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Abstract 

Climate change is primarily driven by the human activities of fossil fuel combustion and 

land use change, which together result in the emissions of greenhouse gases such as carbon 

dioxide (CO2). The terrestrial biosphere currently absorbs about a third of total anthropogenic 

CO2 emissions, mostly through primary production by vegetation. The continued function of 

vegetation as a CO2 sink is uncertain, as climate change has the potential to enhance or restrict 

the carbon uptake capacity of vegetation. Uncertainty in terrestrial vegetation function in the 

context of climate change, due in part to a lack of precise observations of leaf biochemistry and 

function with which to develop models, therefore limits the confidence of climate change 

projections. In its entirety, this thesis examines the potential for more precise observations of leaf 

function and their integration across a variety of models and observational scales. The first 

chapter provides an introductory overview of the subsequent four chapters and how each 

compliments the other. The second chapter demonstrates the role of the terrestrial biosphere in 

influencing the relationship between temperature change and cumulative CO2 emissions. The 

third chapter provides adaptations to current radiative transfer modelling approaches to improve 

estimations of leaf biochemical constituents. The fourth chapter applies high spatiotemporal 

resolution observations of leaf phenology, the timing of leaf emergence and senescence, across 

North America to predict species-specific leaf phenology patterns under various emissions 

scenarios throughout the 21st century. The fifth chapter provides an approach to detect declines 

in ecosystem processes such as carbon uptake using observational leaf phenology networks. 

These chapter results indicate that 1) uncertainty in the land-borne fraction of carbon emissions 

contributes largely to uncertainty in the relationship between temperature change and emissions, 

2) spectral subdomains and prior estimation of leaf structure improves leaf biochemistry 
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estimations, 3) leaf senescence timing may diverge between boreal and temperate species under a 

high emissions scenario, and 4) declines in vegetational carbon uptake can be accurately detected 

using quantitative phenocam-based indicators. The fundamental and technical insights provided 

through this thesis will facilitate more reliable and functionally resolved projections of terrestrial 

biosphere feedbacks to climate change. 
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Chapter 1. Introduction and overview 

1.1 Overview and objectives 

1.1.1 Overview 

Greenhouse gas emissions from land use change, agriculture, and industrialization have 

led to an energy imbalance at the top of Earth’s atmosphere, trapping heat which would 

otherwise radiate to space. The most abundant non-condensing greenhouse gas emitted through 

human activities in Earth’s atmosphere is carbon dioxide (CO2), followed by methane (CH4) and 

nitrous oxide (N2O). Since the dawn of the Industrial era (~1750 CE) until 2022, atmospheric 

CO2 has risen in concentration from about 278 parts per million by volume (ppmv) to about 415 

ppmv, amounting to a 50% increase (Friedlingstein et al., 2022). Vegetation within the terrestrial 

biosphere reduces this rise in atmospheric CO2 concentration through the process of 

photosynthesis within leaf tissues which translates atmospheric CO2 into carbohydrates and 

biomass. Carbon uptake by vegetation removes about a third of anthropogenic CO2 emissions 

from the atmosphere, for example 3.5 gigatonnes of carbon (GtC) of the 10.9 GtC total 

anthropogenic emissions emitted in 2021, substantially reducing the warming impact of 

emissions (Friedlingstein et al., 2022).  

The capacity for vegetation to continue to uptake this portion of anthropogenic emissions 

is uncertain (Fatichi et al., 2019; Krause et al., 2018; Friedlingstein, 2015). Climate-driven 

changes in growing conditions including gradual and abrupt alteration of temperature and 

moisture regimes that have the potential to both promote and inhibit vegetational carbon uptake. 

The proximate driver of climate change, elevated atmospheric CO2 concentrations, also has the 

potential to promote, not affect, or even inhibit vegetational carbon uptake. For example, 

elevated atmospheric CO2 concentrations lead to increased photosynthetic substrate availability 
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or the ‘CO2 fertilization effect’ for C3 plants and may promote increased vegetational carbon 

uptake as well as increased light-use and water-use efficiency (Ainsworth and Long, 2005). On 

the other hand, nutrient constraints, limited moisture, and photosynthetic acclimation in the 

context of elevated CO2 may prevent increases in vegetational carbon uptake despite elevated 

CO2 concentrations (Bäurle et al., 2023). Elevated atmospheric CO2 may even lead to declines in 

nutrient acquisition within plants, which could culminate in vegetation carbon losses (Gojon et 

al., 2022). Plant phenology, the timing of recurrent plant biological events such as leaf 

emergence and leaf senescence, is influenced by temperature, daylength, moisture, and other 

variables (Lieth, 1974). In the extratropics, warming leads to a climatically lengthened growing 

season, promoting increased carbon uptake (Sakalli et al., 2017; Arora and Boer, 2014). Over 

recent decades across the northern high latitudes, the winter seasons have been exhibiting greater 

warming than the summer season (Gong et al., 2017; Graham et al., 2017). With sufficient winter 

warming, the timing or even occurrence of some plant phenological phases could be altered. For 

example, some phases require a certain duration and intensity of chilling to proceed and warming 

during the winter could delay the meeting of these requirements or lead to mortality through a 

premature loss of cold hardiness (Caffarra et al., 2011; Bokhorst et al., 2009). Another important 

consideration is that warming increases the rate of cellular respiration leading to more CO2 

emissions to the atmosphere. This counteracts the warming-enhanced carbon uptake in 

vegetation, though the magnitude of this counteraction is uncertain (Watts et al., 2021; Liu et al., 

2020; Dusenge et al., 2019; Fatichi et al., 2019; Bronson and Gower, 2010). 

In addition to seasonal changes, extreme weather in the form of frost events, heat waves, 

ice storms, windstorms, and hurricanes associated with enhanced climate variability interrupt 

vegetational carbon uptake and can lead to sustained carbon losses (Gong et al., 2021; 
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Richardson et al., 2018). Together these climate-driven phenomena lead to reduced carbon 

uptake, counteracting the growing season warming benefit. To formulate confident predictions of 

climate change and consequent climate policy, more research and model development is needed 

to understand the combined implications of extended growing seasons, changing growing season 

conditions, extreme weather for vegetation functioning, and different responses between species 

(IPCC, 2021; Arora and Boer, 2014; Jeong et al., 2012). Observations of vegetation function 

with improved spatial and temporal resolution are needed to address these uncertainties and fine-

tune models at the intra-seasonal and individual tree functional scale (Spafford and MacDougall, 

20211; Fatichi et al., 2019).  

1.1.2 Objectives 

Through my thesis, I aim to reduce uncertainty surrounding the feedback of terrestrial 

vegetation to global change. I incorporate modelling and observational approaches to promote 

the integration of more finely resolved observational platforms into terrestrial vegetation climate 

change feedback research. With a broad scale approach, I examine the role of the terrestrial 

carbon exchange among other variables in influencing the relationship between the driving force 

of climate change, anthropogenic CO2 emissions, and global temperature change. Through 

alterations to a commonly used model, I provide a means to improve the success and 

accessibility of leaf biochemical constituent estimations. This elucidation of leaf-scale 

characteristics and function translates into an improved understanding of canopy and global scale 

processes. I also apply a cost-effective high fidelity observational technique to reveal important 

environmental constraints on leaf phenology and a means to detect interruptions to vegetation 

carbon uptake. Together the insights from this technique provide critical background on global 

 
1 This paper was adapted from the written component of my comprehensive examination and is included in 

Appendix I. 
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scale implications of plant processes for the carbon cycle and ecological integrity. My thesis is 

composed of the following themes: the relationship between cumulative CO2 emissions and 

global temperature change (chapter 2), how techniques of observing vegetation function can be 

improved through hyperspectral observations at the leaf-scale (chapter 3), calibrating species 

specific predictive models with timelapse canopy scale imagery to examine leaf phenology under 

a range of emissions scenarios (chapter 4), and a novel ecological indicator for the fine-scale 

detection of climate-driven interruptions to carbon uptake by vegetation (chapter 5).  

1.1.3 Transient Climate Response to Cumulative CO2 Emissions 

The Transient Climate Response to Cumulative CO2 Emissions (TCRE) is the near-linear 

relationship between total anthropogenic CO2 emissions and global temperature change. This 

near linearity arises due to two phenomena which occur simultaneously: the reduction in 

radiative forcing per unit CO2 emissions as atmospheric CO2 concentration increases (sometimes 

mistakenly called the saturation effect), and a reduction in the heat and carbon uptake efficiency 

of the ocean with increased CO2 emissions (Figure 1-1; MacDougall, 2017; MacDougall and 

Friedlingstein, 2015; Allen et al., 2009; Matthews et al., 2009). In simple terms, this leads to less 

warming per unit atmospheric CO2 in junction with more carbon and heat staying in the 

atmosphere as emissions accumulate and global temperatures increase.  
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Figure 1-1. An idealized representation of radiative forcing (left top), heat uptake efficiency by 

the ocean (top right), and carbon uptake efficiency by the ocean (bottom left) per unit CO2 

concentration as CO2 concentrations increase. In combination, these phenomena result in the 

near-linear relationship between global temperature and CO2 emissions which is the foundation 

for the concept of the TCRE (right). 

 

The TCRE is conveyed in units of temperature change per unit carbon of CO2 emissions, 

such as Kelvin or degrees Celsius per exagram (1018 g) of carbon emissions (EgC) denoted as ‘K 
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EgC-1’ or rarely ‘°C EgC-1’ (due to the Celsius, carbon confusion). Carbon uptake by the 

terrestrial biosphere along with other Earth System processes influence the TCRE in unique 

ways (e.g., MacDougall and Friedlingstein, 2015). This relationship between CO2 emissions and 

global temperature change largely determines the severity of climate change resulting from 

human activities, and therefore in turn exerts an interactive influence upon the terrestrial 

biosphere. The TCRE is one of the most useful metrics for climate change policy and mitigation. 

It conveys the explicit relationship between CO2 emissions and warming, allowing the 

designation of carbon budgets compatible with avoiding a particular threshold in global 

temperature change. Additionally, given the near linearity of the relationship between cumulative 

CO2 emissions and global temperature change conveyed by the TCRE, carbon budgets can be 

meaningful climate change communication tools which do not vary much between divergent 

complex emissions scenario pathways. Dissecting the combined driving influences on the TCRE 

is crucial to understanding the role of terrestrial vegetation in dampening or exacerbating future 

climate change, and in turn the potential severity of climate change affecting terrestrial 

vegetation due to anthropogenic CO2 emissions.  

The concept of the TCRE arose in the early 21st century when researchers found that 

Earth System Model simulations displayed a near-linearity between cumulative CO2 emissions 

and global temperature change (MacDougall, 2016; Eby et al., 2013; Gillett et al., 2013; 

Matthews et al., 2009; Gregory et al., 2009). A metric closely related to the TCRE and 

commonly used in Earth System Model studies is the transient climate response (TCR) which 

conveys the temperature change corresponding to a doubling in atmospheric CO2 concentration 

relative to the pre-industrial era under idealized conditions (Nijsse et al., 2020). Unlike the TCR, 

the TCRE incorporates the uncertainty from not only the relationship between atmospheric CO2 
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concentrations and global temperature change, but also the relationship between CO2 emissions 

and atmospheric CO2 concentrations.  

There are two main approaches to estimate the TCRE, using observations or models. 

Observational studies usually involve observationally constrained simulations or detection and 

attribution analyses. A range of estimated TCRE values have arisen from observational studies, 

with best estimates ranging from about 1.3-1.9 K EgC-1 (Jenkins et al., 2021; Millar and 

Friedlingstein, 2018; Gillett et al., 2013; Allen et al., 2009). Attributing the portion of observed 

warming since the pre-Industrial era due only to CO2 emissions is particularly challenging, due 

to uncertainty in observational records as well as climate variability affecting land and ocean 

carbon uptake (Spring et al., 2020; Matthews et al., 2014). Alternatively, model-based studies 

typically involve the use of simple (MacDougall, 2017; Raupach et al., 2011; Katavouta et al., 

2019), intermediate (Herrington and Zickfeld, 2014; Williams et al., 2016; Goodwin et al., 2015; 

Eby et al., 2013), or full-complexity (Arora et al., 2020; Tachiiri et al., 2019; Tokarska et al., 

2016; Williams et al., 2017) Earth System Models. As with observational studies, a range of 

estimated TCRE values have arisen from model-based studies, with best estimates ranging from 

about 1.1-2.2 K EgC-1. (Tachiiri et al., 2019; Goodwin et al., 2015). While there is no clear trend 

in reported values of the TCRE from observational and model-based studies over the last two 

decades, successive Intergovernmental Panel on Climate Change reports have shown a reduction 

in the uncertainty of carbon budgets developed from the TCRE over time. The Sixth Assessment 

Report estimated the likely range for the TCRE as between 1.0-2.3 K EgC-1 while the previous 

Fifth Assessment Report estimated this range as 0.8-2.5 K EgC-1 (IPCC 2021; IPCC 2013). 

In chapter 2 of this thesis, I provide evidence that the probability distribution function of 

the TCRE is best characterized as log-normal rather than normal as is commonly assumed. In 
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Chapter 2 I also demonstrate that climate sensitivity along with the portion of land-borne carbon, 

that is the portion of excess carbon emissions which remains in the terrestrial biosphere rather 

than the atmosphere or ocean, exerts a predominant influence on the TCRE relative to other 

parameters. Other studies have found these two parameters to exert an important influence on the 

TCRE using a variety of observational and model-based approaches (IPCC, 2021; Arora et al., 

2020; Jones and Friedlingstein, 2020; Katavouta et al., 2019; Gillett et al., 2013; Ehlert et al., 

2017; MacDougall et al., 2017; Williams et al., 2017, 2020; Matthews et al., 2009). The value of 

the TCRE directly conveys the severity of global temperature change corresponding to a given 

quantity of anthropogenic CO2 emissions. A higher TCRE value means a hotter climate future, 

affecting not only the health and vigour of the terrestrial biosphere though also the potential for 

the terrestrial biosphere to continue to ameliorate future emissions. The fraction of carbon cycled 

through the terrestrial biosphere is uncertain and has an important influence of the TCRE (Arora 

et al., 2020; Lovenduski and Bonan, 2017). For example, if excess carbon absorbed by 

vegetation is increasingly cycled through fast turnover pools such as through fine roots and 

respiration before quickly returning to the atmosphere rather than being cycled through long 

turnover pools such as woody biomass, this leads to a greater TCRE value. Chapter 2 

demonstrates that uncertainty in our understanding of how carbon is cycled through the 

terrestrial biosphere is the second largest contributor to uncertainty in the TCRE. In order to 

more confidently estimate the TCRE and thus the severity of climate change resulting from 

human activities, an improved understanding of terrestrial carbon uptake through vegetation 

function is paramount.  
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1.1.4 Hyperspectral estimation of leaf biochemistry 

Knowledge of how warming growing seasons and excess carbon will influence terrestrial 

carbon uptake is still quite limited due to a lack of fine-scale observations (Dow et al., 2022; Liu 

et al., 2020; Piao et al., 2008). Spafford and MacDougall (2021; Appendix I) and Lovenduski 

and Bonan, (2017) show that to better understand the feedback implications of terrestrial 

biosphere function, we need more spatiotemporally resolved observations of leaf development in 

response to gradual change, such as warming at atmospheric CO2 accumulation over decadal 

scales, and in response to abrupt environmental changes, such as extreme weather and persistent 

climate anomalies. One promising pathway to filling this observational gap is through improving 

the accessibility of leaf biochemistry and canopy function observational technologies. 

Biochemical and structural traits in leaves, such as pigments, water content, and dry 

matter content, enable essential physiological and biological functions such as photosynthesis 

and natural defence mechanisms (Wang et al., 2022; Féret et al., 2019; Croft et al., 2017; Usha 

Rani and Jyothsna, 2010). These constituents are therefore crucial to the continuation of 

vegetational carbon uptake in the context of global change. A variety of internal and external 

cues trigger the production, degradation, or mobilization of these constituents, such as 

temperature, soil moisture availability, and photoperiod, among others. Changes in moisture and 

temperature regimes have the potential to alter the quantity of these constituents in leaf tissues 

over seasonal to interannual timescales. These constituents also serve as indicators of 

physiological health, such as leaf equivalent water thickness in the context of dry growing 

conditions (Watt et al., 2021; Cao et al., 2015). In order to understand how global change might 

affect plant physiology and consequently vegetation carbon uptake, these constituents must be 

monitored over time in a variety of species and growing contexts.  
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Four trait constituents are predominantly monitored in leaf tissues: chlorophylls, 

carotenoids, equivalent water thickness (EWT), and leaf dry matter content (LMA). The 

chlorophyll a and b pigments are arguably the most commonly monitored constituents in leaves, 

as these pigments perform the majority of light energy harvesting in photosynthesis, are 

important indicators of nutritional status for precision agriculture, and are responsible for the 

typically green colour of vegetation (Zhu et al., 2020). Carotenoids are multi-purpose pigments 

that protect leaf tissues from harmful short wavelength radiation, support acclimation to heat 

stress, and also contribute to light energy harvesting in photosynthesis (Dhami and Cazzonelli, 

2020). Leaf EWT, the quantity of water per unit area of leaves, expresses the drought resiliency 

status of vegetation, and can even reflect regional water resource availability (Li et al., 2021; 

Kattenborn et al., 2017). Leaf dry matter content is an important characterizing feature as it 

covaries with particular trait assemblages along the leaf economic spectrum and enables 

conversion between area and weight-based constituent quantities (Buraczyk et al., 2022; Lei et 

al., 2022). Together, LMA and EWT constitute a metric of fire risk through fuel moisture content 

(Féret et al., 2019). Chlorophyll a and b along with carotenoid pigments are expressed in units of 

µg·cm-2, while EWT and LMA are expressed in units of g·cm-2. 

Each of these constituents reflect, absorb, and transmit light in unique ways. The 

concentration of biochemical constituents within leaf tissues can therefore be approximated by 

examining the pathway of light through leaf tissues. This can be performed with destructive or 

non-destructive techniques. Destructive techniques typically involve wet chemistry or drying 

processes (Lichtenthaler, 1987). Non-destructive techniques, such as hyperspectral monitoring, 

involve subjecting plant tissues to a light source and quantifying reflectance and transmittance 

across the visible and infrared wavelength spectra. There are a variety of techniques used for 
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hyperspectral monitoring, though a commonly used technique is field-based spectroscopy, which 

allows for rapid, repeat, non-destructive measurements over time. Field-based spectroscopy 

involves the use of a spectroradiometer to measure hyperspectral reflectance and transmittance 

with a variety of measurement geometries (Figure 1-2). Light absorptance can then be calculated 

as the remaining portion of light unaccounted for as light is partitioned between reflectance, 

transmittance, and absorptance. This technique of measuring leaf biochemistry offers some 

advantages in being rapid, cost-effective, and non-destructive relative to laboratory-based wet 

chemistry or drying techniques which require sample preservation and transport to a laboratory.  

 

 
Figure 1-2. On the left is shown an example measurement configuration of directional-

hemispherical hyperspectral leaf reflectance (left top) and transmittance (left bottom) with an 

integrating sphere. Note measurement configurations vary among instruments and though 

typically include the use of a Spectralon reference standard and calibration or control 

measurements without the leaf sample. On the right is shown the regions of influence across the 

visible, shortwave infrared, and near infrared spectra by leaf biochemical constituents. Leaf 

mass per unit area (LMA) and water (H2O) influence optical responses in the short wave and 

near infrared regions. 
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Following field measurements, leaf biochemistry is estimated through one of three 

model-based approaches: statistical, physical, or a hybrid combination. Statistical models used to 

estimate leaf constituents typically involve regression models, spectral indices, or machine 

learning, and can produce highly accurate estimates of constituents following training (Féret et 

al., 2019; Hill et al., 2019; Kovar et al., 2019; Martin et al., 2018; Chavana-Bryant et al., 2017; 

Le Maire et al., 2004). A caveat to this approach is the requirement of an extensive training 

dataset which limits applicability to leaves collected from other species, growing contexts, and 

different leaf ages. This being said, novel statistical approaches have shown promise with 

independent validation and improved transferability (Furbank et al., 2021; Fu et al., 2019; Serbin 

et al., 2019). Contrary to statistical models, physical models simulate the fundamental 

relationship between light, leaf tissues, and leaf traits, and are therefore widely applicable 

without local calibration.  

One of the most widely used physical models is the model of leaf optical properties 

spectra known as PROSPECT (Jacquemod et al., 2016; Jacquemoud and Baret, 1990). 

PROSPECT is a radiative transfer model, which treats leaves as a series of layered plates and 

reproduces the optical properties of leaves across the visible, shortwave, and near infrared 

domains, from 400 to 2500 nanometers (nm), based upon well-validated optical equations. The 

plate model PROSPECT is based upon was developed by Allen et al. (1969) and assumes leaves 

are composed of a series of superimposed plates, each plate having a particular reflectance and 

diffuse transmittance factor.  Optical refraction and absorption through and within plates is 

modelled with the Stokes system of equations, dating back to the mid-19th century (Stokes, 

1862). In forward mode, PROSPECT estimates directional-hemispherical reflectance and 

transmittance from leaf biochemical and structural traits including chlorophyll a and b, 
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carotenoids, EWT, and LMA, the N number of hypothetical leaf plates, and other foliar 

constituents such as proteins (Féret et al., 2020; 2019; 2017). In inverse mode, PROSPECT 

provides estimates of these biochemical and structural traits from directional-hemispherical 

reflectance and transmittance measured with an integrating sphere (Schaepman-Strub et al., 

2006; Figure 1-2). While PROSPECT has provided reliable estimates of these constituents for 

decades (Jiang et al., 2018; Féret et al., 2008; Le Maire et al., 2004; Jacquemoud et al., 1996), its 

integration into the research community is challenged by the strictness of the measurement 

requirements. For example, the physical assumptions of PROSPECT require the use of a 

directional-hemispherical integrating sphere rather than the more affordable and convenient leaf 

clip which can be used to measure bidirectional reflectance and estimate transmittance, though 

some researchers have directly applied PROSPECT to bidirectional leaf optical measurements 

(Hill et al., 2019; Kattenborn et al., 2019; Lassalle et al., 2019; Lu et al., 2018; Sonobe et al., 

2018; Arellano et al., 2017; Shiklomanov et al., 2016; Buddenbaum et al., 2012). Chapter 3 of 

this thesis provides a means to better integrate stand alone reflectance or transmittance 

measurements for the purposes of extracting foliar constituents, which helps to bridge the 

applicability gap between PROSPECT and leaf clip measurements. Chapter 3 also shows that we 

can make substantial improvements to monitoring leaf-level leaf traits overall by accounting for 

leaf structure. With these techniques, the field-based measurement of leaf traits can become 

increasingly affordable and convenient, leading to more replicated measurements per unit effort.  

Precise non-destructive measurements of leaf biochemical and structural traits improve 

the efficiency and success of precision agriculture, which will aid in meeting global agricultural, 

mitigation, and adaptation challenges in the context of climate change. For example, improved 

monitoring of chlorophyll pigments and EWT can reduce instances of excessive application of 
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fertilizer and conserve water resources, helping to conserve resources and reduce the greenhouse 

footprint of agriculture (Zhu et al., 2020). The use of techniques included in chapter 3 of this 

thesis will improve the ease of application for hyperspectral measurements of leaf reflectance 

and transmittance, facilitating studies with greater replication in a variety of field conditions, 

such as remote locations in the tropics and high latitudes (Serbin et al., 2019; Asner et al., 2015). 

More replicated and temporally extensive datasets of foliar traits achieved through the 

adaptations presented in Chapter 3 are needed to realize inherent variation in leaf level traits not 

only at the global level though also at the community level (Nunes et al., 2017; Wright et al., 

2004). With a better understanding of variation in these traits, more confident predictions of the 

potential responses of vegetation to global change can be formulated.  

The widely applicable physical model basis of the PROSPECT model included in chapter 

3 also improves the potential for estimating leaf structural and biochemical traits for species and 

in regions with limited sampling records available. The information provided through 

hemispherical monitoring contributes crucial insight into how vegetation will respond to climate 

change in terms of leaf biochemistry and structure, and whether vegetation will continue to 

sequester as much as one third of anthropogenic CO2 emissions. For example, monitoring 

chlorophyll content in the context of warming and CO2 elevation experiments with hemispherical 

spectroscopy can provide a direct indication of how these changes may influence vegetational 

carbon uptake through photosynthesis, as chlorophyll content is directly proportional to 

photosynthetic capacity (Croft et al., 2017). Another important gap in knowledge surrounding 

vegetation function in the context of climate change is how gradual and abrupt environmental 

changes might influence leaf function over time, especially with regards to pigments on sub-

seasonal and interannual scales. To address this knowledge gap, while hyperspectral monitoring 
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can provide high fidelity insight into pigment dynamics within leaf tissues (Yang et al., 2014), 

spatiotemporally resolved observations of leaf function at the canopy scale are also needed. A 

promising monitoring technique known as a phenocam in the form of a stationary timelapse 

camera monitoring at the canopy-scale is gaining momentum for this purpose (Richardson, 

2019).  

1.1.5 Global Change Implications of Climate-Driven Shifts in Leaf Phenology 

Phenology, the study of the timing of recurrent biological phenomena in relation to 

climate, is often observed through plants, though other examples include insect emergence from 

diapause, animal reproduction, and animal migrations (Pureswaran et al., 2019; Renner and 

Zohner 2018; Lieth, 1974). Leaf phenology, the timing of leaf life cycle events, is a vital feature 

of the terrestrial biosphere, influencing structural and biochemical leaf traits and photosynthetic 

potential (Boren et al., 2019, Liu et al., 2019; Funk et al., 2017; Bonan et al., 2003). Leaf 

phenology has long been recognized as an ecologically important phenomenon related to both 

carbon cycling and ecological interactions (Piao et al., 2019; MacKay 1903). Common leaf 

phenology phases or phenophases studied include leaf emergence and leaf senescence (Figure 1-

3). 
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Figure 1-3. An example photographed observation of the leaf emergence of Populus 

tremuloides. 

 

The timing of leaf emergence and leaf senescence varies within and among species 

(Reich et al., 1992), and both serve as sensitive indicators of the biological and ecological effects 

of climate change (Klosterman et al., 2014; Sonnentag et al., 2012; Morin et al., 2009). Warming 

has advanced leaf emergence over the last five decades (Piao et al., 2019; Estiarte and Peñuelas 

2015; Peñuelas and Filella 2009; Menzel et al., 2006) and delayed leaf senescence (Xie et al., 

2018b; Estiarte and Peñuelas 2015; Peñuelas et al., 2002; Menzel and Fabian 1999). 

Nevertheless, due to variation in evolved phenological cues between tree species, climate change 

has the potential to both advance and delay the timing of leaf emergence and senescence (Chen 

et al., 2019; Piao et al., 2019; Renner and Zohner 2018; Xie et al., 2018a; Keenan and 

Richardson 2015; Migliavacca et al., 2012; Tanino et al., 2010; Morin et al., 2009; Vitasse et al., 

2009). For example, warm winters can delay leaf emergence due to reduced chilling 

accumulation required for the release from wintertime endodormancy for some species, and 
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warming can also lead to early leaf senescence during the growing season due to heat stress (Xie 

et al., 2018b; Delpierre et al., 2016). 

During the growing season of leaves, if climate-induced shifts in the timing of leaf 

emergence are not offset by shifts in the timing of leaf senescence, the lifespan of leaves will be 

altered (Keenan and Richardson 2015; Vitasse et al., 2011; Peñuelas and Filella 2009; Vitasse et 

al., 2009; Menzel et al., 2006; Matsumoto et al., 2003; Peñuelas and Filella 2001), with 

implications for the carbon cycle (Piao et al., 2019; Brown et al., 2016; Buitenwerf et al., 2015; 

Migliavacca et al., 2012), nutrient exchanges (Estiarte and Peñuelas 2015; Richardson et al., 

2013; Fridley 2012; Vitasse et al., 2011; Niinemets 2010), and ecology (Renner and Zohner 

2018; Xie et al., 2018b; Ellwood et al., 2015; Hufkens et al., 2012b). For example, if leaf 

emergence occurs earlier and leaf senescence occurs later, this could lead to an extension in the 

lifespan of leaves, and potentially increased carbon uptake (Sakalli et al., 2017; Piao et al., 

2007). Conversely, extreme weather in the context of climate change such as late spring frost 

events, dry conditions, and hurricanes could result in damage or premature removal of leaf 

tissues. These phenomena consequently lead to carbon losses to the atmosphere on seasonal to 

interannual timescales due to depressed carbon uptake by vegetation within the season, nutrient 

losses, impediments to reproduction, or vegetation mortality (Richardson et al., 2018c). This 

uncertainty in the potential direction and magnitude of vegetational carbon uptake in response to 

climate change is compounded by the sparsity of studies examining how responses to climate 

change differ within and among species (Delpierre et al., 2020; Jeong et al., 2012). In 

combination, the potential for both lengthened and abbreviated leafing periods and the lack of 

species-specific perceptions challenges the certainty of predictions of vegetational carbon uptake 

in the context of climate change.  
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 Plant phenology has a lengthy observational history, with some records dating to 1,000 

BCE (Piao et al., 2019; Chen, 2013; Chuine et al., 2004; Ge et al., 2003; Lauscher, 1978; Chu, 

1921). The longest near-continuous record of phenology observations is that of cherry (Prunus 

jamasakura) flowering in Kyoto, Japan, which has been recorded in diaries, chronicles, and 

newspapers for more than 600 years from 801 CE to the 21st  century (Aono and Kazui, 2008). In 

western Canada, there is evidence of indigenous peoples recording phenophases to track the 

timing of available plant and animal resources (Beaubien and Hall-Beyer, 2003; Lantz and 

Turner, 2003). A transition in the motivation for recording leaf phenology came about in the 18th 

century, with the Marsham family phenological records and early forms of process-based models 

describing the influence of temperature on leaf emergence known as growing degree days 

(Sparks and Carey, 1995; Linnaeus, 1751; Réaumur, 1735). In this era, phenology became an 

area of scientific interest for geographers and natural historians, with experiments and 

observational networks established across Europe (Piao et al., 2019). This scientific interest in 

leaf phenology has continued for centuries, and in the early 20th century in the Canadian 

province of Nova Scotia, Dr. Alexander MacKay promoted the pastime of plant phenology 

observations among school children (MacKay et al., 1903). 

In recent decades leaf phenology has garnered interest as a monitoring tool in the context 

of climate change (Schwartz et al., 2006). During this time a variety of approaches have been 

utilized for leaf phenology monitoring, with variable spatial and temporal resolution, each with 

distinct advantages and disadvantages (Liu et al., 2017; Morisette et al., 2009). As with previous 

eras of leaf phenology observations, manual observations of leaf phenology have been ongoing, 

providing high spatial resolution observations of leaf phenology at the individual or sub-

individual scale (Holland et al., 2015). A disadvantage of this approach is the challenge of 
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reconciling observer bias, as two different observers may quantify a phenophase stage 

differently. For example, one observer may score an individual tree as having 40% of leaves 

exhibiting fall colours, while another may score the same tree as having 60% of leaves coloured, 

and some observers may misidentify species or erroneously record phenomena (Liu et al., 2021; 

Sparks and Carey, 1995). In addition, these datasets are prone to observational gaps or having 

coarse temporal resolution due to their being laborious and costly in terms of fieldwork being 

required for each observation.  

In contrast, since the 1970’s, satellite-based observations have provided a broad scale 

perspective of land surface phenology, capturing objective quantifications of land surface 

features based upon remote sensing (Xiao et al., 2019). This technique of observation is not 

susceptible to observer bias, as remote sensing instruments are capable of quantitative rather than 

qualitative measurements. A drawback of this approach however is the coarse spatial and 

temporal resolution of satellite-based observations necessary to accommodate such broad 

extents. Additionally, while not susceptible to observer bias, quality control and post-processing 

measures are still required to rectify sun-sensor geometry, variable viewing angles, and 

atmospheric interference inherent in remote-sensing based observations (Lopes et al., 2016; 

Spanner et al., 1990). The spatiotemporal resolutions of satellite missions are continuously 

improving. In the late 20th century, the finest spatial resolution of observation technologies 

aboard satellite missions for the purpose of land surface phenology monitoring, such as Moderate 

Resolution Imaging Spectroradiometer (MODIS), ranged from 250 m to more than 5 km 

(Caparros-Santiago et al., 2021). In contrast, the recent Sentinel-2A twin satellite mission 

launched in June 2015 can collect observations every 5 days under cloud-free conditions with 

spatial resolutions of 10 m for some sampling bands (Brown et al., 2019; Grabska et al., 2019; 
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Vaduva et al., 2019). To precisely characterize leaf phenology patterns within and between 

species, quantitative observations are needed at the individual-tree scale at a daily or sub-daily 

frequency (Alberton et al., 2017; Klosterman et al., 2014).  

Near-remote sensing through a time-lapse camera at the canopy level, or phenocam, 

provides a strategic bridge between the objective yet coarse spatiotemporal resolution of remote 

satellite observations and individually resolved yet potentially subjective nature of manual 

observations (Moon et al., 2021b; Browning et al., 2017). Since the early 2000’s, phenocams 

have facilitated the ground truthing of satellite-based studies and high-fidelity analysis of 

processes spanning the individual to canopy scale and through networked phenocams the 

intercontinental scale (Richardson, 2019; Richardson et al., 2017; Brown et al., 2016). Most 

studies to date employing phenocams however do not consider the phenology of individual trees 

within the camera field of view, and instead often examine the average leafing dynamics 

amalgamated across the observed canopy (Richardson et al., 2018a). While this approach allows 

for efficient analysis of numerous canopies across extensive climate gradients, it obscures 

variability in intraspecific and interspecific responses to climate change. Studies which have 

considered species-level leaf phenology have shown the potential for unique species-specific 

responses to climate change (Denéchère et al., 2021; Delpierre et al., 2020; Peltoniemi et al., 

2018; Delpierre et al., 2017; Nakaji et al., 2011).  

Divergent species-specific responses to climate change connotate important ecological 

implications. Examples include a change in the success of native versus non-native species 

during the brief yet crucial period of acquiring resources for leaf emergence, and altered 

interactions within and across trophic levels due to phenological asynchrony (Pureswaran et al., 

2019; Renner and Zohner, 2018; Wolkovich and Cleland, 2011). These ecological implications 
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of divergent phenological changes translate into biogeochemical implications, as carbon uptake 

is an aggregate ecosystem process reflecting the activity of all producers. For example, the 

climate-driven proliferation of tropical lianas, which have adaptive traits and growing strategies 

that allow them to better capitalize on changing conditions in the context of climate change 

relative to slow growing species, could result in reduced carbon uptake across tropical forest 

ecosystems (van der Heijen et al., 2015). Consequently, observational techniques capable of 

observations at the individual scale are crucial to develop and train models of vegetation function 

which will accurately characterize feedbacks of terrestrial vegetation to climate change in terms 

of both biogeochemistry and ecology.  

Phenocam studies have provided key insights into both ecological and biogeochemical 

implications of transitions in leaf phenology patterns and have informed mechanistic 

understandings of the processes of leaf emergence and senescence. Delpierre et al. (2020) 

applied phenocams at the individual tree scale at two sites in France and found that relatively 

cold springs promote a greater diversity in the timing of leaf emergence within a population 

relative to warm springs. This suggests that in a warmer climate, leaf emergence could be more 

synchronized within populations for some species. The alternative is also possible, that colder 

springs could lead to a greater range in the timing of leaf emergence within and between species 

due to chilling and daylength constraints.  In addition, Delpierre et al. also reported extensive 

interannual variability in the timing of leaf emergence at each phenocam site by more than two 

weeks. This indicates that leaf phenology studies should ideally be performed over more than a 

single growing season in order to capture the influence of interannual variability in seasonal 

conditions on leaf phenology. With 12 phenocam sites monitoring birch trees across Finland, 

Peltoniemi et al. (2018) revealed the aptitude of phenocams to track leaf emergence and 
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senescence of individual trees which represent a small portion of the image field of view. With 

replication across latitudes and years, Peltoniemi et al. also demonstrated a latitudinal gradient in 

the timings of leaf emergence and leaf senescence, and thus overall growing season length, 

which was conserved across all three years of the study. This suggests that individuals of a 

species may exhibit similar magnitudes of leaf phenology responses to climate change despite 

being located at disparate points within a region. Richardson et al. (2018c) applied phenocams to 

collect high temporal resolution observations of leaf phenology for an ecosystem warming 

experiment, revealing species-specific differences in susceptibility to gradual and abrupt changes 

in growing conditions. Interestingly, Richardson et al. (2018c) found that photoperiod did not 

constrain the timing of leaf emergence for spruce trees subject to as much as +9°C warming 

beyond ambient temperatures. Together these studies reveal the potential and value of 

phenocams for monitoring species-specific leaf phenology patterns and using these observations 

to predict leaf phenology patterns in the context of climate change.  

Despite this wealth in knowledge generation, disagreements have also arisen as to 

prominent constraints on the timing of leaf emergence and leaf senescence. For example, Keenan 

and Richardson (2015) found that the timing of leaf senescence in the autumn is likely 

influenced by leaf emergence, implying a fixed growing season length or seasonal 

photosynthetic production limit which would constrain the leafing period in the context of 

climate change, which corroborates with other later works (Zani et al., 2020). Conversely, with a 

multi-faceted observation approach, Lu and Keenan (2021) found evidence that the timing of leaf 

senescence is not directly linked to the timing of leaf emergence based on a seasonal 

photosynthetic production limit. Across phenocam, field-based, and satellite-based studies, 

autumn leaf phenophases such as leaf colouration and senescence are understudied with respect 
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to leaf emergence, and understandings of the mechanisms controlling the timing of leaf 

senescence are limited (Jiang et al., 2022; Gallinat et al., 2015). More phenocam studies 

including both leaf senescence and leaf emergence observations over interannual timescales and 

across multiple sites are needed to clearly identify the mechanisms of leaf emergence and 

senescence and predict their response to climate change.  

With phenocam observations of both leaf emergence and leaf senescence over several 

growing seasons, in chapter 4 of this thesis I apply species-specific process-based modelling to 

reveal differences in the responses of temperate and boreal tree species to warming throughout 

the 21st century. I found that models which include the influence of photoperiod, preceding 

dormancy induction, and chilling exposure over the dormant period perform well in predicting 

the timing of leaf emergence for a variety of species across North America, agreeing with other 

studies that have found such components are influential in a variety of regions (Baumgarten et 

al., 2021; Beil et al., 2021; Caffarra et al., 2011). Chapter 4 also shows that the relationship 

between leaf senescence and seasonal temperatures is distinct from the relationship between leaf 

emergence and seasonal temperatures across a variety of growing season contexts. Despite the 

distinction between environmental cues for leaf emergence and senescence, the mathematical 

parameterizations of commonly used leaf senescence models are similar to that of leaf 

emergence models. Therefore a promising avenue for improved simulations of leaf senescence is 

the development of mathematically novel leaf senescence model equations.  

In addition to uncertainty regarding how leaf phenology responds to environmental 

changes over seasonal timescales, another prominent research question is how leaf phenology 

responds to abrupt changes, such as abiotic disturbance, and how this in turn affects ecosystem 

ecology. Recent abiotic disturbances, such as Hurricane Dorian (Taylor et al., 2020), and 
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Hurricane Fiona (The Canadian Press, 2022), the latter of which exceeded previous weather and 

economic cost records in Canada, occurred during the short time period in which the research 

component of this thesis was conducted. Abiotic disturbances like these will become more 

frequent and intense as a consequence of climate change (IPCC, 2021). Despite its influence on a 

myriad of ecosystem processes, little work has been done to apply leaf phenology as an 

ecological indicator. Ecological indicators are useful metrics which convey the integrity of 

ecosystem processes such as carbon cycling over time. The novelty of leaf phenology as an 

ecological indicator due in part to the challenge of identifying leaf phenological changes which 

clearly correspond to disruptions in ecosystem processes.  In chapter 5 of this thesis, I 

demonstrate a promising technique to detecting interruptions to leaf function and consequently 

carbon uptake due to extreme weather in the form of hurricanes, late spring frost events, drought, 

and more. Applying the insights shared in both chapters 4 and 5 will elucidate terrestrial 

vegetation feedbacks to climate change through both gradual phenological shifts and abrupt 

declines in carbon uptake due to extreme weather associated with climate change. Along with the 

techniques for precise characterization of leaf biochemistry provided in chapter 3, the role of 

terrestrial vegetation in influencing the linkage between global temperature change and 

cumulative anthropogenic CO2 emissions, discussed in chapter 2, can be better resolved through 

the combination of insights afforded through these thesis chapters. In combination, the chapters 

of this thesis contribute fundamental insight and promising technical advancements to refine the 

feedback of terrestrial vegetation to global change. 

1.2 Thesis outline 

In addition to the introductory chapter, this thesis includes the following: 
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Chapter 2: Quantifying the probability distribution function of the transient climate response to 

cumulative CO2 emissions. This chapter was published in Environmental Research Letters, 

15(3), 034044, https://iopscience.iop.org/article/10.1088/1748-9326/ab6d7b/meta. 

Chapter 3: Spectral subdomains and prior estimation of leaf structure improves PROSPECT 

inversion on reflectance or transmittance alone. This chapter was published in Remote Sensing 

of Environment, 252, 112176, https://doi.org/10.1016/j.rse.2020.112176. 

Chapter 4: Climate-driven shifts in leaf senescence are greater for boreal species than temperate 

species in the Acadian Forest Region. This chapter is under review for publication in Ecology 

and Evolution (submitted on December 19th, 2022).  

Chapter 5: Leaf phenology as an indicator of ecological integrity. This chapter was accepted for 

publication in Ecosphere on January 17th, 2023, Manuscript ID: ECS22-0592. 

Appendix I: Validation of Terrestrial Biogeochemistry in CMIP6 Earth System Models: A 

Review. This paper was published in Geoscientific Model Development, 14(9), 5863-5889, 

https://doi.org/10.5194/gmd-14-5863-2021. This paper was adapted from the written component 

of my comprehensive examination.  
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Chapter 2. Quantifying the probability distribution function of the Transient 

Climate Response to Cumulative CO2 Emissions 

 This chapter was published in Environmental Research Letters, 15(3), 034044, 

https://iopscience.iop.org/article/10.1088/1748-9326/ab6d7b/meta.  

2.1 Introduction 

To avoid the most severe impacts of climate change the Paris Agreement aims to limit 

global warming to well below 2 °C relative to pre-industrial temperatures, and to pursue efforts 

to limit the warming to 1.5 °C (Falkner, 2016; Matthews et al., 2018; Mengis et al., 2018; Rogelj 

et al., 2016). Carbon dioxide is the principal driver of anthropogenic climate change due to its 

longevity (Eby et al., 2009; Knutti and Rogelj, 2015; Millar et al., 2017a) and the quantity of 

anthropogenic emissions of this gas (Matthews et al., 2018; Goodwin et al., 2018; Hofmann et 

al., 2006; MacDougall, 2015; MacDougall et al., 2015; Patarasuk et al., 2016; Randerson et al., 

2015). Due to the saturation effect the radiative forcing per unit change in atmospheric CO2 

concentration decreases with increased atmospheric CO2 concentrations. Simultaneously the heat 

and carbon uptake efficiency of the ocean decreases with increased radiative imbalance and 

atmospheric CO2 concentrations. The combined effect of these complex nonlinear processes is a 

near linear increase in global surface air temperature with increased cumulative CO2 emissions, 

known as the as the Transient Climate Response to Cumulative CO2 Emissions (TCRE; 

Matthews et al., 2018; Mengis et al., 2018; Knutti and Rogelj, 2015; MacDougall, 2015; Gillett 

et al., 2013; MacDougall and Friedlingstein, 2015; Matthews et al., 2009). The finding of a linear 

relationship between CO2 emissions and global mean temperature change has climate policy 

significance, suggesting that any given warming target is associated with a cumulative quantity 

of CO2 emissions, regardless of the emission scenario followed (MacDougall, 2015; MacDougall 

https://iopscience.iop.org/article/10.1088/1748-9326/ab6d7b/meta
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et al., 2015; Gillett et al., 2013; Matthews et al., 2009; Krasting et al., 2014; MacDougall, 2017; 

Rogelj et al., 2019). The TCRE allows the development of a ‘carbon budget’, which conveys the 

total allowable quantity of CO2 emissions consistent with not exceeding a certain temperature 

change limit (Matthews et al., 2018; Rogelj et al., 2016; Knutti and Rogelj, 2015; MacDougall et 

al., 2015; Rogelj et al., 2019; Allen et al., 2009; Herrington and Zickfeld, 2014; Zickfield et al., 

2012). 

Carbon budgets are effective climate policy tools (Falkner, 2016; Knutti and Rogelj, 2015; 

MacDougall, 2015; Allen et al., 2009; Zickfield et al., 2012; Messner et al., 2013; Rogelj et al., 

2018), yet their application is challenged by scientific uncertainty in the TCRE, translating into an 

extensive breadth of estimated allowable CO2 emissions compatible with a given temperature 

target (Matthews et al., 2018; Goodwin et al., 2018; Patarasuk et al., 2016; Rogelj et al., 2019; 

Rogelj et al., 2018; Matthews et al., 2017; Millar and Friedlingstein, 2018; Peters, 2018). While 

total carbon budgets reflect the amount of CO2 emissions that can be released from the 

preindustrial period on, including past, present, and future CO2 emissions, remaining carbon 

budgets are estimates of the amount of CO2 emissions that can be released in the future without 

surpassing a given global warming temperature change limit (Rogelj et al., 2019). The remaining 

carbon budget must also account for non-CO2 forcing, which reduces allowable CO2 emissions, 

and thus makes the policy relevance of the metric more complex (Rogelj et al., 2018). CO2-only 

total carbon budgets can be estimated by dividing a warming target by the TCRE, and remaining 

CO2-only carbon budgets can be estimated by either dividing the remaining allowable warming 

with the TCRE or computing the total CO2-only carbon budget and subtracting emissions to date 

(Rogelj et al., 2019; Rogelj et al., 2018). However remaining carbon budgets estimated this way 
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assume a linearity in the TCRE which may not fully hold under constant, declining, or zero 

emissions (Matthews et al., 2018; Tachiiri et al., 2019). 

The Intergovernmental Panel on Climate Change (IPCC) Special Report on the impacts of 

global warming of 1.5 °C (SR1.5) suggested a median 2 °C carbon budget from 2018 onwards of 

about 410 PgC (rounded to the nearest 5 PgC) corresponding to the 50th percentile of the TCRE 

distribution. The 67th to 33rd TCRE percentile range by the SR1.5 corresponds to a 2 °C remaining 

carbon budget range of 320–550 PgC (Rogelj et al., 2018), equivalent to about 37, and 29–50 years 

of emissions at current emission rates of 11 PgC yr−1, respectively. While CO2-only budgets 

constructed from TCRE inversion assume CO2 is the sole climate forcing agent, in reality non-

CO2 greenhouse gases and aerosols influence temperature change (MacDougall et al., 2015; Gillett 

et al., 2013; MacDougall and Friedlingstein, 2015; Rogelj et al., 2019; Rogelj et al., 2018, 

Tokarska et al., 2018). The IPCC SR1.5 report indicates uncertainty due to non-CO2 forcing may 

reduce the remaining median carbon budget for 1.5° C warming by 177 PgC or increase the budget 

by 123 PgC, due largely to the asymmetric influence associated with future declining sulfate 

aerosol emissions and uncertainty due to non-CO2 scenario variation (Rogelj et al., 2018). With 

this caveat in mind, the TCRE can still be useful in prescribing allowable cumulative CO2 

emissions. 

The probability density function (PDF) of the TCRE is often assumed to be a normal 

distribution (Millar et al., 2017a; Gillett et al., 2013; Matthews et al., 2009; Collins et al., 2013). 

