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Abstract

The rise in processing power, combined with advancements in machine learn-
ing, has resulted in an increase in the use of computational methods for au-
tomated content analysis. Although human coding is more effective for han-
dling complex variables at the core of media studies, audiovisual content is
often understudied because analyzing it is difficult and time-consuming. The
present work sets out to address this issue by experimenting with unimodal
and multimodal transformer-based models in an attempt to automatically
classify segments from the popular medical TV drama Grey’s Anatomy into
three narrative categories that are typical of the medical drama genre, also
referred to as isotopies: the professional plot, the sentimental plot and the
medical cases plot. To approach the task, this study explores two different
classification approaches: the first approach is to employ a single multiclass
classifier that directly predicts the target class labels, while the second in-
volves using the one-vs-the-rest approach to decompose the multiclass task
using a series of binary classifiers. We investigate both these approaches in
unimodal and multimodal settings, with the aim of identifying the most effec-
tive combination of the two. The results of the experiments can be considered
promising, given that the multiclass multimodal approach results in an F1

score of 0.723, a noticeable improvement over the F1 of 0.684 obtained by
the one-vs-the-rest unimodal approach based on text. This provides support
for the hypothesis that visual and textual modalities can complement each
other and result in a better-performing model, which highlights the potential
of multimodal approaches for narrative classification in the context of med-
ical dramas. The main contributions of this dissertation are the following:
(1) the creation of a multimodal corpus, containing keyframes and subtitles
from 17 seasons of Grey’s Anatomy, (2) an investigation into different task
framing methods, namely a direct multiclass approach and a one-vs-the-rest
approach, and (3) an extensive evaluation of various unimodal and multi-
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modal transformer-based models, namely BERT, CLIP, and MMBT. The
corpus and implementations are made available and pave the way for further
research on automated content analysis in the context of medical dramas.
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Chapter 1

Introduction

In the field of media studies, content analysis is an established methodology
for the study of audiovisual products. A central aspect of content analysis
is coding, which consists in assigning units of analysis to categories for the
purpose of describing and quantifying phenomena of interest (Krippendorff,
1995). Previous research has identified three fundamental categories or “iso-
topies” that characterize the medical drama genre: the professional plot, the
sentimental plot and the medical cases plot. In the context of medical dra-
mas, content analysis can be conducted by assigning isotopies to segments,
i.e. “portions of video characterized by space-time-action continuity” (Roc-
chi and Pescatore, 2022). This poses a challenge for automated approaches,
as modern segmentation algorithms are not efficient at identifying units that
are relevant for the identified isotopies. Additionally, coding requires trained
annotators with a significant degree of expert knowledge and a good under-
standing of content analysis. Recognizing the complexity of the task and
the need for more effective strategies, we experiment with different models
to evaluate the possibility of streamlining the content analysis process for
medical dramas. With this objective, we formulate the following:

Hypothesis: Because subtitles and keyframes contain comple-
mentary information, a multimodal model that incorporates vi-
sual data in addition to text should perform better than a uni-
modal model trained exclusively on text.

To address this hypothesis, we aim to answer the following research ques-
tions:

13



14 CHAPTER 1. INTRODUCTION

Research Question 1: Is it better to approach the task with a
single multiclass model or a one-vs-the-rest approach?

Research Question 2: Which modality is more informative for
the task of predicting the isotopies?

Research Question 3: Does the inclusion of keyframes in ad-
dition to the subtitles result in higher performance as compared
to only using the subtitles?

The objective of this study is to implement and evaluate unimodal and
multimodal transformer-based models for the automatic identification of iso-
topies in the context of medical dramas. To achieve this, we first create a
multimodal corpus by combining subtitles and keyframes extracted from 17
seasons of Grey’s Anatomy, one of the longest-running medical drama se-
ries. Three models, namely CLIP, BERT, and MMBT, are trained using this
corpus to explore the impact of different modalities on the identification of
the isotopies. Additionally, we investigate two different approaches to the
classification problem: a multiclass approach, which considers all isotopies
simultaneously, and a one-vs-the-rest approach, which identifies one isotopy
at the time. This study is organized into five core chapters:

Chapter 2 provides an overview of the foundational concepts at the basis
of this study. It deals with the principles of natural language processing,
the emergence of transformers, and their role in NLP. Then, it introduces
computer vision and its intersection with NLP in the field of vision-and-
language models, with a focus on multimodal fusion. The chapter closes
with a discussion on the state of the art and a review of the relevant work in
video understanding and narrative classification.

Chapter 3 outlines the essential data preprocessing steps required to pre-
pare the data for the subsequent modeling process. It begins by explaining
how subtitles are extracted, segmented, and labeled. The chapter further
presents the process of discretization, which, despite leading to a loss in
granularity, crucially reduces the complexity of the classification task. Lastly,
the chapter provides a discussion on classification metrics, where accuracy,
precision, recall, and F1 score are introduced.

Chapter 4 presents the two different classification approaches that are
investigated for isotopy identification: the direct multiclass approach and
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the one-vs-the-rest approach. Various models, such as BERT for text, CLIP
for vision, and MMBT for multimodal fusion, are described and their im-
plementation details are provided. The results obtained from these models
and approaches are then presented and discussed in relation to the research
questions outlined at the beginning of the study.

Chapter 5 summarizes the main research outcomes. Notably, it was found
that the multiclass multimodal approach, based on MMBT, obtained a signif-
icantly higher performance on the task of isotopy identification, outperform-
ing unimodal models and reaching an F1 score of 0.723. The one-vs-the-rest
approach generally proved to be more effective for unimodal models, while
multiclass MMBT surpassed its one-vs-the-rest counterpart, suggesting that
visual data might help MMBT to disambiguate instances more effectively in
the multiclass approach. Analysis of the unimodal models revealed the text
was more informative than keyframes for the task of predicting the isotopies.
A few limitations are also discussed, along with some promising areas for
future research.
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Chapter 2

Background

This chapter introduces the fundamental ideas and techniques at the basis
of this research. Section 2.1 provides an introduction to natural language
processing and the deep learning concepts required to understand the current
approaches in the field. Following this, computer vision is introduced in
Section 2.2, a field that has also been heavily influenced by deep learning.
Building on these individual modalities, we then look at the intersection
of vision and language in Section 2.3, which covers the emerging field of
multimodal vision-and-language models. Lastly, we present an overview of
related work on video understanding in Section 2.4.

2.1 Natural Language Processing

One of the main fields that this dissertation is based on is natural language
processing, which can be defined as follows:

Natural language processing is an area of research in computer
science and artificial intelligence (AI) concerned with processing
natural languages such as English or Mandarin. This processing
generally involves translating natural language into data (num-
bers) that a computer can use to learn about the world (Lane
et al., 2019, p. 4).

As natural languages evolve over time and are difficult to describe pre-
cisely using explicit rules, one of the key problems in NLP is how to translate

17



18 CHAPTER 2. BACKGROUND

Figure 2.1: A simple feed-forward neural network (Hodo et al., 2017).

natural language into a numerical representation that can be processed by a
computer (Lane et al., 2019, p. 4). In the past, NLP relied on handcrafted
rules and linguistic patterns to achieve this goal. However, advances in ma-
chine learning resulted in a paradigm shift towards statistical NLP, which
consists in training a model to learn directly from large scale datasets in-
stead of relying on explicitly programmed rules (Lane et al., 2019, p. 63).
Current state-of-the-art models in NLP are based on deep learning, which
is a subset of machine learning that leverages multi-layered artificial neural
networks to extract patterns from raw input data.

