modes (e.g. the graviton) are suppressed by Mp (the coupling to 4-dimensional
gravitons is universally small deep inside the throat). Massive particles are confined
to the IR region because of the gravitational potential barrier created by the warping,
so that tunnelling through the bulk of the compactification can allow access to other
throats. Therefore, denoting the thermalization time for KK modes of the inflationary
throat τtherm, the timescale for decay to gravitons τgraviton and the tunnelling timescale
τtunnel,

τtherm � τgraviton � τtunnel. (9.1)

Once excited strings have decayed into excited KK modes, the energy of the previous
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inflaton is mainly in the inflationary throat. As can be seen from the previous equation,
if Kaluza-Klein modes were to decay to 4D gravitons more quickly than to other chan-
nels, the universe would be dominated by gravitational radiation, spoiling BBN. Since
the heaviest KK modes have the largest tunnelling probability, we then have to require
their lifetime τKK to satisfy τKK & τtunnel.
If it is supposed that one of the throats has approximate angular isometries (e.g. the
SU(2) × SU(2) isometry of the KS solution), the associated angular momentum is ap-
proximately conserved and KK modes with this charge can decay only via interactions
violating the symmetry. Therefore, charged KK modes produced during reheating could
overclose the universe being long lived KK relics. It is then necessary to study the per-
turbations breaking the isometry to understand if KK relics decay fast enough.
If an additional intermediate throat (e.g. where SUSY is broken) whose warp factor
is between the one of the inflationary throat and the one of the visible sector throat is
assumed, tunnelling leads to its KK excitations; their transfer to the visible sector throat
is slow and constitutes a problem since they could dominate the energy density of the
universe.
In a throat much more strongly warped than the inflationary one (e.g. addressing the
electroweak hierarchy by warping of the visible sector throat), the reheating tempera-

ture can exceed eAIR√
α′

: reheating can induce a large production of excited strings in the
strongly warped throat.
The cascading energy from inflaton to radiation is summarised in Fig. 9.1.

9.2 Cosmic Strings

Cosmic strings are cosmologically relevant if they are produced after inflation, if they
remain stable over cosmological times and if they could be observable without already
being excluded; these requirements can be satisfied in our inflationary model.
At the end of inflation, tachyonic condensation produces cosmic F-strings, D-strings and
(p, q) string bound states (their stability depends on the presence of D-branes in the
inflationary throat). (p, q) strings are not BPS (Bµν and Cµν are projected out by the
orientifold action) and a string can break apart by coming into contact with its orientifold
image. If there are no orientifold fixed planes in the throat, a string has to fluctuate out
to meet its image in the image throat (exponentially slow process since the strings are
confined to the bottom of their respective throats and breakage via the orientifold image
can be neglected). On the other hand, the presence of D3-branes or anti-D3-branes (for
the SM or for SUSY breaking) causes cosmic superstrings to fragment and be irrelevant
(but are stable if there are only D7-branes). The spectrum of tensions is

T(p,q) '
e2AIR

2πα′

√
q2

g2
s

+

(
bM

π

)2

sin2

(
π(p− qC0)

M

)
, (9.2)
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Figure 9.1: Channels of D-brane decay. Source: [31].

with b ' 0.93 a constant from the KS solution. The warp factor determines the scale of
the inflaton potential and is constrained by the normalization of the scalar fluctuations,
hence allowing for the possibility to predict the cosmic string tensions. For details, [38].

9.3 Eternal Inflation

For very flat potentials, the force pushing the inflaton down is very small and the ampli-
tude of inflationary fluctuations remains essentially constant. Therefore, the motion of
the inflaton at large values is predominantly controlled by quantum jumps. This effect
leads to eternal inflation.
Eternal inflation causes the formation of a fractal structure of the universe on large
scales; it occurs for values of the inflaton such that the post-inflationary amplitude of
perturbations of the metric would exceed unity [26].
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Chapter 10

Conclusions

In this thesis, after presenting the modern situation in Cosmology, hence exploring the
issues of the Standard Big Bang Theory and their resolutions via inflationary scenarios,
we introduced the formalisms of Supersymmetry and String Theory necessary for the
project. In particular, we focused on moduli stabilisation, exploring the KKLT proposal
and the LVS stabilisation, and on String Inflation.
The last chapters were dedicated to moduli stabilisation via renormalization group tech-
niques: this framework allows to evade both the Dine-Seiberg problem and the η problem,
obtaining de Sitter solutions with supersymmetry breaking without any form of uplifting.
Concentrating on a possible embedding of inflation in this scenario, and in particular on
warped D3 − D3 inflation, we analysed whether slow-roll is possible in the regime of
validity of the effective field theory.

From a string theory point of view, quite a few constraints have to be satisfied to
have control over our theory, i.e. (for gs = ε):

ε� 1, (Pε)3/2 � 1, ls . y . lKK , eρ . P , m3/2 .MKK (10.1)

and
δH = 1.9× 10−5, ns = 0.965± 0.004. (10.2)

This allowed us to show that it is very difficult to embed a phenomenologically suitable
inflationary scenario into this UV completion for Ms = gs

√
π
V , that is to say if the metric

in the Einstein frame and the metric in the string frame are the same at the vacuum, or
for Ms =

√
π
V , i.e. volumes are frame dependent also in the vacuum.

To conclude, since these results are of a no-go type, it is not possible to talk about
a speculative minimum for the potential in the φ direction, which would suggest, from
a physical point of view, a brane-antibrane bound state and it is not possible to consis-
tently require wX(φ0) = 0, for some φ0 in the regime of validity of the EFT, to consider
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minimisation at late times (applicable to present day dark energy) with φ being a relax-
ation field which dinamically minimises the |wX |2 term.

Given these results, the present context could be worth further exploration if new
ingredients could be introduced in a consistent way.
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