However, there is little evidence to support the assumption of a normally distributed TCRE (Rogelj 

et al., 2019), and this assumption may have been an artefact inherited from the ensemble of 

opportunity within CMIP5 models. The Fifth Assessment Report of the IPCC (AR5) did not assess 

the PDF shape compatible with the proposed likelihood range for the TCRE, though the SR1.5 
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acknowledged the TCRE may have a normal or log-normal PDF, while not suggesting one as more 

likely than the other. 

The SR1.5 chose to represent the influence of imprecise TCRE distribution uncertainty as +27 

to +54 PgC for the 1.5 °C remaining carbon budget (Rogelj et al., 2018) showing the influence of 

an assumed log-normal rather than normal distribution. Previous studies show that climate 

sensitivity has a strong influence on estimates of the TCRE (MacDougall et al., 2017; Raupach et 

al., 2011). MacDougall et al. (2017) observed a small positive skew in a histogram of TCRE values 

produced through 150 perturbed physics ensemble simulations conducted with an Earth System 

Model (ESM) of intermediate complexity and suggested the positive skew of the TCRE is due to 

the long tail of the climate sensitivity PDF. Climate sensitivity is generally represented with a 

positively skewed distribution (Goodwin et al., 2018;  Knutti et al., 2017;  Olson et al., 2012; 

Pueyo, 2012), which may translate into the TCRE distribution (Rogelj et al., 2019; Collins et al., 

2013). Pueyo (2012) provides arguments for the assumption of a log-normal PDF for prior 

distributions of the climate sensitivity parameter, their arguments also apply to the TCRE. 

The uncertainty in the TCRE is primarily the result of uncertainty in climate sensitivity 

(Krasting et al., 2014; Knutti et al., 2017) followed by uncertainty in the carbon cycle response to 

CO2 emissions (Matthews et al., 2018; 10]. The transient climate response (TCR) represents the 

transient warming response to a doubled atmospheric CO2 concentration relative to pre-industrial 

levels (Knutti et al., 2017). Equilibrium climate sensitivity (ECS) is defined as the warming 

response to a doubled atmospheric CO2 concentration relative to pre-industrial levels after the 

climate has fully equilibrated (Knutti et al., 2017). While the timescale of transient rather than 

equilibrium climate response is of more relevance to the TCRE, the uncertainty associated with 

climate sensitivity is primarily inferred from ECS, as the transient climate response is a less 
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applicable model metric highly dependent upon emission pathway. The IPCC AR5 evaluated the 

ECS lies between 1.5 °C and 4.5 °C (66% confidence; Krasting et al., 2014; Knutti et al., 2017; 

Stocker, 2014). Equilibrium climate sensitivity is typically represented with a positively skewed 

distribution due to the nonlinear relationship between forcings and feedbacks (Randerson et al., 

2015; Knutti et al., 2017). While ECS is an effective model inter-comparison tool, it does not 

encompass the uncertainty arising from how CO2 emissions influence atmospheric CO2 

concentrations (MacDougall, 2015; Knutti et al., 2017), and therefore cannot be used to directly 

quantify the warming from CO2 emissions. 

How the carbon cycle responds to CO2 emissions constitutes another major source of 

uncertainty for TCRE and carbon budget calculations after climate sensitivity (Matthews et al., 

2018; Rogelj et al., 2019). Atmospheric CO2 concentrations evolve from the combined influence 

of CO2 emissions from land use change, and fossil fuel combustion, as well as CO2 uptake by the 

ocean and terrestrial biosphere (Friedlingstein et al., 2014). The rate of ocean carbon uptake is 

predicted to decline initially in response to emissions due to the limited ocean alkalinity shifting 

the dissolved inorganic carbon equilibrium towards CO2, the reduced solubility of dissolved CO2 

with increased ocean temperature (Randerson et al., 2015; Herrington and Zickfeld, 2014; 

Williams et al., 2016), and increased stratification (Ridgwell and Hargreaves, 2007). Processes 

contributing to an increased land carbon uptake include CO2 fertilization, nitrogen deposition, 

aforestation, and a lengthening growing season, while conversely drought, deforestation, enhanced 

decomposition, nitrogen and phosphorus limitations reduce land carbon uptake, and these carbon 

losses are predicted to dominate future carbon-climate feedbacks (Randerson et al., 2015; 

MacDougall and Friedlingstein, 2015; Herrington and Zickfeld, 2014; Cox et al., 2013; Huntzinger 

et al., 2017; Jones et al., 2013; Shevliakova et al., 2013). 
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Rather than separately conceptualizing the uncertainty of two nonlinear, emission rate-

dependent processes, the TCRE encompasses uncertainty from both climate sensitivity and carbon 

cycle feedbacks into a single metric largely robust to varying emission rates (Matthews et al., 2018; 

Rogelj et al., 2016; MacDougall, 2015; MacDougall et al., 2015; Krasting et al., 2014; 

MacDougall, 2017; Allen et al., 2009; Goodwin et al., 2015; Tokarska et al., 2016). Several 

approaches have been explored to estimate the TCRE, which can be classified as observational or 

simulation based, with the comprehensive IPCC AR5 best estimate ranging from 0.8 to 2.5 K 

EgC−1 (MacDougall, 2015; Collins et al., 2013). 

Allen et al. (2009) employed observationally and comprehensively constrained simulations to 

estimate the TCRE at 2 K EgC−1, with a 5%–95% confidence interval of 1.3–3.9 K EgC−1. Gillett 

et al. (2013) used a detection and attribution analysis based on 150 years of observations, proposing 

a lower range of TCRE values from 0.7 to 2.0 K EgC−1 at 5%–95% confidence, with a best estimate 

of 1.35 K EgC−1. Recently, using a standard detection and attribution technique, Millar and 

Friedlingstein (2018) estimated the TCRE to be 0.88–2.60 K EgC−1 (5%–95% confidence), with a 

best estimate of 1.31 K EgC−1. Observational estimations of the TCRE have varied over the past 

decade, with no clear trend in mean or median values and confidence interval limits. 

ESMs of simple (MacDougall, 2017; Raupach et al., 2011; Katavouta et al., 2019), intermediate 

(Herrington and Zickfeld, 2014; Williams et al., 2016; Goodwin et al., 2015; Eby et al., 2013), and 

full-complexity (Gillett et al., 2013; Tachiiri et al., 2019; Tokarska et al., 2016; Williams et al., 

2017) have been used to study the TCRE and to establish a physical basis for the path independence 

of the TCRE (Matthews et al., 2009; MacDougall, 2017; Herrington and Zickfeld, 2014; Johns et 

al., 2011). Williams et al. (2016) used a set of full-complexity CMIP5 ESMs to diagnose the 

relative importance of thermal and carbon responses to CO2 emissions, as well as the importance 
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of non-CO2 forcing. The full-complexity ESMs used in IPCC AR5 produced TCRE estimates of 

0.8–2.4 K EgC−1, with a median value of 1.6 K EgC−1 (Collins et al., 2013). Using the temperature 

outputs from 23 models of the CMIP5, and a perturbed physics approach within the University of 

Victoria Earth System Climate Model, MacDougall et al. (2017) found a mean TCRE of 1.72 K 

EgC−1, and a 5%–95% confidence interval of 0.88–2.52 K EgC−1, consistent with the CMIP5 range 

of 0.8–2.5 K EgC−1. Generally, the estimated TCRE ranges from simulation-based approaches are 

more broad than those of observational based approaches (Matthews et al., 2018; Millar and 

Friedlingstein, 2018). 

Here we calculate the TCRE based upon current understandings of the interactions between 

climate and carbon processes, examine the uncertainty distribution of the TCRE using a Monte-

Carlo error propagation, explore the sensitivity of the TCRE to various Earth system parameters, 

and compute the CO2-only carbon budget consistent with 2°C warming. 

2.2 Methods 

To calculate the TCRE, we used the Zero Dimensional Diffusive Ocean heat and carbon 

uptake Model (ZD2OM) derived by MacDougall, (2017). The analytical model is based upon the 

mathematical definition of the TCRE by Matthews et al. (2009), the forcing response equation 

developed by Wigley and Schlesinger (1985) and a relationship for cumulative CO2 emissions, 

summarized as follows: 
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where Λ is the TCRE, R is radiative forcing from an e-fold increase in atmospheric CO2, l is the 

land-borne fraction of carbon, λ is the climate feedback parameter, 𝐶𝐴 is the size of the 

atmospheric carbon pool, 𝐶𝐴𝑂 is the original size of the atmospheric carbon pool, 𝑓𝑜 is the 

fraction of the Earth covered by ocean, 𝐶𝑝 is the specific heat capacity of water, τ is a unit 

conversion for heat in units of s a−1, ɛ is the ratio of sea surface temperature change to global 

temperature change, μ is effective ocean diffusivity, β is the change rate of atmospheric CO2, Bo 

is the unit conversion constant for carbon in m2 Pg mol−1, Γ is the ocean surface dissolved 

inorganic carbon change from e-fold change in atmospheric CO2. We assumed a present-day 

CO2 concentration of 400 ppmv, corresponding to a CA of 852 PgC. We assumed 𝐶𝐴𝑂  to be 

constant at 596.4 PgC. For the complete derivation of Equation 1-1, see MacDougall, (2017;  

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-10557-x/MediaObjects 

/41598_2017_10557_MOESM1_ESM.pdf). 

To examine the PDF for the TCRE, we calculated the TCRE using a Monte-Carlo error 

propagation (n = 10,000,000) drawing parameter values from PDFs of the climate feedback 

parameter (λ) (W m−2 °C−1), radiative forcing from an e-fold increase in atmospheric CO2 (R) (W 

m−2), effective ocean diffusivity (μ) (m2 a−1), the land-borne fraction of carbon (l), and the ratio 

between sea surface and global temperature change (ɛ) (Figure 2-1). To explore the sensitivity of 

the TCRE to these parameters and their distributions, we conducted a sensitivity analysis 

assuming normal distributions, and another assuming uniform distributions between the 

minimum and maximum plausible values for each input parameter PDF (Appendix II: Figures 

A2-1, A2-2, and Table A2-1). These sensitivity tests explore the important influence of prior 

distribution assumptions in computing uncertain parameters such as the TCRE (Pueyo, 2012). 

https://static-content.springer.com/esm/art%25
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-10557-x/MediaObjects/41598_2017_10557_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-10557-x/MediaObjects/41598_2017_10557_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-10557-x/MediaObjects/41598_2017_10557_MOESM1_ESM.pdf
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The correlations between the TCRE and each parameter value for each iteration were also 

computed to understand the portion of variation in the TCRE explained by each parameter. 

 

 
Figure 2-1. Probability density functions (PDFs) of parameters used in the calculation of the 

TCRE. The light grey bar designates a 16%– 84% confidence interval, and the dark grey bar 

designates a 5%–95% confidence interval. 
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To develop the PDF for λ (climate feedback), we first computed the PDF for climate 

sensitivity, from the combination of two normal inverse gaussian distributions following Olson 

et al. (2012). We designated the median value of the climate sensitivity PDF as 3.0 °C W m−2, to 

reflect the combined likely PDF suggested by Knutti et al. (2017) developed from historical 

warming, climatological constraints on full complexity models, and paleoclimate data, including 

Rohling et al. (2012). To convert climate sensitivity values to λ values, we divided 3.71 W m−2, 

the radiative forcing for a doubling of CO2 (Knutti et al., 2017; Myhre et al., 1998), by the 

climate sensitivity PDF values. We conducted a sensitivity analysis to examine the effect of 

varying or holding constant the climate forcing associated with a doubling of CO2, in 

constructing the λ PDF and subsequently calculating the TCRE, shown in Appendix II: Figure 

A2-5 of the supplementary material. The median and mean values of the λ PDF were 1.24 and 

1.32 W m−2 °C−1, corresponding to equilibrium climate sensitivity values of 3.0 and 2.8 °C W 

m−2. 

To develop the PDF for R (radiative forcing from an e-fold increase in atmospheric CO2), 

we assumed a normal distribution around a mean value of 5.35 W m−2, calculated from the 

radiative forcing corresponding to a doubling of CO2, 3.71 W m−2 (MacDougall et al., 2017; 

Knutti et al., 2017; Myhre et al., 1998) with a standard deviation of 0.4 W m−2 based upon the 

mean variability of three methods of CO2 radiative forcing estimation (MacDougall et al., 2017; 

Andrews et al., 2012; Vial et al., 2013; Zhang and Huang, 2014). While there is an inverse 

correlative structure between R and λ (Ringer et al., 2014), we chose to vary these parameters 

independently to assess the influence of each parameter on the TCRE. The R parameter is 

relatively well constrained, though the λ is less well constrained, and could vary independently 

of radiative forcing from CO2 due to the influence of forcing from aerosol and non-CO2 
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greenhouse gas emissions, as well as unforced climate variability (Knutti et al., 2017; Gregory 

and Andrews, 2016; Paynter and Frölicher, 2015). However to explore the influence of the 

correlative structure between R and λ we conducted an additional Monte Carlo simulation to 

calculate the PDF of the TCRE while varying these parameters with dependent probabilities (see 

Appendix II: Figure A2-3). 

We generated the PDF for μ (effective ocean diffusivity) using the relationship for ocean 

heat removal velocity (Vq) in a diffusive half-space, which is inversely proportional to the root of 

the product of μ and time (MacDougall, 2017): 

 

where t is time. We used t values selected from a uniform distribution ranging from 75 to 100 

years, corresponding to a stability in the fit between ocean heat removal velocity values and 

diffusive approximations within the ZD2OM (MacDougall, 2017). We obtained Vq from ocean 

heat uptake as follows (MacDougall, 2017): 

 

where To is the change in sea surface temperature and N is the ocean heat uptake. We 

represented the uncertainty in N using a normal distribution centered on 0.71 W m−2 with a 

standard deviation of 0.11 W m−2 corresponding to the 2005.5–2015.5 period by Johnson et al. 

(2016), with a corresponding change in sea surface temperature since the preindustrial era (1850) 

until the midpoint of the 2005.5–2015.5 period (2011) of 0.63 °C (Zhang et al., 2019). We then 

generated the PDF for μ from Vq, in units of m2 a−1. The PDF for μ had a mean value of 1.69 × 
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10−4 m2 a−1 and a median value of 1.57 × 10−4 m2 a−1. In representing the ocean in a diffusive 

manner, we are approximating in a simplified way the advection dominated ocean ventilation 

processes which control ocean heat and carbon uptake in the natural ocean. On annual to 

centennial timescales, ocean heat and carbon removal at the global scale in ESMs have been 

shown to mimic that of a diffusive process (MacDougall, 2017). Thus our approximation, though 

simple, is consistent with processes simulated in complex models, for our timeframe of interest. 

However this simplification of ocean ventilation processes may negatively bias the TCRE, as it 

omits the surface warming effect of reduced ocean heat uptake with weakened overturning 

circulation which occurs in the natural ocean. 

We generated the PDF for ɛ (ratio between sea surface and global temperature change) 

using a normal distribution constructed from the ratio of decadal mean sea to global surface 

temperature anomalies from 1950 to 2010, relative to the 1880–1910 normal (MacDougall, 2017; 

Zhang et al., 2019), with a mean ratio of 0.83 and standard deviation of 0.02. 

We generated the PDF for l (land-borne fraction of carbon) based upon land-borne CO2 

emissions and net CO2 emissions from 1750 to 2011 estimated by the IPCC AR5 (Collins et al., 

2013). We generated two normal distributions, one for land-borne CO2 emissions and one for net 

CO2 emissions, with mean values of 160 and 550 PgC and standard deviations of 55 and 52 PgC. 

We then generated the PDF for l by calculating the ratio of land-borne CO2 emissions PDF 

values to the net CO2 emissions PDF values using 10,000,000 randomly chosen values from each 

PDF. The PDF for l had a mean value of 0.29 and standard deviation of 0.10. 

2.3 Results and Discussion 

Figure 2-2 shows the PDF for the TCRE as calculated using our method. The TCRE has a 

positively skewed PDF ranging from 1.1 to 2.9 K EgC−1 (5%–95% confidence), with mean and 
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median values of 1.9 K EgC−1 and 1.8 K EgC−1, respectively. This is comparable to previous 

estimates (Table 2-1), though with a positively shifted range of values relative to the IPCC AR5 

expert judgement range of 0.8–2.5 K EgC−1 (Collins et al., 2013). While our lower limit of the 

5%–95% confidence interval is slightly greater than previous estimates (Millar and 

Friedlingstein, 2018; MacDougall et al., 2017; Smith et al., 2018), our upper limit is considerably 

higher than previously reported upper limits (Matthews et al., 2018; Gillett et al., 2013; 

Herrington and Zickfeld, 2014; MacDougall et al., 2017; Goodwin et al., 2015; Frölicher and 

Paynter, 2015; Katavouta et al., 2018). Our mean and median values are similar to previous 

estimates (MacDougall and Friedlingstein, 2015; Allen et al., 2009; Herrington and Zickfeld, 

2014; Tachiiri et al., 2019; Frölicher and Paynter, 2015; Katavouta et al., 2018; Cherubini et al., 

2014; Partanen et al., 2017; Steinacher and Joos, 2016; Zickfeld et al., 2013). The agreement we 

observed between our TCRE estimates and previous estimates in terms of lower limits, mean, 

and median values, in contrast to the relatively high upper limit we found suggests that the 

TCRE may exhibit a more positively skewed distribution than previously thought, though this 

observation may be sensitive to assumed prior distributions. Allen et al. (2009) and Matthews et 

al. (2018) also reported asymmetry in the range of Cumulative Warming Commitment or TCRE 

values observed from simple, intermediate, or full complexity ESMs. The Cumulative Warming 

Commitment is the peak warming associated with a quantity of cumulative CO2 emissions, and 

therefore equivalent to the TCRE assuming a negligible zero-emissions commitment, or the 

amount of unavoidable warming following cessation of CO2 emissions. However Allen et al. 

(2009) suggested the asymmetry in the distribution of the Cumulative Warming Commitment is 

due to the possibility of a substantial zero-emissions commitment. 
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Table 2-1. The interval, best estimate, and median values of the TCRE estimated by this study 

and previous studies. 

TCRE Inteval 

(K EgC-1) 

Range Best Estimate 

(K EgC-1) 

Median 

(K EgC-1) 

Reference 

1.0–2.7 5%–95% 

Confidence 

1.9 1.8 This study 

1.14–1.26 Inter-simulation 

range 

- - Katavouta et al., 

2019 

2.08–2.37 Inter-simulation 

range 

2.2 - Tachiiri et al., 

2019 

1.1–2.4 5%–95% 

Confidence 

1.8 1.7 Katavouta et al., 

2018 

0.88–2.60 5%–95% 

Confidence 

1.3 - Millar and 

Friedlingstein, 

2018 

0.96–2.23 5%–95% 

Confidence 

- 1.4 Smith et al., 

2018 

∼0.9–2.1 5%–95% 

Confidence 

∼1.6 - Wang et al., 

2018 

1.1–2.1 Inter-model 

range 

- - Ehlert et al., 

2017 

0.88–2.52 5%–95% 

Confidence 

1.72 - MacDougall et 

al., 2017 

0.65–2.28 17%–83% 

Confidence 

- 1.29 Millar et al., 

2017a 

1.0–2.4 5%–95% 

Confidence 

1.5 - Millar et al., 

2017b 

1.63–1.73 Seasonal range 1.68 - Partanen et al., 

2017 

1.39–2.21 2 standard 

deviations 

1.8 - Williams et al., 

2017 

1.25–1.54 Inter-scenario 

range 

- - Hansen et al., 

2016 

1.3–2.1 2 standard 

deviations 

1.7 - Leduc et al., 

2016 

1.93–1.98 Inter-simulation 

range 

1.95 - Liddicoat et al., 

2016 

- - 1.72 - Simmons and 

Matthews, 2016 
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1.3–2.7 17%–83% 

Confidence 

1.9 - Steinacher and 

Joos, 2016 

1.28–1.9 Inter-model 

range 

1.64 - Tokarska et al., 

2016 

2.31–2.67 Inter-simulation 

range 

1.69 - Williams et al., 

2016 

1.21–1.80 Inter-simulation 

range 

- - Zickfield et al., 

2016 

1.1–2 2 standard 

deviations 

1.4 - Frölicher and 

Paynter, 2015 

0.6–1.6 5%–95% 

Confidence 

1.1 - Goodwin et al., 

2015 

1.61–1.71 Inter-scenario 

range 

1.66 - Leduc et al., 

2015 

- - 2.2 - MacDougall and 

Friedlingstein, 

2015 

1.57–1.79 Inter-simulation 

range 

- - MacDougall et 

al., 2015 

1.8–2.4 Inter-scenario 

range 

2.2 - Nohara et al., 

2015 

1.4–3.1 Inter-simulation 

range 

- - Randerson et al., 

2015 

1.1–1.7 5%–95% 

Confidence 

- - Tachiiri et al., 

2015 

1.6–2.3 2 standard 

deviations 

1.95 - Cherubini et al., 

2014 

1.9–2.4 5%–95% 

Confidence 

- 2.1 Friedlingstein et 

al., 2014 

1.7–1.9 Inter-scenario 

range 

1.8 - Herrington and 

Zickfield, 2014 

0.76–1.04 Inter-scenario 

range 

- - Krasting et al., 

2014 

1.07–2.12 Inter-model 

range 

1.57 - Eby et al., 2013 

0.8–2.5 66% Confidence - - IPPC AR5 – 

Collins et al., 

2013 & SR1.5 – 

Rogelj et al., 

2018 
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0.7–2.0 5%–95% 

Confidence 

1.3 - Gillett et al., 

2013 

1.4–2.5 5%–95% 

Confidence 

1.9 - Zickfield et al., 

2013 

1–2.5 5%–95% 

Confidence 

1.8 - Matthews et al., 

2012 

1–2 5%–95% 

Confidence 

- - Rogelj et al., 

2012 

0.8–1.9 Inter-simulation 

range 

- - Williams et al., 

2012 

1.3–1.52 5%–95% 

Confidence 

1.4 - Zickfield et al., 

2012 

1.0–4.0 Inter-model 

range 

- - Johns et al., 

2011 

- - - 2 Raupach et al., 

2011 

1.4–2.5 5%–95% 

Confidence 

1.9 - Allen et al., 

2009 

1.0–2.0 5%–95% 

Confidence 

1.6 - Matthews et al., 

2009 

1.1–2.7 5%–95% 

Confidence 

- - Meinshausen et 

al., 2009 

- - 1.5 - Zickfield et al., 

2009 
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Figure 2-2. Probability density function of calculated TCRE values. The light grey bar 

designates a 16%–84% confidence interval, and the dark grey bar designates a 5%–95% 

confidence interval. 

 

The results of our sensitivity analyses revealed that the form of the TCRE we observed is 

robust to the distribution of the underlying parameters, when all parameters are assigned normal 

distributions, the TCRE still is best approximated with a log-normal distribution PDF (see 

Appendix II: Figures A2-1 and A2-2), therefore it can be concluded that the positive skew of the 

TCRE is likely not inherited directly from the skewed distribution of the climate feedback 

parameter, though it may similarly be the result of mathematically combining two varying 

uncertain parameters to calculate the TCRE. 

The transient climate response, the warming expected at the time of atmospheric CO2 

concentration doubling relative to the pre-industrial period under an idealized 1% yr-1 CO2 

increase experiment, also follows a positively skewed PDF (Knutti et al., 2017; Millar et al., 

2017b). The commonality of the application of physical climate parameters for the equation of 

the TCRE with that of the transient climate response may provide another explanation for the 
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shape of the TCRE PDF we observed. The transient climate response is determined by the ratio 

of observed warming to radiative forcing under a doubled atmospheric CO2 concentration and 

has a positively skewed distribution due to the assumption of non-stationary feedbacks within the 

climate system in response to radiative forcing. Therefore the form of the TCRE we observed 

may be the result of the assumption of non-stationary feedbacks. 

Given the difference between the median and mean value we observed was small, <0.1 K 

EgC−1, the implications of this asymmetry for allowable carbon budgets may be negligible 

assuming the true value of the TCRE lies near the centre of this PDF. However, if the true value 

of the TCRE is actually within either tail of the PDF, though unlikely, assuming a normally 

distributed TCRE PDF rather than a log-normally distributed PDF may overestimate allowable 

carbon budgets. While the use of median values rather than mean values in describing the central 

tendency of an uncertain parameter is more robust to outliers (Kokoska and Zwillinger, 2000), it 

may be important to consider the implications of the difference between the median and mean 

value for a log-normally distributed variable such as the TCRE. We recommend where possible 

for future studies of the TCRE to report both a mean and median value, and that the mean value 

is used for the basis of carbon budgets to avoid overestimation of allowable carbon budgets. 

Figure 2-3 shows the correlations between input parameters and TCRE values for each 

iteration. The most important parameter to the TCRE is the climate feedback parameter, 

followed by the land-borne fraction of carbon, radiative forcing, effective ocean diffusivity, and 

lastly the ratio of sea to global surface temperature change. Our observed hierarchy in 

importance is similar to that observed by MacDougall et al. (2017), who found a r = 0.86 

between climate sensitivity and the TCRE, −0.39 with ocean heat uptake, and 0.17 with radiative 

forcing for a doubling of CO2. As climate sensitivity is inversely proportional to climate 
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feedback, ocean heat uptake is inversely proportional to effective ocean diffusivity, and radiative 

forcing for a doubling of CO2 is directly proportional to radiative forcing for an e-fold increase in 

CO2, our results for the relative importance of climate feedback, effective ocean diffusivity, and 

radiative forcing are in agreement with MacDougall et al. (2017). 

 

 
Figure 2-3. Input parameter values versus TCRE values computed for each iteration 

(n=10,000,000). The line denotes the line of best fit between the values of a given parameter and 

the associated calculated TCRE values. 
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The ocean plays a predominant role in the global uptake of excess energy at the surface, 

and an important role in modulating the airborne fraction of CO2 emissions, and thus modulates 

the TCRE (Williams et al., 2016; Goodwin et al., 2015; Katavouta et al., 2019; Williams et al., 

2017; Katavouta et al., 2018; Ehlert et al., 2017). Heat and CO2 are taken up by the mixed layer 

of the ocean and transported through depth primarily via advective meridional circulation 

(Katavouta et al., 2019). This mechanism is expected to vary substantially with a changing 

temperature stratification regime within the ocean (Williams et al., 2016; Williams et al., 2017), 

though a recent study, Ehlert et al. (2017) suggests the processes of ocean heat and carbon flux 

scale linearly with changes in vertical mixing. We have chosen to represent ocean heat and CO2 

uptake using a diffusive approximation for simplicity, and as at a global scale ocean uptake of 

heat and CO2 mimics that of a diffusive process, as previously shown in intermediate and full-

complexity ESMs (MacDougall, 2017). This simplifying assumption may over-estimate heat 

uptake by the ocean, by omitting the important influence of a changing ocean ventilation in 

response to isopycnal heave associated with increased stratification weakening ocean meridional 

circulation (Purkey and Johnson, 2013). Katavouta et al. (2018), Ehlert et al. (2017), Williams et 

al. (2016), and Goodwin et al. (2015) suggest processes of ocean heat and carbon compensate 

one another in affecting the linearity between surface warming and cumulative CO2 emissions. 

Williams et al. (2016) further advise that the warming effect of decreased ocean heat uptake may 

exceed the cooling effect by ocean uptake of CO2, and Goodwin et al. (2015) show that a 

predicted drift in the Atlantic meridional overturning uptake alters thermal uptake more than 

carbon uptake, while Ehlert et al. (2017) show that variations in vertical ocean mixing have a 

greater influence on the TCRE than changes in mixing along isopycnals. Thus caution is 
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warranted when extending our results beyond decadal to centennial time-scales at which the 

diffusive approximation works well (MacDougall, 2017). 

To examine how our calculated TCRE differs from a normally distributed TCRE PDF, 

we generated a normally distributed TCRE PDF with an identical mean and standard deviation to 

that of our calculated TCRE PDF, as well as a log-normally distributed PDF, shown in Figure 2-

4. Note that a PDF generated this way can have non-physical values corresponding to continuous 

prescribed probabilities rather than sampled TCRE estimates. A normally distributed TCRE has 

a negatively shifted 5%–95% confidence range relative to the calculated TCRE, 1.0–2.8 K EgC−1 

and 1.1– 2.9 K EgC−1, respectively. Previous studies which construct a PDF for the TCRE 

assuming a normal distribution using standard deviation and mean TCRE estimates may 

negatively bias confidence intervals for the TCRE, even if reported mean values and standard 

deviations are representative. 

 

 
Figure 2-4. Probability density function (PDF) of calculated TCRE values, a normally 

distributed TCRE PDF, and a log-normally distributed TCRE PDF, the latter two based upon 

the mean and standard deviation of calculated TCRE values. Each bar designates a 5%–95% 

confidence interval, the grey bar corresponding to the calculated TCRE, the blue bar 

corresponding to a normally distributed TCRE and the orange bar corresponding to a log-

normally distributed TCRE. 
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To limit global warming to 2 °C relative to pre-industrial temperatures, the CO2-only 

cumulative carbon budget is between 700 and 1,800 PgC (5%–95% confidence), with a best 

estimate value of 1,100 PgC (rounded to the nearest 100 PgC). Figure 2-5 shows the 

consequences of a calculated TCRE PDF relative to a normally distributed TCRE PDF with 

regards to a CO2-only carbon budget. A calculated TCRE reduces the upper confidence limit of 

the CO2-only carbon budget. While both share a mean projected carbon budget of 1,100 PgC, a 

normally distributed TCRE produces a greater upper limit of emissions allowance than the 

calculated TCRE, 2,100 and 1,800 PgC, respectively. At annual emissions of 11 PgC yr−1, the 

difference between these upper limits is equivalent to about 27 years of emissions. 

 

 
Figure 2-5. The quantity of CO2 emissions consistent with not exceeding 2°C in warming 

according to the calculated TCRE (grey) and a normally distributed TCRE (blue). Error bars 

designate 5%–95% confidence intervals. 
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While the TCRE and proposed CO2-only carbon budgets relate the primary driver of 

anthropogenic climate change, CO2 emissions, to global warming, these do not take into account 

the influence of non-CO2 greenhouse gas and aerosol emissions (MacDougall and Friedlingstein, 

2015). Caution is warranted in the interpretation and application of CO2-only carbon budgets 

associated with the TCRE, as these overestimate emissions compatible with a given temperature 

target by not encompassing non-CO2 forcing (Rogelj et al., 2018). 

2.4 Conclusions 

Here we have examined the uncertainty distribution of the Transient Climate Response to 

Cumulative Emissions (TCRE) using a Monte-Carlo error propagation and found the TCRE to 

have a positively skewed PDF best approximated as a log-normal distribution rather than a 

normal distribution as is commonly assumed (Rogelj et al., 2018; Collins et al., 2013). The 

TCRE ranges from 1.1 to 2.9 K EgC−1 at 5%–95% confidence, with a mean and median value of 

1.9 and 1.8 K EgC−1. While our lower limit and mean estimate of the TCRE is consistent with 

previous estimates, our upper limit is greater than previous estimates. We explored the relative 

influence of sources of uncertainty for the TCRE and found that climate feedback is the most 

influential parameter, followed by the land-borne fraction of carbon, radiative forcing, effective 

ocean diffusivity, and lastly the ratio of sea to global surface temperature change. A positively 

skewed TCRE reduces the upper limit on CO2-only carbon budgets, producing a CO2-only 

carbon budget for 2° C warming of 700–1800 PgC at 5%–95% confidence, while a normally 

distributed TCRE produces a budget of 700–2100 PgC at 5%–95% confidence. The difference in 

the upper limit estimates on carbon budgets corresponds to about 27 years of emissions at 11 

PgC yr−1. The uncertainty in the TCRE and associated carbon budgets is substantial. However 

the representation of the TCRE as a log-normal PDF improves estimations of the TCRE and 
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associated carbon budgets. Given the large roles of climate sensitivity and the land-borne 

fraction of carbon, improved estimates of these variables may contribute to reducing uncertainty 

in the TCRE and carbon budgets. 

  



51 

 

Chapter 3. Spectral subdomains and prior estimation of leaf structure improves 

PROSPECT inversion on reflectance or transmittance alone 

This chapter was published in Remote Sensing of Environment, 252, 112176, 

https://doi.org/10.1016/j.rse.2020.112176. 

3.1 Introduction 

Climate change may alter the fitness and interactions of global plant functional types due 

to changes in temperature (Ciais et al., 2005; Euskirchen et al., 2009; Gray and Brady, 2016), 

moisture (Allen et al., 2010; Zandalinas et al., 2018; Breshears et al., 2013), and nutrient 

(Sardans and Peñuelas, 2015; Yuan and Chen, 2015; Bardgett et al., 2013) regimes. Leaf 

biochemical and structural traits are physiological indicators of leaf functioning, fundamental to 

multiple fields including environmental monitoring (Ali et al., 2016; Luyssaert et al., 2007), 

agriculture (Faucon et al., 2017; Martin and Isaac, 2015; Le Maire et al., 2011), land-use 

management (Murray et al., 2013; Yebra et al., 2008; Gross et al., 2007), ecology (Shipley et al., 

2016; Maire et al., 2015; Levine, 2016; Le Maire et al., 2013), and modelling (Le Maire et al., 

2008; Nouvellon et al., 2010). 

Photosynthetic pigments are primarily studied in the forms of chlorophyll a and b, and 

carotenoids (including xanthophylls and carotenes). These pigments dominate light absorption in 

the visible region of the electromagnetic spectrum, from 400 nm to 750 nm (VIS). Chlorophylls 

are key molecules for photosynthesis as they absorb light energy and contribute to its conversion 

into chemical energy. Carotenoids are accessory pigments participating in light energy 

harvesting, and performing photoprotection from harmful radiation (Zarco-Tejada et al., 2013; 

Hernández-Clemente et al., 2012). The ratio of chlorophyll a and b to carotenoid content 

provides information on leaf function, as chlorophyll content (Cab, expressed in mass per leaf 

https://doi.org/10.1016/j.rse.2020.112176
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surface unit) is dynamic throughout a leaf life cycle or under conditions of environmental stress 

(Féret et al., 2008; Gitelson et al., 2017), while carotenoid content (Cxc, expressed in mass per 

leaf surface unit) content is relatively stable until an advanced stage of senescence (Féret et al., 

2017; Chavana-Bryant et al., 2017; Coussement  et al., 2018). 

Leaf water content, known as equivalent water thickness (EWT, expressed in mass per 

leaf surface unit), and leaf dry matter content, known as leaf dry mass per unit area (LMA, 

expressed in mass per leaf surface unit), the inverse of specific leaf area (SLA), are two 

important leaf traits related to tissue density which in turn influence other leaf functional traits. 

EWT, the difference between fresh mass and dry mass per unit area, influences dehydration 

resiliency (Kattenborn et al., 2017). Due to the biophysical constraints imposed by the leaf 

economic spectrum, LMA is systematically correlated with assemblages of other plant traits as it 

represents the compromise between the cost of leaf construction and the resultant light 

interception area (Asner et al., 2014). LMA is related to leaf life-span, and inversely related to 

individual plant water conductance, photosynthetic capacity, root system, nutrient uptake, 

turnover and growth rate (Gara et al., 2019; Reich  et al., 1997; Maréchaux et al., 2016). LMA 

can thus capture a large portion of functional variation in ecosystems. LMA also allows 

conversion between mass-based and area-based constituent quantities, bridging the gap between 

different modelling approaches. The ratio of EWT to LMA is used to calculate fuel moisture 

content for fires, as both together influence fire ignition and propagation (Qi et al., 2014; Riano 

et al., 2005). 

Several techniques can be used to measure leaf traits, which are either destructive or non-

destructive. Destructive measurements require the collection and transportation of leaf samples, 

followed by empirical analysis of leaf sample constituents using wet chemistry techniques or 
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drying processes (Jacquemoud and Baret, 1990; Lichtenthaler, 1987). Destructive techniques are 

thus time consuming, expensive, and in the case of remote sites logistically restricting due to the 

light and heat-sensitive nature of pigment and moisture analyses (Asner et al., 2015). 

Alternatively, non-destructive techniques based upon leaf spectroscopy, have been successful in 

retrieving leaf traits. Leaf spectroscopy is relatively cost-effective, with the benefit of 

repeatability, and remote application, and has been adopted as a common approach to the study 

of leaf traits (Hill et al., 2019; Féret et al., 2019; Féret et al., 2017; Chavana-Bryant et al., 2017; 

Sun et al., 2018; Nunes et al., 2017; Le Maire et al., 2004, 2008). Leaf spectroscopy takes 

advantage of the relationship between leaf optical properties (including reflectance, 

transmittance and absorptance) and their structural and biochemical properties. 

A variety of approaches have been developed to estimate Cab, Cxc, EWT, and LMA 

from leaf optical properties (Hill et al., 2019; Sun et al., 2018; Cheng et al., 2014; Le Maire et 

al., 2008; Goetz et al., 1990). These approaches can be largely grouped into three categories: 

statistical, physical, and hybrid approaches (Verrelst et al., 2015; 2012). Statistical approaches 

involve the collection of a calibration dataset of leaf constituents concurrent with optical 

measurements from which regression models are established to estimate leaf constituents from 

reflectance and/or transmittance spectra. The most direct models correspond to spectral indices 

involving combinations of optical properties at a reduced number of relevant wavelengths. For 

example, Cab can be estimated from leaf reflectance data with various spectral indices (Chavana-

Bryant et al., 2017; Le Maire et al., 2004).  Partial least square regression (PLSR) and machine 

learning algorithms have also been employed to estimate quantities of biochemical constituents 

(Féret et al., 2019; Hill et al., 2019; Martin et al., 2018). Statistical approaches are 

computationally very efficient and have been successful in the retrieval of a large number of leaf 
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traits based on spectral data at both leaf and canopy scale. The two main disadvantages of 

statistical and machine learning approaches however are the need for comprehensive training 

datasets, and the lack of generalization ability, leading to limited applicability to the retrieval of 

leaf traits from different sites and species (Féret et al., 2019; Jiang et al., 2018;  Sun et al., 2018; 

Wang et al., 2015). However recent studies have shown that improvements in instrumental 

design, data calibration, methods and algorithms now enable more robust data driven predictive 

models applicable to larger and more diverse areas and vegetation types (Hill et al., 2019, Serbin 

et al., 2019).  

Physical approaches based on radiative transfer models (RTMs) such as the PROSPECT 

model at the leaf scale (Jacquemoud and Baret, 1990) are theoretically robust, as they are built 

upon fundamental relationships between light and vegetation tissues, relying on well-defined 

equations of optics involving scattering and absorption interactions which are site and species-

independent (Jacquemoud and Baret, 1990; Féret et al., 2008). PROSPECT assumes a relatively 

simplistic representation of leaves and simulates them based upon a generalized plate model. The 

plate model, first developed by Allen et al. (1969), defines the diffuse reflectance and 

transmittance of a typical compact leaf based upon indices of optical refraction and absorption 

using the Stokes system of equations (Stokes, 1862). The generalization of the plate model 

(Allen et al., 1970; Breece and Holmes, 1971; Stokes, 1862) is based on the solution of the 

system of equations corresponding to N uniform compact layers separated by N-1 air spaces, in 

order to obtain reflectance and transmittance of the series of layers. The PROSPECT model is 

based on this generalized plate model for continuous values of N, and this number of layers N is 

defined as the structure parameter, allowing representation of leaf internal structure for 

dicotyledon species. In forward mode PROSPECT simulates leaf directional-hemispherical 
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reflectance and transmittance from 400 nm to 2500 nm (Schaepman-Strub et al., 2006) based 

upon a limited number of input biochemical and structural components (Jacquemoud and Baret, 

1990). Several versions of PROSPECT have included progressively more constituents (Féret et 

al., 2008), the latest version, PROSPECT-D, including Cab, Cxc, anthocyanins, brown pigments, 

EWT, LMA, and the N structure parameter, allowing accurate simulation of leaf optical 

properties for a broad range of leaf morphologies and development stages (Coussement et al., 

2018; Jiang et al., 2018; Féret et al., 2017). The inversion of PROSPECT alternatively allows the 

retrieval of biochemical constituents from leaf directional-hemispherical reflectance and 

transmittance data by computing the model parameters which allow the best fit between 

simulated and measured spectra. Several algorithms have been used in literature to perform this 

inversion, including look-up-table (LUT) methods (Ali et al., 2016) and iterative optimization 

based on minimization algorithms (Jacquemoud et al., 1996). Finally, hybrid approaches 

combine statistical and physical approaches, such as the establishment of spectral indices or 

machine learning regression models based on simulated optical data generated with RTMs in 

forward mode (Brown et al., 2019; Hill et al., 2019; Berger et al., 2018; Verrelst et al., 2015).  

Traditionally, the PROSPECT model is inverted upon directional-hemispherical 

reflectance and transmittance data across the VIS and infrared (IR) domains from 400 nm to 

2500 nm. However, this approach has prompted poor retrieval success for some constituents, in 

particular LMA (Jiang et al., 2018). This may be caused by uncertainty in both the PROSPECT 

model and optical measurements as suggested by Féret et al. (2019), or uncertainty in the 

PROSPECT model’s representation of the light absorption properties of molecules, such as those 

associated with LMA (Sun et al., 2018; Li et al., 2016), or leaf internal shadowing effects due to 

the dominant absorption of other constituents. To alleviate these problems, multiple studies 
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suggest prior selection of optical subdomains for the estimation of specific constituents. Li and 

Wang (2011) defined a multistep iterative inversion procedure estimating PROSPECT 

parameters individually based on optimal spectral domains, and obtained improved estimation of 

Cab, EWT and LMA. However, Li and Wang (2011) only used reflectance data and did not test 

their approach on publicly available datasets. Moreover, the iterative procedure is 

computationally intensive. Wang et al. (2015) obtained improved retrieval of cellulose and lignin 

when performing PROSPECT inversion from 2,100 nm to 2,300 nm. However, Wang et al. 

(2015) focused on specific biochemicals of dry matter and did not investigate the parameters 

used in the publicly available version of PROSPECT. More recently, Féret et al. (2019) 

evidenced that PROSPECT inversion based on the spectral subdomain from 1,700 nm to 2,400 

nm led to dramatic improvement in the retrieval of LMA and EWT. However, Féret et al. (2019) 

focused on the IR domain and did not investigate the generalization of optimal spectral 

subdomains in the VIS domain for the estimation of leaf pigments.  

Different performances of PROSPECT inversion have also been reported when using 

both leaf reflectance and transmittance spectra together, leaf reflectance spectra only, or leaf 

transmittance spectra only. Sun et al. (2018) reported better retrieval accuracy for LMA when 

using only reflectance or only transmittance than when using reflectance and transmittance 

combined. Added to improved estimation of leaf constituents, the measurement of only 

reflectance or only transmittance may save significant time. However, Hill et al. (2019) reported 

a strong bias in the estimation of carotenoids and EWT from PROSPECT-D inversion when 

using reflectance only. Contrarily, Asner et al. (2011) found that transmittance spectral 

information is sufficient to accurately estimate Cab as well as Cxc, using PLSR models. In light 

of these contradictory results, an assessment of PROSPECT inversion performance when using 
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only reflectance or only transmittance from publicly available datasets, along with traditional 

comprehensive inversion procedures, is needed to inform future research.  

One source of uncertainty and potentially error in the estimation of leaf chemistry when 

using PROSPECT inversion with reflectance or transmittance only is the N parameter. The N 

parameter is usually inferred based on information from both reflectance and transmittance in the 

near infrared domain (NIR, 750 nm to 1400 nm) (Jacquemoud and Baret, 1990; Allen et al., 

1970), and is the only model parameter not based upon a quantifiable leaf physiological trait. 

The performance of partially-informed PROSPECT inversion, with either reduced subdomains 

excluding NIR information, or only reflectance or transmittance, in estimating the N parameter 

has yet to be explored. Jacquemoud and Baret, (1990) showed a correlation between SLA and 

the N parameter, characterized by a hyperbolic relationship, with higher N values corresponding 

to lower SLA. Jacquemoud and Baret (1990) explained this by the fact that cell walls have a 

constant weight per unit area, meaning that an increasing number of cell-wall interfaces 

corresponds to an increasing anatomical complexity of the leaf and translates into an increase in 

N and a decrease in SLA. Qiu et al. (2018) reported a significant and moderate to strong 

correlation between N and LMA (r = 0.57), and between N and leaf thickness (r = 0.59, and a 

lower but still significant correlation between N and EWT (r = 0.34). The correlation between N 

and LMA ranged between 0.46 and 0.71 and the correlation between N and EWT ranged 

between -0.55 and 0.51 for six datasets analyzed by Féret et al. (2019) (unpublished results). 

Although the correlation between N and LMA appears as relatively consistent among datasets 

and among studies, it is usually moderate and using LMA as a proxy for the N parameter would 

lead to significant uncertainty for the simulation of leaf optical properties: the N parameter is the 

physical foundation of the PROSPECT model, as the major anatomical differentiation between 
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leaves is the number of these homogenous plates (Jacquemoud and Baret, 1990). It is therefore 

the main factor influencing leaf optical properties in the spectral domains dominated by 

scattering effects, such as the NIR domain and part of the short wave infrared (SWIR, 1400 nm 

to 3000 nm) domain. As a result, uncertainty in N can directly lead to uncertainty in simulated 

leaf optical properties, and in the constituents estimated from PROSPECT inversion relying on 

these domains (Qiu et al., 2018).  

Qiu et al. (2018) reported a strong correlation of 0.82 between the N parameter and the 

ratio between reflectance and transmittance measured in the NIR at 800 nm. Taking advantage of 

this correlation to estimate N requires measuring both leaf reflectance and transmittance, in line 

with the original method used to compute N from leaf optical properties, used during 

PROSPECT calibration and described by Jacquemoud et al. (1996). However, absorptance in the 

NIR domain is usually very low: Merzlyak et al. (2004) even suggest that absorptance in the 

domain ranging from 750 nm to 800 nm can be neglected. Qiu et al. (2019) reported the N 

parameter having a dominant influence on reflectance and transmittance from 750-800 nm over 

other PROSPECT parameters, as well as leaf surface reflectance. Thus, assuming light in the 

NIR is primarily either reflected or transmitted as a function of leaf structure, information about 

reflectance only or transmittance only might be sufficient to accurately estimate the N parameter 

with moderate uncertainty, following the hypothesis that absorptance is negligible. The 

estimation of N prior to PROSPECT inversion may therefore lead to improved estimation of leaf 

constituents when using optimal spectral subdomains with only reflectance or transmittance. 

Our primary objective is to identify the optimal method for the estimation of leaf 

constituents based on PROSPECT inversion, including Cab, Cxc, EWT and LMA. Multiple 

recent studies proposed different alternatives to this problem, and our study compares these 
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approaches when taken individually or combined. These approaches include i) use of reflectance, 

transmittance, or the combination of both, ii) definition of optimal spectral subdomains for 

specific leaf constituents, and iii) prior estimation of the N parameter from reflectance or 

transmittance only.  

3.3 Methods 

We utilized seven datasets for this study amounting to 1,432 leaf samples, comprising 

tropical, temperate and boreal species. Together these datasets include heterogeneous sets of 

information. ANGERS (Féret et al., 2008), and LOPEX (Hosgood et al., 1994) are publicly 

available datasets (see http://opticleaf.ipgp.fr/index.php?page=database) including directional-

hemispherical reflectance in the full optical spectral domain from 400 nm to 2500 nm, and 

chemical measurements of biochemical constituents including Cab, Cxc, EWT and LMA. 