In the context of neural networks, learning involves finding a set of values
for the weights in the layers of a network, such that the network will correctly
associate inputs to some specific output (Chollet, 2020, p. 11). Neural net-
works typically function as supervised learning models. Supervised learning
requires labelled training data, where both inputs and their corresponding
desired outputs, known as targets, are provided to the model (Lane et al.,
2019, p. 185). For example, in a supervised learning task for email classi-
fication, each email input would be labeled as either “spam” or “ham”. A
representation of a simple feed-forward neural network is illustrated in Figure
2.1. This feed-forward neural network comprises an input layer with n neu-
rons (x1, x2, xn), a hidden layer with n neurons (a1, a2, ..., an), and an output
layer with two neurons (y1, y2). In the initial stage of training a feed-forward
neural network, each connection between neurons is given a random weight,
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denoted as wij, where i corresponds to an input neuron (x1, x2, ..., xi) and
j represents a neuron in the hidden layer (a1, a2, ..., aj). These weights are
first multiplied and summed to compute a single value in each neuron of the
hidden layer:

zj =
n∑

i=1

wijxi, (2.1)

Then, the weighted sum zj is passed to an activation function such as the
sigmoid or the Rectified Linear Unit (ReLU). This introduces non-linearity
into the model, enabling it to learn complex patterns from the data. Ac-
tivation functions essentially decide whether the neuron should ‘fire’ or not
based on the input. If the input surpasses a certain threshold, the neuron
gets activated and consequently passes its result to the next layer; other-
wise, it remains inactive (Chollet, 2020, p. 72). The same process is then
repeated in the output layer, where the choice of the activation function can
vary based on the nature of the problem at hand. In a binary classification
task, the sigmoid function is typically chosen due to its property of produc-
ing outputs between 0 and 1, well-suited for binary outcomes. For multiclass
classification tasks, the softmax function is generally preferred as it outputs
a probability distribution across multiple classes (Chollet, 2020, p. 114).

During the training phase of a neural network, a feedback signal is em-
ployed to adjust the weights based on the output error of the network. This
error, known as the loss, is calculated using a loss function, which quantifies
how far off our predictions are from the actual targets. Common examples
of loss functions include Mean Squared Error for continuous targets in re-
gression problems, and Cross Entropy for categorical targets in classification.
The process of propagating this error back through the network to update the
weights is known as backpropagation, and the specific algorithm that dictates
how the weights should be adjusted in order to minimize the loss is referred
to as the optimizer. Some frequently used optimizers include Stochastic Gra-
dient Descent, RMSprop, and Adam. This systematic adjustment of weights,
based on the computed error, is what allows the network to ‘learn’ from its
inputs and gradually improve its predictions (Chollet, 2020, p. 29).

The process of training a neural network also depends on predetermined
control variables called hyperparameters, such as epochs, batch size, and
learning rate. Unlike parameters, which in the case of neural networks are
the weights that the model learns during training, hyperparameters are set
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before the training process begins. Epochs indicate the number of times that
the entire training dataset is processed by the network, while batch size refers
to the number of instances from the training set that are processed by the
network before updating its weights. The learning rate, on the other hand,
defines the magnitude of the adjustments to the weights. Hyperparameters
play a critical role in managing the balance between overfitting and underfit-
ting. Overfitting occurs when the model is too complex and fits the training
data too closely, while underfitting happens when the model is too simple
and cannot capture the patterns in the data. For example, if a model is
trained for too many epochs, its performance might start to degrade due to
overfitting (Chollet, 2020, p. 76).

2.1.1 Transformer Models

Expanding on the topic of deep learning in NLP, we will now transition to
one of its most notable applications: the transformer model, introduced by
Vaswani et al. (2017) in their paper, “Attention is All You Need”. The
emergence of the transformer marked a significant advancement in the field
of NLP, surpassing former state-of-the-art architectures such as long short-
term memory networks (LSTMs). The success of LSTMs had to do with
their unique memory mechanism, which involves learning what information
to retain and what to discard while processing sequences word by word.
While this sequential, word by word processing makes LSTMs effective in
NLP tasks due to their ability to remember past information and capture
word order, their memory is generally limited to recent inputs, which makes
it challenging for LSTMs to process long-distance dependencies in language
(Tunstall et al., 2022).

On the other hand, the transformer processes the entire sequence at once.
This enables it to efficiently capture global dependencies and relationships
between words, thanks to a mechanism called self-attention. Self-attention is
part of the encoder component of a transformer, which is composed of several
encoder blocks (Figure 2.2) that first convert an input sequence of tokens
into a sequence of embedding vectors, i.e. into numerical representations
that can be processed by the network (Tunstall et al., 2022). The concept
of self-attention further extends to multi-head attention, which means that
multiple attention patterns can be computed simultaneously, providing a
comprehensive view of the sequence’s context (Figure 2.3). Having several
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Figure 2.2: Transformer encoder block. Adapted from (Lu et al., 2019).

heads allows the model to focus on different aspects at once. For instance, one
head may focus on subject-verb interaction, while another looks for nearby
adjectives (Ryu and Lewis, 2021).

The multi-head attention output in a transformer encoder block is then
normalized and processed through a simple feed-forward neural network.
This cycle, repeated in multiple encoder blocks, refines the input into in-
creasingly sophisticated representations1. The final output of the encoder
are contextualized embeddings, representations that carry the nuanced se-
mantic information about each word while considering its context within the
sequence. Given that transformers are not sequential like LSTMs, they do
not inherently understand the order of words in a sequence. To address this,
transformers make use of positional encodings, which are added at the begin-
ning to the input embeddings, and function like unique identifiers that keep
track of the original order of words (Tunstall et al., 2022).

1Research suggests that this process mirrors the traditional NLP pipeline, with the
encoder initially learning simpler linguistic concepts like part-of-speech tagging and pars-
ing, and then more complex aspects such as named entity recognition, semantic roles, and
coreference (Tenney et al., 2019)
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Figure 2.3: Self-attention distribution for the word “it”, from https://ai.

googleblog.com/2017/08/transformer-novel-neural-network.html.

2.1.2 Encoder Models

Initially, the transformer architecture was introduced for machine translation
(Devlin et al., 2019). In the full transformer model, the encoder reads and
processes the entire input sequence and the decoder takes these representa-
tions to generate translations in other languages. However, many NLP tasks
do not require a decoder. This gave rise to encoder models, which are used
to generate contextual embeddings of the input text that can be used for
a wide range of tasks. An example of an encoder model is BERT (Bidirec-
tional Encoder Representations from Transformers), introduced by Devlin
et al. (2019). One of the main features of BERT is the idea of bidirectional
pre-training. During its pre-training process, BERT uses a method called
masked language modeling, where it randomly masks words in the sequence
and then predicts those masked words based on the context provided by the
non-masked words – those that come before and after the masked word in
the sequence. This, along with next sentence prediction, during which the
model learns to predict whether a given sentence logically follows a preceding
one, enables BERT to learn meaningful representations from large text cor-
pora. When using BERT, a model that has been pre-trained on these tasks
is typically used as a starting point and then fine-tuned for the task at hand,
i.e. further trained on a small, task-specific dataset (Tunstall et al., 2022).

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
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Figure 2.4: A 3×3 filter sliding over the input image. In a grayscale image,
each pixel is represented by a number which corresponds to the brightness
of the pixel (Elgendy, 2020).

2.2 Computer Vision

Computer vision (CV) is a subfield of machine learning that deals with en-
abling computers to process visual data. The foundation of computer vision
tasks is feature extraction, which consists in transforming an input image
into a complex representation emphasizing various image characteristics at
different network layers. Convolutional neural networks (CNNs) are the most
notable deep learning models in computer vision (Guo et al., 2016). The main
component of a CNN is the convolutional layer. This layer applies a series
of filters to the input image, each capturing some specific feature. A filter
is a small matrix of weights, typically of size 3x3, which is applied to the
image using a process called convolution. Starting from the top-left corner of
the image, the filter slides across the image, moving right and down by a set
number of pixels (referred to as the stride) at each step. At every position,
the filter’s values are multiplied with the corresponding pixel values beneath
it in the image, and these products are summed up (Figure 2.4). Initially,
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the values within the filters are set randomly. By adjusting the weights in
the filters over many rounds of training, the network learns which features
of the image are more informative for the task at hand (Elgendy, 2020).

It is important to note that a CNN does not go from the image input to
the features directly in one layer. The feature-learning process happens step
by step in tens or hundreds of layers. It is recognized that network depth is of
crucial importance in CV, with very deep models often leading the results on
computer vision benchmarks (He et al., 2016). The ResNet (Residual Net-
work) architecture, proposed by Microsoft researchers led by He et al. (2016),
constituted a significant advancement in this sense. With ResNet, models
could be designed with an unprecedented number of layers, with some ver-
sions even reaching up to 152, thereby improving the potential for advanced
performance in CV tasks (He et al., 2016). Pre-training is also a widespread
technique in computer vision. Since the publication of large datasets such as
ImageNet (Deng et al., 2009), many architectures have been trained on them
and their weights made publicly available to be used for transfer learning.
Building upon ResNet, OpenAI developed CLIP (Radford et al., 2021), which
provides a pretrained, modified version of ResNet-50, named RN50x4, as one
of its visual encoders. The potential of CLIP, particularly with the RN50x4
encoder, was underscored by a study conducted by Shen et al. (2021), which
examined the performance of vision-and-language models (cf. Section 2.3)
when the visual encoder is switched to CLIP. Their findings indicated that
CLIP’s RN50x4 surpassed the conventional ResNet-152 feature extractor,
which is a common visual extractor in many vision-and-language models.