Discrepancies in the relation between pigment content and leaf optical properties provided for 

LOPEX were reported in previous studies (Féret et al., 2008). These discrepancies may be 

explained by the averaging of leaf optical properties and merging of different leaf samples for 

the destructive measurements of pigment content. Thus, we decided to discard the information 

corresponding to pigment content from LOPEX. DOGWOOD-1 (Gitelson et al., 2001; Merzlyak 

et al., 2008), HAZEL (Gitelson et al., 2009), and VIRGINIA datasets (Gitelson et al., 2009) 

correspond to three of the five datasets publicly available (see https://www.researchgate.net 

/publication/319213426_Foliar_reflectance_and_biochemistry_5_data_sets), including 

reflectance and transmittance  in the VIS and NIR domains, as well as pigment content obtained 

from destructive measurements. ITATINGA and NOURAGUES datasets include directional-

hemispherical reflectance and transmittance as well as destructive measurements of EWT and 

http://opticleaf.ipgp.fr/index.php?page=database
https://www.researchgate.net/
https://www.researchgate.net/
https://www.researchgate.net/publication/319213426_Foliar_reflectance_and_biochemistry_5_data_sets
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LMA, and their comprehensive description can be found in Féret et al., 2019. Table 3-1 shows 

the collection and coverage information for each dataset. 

The same measurement protocol was generally followed to obtain reflectance and 

transmittance measurements for each leaf sample. Directional-hemispherical reflectance and 

transmittance were measured with a spectroradiometer equipped with an integrating sphere. The 

spectral sampling resolution for these datasets ranges from 1-2 nm in the spectral region from 

400 nm to 1000 nm, and from 2-5 nm in the spectral region from 1000 nm to 2500 nm, though 

all spectral data were resampled to 1 nm intervals. Together these datasets encompass a variety 

of leaf ages, including young, mature, and senescent, as well as monocot and dicot leaf 

morphologies, woody and herbaceous leaf types, and a diversity of solar exposures, including 

canopy and shaded leaves. The measurement protocol for wet chemistry estimation of pigments 

was also generally similar among datasets. Leaf discs were immediately collected with a cork 

borer following hyperspectral measurements. For the extraction of pigments, leaf discs were 

ground in a chilled mortar, and organic solvents such as 100% acetone, methanol, or 95% 

ethanol were used. The pigment content was then derived from the absorption of the solution 

with lab spectroscopy following the Lichtenthaler (1987) method and equations. The 

measurement protocol for EWT and LMA was also common for ANGERS, LOPEX, ITATINGA 

and NOURAGUES: one or several leaf discs were collected from fresh leaves using a cork borer, 

and the fresh weight of leaf discs was measured immediately before placing the discs in a drying 

oven at 85◦C for at least 48 hours, at which point the dry weight of leaf discs was measured to 

obtain EWT and LMA. For more information on the experimental protocols of published 

datasets, consult Hosgood et al. (1994), Féret et al. (2019; 2008), Gitelson et al. (2009; 2006; 

2001), and Merzlyak et al. (2008).   
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PROSPECT simulates leaf optical properties based upon the content of light absorbing 

biochemical constituents per unit of leaf surface and a leaf structural N parameter, the 

hypothetical number of internal leaf "plates" (Allen et al., 1970; Jacquemoud and Baret, 1990; 

Féret et al., 2017; Féret et al., 2019). Interactions between light and leaf tissues are modelled as a 

function of pigment content (including Cab, Cxc, anthocyanins and brown pigments), EWT, and 

LMA, and corresponding spectral specific absorption coefficients (SACs), as well as a spectral 

refractive index and the N parameter, which accounts for mesophyll structure. PROSPECT 

simulates directional-hemispherical reflectance and transmittance for wavelengths from 400 nm 

to 2500 nm, with 1 nm spectral resolution. 

The inversion of PROSPECT allows for the estimation of leaf biochemistry based upon 

directional-hemispherical reflectance and/or transmittance spectra (Féret et al., 2008; Le Maire et 

al., 2008). The inversion of PROSPECT based on iterative optimization seeks to minimize the 

residuals between measured and modeled leaf optical properties using a merit function M over all 

available spectral wavelengths, by exploring the input parameter space of the model, each 

parameter being defined by an upper and a lower boundary physically meaningful: 

 

𝑀(𝑁, {𝐶𝑖}𝑖=1:𝑝) = ∑ [𝑊𝑅,𝜆  ×  (𝑅𝜆  −  𝑅𝜆̂)
2
 +  𝑊𝑇,𝜆  ×  (𝑇𝜆  −  𝑇𝜆̂)

2
]

𝜆𝑛
𝜆=𝜆1

  3-1 

 

with N as the leaf structure parameter, p as the number of biochemical constituents to be 

retrieved, here four (Cab, Cxc, EWT, and LMA), Ci the biochemical constituent content per unit 

of leaf surface for constituent i, 𝜆1 and 𝜆𝑛 the first and final wavelengths included in the 

inversion, 𝑅𝜆 and 𝑅𝜆̂, 𝑇𝜆 and 𝑇𝜆̂, the measured and simulated reflectance and transmittance, 

respectively, and with 𝑊𝑅,𝜆 and 𝑊𝑇,𝜆 the weight applied to the squared residuals between 
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measured and simulated reflectance and transmittance. We used PROSPECT-D (Féret et al., 

2017) and implemented the inversion procedure with the Matlab constrained nonlinear 

optimization function fmincon, which finds a constrained minimum of a multivariate scalar 

function using an initial estimate. The weight applied to reflectance and transmittance in the 

merit function were either set to 1 when inverting PROSPECT from both reflectance and 

transmittance or set to 0 for all reflectance data or all transmittance data, when inverting 

PROSPECT either from transmittance alone or reflectance alone, respectively. 

We used the NIR subdomain 1700-2400 nm for the retrieval of EWT and LMA, which was 

previously found to perform well through an iterative optimization procedure in Féret et al. 

(2019). We used a similar iterative optimization procedure to identify the optimal subdomain for 

the estimation of pigment content. We segmented the VIS and NIR domains into 17 evenly-sized 

segments of 20 nm from 460 nm to 799 nm. We then performed PROSPECT inversions to 

retrieve Cab and Cxc using reflectance and transmittance from each of the continuous spectral 

domains that can be generated from these 17 spectral segments, leading to 153 continuous 

subdomains. To evaluate the optimal spectral subdomain, we compiled all available data 

including either Cab or Cxc, and we computed the standardized RMSE (SRMSE) between 

estimated and measured Cab and Cxc for each subdomain, standardized by the Cab and Cxc 

estimated for each sample from reflectance and transmittance data from 460-799 nm. Based on 

this approach, we defined an optimal spectral domain for the estimation of Cab and an optimal 

spectral domain for the estimation of Cxc.  

The computation of the N parameter is usually derived from information on both reflectance 

and transmittance measurements. During the calibration of PROSPECT specific absorption 

spectra for the N parameter, typically a simplified version of PROSPECT is inversed based on 
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reflectance and transmittance measured at three wavelengths including the wavelength of 

minimum absorption, the wavelength of maximum reflectance, and the wavelength of maximum 

transmittance. This method was proposed by Jacquemoud et al. (1996) and also used by Féret et 

al. (2008, 2017) to calibrate the latest versions of PROSPECT, and is referred to as the ‘standard 

N value’ in this study. This N parameter is usually estimated simultaneously with other 

parameters during inversion based on iterative optimization, with few exceptions (Li and Wang, 

2011).  

The estimation of leaf chemical constituents from reflectance or transmittance has led to 

contrasting conclusions, and the inconsistency in these conclusions may be caused by uncertainty 

in the estimation of N, which is the most influential parameter on leaf optical properties in 

domains with low absorption, in particular the NIR domain. Therefore, the estimation of N 

directly from reflectance or transmittance measurements may be the key to more robust 

estimation of leaf constituents through PROSPECT inversion applied on only reflectance or only 

transmittance. Light absorption by leaves in the NIR domain is the source of some debate: most 

experimental datasets show low but existing absorption in this domain, but Merzlyak et al. 

(2004) proposed that absorption is negligible in the spectral domains of minimum absorption, 

and proposed a correcting factor for transmittance. The hypothesis of Merzlyak et al. (2004) is 

justified by the difficulty of accurately measuring leaf optical properties in the NIR domain due 

to incomplete collection of light leaving the highly scattering tissue. Even without the application 

of such a correcting factor, the following relationship holds when absorption is sufficiently low: 

 

𝑅𝐴𝑚𝑖𝑛
𝑇𝐴𝑚𝑖𝑛

~
𝑅𝐴𝑚𝑖𝑛

1 − 𝑅𝐴𝑚𝑖𝑛
~
1 − 𝑇𝐴𝑚𝑖𝑛
𝑇𝐴𝑚𝑖𝑛

 
3-2 
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with 𝑅𝐴𝑚𝑖𝑛 and 𝑇𝐴𝑚𝑖𝑛 the reflectance and transmittance measured at the wavelength of minimum 

absorption. Therefore, combining Equation 3-2 with the result of Qiu et al. (2018), the N 

parameter should be strongly correlated with the different terms of Equation 3-2, allowing proper 

estimation of N from reflectance only or transmittance only.  

Here, we first performed a correlation analysis between the N parameter and the three 

ratios defined in Equation 3-2, for each of our seven experimental datasets in order to verify the 

validity of the correlation reported by Qiu et al. (2018), and to test the hypothesis of negligible 

absorption of light at 800 nm formulated by Merzlyak et al. (2004). 

Our second objective was to identify a robust relationship between N and the ratios defined in 

Equation 3-2 across datasets. To achieve this, we defined linear regression models linking N to 

these ratios adjusted based on leaf optical properties simulated with PROSPECT and validated 

on our experimental datasets. We simulated 1000 leaf optical property assemblages with 

PROSPECT, based on the random sampling of leaf constituents as defined in Table 3-2. The 

value for brown pigments and anthocyanins was set to 0. The resulting simulated dataset is 

referred to as SIMUL-N hereafter. 

 

Table 3-2. Definition of the ranges for the PROSPECT input parameters used for the simulated 

dataset. 

PROSPECT Parameter Range 

N 1 – 4 

Cab (µg·cm-2) 0.5 – 100 

Cxc (µg·cm-2) 0.5– 20 

EWT (g·cm-2) 0.001– 0.02 

LMA (g·cm-2) 0.001– 0.01 
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As the minimum absorption is not systematically located at 800 nm (Boren et al., 2019), we 

adjusted a simple linear regression model between N and 
𝑅

1−𝑅
, and between N and 

1−𝑇

𝑇
 for each 

wavelength between 400 nm and 2500 nm on this simulated dataset. Then we applied this 

regression model on each individual experimental dataset, and on the compilation of all these 

datasets, and identified the optimal spectral band leading to the minimum RMSE between the 

standard N value (obtained from a standard inversion of both R and T) and the N parameter 

estimated from the regression model. As the experimental datasets showed different spectral 

ranges, some of them covering the full spectral domain from 400 nm to 2500 nm while others 

were limited to the spectral domain from 400 nm to 800 nm, we defined an optimal spectral band 

for each spectral range (400 nm to 800 nm, and 400 nm to 2500 nm), and each ratio based either 

on reflectance or on transmittance.  

We then estimated Cab, Cxc, EWT, and LMA from the experimental datasets using ten 

different inversion procedures of PROSPECT. We also estimated anthocyanin content, though 

due to most datasets lacking wet chemistry anthocyanin measurements, we did not include 

anthocyanins in our analysis. We evaluated the following inversion procedures: 

1. Use of the full spectral domain available, with both reflectance and transmittance, and the 

simultaneous estimation of Cab, Cxc, EWT, and LMA.  

2. Use of the full spectral domain available, with only reflectance or only transmittance, and 

the simultaneous estimation of Cab, Cxc, EWT, LMA, and N.  

3. Use of the full spectral domain available, with only reflectance or only transmittance 

combined with corresponding prior estimation of N, and the simultaneous estimation of 

Cab, Cxc, EWT, and LMA. 
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4. Use of the optimal spectral subdomain for each of the variables Cab, Cxc, EWT, and 

LMA, with both reflectance and transmittance, and the simultaneous estimation of Cab, 

Cxc, EWT, LMA, and N.  

5. Use of the optimal spectral subdomain for each of the variables Cab, Cxc, EWT, and 

LMA, with only reflectance, or only transmittance, and the simultaneous estimation of 

Cab, Cxc, EWT, LMA, and N.  

6. Use of the optimal spectral subdomain for each of the variables Cab, Cxc, EWT, and 

LMA, with only reflectance or only transmittance combined with corresponding prior 

estimation of N, and the simultaneous estimation of Cab, Cxc, EWT, and LMA. 

The performances of each of these inversion procedures were compared using the normalized 

root mean squared error (NRMSE, expressed in %), the RMSE of each leaf constituent 

estimation by each procedure normalized by the mean RMSE computed for all experimental data 

available for each leaf constituent.  

3.4 Results 

Figure 3-1 identifies the optimal spectral subdomains to be used for the estimation of Cab 

and Cxc. The optimal subdomain for the estimation of Cab corresponds extends from 700 nm to 

720 nm, which coincides with the red edge. The optimal subdomain for the estimation of Cxc 

extends from 520 nm to 560 nm, which corresponds to the end of the domain of absorption of 

Cxc as defined in the SAC used in PROSPECT.  
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Figure 3-1. SRMSE (%) obtained for the estimation of Cab (left) and Cxc (right) from 

PROSPECT inversion over all experimental datasets combined with each of the 153 spectral 

domain combinations. The green star indicates the spectral segment producing the best results. 

 

The correlation analysis between the standard N value and either 
𝑅800

𝑇800
,  

𝑅800

1−𝑅800
, or 

1−𝑇800

𝑇800
 

confirms the very strong correlation observed by Qiu et al. (2018), and even produces stronger 

correlations, with values > 0.97 for all datasets when comparing the standard N value to 
𝑅800

𝑇800
. The 

correlation between the standard N value and ratios based on reflectance or transmittance only is 

also very strong, with values > 0.95 for all datasets except LOPEX and NOURAGUES, which 

still showed correlation > 0.75.  Table 3-3 shows the correlation values between the standard N 

value and 
𝑅800

𝑇800
,  

𝑅800

1−𝑅800
, and 

1−𝑇800

𝑇800
. 
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Table 3-3. Correlation between standard N value and ratios computed from leaf optical 

properties at 800 nm. 

Dataset 
𝑹𝟖𝟎𝟎
𝑻𝟖𝟎𝟎

 
𝑹𝟖𝟎𝟎

𝟏 − 𝑹𝟖𝟎𝟎
 

𝟏 − 𝑻𝟖𝟎𝟎
𝑻𝟖𝟎𝟎

 

SIMUL-N 1.00 0.98 0.99 

LOPEX 0.97 0.76 0.75 

ANGERS 1.00 0.96 0.98 

VIRGINIA 1.00 1.00 1.00 

HAZEL 1.00 1.00 1.00 

DOGWOOD-1 1.00 1.00 1.00 

ITATINGA 1.00 0.95 0.98 

NOURAGUES 0.99 0.84 0.89 

 

Figure 3-2 illustrates the RMSE between the standard N value and the N value estimated 

from the linear regression model established with the PROSPECT simulated dataset. For datasets 

limited to the VIS and red edge of the NIR domain (~400 nm to 800 nm), the optimal spectral 

band for the estimation of the N parameter varies slightly from 730 nm to 800 nm amongst 

datasets. For all datasets combined with spectra from the VIS to red edge, the optimal spectral 

band is 800 nm for reflectance, and 753 for transmittance.  

For datasets including the full spectral range (400 nm to 2500 nm), the optimal spectral 

band varies amongst datasets, but remains in the NIR plateau. Finally, when combining all 

datasets, the optimal spectral band for reflectance and for transmittance are very close: the 

optimal estimation for N when using reflectance only is obtained with the wavelength 1131 nm 

(
𝑹𝟏𝟏𝟑𝟏

𝟏−𝑹𝟏𝟏𝟑𝟏
), whereas the optimal estimation for N when using transmittance only is obtained with 

the wavelength 1121 nm (
𝟏−𝑻𝟏𝟏𝟐𝟏

𝑻𝟏𝟏𝟐𝟏
). These wavelengths are situated in close proximity to the 

wavelength with a minimal absorption coefficient in PROSPECT-D, which is 1073 nm.  
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Figure 3-2. RMSE between the standard N value and the N value estimated from a linear model 

based on PROSPECT simulation, using reflectance (left) or transmittance (right). The stars and 

numerical values indicate the location of the spectral band corresponding to the minimum RMSE 

for each spectral band. The values in black correspond to the optimal spectral bands obtained 

when combining all datasets, and considering either the spectral domain from 400 nm to 800 

nm, or from 400 nm to 2500 nm. 

 

The linear models relating reflectance ratios to the N parameter, as well as transmittance 

ratios to the N parameter varied as a function of wavelength. Equations 3-3 to 3-6 correspond to 

the linear models linking N to the reflectance and transmittance ratios, either when only VIS and 

NIR (VNIR) spectral data are available from 400 nm to 800 nm, or when the leaf optical 

properties are measured over the full spectral range.  

 

𝑵𝑽𝑵𝑰𝑹,𝑹 = 𝟏. 𝟕𝟐𝟒 ×
𝑹𝟖𝟎𝟎

𝟏 − 𝑹𝟖𝟎𝟎
+ 𝟎. 𝟎𝟕𝟗𝟓 

3-3 

 

𝑵𝑽𝑺𝑾𝑰𝑹,𝑹 = 𝟏. 𝟖𝟑𝟎 ×
𝑹𝟏𝟏𝟑𝟏

𝟏 − 𝑹𝟏𝟏𝟑𝟏
+ 𝟎. 𝟎𝟕𝟏𝟏 

3-4 
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𝑵𝑽𝑵𝑰𝑹,𝑻 = 𝟏. 𝟏𝟔𝟐 ×
𝟏 − 𝑻𝟕𝟓𝟑
𝑻𝟕𝟓𝟑

+ 𝟎. 𝟏𝟖𝟕 
3-5 

 

𝑵𝑽𝑺𝑾𝑰𝑹,𝑻 = 𝟏. 𝟑𝟒𝟎 ×
𝟏 − 𝑻𝟏𝟏𝟐𝟏
𝑻𝟏𝟏𝟐𝟏

+ 𝟎. 𝟏𝟐𝟏 
3-6 

 

Optimal spectral subdomains with both reflectance and transmittance data performed the 

best in retrieving all leaf constituents combined, systematically outperforming traditional 

PROSPECT inversion of full domains for each constituent. The use of a reflectance or 

transmittance ratio to provide a prior estimation of the N parameter led to a modest to dramatic 

improvement over both full domain and optimal subdomain reflectance or transmittance in 

retrieving each constituent, with the sole exception of LMA. For LMA, full domain reflectance 

and optimal subdomain transmittance without prior estimation of the N parameter performed 

better by 14.2% and 0.8% NRMSE, respectively.  

With the availability of only reflectance data, optimal spectral subdomains with prior 

estimation of the N parameter using a reflectance ratio performed best for the retrieval of Cab 

and LMA, though was second best for the retrieval of Cxc and EWT. Full domain reflectance 

with prior estimation of the N parameter using a reflectance ratio outperformed by optimal 

subdomains by 8.2% NRMSE and 1.8% NRMSE for Cxc and EWT, respectively. Conversely 

with the availability of only transmittance, optimal spectral subdomains with prior estimation of 

the N parameter using a transmittance ratio performed best in retrieving each parameter with the 

exception of LMA, for which optimal spectral subdomains with no prior estimation of the N 

parameter performed better by 0.8% NRMSE.  
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Relative to inverting PROSPECT on full domain reflectance data alone or transmittance 

data alone, prior estimation of the N parameter with a reflectance or transmittance ratio improved 

retrieval success by 20.2% (reflectance) to 23.3% (transmittance) NRMSE for Cab (Figure 3-3). 

The inversion of PROSPECT on optimal subdomains in junction with an estimation of the N 

parameter from a reflectance ratio further improved retrieval success over full domain 

reflectance alone by 22.0 % NRMSE, while for transmittance the use of optimal subdomains and 

a transmittance ratio to estimate the N parameter improved retrieval success by 25.3% NRMSE 

over full domain transmittance alone. The best method in estimating Cab with respect to either 

reflectance alone or transmittance alone was reflectance-based: optimal subdomain reflectance 

with a reflectance ratio to estimate the N parameter, followed by full domain reflectance with a 

reflectance ratio to estimate the N parameter, which in turn was followed by optimal subdomain 

transmittance with a transmittance ratio to estimate the N parameter.  
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Figure 3-3. Estimation of Cab using ten different strategies for PROSPECT inversion. NRMSE 

is provided for the compiled dataset, and the background color for NRMSE value indicates if the 

performances are improved (green) or worsened (red) compared to the inversion using both 

reflectance and transmittance over the full spectral domain without prior estimation of N. 

 

For Cxc, the benefit of estimating the N parameter with a reflectance or transmittance 

ratio for full domain reflectance data alone was more modest, with a reduction in NRMSE by 

8%, while for transmittance NRMSE was reduced by 30.5% (Figure 3-4).  The use of optimal 

subdomains in junction with a reflectance ratio to estimate the N parameter did not improve the 

retrieval success for Cxc over full domain reflectance, though the use of optimal subdomain 

transmittance and a transmittance ratio to estimate the N parameter improved retrieval success 

over full domain transmittance alone by 37.6% NRMSE. The most successful retrieval method 

for Cxc with the availability of only reflectance or transmittance was transmittance-based: 

optimal subdomain transmittance with a transmittance ratio to estimate the N parameter, 
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followed by full domain reflectance with a reflectance ratio to estimate the N parameter, 

followed by full domain transmittance with a transmittance ratio to estimate the N parameter. 

 

 
Figure 3-4. Estimation of Cxc using ten different strategies for PROSPECT inversion. NRMSE is 

provided for the compiled dataset, and the background color for NRMSE value indicates if the 

performances are improved (green) or worsened (red) compared to the inversion using both 

reflectance and transmittance over the full spectral domain without prior estimation of N. 

 

In retrieving EWT with reflectance or transmittance data alone, estimating the N 

parameter with a reflectance or transmittance ratio improved retrieval success by 11.9% NRMSE 

in the case of reflectance, and 2.2% NRMSE in the case of transmittance (Figure 3-5). The use of 

optimal subdomain reflectance with prior estimation of the N parameter with a reflectance ratio 

improved retrieval success over full domain reflectance alone by 10.1% NRMSE, though 

reduced retrieval success by 1.8% NRMSE relative to full domain reflectance with a reflectance 



75 

 

ratio to estimate the N parameter. The use of subdomain transmittance with prior estimation of 

the N parameter through a transmittance ratio improved retrieval success over full domain 

transmittance alone by 8.1% NRMSE, outperforming full domain transmittance with prior 

estimation of the N parameter through a transmittance ratio. The most successful method in 

estimating EWT from reflectance or transmittance alone was transmittance-based: optimal 

subdomain transmittance with estimation of the N parameter through a transmittance ratio, 

followed by optimal subdomain transmittance without prior estimation of the N parameter, 

followed by full domain transmittance with estimation of the N parameter through a 

transmittance ratio.   

 

 
Figure 3-5. Estimation of EWT using ten different strategies for PROSPECT inversion. NRMSE 

is provided for the compiled dataset, and the background color for NRMSE value indicates if the 

performances are improved (green) or worsened (red) compared to the inversion using both 

reflectance and transmittance over the full spectral domain without prior estimation of N. 
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The retrieval success of LMA with full domain reflectance data alone or full domain 

transmittance data alone was reduced with the use of a reflectance ratio to estimate the N 

parameter, while it was unaffected (<1% NRMSE) with the use of a transmittance ratio to 

estimate the N parameter (Figure 3-6). The use of optimal subdomain reflectance with prior 

estimation of the N parameter through a reflectance ratio improved retrieval success by 8.8% 

NRMSE over full domain reflectance alone, and optimal subdomain transmittance with prior 

estimation of the N parameter through a transmittance ratio outperformed full domain 

transmittance by 13.9% NRMSE. The best method in retrieving LMA with respect to either 

reflectance alone or transmittance alone was transmittance-based: optimal subdomain 

transmittance without prior estimation of the N parameter through a transmittance ratio, followed 

closely (<1% more NRMSE) by optimal subdomain transmittance with prior estimation of the N 

through a transmittance ratio, which was in turn followed by optimal subdomain reflectance with 

prior estimation of the N parameter through a reflectance ratio. Optimal subdomain transmittance 

with and without prior estimation of the N parameter through a transmittance ratio both 

outperformed inversion of PROSPECT based on optimal subdomain reflectance and 

transmittance. 
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Figure 3-6. Estimation of LMA using ten different strategies for PROSPECT inversion. NRMSE 

is provided for the compiled dataset, and the background color for NRMSE value indicates if the 

performances are improved (green) or worsened (red) compared to the inversion using both 

reflectance and transmittance over the full spectral domain without prior estimation of N. 

 

3.5 Discussion 

The traditional means of estimating leaf constituents with full domain transmittance and 

reflectance can be modestly to dramatically improved when both reflectance and transmittance 

data are available through the use of optimal subdomains. This improvement is likely due to 

optimal subdomains maximizing the fit on the subdomain where the spectra are most sensitive to 

changes in particular constituent quantities and other constituent quantities are less influential. 

This finding is consistent with that of Féret et al. (2019) in regards to EWT and LMA, since the 

iterative inversion procedure is the same, as well as four of the six datasets. The success of 

optimal subdomains is new however with regards to Cab and Cxc. While Féret et al. (2019) 
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decided to select an optimal subdomain for the simultaneous estimation of EWT and LMA, here 

we chose to retrieve Cab and Cxc individually by using the subdomain from 700-720 nm for the 

retrieval of Cab, and the subdomain from 520-560 nm for the retrieval of Cxc. Sun et al. (2019) 

also reported improved retrieval success of Cab while inverting PROSPECT on restricted sets of 

wavelengths, which included 716 nm for PROSPECT-D, 726 nm for PROSPECT-4, and 732 nm 

for PROSPECT-5, mirroring the utility of the subdomain we found from 700-720 nm with 

PROSPECT-D for Cab. For Cxc, our retrieval success is comparable to Féret et al. (2017), who 

reported improved Cxc retrieval success over previous methods with the updating of carotenoid 

SACs in PROSPECT-D while inverting PROSPECT-D on full domain reflectance and 

transmittance, with three of the same datasets (ANGERS, VIRGINIA, and DOGWOOD-1).  

Relative to Féret et al. (2017) we did find improved retrieval success of Cxc with the use of 

spectral subdomains and prior estimation of the N parameter, with both reflectance and 

transmittance (spectral subdomains) or just transmittance (spectral subdomains and prior 

estimation of the N parameter), as both of these techniques outperformed traditional full domain 

reflectance and transmittance inversion. Sonobe et al. (2017) employed hyperspectral indices as 

well as PROSPECT-D to estimate Cxc in leaves subjected to incremental shade treatments, and 

found the reflectance of wavelengths 510 nm and 521 nm to be especially informative. Sonobe et 

al. (2017) found both hyperspectral indices and a SAC-recalibrated version of PROSPECT-D to 

work well in estimating Cxc in shaded leaves, which suggests the use of optimal spectral 

subdomains as we have defined in the present study, would also work well for the estimation of 

Cxc in shaded leaves. While there was some variation among datasets, the fact that optimal 

subdomain reflectance and transmittance performed well globally over alternative approaches 

suggests that this approach is robust to variations between species and sites, as our combined 
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datasets encompass extensive variation in leaf structural, biochemical, and optical characteristics. 

The application of optimal subdomains not only improves the efficacy of PROSPECT inversion 

in estimating Cab, Cxc, EWT, and LMA, though may also serve to improve the computational 

efficiency of physical approaches in retrieving these constituents, by removing extraneous 

wavelengths from the inversion process. 

Similar to Sun et al. (2018) we observed the combination of reflectance and transmittance to 

perform secondarily to transmittance alone and transmittance with prior estimation of the N 

parameter in estimating LMA, when optimal subdomains were used. With respect to the retrieval 

of LMA, all except one method outperformed traditional full domain reflectance and 

transmittance PROSPECT inversion in retrieving LMA, the least successful method being full 

domain reflectance with prior estimation of the N parameter. With other leaf constituents, the 

traditional full domain reflectance and transmittance PROSPECT inversion method performed 

second (Cab), third (Cxc), or fourth (EWT) best relative to optimal spectral subdomains with 

reflectance and transmittance, demonstrating how dramatically traditional LMA retrieval stands 

to be improved with the use of alternative methods.  

We found the N parameter to be strongly correlated to leaf optical spectra from the NIR, 

including the ratio of reflectance to transmittance, a reflectance ratio, or a transmittance ratio, 

demonstrating the utility of the NIR for estimating the N parameter. Resultantly, the use of a 

reflectance ratio at 1131 nm (or 800 nm for limited-extent spectral datasets), as well as a 

transmittance ratio at 1121 nm (or 753 nm for limited-extent spectral datasets), in junction with 

specific linear models allowed for successful estimations of the N parameter from reflectance 

spectra alone, as well as from transmittance spectra alone. This improved characterization of leaf 

structure through the N parameter in turn led to improved constituent retrievals over the 
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inversion of PROSPECT with full domain and subdomain reflectance alone or transmittance 

alone, with the exception of LMA for which the inversion of PROSPECT based on full domain 

reflectance and optimal subdomain transmittance performed well without prior estimation of the 

N parameter. The N parameter represents internal leaf structure within the PROSPECT model 

(Jacquemoud and Baret, 1990) and influences spectral responses across both the VIS and NIR 

domains. The influence of the N parameter in the NIR is especially pronounced due to high light 

scattering inside the leaf, since no pigments absorb light in this spectral region. The precise 

characterization of the N parameter is therefore important to retrieve other constituent quantities, 

as demonstrated here by the robust performance of optimal spectral subdomain reflectance and 

transmittance and the meritorious performance of full domain reflectance and transmittance, as 

both of these inversion approaches include the most accurate N parameter characterization (the 

standard N value). Aside from conserving the performance of PROSPECT inversion, the N 

parameter also serves as a useful metric for quantifying structural diversity in leaves, which is 

unique from LMA and EWT, and rapidly measurable using hyperspectral techniques. The 

distribution of the N parameter among global leaves is also unexplored, with only a few studies 

to date considering the N parameter as an important characteristics of leaves (Nunes et al., 2017; 

Qiu et al., 2018). Given the success with which we estimated the N parameter using singular 

reflectance or transmittance, the N parameter may be a novel metric for characterizing leaf 

structural diversity, from the leaf to canopy level. This parameter could change in tandem with 

variation in the anatomical structure of leaves, such as the variation in the quantity of air to cell 

spaces observed with nutrient deficit (Battie-Laclau et al., 2014), serving as a signal of nutrient 

status.  
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Prior estimation of the N parameter is also relatively straightforward to apply to inversion 

procedures, with no considerable loss in computing efficiency. In addition, given the spectral 

regions of wavelengths we found to be optimal for N prediction, this technique could potentially 

be applicable to various scales of multispectral and hyperspectral remote sensing applications, as 

it avoids regions of high water absorption (Behmann et al., 2016; Arellano et al., 2015; Gevaert 

et al., 2015), but this remains to be tested in terms of canopy structure, background reflectance, 

acquisition geometries, etc. In addition, further work to improve how structural variation within 

and amongst leaves is represented by the N parameter could address the lack of cell-specific 

structural representation in PROSPECT. Currently surface epidermal cells, palisade columnar 

mesophyll cells, and spongy spherical mesophyll cells are all imperfectly assumed to be optically 

and structurally identical as components of N elementary homogenous layers (Li et al., 2018; 

Qiu et al., 2018; Gerber et al., 2011), despite their anatomical variation and relative abundance 

having an important influence on the path length of photons within leaves, and subsequently 

influencing reflectance on and transmittance through leaves. Qiu et al. (2018) developed a 

modification to PROSPECT, known as PROSPECT-g, to account for the effects of anisotropic 

scattering, introducing an additional parameter to account for internal light scattering beyond the 

N parameter. Qiu et al. (2018) reported improved retrieval success with 60%-70% of tested 

samples therein, including significant improvement in LMA retrieval, though the multi-step 

inversion procedure involved may be computationally demanding for some research 

applications. While estimating the N parameter through a reflectance or transmittance ratio in 

junction with a regression model as we have necessitates additional computational resources 

when inverting PROSPECT on reflectance or transmittance alone, this additional step is 
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relatively inconsequential in comparison to the resources required for single or multiple 

PROSPECT inversion(s).  

While reflectance and transmittance together carry the most information for PROSPECT 

inversion and robust retrieval of all leaf constituents, researchers may not have the capacity to 

measure both, and for logistical or financial reasons be obliged to choose one or another. This 

choice should be guided by the constituent(s) of interest to be estimated, as our results 

demonstrate that PROSPECT inversion on reflectance alone or transmittance alone produced 

variable results across constituents. Reflectance-based methods slightly outperformed 

transmittance-based methods for the retrieval of Cab, while for the retrieval of Cxc, EWT, and 

LMA, transmittance-based methods performed slightly better, though in each case the difference 

in NRMSE between top reflectance-based and top transmittance-based methods was small (less 

than 7% NRMSE). An alternative factor to retrieval success to consider when choosing between 

measuring reflectance or transmittance for the estimation of leaf constituents may be the scale of 

intended knowledge transformation. Reflectance has been measured from the leaf to canopy 

scale with spectroradiometers, unmanned aerial vehicles (Berni et al., 2009), near-remote sensors 

(Alberton et al., 2017; Steenweg et al., 2017), as well as satellite-based sensors (Tucker and 

Sellers, 1986), for decades, leading to a wealth of accumulated data for monitoring, analysis, and 

comparison. Transmittance can be measured at the leaf level with directional-hemispherical 

spectroradiometers but cannot be measured at greater spatial scales with current technologies 

(Sun et al., 2018) or even at the leaf-level with bidirectional spectroscopy (Arellano et al., 2017). 

A decision tree for choosing the best approach based upon logistical constraints and constituents 

of interests is presented in Figure 3-7, informed by our findings in the present study. 
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Figure 3-7. A decision tree for choosing the best approach based upon logistical constraints 

(availability of reflectance, transmittance, or both) and leaf constituents of interest for estimation 

(the combination of chlorophyll a and b, carotenoids, EWT, LMA, or individually chlorophyll a 

and b, carotenoids, EWT, or LMA), based upon the approaches with the lowest corresponding 

NRMSE. The thickest lines correspond to the approach by which a constituent was best 

estimated globally. *For more information on accounting for directional effects consult Jay et al. 

(2016) and Li et al. (2019a; 2018). 

 

While reflectance measurements are ideally collected using an integrating sphere, producing 

directional-hemispherical measurements, leaf clips are becoming increasingly popular due to 
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their relative affordability and ease of application. However, leaf clips generally provide 

bidirectional reflectance measurements and or transmittance estimations, rather than directional-

hemispherical reflectance and transmittance as is required by traditional PROSPECT inversion 

methods. Directional-hemispherical reflectance is defined by Schaepman-Strub et al. (2006) as 

“the ratio of the radiant flux for light reflected by a unit surface area into the view hemisphere to 

the illumination radiant flux, when the surface is illuminated with a parallel beam of light from a 

single direction”, and bidirectional reflectance is therein defined as “the ratio of the reflected 

radiant flux from the surface area to the reflected radiant flux from an ideal and diffuse surface 

of the same area under identical view geometry and single direction illumination”. A number of 

studies have inverted PROSPECT directly on bidirectional reflectance measurements to estimate 

foliar constituents, not taking into the account the difference between directional-hemispherical 

and bidirectional information (Hill et al., 2019; Kattenborn et al., 2019; Lassalle et al., 2019; Lu 

et al., 2018; Sonobe et al., 2018; Arellano et al., 2017; Shiklomanov et al., 2016; Buddenbaum et 

al., 2012), reducing potential retrieval accuracy. Hill et al. (2019) reported poor performance of 

PROSPECT-D in retrieving pigments, especially Cxc, which therein was over-estimated by a 

factor of nearly 2. However, Hill et al. (2019) inversed PROSPECT-D supplied with 

bidirectional reflectance spectra from a spectroradiometer equipped with a leaf clip, using the 

minimization method of Jay et al. (2016), which was designed for directional-hemispherical 

spectra in junction with close-range bidirectional hyperspectral imagery rather than leaf level 

measurements. While Jay et al. (2016) propose an adaptation to directional-hemispherical RTMs 

such as PROSPECT for close-range applications, Jay et al. (2016) note that directional-

hemispherical RTMs such as PROSPECT cannot be applied directly to leaf level bidirectional 

spectral measurements, which is well established (Boren et al., 2019; Bousquet et al., 2005). 
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Bidirectional spectral reflectance responses, such as those collected with a leaf clip or through 

imagery, differ from directional-hemispherical reflectance responses due to the contrasting 

geometries of incident light with respect to the leaf and sensor in each case, which results in 

distinct reflectance measurements from the specular properties of leaf surfaces as well as 

anisotropic scattering by leaf surfaces, despite the isotropic features of leaf internal structure. 

Several strategies have been developed to improve the utility of bidirectional spectral 

measurements, and overcome the directional limitations of PROSPECT. Jay et al. (2016) 

developed a complimentary model to PROSPECT known as COSINE (ClOse-range Spectral 

ImagiNg of lEaves), which accounts for the specular properties of leaf surfaces as well as leaf 

orientation with the light incident angle, and when coupled with PROSPECT allowed for 

accurate retrieval of pigments, EWT, and LMA from hyperspectral images. Li et al. (2018) 

present another approach to improve the directional flexibility of RTM applications, by 

combining a continuous wavelet transformation with PROSPECT (PROCWT), which resulted in 

the improved retrieval of pigments, EWT, and LMA from bidirectional reflectance due to 

suppressed surface reflectance effects and enhancement of absorption features. Li et al. (2019a) 

show that bidirectional reflectance spectra exhibit a higher amplitude in the VIS over directional-

hemispherical reflectance spectra, and are associated with different wavelength-specific 

responses for estimating leaf chlorophyll content. The inversion method of Hill et al. (2019) and 

others who have attempted PROSPECT inversions supplied with bidirectional reflectance spectra 

with or without estimated transmittance could be improved by accounting for differences 

between bidirectional and directional-hemispherical leaf reflectance spectra.  Future work is 

needed however to directly evaluate the success of PROSPECT inversion supplied with 

directionally corrected bidirectional reflectance data against the traditional approach with 
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directional-hemispherical reflectance and transmittance data, as well as the success of inversions 

supplied with directionally corrected bidirectional reflectance data and the amendments we 

investigate here: optimal spectral subdomains and prior estimation of the N parameter.  

As global leaf optical monitoring efforts are challenged by a lack of field-based validation 

data, and as global analyses suggest that half of all variation in leaf traits occurs at the 

community-level (Nunes et al., 2017; Wright et al., 2004), extensive leaf-level optical datasets 

are needed to facilitate global leaf functional diversity monitoring. For many hyperspectral 

researchers, the measurement of both directional-hemispherical reflectance and transmittance in 

the field is challenging due to experimental effort and/or cost. The measurement of reflectance 

only, or transmittance only, is much easier since there is no need to change the integrating sphere 

configuration for each measurement, and could additionally simplify the design of leaf field 

spectrometers. In effect, measuring reflectance alone or transmittance alone would allow for a 

higher number of leaf samples for a given experimental effort, though inverting PROSPECT 

directly on reflectance spectra only or transmittance spectra only may prompt substandard 

retrieval accuracy, owing to a poor representation of leaf structure. Our results demonstrate that 

retrieval accuracy in this case can be improved with prior estimation of the N parameter from a 

reflectance or transmittance ratio in junction with a linear model, as well as use of spectral 

subdomains (520-560 nm for Cxc, 700-720 nm for Cab, 1700-2400 nm for EWT and LMA). 

Additionally, for researchers with access to the means to measure both reflectance and 

transmittance, modification to traditional PROSPECT inversion by inverting PROSPECT instead 

on an optimal subdomain can lead to improved retrieval accuracies of Cab, Cxc, EWT, and 

LMA. Improved retrieval successes of the pigments Cab and Cxc will enable improved 

understandings of leaf function and age (Féret et al., 2017), and allow for comparison between 
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different sites without the need to collect destructive training samples over space and time (Wu 

et al., 2016; Yang et al., 2016).  

One rewarding application of leaf-level spectroscopy is the facilitation of global scale 

monitoring. RTMs such as PROSPECT have been proven to be useful not only at the leaf scale, 

but as a module of canopy RTMs as well, such as SAIL (Kattenborn et al., 2019; Jacquemoud et 

al., 2009; Verhoef and Bach, 2007) and DART (Oliveira et al., 2017; Gastell-Etchegorry et al., 

2015). While previous spaceborne remote sensing platforms were limiting in spatial, spectral, 

and temporal resolution, new and upcoming satellite missions including the German 

Environmental Mapping and Analysis Program (EnMAP) (Berger et al., 2018; Guanter et al., 

2018) and Sentinel-2 mission by the European Space Agency (Brown et al., 2019; Grabska et al., 

2019; Vaduva et al., 2019) offer unprecedented opportunities due to improved resolutions, with 

spectral resolutions as fine as 5 nm, spatial resolution as fine as 10 m, and a revisit period as 

frequent as 5 days, as well as global open access data platforms. Thus the timely improvement of 

widely-applicable RTMs such as PROSPECT is needed to accelerate the efficacy of emerging 

remote sensing techniques in estimating leaf constituents. The combined use of the approaches 

we present here could readily enhance the information available from current and future 

reflectance databases, including those lacking complimentary transmittance measurements, 

facilitating improved understandings of trait-environment relationships from the leaf to global 

scale (Kattenborn et al., 2019; Moreno-Martínez et al., 2018), at a time when temporally 

extensive datasets are becoming increasingly valuable in monitoring the effects of global change. 
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3.6 Conclusions 

While the inversion of the physically-based radiative transfer model PROSPECT has 

allowed for robust and rapid estimation of important leaf biochemical constituents from leaf 

samples worldwide for decades, limitations in PROSPECT performance and logistical feasibility 

have motivated the development of improved inversion approaches. We investigated adaptations 

of the traditional PROSPECT inversion approach, including optimal spectral subdomains, the 

use of reflectance spectra alone or transmittance spectra alone, prior estimations of the structural 

N parameter, and the combination of these approaches, on more than 1400 broadleaf samples. 

The use of spectral subdomains for reflectance and transmittance data from 700-720 nm and 520-

560 nm was found to be the most successful method of PROSPECT inversion for the retrieval of 

chlorophyll a and b (Cab) and carotenoids (Cxc), respectively, while spectral subdomains from 

1700-2400 nm were optimal for the retrieval of both water content (EWT) and dry matter content 

(LMA). Estimation of the N parameter from a reflectance ratio at 1131 nm, and separately from a 

transmittance ratio at 1121 nm in junction with a regression model prior to PROSPECT inversion 

improved constituent retrieval success when performing inversions with reflectance spectra alone 

or transmittance spectra alone, as well as in junction with optimal subdomains. To improve 

PROSPECT constituent retrievals, we recommend using optimal subdomains when either or both 

reflectance and transmittance spectra are available, and to optimize the utility of hyperspectral 

datasets with the availability of only reflectance or transmittance we additionally recommend the 

use of prior information on the N parameter. 
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Chapter 4. Climate-driven shifts in leaf senescence are greater for boreal species 

than temperate species in the Acadian Forest Region 

This chapter is under review for publication in Ecology and Evolution (submitted on 

December 19th, 2022).  

4.2 Introduction 

Phenology, the timing of recurrent biological events, is influenced by climate and 

therefore an important indicator of the biological effects of climate change. To optimize growing 

season length and reproduction potential while avoiding exposure of vulnerable tissues to 

adverse conditions, plants undergo annual changes that are timed relative to environmental cues 

such as temperature and daylength (Vitasse et al., 2013). In the late growing season following 

budset, hormones from distal buds and leaves supress bud development in what is known as 

paradormancy (Cline and Deppong, 1999). Following this phase, plants enter a state known as 

endodormancy or dormancy from autumn to winter, in which internal mechanisms within the 

bud limit bud cell growth. After sufficient exposure to chilling temperatures, plants enter 

ecodormancy or quiescence in which suboptimal growing conditions limit cell growth. 

Following sufficient exposure to warm temperatures, known as ‘forcing’, and sufficient 

daylength, ecodormancy release is observed as bud burst in which new leaves become visible 

(Delpierre et al., 2016).  Later in the growing season, plants undergo leaf senescence and 

dormancy induction as daylength is shortened and temperatures become cooler (Beil et al., 2021; 

Caffarra et al., 2011).  

Climate change is altering the timing of plant phenological events through changes in 

seasonal temperature and moisture regimes (Piao et al., 2019; Cleland et al., 2007; Kunkel et al., 

2004; Scheifinger et al., 2003). Recent warming has generally led to earlier leaf emergence and 
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delayed leaf senescence for most mid to high latitude tree species, culminating in an extension of 

the growing season (Estiarte and Peñuelas 2015; Polgar and Primack, 2011; Peñuelas and Filella 

2009). Changes in leaf phenology have important implications for a range of processes on 

various spatiotemporal scales, including carbon cycling, water cycling, ecological interactions, 

susceptibility to unfavourable growing conditions or events, and long-term biogeographical 

range shifts (Meier et al., 2021; Pureswaran et al., 2019; Kharouba et al., 2018; Renner and 

Zohner, 2018; Chuine and Régnière, 2017; Morin et al., 2009; Cleland et al., 2007). 

Consequently, characterizing and predicting future changes in leaf phenology is important for 

environmental and natural resource planning and climate change adaptation. Predicting future 

patterns in leaf phenology with increasing surface temperatures is challenging however due to 

limited understandings of drivers and evolved cues, especially for leaf senescence (Chen et al., 

2019; Piao et al., 2019; Delpierre et al., 2016; Gallinat et al., 2015; Keenan and Richardson, 

2015).  

 Process-based modelling of leaf phenology can provide insight into the species-specific 

responses of leaf phenology to climate change and aid in predicting future leaf phenology 

patterns. Previous efforts have provided insight into potential future responses to climate change. 

Examples include shortened leaf colouration periods in autumn due to warming, heat stress, or 

moisture stress (Zohner and Renner, 2019; Xie et al., 2018b), as well as non-linear leaf 

emergence responses to further warming due to the constraining influence of photoperiod and 

chilling controls (Moon et al., 2021a; Chen et al., 2019). Studies have also found evidence for 

additional nuanced controls of leaf phenology, such as bud albedo, interdependence between 

spring and autumn phenology, carbon uptake capacity limitation, response to biomass loss, 

variable sensitivity to drivers, and others (Vitasse et al., 2021; Lang et al., 2019; Piao et al., 
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2019; Keenan and Richardson, 2015). Local-scale experimental studies have developed valuable 

insights for process-based modelling, though Wolkovich et al. (2012) reported that experimental 

studies may considerably underestimate phenological responses to warming relative to long-term 

observations. Relatively few studies have yet explored species-specific process-based modelling 

employing observations over large regions to examine how broad controls in leaf phenology 

differ among species in natural contexts (Cook et al., 2012), as well as potential responses to 

future climate warming.  

While databases of leaf phenology observations are now globally extensive, there has 

been sparse in-situ coverage of the Acadian Forest Region, especially for the Canadian province 

Nova Scotia. The Acadian Forest Region is a temperate-boreal transitional forest zone in eastern 

Canada and northeastern United States (Taylor et al., 2020; Rowe, 1972; Figure 4-1). While 

proposed geographic boundaries of the Acadian Forest Region differ among sources, it is 

generally considered to be situated in eastern North America covering the Canadian provinces of 

New Brunswick, Prince Edward Island, and Nova Scotia, as well as part of Quebec, and much of 

the neighbouring American region of New England (Noseworthy and Beckley, 2020). Therein, 

species which typically grow in a temperate climate zone can be found alongside species which 

typically grow in a boreal climate zone. The common Acadian species Acer rubrum (commonly 

known as red maple), Betula papyrifera (white/paper birch), Abies balsamea (balsam fir) have 

contrasting geographic distributions in North America. Acer rubrum is a more temperate-climate 

suited species which can be found growing as far south as Florida. Betula papyrifera and Abies 

balsamea are more boreal-climate suited species which are relatively uncommon south of the 

midwestern US. The central latitude for Acer rubrum based on probability of occurrence density 
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is about 42° latitude, while for Betula papyrifera and Abies balsamea it is about 50° and 51° 

latitude, respectively (McKenney et al., 2014; 2011; 2007).  

 
Figure 4-1. The distribution of the Boreal, Acadian, and Temperate Forest Regions within North 

America (left) and the distribution of Acer rubrum, Betula papyrifera, and Abies balsamea 

within North America (right). The “Acadian Forest Region” depiction is based on forest 

composition and stand characteristics and is distinct from more detailed ecozone and ecosite 

classifications which incorporate a greater variety of environmental variables (Neily et al., 

2013). The precise extent of the Acadian Forest Region differs among sources (Two Countries 

One Forest, 2014; Rowe; 1972). 
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The Acadian Forest Region presents an opportunity for monitoring the in-situ effects of 

climate change through leaf phenology for both temperate and boreal-typical species. Boreal 

species within the Acadian Forest Region such as Betula papyrifera and Abies balsamea are near 

the southern limits of their biogeographical range, while temperate species within the Acadian 

Forest Region such as Acer rubrum are near the northern limits of their range (Pearson and 

D’Orangeville, 2022; Fisichelli et al., 2014). Phenology is a trait that constrains where species 

can survive, as poorly timed phenology can lead to damage from changing environmental 

conditions, leading to often greater freeze injury risk for non-native species (Zanne et al., 2018; 

Vitasse et al., 2014). Trees which are located near their range limits may be more susceptible to 

environmental change (Wang et al., 2021; Körner et al., 2016). The Acadian Forest Region is 

therefore especially vulnerable to future changes in temperature and moisture regimes, and 

models have predicted a compositional decline of boreal species due to warming temperatures 

outside of the optimal biogeographical climate envelopes for these species (Taylor et al., 2017).  

In addition, the Acadian Forest Region is subject to extreme weather in the form of 

hurricanes that lead to windthrow of shallow-rooted coniferous species such as Abies balsamea 

(Taylor et al., 2020). If the timing of fall leaf senescence is further delayed in the future, this 

could also make broadleaf species more susceptible to wind damage due to the added surface 

area (Gong et al., 2021). In the spring, increased climate variability leads to an increased risk of 

leaf-damaging frost events, which is compounded by the already highly dynamic nature of 

weather patterns in the maritime region of Canada due to the convergence of continental polar, 

maritime polar, and maritime tropical air masses (Garbary and Hill, 2021; Augspurger, 2013; 

Steenberg et al., 2013; Simmons et al., 1984). Trees within the Acadian Forest Region may also 

be at risk of deleterious drought effects as climate models predict an increased frequency and 
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intensity of droughts, and phenology may play an important role in determining drought 

resilience (Pearson and D’Orangeville, 2022; Sánchez‐Pinillos et al., 2022).  The Acadian Forest 

Region therefore presents a unique and complex forest ecosystem, and better understandings of 

the leaf phenology of species therein and the potential effects of climate change are needed to 

predict future ecology and carbon uptake. 

Understandings and predictions of future leaf phenology patterns in the eastern Acadian 

Forest Region are limited due to a lack of observational data, compounded by a highly variable 

climatic regime (MacLean et al., 2022; Pearson and D’Orangeville, 2022; Taylor et al., 2020; 

Garbary and Hill, 2021; Steenberg et al., 2013). A study comparing climate normals across Nova 

Scotia from 1961-1990 and 1991-2020 found that warming in the autumn has been more 

pronounced relative to spring, with a larger relative increase in the number of frost-free days in 

autumn (Garbary and Hill, 2021). Therefore, leaf senescence observations and modelling are 

crucial in addition to spring leaf emergence to understand the entire growing season phenology 

implications of climate change for the Acadian Forest Region. Inter-continental scale studies 

have found differing controls of phenology in North America versus Europe and Asia due to 

historical weather patterns (Zohner et al., 2020).  Even within North America, phenological 

responses to environmental drivers and cues vary regionally (Melaas et al., 2016). This suggests 

that regional species-specific observations are needed to develop confident predictions of the 

response of vegetation to climate change throughout the 21st century for the Acadian Forest 

Region.  

 To better understand the environmental controls of leaf phenology for Acadian Forest 

Region tree species, we used phenocams to monitor the leaf phenology of three tree species 

across a natural climate gradient in the Canadian province of Nova Scotia throughout the 2019 to 
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2022 growing seasons. We also accessed records of leaf phenology across North America using 

the PhenoCam Network database (https://daac.ornl.gov/VEGETATION/guides/PhenoCam_ 

V2.html; Seyednasrollah et al., 2019a). We selected the temperate-climate suited species Acer 

rubrum as well as the more boreal-climate suited species Betula papyrifera and Abies balsamea. 

These species are common to the Acadian Forest Region and currently monitored throughout the 

Acadian Phenocam Network and the PhenoCam Network. In this study we aim to parameterize a 

variety of species-specific process-based models of leaf phenology and simulate leaf phenology 

and growing season length for Acer rubrum, Betula papyrifera, and Abies balsamea under future 

climate change scenarios.  

4.3 Methods 

4.3.1 Acadian Phenocam Network 

 To monitor the leaf phenology of Acadian tree species we installed phenocams at twelve 

sites in the Canadian province of Nova Scotia before the onset of the 2019 growing season 

(Figure 4-2). These selected sites were upland, zonal forest sites with sufficient soil nutrients and 

moisture profiles to support long-lived, late-successional species and forests where successional 

pathways are dictated by climate and not constrained by site conditions (Baldwin et al., 2019). 

The ecosystem types selected – called ecosites in Nova Scotia’s Forest Ecosystem Classification 

system (Neily et al., 2013) – had both intermediate soil moisture regimes (i.e., fresh) and soil 

nutrient levels. Mixedwood stands are common on these sites and include broad leafed species 

like Acer rubrum (red maple), Betula alleghaniensis (yellow birch), and B. papyrifera 

(white/paper birch) and conifer species like Abies balsamea (balsam fir) and Picea rubens (red 

spruce). These phenocams were operational throughout the 2019-2020 growing seasons, with 

several observation gaps in the autumn of 2019 and spring of 2020 due to camera 

https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html
https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html
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malfunctioning. In the 2020 growing season, we replaced these cameras with cellular trail 

cameras. Overall, we observed leaf emergence over the 2019-2022 growing seasons, and leaf 

senescence over the 2019-2021 growing seasons. The elevation for our sites ranges from 88 m to 

322 m above sea level, with most sites located below 200 m. 

 
Figure 4-2. Location of sites within the Acadian Phenocam Network with respect to the 1981-

2010 temperature normal. An example station is shown on the top left. The spatial interpolation 

of mean annual air temperature normals calculated from 1981-2010 were obtained from 

Environment & Climate Change Canada (2022), McKenney et al. (2013), and Price et al. 

(2011). 

 

The technical specifications of each camera type in the Acadian Phenocam Network can 

be found in Table 4-1. The twelve cameras installed in 2019 were Moultrie M-50 trail cameras 

(https://www.moultriefeeders.com/m-50-game-camera). These cameras were then replaced with 

Spypoint Link-Evo (https://www.spypoint.com/en/support/cellular-trail-camera/product-link-

https://www.moultriefeeders.com/m-50-game-camera
https://www.spypoint.com/en/support/cellular-trail-camera/product-link-evo.html
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evo.html) cameras. Each camera was solar-powered, north-facing and mounted at the top of a 6-

m tower with a horizontal or else tilted ~5 ° downward landscape view, depending upon the local 

canopy situation. To ensure stability in the field of view, we used galvanized guy wire cables, 

aluminum angle tower leg braces, and a fixed aluminum angle base. All images were retrieved 

either remotely using the python selenium package (Python Software Foundation, 2022) 

(Spypoint cameras) or manually (Moultrie cameras) and catalogued by date and site. Regions of 

interest (ROIs) were delineated to encompass each distinct individual within the field of view of 

each camera, as well as the reference panel, using the phenopix package in R version 4.2.1 (R 

Core Team, 2022; Filippa et al., 2016). The timeseries of images for each site were reviewed to 

ensure ROIs were delineated without interference from background elements. The species 

identification of each ROI was confirmed manually in the field. We classified trees with heights 

below 5 m as immature and excluded these from analyses, as these tend to exhibit an earlier leaf 

emergence than mature or canopy-height conspecific trees, occluding climatic influences 

(Vitasse and Basler, 2014).  

 

  

https://www.spypoint.com/en/support/cellular-trail-camera/product-link-evo.html
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Table 4-1. Imagery specifications for cameras utilized across the Acadian Phenocam Network. 

Image resolutions are shown with pixel and megapixel (MP) dimensions. 

Camera Bits Per Channel Resolution Daily Image Frequency 

Spypoint Link-Evo 8 
1080X1920 

(2 MP) 
1-3 

Moultrie M-50 24 
3420X6080 

(20 MP) 
6 

Brinno 24 
1280X720 

(0.9 MP) 
6 

 

Slight shifts in the field of view of each camera due to station maintenance over time 

were accommodated for by creating separate analysis ROI coordinates for images before and 

after each shift using the “locator()” function in the graphics package in R (R Core Team, 2022). 

Where a tilt in the field of view was detected, new ROIs were carefully delineated to match the 

targets of the ROIs from the previous field of view. The “extractVIs()” function in the phenopix 

package was used to extract average red, green, and blue colour channel intensity values within 

each ROI for each image. To extract the greenness timeseries we calculated the green chromatic 

coordinate (GCC) or relative greenness as is shown in Equation 4-1. 

𝐺𝐶𝐶 = 
𝐵𝐺

𝐵𝐺 + 𝐵𝑅 + 𝐵𝐵
      4-1 

Therein, BG corresponds to the intensity (brightness) of the green colour channel, BR to the 

intensity of the red colour channel, and BB to the intensity of the blue colour channel. The GCC 

represents the intensity of the green colour channel versus the total intensity of all colour 

channels. We then filtered timeseries by three-day moving window 50th percentiles of GCC 

values to remove both high and low outliers (Peltoniemi et al., 2018; Richardson et al., 2018a; 

2018b). For further noise-reduction we applied an adapted version of the PhenoCam Network 

protocols. We exchanged outliers detected as 4 times greater than the standard deviations of 

residuals for the upper threshold and 2 times greater than the standard deviations of residuals for 
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the lower threshold with locally estimated scatterplot smoothing (LOESS) curve-fitted values to 

further prioritize the removal of anomalous GCC declines (Seyednasrollah et al. 2019b; 

Richardson et al., 2018a). For smoothing over the dormant period, we exchanged original 

dormant period GCC values with that of the dormant season mode, calculated as the lowest local 

maxima in a density plot of GCC values for a given year. We calculated the timing of leaf 

emergence and senescence as 50% of the amplitude of rising and falling GCC curves (Figure 4-3). 

Growing season length was calculated as the time between leaf emergence and senescence. To 

obtain phenology estimates at the site-level, we selected sites with at least 3 individuals of a 

given species present and averaged each individual phenocam-derived phenology date to 

produce a site-level observation for each species and site-year, which are shown in Appendix III: 

Tables A3-5 and A3-6 for leaf emergence and senescence, respectively. 

 

 
Figure 4-3. Summary of the station infrastructure (left) and phenology extraction process (right) 

for Acadian Network phenocams. Here leaf emergence is synonymous with the start of season 

(SOS) and leaf senescence with the end of season (EOS). 
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The Moultrie M-50 and Spypoint Link-Evo trail camera models deployed in this study do 

not have the option to fix the image white balance. Spurious vegetation transition signals may 

arise due to an automatic white balance (Seyednasrollah et al., 2019b; Richardson et al., 2018a). 

To ensure that the colour channel patterns observed through the cameras across our sites were 

due to changes in leaf canopy development rather than colour scaling artefacts, we utilized 

several means of validation and of quality control: 1) installation of grey non-reflective reference 

panels in the field of view of all cameras in 2020 onwards and normalization of vegetation GCC 

timeseries following Delpierre et al. (2020) and Jacobs et al. (2009), 2) filtering threshold 

amplitude of GCC timeseries twice that of the reference panel, 3) comparison of curve-estimated 

phenology to phenology obtained from daily (May) to weekly (June onwards) manual ground 

observations for three Populus tremuloides individuals at an external site in 2021, 4) comparison 

of curve-estimated phenology for 15 individuals to the estimation of leaf phenology via visual 

inspection of images for 2019, 2020, and 2021 site-years (Peltoniemi et al., 2018; Kosmala et al., 

2016; Klosterman et al., 2014; Ahrends et al. 2009), and 5) comparison of leaf phenology 

derived from a Spypoint camera to that of a fixed white balance Brinno camera 

(https://brinno.com/pages/product-tlc200pro) at an external site. For both manual field and visual 

observations, we considered leaf emergence to occur when most leaves had emerged entirely 

from bud scales such that leaf midribs were visible and leaf senescence to occur when most 

leaves had begun to show autumn colouration. Curve-estimated leaf emergence dates for the 

three Populus tremuloides individuals at the external site for the Spypoint Link-Evo camera were 

equal to the reference manually observed date (May 22nd, 2021, for all individuals) and the 

Brinno camera estimate was four days early. Curve-estimated leaf emergence values had a 

https://brinno.com/pages/product-tlc200pro
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correlation of 0.78 with the 15 visual estimates, while curve-estimated leaf senescence values 

had a correlation of 0.74. This performance was in line with previous studies which have shown 

correlation values of 0.52-0.99 for leaf emergence 0.61-0.99 for leaf senescence (Seyednasrollah 

et al., 2021; Zhang et al., 2020; Delpierre et al., 2020; Seyednasrollah et al., 2019b; Richardson 

et al., 2018a; Xie et al., 2018a; Peltoniemi et al., 2018; Klosterman and Richardson, 2017; 

Browning et al., 2017; Berra et al., 2016; Kosmala et al., 2016; Wingate et al., 2015; Keenan et 

al., 2014; Klosterman et al., 2014; Ahrends et al., 2009; Ahrends et al., 2008). 

4.3.2 PhenoCam Network 

To ensure our phenology model training dataset was representative of future climate 

space, we employed phenocam ROI site-year observations from the North American PhenoCam 

Network. For information on PhenoCam Network protocols refer to Seyednasrollah et al. 

(2019b) and Richardson et al. (2018a). Regions of interest from PhenoCam cameras are 

delineated to characterize the dominant vegetation in each field of view, and in some cases 

several ROIs are defined to distinguish between different plant functional types such as 

evergreen needleleaf versus deciduous needleleaf (Richardson et al., 2018c). The GCC is then 

calculated as is shown in Equation 4-1 from red, green, and blue colour channel intensity values 

within each ROI for each image to produce greenness timeseries. For compatibility with Acadian 

Phenocam Network observations, we extracted the timing of 50% amplitude in the rising and 

falling portion of 3-day 50th percentile filtered GCC records from the PhenoCam V2.0 dataset, 

which includes observations up until the end of the 2018 growing season (Seyednasrollah et al., 

2019a). To populate our training dataset for each tree species, we selected phenocam records 

from the PhenoCamV2.0 dataset which had one of our species as the dominant species in the 

field of view (Table 4-2).  
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Table 4-2. Summary of observations from the Acadian Network and PhenoCam Network. Each 

observation corresponds to one phenocam site-year. 

Species 
Leaf 

Phenophase 

Total Number 

of Site-years 

Total Acadian 

Site-years 

Total PhenoCam 

Site-years 

Acer rubrum Emergence 278 34 244 

Betula papyrifera Emergence 89 20 69 

Abies balsamea Emergence 43 28 15 

Acer rubrum Senescence 237 22 215 

Betula papyrifera Senescence 82 14 68 

Abies balsamea Senescence 29 15 14 

 

4.3.3 Leaf Emergence models 

 We explored a variety of leaf emergence models with varying degrees of complexity in 

terms of environmental drivers, including thermal forcing, chilling exposure, and photoperiod 

from Hufkens et al. (2018) and Basler, (2016; Table 4-3). Each model generally simulates an 

accumulation until a critical threshold is reached and leaf emergence occurs, with a 

parameterized starting date for accumulation of drivers. Four of the models simulate a release 

from ecodormancy only, using either temperature forcing alone or in combination with 

photoperiod as drivers. The Thermal Time model accumulates forcing above a base temperature 

in a linear fashion until a critical threshold is reached and leaf emergence occurs (Hufkens et al., 

2018; Basler, 2016; Wang 1960; Réaumur, 1735). The Thermal Time with Sigmoidal 

Temperature Response model also accumulates forcing above a base temperature until a critical 

threshold is reached and leaf emergence occurs, though with a sigmoidal accumulation function 

(Hufkens et al., 2018; Basler, 2016; Kramer, 1994; Hänninen, 1990). The Photo-Thermal Time 

model accumulates forcing above a base temperature in a linear fashion adjusted by daylength 

(Hufkens et al., 2018; Basler, 2016; Črepinšek et al., 2006; Masle, 1989). The Photo-Thermal 

Time with Sigmoidal Temperature Response model also accumulates forcing above a base 
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temperature with a sigmoidal function adjusted by daylength until a critical threshold is reached 

and leaf emergence occurs (Hufkens et al., 2018; Basler, 2016; Črepinšek et al., 2006; Kramer, 

1994; Hänninen, 1990; Masle, 1989). The M1 model is similar to the Photo-Thermal Time 

model, though with an additional exponential constant (Hufkens et al., 2018; Basler, 2016; 

Blümel and Chmielewski, 2012).  

Two models simulate a release from endodormancy and ecodormancy with a 

combination of temperature forcing and chilling as drivers. The Alternating Model accumulates 

forcing and chilling exposure without the stipulation that chilling requirements are to be met 

prior to the onset of forcing accumulation. Within the Alternating Model each day can contribute 

to either requirement until accumulated forcing has surpassed a critical threshold which is altered 

by chilling exposure, and leaf emergence occurs (Hufkens et al., 2018; Basler, 2016; Murray et 

al., 1989; Cannel and Smith 1983). The Sequential Model assumes that chilling requirements are 

fulfilled prior to the onset of forcing accumulation with a bell-shaped chilling temperate response 

function. Once a critical threshold in chilling accumulation is reached, forcing accumulates until 

another critical threshold is reached and leaf emergence occurs (Hufkens et al., 2018; Basler, 

2016; Kramer, 1994; Hänninen, 1990). Finally, the Dormphot model simulates dormancy 

induction, endodormancy release, and ecodormancy release with a combination of drivers 

including chilling, forcing, and daylength. Within the Dormphot model, dormancy induction 

occurs once accumulated cool temperatures and shortening daylengths in the fall reach a 

combined critical threshold. Once dormancy has been induced, chilling accumulates and adjusts 

a parameter which governs daylength and forcing accumulation until a critical threshold is 

reached and leaf emergence occurs (Hufkens et al., 2018; Basler, 2016; Caffarra et al., 2011).  
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All leaf emergence models were applied using the phenor package in R with species-

specific training and validation for each available site-year (Hufkens et al., 2018). Model 

parameterization for each species was optimized using the initial parameter ranges from Hufkens 

et al. (2018) and general simulated annealing with the optimize_parameters function within the 

phenor package which is an extension of the GenSA optimization function within the GenSA 

package in R (Xiang et al., 2013). General simulated annealing is a technique of optimization 

which is analogous to the process of metal cooling. The GenSA function is based upon the 

Boltsmann machine and Cauchy machine simulated annealing approaches (Hufkens et al., 2018; 

Tsallis and Stariolo, 1996). General simulated annealing was constrained with a maximum of 

50,000 iterations and a starting temperature of 10,000 for each annealing to achieve a global 

minimum in root mean squared error (RMSE). Equations and optimal parameters for each model 

from this process are shown in Appendix III: Table A3-1 and Table A3-2, respectively. 
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Table 4-3. Leaf emergence models included in this study. 

Model Process(es) Included Reference 

Thermal Time (TT) Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Wang 1960;  

Réaumur, 1735 

Thermal Time with Sigmoidal 

Temperature Response (TTs) 
Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Kramer, 1994; 

Hänninen, 1990 

Photo-Thermal Time (PTT) Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Črepinšek et 

al., 2006; Masle, 1989 

Photo-Thermal Time with 

Sigmoidal Temperature 

Response (PTTs) 

Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Črepinšek et 

al., 2006; Kramer, 1994; 

Hänninen, 1990; Masle, 1989 

M1 Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Blümel and 

Chmielewski, 2012 

Alternating (AT) 
Endodormancy & 

Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Murray et al., 

1989; Cannel and Smith 1983 

Sequential (SQ) 
Endodormancy & 

Ecodormancy Release 

Hufkens et al., 2018; 

Basler, 2016; Kramer, 1994; 

Hänninen, 1990 

Dormphot (DP) 

Dormancy Induction, 

Endodormancy & 

Ecodormancy Release 

Hufkens et al., 2018; Basler, 

2016; Caffarra et al., 2011 

 

4.3.4 Leaf Senescence models 

We explored a variety of leaf senescence models with various configurations of 

environmental drivers including temperatures, photoperiod, and the preceding estimated leaf 

emergence date from Liu et al. (2020; Table 4-4). As with the leaf emergence models, each leaf 

senescence model generally simulates an accumulation until a critical threshold is reached and 

leaf senescence occurs, though with a parameterized or fixed July 1st starting date. The White 
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model is an exception which does not involve accumulation, and instead uses instant senescence 

triggers based on cooling temperatures and shortening daylength or else extreme cold 

temperatures (Liu et al., 2020; White et al., 1997). The Delpierre model accumulates cool 

temperatures and shortening daylength at a rate controlled by driver-specific weighting 

parameters until a critical threshold is reached and lead senescence occurs (Liu et al., 2020; 

Delpierre et al., 2009). The Jeong Model accumulates cool temperatures once daylength is 

sufficiently short until a critical threshold is reached and leaf senescence occurs (Liu et al., 2020; 

Jeong et al., 2014). The Dormphot Dormancy Induction Model is identical to the dormancy 

induction simulation within the full Dormphot leaf emergence model used above. Leaf 

senescence or dormancy therein occurs once cooling temperatures and shortening daylength 

accumulate to a critical value (Liu et al., 2020; Hufkens et al., 2018; Caffarra et al., 2011). Two 

models, the Delpierre model with Preceding Spring Leaf Emergence and the Dormphot 

Dormancy Induction Model with Preceding Spring Leaf Emergence, include the influence of the 

preceding leaf emergence timing which has been found to exert a constraint of leaf senescence 

timing. For these models, the Photo-Thermal Time with Sigmoidal Temperature Response model 

is used to provide an estimated leaf emergence timing which incorporates both forcing and 

daylength (Liu et al., 2020; Keenan and Richardson, 2015). The timing of the preceding leaf 

emergence relative to the long-term average estimated from a 30-year daily average temperature 

window influences the critical threshold for leaf senescence for these two models.  

The parameter ranges for each leaf senescence model were determined by reviewing local 

climate data, the available literature for each model, and the range of optimal values from Liu et 

al. (2020). All leaf senescence models were applied in R with species-specific training and 

validation for each available site-year. As with the leaf emergence models, senescence model 



107 

 

parameterizations were optimized for each species using general simulated annealing with a 

maximum of 50,000 iterations and a starting temperature of 10,000 for each annealing to find 

model parameters which corresponded to a global minimum RMSE.  Equations and optimal 

parameters for each model from this process are shown in Appendix III: Table A3-3 and Table 

A3-4, respectively. 

Table 4-4. Leaf senescence models included in this study. 

Model Process(es) Included Reference 

White (WM) Dormancy Induction 
Liu et al., 2020; White et al., 

1997 

Delpierre (DM) Dormancy Induction 
Liu et al., 2020; Delpierre et 

al., 2009 

Jeong (JM) Dormancy Induction 
Liu et al., 2020; Jeong et al., 

2014 

Dormphot with just Dormancy 

Induction (DPDI) 
Dormancy Induction 

Liu et al., 2020; Hufkens et 

al., 2018; Caffarra et al., 

2011 

Delpierre with Preceding 

Spring Leaf Emergence (DMs) 

Preceding Ecodormancy 

Release & Dormancy 

Induction 

Liu et al., 2020; Delpierre et 

al., 2009 

Dormphot Dormancy 

Induction with Preceding 

Spring Leaf Emergence 

(DPDIs) 

Preceding Ecodormancy 

Release & Dormancy 

Induction 

Liu et al., 2020; Caffarra et 

al., 2011 

 

4.3.5 Model Performance Evaluation 

 To evaluate the performance of each model for each species, we calculated RMSE 

between model predicted and that of phenocam-derived leaf emergence and senescence timings 

for each site-year observation with a pooled-sample or global validation. This metric is 

commonly used to describe model performance in phenology modelling studies (Hufkens et al., 

2018; Basler, 2016). We calculated the Null model RMSE as the RMSE between observed 
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values and the average observed training dataset value to compare model performances to the 

assumption of a fixed mean value. We considered the model with the lowest RMSE to be the 

best performing model for each validation exercise.  

To examine the regional transferability of each model, we performed a smaller scale 

calibration and validation with observations just from the Acadian Phenocam Network. To 

examine the regional specificity of the models, we also trained the models with all observations 

and then validated the models with just observations from the Acadian Phenocam Network. We 

also calculated the bias between model-estimated and observed phenophases for each validation 

exercise to examine potential systematic over-and under-estimations. To examine globally 

parameterized model performances for warm site-years and for cold-site years, we selected 

validation site-years with annual average temperatures within the top 25th percentile of annual 

average temperatures for warm site-years and within the lower 25th percentile for cold site-years. 

We then computed the RMSE and bias for these site-years for globally parameterized models. To 

examine how well these models performed with independent validation, we also performed a 

leave-one-out cross-validation and a k-fold cross-validation. For efficiency with these two 

validations each model was parameterized with a maximum of 4,000 iterations. The value of ‘k’ 

was allowed to vary such that each sample group had five or more samples, which is an effective 

model quality assessment approach with a range in dataset sizes (Jiang and Wang, 2017; Yadav 

and Shukla, 2016).  

4.3.6 Obtaining Driver Data 

To train each phenology model, we obtained daily estimated weather data for each site-

year in both the Acadian and PhenoCam Network datasets up until 2021 from the Daymet: Daily 

Surface Weather Data on a 1-km Grid for North America, Version 4 R1 dataproduct using the 
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daymetr package in R (Thornton et al., 2022; Hufkens et al., 2018).  Long-term mean 

temperatures from 1980-2021 were also obtained for each site from this dataset using the 

daymetr package. For January-July of 2022 for the Acadian Network, we obtained daily weather 

data from the Daymet Version 4 dataset (Thornton et al., 2021; https://daac.ornl.gov/cgi-

bin/dsviewer.pl?ds_id=1904). We used 1 km X 1 km grids with the nearest central coordinates to 

each site locations for each site-year.  

To project leaf phenology for each of our three species for the Acadian Forest Region 

sites, we simulated leaf phenology from 2001-2100 with each leaf species-calibrated phenology 

model under the effects of climate warming with three representative concentration pathways 

(RCPs): RCP 2.6 (low emissions), RCP 4.5 (intermediate emissions), and RCP 8.5 (high 

emissions). We obtained simulated daily temperature data with the Coupled Model 

Intercomparison Project 5 (CMIP5) model ensemble of 24 climate models from Climatedata.ca, 

(2022; https://climatedata.ca/download/). Each climate model output was downscaled and bias-

adjusted using the Bias Correction/ Constructed Analogues with Quantile delta mapping 

reordering (BCCAQv2) method (Cannon et al., 2015). We extracted data from the 300 arc 

second spatial resolution (1/12°, ~10 km) grid cells with central coordinates closest to our site 

locations.  

4.4 Results 

4.4.1 Leaf Phenology Training Data 

 Leaf phenology patterns in relation to temperature were similar for the Acadian and 

PhenoCam Networks (Figure 4-4). Within the Acadian Phenocam Network, each species 

generally showed a spatial pattern in leaf emergence dates reflecting the climate gradient used in 

their establishment, with later emergence at the colder northeastern sites and earlier at the 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1904
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1904
https://climatedata.ca/download/
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warmer southwestern sites. In contrast, leaf senescence dates for each species did not exhibit a 

distinct climate pattern. Surprisingly, several sites in the warmer region of the Acadian Network 

had earlier leaf senescence dates than that of the colder region, suggesting the timing of 

preceding leaf emergence may have had an important influence on the timing of leaf senescence. 

Leaf emergence was earlier for warmer springs for all species, with a significant linear 

relationship (adjusted R2:0.81, p < 0.001 for Acer rubrum, adjusted R2:0.56, p < 0.001 for Betula 

papyrifera, adjusted R2:0.25, p < 0.001 for Abies balsamea). The more boreal-typical species 

Betula papyrifera and Abies balsamea had reduced coverage of the growing season temperature 

ranges relative to Acer rubrum, though under similar temperatures tended to have similar or 

earlier timings of leaf emergence and senescence. Under similar temperatures, Abies balsamea in 

the Acadian Network tended to have a later leaf emergence in comparison to the PhenoCam 

Network. In contrast, leaf senescence had no clear linear relationship with late summer-early 

autumn temperatures. While there is some overlap in leaf senescence timings for Abies balsamea 

in both networks, within the Acadian Network under similar conditions it tended to be earlier, 

prompting a reduced season length. Season lengths tended to increase with increasing mean 

annual temperatures across site-years, though with values ranging on the order of weeks at a 

given annual average temperature within and among species. Overall, the Acadian Phenocam 

Network is situated with cold-intermediate seasonal temperatures relative to the PhenoCam 

Network, though for these species tend towards later leaf emergence and earlier leaf senescence, 

leading to a reduced season length.  
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Figure 4-4. Leaf phenology patterns according to seasonal or annual temperature averages for 

both the Acadian and PhenoCam Networks. 

 

4.4.2 Leaf Emergence models 

 No one leaf emergence model had exceptional performance relative to the other models 

across species and validation exercises, though all generally managed to outperform the Null 

model (Figures 4-5, 4-6, and 4-7). For the global validation, the Dormphot and M1 models were 

amongst the top two models with the lowest RMSE relative to other models for each species. All 

eight models outperformed the Null model for each species and validation, each process model 

having typically a week or less in RMSE for Acer rubrum (Figure 4-5) and Betula papyrifera 

(Figure 4-6) and less than two weeks for Abies balsamea (Figure 4-7). Training and validating 
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with just the Acadian Phenocam Network generally prompted a similar pattern in model 

performance to the global evaluation, though the Dormphot model outperformed the M1 model 

for Betula papyrifera. In contrast, global training and validation with just the Acadian Phenocam 

Network prompted a different pattern in model performance, favoring the Photo-Thermal Time 

with Sigmoidal Temperature Response model for Betula papyrifera and Acer rubrum, though the 

Dormphot model for Abies balsamea. When predicting leaf emergence for warm site-years the 

M1 model was optimal for Betula papyrifera while the Dormphot model was optimal for the 

other species. During cold site-years, the M1 model was optimal for Abies balsamea while the 

Photo-Thermal Time with Sigmoidal Temperature Response model was optimal for the other 

species. For k-fold and leave-one-out cross-validation, the M1 model was generally optimal, 

though the Alternating Time model was optimal for k-fold cross-validation with Abies balsamea. 

For both Acer rubrum and Betula papyrifera, the Dormphot model failed to outperform the Null 

model with one or both of the k-fold and leave-one-out cross-validations, suggesting the 

performance of this complex model is sensitive to validation sample size. Overall, optimal 

models across validation exercises and species were the Dormphot, M1, and Photo-Thermal 

Time with Sigmoidal Temperature Response models, suggesting these models are well suited to 

application across different species when conducting species-specific parameterizations. For 

Acer rubrum and Abies balsamea performance across models ranged by about two days, while 

for Betula payrifera RMSE values ranged by less than half a day. Bias varied in direction and 

magnitude across validations. For Abies balsamea (Figure 4-7), global training and Acadian 

validation prompted an early bias while for Acer rubrum (Figure 4-5) and Betula papyrifera 

(Figure 4-6) the same validation prompted a mixed bias. All models had an early bias of 

prediction for warm site-years and a late bias for cold site-years. The simple thermal time model 
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was amongst the top three models with the greatest absolute bias for a variety of validation 

exercises across species, including global training and validation, validation with just the 

Acadian Network, with warm years and with cold years.  

 

 

 
Figure 4-5. Root mean squared error and mean bias for each of eight leaf emergence models 

and a Null model for seven different validation exercises for Acer rubrum. The total number of 

Acer rubrum leaf emergence observations for is shown on the top right. The model with the 

lowest root mean squared error for each validation exercise is denoted with an asterisk. 
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Figure 4-6. Root mean squared error and mean bias for each of eight leaf emergence models 

and a Null model for seven different validation exercises for Betula papyrifera. The total number 

of Betula papyrifera leaf emergence observations for is shown on the top right. The model with 

the lowest root mean squared error for each validation exercise is denoted with an asterisk. 
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Figure 4-7. Root mean squared error and mean bias for each of eight leaf emergence models 

and a Null model for seven different validation exercises for Abies balsamea. The total number 

of Abies balsamea leaf emergence observations for is shown on the top right. The model with the 

lowest root mean squared error for each validation exercise is denoted with an asterisk. 

 

4.4.3 Leaf Senescence models 

 Similarly, no one leaf senescence model had exceptional global performance relative to 

the others, with some failing to outperform the Null model for several validations (Figures 4-8, 

4-9, and 4-10). For the global validation, the Delpierre model was optimal for Abies balsamea 

(Figure 4-10) and Betula papyrifera (Figure 4-9), while the Dormphot model with just Dormancy 

Induction was optimal for Acer rubrum (Figure 4-8). Across models, species, and validations, 

RMSE ranged from less than two weeks to about four weeks. Model RMSE values were high for 

each species relative to leaf emergence models, and among species highest for Abies balsamea. 
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For Acer rubrum performance across process models was very similar, ranging by less than half 

a day, while for Betula papyrifera RMSE values ranged by about one day, and for Abies 

balsamea ranged by about five days. Training and validating with just the Acadian Network 

favoured the Delpierre with Preceding Spring Leaf Emergence for Acer rubrum, and the White 

model for the other species. When globally trained and validated with just the Acadian Network, 

the Delpierre model was optimal for all species. For warm site-years, the White model was 

optimal for Acer rubrum while the Delpierre model was optimal for other species. Alternatively, 

during cold site-years, the Delpierre model was optimal for Acer rubrum and Abies balsamea, 

while the Dormphot model with just Dormancy Induction was optimal for Betula papyrifera. For 

the k-fold cross-validation, the White model was best for Acer rubrum and Abies balsamea, 

while the Jeong model was optimal for Betula papyrifera. Overall, the Delpierre, White, and 

Dormphot with just Dormancy Induction models were amongst the top performing models for 

each validation exercise across species. Bias varied in magnitude and direction across validation 

exercises, and even across species for the same validation exercises in some cases. With global 

training and validation with just the Acadian Network, each model predicted a late timing of leaf 

senescence by about one to more than two weeks across species, though the Delpierre model had 

the lowest absolute bias. Models predicted early and late leaf senescence for warm and cold site-

years, respectively, for Acer rubrum (Figure 4-8), though mixed and early leaf senescence for 

Abies balsamea (Figure 4-10) and Betula papyrifera (Figure 4-9). Despite its occasionally 

preferable RMSE scores, the simple trigger-based White model was often amongst the top three 

models with the greatest absolute bias across validation exercises for each species.  
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Figure 4-8. Root mean squared error and mean bias for each of six leaf senescence models and 

a Null model for seven different validation exercises for Acer rubrum. The total number of Acer 

rubrum leaf senescence observations for is shown on the top right. The model with the lowest 

root mean squared error for each validation exercise is denoted with an asterisk. 
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Figure 4-9. Root mean squared error and mean bias for each of six leaf senescence models and 

a Null model for seven different validation exercises for Betula papyrifera. The total number of 

Betula papyrifera leaf senescence observations for is shown on the top right. The model with the 

lowest root mean squared error for each validation exercise is denoted with an asterisk. 
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Figure 4-10. Root mean squared error and mean bias for each of six leaf senescence models and 

a Null model for seven different validation exercises for Abies balsamea. The total number of 

Abies balsamea leaf senescence observations for is shown on the top right. The model with the 

lowest root mean squared error for each validation exercise is denoted with an asterisk. 

 

4.4.4 Projected Climate 

 Under the RCP 8.5 scenario, annual average temperatures in the year 2100 were 

projected to increase by about 4°C from 7°C to 11°C relative to 1990-2020 across our twelve 

sites (Figure 4-11). For the RCP 2.6 scenario a more moderate temperature increase of about 1°C 

was projected. The projected temperature change for northeastern sites was equivalent to 

warming them to the temperature of the southwestern sites for each emissions scenario. The 

projected annual average temperatures for our sites in 2100 under the RCP 8.5 scenario are 

within the range of training dataset annual average temperatures for Acer rubrum (annual 
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average ~4-18°C) and Abies balsamea (annual average ~0-11°C), though slightly beyond the 

range for Betula papyrifera (annual average ~1-9°C) (Figure 4-4).  

 

 
Figure 4-11. Projected annual average temperatures across sites in the Acadian Phenocam 

Network. 

4.4.5 Projected Leaf Phenology 

 For each site, phenology model, and species, the projected phenology and season length 

varied each year throughout the 21st century among climate models (Figure 4-12).  For each 

phenology model, variation in predicted leaf emergence dates among climate models was 

generally greater each year than variation in predicted leaf senescence dates. The predicted leaf 

emergence for some years was anomalous with respect to adjacent years and the longer record 

for several climate models. 
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Figure 4-12. Example timeseries of predicted Acer rubrum leaf emergence and senescence 

timings and the corresponding length of season with the Dormphot leaf emergence model and 

the Jeong leaf senescence model for each CMIP5 climate model under RCP 8.5 at site SW4. 

 

The projected change in the timing of leaf emergence, leaf senescence, and the 

corresponding season length for the mid-and late-21st century for each phenology model and 

emissions scenario is shown in Figure 4-13 for Acer rubrum, Figure 4-14 for Betula papyrifera, 

and Figure 4-15 for Abies balsamea. For each species and phenology model, leaf emergence is 

projected to advance and leaf senescence is projected to be delayed, though by varying degrees 

among species and models. Interestingly, the counteracting effects of warming on leaf 

emergence represented in the Dormphot model show a lesser advance relative to other models 

for Acer rubrum under all emissions scenarios. In contrast, the projected delay in leaf senescence 
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increased continuously with both time and emissions in a similar fashion across leaf senescence 

models, though with the exception of the trigger-based White model. On average under a high 

emissions scenario by the end of the 21st century, the length of the growing season is to be 

extended by about three weeks for Acer rubrum and five or more weeks for Betula papyrifera 

and Abies balsamea, respectively. For each species, the relative extension in season length due to 

either the earlier leaf emergence or later leaf senescence varies. For Acer rubrum 69% of the 

extension in season length is due to an earlier leaf emergence (16 days of 22-day average). In 

contrast, for Betula papyrifera and Abies balsamea, about half of the extension in season length 

is due to an earlier leaf emergence (18 days of 37-day average and 20 days of 40-day average, 

respectively).  On average, advances in leaf emergence under high emissions by the end of the 

21st century were similar across species ranging from 16-22 days, while delays in leaf senescence 

vary from just 7 days for Acer rubrum to 19 and 20 days for Betula papyrifera and Abies 

balsamea, respectively.  
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Figure 4-13. Predicted change in Acer rubrum leaf phenology and growing season length for 

each leaf phenology model and RCP scenario. Uncertainty bars denote the 5th-95th percentile 

change values. 
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Figure 4-14. Predicted change in Betula papyrifera leaf phenology and growing season length 

for each leaf phenology model and RCP scenario. Uncertainty bars denote the 5th-95th percentile 

change values. 
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Figure 4-15. Predicted change in Abies balsamea leaf phenology and growing season length for 

each leaf phenology model and RCP scenario. Uncertainty bars denote the 5th-95th percentile 

change values. 

 

4.5 Discussion 

Here we present novel phenocam observations and predictions of leaf phenology for three 

tree species of the Acadian Forest Region using species-specific calibrated process models. An 

extension of the growing season in the context of warming is likely for all species by the late 21st 
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century under both moderate and high emissions scenarios with a variety of leaf phenology 

models. The magnitude of this extension varies depending upon species, with a greater extension 

predicted for more boreal-climate suited species Betula papyrifera and Abies balsamea versus 

more temperate-climate suited Acer rubrum due to a more pronounced leaf senescence delay. 

The species-specific projections from our models agree with the findings of a five-year 

experimental study by Montgomery et al. (2020) in which species with a higher latitude of origin 

had a greater response to experimental warming. Given the expected northward expansion of the 

more temperate-climate suited species like Acer rubrum, the species-specific differences in 

projected phenology and season length have important implications for carbon uptake and 

ecological interactions within the Acadian Forest Region (Kharouba et al., 2018; Lafleur et al., 

2010).  

4.5.1 Model Performances 

Our study provided a novel demonstration of the parameterization of species-specific leaf 

phenology models using phenocam observations for species with broadly distinct 

biogeographical ranges. Most models showcased similar performance with no singular 

outstanding model despite the diversity of biogeographical ranges across species, suggesting 

each model is well suited for the purposes of phenology modelling. This is in agreement with 

previous studies (Liu et al., 2020; Hufkens et al., 2018; Basler, 2016). Nevertheless, the optimal 

model varied across validation exercises for each species, suggesting different underlying cue 

mechanisms for these species despite their cohabitation.  

The Dormphot leaf emergence model was originally calibrated with experimentation on 

Betula pubescens and found to be superior to simpler models with datasets from across Europe 

(Caffarra et al., 2011). The high performance of this model for a variety of training and 
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validation sample configurations we found suggests this model is flexible and transferable to 

other regions such as the Acadian Forest Region. The suitability of the Dormphot model along 

with other models which included photoperiod shows that photoperiod likely exerts an important 

control on the process of leaf emergence for species in the Acadian Forest Region as well as 

across the PhenoCam Network.  

For leaf senescence modelling, incorporating the influence of the preceding spring leaf 

emergence did not lead to overall improved model performance, though it improved regional 

applicability for the Acadian Phenocam Network in the case of Acer rubrum. Model performance 

among leaf senescence models was consistent between models relative to leaf emergence. 

Prediction error among leaf senescence models was approximately twice that of leaf emergence 

models. The parameterization of several of the leaf senescence models used in this study are 

mathematically similar to leaf emergence models, despite the distinction in the relationship for 

each phenophase to growing season temperatures (Figure 4-4). This indicates there is ample 

potential for improving leaf senescence models. Future leaf senescence model development 

would benefit with the exploration of novel cues and parameterizations that are more distinct 

from leaf emergence models.   

The environmental context for both training and validation datasets was highly influential 

on ultimate model performance. We found variable model performance when models were 

validated with warm site-years versus cold site-years, with different optimal models depending 

upon each context for both leaf emergence and senescence. Another study using satellite-based 

observations and modelling also found model performances varied based on validation 

temperatures (Fu et al., 2014). Together this performance bias suggests that despite the 

satisfactory performance of these phenology models, novel parameterizations and potentially 
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additional drivers are needed to improve the models’ general applicability to a range of seasonal 

conditions.  

The magnitude of error for each model was generally within the range from previous 

studies for both leaf emergence (~one week) and senescence models (~one to three weeks; Fang 

et al., 2022; Liu et al., 2020; Basler, 2016). Leaf senescence model error found with Abies 

balsamea was relatively high. In a study which also used the PhenoCam Version 2.0 dataset with 

a simplified version of the Delpierre model (Delpierre et al., 2009) for leaf senescence, Fang et 

al. (2022) reported RMSE values of ~17 days for evergreen needleleaf forest sites though just ~7 

days for deciduous broadleaf forest sites. The higher leaf senescence error observed for 

evergreen needleleaf species such as Abies balsamea in our study and other studies may be due 

to the greater challenge of obtaining precise leaf phenology observations for evergreen 

needleleaf species. Evergreen needleleaf species exhibit more subtle and gradual changes in 

colour than deciduous species, resulting in seasonal greenness curves with reduced amplitudes 

and subsequently less precise phenology extraction. In addition, the rising portion of the 

greenness curve for evergreen needleleaf species is the result of both the emergence of new 

leaves as well as the greening of existing leaves, compounding uncertainty for process model 

development with phenocam observations (Seyednasrollah et al., 2021). Despite this, the error 

for leaf emergence estimation with Abies balsamea in our study was only slightly higher than the 

other species while for Fang et al. (2022) RMSE was similarly high for both phenophases for 

evergreen needleleaf forest sites relative to deciduous broadleaf sites. More work is needed to 

improve the precision of leaf phenology extraction from phenocam-derived observations of 

evergreen needleleaf vegetation. That being said, constraining amplitude thresholds in 

photosynthetic leaf phenology based on colour changes through phenocams rather than manually 
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observable leaf phenophase changes may allow for broad comparisons between observations of 

leaf phenology for evergreen species (Seyednasrollah et al., 2021).  

Another source of uncertainty influencing both leaf emergence and senescence models 

may be regionally differing phenological constraints which are not always captured by model 

equations and parameters, such as with a fixed daylength threshold. For example, Moon et al. 

(2021a) reported a transition in the relative importance of temperature and photoperiod affecting 

leaf emergence around the 10°C isotherm. The high and sometimes consistent model error for 

leaf senescence models herein over that of leaf emergence models may be due to each leaf 

senescence model including only temperature and photoperiod as drivers. Additional phenomena 

are known to influence the timing of leaf senescence, such as moisture availability, the seasonal 

timing of warming anomalies, minimum temperatures, frost frequency, consecutive dry days, 

heat stress, drought, consecutive rainy days, and consecutive heavy rain days (Bigler and 

Vitasse, 2021; Liu et al., 2020; Lang et al., 2019; Zohner and Renner, 2019; Xie et al., 2018a; 

Xie et al., 2018b). In addition, there is growing evidence that the probability of frost has an 

important influence on leaf phenology (Marquis et al., 2020). Incorporating these variables and 

potentially new variables yet to be discovered may help to improve the performance of both leaf 

emergence and senescence models. In addition, more observations and modelling studies focused 

on autumn phenology are needed as there is a deficit of research on leaf senescence relative to 

leaf emergence (Fang et al., 2022; Gallinat et al., 2015). 

For the global combination of samples in our study, complex leaf emergence models 

representing the combination of dormancy induction, endodormancy, and ecodormancy release 

slightly outperformed more simple models for several validation exercises. In contrast, when we 

conducted leave-one-out and k-fold cross-validations, we found that complex models performed 
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less well than simple models such as the M1 model. For the pooled combination of samples 

within our study, complex leaf senescence models incorporating the influence of the preceding 

ecodormancy release generally performed less well than simpler models. This may be due to the 

distinction in season length across regions, such that the parameterization for the constraint of 

growing season length in one region is less applicable to another region. When we conducted 

leave-one-out and k-fold cross-validations for leaf senescence, we again found that complex 

models performed less well than simple models such as the trigger-based White model. Together 

these findings are consistent with Basler (2016) for both global and regional transferability error 

evaluations in relation to model complexity. This is likely due to the trade-off between global 

performance and local specificity with complex models, which achieve greater performance with 

higher validation sample sizes. Globally trained models tended to predict an earlier date of leaf 

emergence and later date of senescence than is observed for the Acadian Forest Region. This 

suggests that both model complexity and training dataset spatial coverage should be considered 

when parameterizing, validating, and developing models. Additionally, this indicates that 

relationships between leaf phenology and environmental influences may vary in a non-linear 

fashion between regions, calling for more local and regional scale studies to inform broad leaf 

phenology mechanism understandings.  