2.3 Vision and Language

Driven by the success of pre-trained models in the fields of natural language
processing and computer vision, more and more research began to focus
on multimodal tasks (Wang et al., 2022). In the field of multimodal deep
learning, a modality can be defined as “a particular way or mechanism of
encoding information” (Guo et al., 2019). Multimodal data can be extracted
from various sources, such as text, images, audio, and video. As multimodal
data often represents an object from different viewpoints, which can be com-
plementary in contents, it can potentially be more informative than unimodal
data. However, there are also instances where the modalities end up compet-
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Figure 2.5: One-stream and dual-stream models. Adapted from Zhang
et al. (2022).

ing with each other, causing multimodal models to underperform compared
to the unimodal ones (Huang et al., 2021). Models that leverage both visual
and textual information are known as vision-and-language (VL) models. The
emergence of transformers in NLP has greatly influenced vision-and-language
models, resulting in a multitude of models that extend BERT (Devlin et al.,
2019) to learn multimodal representations (Bugliarello et al., 2021). One
challenge in multimodal tasks is multimodal fusion, which involves integrat-
ing information from multiple modalities. In multimodal fusion, information
is typically fused at three levels: input (early fusion), intermediate repre-
sentation (mid fusion), and prediction (late fusion). However, late fusion is
less commonly used with multimodal transformers due to the advantages of
learning stronger joint representations across modalities (Xu et al., 2023).
Hence, we will focus on early fusion and mid fusion2.

Common early-fusion-based multimodal transformers are one-stream mod-
els, also known as single-stream models (Xu et al., 2023). Some examples
include MMBT (Kiela et al., 2019) and VisualBERT (Li et al., 2019). One-
stream models allow the adoption of the merits of BERT with only minimal
modifications to its architecture. Single-stream architectures assume that
the potential correlation and alignment between the modalities is simple, and
that it can be learned by a single transformer encoder (Figure 2.5a). The
text embeddings and the image features are usually concatenated together,

2Late fusion consists in using two separate unimodal models and averaging their pre-
dictions at the end (Baltrušaitis et al., 2018).
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Figure 2.6: Co-attention in ViLBERT. Adapted from (Lu et al., 2019).

adding some special embeddings to indicate positions and modalities, and
then fed into a transformer encoder. As the single-stream structure applies
self-attention directly on the two modalities, there is a chance it may overlook
interactions within the same modality. Therefore, certain studies suggest the
use of a dual-stream architecture to better capture the interaction between
visual and linguistic elements (Du et al., 2022).

Unlike single-stream architectures, dual-stream or two-stream architec-
tures employ a cross-modal encoder, also referred to as a cross-attention
or co-attention layer depending on the specific model (Figure 2.6). Exam-
ples include LXMERT (Tan and Bansal, 2019) and ViLBERT (Lu et al.,
2019). Dual-stream architectures use two different encoders, one for pro-
cessing textual inputs and the other for handling image data, each apply-
ing intra-modal self-attention to extract information from their respective
modalities. A cross-modal encoder is then added on top of this two separate
modules to exchange the information between the two modalities (Figure
2.5b). Co-attention is similar to the self-attention mechanism in traditional
transformers, but it differs in that it allows the model to dynamically focus
on relevant parts of both modalities simultaneously, learning which words or
phrases are most relevant to the parts of the image, and vice versa. Two-
stream architectures are an example of mid fusion, as they feature separate
processing paths for different modalities and merge the resulting information
at a midpoint in the model’s structure (Rayavarapu et al., 2019).

There are, however, also VL models that do not fall into either of these
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categories. One of such models is CLIP (Contrastive Language-Image Pre-
Training), which processes image and text data separately through two dis-
tinct encoders, and then maps them into a common semantic space through
a straightforward method such as a dot product instead of a complex trans-
former network (Radford et al., 2021). CLIP focuses on aligning texts and
images at a semantic level, which makes this model particularly suitable for
tasks like zero-shot classification where the model is asked to classify data
into classes it has not explicitly seen during training (Radford et al., 2021).
The interaction between the modalities in CLIP is relatively shallow, primar-
ily focusing on semantic alignment rather than a deep understanding of the
interplay between the visual and the linguistic data (Du et al., 2022).

2.4 Related Work

With its ability to engage several human faculties at once, audiovisual con-
tent is able to present information in a more multifaceted way compared to
static images or text. However, the addition of the time element through
shots and scenes makes it extremely complex for machine learning models to
understand the content of a video. One of the biggest challenges in the fields
of natural language processing and computer vision is developing the ability
for machines to analyze and summarize the narratives conveyed in videos,
making them more searchable and accessible (Tapaswi, 2016). Despite the
fact that there is yet no agreement on which modality is best when eliciting
high-level meaning from audiovisual content, researchers believe that two or
more modalities are better than one (Bayoudh et al., 2022).

Compared to visual and auditory information, textual clues are less ex-
plored for video understanding (Weng et al., 2021). In the broader context of
movies and TV shows, speech may sometimes be correlated with the action
(e.g., “Raise your glasses to...”), but it is more frequent for it to be com-
pletely uncorrelated (Nagrani et al., 2020). In the field of sentiment analysis,
related work has been conducted on the TV show Friends. Zahiri and Jinho
(2017) employ a CNN architecture with word2vec embeddings for the purpose
of detecting emotions from written dialogue, obtaining accuracies of 37.9%
and 54% for fine- and coarse-grained emotions respectively. They observe
that emotions are not necessarily conveyed in the text, and that disfluencies,
metaphors, and humor make the task particularly challenging.
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Vision-and-language approaches to video understanding can be divided
into two types: one with image (cf. Section 2.3), and another with video
(Sun et al., 2019; Zhu and Yang, 2020). In the context of video, this usually
consists in densely extracting multiple frames, as it is reasonable to assume
that training an effective video-and-language model requires lots of samples
from the video channel (Lei et al., 2022). As demonstrated by Li et al.
(2021), leveraging both video and subtitles achieves the best performance on
the VALUE benchmark, which includes 11 video understanding tasks from a
variety of datasets and video genres. A similar result is reported by Liu et al.
(2020) on the task of video-and-language inference, which consists in analyz-
ing a video clip paired with a natural language hypothesis and determining
whether the hypothesis is supported or contradicted by the information con-
veyed in the video.

However, it is actually an open question whether training a model using
multiple frames is beneficial for downstream tasks, and if so, whether the
gains in performance justify the significant increase in computational costs
(Lei et al., 2022). Despite the fact that most video-and-language models
are typically trained using multiple video frames, some studies suggest that
strong performance on challenging benchmarks can be achieved using just a
single frame (Lei et al., 2022; Buch et al., 2022). Furthermore, the difficulty
of making recognition decisions is intrinsically linked to the type of category
being classified. For instance, recognizing static subjects like dogs and cats,
or sceneries such as forests or seas, may only require a single frame. However,
distinguishing nuanced actions, such as “drinking coffee” versus “drinking
beer”, often requires more frames (Wu et al., 2019).

As for single-frame approaches, Lei et al. (2022) introduced a model called
Singularity. During fine-tuning, a random single frame is used for training,
while multiple uniformly sampled frames from videos are used to output
video-level predictions during inference. Even if trained with less data, Sin-
gularity excels on video retrieval and captioning benchmarks such as DiDeMo
and ActivityNet Captions, proving to be highly efficient in both training time
and memory usage. On the other hand, Buch et al. (2022) proposed a model
called Atemporal Probe (ATP) that processes videos by focusing on one se-
lected frame at the time. The choice of the frame is driven by an algorithm
within the ATP that identifies and selects the most informative frame for un-
derstanding the video content. This approach performs surprisingly well on
multiple benchmarks including MSR-VTT-MC (Xu et al., 2016), a large-scale
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dataset for video captioning, even against more complex models.