Despite the broad range of observational and training contexts in our study, all species 

and validations agree in that the simple Thermal Time model is not optimal relative to other 

models which include additional drivers. The Thermal Time model is often used to simulate leaf 

phenology within Dynamic Global Vegetation Models that form the terrestrial vegetational 

component of Land Surface Models within Earth System Models (Arora and Boer, 2005; Cox, 

2001). The Thermal Time model is also commonly used to communicate expected changes in the 
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duration of the vegetational growing season (Government of Canada, 2022; 

https://www.nrcan.gc.ca/climate-change/climate-change-impacts-forests/forest-change-

indicators/growing-season/18470). Model performances in our study indicate that the inclusion 

of additional drivers for leaf emergence and senescence could improve the realism of dynamic 

global vegetation models and predictions of vegetation growing season length. 

4.5.2 Future Leaf Phenology for Acadian Forest Region 

In the Acadian Forest Region, future leaf emergence in the context of both moderate and 

high emissions will be earlier while leaf senescence will be later, though more work is needed to 

better predict the magnitude of these changes. The ensemble of models in our study predicts 

about 2, 2-3, and 3 weeks advance in leaf emergence and 1, 2-3, and 2-3 week(s) delay in leaf 

senescence by the end of this century with high emissions for Acer rubrum, Betula papyrifera, 

and Abies balsamea, respectively. In projecting future leaf phenology patterns, we found 

divergent patterns between simple and complex models. Under high emissions in the later 

century, leaf emergence shows lesser advancement within the models including endodormancy 

release chilling constraints, such as the Dormphot model, relative to other models. For leaf 

senescence, complex models including the influence of the preceding spring leaf emergence 

show similar or lesser delays in leaf senescence over time and emissions intensity in comparison 

to their counterpart models. The complex Dormphot model performed well in warmer years, 

suggesting it is a valuable tool for projecting leaf emergence in the context of future climate, and 

that the constrained advancement in leaf emergence it predicts is therefore likely (Caffarra et al., 

2011). The reduced advancement in leaf emergence over time predicted with the Dormphot 

model agrees with the non-linearity for leaf emergence temperature sensitivity found by Chen et 

al. (2019) with observations from 1950-2013 and for Flynn and Wolkovich, (2018) with an 

https://www.nrcan.gc.ca/climate-change/climate-change-impacts-forests/forest-change-indicators/growing-season/18470
https://www.nrcan.gc.ca/climate-change/climate-change-impacts-forests/forest-change-indicators/growing-season/18470
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experimental study. This suggests that as winter temperatures increase, the advancement in leaf 

emergence may be constrained by reduced chilling exposure accumulation for each of our 

species.  

Caution is warranted in the interpretation of this apparent diminishing response of leaf 

emergence phenology to temperature change as more work is needed to thoroughly examine this 

finding. The aggregated weather patterns from the CMIP5 models may underestimate local 

interannual variability, omit the important role of anomalous seasonal conditions, and 

underestimate phenological temperature sensitivity due to uncertainty in projected temperatures 

(Keenan et al., 2020). For leaf senescence during warm site-years, the trigger-based White model 

and the Delpierre model without the preceding spring leaf emergence influence outperformed 

other models. These models also produced widely divergent predictions of leaf senescence delay 

with time, the White model predicted a week or less delay across species while the Delpierre 

model predicted as much as four weeks delay. Despite the constrained advance in leaf 

emergence, it was still greater or similar to the projected delay in leaf senescence across species. 

This somewhat contrasts the findings of Fu et al. (2018).  With both a cooling and warming 

treatment for the European species Fagus sylvatica, Fu et al. (2018) found a greater temperature 

sensitivity for leaf senescence than emergence. Together this suggests that different species in 

different climate regions may exhibit diverse phenological responses to changing temperature 

regimes. The greater leaf emergence advancement relative to leaf senescence delay was most 

pronounced for the temperate species Acer rubrum, which had only a minor projected leaf 

senescence delay. Improved leaf senescence models are therefore needed to foster more 

confident projections of growing season length. 
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The continuous leaf senescence delay we found with time and emissions intensity agrees 

with the sustained leaf senescence temperature sensitivity found by Chen et al. (2019) with 

observations from 1950-2013. A study projecting changes in leaf senescence timing by the late 

21st century including Acer rubrum and Betula papyrifera reported a similar delay in the onset of 

fall colouration for these species, though while using different predictive models which included 

moisture availability effects (Xie et al., 2018b). The projected delay in leaf colouration onset 

therein was about one week for Acer rubrum and just over two weeks for Betula papyrifera (Xie 

et al., 2018b). While a limited advancement in leaf emergence overtime translates to a potentially 

limited lengthening in the growing season, the expected continuous delay in leaf senescence may 

still promote increased seasonal carbon uptake as Wu et al. (2013) found that the timing of leaf 

senescence was more influential on seasonal carbon uptake than leaf emergence. If alternatively, 

the timing of leaf senescence depends upon the timing of leaf emergence as some studies have 

found and our Acadian Network observations suggest (Liu et al., 2020; Keenan and Richardson, 

2015), this may constrain the length of growing season and subsequently carbon uptake. Another 

important consideration is the occurrence of anomalously early leaf emergence timings with 

respect to adjacent years or the long-term record, as this makes leaves susceptible to frost 

damage and may lead to carbon losses (Montgomery et al., 2020; Chamberlain et al., 2019; 

Richardson et al., 2018c; Vitasse et al., 2018; Augspurger, 2013; Augspurger, 2009; Gu et al., 

2008). In addition, while not represented in our models, climate change has the potential 

influence leaf phenology through alternative effects including changes in moisture availability 

and disturbance legacy effects (Wu et al., 2022; Meier et al., 2021; Angulo-Sandoval et al., 

2004). For example, variable water availability over seasonal and interannual periods can have 

cascading future effects on both leaf emergence and senescence, such as observed through a 
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phenocam in the Kings Canyon National Park from 2012-2015, with shortened leafing periods 

due to limited water availability (Richardson et al., 2018b; Stephenson et al., 2018). Figure 4-4 

herein shows the phenology response to a range of growing condition contexts for our study 

species, with a near-linear relationship between phenology in the form of leaf emergence timing 

and temperature for all species. In contrast, our model projections indicate that there is potential 

for acclimation in phenology responses to warming. A reduced leaf emergence advancement for 

Acer rubrum was projected by the Dormphot model, while a reduced leaf senescence delay was 

projected by all senescence models relative to other species. Together this indicates more 

regional-scale species-specific observation and modelling efforts are needed to understand 

regionally variable controls of leaf senescence as well as leaf emergence.  

4.5.3 Future Implications 

A substantial annual temperature increase of ~4°C is predicted for the Acadian Forest 

Region under a high emissions scenario. This change in conditions will surpass the optimal 

growing temperature for boreal-climate suited species like Abies balsamea and Betula papyrifera 

(Dhar et al., 2014; Wang et al., 1998; Frank, 1990). Previous studies have predicted a decline in 

the proportion of boreal species in the Acadian Forest by the late 21st century due to suboptimal 

growing conditions (Taylor et al., 2017), which is supported by the dramatic shifts predicted with 

our phenology models for the 21st century. An experimental study by Vaughn et al. (2021) found 

reduced mortality and sustained height growth in the context of drought for temperate-climate 

suited Acer rubrum in comparison to colder-climate adapted species such as Abies balsamea. In 

a synthesis of the effects of climate change on Abies balsamea regeneration Collier et al. (2022) 

alternatively found that the adverse impacts to Abies balsamea may occur with a complex 

combination of processes including reduced competitive fitness and mortality of overstory trees. 
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The potentially extensive delay in the timing of leaf senescence found in our study for boreal 

species in the Acadian Forest Region suggests that future nutrient resorption success may be 

diminished for these species in comparison to temperate species. Leaf senescence functions 

primarily as a means of conserving nutrients for deciduous tree species which are used in the 

development of new leaves in the following spring (Estiarte and Peñuelas, 2015). A delayed 

senescence leads to greater risk of nutrient losses due to fall hurricanes prematurely removing or 

damaging leaf tissues, disrupting the normal course of nutrient recycling achieved through 

senescence. Together this indicates that more boreal-typical species like Abies balsamea in the 

Acadian Forest may suffer declined growth, greater mortality, reduced fitness, a shift in optimal 

biogeographical envelopes beyond their current range, and perhaps a substantially reduced 

longevity in the context of climate change in the 21st century. This has important implications for 

forest structure and ecological interactions across the Acadian Forest Region, which is already 

vulnerable due to most species therein being near the limit of their ranges (Pearson and 

D’Orangeville, 2022; Wang et al., 2021; Körner et al., 2016; Fisichelli et al., 2014).  

The predicted lengthening of the carbon uptake period prompted by an earlier leaf 

emergence and later leaf senescence for each species found in our study may be expected to lead 

to increased carbon uptake (Wu et al., 2013). On the contrary, increased mortality, disturbance, 

and suboptimal growing conditions in the context of climate change may lead to reduced carbon 

uptake across the Acadian Forest Region (Taylor et al., 2020), losses which may more than 

compensate for potential carbon uptake gains from warming (D’Orangeville et al., 2018). 

Further, the potential for the increased establishment of more temperate-climate suited species 

like Acer rubrum may be limited throughout the 21st century due to the physical occupation of 

space by boreal species (Taylor et al., 2017). As species ranges shift northward and weather 
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patterns exhibit more frequent and intense anomalies in the context of climate change, there is 

also a greater potential for carbon losses due to late spring frost events which may be more 

damaging for species outside their native ranges (Zanne et al., 2018; Vitasse et al., 2014). 

Therefore, the composition of the Acadian Forest Region is likely to change under a high 

emissions scenario by the late 21st century, as well as the capacity for carbon uptake within the 

Acadian Forest Region. Understanding which phenological strategy is optimal in response to 

such changes is necessary for promoting the migration of suitable species and provenances 

therein (Ding and Brouard, 2022).  

Beyond biogeochemistry, the constrained delay in leaf senescence for temperate species 

such as Acer rubrum found in our study has important implications for the autumn colour 

ecotourism industry in the Acadian Forest Region (Spencer and Holecek, 2007; Ivakhiv, 2005). 

Acer rubrum are responsible for the vibrant red colours which contrast with the predominant 

yellow autumn colouration of other species in much of the Acadian Forest Region. Divergence in 

the relative timing of leaf senescence for deciduous species of the Acadian Forest may have 

important implications for the future appearance and appeal of the fall colours, as well as for 

ecological interactions between species (Kharouba et al., 2018; Renner and Zohner, 2018; 

Cleland et al., 2007). Cleland et al. (2012) found that species which do not respond as acutely to 

temperature changes may in fact be at a disadvantage in terms of ecological performance relative 

to other species, despite the better potential avoidance of suboptimal growing conditions with 

such strategies.  

4.6 Conclusions 

The Acadian Forest Region is a unique transitional zone composed of both boreal and 

temperate forest species in eastern North America. Leaf phenology, the timing of season leaf life 
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cycle events, responds directly to climate change, and thus serves as an important biological 

indicator. Stationary timelapse cameras, known as phenocams, are cost-effective monitoring 

tools which can provide spatially and temporally replicated species-specific observations of leaf 

phenology in a range of climatic contexts. We collected four growing seasons of observations for 

the species Acer rubrum (red maple), Betula papyrifera (paper/white birch), and Abies balsamea 

(balsam fir) across the Acadian Phenocam Network and accessed multiple growing season 

observations of these species from the North American PhenoCam Network. With these 

observations, we conducted species-specific parameterizations of eight leaf emergence and six 

leaf senescence models which encompass a range in process and driver representation, resulting 

in 42 unique leaf phenology models. With these models, we simulated future patterns in leaf 

emergence, senescence, and season length (senescence minus emergence) for these species at 

sites within the Acadian Phenocam Network based on projected weather from Climate Models 

within the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). All models 

performed similarly well, with model errors in the range observed by previous studies for both 

leaf emergence and senescence. Leaf emergence was better predicted by more complex models 

while leaf senescence was better predicted by relatively simple models. By the end of the 21st 

century with moderate or high emissions, leaf emergence will likely be two weeks earlier while 

the magnitude of leaf senescence change varies across species and models. Temperate species 

like Acer rubrum may have as little as a one-week delay in leaf senescence while leaf senescence 

for boreal species like Betula papyrifera and Abies balsamea may be two to four weeks later. 

Consequently, the length of growing season extension varies from about three weeks for Acer 

rubrum to more than five weeks for Betula papyrifera and Abies balsamea. This differential 

response pattern between boreal and temperate species in the Acadian Forest Region has 
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important implications for forest ecology as well as biogeochemistry and forest-based sectors of 

the economy (e.g., forestry, ecotourism). A promising avenue to enhance the confidence of leaf 

phenology predictions in the context of climate change is the improved monitoring and 

modelling of leaf senescence. Our work demonstrates phenocams have the potential to rapidly 

advance process-based model development and therefore foster more confident predictions of 

leaf phenology. 
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Chapter 5. Leaf phenology as an indicator of ecological integrity 

This chapter was accepted for publication in Ecosphere on January 17th, 2023, 

Manuscript ID: ECS22-0592. 

5.2 Introduction 

 Phenology is the study of recurring biological events and their causes with respect to 

abiotic forces (Lieth 1974). ‘Plant phenology’ typically refers to the timing of seasonal changes 

in leaves and flowers, including spring leaf emergence and fall leaf senescence. Observations 

show that global warming has advanced leaf emergence for deciduous species over the past five 

decades (Piao et al., 2019; Peñuelas and Filella 2009; Menzel et al., 2006) and to a lesser extent 

delayed leaf senescence (Xie et al., 2018b; Estiarte and Peñuelas 2015; Peñuelas et al., 2002; 

Menzel and Fabian, 1999). Climate-driven increases in extreme weather and changes in leaf 

phenology together may lead to an increased risk of damage from disturbance such as frost, ice 

storms, herbivory, and hurricanes (Marquis et al., 2022; Taylor et al., 2020; Casson et al., 2019; 

Pureswaran et al., 2019; Bascietto et al., 2018; Delpierre et al., 2017; Allstadt et al., 2015; 

Augspurger, 2013; Lechowicz, 1984). Climate change has also led to a change in the frequency 

of stress from drought or excessive precipitation, due to both an extension of the growing season 

and an alteration of global hydrology (Charlet de Sauvage et al., 2022; Etzold et al., 2022; Meier 

et al., 2021; Sangüesa-Barreda et al., 2021; Lukasová et al., 2020; Čehulić et al., 2019). The 

detrimental effects of climate change may lead to reduced carbon uptake, counteracting the 

potential enhanced uptake afforded by earlier leaf emergence and later senescence (Curtis and 

Gough, 2018). The unprecedented rate of ongoing climate change challenges the suitability of 

vegetation strategies for responding to warming and enhanced variability in temperatures, as 

these were evolved for relatively stable historical climates (Vitasse et al., 2022; Zohner et al., 
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2020; Casson et al., 2019; Richardson et al., 2018c; Martin et al., 2010; Norby et al., 2003). The 

combination of increased disturbance and stress in the context of climate change may culminate 

in impaired ecosystem processes and deteriorated resilience for ecosystems that are susceptible 

to such effects (Price et al., 2013; Niinemets, 2010). For example, Stephens et al. (2018) reported 

the transition from a carbon sink to source for a stand of Populus tremuloides during a growing 

season with insect defoliation, with lower primary production than the previous 20 years of 

previous records. Hufkens et al. (2012b) also reported annual gross productivity was reduced by 

as much as 14% following a late spring frost in 2010 in more than 8000 km2 of forest in the 

northeastern United States. Along with climate-driven changes in leaf phenology the effects of 

increased disturbance and stress have considerable implications ranging from species to 

ecosystem levels, with potential for alterations to community structure and impaired ecosystem 

function (Kharouba et al., 2018).  

A near-remote sensing technique of leaf phenology monitoring via phenocam employs 

time-lapse digital cameras installed at the ground level (Browning et al., 2019; Richardson, 2019; 

Brown et al., 2016; Sonnentag et al., 2012; Richardson et al., 2007). Globally, there are now 

extensive networks of phenocams including the North American PhenoCam Network 

(https://phenocam.nau.edu/webcam/ ; Seyednasrollah et al., 2021) and European Phenology 

Camera Network (http://european-webcam-network.net/; Wingate et al., 2015). Phenocams 

produce near-continuous sub-daily resolution observations of leafing status at the individual tree-

level in the form of seasonal greenness curves (Liu et al., 2021; Delpierre et al., 2020). Leaf 

phenology can also be observed at the individual tree level using manual techniques in the field, 

though this approach can be limiting for conservation managers due to time and financial 

resource constraints. Phenocams present an automated, affordable, and robust approach to 

https://phenocam.nau.edu/webcam/
http://european-webcam-network.net/
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monitoring the timing of seasonal leaf development as well as the effects of disturbance or stress 

(Parmentier et al., 2021; Toomey et al., 2015).  

Ecological integrity is a measure of the viability of an ecosystem based on the cohesion 

of processes resulting from interactions between its abiotic and biotic components (Jenssen et al., 

2021). Disturbance and stress can threaten ecological integrity through interruptions to 

ecosystem processes and alterations to ecosystem structure (Ordóñez & Duinker, 2012; LaPaix et 

al., 2009). Key forest ecosystem processes affected by disturbance or stress include primary 

production, water cycling, nutrient cycling, and energy flow, among others (Bonan and Shugart, 

1989). The composition and structure of forest ecosystems are also impacted by disturbance and 

stress, as susceptible species may exhibit reduced fitness and reproduction. Alternatively, 

disturbance and stress may have limited impacts on ecological integrity for resilient forest 

ecosystems. In order to determine whether or not disturbance or stress has undermined ecological 

integrity in forest ecosystems, it is necessary to monitor ecosystem processes before, during, and 

following disturbance and stress. Leaf damage or defoliation during the optimal growing season 

period can indicate disruptions to ecosystem processes (Stephens et al., 2018).  Some approaches 

to monitoring ecological integrity include the designation of indicator thresholds to differentiate 

between different levels of integrity in comparison to a reference state (Dubé et al., 2013; Parks 

Canada Agency, 2011). Phenocams can capture quantitative data of moderate to extensive leaf 

damage due to disturbance or stress, as well as recovery (Richardson et al., 2018c; Stephens et 

al., 2018; Matiu et al., 2017; Nagler et al., 2014). Phenocams can also aid in documenting 

baseline leaf function prior to disturbance or stress. Together these processes impart important 

implications for ecological integrity (Smith et al., 2022; Taylor et al., 2020; Chamberlain et al., 

2019; Halman et al., 2011; Scheffer et al., 2009). Despite this potential, little work has been done 
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to explore the implementation of phenocam-derived leaf phenology observations as an indicator 

of ecological integrity for conservation efforts. This may be due in part to the considerable 

challenge of designating indicator thresholds to convey critical adverse effects on the ecology of 

an ecosystem (Hansen et al., 2021).  

Many factors complicate the development of ecological integrity indicator thresholds in 

relation to leaf phenology. In the context of disturbance or stress, leaf phenology alone may not 

provide a pronounced signal of leaf functional decline. For example, the work of Zohner et al. 

(2020) shows that leaf phenology does not always deviate notably in response to damaging late 

spring frost events relative to alternative drivers of interannual variability. Given this inherent 

background variability with multiple drivers of variation in leaf phenology beyond disturbance or 

stress, an alternative signal of leaf functional declines may be necessary. A promising alternative 

signal of leaf function is the duration of leaf developmental periods approximated from the 

canopy greenness timeseries or greenness curve. Depending upon how leaf developmental 

periods are defined along the greenness curve, these periods can be stable within a few days for 

an individual region of interest over time in the absence of disturbance or stress. Examples of 

these periods include the greenness rising portion of the greenness curve from 10-90% 

amplitude, the greenness plateau following the seasonal peak in greenness, and the entire leaf-on 

period from 50% amplitude in the rising portion of the curve to 50% amplitude in the falling 

portion of the curve. If the duration of leaf developmental periods signals disturbance or stress-

related leaf damage more often for a given species than adaptation can overcome, this species 

may be susceptible to adverse global change impacts, with potential consequences for ecosystem 

processes, structure, and composition (Cavers and Cottrell, 2015).  
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Both field studies and phenocam studies indicate that spring disturbances, such as false 

springs, in which warm spring conditions are followed by a late frost event, can result in an 

extended greenness rising period due to the time necessary for recovery following disturbance 

(Hufkens et al., 2012a; Menzel et al., 2015; Augspurger, 2009; Kaitaniemi et al., 1997). These 

springtime disturbances may in turn delay the senescence process (Zohner et al., 2019). A 

reduced period is also possible if anomalously warm springs conducive of frost damage give rise 

to rapid early leaf development before frost (Hufkens et al., 2012b). Additionally, frost may lead 

to reduced seasonal peak greenness values, prompting a reduced greenness rising period. A 

notable deviation in this period between budburst and leaf maturity in the form of either an 

extension or reduction can therefore be a signal of disturbance effects having an impact on 

ecosystem processes. Later in the growing season, the severity of stress or disturbance can 

translate into commensurately advanced senescence (Bigler and Vitasse, 2021; Xie et al., 2015), 

which would reduce the leaf maturity period or the entire period between leaf emergence and 

senescence. Studies have shown with a variety of cameras that following disturbance which led 

to leaf damage there may be a pronounced decline in canopy seasonal maximum greenness, 

which would impact various leaf stages extracted from the greenness curve (Richardson et al., 

2018c; Menzel et al., 2015; Keenan et al., 2014, Mizunuma et al., 2013; Hufkens et al., 2012b; 

Ide et al., 2011). These studies also show such a decline is distinct from the greenness patterns at 

nearby sites or growing seasons with no recorded disturbance at the same site, suggesting this 

feature is a promising signal of disruption to ecosystem processes due to disturbance or stress.  

Leaf phenology is currently monitored at more than 500 phenocam sites throughout the 

North American PhenoCam Network, with some site-records spanning over a decade 

(Seyednasrollah et al., 2021). We hypothesized that disturbance or stress associated with an 
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impact to leaf function will be evidenced through one or more of the following: A) the time 

between the onset of leaf growth and the seasonal peak in greenness; B) the duration of the 

greenness plateau or slow decline following the seasonal peak in greenness; or C) the duration of 

the entire leaf-on period for that site (Figure 5-1). Additionally, we hypothesized that such 

deviations would differ substantially from alternative reference growing seasons, allowing the 

designation of indicator thresholds based on the magnitude of deviation. We will examine these 

periods from known site-years with disturbance or stress that affected the leafing status of 

vegetation within the PhenoCam Network. We will then examine how distinct these periods are 

under circumstances of disturbance or stress in comparison to other years across the PhenoCam 

Network. Finally, we will develop an approach to detect such anomalous periods. This would 

allow for the detection of leaf functional declines and associated impacts to ecological integrity 

within networks such as the PhenoCam Network.  
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Figure 5-1. The delineation of three periods which may be affected by disturbance or stress: A) 

the greenness rising portion of the curve between the onset of leaf growth and the seasonal peak 

in greenness calculated as the time between the 10% and 90% amplitude, B) the greenness 

plateau following the seasonal peak in greenness calculated as the time between 95% and 50% 

amplitude in the falling portion of the greenness curve, C) the entire leaf-on period calculated as 

the time between 50% amplitude in the rising portion and 50% amplitude in the falling portion of 

the greenness curve. 

5.3 Methods 

5.3.1 PhenoCam Network 

 

For information on PhenoCam Network protocols refer to Seyednasrollah et al. (2019b) 

and Richardson et al. (2018a). Regions of interest (ROIs) from PhenoCam cameras are 

delineated to characterize the dominant vegetation in each field of view, and in some cases 

several ROIs are defined to distinguish between different plant functional types such as 

evergreen needleleaf versus deciduous needleleaf (Richardson et al., 2018c). The green 

chromatic coordinate (GCC) is then calculated as is shown in Equation 5-1 from red, green, and 
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blue color channel intensity values within each ROI for each image to produce greenness 

timeseries: 

𝐺𝐶𝐶 = 
𝐵𝐺

𝐵𝐺 + 𝐵𝑅 + 𝐵𝐵
      5-1 

where BG corresponds to the intensity (brightness) of the green color channel, BR to the intensity 

of the red color channel, and BB to the intensity of the blue color channel. The GCC represents 

the intensity of the green color channel versus the total intensity of all color channels. For 

examination of the greenness timeseries from PhenoCam Network cameras, we extracted 

original and 3-day 50th percentile filtered GCC records from the PhenoCam V2.0 data set, which 

includes observations up until the end of the 2018 growing season (Seyednasrollah et al., 2019a). 

We also downloaded select records for currently active phenocam sites with cases of disturbance 

or stress which had limited reference growing season observations prior to 2018 from a pre-

release of the PhenoCam V3.0 data set (https://phenocam.nau.edu/phenocam_explorer 

_prerelease/;Hufkens et al., 2018; Richardson et al., 2018a). Images which were too dark or too 

bright were removed from these datasets prior to their release using digital number threshold 

quality control filters. Regions of interest for PhenoCam Network sites can be accessed online 

through the PhenoCam Network portal at https://phenocam.nau.edu/webcam/, as well as through 

the PhenoCam V2.0 data set in Seyednasrollah et al. (2019a). 

 

5.3.2 Exploration of Ecological Integrity Indicators from Greenness Timeseries 

We selected fourteen cases of disturbance or stress captured by phenocams from the 

PhenoCam Network (Table 5-1). These cases were selected through visual inspection of images 

and in some cases ancillary data (Richardson et al., 2018c; Stephens et al., 2018; Stephenson et 

al., 2018; Keenan et al., 2014; Hufkens et al., 2012b) which indicated these cases of disturbance 

https://phenocam.nau.edu/phenocam_explorer_prerelease/
https://phenocam.nau.edu/phenocam_explorer_prerelease/
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or stress were associated with impaired leaf function and thus a decline in ecological integrity. 

The disturbances we investigated included hurricanes, windstorms, spring frost, insect herbivory, 

and a winter ice storm. The case of stress we investigated was drought mortality. We used 

imagery data from the PhenoCam Network to include a spatial and temporally replicated data set 

of seasonal greenness curve records, in the context of disturbance and stress as well as under 

normal conditions. This allowed us to examine the stability of our indicator in the absence of 

disturbance or stress, as well as the detectability of leaf damage from known cases of disturbance 

or stress. 
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Table 5-1. PhenoCam Network sites with recorded instances of disturbance or stress included in 

our study. 

Camera name Location & Full site name Disturbance or Stress 
Reference 

Years 

elverde 

Lat: 18.3207 

Lon: -65.8199 

El Verde Field Station, El 

Yunque National Forest, 

Northeastern Puerto Rico, 

United States 

Hurricane Maria 

(September 2017) 

2015, 2016, 

2019 

NEON.D07.GRSM 

.DP1.00033 

Lat: 35.6890  

Lon: -83.5020 

NEON Site -D07 

(Appalachians and 

Cumberland Plateau) Great 

Smoky Mountains National 

Park, Tennessee, United 

States 

Spring windstorm 

(May 2017), Hurricane 

Irma (September 

2017), Derecho (May 

2020) 

2018, 2019, 

2021 

woodshole 

Lat: 41.5495  

Lon: -70.6432 Woods Hole 

Research Center, Falmouth, 

Massachusetts, United States 

Hurricane Irene 

(August 2011) 
2013-2018 

spruceT9P17 

Lat: 47.5060  

Lon: -93.4527 

Marcell Experimental Forest, 

north of Grand Rapids, 

Minnesota, United States 

Frost (April 2016) 2017 & 2018 

arbutuslake 

Lat: 43.9821  

Lon: -74.2332 

Arbutus Lake, Huntington 

Wildlife Forest, Newcomb, 

New York, United States 

Frost (May 2010) 2011-2014 

proctor 

Lat: 44.5250  

Lon: -72.8660  

University of Vermont, 

Proctor Maple Research 

Center, Underhill, Vermont, 

United States 

Frost (May 2010) 
2009, 2011-

2018 

mammothcave 
Lat: 37.1858  

Lon: -86.1019  
Frost (April 2007) 

2004, 2005, 

2008, 2009, 
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Environmental Learning 

Center, Mammoth Cave 

National Park, Kentucky, 

United States 

2011-2014, 

2016-2018 

canadaOA 

Lat: 53.6289  

Lon: -106.1978  

BERMS Old Aspen Site, 

Prince Albert National Park, 

Saskatchewan, Canada 

Herbivory (May 2016) 2012-2015 

millhaft 

Lat: 52.8008  

Lon: -2.2988  

Norbury, Staffordshire, 

United Kingdom 

Herbivory (April 2018 

& 2019) 

2016, 2017, 

2020, 2021 

worcester 

Lat: 42.2697  

Lon: -71.8428  

Worcester State University, 

Worcester, Massachusetts, 

United States 

Herbivory (June 2018) 
2014-2017, 

2019-2021 

harvard 

Lat: 42.5378  

Lon: -72.1715  

EMS Tower, Harvard Forest, 

Petersham, Massachusetts, 

United States 

Ice Storm (December 

2008) 

(2008, 2010-

2019) 

sequoia 

Lat: 36.5658  

Lon: -118.7772  

Lower Kaweah, Sequoia / 

Kings Canyon National Park, 

California, United States 

Drought Mortality 

(2015) 
2012-2014 

 

We calculated the duration of three leaf developmental periods based on the transition 

time between different amplitude values in the rising and falling portions of the greenness curve 

as is shown in Figure 5-1. To ensure our approach utilized optimal amplitude values, we 

explored different amplitude thresholds to denote the start and end of each period. Amplitude 

thresholds which corresponded to the best compromise between signal in response to disturbance 

or stress and noise in the absence of disturbance or stress were selected. We calculated the 
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duration of the greenness rising period as the time between the first instances of 10% and 90% 

amplitude in the rising portion of the greenness curve following Klosterman et al. (2018). We 

also examined the time between the first instances of 25% and 90% amplitude in the rising 

portion of the greenness curve as the duration of the greenness rising period and found this to 

fluctuate slightly more across site-years in the absence of disturbance or stress without 

commensurate increases in signal response to disturbance or stress. We calculated the duration of 

the apparent greenness plateau as the time between the first instance (if there was more than one 

instance in a single year) of 95% and the final instance (if there was more than one instance in a 

single year) of 50% amplitude in the falling portion of the greenness curve to capture greenness 

declines potentially due to disturbance or stress (Klosterman et al., 2014). We also tested the 

time between the first instance of 95% and the final instance of 75% amplitude in the falling 

portion of the greenness curve as the greenness plateau period, though found variability in this 

duration in the absence of disturbance or stress to occlude signal responses to disturbance or 

stress. We calculated the duration of the total non-dormancy period or leaf-on period as the time 

between the first instance of 50% amplitude in the rising portion and the final instance of 50% 

amplitude in the falling portion of the greenness curve following common approaches (Misra et 

al., 2018). The duration between these amplitude values were optimal over that of between 25% 

amplitude in the rising and falling portions of the greenness curve, for which variability in the 

absence of disturbance or stress was reduced though signal responses to disturbance or stress 

were also much reduced.  

To explore how these leaf developmental periods differed in comparison to a reference 

state, we then computed the percentage change and ratios of the duration of these periods in 

years with disturbance or stress to the average duration of these periods in years without evident 
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disturbance or stress. To more broadly establish how this ratio varies in the absence of 

disturbance or stress for other sites, we computed the probability density function of these ratios 

for all other sites in the PhenoCam Network, comparing each year to the average of all other 

years as a reference state proxy. We filtered available data to remove annual data sets which 

were less than 300 days in length, multi-year data sets which were less than four years in length, 

as well as data sets with observed periods which were less than the 25% quantile – 1.5 times the 

interquartile range or else more than the 75% quantile + 1.5 times the interquartile range to 

address the influence of potential artefacts associated with field of view shifts or data gaps (Tian 

et al., 2021; Seyesnasrollah et al., 2019b; Richardson et al., 2018b). It is possible that some of 

these values may have been associated with disturbance or stress, though we wished to refine our 

focus to data sets with representative stability from across the PhenoCam Network for this 

exercise. To examine the likelihood of positively identifying disturbance or stress based upon the 

duration of these periods in a given year relative to other years, we designated threshold average 

ratios to serve as indicators of probable disturbance or stress warranting concern regarding 

ecological integrity. We designated these ratios to achieve an optimal compromise between 

detection of true cases of disturbance or stress and the avoidance of false detections. We then 

computed the probability of correct detections using these threshold average ratios.  

5.4 Results 

5.4.1 Cases of Disturbance or Stress from the PhenoCam Network 

Cases of disturbance or stress from the PhenoCam Network confirmed that disturbance or 

stress can lead to detectable deviations in one or more of the following in comparison to 

reference years: A) the duration of the greenness rising portion of the curve between the onset of 

leaf growth and the seasonal peak in greenness; B) the duration of the leaf maturity period 
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greenness plateau following the seasonal peak in greenness prior to the fall decline; and C) the 

duration of the entire leaf-on period. Frost and herbivory led to both reductions and extensions in 

the rising period. Hurricanes and windstorms typically coincided with a reduced plateau or 

overall leaf-on period. However, in some cases, disturbance effects on these greenness curve 

developmental periods were mild or not evident. Stress in the form of drought led to reductions 

in all periods for a site with evergreen vegetation. 

5.4.2 Disturbance: Hurricanes and Windstorms 

Hurricane Maria was a category 4 hurricane which made landfall on September 20th, 

2017, on the island of Puerto Rico, resulting in widespread forest damage (Zhu et al., 2021). 

Greenness signals captured by the ‘elverde’ PhenoCam from March to February show a 

seasonally early decline in greenness immediately following Hurricane Maria relative to 

previous years (Figure 5-2). The plateau period was reduced by 58 days (40%) in 2017 relative 

to the 143-day average from the reference growing seasons 2015, 2016, and 2019. The entire 

leaf-on period was reduced by 52 days (29%) in 2017 relative to the 177-day average from 

reference growing seasons. Interpolation with available data and inspection of images from the 

2018 growing season suggests there was an extended recovery into the growing season following 

Hurricane Maria, and that these periods were also affected in 2018. Alternatively, the greenness 

curve from the 2019 growing season is similar to that of the 2015 and 2016 growing seasons. 

The rising period in 2018 was lengthened by 39 days (124%) relative to the 32-day average of 

reference growing seasons. As in 2017, the plateau period was also approximately reduced by 58 

days (40%) in 2018 relative to reference years. The leaf-on period in 2018 was 159 days, an 18-

day reduction (10%) from the 177-day average of reference growing seasons. This suggests that 

Hurricane Maria led to sufficiently severe damage to impact seasonal leaf developmental periods 
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in the 2017 and 2018 growing seasons. Visual inspection of available images for 2019 onwards 

suggests a return to pre-storm foliage levels, although a recovery transition in seasonal greenness 

may have still been underway in 2019. As more complete growing season records become 

available the recovery can be further assessed. 

 
Figure 5-2. Greenness signals from before and after a severe drought during the 2015 growing 

season as well as following Hurricane Maria (Sept. 20th, 2017) captured by the ‘elverde’ 

phenocam located at the El Verde Field Station, El Yunque National Forest, Northeastern 

Puerto Rico. The time of year during which Hurricane Maria occurred in 2017 is denoted with 

an arrow. Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC values 

on the top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on 

the top right. Phenocam images from before and after Hurricane Maria are shown on the 

bottom. 

 

A windstorm with wind speeds approaching 100 miles per hour (160 km per hour) led to 

widespread damage in the Great Smoky Mountains National Park on May 4th, 2017 (Ahillen, 
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2017). The storm led to a reversal in the rising greenness signal usually observed in May, with a 

sudden decline in greenness which was captured by the ‘NEON.D07.GRSM.DP1.00033’ 

phenocam at the Great Smoky Mountains National Park, Tennessee (Figure 5-3). Another 

disturbance event impacted local vegetation later in the 2017 growing season as Hurricane Irma 

travelled through eastern Tennessee as a tropical depression on September 12th before dissipating 

on the 13th. The 2020 growing season also saw canopy damage due to wind disturbance. A 

complex of severe long-lasting thunderstorms designated as a derecho moved across Tennessee 

on May 3rd, 2020, with windspeeds approaching 80 miles per hour (~129 km per hour) (US 

Department of Commerce, 2020). In the 2017 growing season, the seasonal greenness peak was 

both reduced and late relative to reference years without disturbance (2018, 2019, and 2021). In 

the fall of 2017, the late-growing season decline in greenness also began notably earlier in 2017 

than reference years. The rising period in 2017 was 17 days longer (53%) than the 32-day 

average period from reference years. The plateau period was 33 days shorter (22%) than the 146-

day average period observed in reference growing seasons, while the leaf-on period was just 7 

days longer (4%) in 2017 versus the 183-day average from reference years. Three years later in 

2020, the seasonal greenness peak was also late relative to reference growing seasons. In 2020, 

the rising period was 16 days longer (50%) than the 32-day average from reference years, similar 

to that of 2017. Additionally, in 2020 the plateau period was 22 days shorter (15%) than the 146-

day average period observed in reference years. The leaf-on period in 2020 was only 5 days 

shorter (3%) than the 183-day average from reference growing seasons. This suggests that these 

disturbance events led to sufficient damage to impact leaf developmental periods in both the 

2017 and 2020 growing seasons. 
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Figure 5-3. Greenness signals from before and after a spring windstorm and Hurricane Irma 

captured by the ‘NEON.D07.GRSM.DP1.00033’ phenocam. The timings of disturbance events in 

2017 and 2020 are denoted with an arrow. Greenness timeseries are shown for spline-smoothed 

3-day 50th percentile GCC values on the top left. The duration of the A (rising), B (plateau), and 

C (leaf-on) periods are shown on the top right. Phenocam images from immediately before and 

after the spring windstorm are shown on the bottom. 

 

Hurricane Irene caused extensive damage due to flooding following excessive rainfall as 

well as a combination of high winds, tornadoes, and storm surges across the North American 

Acadian region in 2011 (Matyas, 2017). Hurricane Irene led to a seasonally early and rapid 

decline in greenness in August of 2011 captured by the ‘woodshole’ phenocam at the Woods 

Hole Research Center in Massachusetts (Richardson et al., 2018b; Figure 5-4). The length of the 

plateau and leaf-on periods in 2011 were 35 (30%) and 40 days (26%) shorter than the 117-day 

and 156-day averages from subsequent seasons, respectively. The length of the rising period 
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following Hurricane Irene did not vary beyond the range of subsequent years. This suggests that 

Irene led to sufficient damage to truncate the plateau and leaf-on periods in the 2011 growing 

season.  

 
Figure 5-4. Greenness signals from before and after Hurricane Irene captured by the 

‘woodshole’ phenocam. The timing of the Hurricane in 2011 is denoted with an arrow. 

Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC values on the 

top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on the top 

right. Phenocam images from days before and after Hurricane Irene are shown on the bottom. 

5.4.3 Disturbance: Frost 

Warmer than average March temperatures in 2016 were followed by a frost event on 

April 9th which led to leaf damage in an experimental warming chamber of the SPRUCE (Spruce 

and Peatland Responses Under Changing Environments) experiment located in the USDA Forest 

Service Marcell Experimental Forest (MEF) north of Grand Rapids, Minnesota, captured by the 
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‘spruceT9P17’ phenocam (Richardson et al., 2018c). The +9°C warming above ambient 

temperatures in this chamber led to a premature loss of frost hardiness, resulting in damage 

following this frost event in which ambient temperatures dropped below -15°C. The rising 

greenness signal usually observed in April was temporarily reversed after reaching a relatively 

reduced seasonal peak and declined until a local minimum was reached in late April (Figure 5-5). 

Following this, the greenness signal once again rose to a local peak in mid-June over 

approximately a 45-day period. The warming treatment led to both an advanced green-up as well 

as advanced peak in greenness prior to the frost event (Richardson et al., 2018c). Following the 

frost event greenness signals remained below the initial peak value. This interruption in the 

green-up process had the effect of substantially reducing the apparent rising period in 

comparison to subsequent years. The length of the rising portion of the greenness curve in 2016 

was 25 days shorter (47%) than the 53-day average from subsequent seasons. Due to the early 

green-up, the duration of the apparent plateau period was substantially extended by 112 days 

(102%) relative to the 110-day average from subsequent years. The leaf-on period was also 

extended by 86 days (53%) relative to the 163-day average from other years. This suggests that 

the combined influence of warming and severe frost event in 2016 led to sufficient damage to 

impact seasonal leaf developmental periods.  
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Figure 5-5. Greenness signals from before and after a frost event on April 9th, 2016, which led to 

leaf damage in an experimental warming chamber of the SPRUCE experiment captured by the 

‘spruceT9P17’ phenocam (Richardson et al., 2018c). The time of year during which the frost 

damage occurred in 2016 is denoted with an arrow. Greenness timeseries are shown for spline-

smoothed 3-day 50th percentile GCC values on the top left. The duration of the A (rising), B 

(plateau), and C (leaf-on) periods are shown on the top right. Phenocam images from before and 

after this frost event are shown on the bottom. 

An unusually warm spring was followed by a severe frost event in May of 2010 across 

the northeastern United States. This led to widespread frost damage of newly emerging leaves, 

part of which was captured by both the ‘arbutuslake’ and ‘proctor’ phenocams, which are 

located near Arbutus Lake and on the University of Vermont campus, respectively (Hufkens et 

al., 2012b). For the arbutuslake phenocam, the combination of this warm spring and late frost 

event led to a sufficiently early leaf development such that leaves were vulnerable at the time of 

frost (Figure 5-6). The rising greenness signal usually observed in May was temporarily reversed 
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on approximately May 8th before increasing once more following May 12th. The 2010 growing 

season greenness curve had an early and reduced seasonal peak greenness value relative to other 

years. The duration of the rising period in 2010 intermediate to that of subsequent years. The 

plateau period was 9 days longer (9%) than the 94-day average of other years, and the leaf-on 

period was 14 days longer (11%) than the 126-day average of other years. This suggests that the 

combination of this warm spring and late frost event was of sufficient severity to influence 

seasonal leaf developmental periods in 2010.  

 

 
Figure 5-6. Greenness signals from before and after a widespread warm spring and late frost 

event in 2010 captured by the ‘arbutuslake’ phenocam. The timing of the frost in 2010 is denoted 

with an arrow. Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC 

values on the top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are 

shown on the top right. Phenocam images from one year before and immediately after the frost 

event are shown on the bottom. 
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This warm spring and late frost event also affected vegetation captured by the proctor 

phenocam in 2010 (Hufkens et al., 2012b). For the proctor phenocam, the combination of this 

warm spring and late frost event also led to a sufficiently early leaf development such that leaves 

were vulnerable at the time of frost, and a reduced seasonal maximum greenness value was 

observed in 2010 as well as a quicker decline from the seasonal maximum (Figure 5-7). The 

calculated length of the rising, plateau, and leaf-on periods were not anomalous in 2010, 

however, compared to other years. This suggests that despite this warm spring and late frost 

event leading to visible damage and a reduced seasonal greenness peak value, we were unable to 

detect anomalous leaf developmental periods with the amplitude thresholds we utilized. If the 

plateau period is calculated as the time between 95% and 75% amplitude in the falling portion of 

the greenness curve instead of between 95% and 50% amplitude, there is a notable reduction by 

56 days (93%) relative to the 60-day average from other years in 2010. However, this calculation 

approach leads to pronounced variability in growing seasons without known cases of disturbance 

or stress, and it produces a similar magnitude of deviation with an apparent 39-day (65%) 

reduction in the plateau period for the year 2014. In addition, this alternative approach to 

calculating the plateau period resulted in pronounced variability for other sites across the 

PhenoCam Network in the absence of disturbance or stress.  
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Figure 5-7. Greenness signals from before and after a widespread warm spring and late frost 

event in 2010 captured by the ‘proctor’ phenocam. The timing of the frost in 2010 is denoted 

with an arrow. Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC 

values on the top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are 

shown on the top right. Phenocam images from before and after the frost event are shown on the 

bottom. 

In early April of 2007, a widespread frost event following an unusually warm March 

affected vegetation across much of the eastern United States (Richardson et al., 2018b; Hufkens 

et al., 2012a; Gu et al., 2008). This frost event was captured by the ‘mammothcave’ phenocam at 

the Environmental Learning Center in Mammoth Cave National Park, Kentucky. This frost event 

resulted in a reversal in the rising greenness signal observed in early April until a local minimum 

was reached shortly after in mid-April (Figure 5-8). Following this, the greenness signal rose to 

late seasonal greenness peak in early June. The length of the rising period was 28 days longer 

(75%) in 2007 than the 37-day average from other years, while the lengths of the plateau and 
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leaf-on periods were not distinct from other years. This suggests that the frost event led to 

sufficient damage to impact leaf developmental periods in the 2007 growing season. 

 

 
Figure 5-8. Greenness signals from before and after a frost event on April 8th, 2007, which led to 

leaf damage captured by the ‘mammothcave’ phenocam. Several years were excluded from 

analysis for this phenocam due to field of view shifts or data gaps occurring during the growing 

season. The time of year during which the frost damage occurred in 2007 is denoted with an 

arrow. Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC values on 

the top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on the 

top right. Phenocam images from immediately after and one year after the frost event are shown 

on the bottom. 

5.4.4 Disturbance: Insect Defoliation 

A forest tent caterpillar (Malacosoma disstria) outbreak in the Canadian province of 

Saskatchewan led to widespread defoliation in 2016, with a defoliation onset date of May 13th 

captured by the ‘canadaOA’ phenocam in Prince Albert, Saskatchewan (Stephens et al., 2018). 
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The rising greenness signal usually observed in May was temporarily reversed immediately 

following the outbreak and exhibited a decline until a local minimum was reached in mid-June 

(Figure 5-9). Following this, the greenness signal rose to a peak in early July over an 

approximately 24-day period. This seasonal peak in greenness was both reduced and late relative 

to previous seasons. Insect herbivory by the forest tent caterpillar led to a rising period that was 

lengthened by 44 days (149%) in 2016 relative to the previous four-year average of 30 days. The 

duration of the plateau period was reduced by 34 days (34%) relative to the previous four-year 

average of 98 days. Additionally, the length of the leaf-on period was reduced by 30 days (23%) 

relative to the 131-day average of previous years. This suggests that the outbreak of forest tent 

caterpillar led to sufficient damage to impact seasonal leaf developmental periods in the 2016 

growing season.  
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Figure 5-9. Greenness signals from before and after insect defoliation by the forest tent 

caterpillar captured by the ‘canadaOA’ phenocam (Stephens et al., 2018), with an onset date of 

May 13th, 2016. The timing of the onset of defoliation in 2016 is denoted with an arrow. 

Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC values on the 

top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on the top 

right. Phenocam images from before and after the defoliation are shown on the bottom. 

 

Herbivory primarily by the European winter moth (Operophtera brumata) led to visibly 

evident defoliation in 2018, with an estimated onset date of April 20th, captured by the ‘millhaft’ 

phenocam in Norbury, Staffordshire, UK according to site metadata notes. Herbivory also 

occurred in 2019, with an estimated onset date of April 25th, though to a lesser extent. The rising 

greenness signal usually observed in April and May was delayed immediately following the 

outbreak in 2018 (Figure 5-10). Following this, the greenness signal increased to a peak that was 

reduced relative to the disturbance-free reference years of 2016, 2017, 2020, and 2021. Insect 
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herbivory by the winter moth led to a plateau period that was shortened by 46 days (33%) in 

2018 relative to the average of 141 days from reference years. The duration of the leaf-on period 

was reduced by 52 days (29%) relative to the 179-day average from reference years. Conversely, 

the extent of the rising period was not distinct in 2018 relative to reference years. In 2019, the 

rising greenness signal was temporarily reversed in early and mid-May until it rose over a 33-day 

period to a seasonal greenness peak which was late and reduced relative to reference growing 

seasons. The greenness rising period in 2019 was 39 days longer (118%) than the 33-day average 

of reference years. The plateau period was 59 days shorter (42%) in 2019 than that of the 141-

day average from reference years. The leaf-on period was also shortened in 2019 though to a 

lesser extent of 23 days (13%) relative to the 179-day average from reference years. This 

suggests that the herbivory of the winter moth prompted sufficient damage to impact seasonal 

leaf development in both the 2018 and 2019 growing seasons.  
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Figure 5-10. Greenness signals from before and after insect defoliation by the European winter 

moth captured by the ‘millhaft’ phenocam, with estimated onset dates in April 2018 and 2019. 

The timing of the estimated onset of defoliation in 2018 is denoted with an arrow. Greenness 

timeseries are shown for spline-smoothed 3-day 50th percentile GCC values on the top left. The 

duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on the top right. 

Phenocam images from one year before and immediately following the defoliation are shown on 

the bottom. 

 

Drought conditions led to an enhanced gypsy moth (Lymantria dispar) outbreak in 2015 

in Massachusetts and widespread defoliation over subsequent growing seasons across more than 

1,544 mi2 (4,000 km2) of the eastern United States (Pasquarella et al., 2018). Defoliation by the 

gypsy moth was captured by the ‘worcester’ phenocam on the Worcester State University 

campus in Worcester, Massachusetts, with an estimated onset date of June 10th, 2018. The 

gradual post-peak decline in the greenness signal usually observed in June exhibited a steep 
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decline before stabilizing and rising to a local maximum over a 26-day period in late July (Figure 

5-11). The reduced greenness peak prompted by this herbivory led to an apparent rising period 

that was shortened by 7 days (21%) in 2018 relative to the 34-day average from reference years 

without disturbance from 2014-2017 and 2019-2021. This detected reduction prior to the onset of 

defoliation was likely due to the herbivory reducing the peak greenness value and thus the time 

between 10% and 90% amplitude in the rising portion of the greenness curve, even though the 

herbivory occurred following the greenness peak. Surprisingly, the plateau period was not 

distinct in comparison to reference growing seasons, as the early timing of 95% amplitude in the 

falling portion of the curve was followed by an early timing of 50% amplitude in the falling 

portion of the curve, which was two weeks earlier than the average of reference years. The leaf-

on period was reduced by 13 days (8%) in comparison to the 159-day average from reference 

growing seasons. This suggests that herbivory by the gypsy moth led to sufficient damage to 

impact seasonal leaf developmental periods in the 2018 growing season. 
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Figure 5-11. Greenness signals from before and after insect defoliation by the gypsy moth 

captured by the ‘worcester’ phenocam, with an estimated onset date of June 10th, 2018. The 

timing of the estimated onset of defoliation in 2018 is denoted with an arrow. Greenness 

timeseries are shown for spline-smoothed 3-day 50th percentile GCC values on the top left. The 

duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on the top right. 

Phenocam images from one year before and immediately following the defoliation are shown on 

the bottom (note the vegetation in the top center to top right portion of the image following 

defoliation). 

 

5.4.5 Disturbance: Winter Ice Storm  

An ice storm on December 11th and 12th of 2008 damaged canopy vegetation in the 

Harvard Forest, including vegetation captured the by ‘harvard’ phenocam. Minimal influence in 

the greenness timeseries was evident but there was a substantial reduction in LAI from ground 

data by 22% following this storm in the 2009 growing season relative to 2008 (Keenan et al., 

2014). Mid-summer leaf area index values showed a gradual recovery to near-pre-ice storm 



169 

 

levels by 2012, and seasonal maximum greenness values continually increased following 2009, 

while our length metrics did not follow any such trend (Figure 5-12). The length of the rising 

period in 2009 was six days longer than that observed in either 2008 or 2010, though only four 

days longer (12%) than the 31-day average from all other years. The length of the plateau and 

leaf-on periods in 2009 were intermediate relative to other years. Despite this ice storm 

impacting local leaf area index values, our approach did not yield detection of anomalous leaf 

developmental periods. 

 

 
Figure 5-12. Greenness signals from before and after an ice storm in December of 2008 

captured by the ‘harvard’ phenocam. The timing of the ice storm in 2008 is denoted with an 

arrow. Greenness timeseries are shown for spline-smoothed 3-day 50th percentile GCC values on 

the top left. The duration of the A (rising), B (plateau), and C (leaf-on) periods are shown on the 

top right. Phenocam images from before, during, and after the ice storm are shown on the 

bottom (note the gaps in the canopy following the storm). 
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5.4.6 Stress: Drought Mortality 

Four successive years of drought in the Kings Canyon National Park, California, led to 

unprecedented forest dieback with mortality becoming evident in the summer of 2015 captured 

by the ‘sequoia’ phenocam (Richardson et al., 2018b; Stephenson et al., 2018). This led to a 

continuous decline in the maximum greenness signal observed during the growing season, with a 

considerable 60% reduction in the 2015 spline-smoothed greenness curve amplitude relative to 

2012 (Figure 5-13). Each of the rising, plateau, and leaf-on periods were reduced in 2015 by 25 

(43%), 35 (58%), and 55 (42%) days, respectively relative to 58, 61, and 132-day averages from 

the previous three years. This suggests that this drought led to sufficient damage to impact 

seasonal leaf developmental periods in the 2015 growing season.  



171 

 

 
Figure 5-13. Greenness signals during successive years of drought captured by the ‘sequoia’ 

phenocam (Stephenson et al., 2018), with drought-induced foliage dieback becoming evident in 

2015. Arrows provide a reference for comparing successive years of greenness signals over the 

June-August growing season period. Greenness timeseries are shown for spline-smoothed 3-day 

50th percentile GCC values on the top left. The duration of the A (rising), B (plateau), and C 

(leaf-on) periods are shown on the top right. Phenocam images from before (August 2011) and 

after (July 2016) the onset of drought mortality are shown on the bottom. 

 

5.4.7 Indicator Potential for Disturbance or Stress Detection 

To better assess the aptitude of leaf developmental periods extracted from the greenness 

curve as indicators, we examined how these deviations compare to interannual fluctuations 

observed in the absence of disturbance or stress across the PhenoCam Network. Probability 

density functions of the ratio of each period in a given year to the reference average for other 

years is shown in Figure 5-14 for all broadleaf and needleleaf sites from the PhenoCam Network 



172 

 

without known cases of disturbance or stress. Together these probability density functions 

demonstrate that these periods are generally stable under normal conditions and fluctuate in 

response to disturbance or stress. As the rising period was shorter than other periods, cases of 

disturbance or stress which influenced the rising period led to greater relative deviations from the 

average, though the probability density function was also more extensive (Figure 5-14A). 

Typical interannual variability for the ratio of the rising period in a given year to the average of 

alternate years in the absence of disturbance or stress corresponds to an interquartile range of 

1±0.06 times the average (25th to 75th percentile). Several of the rising period ratios observed in 

the context of stress or disturbance were more extreme than all non-disturbance rising period 

average ratios from the PhenoCam Network. These extreme cases included the 2007 rising 

period ratio of 1.76 observed by the mammothcave phenocam, the 2016 rising period rising 

period ratio of 2.47 observed by the canadaOA phenocam, the 2016 rising period ratio of 0.52 

observed by the spruceT9P17 phenocam, the 2017 and 2020 rising period ratios of 1.53 and 1.5 

observed by the  NEON.D07.GRSM.DP1.00033 phenocam, the 2018 rising period ratio of 2.14 

observed by the elverde phenocam, and the 2019 rising period ratio of 2.18 observed by the 

millhaft phenocam. A spring rising period of 0.57 times that of the average for other years, such 

as observed with the sequoia phenocam in 2015, is equivalent to a probability of less than 1% 

more extreme values. In contrast, the rising period observed by the worcester phenocam in 2018, 

which corresponded to a ratio of 0.79 times the average of reference years was associated with a 

probability of approximately 4% more extreme values in non-disturbance rising period average 

ratios from the PhenoCam Network.  

The duration of the plateau period was generally reduced in the context of disturbance or 

stress, with the exception of the warming treatment and frost event observed by the spruceT9P17 
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phenocam (Figure 5-14B). The degree of deviation relative to the reference average for the 

plateau period was less pronounced in terms of probability than that of the spring rising period, 

though greater than that of the leaf-on period. Similar to that observed for the rising period 

average ratio, typical interannual variability for the ratio of the plateau period in a given year to 

the average of reference years without disturbance or stress corresponds to an interquartile range 

of 1±0.06 times the average (25th to 75th percentile). Two of the plateau period ratios observed in 

the context of stress or disturbance were more extreme than all non-disturbance plateau period 

average ratios from the PhenoCam Network. These included the extended plateau period 

observed by the spruceT9P17 phenocam in 2016 which was 1.75 times the average, as well as 

the reduced plateau period observed by the sequoia phenocam in 2015 which was just 0.43 times 

the average from previous years. Several of the plateau period ratios observed in the context of 

disturbance or stress were associated a probability of less than 1% in detecting more extreme 

values in the absence of disturbance or stress. These included the plateau period ratio of 0.71 

times the average observed by the woodshole phenocam in 2011, the plateau period ratios of 0.67 

and 0.58 observed by the millhaft phenocam in 2018 and 2019, the plateau period ratios both 

equal to 0.6 observed by the elverde phenocam in 2017 and 2018, as well as the plateau period 

ratio of 0.65 observed by the canadaOA phenocam in 2016. In contrast, the plateau period ratio 

of 0.78 observed by the NEON.D07.GRSM.DP1.00033 phenocam in 2017 corresponded to a 

greater probability of 3% more extreme cases. 

The length of the leaf-on period was found to respond less acutely to disturbance or stress 

relative to the other periods (Figure 5-14C). This may be due to reductions in the rising and 

plateau periods due to disturbance or stress being compensated to some degree by a delayed or 

extended senescence process (Zohner et al., 2019). The leaf-on period also had reduced 
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interannual variability in the absence of stress or disturbance compared to the rising and plateau 

periods. The ratio of the leaf-on period in a given year to the average of reference years without 

disturbance or stress corresponds to an interquartile range of 1±0.04 times the average (25th to 

75th percentile). Four of the leaf-on period ratios observed in the context of stress or disturbance 

were more extreme than all non-disturbance leaf-on period average ratios from the PhenoCam 

Network. The most distinct deviation in the leaf-on period was observed by the spruceT9P17 

phenocam in 2016, with a ratio of 1.53 times the average of reference years. Other leaf-on period 

average ratios which were unprecedented in the absence of stress or disturbance across the 

PhenoCam Network included the leaf-on period ratio of 0.58 observed by the sequoia phenocam 

in 2015, the leaf-on period ratio of 0.71 observed by the elverde phenocam in 2017, and the leaf-

on period ratio of 0.72 observed in 2018 by the millhaft phenocam. Similarly, the leaf-on periods 

observed in 2011 by the woodshole phenocam and in 2016 by the canadaOA phenocam were 

0.74 and 0.77 times the average of other years, each corresponding to a probability of less than 

1% more extreme cases. The leaf-on period observed in 2019 by the millhaft phenocam was 0.87 

times the average of reference years, corresponding to a probability of about 3% more extreme 

values. A less distinct leaf-on period of 0.9 times the average was observed by the elverde 

phenocam in 2018, which corresponded to a probability of about 7 % more extreme values. The 

only two extended leaf-on periods were observed in 2010 by the arbutuslake phenocam and 2016 

by the spruceT9P17 phenocam. The arbutuslake phenocam leaf-on period in 2010 was 1.11 

times that of the average from other years, corresponding to a probability of approximately 6% 

more extreme cases, while the leaf-on period was observed by the spruceT9P17 phenocam in 

2016 as mentioned above was 1.53 times the average of reference years. 
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Figure 5-14. Probability density functions of the ratio of the length of a period during a given 

year compared to the average for all other years from PhenoCam sites hosting broadleaf and 

needleleaf plant functional type vegetation without known cases of disturbance or stress for a 

total of 344 site-years. Boxplots denote the median and ± 1.5 times the interquartile range for the 

average ratio of each period. Solid vertical lines denote examples of known cases of disturbance 

or stress affecting one or more of these periods. Dashed vertical lines denote examples of 

disturbance or stress which had mild effects on one or more of these periods. The A (rising) 

period is shown on the top, the B (plateau) period is shown in the middle, and the C (leaf-on) 

period is shown on the bottom. The phenocam names for each case of disturbance or stress 

along with the dominant plant functional type (DB = deciduous broadleaf, EN = evergreen 

needleleaf) is shown in the legend. “NEON” stands for the NEON.D07.GRSM.DP1.00033 

phenocam. 

 

A confusion matrix conveying the prevalence of true damage detection due to disturbance 

or stress shifting one or more of the rising, plateau, and leaf-on periods beyond an indicator 

threshold is shown in Figure 5-15. We designated threshold indicator ratios based upon the 

probability density functions presented in Figure 5-14 to optimize the signal to noise ratio in 

detecting anomalous periods while avoiding the false classification of periods as anomalous. 

These threshold ratios therefore differ from the interquartile ranges presented above to limit the 

misclassification of slightly unusual periods as the result of disturbance or stress. If disturbance 
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or stress which led to leaf functional decline shifted one or more of these periods beyond our 

indicator thresholds, it was counted as a true detection. If, on the other hand, leaf functional 

decline was known to have occurred though none of the periods were shifted beyond the 

threshold, this was considered a false non-detection of damage. Likewise, if no disturbance or 

stress was known to have occurred, we assumed there was no leaf functional decline or damage. 

If under these circumstances one or more of these periods was beyond our indicator thresholds, 

we considered this a false detection. Under the same circumstances, if instead these periods were 

not beyond our indicator thresholds, we considered these cases to be examples of true non-

detection. This matrix also includes the incidences of false detections, true non-detections, and 

false non-detections, based upon the probability density functions above. A designated indicator 

ratio of the spring rising period being beyond 1 ± 0.2 times the average correctly detected nine 

cases of disturbance or stress as anomalous rising periods. This indicator ratio corresponds to a 

combined probability of approximately 9% being false positives. Several of the 29 non-

disturbance site-years which were associated with rising periods beyond 1 ± 0.2 times the 

average were observed at SPRUCE experimental sites which may have shown these fluctuations 

in response to experimental treatments as well as the spring frost event in 2016. For the plateau 

period, an indicator ratio of the period being 1 ± 0.2 times the average from other years would 

correctly detect the nine cases of disturbance and or stress influencing the plateau period 

observed from the PhenoCam Network, with a probability of approximately 9% being false 

positives. Several of the 26 non-disturbance site-years which were associated with plateau 

periods beyond 1 ± 0.2 times the average were also observed at SPRUCE experimental sites. 

Lastly, an indicator ratio of the leaf-on period being beyond 1 ± 0.1 times the average from other 

years would capture the nine cases of disturbance and or stress influencing the leaf-on period 
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observed from the PhenoCam Network, with a probability of approximately 15% being false 

positives. A minor adjustment of this indicator ratio by just 0.01 would omit the case of 

disturbance observed through the arbutuslake phenocam, necessitating the relatively high false 

detection error rate. As with the other indicator periods, several of the 32 non-disturbance site-

years which were associated with leaf-on periods beyond 1 ± 0.1 times the average were 

observed at SPRUCE experimental sites. Disturbance cases observed by the harvard and proctor 

phenocams were not detected as anomalous rising, plateau, or leaf-on periods through our 

approach, amounting to the 14% false negative error rate across indicator periods. Twelve of 

fourteen cases were correctly detected amounting to an 86% true detection rate.  Together the 

combined application of anomalous rising, plateau, or leaf-on periods as an indicator of probable 

disturbance or stress effects amounts to an 11% average probability of false positives, and an 

89% probability of true classifications of non-damage. 

 



178 

 

 
Figure 5-15. Confusion matrix for the combined detection of anomalous rising, plateau, or leaf-

on periods associated with leaf damage due to either disturbance or stress versus normal 

conditions. The x-axis labels correspond to the predicted classification or detection while the y-

axis labels correspond to the true classification. True predictions are along the diagonal. The 

proportion of each classification is shown as a number and color in each matrix cell, with higher 

proportions corresponding to a darker green hue. 

 

5.5 Discussion 

Here we provide a novel and comprehensive exploration of the potential of phenocams to 

capture declines in leaf function associated with various forms of disturbance and stress. With 

analysis of phenocam records, we detected disturbance and stress-driven declines which occurred 

in the early, middle, and late growing season for both deciduous and evergreen vegetation. The 

disturbance and stress agents we examined included hurricanes, windstorms, frost, herbivory, 
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and drought. This highlights the applicability of phenocams for monitoring ecologically relevant 

phenomena beyond leaf phenology.  

The approach of classifying disturbance-related impaired leaf function based upon 

vegetation indices timeseries has been previously applied with satellite-based observations and 

found to perform well following ground validation (Löw and Koukal, 2020; Bascietto et al., 

2018). The application of phenocams we present here allows for the sensitive detection of leaf 

functional decline at a fine spatial scale, with the potential for developing species-specific 

insights (Berra et al., 2021; Hufkens et al., 2012a). Previous studies have shown leaf damage or 

defoliation resulting from disturbance or stress during the optimal growing season period can 

disrupt forest ecosystem processes (Stephens et al., 2018; Bonan and Shugart, 1989). As 

ecological integrity is determined by the cohesion of ecosystem processes, monitoring leaf 

function through phenocams provides valuable insights for the purposes of ecological integrity 

monitoring. The scale of observation afforded by phenocams is equivalent to that of manual 

ground-based observations, though with the potential for quantitative monitoring with enhanced 

perception beyond the capabilities of human eyesight. The imagery records produced by 

phenocams provide a means to precisely detect and review the evolution of disturbance or stress 

effects both through computational processing and from visual inspection of images. This allows 

for precise characterization of the timeline of such effects and an enhanced insight into probable 

cause. Additionally, phenocams enable the exploration of how fine scale ecological and 

microclimate contexts influence susceptibility to disturbance or stress (Field et al., 2020; 

Lukasová et al., 2020). A previous study employing more than 40 years of observations 

classified premature fall discoloration as when the date occurred within the lower 5% percentile 

of a normal distribution, which was 2-3 months earlier than typical (Bigler and Vitasse, 2021). 
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The methods we proposed here are capable of autonomously identifying such acute deviations, 

as well as some more moderate deviations which may be associated with stress or disturbance. 

Given the streamlined PhenoCam Network processing chain of image collection, storage, and 

processing, the detection of anomalous leaf developmental periods associated with potential 

disturbance or stress presented here could be delivered in real-time for conservation managers. 

The methods we propose here would similarly be promising for the recently established Acadian 

Phenocam Network in eastern Canada, which spans three provinces and five National Parks. 

Figure 5-16 provides a conceptual framework for the designation of our indicator periods.  

 

 
Figure 5-16. Conceptual representation of the probabilistic relationship between leaf function 

and deviation in the length of the A, B, or C periods each year relative to the average of other 

years. Period A is the greenness rising portion of the curve between the onset of leaf growth and 

the seasonal peak in greenness calculated as the time between the 10% and 90% amplitude, 

period B is the greenness plateau following the seasonal peak in greenness calculated as the 

time between 95% and 50% amplitude in the falling portion of the greenness curve, and period C 

is the entire leaf-on period calculated as the time between 50% amplitude in the rising portion 

and 50% amplitude in the falling portion of the greenness curve. The numbers at the bottom edge 

of each row denote the threshold indicative of probable disturbance or stress effects rather than 

interannual variability. An A rising period of beyond 1 ± 0.2 time the average, a B plateau 

period of beyond 1 ± 0.2 times the average, and a C leaf-on period of beyond 1 ± 0.1 times the 

average corresponds to probable disturbance or stress. 
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These metrics allow for the quantification of impacts in terms of the deviation in the 

duration of leaf developmental periods, though further investigation is needed to distinguish 

between fluctuations consistent with immediate defoliation versus prolonged declines in leaf 

function. While our duration metrics fluctuated more in response to disturbance or stress than 

due to inherent variation for some sites, caution is warranted in assigning indicator scores from 

these periods due to the relatively few phenocam timeseries available to monitor such effects. 

Additionally, recovery transitions may continue to occur more than a growing season following 

disturbance or stress, altering the utility of apparent reference growing seasons for our duration 

metrics. A strategic approach for classifying future observations would be to use our duration 

metrics as a means of assigning priority for further investigation. With each growing season, the 

reference average and interannual variability for these periods can be automatically refined as 

periods are iteratively re-calculated, or manually refined by conservation managers familiar with 

site characteristics. Additionally, some disturbances did not result in a deviation of leaf 

developmental periods outside that of the range from years without disturbance, such as for the 

phenocams proctor and harvard. These latter cases may be due to disturbance events having a 

mild influence on phenocam-derived greenness curves due to saturation in the greenness metric 

(Keenan et al., 2014; Yang et al., 2014), or else due to our length metrics not encompassing the 

portions of the curve that were most affected by these events. In some cases, such as for the 

arbutuslake phenocam, the detected deviation in indicator periods was mild, which may have 

been due in part to the monitored region of interest including a variety of species which were 

affected to different degrees by the frost event. Additionally, we also explored the use of original 

unsmoothed spring greenness timeseries for the proctor and arbutuslake phenocams and found 

this still did not result in pronounced anomalous periods for the 2010 frost year. This indicates 
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that the additional research is needed to develop a more sensitive indicator for detection of frost 

damage. Further investigation is warranted to optimize the indicator potential of periods 

calculated from a greater variety of amplitude thresholds, especially for between the beginning of 

senescence and the onset of dormancy to better understand the impact of disturbance or stress to 

the senescence process. A promising avenue for future research is to examine change over time 

in leaf maturation and senescence rates, as this would allow for the detection of gradual changes 

in leaf phenological states over time. A stable representation of the integrated area under the 

growing season greenness curve may provide an alternative approach to detecting deleterious 

disturbance or stress effects. We conducted a preliminary analysis which yielded an anomalous 

integrated area for the 2010 spring frost growing season for the proctor phenocam, though 

variable areas for some of the other sites in the absence of disturbance or stress. Another 

promising avenue for future research is the development of a resiliency indicator through the 

quantification of leaf damage severity in terms of the rate of change in greenness following 

disturbance or stress, as well as the rate of subsequent recovery, which may contribute to 

ongoing works within the ecological community (Smith et al., 2022; Scheffer et al., 2009). In 

addition, the interaction between disturbance or stress effects and the status of vegetation prior to 

disturbance or stress could be investigated with the use of phenocam data. For example, 

disturbance in the form of severe insect defoliation is often a consequence of drought or other 

pre-existing stress factors, and there may be pre-emptive signals preceding such disturbance 

events which may provide actionable insights to conservation managers (Anderegg et al., 2015; 

McLennan and Zorn, 2005). 

Using the length of time between different amplitude percentages of the greenness curve 

as ecological indicator metrics rather than the timing of a given phenophase extracted from the 



183 

 

greenness curve is potentially advantageous in reducing the influence of uncertainty due to 

extraction approaches (Toomey et al., 2015). A previous phenocam study found that greenness 

amplitude thresholds were suitable proxies for various stages of leaf development (Zhang et al., 

2020). Additionally, this approach provided a clear signal for the drought mortality onset 

observed through the sequoia phenocam which is focused on evergreen needleleaf vegetation, 

which typically has a lower seasonal amplitude and potentially greater uncertainty in curve 

derived phenology relative to deciduous broadleaf vegetation across both phenocam and 

satellite-based observation platforms (Ling et al., 2022; Seyednasrollah et al., 2021). However, 

this approach is also susceptible to reduction in the greenness curve amplitude due to disturbance 

influencing the time between amplitude percentages in unexpected ways, and potentially 

eclipsing disturbance or stress signals. Rigorous quality control in the form of omitting records 

with instability in target regions of interest and extensive observational gaps during the leaf-on 

period is necessary to avoid false attribution of anomalous periods to disturbance or stress 

effects. Another promising avenue for future research would be to examine the influence of site 

ecological memory on the stability of these indicator periods. One benefit of the approach of 

automated leaf phenology monitoring with phenocams is the option to re-process archived 

imagery data using new and improved techniques. In addition, the establishment of long-term 

monitoring programs with phenocams in a variety of environmental contexts for species can 

provide enhanced insight into typical ranges of periods between leaf phenology stages for a 

given species. 

Toomey et al. (2015) and Matiu et al. (2017) both found correspondence between 

phenocam-derived greenness and gross primary production over time, indicating that greenness 

can be used as a dynamic ecosystem function indicator beyond the timing of leaf phenology. We 
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also explored the timing of leaf phenology itself as an ecological integrity indicator, though 

found that variation due to other factors was of a similar magnitude or in some cases greater than 

variation due to disturbance or stress, and that this approach neglects the role of developed frost 

hardiness which may not vary consistently with phenology between species (see Zohner et al., 

2020). Extreme weather like Hurricane Dorian (>10,000 ha of forest damage) which led to 

widespread forest damage on the order of >500 ha may affect Nova Scotia, the province in which 

22 of  the 33 Acadian Phenocam Network cameras are managed, as frequently as once every 

seven years (MacLean et al., 2022; Taylor et al., 2020). Insect outbreaks such as that of 

Choristoneura fumiferana, the spruce budworm, which lead to widespread damage of 

predominant native tree species, may also occur in Nova Scotia once every 30-40 years (Smith et 

al., 2010). Additionally, two of the Acadian Phenocam Network phenocams are focused on 

eastern hemlock (Tsuga canadensis) within the Kejimkujik National Park, amidst an ongoing 

invasion of the hemlock wooly adelgid (Adelges tsugae) which began in 2017 and has already 

led to hemlock mortality.  The hemlock wooly adelgid is an invasive pest known to rapidly 

defoliate entire stands with wide-reaching ecological impacts, as the eastern hemlock is a 

foundational species providing specialized habitat for both terrestrial and aquatic species 

(Emilson and Statsny, 2019; Brantley et al., 2015). Therefore, monitoring protocols such as those 

we explored here are promising in allowing for the sensitive individual-scale detection of both 

gradual and abrupt decline in leaf function and ecological integrity due to global change 

throughout both the Acadian Phenocam Network and PhenoCam Network, and beyond. The 

insights gathered from monitoring of leaf developmental periods can also help to understand the 

changing frequencies of cases of leaf damage due to disturbance or stress in the context of global 

change, and the implications of these cumulative effects for ecosystem functioning and the 
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carbon cycle (Curtis and Gough, 2018; Dubé, et al., 2013). While our investigation was focused 

on disturbance and stress, another important consideration is community level phenological 

synchrony in the context of global change. Further work is required to understand what level of 

change may jeopardize the continued synchrony of ecological interactions, and how to correctly 

attribute variation in phenology over time (Renner and Zohner, 2018).  

This study provides a novel means to systematically quantify the severity of disturbance 

or stress effects on leaf function with ground-based imagery provided by phenocams, which is 

increasingly valuable in the context of ongoing global change. The duration of leaf 

developmental periods explored here can provide a framework for assessment of the vegetation 

functional component of ecological integrity, and insight towards characterization of ecological 

tipping points consistent with critical adverse effects on ecosystem ecology. The application of 

the duration of periods from phenocam-derived greenness patterns as an ecological integrity 

indicator may be more complex than other traditional indicators in that it requires a nuanced 

consideration of a variety of factors, such as signal quality, species, and environment. Despite 

this complexity, the use of phenocams for ecological integrity monitoring provides several 

distinct advantages including automation, cost-efficiency, fine-scale sensitivity, and quantitative 

monitoring, with the potential for reduced complexity as new monitoring insights are developed. 

Other traditional methods for the monitoring of disturbance or stress effects such as aerial or 

field surveys require considerable time and financial resources for conservation managers. 

Phenocams also provide potential for ancillary research objectives with image timeseries 

including the dynamics of ice, snow, flowering, and other ecologically important phenomena in 

the scene (Jacobs et al., 2009). Understanding which species are robust, resilient, or susceptible 

to global change through the monitoring protocol we proposed here will provide insight for 
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effective conservation and management activities (Chamberlain et al., 2019). This would allow 

for informed decisions regarding ecological forestry practices in the context of global change, 

which species to plant for remediation following disturbance events, and which species may 

require additional focus for protection from disturbance agents (MacLean et al., 2022; Taylor et 

al., 2020; Price et al., 2013).  

5.6 Conclusions 

Leaf phenology serves as a direct and integrative indicator of the biological effects of 

climate change. Near-continuous observations from phenocams allow for the quantitative 

monitoring of seasonal leaf development. Ecological integrity, or the intactness of ecosystem 

processes, such as water and carbon cycling, is a crucial assessment tool for conservation efforts. 

Phenocams are a promising ecological integrity monitoring tool, as they can be efficiently 

applied and produce high resolution quantitative data of leaf function and potential disruptions 

due to disturbance or stress. Here we examined phenocam observations of vegetative responses 

to disturbance and stress with fourteen site-year examples from the PhenoCam Network, 

including disturbances in the form of hurricanes, windstorms, spring frost, insect defoliation, and 

a winter ice storm, as well as stress due to drought. Reductions or extensions of at least ±20% in 

the rising section in the seasonal greenness curve, ±20% in the plateau section following the 

greenness peak, and ±10% for the entire leaf-on period were indicative of a response to a major 

disturbance or stress.  The duration of these periods each year in comparison to the average for 

other years with these thresholds resulted in average true detection rates of 86% and false 

positive detection rates of 11% when sampling from probability density functions of 344 

broadleaf and needleleaf PhenoCam site-years. True negative detection rates were 89% on 

average, while average false negative detection rates were 14%. Together these rates indicate 
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that the duration of the rising, plateau, and leaf-on periods serve as sensitive indicators of 

disturbance and stress, and that these periods may provide novel insights into species-specific 

recovery processes. Despite the complexity of phenocam-derived leaf developmental periods as 

ecological integrity indicators, their application is strategic in providing a wealth of information 

with cost-effective operation. Phenocams present a promising means to assess which  forest 

ecosystems are robust, resilient, or susceptible to global change, which will facilitate informed 

conservation practices. 
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Chapter 6: Conclusions and Future Directions 

 Observations of vegetation function at the leaf to canopy scale will play a pivotal role in 

elucidating the feedback of terrestrial vegetation to climate change. The chapters of this thesis 

provide promising insights and technical developments to reduce uncertainty surrounding 

terrestrial vegetation feedbacks to climate change. The summarized findings from each chapter 

are as follows, and more detailed insights are presented below: 

• Chapter 2 of this thesis indicates that climate sensitivity as well as the portion of 

anthropogenic carbon in the atmosphere taken up by the terrestrial biosphere predominate 

uncertainty in the relationship between cumulative anthropogenic CO2 emissions and 

global temperature change.  

• Chapter 3 of this thesis shows that leaf structure exerts an important influence on the 

optical properties of leaves, and with an adapted physical model inversion approach, the 

success of hyperspectral models for estimating the quantity of leaf biochemical 

constituents can be readily improved.  

• Chapter 4 of this thesis reveals divergent leaf phenology responses between co-located 

species to future climate warming under a variety of emissions scenarios, and the 

importance of photoperiod and winter chilling in influencing the timing of leaf 

emergence.  

• Chapter 5 provides a novel approach to detecting declines in leaf function and 

subsequently carbon uptake associated with extreme weather, which is expected to occur 

more frequently and with a greater intensity in the context of climate change.  
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Several promising avenues for future research stem from these chapters. In chapter 2, 

Quantifying the probability distribution function of the transient climate response to cumulative 

CO2 emissions (TCRE), I show that climate sensitivity along with the land-borne fraction of CO2 

emissions exert an important influence on the TCRE, and that the probability distribution 

function of the TCRE is best characterized as log-normal. While characterizing the probability 

distribution function of the TCRE and the key drivers of variation in the TCRE contributes to 

understandings of the TCRE, important questions remain regarding the TCRE. Non-CO2 

emissions may make up between one seventh to one third of carbon budgets, though are 

generally not included in the TCRE. Towards this end, recently Jenkins et al. (2021) has 

provided an adapted carbon budget arising form the TCRE including non-CO2 radiative forcing.  

In addition, the validity of the TCRE in the context of declining or negative emissions is 

uncertain (Zickfeld et al., 2016). Future studies on the TCRE should strive to address these 

sources of uncertainty. 

In Chapter 3, Spectral subdomains and prior estimation of leaf structure improves 

PROSPECT inversion on reflectance or transmittance alone, I demonstrate the importance of 

leaf structure in influencing the optical properties of leaves. Future work to better accommodate 

the physical differences between directional-hemispherical measurements required for current 

PROSPECT model inversion approaches and the commonly used bidirectional leaf reflectance 

measurements and transmittance estimations would be impactful. This would allow researchers 

to directly estimate leaf foliar constituents with just bidirectional leaf reflectance measurements 

and transmittance estimations. While this chapter provides modifications to traditional 

PROSPECT inversion approaches towards this end, and some advancements have been made in 

this area (Li et al., 2019a; 2018; Jay et al., 2016), more work is needed to precisely and 
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physically link bidirectional and directional-hemispherical observations for convenient 

estimations of leaf biochemistry.  

For Chapter 4, Climate-driven shifts in leaf senescence are greater for boreal species 

than temperate species in the Acadian Forest Region, I demonstrate the likelihood for divergent 

leaf phenology responses to climate change between co-located species in the Acadian Forest. 

This chapter also shows the utility of networked phenocams for calibrating and validating 

process models. Future work is needed to apply phenocam-trained species-specific leaf 

phenology models over greater spatial scales and with a greater variety of species. In addition, 

the improvement or development of novel leaf senescence process models would be 

advantageous in reducing uncertainty involving future leaf phenology patterns and the length of 

the leafing period in the context of climate change. An understudied driver of variation in leaf 

phenology timings is that of soil moisture (Delpierre et al., 2017), and future studies on this topic 

should strive to include a representation of the constraint of water availability on leaf phenology 

to develop more comprehensive understandings of future patterns in leaf phenology. Another 

promising avenue for future work from this chapter would be how to integrate predictions of 

changes in leaf phenology patterns into strategies of both climate change and mitigation, such as 

the strategic selection of tree species to plant in the coming decades.  

For Chapter 5, Leaf phenology as an indicator of ecological integrity, I provide a novel 

indicator approach based upon regions of seasonal greenness curves extracted from phenocam 

observations to detect incidents of interruptions in ecosystem processes. While this chapter 

includes 14 cases of disturbance or stress which affected leaf function, more work is needed to 

examine how well this indicator performs for a more replicated sampling of disturbance and 

stress cases in a greater variety of forest canopies. Additionally, future work on this topic should 
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include a means to quantify the speed of recovery following such disturbances or stressful 

events, and the role of ecological site memory (Gong et al., 2021). To assess the far-reaching 

ecological implications of changes in leaf phenology in response to both gradual and abrupt 

environmental changes, another promising avenue for future work is the examination of 

phenological synchrony between interacting species (Pureswaran et al., 2019; Renner et al., 

2018). Towards this end, phenocams can help to rapidly scale-up ongoing monitoring projects to 

better attribute and quantify leaf phenology changes associated with climate change.  

 Overall I have shown that terrestrial vegetation has the potential to alter the trajectory of 

climate change, and in turn be dynamically influenced by climate change over seasonal to 

centennial timescales. To understand the course of these changes, more observations of leaf 

function in terms of both biochemistry and leaf phenology are needed. If the portion of excess 

CO2 emissions taken up by terrestrial vegetation were to be substantially reduced, climate change 

could be much more severe than previously thought. My thesis incorporates two dimensions of 

complexity related to future vegetational carbon uptake: climate change will likely lengthen the 

seasonal carbon uptake period for temperate and boreal tree species, though will also lead to 

more disruptions in vegetational carbon uptake due to disturbances such as hurricanes and frost 

events. With the use of hyperspectral measurements, high temporal frequency observations such 

as through phenocams, and powerful physical models such as PROSPECT and the leaf 

phenology models I presented herein, we can monitor and developed informed predictions of 

vegetation function in the context of climate change.  

Another direction for future investigation linking all of the chapters in this thesis is that 

of the carbon implications of leaf phenology changes with respect to leaf emergence, leaf 

senescence, and the overall seasonal lifespan of leaves. Modelling and observational studies in 
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mid-to high-latitude forests, as well as chapters 4 and 5 of this thesis, have postulated that earlier 

leaf emergence and later leaf senescence in the context of warmer growing conditions will 

increase long term carbon uptake in forests, substantially reducing the severity of climate change 

(Gu et al., 2022; Wang et al., 2020; Sakalli et al., 2017; Keenan et al., 2014; Wu et al., 2012). 

Few studies have directly validated the assumption of a linkage between leaf phenology and 

stable carbon sequestration via wood formation despite its importance for climate change 

mitigation. Contrary to common assumptions, wood growth may be limited despite lengthening 

leafing periods due to environmental and physiological constraints (Zani et al., 2020; 

D’Orangeville et al., 2018; Way and Montgomery, 2015). Several studies have reported a 

decoupling or variable relationship between leaf phenology and wood formation across a variety 

of species and regions (Camarero et al., 2022; Dow et al., 2022; Etzold et al., 2022; Marchand et 

al., 2021; Delpierre et al., 2017; Čufar et al., 2015), though few studies include direct monitoring 

of leaf emergence and senescence along with wood formation. More in-situ studies of both leaf 

and wood formation phenology at a variety of sites are needed to evaluate the potential 

independence between the leaf-on period and woody growth. An investigation on this topic will 

likely be the subject of my upcoming postdoctoral work.  

One of the most useful tools for projecting climate change, the future capacity for 

vegetation to uptake carbon, and how climate change might affect vegetation, is that of Earth 

System Models (ESMs). Earth System Models simulate the exchange of energy and matter 

through coupled land, ocean, and atmospheric components. The land components of ESMs are 

known as land surface models, and vegetation is therein simulated through the use of Dynamic 

Vegetation Models (DGVMs). Many important global climate change feedback phenomena have 

been realized because of ESMs, as well as impactful metrics such as the TCRE. The utility of 
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DGVMs and subsequently ESMs could be further enhanced with more realistic process 

representations therein of terrestrial biogeochemistry, especially with respect to terrestrial 

carbon, nitrogen, and phosphorus cycles, as well as how plants function over time (Arora et al., 

2020; Lovenduski and Bonan, 2017). Within DGVMs, leaf phenology is often prescribed or 

prognostically simulated based on just temperature (Ziehn et al., 2020; Lawrence et al., 2019; 

Green et al., 2019; Anav et al., 2015). Chapter 4 demonstrates that the inclusion of additional 

drivers for leaf emergence and senescence, such as photoperiod, could improve the realism of 

dynamic global vegetation models and predictions of vegetation growing season length.  In 

addition, model structures within DGVMs often assume all plants belong to a limited number of 

plant functional types, underrepresenting the functional diversity of plants observed in nature, 

though more functional diversity is being added over time to DGVMs (Harper et al., 2018; 2016; 

Funk et al., 2017). Future work to include more detailed and dynamic representations of leaf 

phenology, along with plant functional diversity, could improve the aptitude of ESMs and 

provide more impactful insights for climate change policy.   
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P., Braslavská, O.G., Briede, A., & Chmielewski, F. M. (2006). European phenological 

response to climate change matches the warming pattern. Global Change Biology, 

12(10), 1969-1976. 

Merzlyak, M. N., Chivkunova, O. B., Solovchenko, A. E., & Naqvi, K. R. (2008). Light 

absorption by anthocyanins in juvenile, stressed, and senescing leaves. Journal of 

Experimental Botany. 59, 3903–3911. 

Merzlyak, M. N., Melø, T., & Naqvi, K. R. (2004). Estimation of leaf transmittance in the near 

infrared region through reflectance measurements. Journal of Photochemistry and 

Photobiology B: Biology. 74, 1011–1344. 

https://doi.org/10.1016/j.jphotobiol.2004.03.003. 

Messner, D., Schellnhuber, J., Rahmstorf, S., & Klingenfield, J. (2013) The budget approach 

framework for a global transformation towards a low carbon economy Climate Change 

and Environmental Hazards Related to Shipping: An International Legal Framework. 

Leiden: Brill Nijhoff, 9-33. 

Migliavacca, M., Sonnentag, O., Keenan, T. F., Cescatti, A., O'Keefe, J., & Richardson, A. D. 

(2012). On the uncertainty of phenological responses to climate change, and implications 

for a terrestrial biosphere model. Biogeosciences, 9(6), 2063-2083. 

https://doi.org/10.1016/j.jphotobiol.2004.03.003


240 

 

Millar, R. J., & Friedlingstein, P. (2018). The utility of the historical record for assessing the 

transient climate response to cumulative emissions. Philosophical Transactions of the 

Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 

20160449. 

Millar, R. J., Fuglestvedt, J. S., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., 

Skeie, R.B., Forster, P.M., Frame, D.J., & Allen, M. R. (2017a). Emission budgets and 

pathways consistent with limiting warming to 1.5°C. Nature Geoscience, 10(10), 741-

747. 

Millar, R. J., Nicholls, Z. R., Friedlingstein, P., & Allen, M. R. (2017b). A modified impulse-

response representation of the global near-surface air temperature and atmospheric 

concentration response to carbon dioxide emissions. Atmospheric Chemistry and Physics, 

17(11), 7213-7228. 

Misra, G., Buras, A., Heurich, M., Asam, S., & Menzel, A. (2018). LiDAR derived topography 

and forest stand characteristics largely explain the spatial variability observed in MODIS 

land surface phenology. Remote Sensing of Environment, 218, 231-244. 

Mitchell, T. D., and Jones, P. D. (2005). An improved method of constructing a database of 

monthly climate observations and associated high‐resolution grids. International Journal 

of Climatology: A Journal of the Royal Meteorological Society, 25(6), 693-712. 

Mizunuma, T., Wilkinson, M., L. Eaton, E., Mencuccini, M., IL Morison, J., & Grace, J. (2013). 

The relationship between carbon dioxide uptake and canopy color from two camera 

systems in a deciduous forest in southern England. Functional Ecology, 27(1), 196-207. 

Monfreda, C., Ramankutty, N., and Foley, J. A. (2008). Farming the planet. Part 2: Geographic 

distribution of crop areas, yields, physiological types, and net primary production in the 

year 2000. Global Biogeochemical Cycles, GB1022. 

Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L., & Reich, P. B. (2020). Phenological 

responses of temperate and boreal trees to warming depend on ambient spring 

temperatures, leaf habit, and geographic range. Proceedings of the National Academy of 

Sciences, 117(19), 10397-10405. 

Moon, M., Richardson, A. D., & Friedl, M. A. (2021b). Multiscale assessment of land surface 

phenology from harmonized Landsat 8 and Sentinel-2, PlanetScope, and PhenoCam 

imagery. Remote Sensing of Environment, 266, 112716. 



241 

 

 

Moon, M., Seyednasrollah, B., Richardson, A. D., & Friedl, M. A. (2021a). Using time series of 

MODIS land surface phenology to model temperature and photoperiod controls on spring 

greenup in North American deciduous forests. Remote Sensing of Environment, 260, 

112466. 

Moreno-Martínez, Á., Camps-Valls, G., Kattge, J., Robinson, N., Reichstein, M., van Bodegom, 

P., Kramer, K., Cornelissen, J.H.C., Reich, P., Bahn, M. & Niinemets, Ü. (2018). A 

methodology to derive global maps of leaf traits using remote sensing and climate data. 

Remote Sensing of Environment, 218, 69–88. 

Morin, X., Lechowicz, M. J., Augspurger, C., O'Keefe, J. O. H. N., Viner, D., & Chuine, I. 

(2009). Leaf phenology in 22 North American tree species during the 21st 

century. Global Change Biology, 15(4), 961-975. 

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., Abatzoglou, J., 

Wilson, B.E., Breshears, D.D., Henebry, G.M., Hanes, J.M., & Liang, L. (2009). 

Tracking the rhythm of the seasons in the face of global change: phenological research in 

the 21st century. Frontiers in Ecology and the Environment, 7(5), 253-260. 

Mouillot, F., and Field, C. B. (2005). Fire history and the global carbon budget: A 1° × 1° fire 

history reconstruction for the 20th century. Global Change Biology, 11(3), 398– 420. 

Murray, B. R., Hardstaff, L. K., & Phillips, M. L. (2013). Differences in leaf flammability, leaf 

traits and flammability-trait relationships between native and exotic plant species of dry 

sclerophyll forest. PLoS One. 8, e79 205. 

Murray, M. B., Cannell, M. G. R., & Smith, R. I. (1989). Date of budburst of fifteen tree species 

in Britain following climatic warming. Journal of Applied Ecology, 693-700. 

Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative 

forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 

2715-2718. 

Myneni, R. B., Ramakrishna, R., Nemani, R., and Running, S. W. (1997). Estimation of global 

leaf area index and absorbed PAR using radiative transfer models. IEEE Transactions on 

Geoscience and remote sensing, 35(6), 1380-1393. 

Nagler, P. L., Pearlstein, S., Glenn, E. P., Brown, T. B., Bateman, H. L., Bean, D. W., & Hultine, 

K. R. (2014). Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda 



242 

 

carinulata) on a desert river detected by phenocams, MODIS imagery and ground 

observations. Remote Sensing of Environment, 140, 206-219. 

Nakaji, T., Oguma, H., & Hiura, T. (2011). Ground-based monitoring of the leaf phenology of 

deciduous broad-leaved trees using high resolution NDVI camera images. Journal of 

Agricultural Meteorology, 67(2), 65-74. 

NASA LP DAAC. (2017). MOD17A3 Terra/MODIS net primary production yearly L4 global 

1 km. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and 

Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov), 

at https://doi.org/10.5067/ASTER/AST_L1T.003. 

Neily, P., Keys, K., Quigley, E., Basquill, S., & Stewart, B. (2013). Forest ecosystem 

classification for Nova Scotia. Truro, NS: Nova Scotia Department of Natural Resources. 

Niinemets, Ü. (2010). Responses of forest trees to single and multiple environmental stresses 

from seedlings to mature plants: past stress history, stress interactions, tolerance and 

acclimation. Forest Ecology and management, 260(10), 1623-1639. 

Nijsse, F. J., Cox, P. M., & Williamson, M. S. (2020). Emergent constraints on transient climate 

response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in 

CMIP5 and CMIP6 models. Earth System Dynamics, 11(3), 737-750. 

Nohara, D., Tsutsui, J., Watanabe, S., Tachiiri, K., Hajima, T., Okajima, H., & Matsuno, T. 

(2015). Examination of a climate stabilization pathway via zero-emissions using Earth 

system models. Environmental Research Letters, 10(9), 095005. 

Nölte, A., Yousefpour, R., & Hanewinkel, M. (2020). Changes in sessile oak (Quercus petraea) 

productivity under climate change by improved leaf phenology in the 3-PG model. 

Ecological Modelling, 438, 109285. 

Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., and Oren, 

R. (2005). Forest response to elevated CO2 is conserved across a broad range of 

productivity. Proceedings of the National Academy of Sciences, 102(50), 18052-18056. 

Norby, R. J., Hartz‐Rubin, J. S., & Verbrugge, M. J. (2003). Phenological responses in maple to 

experimental atmospheric warming and CO2 enrichment. Global Change Biology, 9(12), 

1792-1801. 

Noseworthy, J., & Beckley, T. M. (2020). Borealization of the New England–Acadian Forest: a 

review of the evidence. Environmental Reviews, 28(3), 284-293. 

https://lpdaac.usgs.gov/
https://doi.org/10.5067/ASTER/AST_L1T.003


243 

 

Nouvellon, Y., Laclau, J.-P., Epron, D., Kinana, A., Mabiala, A., Roupsard, O., Bonnefond, J.M., 

Le Maire, G., Marsden, C., Bontemps, J.D. & Saint-Andre, L. (2010). Within-stand and 

seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic 

of Congo. Forest ecology and management. 259, 1796–1807. 

Nowak, R. S., Ellsworth, D. S., and Smith, S. D. (2004). Functional responses of plants to 

elevated atmospheric CO2–do photosynthetic and productivity data from FACE 

experiments support early predictions?. New phytologist, 162(2), 253-280. 

Nunes, M. H., Davey, M. P., & Coomes, D. A. (2017). On the challenges of using field 

spectroscopy to measure the impact of soil type on leaf traits. Biogeosciences. 14, 3371–

3385. 

Oliveira, J., Féret, J. B., Ponzoni, F. J., Nouvellon, Y., Gastellu-Etchegorry, J. P., Campoe, O. C., 

Stape, J.L., Rodriguez, L.C.E. & Le Maire, G. (2017). Simulating the canopy reflectance 

of different eucalypt genotypes with the DART 3-D model. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing. 10(11), 4844-4852. 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. 