To the best of our knowledge, this is the first work on narrative clas-
sification for the medical drama genre. In the context of cinema, a similar
work is the Movie Narrative Dataset (MND), introduced by Liu et al. (2023).
MND consists of 6,448 annotated scenes from 45 movies, manually labeled
by multiple annotators into 15 key story elements. To benchmark the task
of classifying scenes based on their narrative function, the authors of MND
utilized an XGBoost classifier trained on temporal features and character co-
occurrence patterns. With five-fold cross-validation, the classifier obtained
an F1 score of 0.31, which, while still leaving room for improvement, is sta-
tistically significant and outperforms a static baseline classifier.

In the field of multimodal misogyny identification, Muti et al. (2022) pro-
posed a multimodal approach for detecting misogynistic content in memes.
Their approach is based on a multimodal bi-transformer model (MMBT), us-
ing early fusion to combine textual and visual embeddings. Their approach
was evaluated on the MAMI shared task (Fersini et al., 2022), obtaining
macro-averaged F1 = 0.727 in Task A (binary misogyny identification) and
weighted F1 = 0.710 in Task B (multi-label classification into four poten-
tially co-occurring categories). This results demonstrate the effectiveness of
a multimodal approach for identifying misogynistic content in memes.

As for the methodology, the present dissertation draws upon the ap-
proach proposed by Muti et al. (2022). Given its success in multimodal
misogyny identification, we investigate whether MMBT can achieve similar
results when it comes to isotopy identification, which collocates this work in
the context of image-based approaches to video classification. This choice is
also motivated by studies showing the potential of using only a single frame
such as the ones by Lei et al. (2022) and Buch et al. (2022), which demon-
strate that strong performance can be achieved without considering multiple
frames. Additionally, the decision to consider a single frame is influenced
by the substantial increase in computational costs associated with analyzing
multiple frames (Lei et al., 2022), which indeed presents significant challenges
in terms of resource requirements and processing time.
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Chapter 3

Evaluation Framework

3.1 Task Definition

In this section, we present an outline of the problem at the core of this
thesis, clarify the main terms and concepts, and introduce the hypothesis
and research questions driving the study.

The primary goal of this dissertation is to classify segments from the TV
series Grey’s Anatomy into three distinct isotopies: the sentimental plot, the
professional plot, and the medical case. The classification is approached as
a multiclass problem, employing both unimodal and multimodal models.

The term ‘segment’ refers to a unit of the audiovisual product character-
ized by continuity in terms of space, time, and action, as well as consistency
in terms of thematic and narrative elements (Rocchi and Pescatore, 2022).
The term ‘isotopy’, roughly equivalent to the term ‘plot’, refers to a recurring
pattern of narrative features that are specific to a given genre – in this case,
the medical drama (Pescatore and Rocchi, 2019).

The proposed hypothesis is as follows:

Hypothesis: Because subtitles and keyframes contain comple-
mentary information, a multimodal model that incorporates vi-
sual data in addition to text should perform better than a uni-
modal model trained exclusively on text.
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To investigate this hypothesis, we aim to develop a multimodal corpus
by expanding an existing dataset of segments annotated with start and end
timestamps, as well as the corresponding isotopies. Textual features would
be extracted by temporally aligning the subtitles with the segments, while
visual features would be obtained by extracting a frame between the start
and the end of each segment, which we will refer to as ‘keyframe’. This
would allow us to experiment with unimodal and multimodal models for
the automatic identification of isotopies, which can streamline the process
of content analysis by automatically detecting narrative patterns in medical
dramas. In order to begin addressing the proposed hypothesis, we aim to
answer the following research questions:

Research Question 1: Is it better to approach the task with a
single multiclass model or a one-vs-the-rest approach?

Research Question 2: Which modality is more informative for
the task of predicting the isotopies?

Research Question 3: Does the inclusion of keyframes in ad-
dition to the subtitles result in higher performance as compared
to only using the subtitles?

To answer these research questions, we propose the following evaluation
framework:

1. Extract the textual features from the subtitles and the visual features
from the keyframes, based on the provided temporal annotation.

2. Process the data into a suitable format for classification.

3. Train and evaluate unimodal models (first using only visual features, then
using only textual features) for the multiclass classification task, imple-
menting both multiclass and one-vs-the-rest approaches.

4. Train and evaluate multimodal models (using both visual and textual
features) for the multiclass classification task, also implementing both
multiclass and one-vs-the-rest approaches.
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3.2 Corpus Creation

3.2.1 Background

The present work builds upon the Medical Dramas Dataset outlined in Roc-
chi and Pescatore (2022). The dataset includes more than 400 hours of video
and consists of eight US medical dramas, for a total of 32 seasons and 608
episodes1. Isotopy assignment, also referred to as ‘coding’, was conducted
according to a three-step content analysis protocol (Rocchi and Pescatore,
2022). First, three isotopies underlying the medical drama genre were iden-
tified: the medical cases plot, the professional plot, and the sentimental plot.
According to Pescatore and Rocchi (2019), the isotopies can be defined as
follows:

The medical cases plot (MC) is related to the storylines that usually
change between each episode, introducing new narrative elements and a va-
riety of characters into the hospital setting.

The professional plot (PP) deals with the relationships and dynamics
within the hospital among doctors and other medical staff.

Lastly, the sentimental plot (SP) comprises the emotional and personal
relationships between the main characters throughout the series. It covers a
wide sphere of emotions such as friendship, love, empathy, and conflict.

The second step involved breaking down each episode into segments,
which are defined as the units of the audiovisual product that possess con-
tinuity in terms of space, time, and action, as well as consistency in terms
of thematic and narrative elements (Rocchi and Pescatore, 2022). For each
segment, start and end times were identified and recorded. This aspect is
especially important, as it allowed the subsequent alignment with the text of
the subtitles (see Section 3.2.2).

The actual coding phase followed the identification of the segments. Dur-
ing this phase, the appropriate isotopies were assigned to each previously
identified segment, taking into account their development over time and not
treating them as independent segments. A weight from 0 to 6 was assigned

1The dataset is available at https://osf.io/24tus/.

https://osf.io/24tus/
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code segm start segm end time pp sp mc

GAS13E01 00:00:00 00:00:44 00:00:44 NA NA NA
GAS13E01 00:00:44 00:00:49 00:00:05 NA NA NA
GAS13E01 00:00:49 00:02:18 00:01:29 0 6 0
GAS13E01 00:02:18 00:02:36 00:00:18 0 2 4
GAS13E01 00:02:36 00:03:18 00:00:42 0 6 0

Table 3.1: Snapshot of the original Medical Dramas Dataset.

to each of the plots. If a segment could only be attributed to a single plot,
a weight of 6 was assigned to that plot and a weight of 0 to the other two.
When there were overlaps between narrative lines, a weight was assigned to
each of the co-occurring narratives according to their relevance in the seg-
ment. In some cases, segments were not attributable to either of the isotopies
and all three were marked as “NA” (Rocchi and Pescatore, 2022).

An example showing some instances from the Medical Dramas Dataset
is illustrated in Table 3.1, where each row corresponds to a segment. The
code “GA” refers to the TV show Grey’s Anatomy, and it is followed by
the season (“S13”) and the episode (“E01”). The columns “segm start” and
“segm end” are the start and end timestamps respectively, whereas “time”
indicates the duration of the segment. Lastly, “pp”, “sp”, and “mc” con-
tain the distribution of the isotopies. Segments labeled as “NA” were not
attributable to either of the isotopies.

3.2.2 Data Extraction

The availability of start times and end times for each segment allowed for the
alignment of the dataset with another source of data tagged with temporal
information: the subtitle track of the episodes. Each subtitle has four parts
in a SubRip Subtitle (SRT) file2: a counter indicating the number of the
subtitle; start and end timestamps; one or more lines of text; and an empty
line indicating the end of the subtitle. By relying on these features, the SRT
files were processed to extract the timestamps and the text of the subtitles.

2https://docs.fileformat.com/video/srt/

https://docs.fileformat.com/video/srt/
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segm start segm end sub average sub start sub end

00:06:13 00:06:20 00:06:18.594 00:06:17.587 00:06:19.602
00:06:20 00:07:14 00:06:20.179 00:06:19.635 00:06:20.723
00:06:20 00:07:14 00:06:21.874 00:06:20.755 00:06:22.994

Table 3.2: The subtitle in line 2 starts slightly before the segment to which it
was assigned. Nevertheless, the average (00:06:20.179) is comprised between
the start (00:06:20) and the end of the segment (00:07:14). Therefore, this
segment contains the majority portion of the subtitle.