N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. 

J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., 

and Kassem, K. R. (2006). Terrestrial Ecoregions of the World: A New Map of Life on 

Earth. BioScience, 51(11), 933-938. 

Olson, R., Sriver, R., Goes, M., Urban, N. M., Matthews, H. D., Haran, M., & Keller, K. (2012). 

A climate sensitivity estimate using Bayesian fusion of instrumental observations and an 

Earth System model. Journal of Geophysical Research: Atmospheres, 117(D4). 

Ordóñez, C., & Duinker, P. N. (2012). Ecological integrity in urban forests. Urban Ecosystems, 

15(4), 863-877. 

Orth, R., Dutra, E., Trigo, I. F., and Balsamo, G. (2017). Advancing land surface model 

development with satellite-based Earth observations. Hydrology and Earth System 

Sciences, 21(5), 2483-2495. 

Pappas, C., Fatichi, S., & Burlando, P. (2016). Modeling terrestrial carbon and water dynamics 

across climatic gradients: does plant trait diversity matter?. New Phytologist, 209(1), 137-

151. 



244 

 

Parks Canada Agency. (2011). Consolidated Guidelines for Ecological Integrity Monitoring in 

Canada’s National Parks. Protected Areas Establishment and Conservation Branch, Parks 

Canada. 

Parmentier, F. J. W., Nilsen, L., Tømmervik, H., & Cooper, E. J. (2021). A distributed time-lapse 

camera network to track vegetation phenology with high temporal detail and at varying 

scales. Earth System Science Data, 13(7), 3593-3606. 

Partanen, A. I., Leduc, M., & Matthews, H. D. (2017). Seasonal climate change patterns due to 

cumulative CO2 emissions. Environmental Research Letters, 12(7), 075002. 

Pasquarella, V. J., Elkinton, J. S., & Bradley, B. A. (2018). Extensive gypsy moth defoliation in 

Southern New England characterized using Landsat satellite observations. Biological 

Invasions, 20(11), 3047-3053. 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., Li, Y. (2020). 

The Fluxnet2015 dataset and the ONEFlux processing pipeline for eddy covariance 

data. Scientific data, 7(1), 1-27. 

Patarasuk, R., Gurney, K. R., O’Keeffe, D., Song, Y., Huang, J., Rao, P., Buchert, M., Lin, J.C., 

Mendoza, D., & Ehleringer, J. R. (2016). Urban high-resolution fossil fuel CO2 emissions 

quantification and exploration of emission drivers for potential policy applications. 

Urban Ecosystems, 19(3), 1013-1039. 

Paynter, D., & Frölicher, T. L. (2015). Sensitivity of radiative forcing, ocean heat uptake, and 

climate feedback to changes in anthropogenic greenhouse gases and aerosols. Journal of 

Geophysical Research: Atmospheres, 120(19), 9837-9854. 

Pearson, E., & D’Orangeville, L. (2022). Relating the Growth Phenology and Biomass 

Allocation in Seedlings of 13 Acadian Tree Species With Their Drought 

Tolerance. Frontiers in Forests and Global Change, 16. 

Peltoniemi, M., Aurela, M., Böttcher, K., Kolari, P., Loehr, J., Hokkanen, T., Karhu, J., 

Linkosalmi, M., Tanis, C.M., Metsämäki, S., Tuovinen, J.P., & Arslan, A. N. (2018). 

Networked web-cameras monitor congruent seasonal development of birches with 

phenological field observations. Agricultural and Forest Meteorology, 249, 335-347. 

Peñuelas, J., & Filella, I. (2001). Responses to a warming world. Science, 294(5543), 793-795. 

Peñuelas, J., & Filella, I. (2009). Phenology feedbacks on climate change. Science, 324(5929), 

887-888. 



245 

 

Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 

2000 in the Mediterranean region. Global Change Biology, 8(6), 531-544. 

Peters, G. P. (2018). Beyond carbon budgets. Nature Geoscience, 11(6), 378-380. 

Phillips, L. B., Hansen, A. J., and Flather, C. H. (2008). Evaluating the species energy 

relationship with the newest measures of ecosystem energy: NDVI versus MODIS 

primary production. Remote Sensing of Environment, 112(12), 4381-4392. 

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., & Vesala, T. 

(2008). Net carbon dioxide losses of northern ecosystems in response to autumn 

warming. Nature, 451(7174), 49-52. 

Piao, S., Friedlingstein, P., Ciais, P., Viovy, N., & Demarty, J. (2007). Growing season extension 

and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 

decades. Global Biogeochemical Cycles, 21(3). 

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X.U., Shen, M., & Zhu, 

X. (2019). Plant phenology and global climate change: Current progresses and 

challenges. Global Change Biology, 25(6), 1922-1940. 

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Zhu, X. (2019). Plant phenology and 

global climate change: Current progresses and challenges. Global change biology, 25(6), 

1922-1940. 

Polgar, C. A., & Primack, R. B. (2011). Leaf‐out phenology of temperate woody plants: from 

trees to ecosystems. New phytologist, 191(4), 926-941. 

Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, 

S., Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, 

G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., and Peylin, P. (2015). Plant 

functional type classification for earth system models: results from the European Space 

Agency's Land Cover Climate Change Initiative. Geoscientific Model Development, 8(7), 

2315-2328. 

Price, D. T., Alfaro, R. I., Brown, K. J., Flannigan, M. D., Fleming, R. A., Hogg, E. H., Girardin, 

M.P., Lakusta, T., Johnston, M., McKenney, D.W., Pedlar, J.H., & Venier, L. A. (2013). 

Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. 

Environmental Reviews, 21(4), 322-365. 



246 

 

Price, D. T., McKenney, D. W., Joyce, L. A., Siltanen, R. M., Papadopol, P., & Lawrence, K. 

(2011). High-resolution interpolation of climate scenarios for Canada derived from 

general circulation model simulations. Edmonton, AB: Canadian Forest Service, 

Northern Forestry Centre. 

Pueyo, S. (2012). Solution to the paradox of climate sensitivity. Climatic Change, 113(2), 163-

179. 

Pureswaran, D. S., Neau, M., Marchand, M., De Grandpré, L., & Kneeshaw, D. (2019). 

Phenological synchrony between eastern spruce budworm and its host trees increases 

with warmer temperatures in the boreal forest. Ecology and Evolution, 9(1), 576-586. 

Purkey, S. G., & Johnson, G. C. (2013). Antarctic Bottom Water warming and freshening: 

Contributions to sea level rise, ocean freshwater budgets, and global heat gain. Journal of 

Climate, 26(16), 6105-6122. 

Python Software Foundation. (2022). Selenium 4.5.0 Available at: 

https://pypi.org/project/selenium/. 

Qi, Y., Dennison, P. E., Jolly, W. M., Kropp, R. C., & Brewer, S. C. (2014). Spectroscopic 

analysis of seasonal changes in live fuel moisture content and leaf dry mass. Remote 

Sensing of Environment, 150, 198–206. 

Qiu, F., Chen, J. M., Croft, H., Li, J., Zhang, Q., Zhang, Y., & Ju, W. (2019). Retrieving Leaf 

Chlorophyll Content by Incorporating Variable Leaf Surface Reflectance in the 

PROSPECT Model. Remote Sensing, 11, 1572. 

Qiu, F., Chen, J. M., Ju, W., Wang, J., Zhang, Q., & Fang, M. (2018). Improving the 

PROSPECT Model to Consider Anisotropic Scattering of Leaf Internal Materials and Its 

Use for Retrieving Leaf Biomass in Fresh Leaves. IEEE TRANSACTIONS ON 

GEOSCIENCE AND REMOTE SENSING. 56, 3119–3136. 

https://doi.org/10.1109/TGRS.2018.2791930. 

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/. 

Randerson, J. T., Lindsay, K., Munoz, E., Fu, W., Moore, J. K., Hoffman, F. M., Mahowald, 

N.M., & Doney, S. C. (2015). Multicentury changes in ocean and land contributions to 

the climate‐carbon feedback. Global Biogeochemical Cycles, 29(6), 744-759. 

Randerson, J.T., G.R. van der Werf, L. Giglio, G.J. Collatz, and P.S. Kasibhatla. (2017). Global 

https://pypi.org/project/selenium/
https://doi.org/10.1109/TGRS.2018.2791930


247 

 

fire emissions database, version 4.1 (GFEDv4). ORNL DAAC, Oak Ridge, Tennessee, 

USA. 

Raupach, M. R., Canadell, J. G., Ciais, P., Friedlingstein, P., Rayner, P. J., & Trudinger, C. M. 

(2011). The relationship between peak warming and cumulative CO2 emissions, and its 

use to quantify vulnerabilities in the carbon-climate-human system. Tellus B: Chemical 

and Physical Meteorology, 63(2), 145-164. 

Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1992). Leaf life‐span in relation to leaf, plant, 

and stand characteristics among diverse ecosystems. Ecological monographs, 62(3), 365-

392. 

Reich, P. B., Walters, M. B., Ellsworth, D. S. (1997). From tropics to tundra: global convergence 

in plant functioning. Proceedings of the National Academy of Sciences. 94, 13 730–13 

734. 

Reichler, T., and Kim, J. (2008). How well do coupled models simulate today's climate?. Bulletin 

of the American Meteorological Society, 89(3), 303-312. 

Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T. R., Monteagudo, A., 

Phillips, O.L., Richard, H., & Chave, J. (2015). Using repeated small-footprint LiDAR 

acquisitions to infer spatial and temporal variations of a high-biomass Neotropical 

forest. Remote Sensing of Environment, 169, 93-101. 

Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological mismatch in trophic 

interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, 

and Systematics, 49, 165-182. 

Riano, D., Vaughan, P., Chuvieco, E., Zarco-Tejada, P. J., & Ustin, S. L. (2005). Estimation of 

fuel moisture content by inversion of radiative transfer models to simulate equivalent 

water thickness and dry matter content: analysis at leaf and canopy level. IEEE 

Transactions on Geoscience and Remote Sensing. 43, 819–826. 

https://doi.org/10.1109/TGRS.2005.843316. 

Richardson, A. D. (2019). Tracking seasonal rhythms of plants in diverse ecosystems with digital 

camera imagery. New Phytologist, 222(4), 1742-1750. 

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D., Chen, M., Gray, J. M., & Thom, J. 

E. (2017). PhenoCam Dataset v1. 0: Vegetation phenology from digital camera imagery, 

2000–2015. ORNL Distributed Active Archive Center. 

https://doi.org/10.1109/TGRS.2005.843316


248 

 

Richardson, A. D., Hufkens, K., Milliman, T., & Frolking, S. (2018b). Intercomparison of 

phenological transition dates derived from the PhenoCam Dataset V1. 0 and MODIS 

satellite remote sensing. Scientific Reports, 8(1), 1-12. 

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M., Johnston, 

M.R., Keenan, T.F., Klosterman, S.T., Kosmala, M., Melaas, E.K., Friedl, M. A., & 

Frolking, S. (2018a). Tracking vegetation phenology across diverse North American 

biomes using PhenoCam imagery. Scientific Data, 5(1), 1-24. 

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Furze, M. E., Seyednasrollah, 

B., Krassovski, M.B., Latimer, J.M., Nettles, W.R., Heiderman, R.R., Warren, J.M., & 

Hanson, P. J. (2018c). Ecosystem warming extends vegetation activity but heightens 

vulnerability to cold temperatures. Nature, 560(7718), 368-371. 

Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S. V., & Smith, M. 

L. (2007). Use of digital webcam images to track spring green-up in a deciduous 

broadleaf forest. Oecologia, 152(2), 323-334. 

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M. 

(2013). Climate change, phenology, and phenological control of vegetation feedbacks to 

the climate system. Agricultural and Forest Meteorology, 169, 156-173. 

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. 

(2013). Climate change, phenology, and phenological control of vegetation feedbacks to 

the climate system. Agricultural and Forest Meteorology, 169, 156-173. 

Ridgwell, A., & Hargreaves, J. C. (2007). Regulation of atmospheric CO2 by deep‐sea sediments 

in an Earth system model. Global Biogeochemical Cycles, 21(2). 

Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, 

L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., 

Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K. (2020). Earth 

System Model Validation Tool (ESMValTool) v2. 0–technical overview. Geoscientific 

Model Development, 13(3), 1179-1199. 

Ringer, M. A., &rews, T., & Webb, M. J. (2014). Global‐mean radiative feedbacks and forcing 

in atmosphere‐only and coupled atmosphere‐ocean climate change experiments. 

Geophysical Research Letters, 41(11), 4035-4042. 

Rodda, S. R., Thumaty, K. C., Praveen, M. S. S., Jha, C. S., and Dadhwal, V. K. (2021). Multi-



249 

 

year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous 

forest of India. Agricultural and Forest Meteorology, 301, 108351. 

Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., 

Riahi, K., & Meinshausen, M. (2016). Paris Agreement climate proposals need a boost to 

keep warming well below 2°C. Nature, 534(7609), 631-639.  

Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J., & Séférian, R. (2019). Estimating and 

tracking the remaining carbon budget for stringent climate targets. Nature, 571(7765), 

335-342. 

Rogelj, J., Meinshausen, M., & Knutti, R. (2012). Global warming under old and new scenarios 

using IPCC climate sensitivity range estimates. Nature climate change, 2(4), 248-253. 

Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., 

Kobayashi, S., Kriegler, E., Mundaca, L., & Zickfeld, K. (2018). Mitigation pathways 

compatible with 1.5°C in the context of sustainable development. In Global warming of 

1.5°C (pp. 93-174). Intergovernmental Panel on Climate Change. 

Rohling, E. J., Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., van de Wal, R. S. W., von 

der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K., Crucifix, M., DeConto, R., 

Drijfhout, S. S., Fedorov, A., Foster, G. L., Ganopolski, A., Hansen, J., Hönisch, B., 

Hooghiemstra, H., Huber, M., Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, 

D., Masson-Delmotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M., Pälike, H., 

Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos J. C., & Zeebe, R. E. (2012). 

Making sense of paleoclimate sensitivity. Nature, 491(7426), 683-691. 

Rowe, J.S. (1972). Forest regions of Canada. Natural Resources Canada, Canadian Forest 

Service, Ottawa, Canada. 

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., Salas, W., Zutta, B.R., 

Buermann, W., Lewis, S.L., Hagen, S., and Morel, A. (2011). Benchmark map of forest 

carbon stocks in tropical regions across three continents. Proceedings of the national 

academy of sciences, 108(24), 9899-9904. 

Sakalli, A., Cescatti, A., Dosio, A., & Gücel, M. U. (2017). Impacts of 2°C global warming on 

primary production and soil carbon storage capacity at pan-European level. Climate 

Services, 7, 64-77. 



250 

 

Salmela, M. J., Cavers, S., Cottrell, J. E., Iason, G. R., & Ennos, R. A. (2013). Spring phenology 

shows genetic variation among and within populations in seedlings of Scots pine (Pinus 

sylvestris L.) in the Scottish Highlands. Plant Ecology & Diversity, 6(3-4), 523-536. 

Sánchez‐Pinillos, M., D’Orangeville, L., Boulanger, Y., Comeau, P., Wang, J., Taylor, A. R., & 

Kneeshaw, D. (2022). Sequential droughts: A silent trigger of boreal forest mortality. 

Global Change Biology, 28(2), 542-556. 

Sangüesa-Barreda, G., Di Filippo, A., Piovesan, G., Rozas, V., Di Fiore, L., García-Hidalgo, M., 

García-Cervigón, A.I., Muñoz-Garachana, D., Baliva, M., & Olano, J. M. (2021). 

Warmer springs have increased the frequency and extension of late-frost defoliations in 

southern European beech forests. Science of the Total Environment, 775, 145860. 

Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J. B. S., Hall, R. J., Pathe, C., 

Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner, M., and Wegmüller, U. 

(2015). Forest growing stock volume of the northern hemisphere: Spatially explicit 

estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, 168, 

316-334. 

Sardans, J., & Peñuelas, J. (2015). Potassium: a neglected nutrient in global change. Global 

Ecology and Biogeography. 24, 261–275. 

Saugier, B., and Roy, J. (2001). Estimations of global terrestrial productivity: Converging 

towards a single number?. Global Terrestrial Productivity: Past, Present and Future, 

573. 

Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S., & Martonchik, J.V. (2006). 

Reflectance quantities in optical remote sensing—definitions and case studies. Remote 

Sensing of Environment, 103, 27–42. https://doi.org/10.1016/j.rse.2006.03.002. 

Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., 

Van Nes, E.H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical 

transitions. Nature, 461(7260), 53-59. 

Scheifinger, H., Menzel, A., Koch, E., & Peter, C. (2003). Trends of spring time frost events and 

phenological dates in Central Europe. Theoretical and Applied Climatology, 74(1), 41-51. 

Schlesinger, W. H. (1997). Biogeochemistry: An analysis of global change (2nd ed.). Oxford: 

Academic. 

https://doi.org/10.1016/j.rse.2006.03.002


251 

 

Schurgers, G., Ahlström, A., Arneth, A., Pugh, T. A., & Smith, B. (2018). Climate sensitivity 

controls uncertainty in future terrestrial carbon sink. Geophysical Research 

Letters, 45(9), 4329-4336. 

Schwartz, M. D., Ahas, R., & Aasa, A. (2006). Onset of spring starting earlier across the 

Northern Hemisphere. Global change biology, 12(2), 343-351. 

Séférian, R., Nabat, P., Michou, M., Saint‐Martin, D., Voldoire, A., Colin, J., Madec, G. (2019). 

Evaluation of CNRM Earth System Model, CNRM‐ESM2‐1: Role of Earth System 

Processes in Present‐Day and Future Climate. Journal of Advances in Modeling Earth 

Systems, 11(12), 4182-4227. 

Seland, Ø., Bentsen, M., Seland Graff, L., Olivié, D., Toniazzo, T., Gjermundsen, A., Debernard, 

J. B., Gupta, A. K., He, Y., Kirkevåg, A., Schwinger, J., Tjiputra, J., Schancke Aas, K., 

Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Hafsahl Karset, I. H., 

Landgren, O., Liakka, J., Onsum Moseid, K., Nummelin, A., Spensberger, C., Tang, H., 

Zhang, Z., Heinze, C., Iverson, T., and Schulz, M. (2020). Overview of the Norwegian 

Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, 

and scenario simulations. Geoscientific Model Development, 13(12), 6165-6200. 

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., Zerroukat, M. 

(2019). UKESM1: Description and evaluation of the UK Earth System Model. Journal of 

Advances in Modeling Earth Systems, 11(12), 4513-4558. 

Serbin, S. P., Wu, J., Ely, K. S., Kruger, E. L., Townsend, P. A., Meng, R., & Rogers, A. (2019). 

From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf 

reflectance. New Phytologist, 224(4), 1557-1568. 

Seyednasrollah, B., A.M. Young, K. Hufkens, T. Milliman, M.A. Friedl, S. Frolking, A.D. 

Richardson, M. Abraha, D.W. Allen, M. Apple, M.A. Arain, J. Baker, J.M. Baker, D. 

Baldocchi, C.J. Bernacchi, J. Bhattacharjee, P. Blanken, D.D. Bosch, R. Boughton, E.H. 

Boughton, R.F. Brown, D.M. Browning, N. Brunsell, S.P. Burns, M. Cavagna, H. Chu, 

P.E. Clark, B.J. Conrad, E. Cremonese, D. Debinski, A.R. Desai, R. Diaz-Delgado, L. 

Duchesne, A.L. Dunn, D.M. Eissenstat, T. El-Madany, D.S.S. Ellum, S.M. Ernest, A. 

Esposito, L. Fenstermaker, L.B. Flanagan, B. Forsythe, J. Gallagher, D. Gianelle, T. 

Griffis, P. Groffman, L. Gu, J. Guillemot, M. Halpin, P.J. Hanson, D. Hemming, A.A. 

Hove, E.R. Humphreys, A. Jaimes-Hernandez, A.A. Jaradat, J. Johnson, E. Keel, V.R. 



252 

 

Kelly, J.W. Kirchner, P.B. Kirchner, M. Knapp, M. Krassovski, O. Langvall, G. Lanthier, 

G.l. Maire, E. Magliulo, T.A. Martin, B. McNeil, G.A. Meyer, M. Migliavacca, B.P. 

Mohanty, C.E. Moore, R. Mudd, J.W. Munger, Z.E. Murrell, Z. Nesic, H.S. Neufeld, T.L. 

O'Halloran, W. Oechel, A.C. Oishi, W.W. Oswald, T.D. Perkins, M.L. Reba, B. 

Rundquist, B.R. Runkle, E.S. Russell, E.J. Sadler, A. Saha, N.Z. Saliendra, L. 

Schmalbeck, M.D. Schwartz, R.L. Scott, E.M. Smith, O. Sonnentag, P. Stoy, S. Strachan, 

K. Suvocarev, J.E. Thom, R.Q. Thomas, A.K. Van den berg, R. Vargas, J. Verfaillie, C.S. 

Vogel, J.J. Walker, N. Webb, P. Wetzel, S. Weyers, A.V. Whipple, T.G. Whitham, G. 

Wohlfahrt, J.D. Wood, S. Wolf, J. Yang, X. Yang, G. Yenni, Y. Zhang, Q. Zhang, and D. 

Zona. (2019a). PhenoCam Dataset v2.0: Vegetation Phenology from Digital Camera 

Imagery, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA. 

https://doi.org/10.3334/ORNLDAAC/1674.  

Seyednasrollah, B., Bowling, D. R., Cheng, R., Logan, B. A., Magney, T. S., Frankenberg, C., 

Yang, J.C., Young, A.M., Hufkens, K., Arain, M.A., Black, T.A., & Richardson, A. D. 

(2021). Seasonal variation in the canopy colour of temperate evergreen conifer forests. 

New Phytologist, 229(5), 2586-2600. 

Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A., Frolking, S., 

Richardson, A.D., Abraha, M., Allen, D.W., Apple, M., Arain, M.A., & Zona, D. 

(2019a). PhenoCam Dataset v2.0: Vegetation Phenology from Digital Camera Imagery, 

2000-2018. ORNL DAAC. 

Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A., Frolking, S., & 

Richardson, A. D. (2019b). Tracking vegetation phenology across diverse biomes using 

Version 2.0 of the PhenoCam Dataset. Scientific Data, 6(1), 1-11. 

Seyednasrollah, B., Young, A. M., Hufkens, K., Milliman, T., Friedl, M. A., Frolking, S., & 

Richardson, A. D. (2019b). Tracking vegetation phenology across diverse biomes using 

Version 2.0 of the PhenoCam Dataset. Scientific Data, 6(1), 1-11. 

Sheffield, J., Goteti, G., and Wood, E. F. (2006). Development of a 50-year high-resolution 

global dataset of meteorological forcings for land surface modeling. Journal of 

climate, 19(13), 3088-3111. 

Shevliakova, E., Malyshev, S., Martinez-Cano, I., Milly, P. C. D., Pacala, S. W., Ginoux, P., 

Dunne, K. A., Dunne, J. P., Dupius, C., Findell, K., Ghannam, K., Horowitz, L. W., John, 

https://doi.org/10.3334/ORNLDAAC/1674.


253 

 

J. G., Knutson, T. R., Krasting, J. P., Naik, V., Zadeh, N., Zeng, F., and Zeng, Y. (2020). 

The land component LM4. 1 of the GFDL Earth System Model ESM4. 1: biophysical and 

biogeochemical processes and interactions with climate. J. Adv. Model. Earth Syst., 

2019MS002040, in review. 

Shevliakova, E., Stouffer, R. J., Malyshev, S., Krasting, J. P., Hurtt, G. C., & Pacala, S. W. 

(2013). Historical warming reduced due to enhanced land carbon uptake. Proceedings of 

the National Academy of Sciences, 110(42), 16730-16735. 

Shiklomanov, A. N., Dietze, M. C., Viskari, T., Townsend, P. A., & Serbin, S. P. (2016). 

Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates 

through a Bayesian approach to RTM inversion. Remote Sensing of Environment, 183, 

226-238. 

Shipley, B., De Bello, F., Cornelissen, J. H. C., Laliberté, E., Laughlin, D. C., & Reich, P. B. 

(2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180, 

923–931. 

Simard, M., Pinto, N., Fisher, J. B., and Baccini, A. (2011). Mapping forest canopy height 

globally with spaceborne lidar. Journal of Geophysical Research: 

Biogeosciences, 116(G4). 

Simmons, C. T., & Matthews, H. D. (2016). Assessing the implications of human land-use 

change for the transient climate response to cumulative carbon emissions. Environmental 

Research Letters, 11(3), 035001. 

Simmons, M., Davis, D. S., Griffiths, L., & Muecke, A. (1984). Natural History of Nova Scotia. 

Vol. 1. Nova Scotia Museum of Natural History, Halifax, NS. 

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., & Regayre, L. 

A. (2018). FAIR v1. 3: a simple emissions-based impulse response and carbon cycle 

model. Geoscientific Model Development, 11(6), 2273-2297. 

Smith, C., Beazley, K. F., Duinker, P., & Harper, K. A. (2010). The impact of moose (Alces 

alces andersoni) on forest regeneration following a severe spruce budworm outbreak in 

the Cape Breton Highlands, Nova Scotia, Canada. Alces: A Journal Devoted to the 

Biology and Management of Moose, 46, 135-150. 

Smith, T., Traxl, D., & Boers, N. (2022). Empirical evidence for recent global shifts in 

vegetation resilience. Nature Climate Change, 1-8. 



254 

 

Snyder, K. A., Wehan, B. L., Filippa, G., Huntington, J. L., Stringham, T. K., & Snyder, D. K. 

(2016). Extracting plant phenology metrics in a great basin watershed: Methods and 

considerations for quantifying phenophases in a cold desert. Sensors, 16(11), 1948. 

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M., Braswell, B. H., 

Milliman, T., O’Keefe, J., & Richardson, A. D. (2012). Digital repeat photography for 

phenological research in forest ecosystems. Agricultural and Forest Meteorology, 152, 

159-177. 

Sonobe, R., Miura, Y., Sano, T., & Horie, H. (2017). Estimating leaf carotenoid contents of 

shade-grown tea using hyperspectral indices and PROSPECT–D inversion. International 

Journal of Remote Sensing. 39(5), 1306-1320. 

Sonobe, R., Sano, T., & Horie, H. (2018). Using spectral reflectance to estimate leaf chlorophyll 

content of tea with shading treatments. Biosystems engineering. 175, 168–182. 

Spafford, L., & MacDougall, A. H. (2021). Validation of terrestrial biogeochemistry in CMIP6 

Earth system models: a review. Geoscientific Model Development, 14(9), 5863-5889. 

Spanner, M. A., Pierce, L. L., Peterson, D. L., & Running, S. W. (1990). Remote sensing of 

temperate coniferous forest leaf area index: The influence of canopy closure, understory 

vegetation and background reflectance. Remote Sensing, 11(1), 95-111. 

Sparks, T. H., & Carey, P. D. (1995). The responses of species to climate over two centuries: an 

analysis of the Marsham phenological record, 1736-1947. Journal of Ecology, 321-329. 

Spencer, D. M., & Holecek, D. F. (2007). A profile of the fall foliage tourism market. Journal of 

Vacation Marketing, 13(4), 339-358. 

Spring, A., Ilyina, T., & Marotzke, J. (2020). Inherent uncertainty disguises attribution of 

reduced atmospheric CO2 growth to CO2 emission reductions for up to a decade. 

Environmental Research Letters, 15(11), 114058. 

Steenberg, J. W., Duinker, P. N., & Bush, P. G. (2013). Modelling the effects of climate change 

and timber harvest on the forests of central Nova Scotia, Canada. Annals of Forest 

Science, 70(1), 61-73. 

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., Townsend, 

S.E., Carbone, C., Rowcliffe, J.M., Whittington, J., & Brodie, J. (2017). Scaling‐up 

camera traps: Monitoring the planet's biodiversity with networks of remote 

sensors. Frontiers in Ecology and the Environment. 15(1), 26-34. 



255 

 

Steinacher, M., & Joos, F. (2016). Transient Earth system responses to cumulative carbon 

dioxide emissions: linearities, uncertainties, and probabilities in an observation-

constrained model ensemble. Biogeosciences, 13(4), 1071-1103. 

Stephens, J. J., Black, T. A., Jassal, R. S., Nesic, Z., Grant, N. J., Barr, A. G., Helgason, W.D., 

Richardson, A.D., Johnson, M.S., & Christen, A. (2018). Effects of forest tent caterpillar 

defoliation on carbon and water fluxes in a boreal aspen stand. Agricultural and Forest 

Meteorology, 253, 176-189. 

Stephenson, N. L., Das, A. J., Ampersee, N. J., Cahill, K. G., Caprio, A. C., Sanders, J. E., & 

Williams, A. P. (2018). Patterns and correlates of giant sequoia foliage dieback during 

California’s 2012–2016 hotter drought. Forest Ecology and Management, 419, 268-278. 

Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I 

contribution to the Fifth assessment report of the Intergovernmental Panel on Climate 

Change. Cambridge university press. 

Stokes, G. G., (1862). IV. On the intensity of the light reflected from or transmitted through a 

pile of plates. Proceedings of the Royal Society of London. 545–556. 

Sun, J., Shi, S., Yang, J., Du, L., Gong, W., Chen, B., & Song, S. (2018). Analyzing the 

performance of PROSPECT model inversion based on different spectral information for 

leaf biochemical properties retrieval. ISPRS Journal of Photogrammetry and Remote 

Sensing. 135, 74–83. https://doi.org/10.1016/j.isprsjprs.2017.11.010. 

Sun, J., Shi, S., Yang, J., Gong, W., Qiu, F., Wang, L., & Chen, B. (2019). Wavelength selection 

of the multispectral lidar system for estimating leaf chlorophyll and water contents 

through the PROSPECT model. Agricultural and forest meteorology. 266, 43-52. 

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., 

Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., 

Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D. and Winter, B. 

(2019). The Canadian Earth System Model version 5 (CanESM5. 0.3). Geoscientific 

Model Development, 12(11), 4823-4873. 

Tachiiri, K., Hajima, T., & Kawamiya, M. (2015). Increase of uncertainty in transient climate 

response to cumulative carbon emissions after stabilization of atmospheric CO2 

concentration. Environmental Research Letters, 10(12), 125018. 

https://doi.org/10.1016/j.isprsjprs.2017.11.010


256 

 

Tachiiri, K., Hajima, T., & Kawamiya, M. (2019). Increase of the transient climate response to 

cumulative carbon emissions with decreasing CO2 concentration scenarios. 

Environmental Research Letters, 14(12), 124067. 

Taylor, A. R., Boulanger, Y., Price, D. T., Cyr, D., McGarrigle, E., Rammer, W., & Kershaw Jr, 

J. A. (2017). Rapid 21st century climate change projected to shift composition and 

growth of Canada’s Acadian Forest Region. Forest Ecology and Management, 405, 284-

294. 

Taylor, A. R., Dracup, E., MacLean, D. A., Boulanger, Y., & Endicott, S. (2019). Forest 

structure more important than topography in determining windthrow during Hurricane 

Juan in Canada’s Acadian Forest Region. Forest Ecology and Management, 434, 255-

263. 

Taylor, A. R., MacLean, D. A., Neily, P. D., Stewart, B., Quigley, E., Basquill, S. P., Boone, 

C.K., Gilby, D., & Pulsifer, M. (2020). A review of natural disturbances to inform 

implementation of ecological forestry in Nova Scotia, Canada. Environmental 

Reviews, 28(4), 387-414. 

Taylor, A. R., MacLean, D. A., Neily, P. D., Stewart, B., Quigley, E., Basquill, S. P., Boone, 

C.K., Gilby, D., & Pulsifer, M. (2020). A review of natural disturbances to inform 

implementation of ecological forestry in Nova Scotia, Canada. Environmental Reviews, 

28(4), 387-414. 

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single 

diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192. 

The Canadian Press. (2022). Post-tropical storm Fiona most costly weather event to ever hit 

Atlantic Canada, new estimate says. CBC News Nova Scotia. Retrieved from: 

https://www.cbc.ca/news/79iona79/nova-scotia/79iona-atlantic-canada-insured-damages-

660-million-1.6621583#:~:text=CBC%20News%20Loaded-

,Post%2Dtropical%20storm%20Fiona%20most%20costly%20weather%20event%20to%

20ever,%24660%20million%20in%20insured%20damage. 

Thornton, M. M., Shrestha, R., Thornton, P. E., Kao, S., Wei, Y., & Wilson, B. E. (2021). 

Daymet Version 4 Monthly Latency: Daily Surface Weather Data. ORNL DAAC, Oak 

Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1904. 

https://doi.org/10.3334/ORNLDAAC/1904


257 

 

Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., Kao, S., & Wilson, B. E. (2022). 

Daymet: Monthly Climate Summaries on a 1-km Grid for North America, Version 4 R1. 

ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/2129. 

Thurner, M., Beer, C., Santoro, M., Carvalhais, N., Wutzler, T., Schepaschenko, D., Shvidenko, 

A., Kompter, E., Ahrens, B., Levick, S. R., and Schmullius, C. (2014). Carbon stock and 

density of northern boreal and temperate forests. Global Ecology and 

Biogeography, 23(3), 297-310. 

Tian, F., Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., & Eklundh, L. (2021). 

Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and 

PEP725 networks across Europe. Remote Sensing of Environment, 260, 112456. 

Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., Arneth, A., Chang, J., Chen, 

G., Ciais, P., Gerber, S., Ito, A., Huang, Y., Joos, F., Lienert, S., Messina, P., Olin, S., 

Pan, S., Peng, C., Saikawa, E., Thompson, R. L., Vuichard, N., Winiwarter, W., Zaehle, 

S., Zhang, B., Zhang, K., and Zhu, Q. (2018). The global N2O model intercomparison 

project. Bulletin of the American Meteorological Society, 99(6), 1231-1251. 

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. 

A. G., and Allison, S. D. (2013). Causes of variation in soil carbon simulations from 

CMIP5 Earth system models and comparison with observations. Biogeosciences, 10(3), 

1717-1736. 

Tokarska, K. B., Gillett, N. P., Arora, V. K., Lee, W. G., & Zickfeld, K. (2018). The influence of 

non-CO2 forcings on cumulative carbon emissions budgets. Environmental Research 

Letters, 13(3), 034039. 

Tokarska, K. B., Gillett, N. P., Weaver, A. J., Arora, V. K., & Eby, M. (2016). The climate 

response to five trillion tonnes of carbon. Nature Climate Change, 6(9), 851-855. 

Toomey, M., Friedl, M. A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, 

D.D., Bernacchi, C.J., Biraud, S.C., Bohrer, G., & Richardson, A. D. (2015). Greenness 

indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale 

photosynthesis. Ecological Applications, 25(1), 99-115. 

Toomey, M., Friedl, M.A., Frolking, S., Hufkens, K., Klosterman, S., Sonnentag, O., Baldocchi, 

D.D., Bernacchi, C.J., Biraud, S.C., Bohrer, G., & Brzostek, E. (2015). Greenness indices 

https://doi.org/10.3334/ORNLDAAC/2129


258 

 

from digital cameras predict the timing and seasonal dynamics of canopy‐scale 

photosynthesis. Ecological Applications, 25(1), 99-115. 

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps‐Valls, G., Ráduly, B., Reichstein, 

M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano‐Ortiz, P., Sickert, 

S., Wolf, S., and Papale, D. (2016). Predicting carbon dioxide and energy fluxes across 

global Fluxnet sites with regression algorithms. Biogeosciences, 13, 4291– 4313. 

Tsallis, C., & Stariolo, D. (1996). Generalized Simulated Annealing. Physica A, 233, 395-406. 

https://doi.org/10.1016/S0378-4371(96)00271-3. 

Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary 

production. International journal of remote sensing. 7(11), 1395-1416. 

Tucker, C. J., Fung, I. Y., Keeling, C. D., Gammon, R. H. (1986). Relationship between 

atmospheric CO2 variations and a satellite-derived vegetation index. Nature, 319(6050), 

195-199. 

Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P., Meyers, T. P., and Wesely, 

M. L. (2000). Correcting eddy-covariance flux underestimates over a 

grassland. Agricultural and forest meteorology, 103(3), 279-300. 

Two Countries, One Forest. (2014). Ecoregion Boundary. Northern Appalachian/ Acadian 

Ecoregion Conservation Atlas. Available from: 

https://2c1forest.databasin.org/maps/new/#datasets=425508ee1f55464aacc2a2d4be4d0d6

9. 

Umair, M., Kim, D., Ray, R. L., and Choi, M. (2018). Estimating land surface variables and 

sensitivity analysis for CLM and VIC simulations using remote sensing products. Science 

of the Total Environment, 633, 470-483. 

US Department of Commerce, N.O.A.A. (2020). May 3, 2020 derecho. National Weather 

Service. Retrieved June 6, 2022, from https://www.weather.gov/ohx/20200503. 

Usha Rani, P., & Jyothsna, Y. (2010). Biochemical and enzymatic changes in rice plants as a 

mechanism of defense. Acta Physiologiae Plantarum, 32, 695-701. 

Vaduva, C., Georgescu, F. A., Griparis, A., Neagoe, I., Grivei, A. C., & Datcu, M. (2019). 

Exploratory search methodology for sentinel 2 data: a prospect of both visual and latent 

characteristics. In IGARSS 2019-2019 IEEE International Geoscience and Remote 

Sensing Symposium. 10067-10070. 

https://doi.org/10.1016/S0378-4371(96)00271-3
https://2c1forest.databasin.org/maps/new/#datasets=425508ee1f55464aacc2a2d4be4d0d69
https://2c1forest.databasin.org/maps/new/#datasets=425508ee1f55464aacc2a2d4be4d0d69
https://www.weather.gov/ohx/20200503


259 

 

Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., and Tien Bui, D. (2018). 

Improving accuracy estimation of Forest Aboveground Biomass based on incorporation 

of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of 

the Hyrcanian forest area (Iran). Remote Sensing, 10(2), 172. 

van der Heijden, G. M., Powers, J. S., & Schnitzer, S. A. (2015). Lianas reduce carbon 

accumulation and storage in tropical forests. Proceedings of the National Academy of 

Sciences, 112(43), 13267-13271. 

van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., and Sheffield, J. 

(2016). LS3MIP (v1. 0) contribution to CMIP6: the Land Surface, Snow and Soil 

moisture Model Intercomparison Project–aims, setup and expected 

outcome. Geoscientific Model Development, 9(8), 2809-2832. 

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. 

M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., 

and Kasibhatla, P. S. (2017). Global fire emissions estimates during 1997–2016. Earth 

System Science Data, 9, 697– 720. 

Vaughn, W. R., Taylor, A. R., MacLean, D. A., D’Orangeville, L., & Lavigne, M. B. (2021). 

Climate change experiment suggests divergent responses of tree seedlings in eastern 

North America’s Acadian Forest Region over the 21st century. Canadian Journal of 

Forest Research, 51(12), 1888-1902. 

Verger, A., Filella, I., Baret, F., and Peñuelas, J. (2016). Vegetation baseline phenology from 

kilometric global LAI satellite products. Remote sensing of environment, 178, 1-14. 

Verhoef, W., & Bach, H. (2007). Coupled soil–leaf-canopy and atmosphere radiative transfer 

modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance 

data. Remote Sensing of Environment, 109(2), 166-182. 

Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G., & 

Moreno, J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-

geophysical properties–a review. ISPRS Journal of Photogrammetry and Remote 

Sensing, 108, 273-290. 

Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. 

(2012). Machine learning regression algorithms for biophysical parameter retrieval: 

Opportunities for Sentinel-2 and-3. Remote Sensing of Environment, 118, 127-139. 



260 

 

Vial, J., Dufresne, J. L., & Bony, S. (2013). On the interpretation of inter-model spread in 

CMIP5 climate sensitivity estimates. Climate Dynamics, 41(11), 3339-3362. 

Vitasse, Y., & Basler, D. (2014). Is the use of cuttings a good proxy to explore phenological 

responses of temperate forests in warming and photoperiod experiments?. Tree 

Physiology, 34(2), 174-183. 

Vitasse, Y., Baumgarten, F., Zohner, C. M., Kaewthongrach, R., Fu, Y. H., Walde, M. G., & 

Moser, B. (2021). Impact of microclimatic conditions and resource availability on spring 

and autumn phenology of temperate tree seedlings. New Phytologist, 232(2), 537-550. 

Vitasse, Y., Baumgarten, F., Zohner, C. M., Rutishauser, T., Pietragalla, B., Gehrig, R., Dai, J., 

Wang, H., Aono, Y., & Sparks, T. H. (2022). The great acceleration of plant phenological 

shifts. Nature Climate Change, 12(4), 300-302. 

Vitasse, Y., François, C., Delpierre, N., Dufrêne, E., Kremer, A., Chuine, I., & Delzon, S. 

(2011). Assessing the effects of climate change on the phenology of European temperate 

trees. Agricultural and Forest Meteorology, 151(7), 969-980. 

Vitasse, Y., Hoch, G., Randin, C. F., Lenz, A., Kollas, C., Scheepens, J. F., & Körner, C. (2013). 

Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree 

species. Oecologia, 171(3), 663-678. 

Vitasse, Y., Lenz, A., & Körner, C. (2014). The interaction between freezing tolerance and 

phenology in temperate deciduous trees. Frontiers in Plant Science, 5, 541. 

Vitasse, Y., Porté, A. J., Kremer, A., Michalet, R., & Delzon, S. (2009). Responses of canopy 

duration to temperature changes in four temperate tree species: relative contributions of 

spring and autumn leaf phenology. Oecologia, 161(1), 187-198. 

Vitasse, Y., Signarbieux, C., & Fu, Y. H. (2018). Global warming leads to more uniform spring 

phenology across elevations. Proceedings of the National Academy of Sciences, 115(5), 

1004-1008. 

Vitousek, P. M., Menge, D. N., Reed, S. C., and Cleveland, C. C. (2013). Biological nitrogen 

fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130119. 

Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S., Ghattas, J., Peylin, P. (2019). 

Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model 

ORCHIDEE (trunk version, rev 4999): multi-scale validation of gross primary 



261 

 

production. Geoscientific Model Development, 12(11), 4751-4779. 

Vuolo, F., Żółtak, M., Pipitone, C., Zappa, L., Wenng, H., Immitzer, M., Weiss, M., Baret, F., & 

Atzberger, C. (2016). Data service platform for Sentinel-2 surface reflectance and value-

added products: System use and examples. Remote Sensing, 8(11), 938. 

Waliser, D., Gleckler, P. J., Ferraro, R., Taylor, K. E., Ames, S., Biard, J., Bosilovich, M. G., 

Brown, O., Chepfer, H., Cinquini, L., Durack, P., Eyring, V., Mathieu, P.-P., Lee, T., 

Pinnock, S., Potter, G. L., Rixen, M., Saunders, R., Shulz, J., Thepaut, J.-N., and Tuma, 

M. (2020). Observations for model Intercomparison project (Obs4MIPs): Status for 

CMIP6. Geoscientific Model Development, 13(7), 2945-2958. 

Wang, F., Tokarska, K. B., Zhang, J., Ge, Q., Hao, Z., Zhang, X., & Wu, M. (2018). Climate 

warming in response to emission reductions consistent with the Paris Agreement. 

Advances in Meteorology, 2018. 

Wang, J. R., Hawkins, C. D. B., & Letchford, T. (1998). Photosynthesis, water and nitrogen use 

efficiencies of four paper birch (Betula papyrifera) populations grown under different soil 

moisture and nutrient regimes. Forest Ecology and Management, 112(3), 233-244. 

Wang, J. Y. (1960). A critique of the heat unit approach to plant response studies. Ecology, 

41(4), 785-790. 

Wang, S. W., He, X. F., Chen, J. G., Sun, H., Körner, C., & Yang, Y. (2021). Elevation-specific 

responses of phenology in evergreen oaks from their low-dry to their extreme high-cold 

range limits in the SE Himalaya. Alpine Botany, 131(1), 89-102. 

Wang, Z., Skidmore, A. K., Wang, T., Darvishzadeh, R., & Hearne, J. (2015). Applicability of 

the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves. 

Remote Sensing of Environment, 168, 205–218. 

Wang, Z., Townsend, P. A., & Kruger, E. L. (2022). Leaf spectroscopy reveals divergent inter‐

and intra‐species foliar trait covariation and trait–environment relationships across 

NEON domains. New Phytologist, 235(3), 923-938. 

Watt, M. S., Leonardo, E. M. C., Estarija, H. J. C., Massam, P., de Silva, D., O'Neill, R., & 

Zarco-Tejada, P. J. (2021). Long-term effects of water stress on hyperspectral remote 

sensing indicators in young radiata pine. Forest Ecology and Management, 502, 119707. 

Watts, J. D., Natali, S. M., Minions, C., Risk, D., Arndt, K., Zona, D., Euskirchen, E.S., Rocha, 

A.V., Sonnentag, O., Helbig, M., Kalhori, A., & Edgar, C. (2021). Soil respiration 



262 

 

strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research 

Letters, 16(8), 084051. 

WCRP. (2020). CMIP Phase 6 (CMIP6). Retrieved January 23, 2021, from https://www.wcrp-

climate.org/wgcm-cmip/wgcm-cmip6. 

Wei, J., Dirmeyer, P. A., Yang, Z. L., and Chen, H. (2018). Effect of land model ensemble 

versus coupled model ensemble on the simulation of precipitation climatology and 

variability. Theoretical and Applied Climatology, 134(3), 793-800. 

White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for 

monitoring vegetation responses to interannual climatic variability. Global 

Biogeochemical Cycles, 11(2), 217-234. 

Wieder, W. (2014). Regridded Harmonized World Soil Database v1.2, ORNL DAAC, Oak 

Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1247. 

Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K. (2015). Future productivity 

and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8(6), 

441-444. 

Wigley, T. M., & Schlesinger, M. E. (1985). Analytical solution for the effect of increasing CO2 

on global mean temperature. Nature, 315(6021), 649-652. 

Williams, K. E., Harper, A. B., Huntingford, C., Mercado, L. M., Mathison, C. T., Falloon, P. D., 

& Kim, J. (2019). How can the First ISLSCP Field Experiment contribute to present-day 

efforts to evaluate water stress in JULESv5. 0?. Geoscientific Model Development, 12(7), 

3207-3240. 

Williams, R. G., Ceppi, P., & Katavouta, A. (2020). Controls of the transient climate response to 

emissions by physical feedbacks, heat uptake and carbon cycling. Environmental 

Research Letters, 15(9), 0940c1. 

Williams, R. G., Goodwin, P., Ridgwell, A., & Woodworth, P. L. (2012). How warming and 

steric sea level rise relate to cumulative carbon emissions. Geophysical Research Letters, 

39(19). 

Williams, R. G., Goodwin, P., Roussenov, V. M., & Bopp, L. (2016). A framework to 

understand the transient climate response to emissions. Environmental Research Letters, 

11(1), 015003. 

https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://doi.org/10.3334/ORNLDAAC/1247


263 

 

Williams, R. G., Roussenov, V., Goodwin, P., Resplandy, L., & Bopp, L. (2017). Sensitivity of 

global warming to carbon emissions: Effects of heat and carbon uptake in a suite of Earth 

system models. Journal of Climate, 30(23), 9343-9363. 

Wingate, L., Ogée, J., Cremonese, E., Filippa, G., Mizunuma, T., Migliavacca, M., Moisy, C., 

Wilkinson, M., Moureaux, C., Wohlfahrt, G., & Grace, J. (2015). Interpreting canopy 

development and physiology using a European phenology camera network at flux sites. 

Biogeosciences, 12(20), 5995-6015. 

Wolkovich, E. M., & Cleland, E. E. (2011). The phenology of plant invasions: a community 

ecology perspective. Frontiers in Ecology and the Environment, 9(5), 287-294. 

Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., 

Pau, S., Regetz, J., Davies, T.J., Kraft, N.J., Ault, T.R., & Cleland, E. E. (2012). 