For the purpose of aligning the subtitles with the Medical Dramas Dataset,
a method for assigning each of the subtitles to the corresponding segment
was identified. Inspired by Tapaswi et al. (2014), in which subtitles occur-
ring at video shot boundaries were assigned to the shot which has a majority
portion of the subtitle, the average of each subtitle’s timespan was used as
the criterion for the alignment. For example, given a subtitle that starts
at 00:00:00.804 and ends at 00:00:02.701, the average is 00:00:01.752. If a
segment starts at 00:00:00.000 and ends at 00:00:07.000, then the subtitle is
part of that segment. By doing so, a subtitle that overlaps with two different
segments is assigned to the one where it appears on the screen for the longest
amount of time. Table 3.2 illustrates this approach more in detail.

In addition to processing the subtitles, keyframes were also extracted from
each of the episodes. A script based on OpenCV3, an open-source computer
vision library, was developed to accomplish this task. For each video, the
midpoint of each segment was calculated based on the start and end times
of the segment. The corresponding keyframe is then extracted and saved as
a JPG file. Table 3.3 illustrates a few examples from the corpus, consisting
of different segments and their timestamps, as well as the text obtained
from the subtitles, the filenames of the keyframes and the assigned isotopies.
Unique IDs were also assigned in column “id”. In contrast with Table 3.1,
the segments up to 00:00:49 are missing because they were labeled as NA.
An example of a keyframe is also shown in Figure 3.1.

3https://opencv.org/

https://opencv.org/
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id segm start segm end pp sp mc img name

S13E01 0 00:00:49 00:02:18 0 6 0 S13E01 1.jpg

Meredith: Don’t you wish you could just take it back... That thing you
said, that thing you did. [. . . ] We can’t undo the past. ‘Cause the future
keeps coming at us.

id segm start segm end pp sp mc img name

S13E01 1 00:02:18 00:02:36 0 2 4 S13E01 1.jpg

[Siren wails] Isaac: What do we got? We got a male, mid 20s. [. . . ] We’ll
need a CT. All right, let’s get him to Trauma One. Let’s go. Page Avery!

id segm start segm end pp sp mc img name

S13E01 2 00:02:36 00:03:18 0 6 0 S13E01 2.jpg

Two champagnes. You got it. I thought you were dancing with Maggie.
[. . . ] Take a breath. What happened to DeLuca?

Table 3.3: Some instances from the resulting corpus. The text obtained
from the subtitles has been shortened for displaying purposes.

Figure 3.1: Keyframe S13E01 0.jpg.
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3.2.3 Data Preprocessing and Description

The preprocessing of the corpus involved several steps designed to refine and
improve the quality of the data. Most importantly, short segments (≤ 9
subtitles), in which stopwords4 and consecutive repeated words constituted
more than 65% of the total tokens, were removed. In addition to this, other
preprocessing steps included:

• Removing song lyrics, e.g., ♪ I don’t want to wait...♪

• Removing song names, e.g., [Lorde’s “Team” playing]

• Removing subtitle authors’ names, e.g., Telescript by Raceman, Subti-
tles/Sync by Bemused.

• Removing italics tags (<i></i>) without removing the content inside
them, e.g., I’m <i>really</i> sorry.

• Removing hesitations in the characters’ speech, e.g., He-he doesn’t...
He doesn’t mean that.

• Removing hyphens indicating dialogue between different characters,
e.g., -Is he talking? -Yeah.

• Removing segments containing only sounds, e.g., [Whistles].

Labels were also preprocessed as part of the data preparation, with the
original range of [0, 6] discretized into binary values of {0, 1}. Values in the
interval [0, 2] were assigned to 0 and values in the interval [4, 6] were assigned
to 1; as a result, segments with label combinations 330, 303, and 0335 were
removed as they could not be discretized into the required binary represen-
tation. The counts of the instances per class before and after discretization
are illustrated in Table 3.4. Although some of the granularity in the original

4From the NLTK library https://www.nltk.org/.
5In other words, where PP=3, SP=3, MC=0 and so on.

https://www.nltk.org/
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Before Discretization After Discretization

Values PP SP MC Values PP SP MC

0 13668 8718 11641 0

13690 8907 113811 321 310 245 0

2 667 751 621

4 368 445 394 1

3299 8082 56085 156 297 233 1

6 2775 7340 4981

Table 3.4: Label counts before and after discretization.

No. of subtitles 1-9 10-18 19-27 28-37 38-46 47-55 56-74

No. of segments 5928 5527 3245 1572 482 176 59

Table 3.5: Distribution of subtitles per segment.

data is lost, the main advantage of this approach is that it simplifies the clas-
sification task by reducing the number of classes, which enables the model
to concentrate on identifying those segments where there is a complete or
mostly complete correspondence to one of the isotopies.

The final corpus used in this study contains 276,357 subtitles, which are
grouped into 16,989 labeled segments. The corpus has a total of 2,260,655
tokens (38,629 types) and the mean length of a subtitle is 8.430 ± 3.921
tokens. Each segment consists of 1 to 74 subtitles, and about 95.7% of the
segments (16,272) contains up to 37 subtitles, as shown in Table 3.5.

3.3 Evaluation Metrics

Classification metrics play a critical role in evaluating the performance of a
classification model, i.e., how effectively it can predict the correct class or
category for new, unseen data. In this section, we provide an overview of
some commonly used classification metrics, explaining not only what these
metrics represent, but also why they were chosen or not.
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3.3.1 Accuracy

Accuracy is a commonly used metric to evaluate classification models. It is
defined as the ratio of the correctly classified instances to the total number
of instances. In mathematical terms, accuracy is given by:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(3.1)

However, accuracy can be misleading when dealing with imbalanced datasets,
as a high accuracy may be obtained by simply predicting the majority class.

3.3.2 Precision and Recall

Precision and recall are two metrics that address the limitations of accuracy,
especially for imbalanced datasets. Both precision and recall are calculated
on the basis of a confusion matrix as the one illustrated in Figure 3.2.

Predicted

Class 1 Class 2 Class 3

T
ru

e

Class 1 8 2 0

Class 2 1 6 3

Class 3 0 1 9

Figure 3.2: Example of a confusion matrix.

In Figure 3.2, each row depicts the actual classes, and each column shows
the predicted classes. The values on the main diagonal (from the top-left
to the bottom-right) represent true positives (TP), where the model’s pre-
dictions coincide with the actual classes. For example, 8 instances were
accurately classified as Class 1 (TP for Class 1).

The elements outside the main diagonal in the matrix represent incorrect
predictions. They include false positives (FP) and false negatives (FN). For
instance, the value of 2 in the first row and second column means that two
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instances of Class 1 were mistakenly classified as Class 2, which makes them
false negatives for Class 1 and false positives for Class 2.

Precision for a class is calculated as the ratio of true positives (TP) for
that class to the sum of true positives and false positives (FP) for that class.
According to the confusion matrix in Figure 3.2, there are 8 true positive
instances for Class 1 and 1 false positive instance where Class 2 was inaccu-
rately predicted as Class 1. Hence, precision for Class 1 is:

Precision1 =
TP

TP + FP
=

8

8 + 1
=

8

9
≈ 0.89 (3.2)

On the other hand, recall is the ratio of true positives (TP) to the sum
of true positives and false negatives (FN) for a particular class. As per the
above confusion matrix, there are 8 true positive instances for Class 1, 2
false negatives where Class 1 was incorrectly predicted as Class 2, and 0 false
negatives where Class 1 was misclassified as Class 3. Hence, recall for Class
1 is:

Recall1 =
TP

TP + FN
=

8

8 + 2
=

8

10
= 0.8 (3.3)

3.3.3 F1 Score

The F1 score is the harmonic mean of precision and recall. It balances both
metrics, providing a single value that considers the trade-offs between them.
To compute the F1 score for multiclass classification, one must first calculate
the precision and recall for each class. Once the precision and recall for each
class have been calculated, the F1 score can be computed using the following
formula:

F1i = 2 · Precisioni · Recalli

Precisioni + Recalli
(3.4)

where F1i denotes the F1 score for class i, and precisioni and recalli
represent the precision and recall for class i, respectively.

For multiclass classification tasks, the F1 scores for each class are then
averaged to obtain a single, overall performance metric. There are several
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ways to average the F1 score for multiclass classification, one of which is
macro-averaging, i.e. the average of the F1 scores of each class:

F1macro =
1

N

N∑
i=1

F1i (3.5)

where F1macro is the macro-averaged F1, N is the number of classes, and
F1i is the F1 score for the i-th class.

In our experiments, macro-averaged F1 will be used to measure the overall
performance of the models. The main reason behind this choice is that
macro-averaged F1 gives equal weight to each class, regardless of the number
of instances. This can be particularly useful when dealing with imbalanced
datasets, as it ensures that the model performs well across all classes, and
not just the majority class.
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Chapter 4

Experiments

To address our research questions, we explore two different classification ap-
proaches to determine which one is better suited for the problem at hand:
the first approach is to employ a single multiclass classifier that directly
predicts the target class labels, while the second involves using the one-vs-
the-rest approach to decompose the multiclass task using a series of binary
classifiers. Although, as we will discuss in Section 4.1, the one-vs-the-rest
approach is expected to achieve better separation between the classes, the
multiclass approach would probably require less training time.

We investigate the multiclass and one-vs-the-rest approaches for both
unimodal and multimodal settings. For the multiclass approach, we first
fine-tune and evaluate a unimodal textual and a unimodal visual model,
and then a multimodal one. For the one-vs-the-rest approach, we do the
same for each unimodal binary sub-problem, and then repeat the problem
decomposition approach in the multimodal setting as well. An overview of
the models is presented in Section 4.2. Lastly, we report on the obtained
results and proceed to answer the research questions in Section 4.3.

4.1 Classification Approaches

In this section, we examine two approaches to multiclass classification: the
direct multiclass approach and the one-vs-the-rest approach. Although both
methods address the challenge of categorizing instances into multiple classes,
their performance can vary depending on the nature of the data and the
choice of the base classifier (Al-Essa and Appice, 2021; Vera et al., 2021).

43
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Figure 4.1: Multiclass approach; adapted from https://cran.r-project.

org/web/packages/multiclassPairs/vignettes/Tutorial.html

4.1.1 Direct Multiclass Approach

Some algorithms, including neural networks, are capable of addressing mul-
ticlass problems directly. In a multiclass classification setting, the last layer
of a neural network is usually set to be a softmax function so that the output
is a probability distribution over the N output classes, as in Figure 4.1 (cfr.
Section 2.1). The argmax of these scores, i.e. the class with the highest
probabilty, is the final predicted class.

This approach has several advantages, including greater computational
efficiency and the ability to capture relationships between the classes. How-
ever, it can also lead to worse predictive performance when dealing with
imbalanced datasets and complex class boundaries, potentially causing the
model to focus on the dominant classes (Ghosh et al., 2021).

https://cran.r-project.org/web/packages/multiclassPairs/vignettes/Tutorial.html
https://cran.r-project.org/web/packages/multiclassPairs/vignettes/Tutorial.html
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Figure 4.2: One-vs-the-rest; adapted from https://cran.r-project.org/

web/packages/multiclassPairs/vignettes/Tutorial.html

4.1.2 One-vs-the-Rest Approach

Another way to tackle a multiclass problem is to use the one-vs-the-rest
(OvR) approach, also known as one-vs-all (OvA), which involves decompos-
ing the task into N binary classifiers, each trained to distinguish between
one class and the rest (Lorena et al., 2008). As shown in Figure 4.2, the acti-
vation function used in the output layer of each binary classifier is typically
a sigmoid (cfr. Section 2.1). In this setup, each binary classifier outputs a
probability which represents the likelihood that the instance belongs to its
associated positive class instead of all other classes. In other words, the in-
put is evaluated by all N classifiers (where N is the number of classes), each
assigning a probability that the instance belongs to its respective class. The
final prediction is made by selecting the class associated with the classifier
that outputs the highest probability (Aly, 2005).

Although neural networks can handle multiclass classification directly,
using the one-vs-the-rest strategy may be beneficial in certain situations. In

https://cran.r-project.org/web/packages/multiclassPairs/vignettes/Tutorial.html
https://cran.r-project.org/web/packages/multiclassPairs/vignettes/Tutorial.html
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some cases, multiclass classification may lead to a higher rate of classifica-
tion errors due to its increased complexity compared to binary classification
(Lorena et al., 2008). The one-vs-the-rest approach can reduce this complex-
ity, potentially resulting in a more discriminative model (Vogiatzis et al.,
2023). This approach also presents benefits in that it allows the combination
of different models for each class; however, it is also more computationally
expensive, as it requires N models to be trained (Sánchez-Maroño et al.,
2010).

4.2 Models

In this section, we present the models that are used to address the research
questions at the core of this thesis. We begin by providing an overview
of BERT (Devlin et al., 2019), a pre-trained transformer model that has
revolutionized the field of NLP by setting new benchmarks for a wide range
of tasks. Following the discussion on BERT, we shift our focus to CLIP, a
recent model for visual feature extraction and understanding (Radford et al.,
2021), and MMBT (Kiela et al., 2019), a multimodal extension of BERT that
integrates visual and textual information.

4.2.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a highly
performing pre-trained language model introduced by Devlin et al. (2019).
Built on the transformer architecture, BERT introduces a bidirectional pre-
training approach, which sets it apart from unidirectional models like GPT
(cfr. Section 2.1.2). Using a WordPiece tokenizer1, BERT is pretrained on
two tasks — masked language modeling (MLM) and next sentence prediction
(NSP) — to learn rich contextual information and sentence relationships (cfr.
Section 2.1.2), leveraging a large corpus of text that includes BooksCorpus, a
dataset of over 11,000 books, and English Wikipedia with around 2.5 billion
words.

Figure 4.3 shows BERT in a text classification setting. The input se-
quence consists of tokens (Tok 1, Tok 2, ... Tok N) and a special [CLS]
token. These tokens are first converted into static embeddings (E[CLS], E1,

1https://github.com/google-research/bert#tokenization

https://github.com/google-research/bert##tokenization
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Figure 4.3: BERT for text classification (Devlin et al., 2019).

E2 ... EN). At this stage, the embeddings do not capture any contextual
information from the surrounding tokens in the input sequence. Then, they
are contextualized within BERT. After processing, the contextualized embed-
dings of the tokens (T1, T2, T3, ... TN) and the [CLS] token, now denoted as
‘C’, are produced. The contextualized token ‘C’ captures the global informa-
tion of the input sequence and is used for tasks requiring a single, aggregated
representation. In the case of classification, a task-specific classification head
is typically added on top of BERT to map the contextualized representations
to class probabilities (Devlin et al., 2019).

For the unimodal experiments, we use the bert-base-uncased model
from the HuggingFace library2. The model is fine-tuned (cfr. Section 2.1.2)
exploring epochs ∈ [1, 2, 3] with a batch size of 16, one of the batch sizes
recommended by the authors of BERT (Devlin et al., 2019). For optimiza-
tion, we employ the AdamW3 optimizer with a learning rate of 1e-5 and an
epsilon value of 1e-8. We encode the training, validation, and test datasets
with BertTokenizer4 and pad the sequences to a maximum length of 512.

2https://huggingface.co/bert-base-uncased
3https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
4https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#

berttokenizer

https://huggingface.co/bert-base-uncased
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://huggingface.co/transformers/v3.0.2/model_doc/bert.html##berttokenizer
https://huggingface.co/transformers/v3.0.2/model_doc/bert.html##berttokenizer


48 CHAPTER 4. EXPERIMENTS

Figure 4.4: Representation of the multimodal bitransformer architecture
combining CLIP and BERT; adapted from Kiela et al. (2019).

To adapt the unimodal model for the approaches outlined in Section 4.1, we
modify the num labels parameter of BERT, setting it to 3 for multiclass clas-
sification and 1 for binary classification. For multiclass, we use the default
Cross Entropy loss function that is computed by BERT when num labels

> 1 (Devlin et al., 2019). For binary classification in the one-vs-the-rest
scenario, we use the Binary Cross Entropy with Logits loss from PyTorch5.

4.2.2 CLIP and MMBT

The Multimodal Bitransformer (MMBT) is an architecture that extends the
capabilities of bidirectional transformers, like BERT, to handle multimodal
data. Introduced by Kiela et al. (2019), MMBT incorporates the strengths
of the transformer architecture and adapts it for processing both textual
and visual inputs, enabling the model to effectively learn from and generate
meaningful outputs for multimodal scenarios. The idea behind MMBT is
to jointly fine-tune an unimodally pretrained text encoder, such as BERT,
and an image encoder, typically based on a CNN, such as ResNet (cfr. Sec-
tion 2.2). As illustrated in Figure 4.4, the MMBT model achieves this by

5https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss
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projecting the image embeddings into the text token space. Here, textual
segments are marked with a 0, while visual segments are indicated with 1.
By processing both segments at the same time, attention mechanisms (cfr.
Section 2.1.2) can effectively operate across both modalities. Tokens are in-
dexed based on their positions, ranging from 0 up to a maximum of 512,
while image representations are indexed from 0 to 640.

To further enhance the capabilities of MMBT, we use OpenAI’s CLIP
(Radford et al., 2021) as the visual encoder instead of the default ResNet-
152 architecture used by MMBT. Following Neskorozhenyi (2021), we use the
Pillow library6 to prepare 288x288 pixel versions of all frames by rescaling
and padding, while also maintaining the original aspect ratio of the frames.
We then slice the frames into three equal parts to capture both global and
local image features. By following this procedure, four vectors are obtained
for each frame: a vector for each of the parts that encode spatial information
and one for the whole frame. The visual feature extractor of CLIP is RN50x4,
a modified version of ResNet-50 which has been shown to be particularly
effective for vision-and-language tasks (cf. Section 2.2).

As for the textual encoder, we again use bert-base-uncased so as to
be able to compare the performance of MMBT and BERT. We fine-tune the
MMBT architecture by exploring epochs ∈ [1, 2, 3] with a batch size of 8 and a
gradient accumulation of 20 steps to reduce memory usage. For optimization,
we employ the MADGRAD7 optimizer with a learning rate of 2e-4. As for
BERT, we adhere to the preprocessing and parameters used in the unimodal
textual setting. Given that MMBT is largely based on BERT’s achitecture,
the num labels parameter and the loss functions are also configured in the
same way as BERT. We maintain these choices for the unimodal visual model
based on CLIP, with the exception that we do not use the textual encoder.
As for the CLIP-based model, we leave RN50x4 as the feature extractor and
we follow Wei et al. (2022) in using a batch size of 16.

4.3 Results

In this Section, we report the outcomes of the experiments involving CLIP,
BERT, and MMBT using two different approaches: multiclass and one-vs-

6https://github.com/python-pillow/Pillow
7https://github.com/facebookresearch/madgrad

https://github.com/python-pillow/Pillow
https://github.com/facebookresearch/madgrad
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Setting CLIP BERT MMBT

ovr@1 0.461 ± 0.080 0.681 ± 0.007 0.664 ± 0.033
multi@1 0.436 ± 0.031 0.677 ± 0.013 0.651 ± 0.017

ovr@2 0.536 ± 0.014 0.684 ± 0.010 0.686 ± 0.008
multi@2 0.487 ± 0.027 0.695 ± 0.010 0.697 ± 0.028

ovr@3 0.542 ± 0.072 0.686 ± 0.008 0.688 ± 0.012
multi@3 0.523 ± 0.016 0.702 ± 0.011 0.719 ± 0.011

Table 4.1: Macro-averaged F1 obtained with one-vs-the-rest and multiclass
approaches over 10-fold cross-validation at [1, 2, 3] epochs. Best result on
epoch is in bold and best result on metric is in red.

the-rest, as described in Section 4.1 and Section 4.2. In Section 4.3.1, we
report the average F1 scores obtained from 10-fold cross-validation. Then,
in Section 4.3.2, we address the key research questions at the core of this
dissertation. We first examine the two approaches, namely multiclass vs one-
vs-the-rest, then we determine the most informative modality for predicting
the isotopies, and lastly we evaluate the effect of incorporating keyframes.

4.3.1 Evaluation

This Section provides an overview of the results obtained from each com-
bination of models (CLIP, BERT, MMBT) and approaches (multiclass and
one-vs-the-rest), as outlined in Section 4.2. In Table 4.1, we report the
macro-averaged F1 scores for each of the settings, evaluated with 10-fold
cross-validation. For one-vs-the-rest, the reported score is the average F1

obtained by the three binary models. A higher F1 score indicates that the
model is more effective at identifying true positives. The aim of the evalua-
tion phase is to identify the best model for each configuration.

At 1 epoch, the BERT models slightly outperform the MMBT multimodal
models. This early stage result can be explained by the complexity of the
multimodal MMBT model, which requires more epochs to fully optimize its
performance. Another interesting result is the fact that at 1 epoch, all one-
vs-the-rest models outperform their multiclass counterparts. This is the only
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Model Setting F1test Recalltest Precisiontest

CLIP One-vs-rest 0.566 0.572 0.584
CLIP Multiclass 0.536 0.545 0.545

BERT One-vs-rest 0.685 0.684 0.687
BERT Multiclass 0.672 0.668 0.679

MMBT One-vs-rest 0.713 0.712 0.714
MMBT Multiclass 0.723 0.726 0.720

Table 4.2: Performance on test of the best models for each configuration.

epoch where one-vs-the-rest shows better results overall. This is likely due
to the fact that the individual binary models have to learn a less complex
relationship between inputs and targets, resulting in higher performance after
just a single epoch of training, unlike the multiclass models.

At 2 epochs, the BERT and MMBT models obtain similar results in
the one-vs-the-rest configuration, with MMBT slightly outperforming BERT.
The improvement of MMBT over BERT also starts to show in the multimodal
multiclass setting, indicating a potential advantage in MMBT’s approach to
handling the complexity of the task as the model continues to learn. It is
worth noting that at this stage, the one-vs-the-rest MMBT no longer out-
performs its multiclass counterpart, which could be due to the increased
optimization and complexity handling that the multiclass model has devel-
oped over the additional epoch of training. While CLIP obtains lower F1

scores than both BERT and MMBT, it is also the only model that continues
to show better results when using one-vs-the-rest rather than multiclass.

At 3 epochs, all models continue to show progress in terms of their perfor-
mance. By the end of the third epoch, BERT and MMBT are still obtaining
close results in the one-vs-the-rest configuration, but the MMBT model now
clearly outperforms all others in the multiclass configuration. This suggests
that as the training progresses, the MMBT model’s ability to handle com-
plex class relationships improves, thus boosting its performance. Another
observation concerns BERT, where multiclass shows a more significant im-
provement over one-vs-the-rest than in the previous epochs. This provides
additional evidence supporting the idea that more complex models, given
sufficient training time, have the potential to outperform their simpler coun-
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terparts. While CLIP models could have benefited from more epochs, we
trained the models for three epochs as the better-performing BERT and
MMBT models were starting to overfit the training data.

Following the 10-fold cross-validation, we perform a final evaluation of the
best models selected on the basis of the cross-validation on an independent
test set that was not utilized during training. This final evaluation allows
us to assess the models’ performance on unseen data and their generaliza-
tion capabilities. F1 score, Precision and Recall of the best configurations
on the test set are reported in Table 4.2. From the test results, it emerged
that ensembling the best-performing binary models in the one-vs-the-rest sce-
nario resulted in this approach outperforming multiclass also in the unimodal
textual scenario. As for the remaining configurations, the trends identified
during cross-validation are confirmed in the final evaluation. All of the mod-
els that were selected for the final evaluation obtained their highest F1 at
epoch three.

4.3.2 Discussion

Building upon the findings presented in Section 4.3.1, we now shift our at-
tention towards addressing the research questions formulated in Section 3.1.

As for RQ1, the answer is not straightforward. The approach which re-
sulted in the best-performing model is the direct multiclass approach. Specif-
ically, multiclass with MMBT and trained over 3 epochs achieved the highest
average F1 score on the test set, i.e. F1 = 0.723. This result could be at-
tributed to the ability of the multiclass MMBT approach to better handle
correlations between different classes, a feature not captured by the one-vs-
the-rest approach which treats each class independently (cf. Section 4.1). It
is possible that the added visual information allows MMBT to disambiguate
instances more effectively than the multiclass the BERT model, resulting in
one-vs-the-rest being more effective for BERT (F1 of 0.684 for OvR com-
pared to 0.668 for multiclass). What emerged during the evaluation phase
(cf. Table 4.1) is that one-vs-the-rest can provide an early advantage due to
the decomposition of the multiclass problem into multiple binary problems;
however, as the learning process continues, both approaches can be effective
depending on the model. In this sense, the evaluation on the test set proved
to be crucial in order to understand the potential of one-vs-the-rest when
ensembling the individual binary models.



4.3. RESULTS 53

Class Setting F1 CLIP F1 BERT F1 MMBT

PP One-vs-rest 0.444 0.563 0.579
PP Multiclass 0.341 0.513 0.593

SP One-vs-rest 0.708 0.788 0.824
SP Multiclass 0.724 0.782 0.809

MC One-vs-rest 0.592 0.706 0.741
MC Multiclass 0.604 0.719 0.765

Table 4.3: Per-class one-vs-the-rest and multiclass F1 scores on test.

Interestingly, CLIP also benefits from the one-vs-the-rest approach. Upon
closer inspection, it appears that the reason why multiclass CLIP has a lower
F1 score is that it underperforms on the minority class, i.e. the professional
plot (PP). As illustrated in Table 4.3, this is in contrast with one-vs-the-
rest, which obtains a higher overall F1 score. Even though one-vs-the-rest
obtains a lower F1 score than multiclass on the sentimental plot (SP) and
medical case (MC) classes, it manages to identify PP instances significantly
better (one-vs-the-rest achieves an F1 score of 0.444 on PP compared to the
0.341 of multiclass). This could be due to the fact that one-vs-the-rest is
more suitable for unimodal models, as a similar trend also arises when it
comes to multiclass BERT compared to one-vs-the-rest BERT. Given that
both approaches can perform well overall, we will proceed to answer RQ2
and RQ3 by analyzing the best performing approach for each modality, i.e.
one-vs-the-rest CLIP and BERT and multiclass MMBT.

In order to address RQ2, we will now compare the two unimodal models
to determine which modality is more informative for the task of predict-
ing the isotopies. On the test set, one-vs-the-rest BERT achieves an F1

score of 0.685, while one-vs-the-rest CLIP obtains a fairly lower F1 score of
0.566 (cf. Table 4.2). As for RQ2, we can conclude that BERT performs
better than CLIP, which suggests that the text might be more informative
than the keyframes for the task of predicting the isotopies. It should be
noted, however, that the CLIP model is limited by the fact that it takes
into consideration a single keyframe for each segment. Considering the av-
erage length of the texts available to BERT (cf. Section 3.2.3), it is clear
that the textual model not only has access to more information but can also
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analyze dialogue at different points in time, unlike the CLIP model which
looks exclusively at the midframe of a segment. Considering the importance
of textual data for predicting the isotopies, it could be promising to explore
multilingual transformer-based models like mBERT (Devlin et al., 2019) or
XLM-RoBERTa (Conneau et al., 2020). Given the availability of subtitles
in other languages, this would allow an investigation into how these models
generalize in multilingual scenarios.

Moving on to RQ3, we proceed to assess whether the combination of
keyframes and subtitles results in higher performance by examining the
results of MMBT compared to BERT. As shown in Table 4.2, the best-
performing MMBT model, i.e. multiclass MMBT, obtains an F1 score of
0.723, compared to one-vs-the-rest BERT’s F1 score of 0.685. It should be
noted that multiclass MMBT’s F1 score of 0.723 is the highest across all
models and configurations. Considering RQ3, we can conclude that using a
multimodal approach results in a noticeable improvement over the text-only
BERT model. As already mentioned, it must be taken into account that
the frames were selected somewhat arbitrarily, with only one frame taken
from each segment. We can therefore consider this result to be promising, as
it demonstrates that integrating more information from the visual channel
can improve the performance of the model. To overcome this limitation, an
approach that takes into consideration multiple frames or a more systemat-
ically chosen single frame could be developed. Another avenue of research
could involve exploring the type of vision-and-language model that is used:
MMBT is a single-stream architecture (Kiela et al., 2019); however, existing
research suggests that dual-stream models can obtain better results thanks to
their co-attention mechanism (cf. Section 2.3). As dialogue is typically not a
descriptive account of the ongoing events, but rather an interaction between
characters, the correlation between the modalities might be too complex for
an early-fusion based model.

In summary, the results suggest promising directions for future work in
the application of unimodal and multimodal models for the automatic iden-
tification of isotopies. One-vs-the-rest appears to be more effective for uni-
modal models, while textual features proved to be more informative than
keyframes for predicting the isotopies as BERT outperformed CLIP with an
F1 score of 0.685 as compared to CLIP’s 0.566. Finally, the improvement
obtained by the multimodal MMBT model over the text-only BERT model
provides support for the initial hypothesis that the information from the vi-
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sual channel complements the one that is contained in the dialogues. These
results also indicate the potential of single-frame approaches for the task of
multimodal video classification. However, considering the strategies adopted
by models such as Singularity and ATP (cf. Section 2.4), it could be possible
to obtain even better results by devising a more systematic methodology for
frame selection instead of relying exclusively on the midframes. Additional
avenues for further research might include the adoption of a dual-stream
model as an alternative to the single-stream architecture of MMBT, or the
inclusion of more frames for each segment. In the broader context, we can
conclude that automated content analysis for isotopy identification, a domain
which has been previously unexplored, can greatly benefit from multimodal
approaches. Exploring the use of multilingual transformer-based models like
mBERT (Devlin et al., 2019) or XLM-RoBERTa (Conneau et al., 2020) could
also lead to improvements and open up the possibility of leveraging cross-
lingual transfer for the analysis of other shows pertaining to the medical
drama genre.
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Chapter 5

Conclusions

This dissertation examined three research questions to evaluate various meth-
ods for automatic isotopy identification in the context of medical dramas.
The first research question focused on comparing, for all models, the perfor-
mance of a direct multiclass approach versus a one-vs-the-rest approach. The
second research question aimed to determine the most informative modality
for the classification task. The third research question involved investigat-
ing whether the inclusion of keyframes in addition to subtitles resulted in
better performance compared to just using the subtitles. The motivation
behind these research questions is related to the growing interest in using
computational methods for analyzing complex audiovisual contents, includ-
ing long-running medical dramas such as Grey’s Anatomy. Motivated by the
hypothesis that a multimodal model incorporating both textual and visual
data would outperform a unimodal model trained solely on text, we created
a multimodal corpus by expanding on the Medical Dramas Dataset, which
includes segments annotated with the corresponding isotopies from eight TV
shows pertaining to the medical drama genre. Textual features were ex-
tracted by temporally aligning the subtitles with the segments, while visual
features were obtained by extracting a frame, referred to as a keyframe, be-
tween the start and the end of each segment. The obtained multimodal
corpus comprises 17 seasons from the show Grey’s Anatomy, for a total of
6,989 labeled segments and 2,260,655 tokens. We then used this corpus
to experiment with both unimodal and multimodal transformer-based mod-
els, namely CLIP, BERT, and MMBT, aiming to understand how different
modalities and approaches to the classification task can impact the identifi-
cation of the isotopies.

57
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The findings from this work are promising, indicating that it is indeed
possible to utilize deep learning to automatically identify the distinctive iso-
topies of the medical drama genre in the context of Grey’s Anatomy. Notably,
we observed that the multimodal MMBT model performed significantly bet-
ter compared to the text-only BERT model and the image-only CLIP model.
More specifically, MMBT achieved the top F1 score of 0.723, compared to
BERT’s highest F1 score of 0.685, thus shedding light on the potential bene-
fit of incorporating visual information alongside textual data. We have also
examined different approaches to the problem, observing that the one-vs-the-
rest approach appears to be more beneficial in the case of unimodal models. It
is possible that the added visual information allows MMBT to disambiguate
instances more effectively than the multiclass the BERT model, which could
explain why this is the only setting in which multiclass worked better than
one-vs-rest. Lastly, we also concluded that the textual information proved
to be more informative than the visual data, demonstrating the importance
of dialogue for isotopy identification. Hence, when computational resources
are a limiting factor, a text-based model can also be a valid approach.

The potential for future work is vast, as there are many aspects that
could be further improved to enhance the performance of the models. For
example, future research could delve into a more systematic methodology
for frame selection, which in this study was limited to only the midframes
of the segments. A comprehensive approach that takes into consideration
multiple frames or systematically chosen single frames could potentially lead
to significant improvements in the performance of the models. Additionally,
while the single-stream architecture of MMBT model provided promising re-
sults, exploring dual-stream models might result in even better performance.
Existing research suggests that dual-stream models can obtain better re-
sults thanks to their co-attention mechanism, which enables them to han-
dle complex relationships between the modalities. Moreover, the potential
to leverage cross-lingual transfer for the analysis of other shows pertaining
to the medical drama genre could be explored. This could be achieved by
experimenting with multilingual transformer-based models like mBERT or
XLM-RoBERTa. Given the availability of subtitles in other languages, this
approach would allow for an investigation into how these models generalize
in multilingual scenarios.
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