Warming experiments underpredict plant phenological responses to climate change. 

Nature, 485(7399), 494-497. 

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-

Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M., & Flexas, J. (2004). The worldwide 

leaf economics spectrum. Nature, 428, 821. 

Wu, C., Gough, C. M., Chen, J. M., & Gonsamo, A. (2013). Evidence of autumn phenology 

control on annual net ecosystem productivity in two temperate deciduous forests. 

Ecological Engineering, 60, 88-95. 

Wu, C., Peng, J., Ciais, P., Peñuelas, J., Wang, H., Beguería, S., &rew Black, T., Jassal, R.S., 

Zhang, X., Yuan, W., Liang, E., & Ge, Q. (2022). Increased drought effects on the 

phenology of autumn leaf senescence. Nature Climate Change, 12(10), 943-949. 

Wu, J., Chavana‐Bryant, C., Prohaska, N., Serbin, S. P., Guan, K., Albert, L. P., Yang, X., van 

Leeuwen, W.J., Garnello, A.J., Martins, G., & Malhi, Y. (2016). Convergence in 

relationships between leaf traits, spectra and age across diverse canopy environments and 

two contrasting tropical forests. New Phytologist, 214(3), 1033-1048. 

Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, 

F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., 

Zhang, Y., and Liu, X. (2019). The Beijing Climate Center climate system model (BCC-

CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model 

Development, 12(4), 1573-1600. 



264 

 

Xiang, Y., Gubain, S., Suomela, B., & Hoeng, J. (2013). Generalized Simulated Annealing for 

Efficient Global Optimization: the GenSA Package for R. The R Journal, Volume 5/1, 

June 2013. https://journal.r-project.org/archive/2013/RJ-2013-002/index.html. 

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., and Zhang, X. 

(2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 

years. Remote Sensing of Environment, 233, 111383. 

Xie, X., Li, A., Tan, J., Lei, G., Jin, H., and Zhang, Z. (2020). Uncertainty analysis of multiple 

global GPP datasets in characterizing the lagged effect of drought on 

photosynthesis. Ecological Indicators, 113, 106224. 

Xie, Y., Civco, D. L., & Silander Jr, J. A. (2018a). Species‐specific spring and autumn leaf 

phenology captured by time‐lapse digital cameras. Ecosphere, 9(1), e02089. 

Xie, Y., Wang, X., & Silander, J. A. (2015). Deciduous forest responses to temperature, 

precipitation, and drought imply complex climate change impacts. Proceedings of the 

National Academy of Sciences, 112(44), 13585-13590. 

Xie, Y., Wang, X., Wilson, A. M., & Silander Jr, J. A. (2018b). Predicting autumn phenology: 

how deciduous tree species respond to weather stressors. Agricultural and forest 

meteorology, 250, 127-137. 

Xu, Z., Jiang, Y., Jia, B., and Zhou, G. (2016). Elevated-CO2 response of stomata and its 

dependence on environmental factors. Frontiers in plant science, 7, 657. 

Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on 

colossal datasets for quality classification. In 2016 IEEE 6th International conference on 

advanced computing (IACC) (pp. 78-83). IEEE. 

Yan, Y., Zhou, X., Jiang, L., and Luo, Y. (2017). Effects of carbon turnover time on terrestrial 

ecosystem carbon storage. Biogeosciences, 14(23), 5441-5454. 

Yang, X., Tang, J., & Mustard, J. F. (2014). Beyond leaf color: Comparing camera‐based 

phenological metrics with leaf biochemical, biophysical, and spectral properties 

throughout the growing season of a temperate deciduous forest. Journal of Geophysical 

Research: Biogeosciences, 119(3), 181-191. 

Yang, X., Tang, J., Mustard, J. F., Wu, J., Zhao, K., Serbin, S., & Lee, J. E. (2016). Seasonal 

variability of multiple leaf traits captured by leaf spectroscopy at two temperate 

deciduous forests. Remote Sensing of Environment, 179, 1-12. 

https://journal.r-project.org/archive/2013/RJ-2013-002/index.html


265 

 

Yebra, M., Chuvieco, E., & Riaño, D. (2008). Estimation of live fuel moisture content from 

MODIS images for fire risk assessment. Agricultural and Forest Meteorology, 148, 523–

536. 

Yoshikawa, C., Kawamiya, M., Kato, T., Yamanaka, Y., and Matsuno, T. (2008). Geographical 

distribution of the feedback between future climate change and the carbon cycle. Journal 

of Geophysical Research: Biogeosciences, 113(G3). 

Yuan, Z., & Chen, H. Y. (2015). Decoupling of nitrogen and phosphorus in terrestrial plants 

associated with global changes. Nature Climate Change, 5, 465. 

Zaehle, S., and Dalmonech, D. (2011). Carbon–nitrogen interactions on land at global scales: 

current understanding in modelling climate biosphere feedbacks. Current Opinion in 

Environmental Sustainability, 3(5), 311-320. 

Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based modelling in ecology: A review 

of two decades of research. Ecological Modelling, 407, 108703. 

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2018). Plant 

adaptations to the combination of drought and high temperatures. Physiologia plantarum, 

162, 2–12. 

Zani, D., Crowther, T. W., Mo, L., Renner, S. S., & Zohner, C. M. (2020). Increased growing-

season productivity drives earlier autumn leaf senescence in temperate trees. Science, 

370(6520), 1066-1071. 

Zanne, A. E., Pearse, W. D., Cornwell, W. K., McGlinn, D. J., Wright, I. J., & Uyeda, J. C. 

(2018). Functional biogeography of angiosperms: life at the extremes. New Phytologist, 

218(4), 1697-1709. 

Zarco-Tejada, P., Guillén-Climent, M., Hernández-Clemente, R., Catalina, A., González, M., & 

Martín, P. (2013). Estimating leaf carotenoid content in vineyards using high resolution 

hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agricultural 

and Forest Meteorology. 171-172, 281–294. 

https://doi.org/10.1016/j.agrformet.2012.12.013. 

Zhang, H.-M., Huang, B., Lawrimore, J., Menne, M., & Smith, T.M. (2019). NOAA Global 

Surface Temperature Dataset (NOAAGlobalTemp), Version 5.1. NOAA National Centers 

for Environmental Information. doi:10.25921/9qth-2p70. 

https://doi.org/10.1016/j.agrformet.2012.12.013


266 

 

Zhang, M., & Huang, Y. (2014). Radiative forcing of quadrupling CO2. Journal of Climate, 

27(7), 2496-2508. 

Zhang, S., Buttò, V., Khare, S., Deslauriers, A., Morin, H., Huang, J. G., Ren, H., & Rossi, S. 

(2020). Calibrating PhenoCam data with phenological observations of a black spruce 

stand. Canadian Journal of Remote Sensing, 46(2), 154-165. 

Zhang, Y. J., Yu, G. R., Yang, J., Wimberly, M. C., Zhang, X. Z., Tao, J., Jiang, Y. B., and Zhu, 

J. T. (2014). Climate‐driven global changes in carbon use efficiency. Global Ecology and 

Biogeography, 23, 144– 155. 

Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., and Li, Z. (2020). The 

potential of satellite FPAR product for GPP estimation: An indirect evaluation using 

solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111686. 

Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W. (2005). Improvements of the 

MODIS terrestrial gross and net primary production global data set. Remote Sensing of 

Environment, 95(2), 164-176. 

Zhu, Q., Castellano, M. J., and Yang, G. (2018). Coupling soil water processes and the nitrogen 

cycle across spatial scales: Potentials, bottlenecks and solutions. Earth-Science 

Reviews, 187, 248-258. 

Zhu, W., Sun, Z., Yang, T., Li, J., Peng, J., Zhu, K., & Liao, X. (2020). Estimating leaf 

chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at 

multi-scales. Computers and Electronics in Agriculture, 178, 105786. 

Zhu, X., Helmer, E. H., Gwenzi, D., Collin, M., Fleming, S., Tian, J., Marcano-Vega, H., 

Meléndez-Ackerman, E.J., & Zimmerman, J. K. (2021). Characterization of Dry-Season 

Phenology in Tropical Forests by Reconstructing Cloud-Free Landsat Time Series. 

Remote Sensing, 13(23), 4736. 

Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R.R., and 

Myneni, R. B. (2013). Global data sets of vegetation leaf area index (LAI) 3g and 

fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory 

modeling and mapping studies (GIMMS) normalized difference vegetation index 

(NDVI3g) for the period 1981 to 2011. Remote sensing, 5(2), 927-948. 

Zickfeld, K., Arora, V. K., & Gillett, N. P. (2012). Is the climate response to CO2 emissions path 

dependent?. Geophysical Research Letters, 39(5). 



267 

 

Zickfeld, K., Eby, M., Matthews, H. D., & Weaver, A. J. (2009). Setting cumulative emissions 

targets to reduce the risk of dangerous climate change. Proceedings of the National 

Academy of Sciences, 106(38), 16129-16134. 

Zickfeld, K., Eby, M., Weaver, A. J., Alexander, K., Crespin, E., Edwards, N. R., Eliseev, A.V., 

Feulner, G., Fichefet, T., Forest, C.E., Friedlingstein, P., & Zhao, F. (2013). Long-term 

climate change commitment and reversibility: an EMIC intercomparison. Journal of 

Climate, 26(16), 5782-5809. 

Zickfeld, K., MacDougall, A. H., & Matthews, H. D. (2016). On the proportionality between 

global temperature change and cumulative CO2 emissions during periods of net negative 

CO2 emissions. Environmental Research Letters, 11(5), 055006. 

Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., 

Wang, Y.P., Srbinovsky, J., (2020). The Australian Earth System Model: ACCESS-

ESM1. 5. Journal of Southern Hemisphere Earth Systems Science, 70(1), 193-214. 

Ziehn, T., Kattge, J., Knorr, W., and Scholze, M. (2011). Improving the predictability of global 

CO2 assimilation rates under climate change. Geophysical Research Letters, 38(10). 

Zohner, C. M., & Renner, S. S. (2019). Ongoing seasonally uneven climate warming leads to 

earlier autumn growth cessation in deciduous trees. Oecologia, 189(2), 549-561. 

Zohner, C. M., Mo, L., Renner, S. S., Svenning, J. C., Vitasse, Y., Benito, B. M., Ordonez, A., 

Baumgarten, F., Bastin, J.F., Sebald, V., Reich, P., & Crowther, T. W. (2020). Late-

spring frost risk between 1959 and 2017 decreased in North America but increased in 

Europe and Asia. Proceedings of the National Academy of Sciences, 117(22), 12192-

12200. 

Zohner, C. M., Rockinger, A., & Renner, S. S. (2019). Increased autumn productivity permits 

temperate trees to compensate for spring frost damage. New Phytologist, 221(2), 789-

795. 



268 

 

Appendix I: Validation of Terrestrial Biogeochemistry in CMIP6 Earth System 

Models: A Review 

This paper was published in Geoscientific Model Development, 14(9), 5863-5889, 

https://doi.org/10.5194/gmd-14-5863-2021.  
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Abstract. The vital role of terrestrial biogeochemical cycles in influencing global climate change 

is explored by modelling groups internationally through Land Surface Models (LSMs) coupled 

to atmospheric and oceanic components within Earth System Models (ESMs). The sixth phase of 

the Coupled Model Intercomparison Project (CMIP6) provided an opportunity to compare ESM 

output by providing common forcings and experimental protocols. Despite these common 

experimental protocols, a variety of terrestrial biogeochemical cycle validation approaches were 

adopted by CMIP6 participants, leading to ambiguous model performance assessment and 

uncertainty attribution across ESMs. In this review we summarize current methods of terrestrial 

biogeochemical cycle validation utilized by CMIP6 participants and concurrent community 

model comparison studies. We focus on variables including: the dimensions of evaluations, 

observation-based reference datasets, and metrics of model performance. To ensure objective 

and thorough validations for the seventh phase of CMIP (CMIP7) we recommend the use of a 

standard validation protocol employing a broad suite of certainty-weighted observation-based 

reference datasets, targeted model performance metrics, and comparisons across a range of 

spatiotemporal scales.  
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A1.1 Introduction 

The terrestrial biosphere is presently responsible for sequestering about one quarter of 

anthropogenic carbon emissions, substantially reducing the severity of ongoing climate change 

(Friedlingstein et al., 2020). The future capacity of the terrestrial biosphere to sequester CO2 

emissions is uncertain due to non-linear feedbacks such as CO2 fertilization, growing season 

extension in cold-limited regions, enhanced heterotrophic respiration, and potentially other 

feedbacks, as well as environmental and physiological constraints such as moisture availability, 

nutrient limitations and stomatal closure (Fleischer et al., 2019; Green et al., 2019; Xu et al., 

2016; Wieder et al., 2015). Earth system models (ESMs) are a means to simulate past, present, 

and future terrestrial biogeochemical cycles, examine the influence of changes in climate and 

atmospheric CO2 concentration on CO2 uptake, explore feedbacks and limitations, and estimate 

anthropogenic carbon emissions compatible with avoiding a given threshold in global 

temperature change. ESMs simulate global exchanges of matter and energy through the coupling 

of land, atmospheric, and oceanic components. Through concerted efforts, successive 

generations of ESMs have improved in terms of spatiotemporal resolution, complexity, and 

process representation (Anderson et al., 2016). Despite this progress, terrestrial biogeochemical 

cycles remain a major source of uncertainty in future climate projections (Arora et al., 2020; 

Lovenduski and Bonan, 2017). This uncertainty stems from limited process understanding, 

lacking observational constraints, inherent cycle variability, temporal discrepancy between 

forcings and responses (Sellar et al., 2019; Ciais et al., 2013), and uncertain stock quantifications 

(Ito et al., 2020; Wieder et al., 2015) which together compound uncertainty within models. 

Among models, this uncertainty is amplified by artefacts in the form of inconsistent model 

structure, boundary conditions, forcing datasets, experimental protocols, and benchmarking 
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observational datasets, which is magnified by the increasing number, diversity, and complexity 

of ESMs (Eyring et al., 2020). Subsequently, a study on uncertainty in projected terrestrial 

carbon uptake based upon 12 Coupled Model Intercomparison Project phase 5 (CMIP5) ESMs 

indicated that uncertainty stemming from model structure may be four times greater than 

uncertainty from different emission scenarios and internal variability (Lovenduski and Bonan, 

2017). Some progress has been made in addressing the large uncertainty associated with the 

terrestrial biogeochemistry in ESMs, as comparison of the carbon-climate and carbon-

concentration feedback among ESMs participating in the sixth phase of CMIP (CMIP6) by Arora 

et al. (2020) shows a reduced model spread amongst models which included a nitrogen cycle, 

which provided a realistic constraint on photosynthesis in the context of elevated atmospheric 

CO2 concentration. However, the spread in estimated feedback parameters across ESMs overall 

has not been significantly reduced from CMIP6 relative to CMIP5 (Arora et al., 2020; 2013).  

 To answer scientific questions regarding climate change, the CMIP was initiated in 1995 

by the World Climate Research Programme’s (WCRP) Working Group of Coupled Modelling 

(WCRP, 2020). The CMIP designates standard experimental protocols, model output formats, 

and model forcings to diagnose climate change variability, predictability, and uncertainty 

following various scenarios within a multi-model framework. CMIP6 began in 2013 with three 

years of planning and community consultation to address knowledge gaps, prior to the 

conduction of simulations and analyses in 2016 and onwards. Model validation in the context of 

CMIP consists of demonstrating sufficient agreement between model output data and historical 

observation-based reference data following model development and is a crucial process in model 

advancement. Such comparison facilitates model improvement by identifying model limitations 

in performance or sources of model-data uncertainty (Lovenduski and Bonan, 2017), and informs 
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the weighting of different ESMs in influencing climate projections and policy (Eyring et al., 

2019). CMIP6 specified detailed experimental protocols for modelling group participants to 

facilitate objective comparisons of the output of different models with common forcings (Eyring 

et al., 2016a).  

 Here we focus on validations of the stocks and biological fluxes of fully coupled ESMs 

and associated LSM releases from 2017 onwards with explicit terrestrial biogeochemical cycle 

representation contributed by CMIP6 participating modelling groups (hereafter participants; 

Table A1-1; Arora et al., 2020). Validations are analyzed in terms of variables included, 

spatiotemporal scales, reference datasets, and metrics of performance. Section A1.2 compares 

the methods of historical terrestrial biogeochemical cycle validation used by participants, Section 

A1.3 summarizes the methods used in community analyses of CMIP5 era models, and Section 

A1.4 provides a critique of these methods. A future outlook is also presented in Section A1.4.  
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Table A1-1. Modelling group contributions to C4MIP of CMIP6 from Arora et al. (2020). 

Modelling 

Group 
ESM 

Land Surface 

Model 

Biogeochemistry 

Component 

Explicit 

N 

Cycle 

Dynamic 

Vegetation 

Prognostic 

LAI 

Prognostic 

Leaf 

Phenology 

Reference 

CSIRO 
ACCESS-

ESM1.5 
CABLE2.4 Yes No Yes No 

Ziehn et al., 

2020 

BCC 

BCC-

CSM2-

MR 

BCC-AVIM2 No No Yes 
Yes (for 

deciduous) 

Wu et al., 

2019; 

Li et al., 

2019b 

CCCma CanESM5 CLASS-CTEM No No Yes Yes 
Swart et al., 

2019 

CESM CESM2 CLM5 Yes No Yes Yes 

Danabasoglu 

et al., 2020; 

Lawrence et 

al., 2019 

CNRM 
CNRM-

ESM2-1 
ISBA-CTRIP No No Yes 

Yes (from 

leaf carbon 

balance) 

Séférian et 

al., 2019; 

Delire et al., 

2020 

GFDL 
GFDL-

ESM4 
LM4.1 No Yes - - 

Dunne et al., 

2020 

IPSL 
IPSL-

CM6A-LR 

ORCHIDEE, 

version 2.0 
No No Yes 

Yes 

 

Boucher et 

al., 2020; 

Vuichard et 

al., 2019 

JAMSTEC 
MIROC-

ES2L 
VISIT-e Yes No Yes Yes 

Hajima et 

al., 2020 

MPI 

MPI-

ESM1.2-

LR 

JSBACH3.2 Yes Yes Yes Yes 

Mauritsen et 

al., 2019; 

Goll et al., 

2017 

NCC 
NorESM2-

LM 
CLM5 Yes No Yes Yes 

Seland et al., 

2020 

UK 
UKESM1-

0-LL 
JULES-ES-1.0 Yes Yes Yes Yes 

Sellar et al., 

2019 

 

A1.2 Participant Methods of Validating Terrestrial Biogeochemical Cycles 

To participate in CMIP6, participants had to submit four Diagnosis, Validation, and 

Characterization of Klima (DECK) experimental simulations which included a control 
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simulation with prescribed idealized pre-industrial (1850) forcing for at least 500 years to 

demonstrate stability in global climate and biogeochemical exchanges. Additionally, participants 

had to conduct historical simulations from 1850-2014 using designated CMIP6 forcings 

(available at https://esgf-node.llnl.gov/search/input4MIPs/, last access: February 8th, 2021) as 

well as initialization from the pre-industrial forcing control run (Eyring et  al., 2016a). Each 

modelling group demonstrated stability in the global carbon cycle, with global net carbon 

exchange below the suggested limit of 0.1 PgC year-1 by Jones et al. (2016), while no suitable 

pre-industrial simulation global nitrogen or phosphorus flux was specified for CMIP6 though 

these were generally below 2.0 Pg year-1 (Ziehn et al., 2020). Each modelling group validated 

terrestrial biogeochemical cycle components for the historical simulation in a unique fashion, 

which is summarized below and detailed in Section A1.6. 

A1.2.1 Variables Included in Validations 

The number of terrestrial biogeochemical cycle variables evaluated against observation-

based estimates by participants varied considerably from 0 to 21, with a total of 38 unique 

variables evaluated by all participants combined. The variable validated most often was Gross 

Primary Production (GPP), which was validated by all but one participant. The next nine most 

validated variables in descending order were soil carbon, the global land carbon sink, leaf area 

index (LAI), vegetation carbon, ecosystem respiration, global land-atmosphere CO2 flux, surface 

CO2 concentrations, total biomass, and burned area (Figure A1-1). For a list of variable 

definitions, see Table A1-2. 

  

https://esgf-node.llnl.gov/search/input4MIPs/
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Table A1-2. Terms associated with terrestrial biogeochemical cycles and their definitions as 

used by participants. 

Term CMIP6 Definition 

Gross Primary Production (GPP) 
The quantity of CO2 removed from the 

atmosphere by vegetation. 

Net Primary Productivity (NPP) 

The quantity of CO2 removed from the 

atmosphere by vegetation minus the quantity of 

CO2 from autotrophic respiration. 

Autotrophic Respiration (AR) 
The quantity of CO2 from cellular respiration in 

plants. 

Ecosystem Respiration (ER) 
The quantity of CO2 from autotrophic respiration 

and heterotrophic respiration. 

Heterotrophic Respiration (HR) 
The quantity of CO2 from cellular respiration by 

heterotrophs. 

Net Ecosystem Production (NEP) 

The quantity of CO2 removed from the 

atmosphere by vegetation minus the quantity of 

CO2 from autotrophic and heterotrophic 

respiration. 

Net Biome Production (NBP) 

The net rate of organic carbon accumulation 

minus autotrophic and heterotrophic respiration as 

well as non-respiratory losses from disturbance. 

Net Ecosystem Carbon Balance (NECB) 
The net rate of organic carbon accumulation in an 

ecosystem, independent of scale. 
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Figure A1-1. Validation (green) or omission (grey) of the ten most frequently validated variables 

by participants (treating ESMs and LSMs separately), including Gross Primary Productivity 

(GPP), Soil Carbon (SC), Global Land Carbon Sink (GLCS), Leaf Area Index (LAI), Vegetation 

Carbon (VC), Ecosystem Respiration (ER), Land-Atmosphere CO2 Flux (LACF), Surface CO2 

concentrations (Surf[CO2]), Total Biomass (TB), and Burned Area (BA). 

The majority of variables were validated by just one or two participants (Figure A1-2). 

Danabasoglu et al. (2020) and Lawrence et al. (2019) validated a relatively extensive suite of 
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variables with the International Land Model Benchmarking (ILAMB) package version 2.1 

(ILAMBv2.1; Collier et al., 2018, Figure A1-3), including an explicit uncertainty analysis of the 

influences of interannual variability, forcing datasets, and model structure in the form of 

prescribed versus prognostic vegetation phenology. While no nitrogen cycle variable was 

validated by more than one group, soil N2O flux and total N2O emissions were evaluated by 

Hajima et al. (2020) and Lawrence et al. (2019), respectively. 

 
Figure A1-2. Frequency of a given variable being validated across participants (treating ESMs 

and LSMs separately). Most variables were validated only once across participants (leftmost x-

axis), while GPP was validated by 11 participants (rightmost bar). 
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Figure A1-3. Validation results for terrestrial variables within the CLM5 by Lawrence et al. 

(2019) using ILAMB analysis (Collier et al., 2018) including three different climate forcing data 

products (individual columns) and two forms of model structure (column groups). CLM5SP 

denotes MODIS (Zhao et al., 2005) prescribed vegetation phenology, while CLM5GBC denotes 
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prognostic phenology. Climate forcing data products include WATCH/WFDEI from Mitchell and 

Jones, (2005), CRUNCEPv7, the default forcing dataset used by the Global Carbon Project (Le 

Quéré et al., 2018), and GSWP3v1, the default forcing dataset used in the Land Surface, Snow 

and Soil Moisture MIP (van den Hurk et al., 2016). This figure was made available under 

a Creative Commons Attribution License (CC BY). 

 A variety of spatiotemporal scales of these variables were considered in validations both 

within and among participants. Spatial scales consisted of site-level, model grid cell, degree of 

latitude, region, and global, with the latter being the most common across participants. Temporal 

scales included daily, seasonal, annual, decadal, select periods, and long-term trends, 

accumulations, or averages over the whole historical simulation period from 1850-2014. For 

more detail on the spatiotemporal scales of validation used by each participant, readers should 

refer to section A.6. Dynamic variables such as LAI were subject to a detailed assessment, 

including annual maximum and minimum magnitude (Séférian et al., 2019) and month (Li et al., 

2019b), seasonality (Ziehn et al., 2020), and seasonal average, as well as global averages. GPP 

was also evaluated across a variety of scales, including in terms of the daily, seasonal, and 

annual magnitude on a plant functional type (PFT), spatial, and global basis against site-level 

observations (Vuichard et al., 2019), as well as globally in terms of functional relationships with 

temperature and precipitation (Swart et al., 2019) and the relative contribution of drivers of 

variation (Vuichard et al., 2019). Biomass and carbon stock variables were evaluated in terms of 

spatial distributions or global averages over chosen time periods, often on a decadal scale (Li et 

al., 2019b). Global vegetation and soil carbon turnover times were also evaluated for selected 

time periods (Delire et al., 2020; Lawrence et al., 2019). 

A1.2.2 Reference Datasets 

For variables which were validated by more than one modelling group, such as GPP, a 

variety of observation-based reference datasets were utilized. For example, across participants, 

http://creativecommons.org/licenses/by/3.0/
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several different GPP reference datasets were used (Table A1-3), though most participants 

utilized model tree ensemble (MTE) machine-learning upscaled ground eddy-covariance, 

meteorological, and satellite observation-based estimates of GPP from Jung et al. (2011). 

Interestingly one group, Centre National de Recherches Météorologiques (CNRM; Delire et al., 

2020) used a more recent Fluxnet-based GPP dataset (FluxComv1; Jung et al., 2016; Tramontana 

et al., 2016), and further used the mean of 12 products therein. CNRM along with the Institut 

Pierre Simon Laplace (IPSL, Vuichard et al., 2019) were the only groups to include a 

comparison to site-level GPP observations. A variety of reference datasets were also utilized for 

the second most frequently validated variable, soil carbon (Table A1-4), spanning a 12-year 

publication range (Batjes, 2016; Global Soil Data Task Group, 2002). Several participants used 

more than one reference dataset for evaluation of soil carbon depending upon regional or global 

focus, such as the Northern Circumpolar Soil Carbon Database provided by Hugelius et al. 

(2013) for mid-high latitudes, while global soil carbon estimates were obtained from Batjes 

(2016), Carvalhais et al. (2014), Todd-Brown et al. (2013), and FAO (2012). While biomass and 

carbon stocks were predominantly compared to present day observations, Delire et al. (2020) 

used records from the Global Database of Litterfall Mass and Litter Pool Carbon and Nutrients 

database which extends from 1827-1997 (Holland et al., 2015). 
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Table A1-3. The source for Gross Primary Production (GPP) data referenced by each modelling 

group for ESM or LSM simulations. Adjacent contributions from the same modelling group are 

banded in a common fashion for readability. LSM-focused validations by each modelling group 

are presented with the associated ESM in brackets. 

Model Validation GPP Reference Data 

ACCESS-ESM1.5 
Jung et al., 2011; Ziehn et al., 2011; Beer et al., 

2010 

BCC-CSM2-MR - 

BCC-AVIM2.0 (BCC-CSM2-MR) Jung et al., 2011 

CanESM5 Jung et al., 2009 

CESM2 Jung et al., 2011 

CLM5 (CESM2) Jung et al., 2011 

CNRM-ESM2-1 - 

ISBA-CTRIP (CNRM-ESM2-1) 
Jung et al., 2016; Tramontana et al., 2016; 

Joetzjer et al., 2015 

IPSL-CM6A-LR - 

ORCHIDEE (IPSL-CM6A-LR) Jung et al., 2011 

GFDL-ESM4.1 - 

MIROC-ES2L Jung et al., 2011 

MPI-ESM1.2-LR - 

JSBACH3.10 (MPI-ESM1.2-LR) - 

NORESM2 Jung et al., 2011 

UKESM1-0-LL Jung et al., 2011 

 

  



281 

 

Table A1-4. The source for soil carbon data referenced by each modelling group for ESM or 

LSM simulations. Adjacent contributions from the same modelling group are banded in a 

common fashion for readability. LSM-focused validations by each modelling group are 

presented with the associated ESM in brackets. 

Model Validation Soil Carbon Reference Data 

ACCESS-ESM1.5 - 

BCC-CSM2-MR - 

BCC-AVIM2.0 (BCC-CSM2-MR) - 

CanESM5 - 

CESM2 
Hugelius et al., 2013; Todd-Brown 

et al., 2013 

CLM5 (CESM2) FAO, 2012 

CNRM-ESM2-1 - 

ISBA-CTRIP (CNRM-ESM2-1) FAO, 2012 

IPSL-CM6A-LR - 

ORCHIDEE (IPSL-CM6A-LR) - 

GFDL-ESM4.1 - 

MIROC-ES2L 
Batjes, 2016; Hugelius et al., 2013; 

Todd-Brown et al., 2013 

MPI-ESM1.2-LR Goll et al., 2015 

JSBACH3.10 (MPI-ESM1.2-LR) - 

NORESM2 FAO, 2012 

UKESM1-0-LL 

Batjes, 2016; Carvalhais et al., 

2014; Global Soil Data Task 

Group, 2002 

 

A1.2.3 Statistical Metrics of Model Performance 

A variety of statistical metrics were used to quantify model performance in simulating 

historical variables in comparison to observations, though chosen metrics were more consistent 

than selected variables. The comparison of simulated and observation-based averages calculated 

over space and time was the most common metric used by all but two participants (Table A1-5). 

The next most commonly used metric was root mean squared error (RMSE), followed by bias 

(simulated – observed) on a spatial or global basis. Evaluations of global accumulations, 

seasonal phase, seasonal maximum and or minimum, as well as global totals were also used. The 
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Taylor diagram, which geometrically combines spatiotemporal correlation, standard deviations, 

and root mean square (RMS) difference (Taylor, 2001) was used to summarize model 

performance by three participants (Li et al., 2019b; Collier et al., 2018; Goll et al., 2017). The 

correlation coefficient (r) was also used by three participants (Swart et al., 2019; Mauritsen et al., 

2019; Goll et al., 2017). RMSE normalized by the standard deviation of observations (NRMSE) 

was only used by Swart et al. (2019), while the coefficient of determination (r2) was only used by 

Mauritsen et al. (2019). A targeted metric in the form of dissected mean squared deviation 

(Kobayashi and Salam, 2000), the sum of squared bias, squared difference between standard 

deviations, and lack of correlation weighted by standard deviation, was used to distinguish model 

sources of error by Vuichard et al. (2019). In addition to quantitative metrics, the qualitative 

aspects of simulations were compared to observational reference data, such as in demonstrating 

source or sink behaviour over time (Danabasoglu et al., 2020), or in visual comparison of spatial 

distribution maps. 
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Table A1-5. Model performance metrics used by each modelling group for ESM or LSM 

simulations. Adjacent contributions from the same modelling group are banded in a common 

fashion for readability. LSM-focused validations by each modelling group are presented with the 

associated ESM in brackets. 

Model Validation Presented Model Performance Assessment Metrics 

ACCESS-ESM1.5 
Space-time averages, seasonal amplitude, timing and magnitude of annual maximums 

and minimums 

BCC-CSM2-MR - 

BCC-AVIM2.0 

(BCC-CSM2-MR) 
Average annual cycle phase, global mean bias, RMSE, Taylor score 

CanESM5 

Space-time averages, geographic distribution of time averages and bias, latitudinal 

averages, correlation coefficient (r), RMSE, NRMSE (RMSE ÷ standard deviation of 

observations), change in NRMSE 

CESM2 

Space-time averages, seasonal cycles, spatial distributions, time series, interannual 

variability, global accumulations, functional relationships, relative bias, RMSE, 

ILAMB relative scale 

CLM5 (CESM2) 

Space-time averages, seasonal cycles, annual monthly maximum, spatial 

distributions, global totals, turnover time, time series, interannual variability, 

functional relationships, bias, relative bias, RMSE, ILAMB relative scale 

CNRM-ESM2-1 
Average annual maximums and minimums, spatial distribution, bias, RMSE, model 

correlation between spatial pattern of error 

ISBA-CTRIP 

(CNRM-ESM2-1) 

Geographic distribution of time averages and bias, latitudinal averages, global 

accumulations, bias, spatial correlation, turnover time, average annual maximums, 

seasonal cycle amplitude and phase 

IPSL-CM6A-LR Global annual averages and accumulations over time 

ORCHIDEE 

(IPSL-CM6A-LR) 

Daily, seasonal, annual averages, spatial distribution, regional averages, global 

averages, RMSE, NRMSE, dissected mean squared deviation (squared bias, squared 

difference between standard deviations, lack of correlation weighted by standard 

deviations from Kobayashi and Salam (2000)), relative drivers of variation 

GFDL-ESM4.1 
Spatial distribution of seasonal amplitude, interannual variability, RMSE, correlation 

coefficient (r), coefficient of determination (r2) 

MIROC-ES2L 
Space-time averages, latitudinal averages, spatial distribution, gradient, seasonality, 

density, global accumulations 

MPI-ESM1.2-LR Spatial variability, latitudinal average density, global accumulations 

JSBACH3.10 

(MPI-ESM1.2-LR) 

Space-time averages, spatial variability, frequency distribution, response ratio, 

correlation coefficient (r), RMSE, Taylor score 

NORESM2 Global averages and totals 

UKESM1-0-LL 
Space-time averages, spatial distribution, latitudinal averages, global accumulations 

and totals 
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A1.3 Community Methods of Validating Terrestrial Biogeochemical Cycles 

A variety of software and projects have been dedicated to the communal evaluation of 

ESM (Gleckler et al., 2016) and LSM performance (Kumar et al., 2012; Gulden et al., 2008), 

with CMIP6-era collaborative efforts including the Earth System Model Evaluation Tool version 

2 (ESMValToolv2.0; Eyring et al., 2016b) and ILAMBv2.1 (Danabasoglu et al., 2020; Lawrence 

et al., 2019; Collier et al., 2018). Both ESMValToolv2.0 and ILAMBv2.1 are openly available 

tools for the evaluation of a variety of model output against re-processed observations (cmip-

esmvaltool.dkrz.de; https://pypi.org/project/ILAMB/; Eyring et al., 2020; 2016b; Collier et al., 

2018). The observation-based reference datasets for each are displayed in Table A1-6. For 

ESMValToolv2.0 dataset re-processing for compatible comparison in space as well as masking 

of missing observations is detailed in Righi et al. (2020). The analysis of the land carbon cycle in 

ESMValToolv2.0 (Eyring et al., 2020) is based upon the approach of Anav et al. (2013) in 

considering long-term trends, interannual variability, and seasonal cycles. A variety of model 

performance tailored metrics are available with ESMValToolv2.0 (Eyring et al., 2020). The 

relative space-time root-mean square deviation (RMSD) indicates model success relative to the 

multi-model median in simulating the seasonal cycle of key variables, originally from Flato et al. 

(2013), and allows simultaneous comparison to more than one observational reference for each 

simulated variable, where available.  ESMValTool2.0’s AutoAssess function provides a highly 

resolved model performance evaluation for 300 individual variables, originally developed by the 

UK Met Office. Further, land cover can be comprehensively evaluated with ESMValToolv2.0 in 

terms of areas, mean fractions, and biases on a regional and global basis, accommodating 

different model representations of land cover. ILAMBv2.1 was used to validate terrestrial 

biogeochemical cycle components in CESM2 (Danabasoglu et al., 2020) and CLM5 (Figure A1-

https://d.docs.live.net/Users/lovelock/Desktop/Lynsay/Comprehensive_Exam/Final%20Exam%20Paper/cmip-esmvaltool.dkrz.de
https://d.docs.live.net/Users/lovelock/Desktop/Lynsay/Comprehensive_Exam/Final%20Exam%20Paper/cmip-esmvaltool.dkrz.de
https://pypi.org/project/ILAMB/
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3; Lawrence et al., 2019). ILAMBv2.1 was also used to demonstrate the absolute and relative 

performance of DGVMs within several iterations of the Global Carbon Project (Friedlingstein et 

al., 2020; 2019; Le Quéré et al., 2018). In addition to variables presented in Table A1-6, 

functional relationships between these variables and temperature and precipitation are provided 

for validation purposes in ILAMBv2.1. ILAMBv2.1 employs a weighting system to assign 

scores to observation-based datasets, which encompasses certainty measures, spatiotemporal 

scale appropriateness, and process implications. In computing statistical model performance 

scores, ILAMBv2.1 acknowledges how reference observations represent discontinuous constants 

in time and space. For example, if a reference dataset contains average information across a span 

of years, the annual cycle of such a dataset is assumed to be undefined and is therefore not used 

as a reference. The calculation of averages over time in ILAMBv2.1 addresses spatiotemporally 

discontinuous data by performing calculations over specific intervals for which data are 

considered valid. For each variable evaluation, ILAMBv2.1 generates a series of graphical 

diagnostics, including spatial contour maps, time series plots, and Taylor diagrams (Taylor, 

2001), as well as statistical model performance scores including period mean, bias, RMSE, 

spatial distribution, interannual coefficient of variation, seasonal cycle, and long-term trend. 

These scores are then scaled based upon the weighting of reference observation-based datasets, 

and for multi-model comparisons are presented across metrics and datasets to provide a single 

score.  

  



286 

 

Table A1-6. Select observation-based reference dataset sources for ESMValToolv2.0 (Eyring et 

al., 2020) and ILAMBv2.1 (Collier et al., 2018), including Net Biome Production (NBP), Leaf 

Area Index (LAI), Land Cover (LC), Gross Primary Production (GPP), Net Ecosystem Exchange 

(NEE), Soil Carbon (SC), Vegetation Carbon (VC), Ecosystem Carbon Turnover (ECT), 

Vegetation Biomass (VB), and Burned Area (BA). Note that vegetation carbon is dependent upon 

vegetation biomass. 

Variables ESMValToolv2.0 ILAMBv2.1 

NBP 
Le Quéré et al., 2018; Maki et 

al., 2010 

Le Quéré et al., 2016; 

Hoffman et al., 2014 

LAI 
Zhu et al., 2013; Baret et al., 

2007 

De Kauwe et al., 2011; 

Myneni et al., 1997 

LC Defourny et al., 2016  

GPP, NEE Jung et al., 2019; 2011 
Lasslop et al., 2010; Jung et 

al., 2010 

SC Wieder, 2014 
Todd-Brown et al., 2013; 

Hugelius et al., 2013 

VC Gibbs, 2006 - 

ECT Carvalhais et al., 2014 - 

VB - 

Saatchi et al., 2011; 

Kellndorfer et al., 2013; 

Blackard et al., 2008 

BA - Giglio et al., 2010 

 

A1.4 Critique of Validation Approaches 

While standard protocols were used by participants for historical simulations in CMIP6, 

no standard protocol in terms of variables evaluated, reference data, performance metrics, or 

acceptable performance threshold was adopted for terrestrial biogeochemical cycle validation. 

The validation of particular variables by different participants occasionally employed the same 

datasets, though in many cases inconsistent reference datasets were used for the same variable, 

and the spatial and temporal dimension of validations was often distinct. This contrasts with 

other works employing multiple models such as the Global Carbon Project (Friedlingstein et al., 

2020; 2019; Le Quéré et al., 2018) which provide explicit validation criteria, such as simulating 
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recent historical net land-atmosphere carbon flux within a particular range and being within the 

90% confidence interval of specified observations. The stringency of such criteria must be 

carefully chosen to acknowledge the role of observational uncertainty as well as uncertainty 

stemming from potential model tuning to forcing datasets. The use of different validation 

approaches impedes the comparison of performance across models, however it also provides a 

diverse collection of example methods.  

A1.4.1 Variable Choice 

A comprehensive validation of a process-based model should include all simulated 

interacting variables for which a reliable empirical reference is available. Improvement in the 

simulation of one variable through altered parameters, structure, or algorithms may translate into 

degradation for other variables, which would be otherwise obscured in a restricted variable 

analysis (Deser et al., 2020; Ziehn et al., 2020; Lawrence et al., 2019). Given the scope of 

CMIP6 publications in demonstrating model improvements relative to previous versions as well 

as the results of CMIP6 experiments, it is understandable that most participants validated a few 

select variables, and more extensive validations may be in preparation. Essential Climate 

Variables (ECVs) prioritized for land evaluation in the ESMValToolv2.0 included GPP, LAI, 

and NBP (Eyring et al., 2020; 2016b), as these variables intersect with other ESM components in 

matter and energy exchanges (Reichler and Kim, 2008). Contrarily, LAI and NBP were not as 

frequently validated as GPP by CMIP6 participants (Figure A1-1), though the third most 

validated variable, the global land carbon sink, is equivalent to NBP minus land use emissions. 

The most common variable chosen for validation by participants was GPP, which is 

advantageous as it represents a crucial carbon cycle flux. GPP designates the quantity of CO2 

removed from the atmosphere and assimilated into structural and non-structural carbohydrates 
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during photosynthesis by vegetation, part of which is later respired back to the atmosphere. This 

quantity is limited by nutrient availability, light, soil moisture, stomatal response to atmospheric 

CO2 concentration, and other environmental factors (Davies-Barnard et al., 2020), and is the 

largest carbon flux between the land biosphere and atmosphere (Xiao et al., 2019). Over-or 

under-estimations of GPP can lead to biases in carbon stocks, which are exacerbated through 

time (Carvalhais et al., 2014).  

An emergent ecosystem property which integrates a variety of influential model 

processes is carbon turnover time calculated as the ratio of a long-term average total carbon 

stock compared to GPP or NPP (Eyring et al., 2020; Yan et al., 2017; Carvalhais et al., 2014). 

Carbon turnover times can be the source of pervasive uncertainty within ESMs, and their 

misrepresentation can lead to long-term drifts in carbon stocks, fluxes, and feedbacks (Koven et 

al., 2017). The evaluation capacity of turnover times was seldom utilized by CMIP6 participants, 

despite soil carbon being a relatively commonly validated variable. Many CMIP5 models were 

found to underestimate turnover times both globally and on a latitudinal basis (Eyring et al., 

2020; Fan et al., 2020), while two participants here reported overestimated carbon turnover 

times, Delire et al. (2020) and Lawrence et al. (2019), though demonstrate improvement from 

previous models.  

Another approach to validation which combines high-level variables and re-

parameterization efforts is the assessment of functional relationships or emergent constraints, 

such as the relationship between GPP or turnover times and temperature, moisture, growing 

season length, and nutrient stoichiometry (Danabasoglu et al., 2020; Swart et al., 2019; Anav et 

al., 2015; McGroddy et al., 2004). Physically interpretable emergent constraints can aid in 

identifying model components which are particularly influential to climate projections (Eyring et 
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al., 2019), such as the temperature control on carbon turnover in the top metre of soil in cold 

climates (Koven et al., 2017), GPP responses to soil moisture availability (Green et al., 2019), or 

regional carbon-climate feedbacks (Yoshikawa et al., 2008). With the goal of realistically 

simulating Earth system processes to develop informed predictions of future climate, large scope 

variables which inherit uncertainty from an amalgamation of processes are often prioritized for 

validation. Several participants focused on comparing simulated long-term trends or 

accumulations in global land carbon fluxes to observation-based estimates from the Global 

Carbon Project (Friedlingstein et al., 2019; Le Quéré et al., 2018; 2016). While this summation 

approach can signal a large bias (Eyring et al., 2020; 2016b; Reichler and Kim, 2008) and reduce 

the effect of sub-scale noise, it does not identify sources of model error or may even obscure 

model error. For example, if simulated land-atmosphere carbon flux from the pre-industrial era 

to the 2010s is found to concur with observation-based estimates, this could be due in part to 

compounding underlying biases which neutralize one another over time (Fisher et al., 2019; 

Yoshikawa et al., 2008), or alternatively suitable global averages may be susceptible to 

antagonistic regional biases, such as between the tropics and northern high latitudes. Plant 

functional type-level evaluations, such as that of the maximum rate of rubisco carboxylation and 

canopy height by Lawrence et al. (2019) demonstrate the performance of underlying variables in 

influencing large-scale carbon fluxes and stocks. Several participants included latitudinal-scale 

evaluations (Delire et al., 2020; Hajima et al., 2020; Mauritsen et al., 2019), which are both 

informative and readily comparable to observations. A comprehensive validation should 

therefore encompass a range of scales and a variety of variables to demonstrate model 

performance in not only producing suitable averages or accumulations, though also in 

representing processes.  
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A1.4.2 Reference Datasets 

Satellite-based remote sensing of terrestrial biogeochemical components has been 

conducted for almost 50 years, with the launch of the Landsat satellite in 1972 (Xiao et al., 2019; 

Mack, 1990), while field-based experimental and observational data has been available since at 

least the early 19th century (Holland et al., 2015). In terms of just satellite-based observational 

data products there are currently thousands available (Waliser et al., 2020). Despite this seeming 

wealth in observational data and observation-based data products, the implementation of a 

variety of observation-based references for validation of terrestrial biogeochemical cycles within 

ESMs and LSMs is challenging for several reasons. These include the specifications required for 

direct model output comparison, inconsistent spatial and temporal domains, missing 

observations, logistical biases, and large uncertainty in global scale data products (Delire et al., 

2020; Collier et al., 2018; Lovenduski and Bonan, 2017). The incomplete coverage of 

observational datasets in space-time dimensions has led to significant bias in comparisons of 

model data and observation data previously (de Mora et al., 2013), though was not generally 

discussed in validation exercises by CMIP6 participants. Observational discontinuity has been 

addressed previously in a LSM validation by Orth et al. (2017) which excluded daily observation 

reference averages when more than one hour of data from a 24-hr period was missing, and 

through exclusion criteria in Collier et al. (2018). For example, the compilation of satellite 

observations to develop a LAI data product with one observation-based estimate every 15 days 

by Zhu et al. (2013) for monthly average or seasonal extrema comparison would require careful 

consideration for comparison to model averages computed from more resolved output. In an 

analysis of how sparse historical measurements compare to continuous model output, de Mora et 

al. (2013) demonstrate that where data are lacking in time or space, the discrete comparison of 
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model output to records from site-level measurements may provide a strategic assessment of 

model performance over time, especially in producing interannual variability. Site-level 

comparisons of GPP and or CO2 concentrations were performed by Delire et al. (2020), Dunne et 

al. (2020), and Vuichard et al. (2019), while Collier et al. (2018) caution against the use of 

spatially sparse data, though indicate that inclusion of site level evaluations is a key future focus 

for the ILAMB project.  

Another approach to overcome spatial discontinuity may be to compare broad gradients 

or trends in a given variable with reference datasets, such as regional and functional type trends 

in forest carbon stocks rather than a global summation or average (Thurner et al., 2014), to 

investigate whether or not the model captures enduring spatial patterns. In addition, some 

observational methods may invoke inherent bias, such as satellite-based observation estimates of 

LAI in mid to high latitudes seasonally underestimating LAI due to snow cover, leading to 

ambiguous model performance assessment (Ziehn et al., 2020; Liu et al., 2018). Observational 

uncertainty can be addressed by applying a weighting to reference datasets as in ILAMBv2.1, as 

well as by using more than one observational reference when available (Eyring et al., 2020; 

Sellar et al., 2019; Collier et al., 2018). Careful consideration of spatiotemporal discontinuity in 

observations and inherent bias is warranted in future validations, which can be achieved through 

filtered exclusions, site-level comparisons, pattern comparison, certainty weighting of datasets, 

and the use of more than one reference dataset.  

The globally gridded 1982-2008 GPP data product frequently used for GPP validation by 

CMIP6 participants was developed from machine learning upscaling of site-level eddy-

covariance Fluxnet observations with model tree ensembles based on remote sensing vegetation 

indices, meteorological data, and land use (Jung et al., 2011). Observation-based estimates of 
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GPP can be obtained through satellite-derived vegetation indices such as the normalized 

difference vegetation index (NDVI; Phillips et al., 2008) and solar induced chlorophyll 

fluorescence (Zhang et al., 2020), in addition to ground-based monitoring of turbulent CO2 

fluxes with the eddy covariance technique (Jung et al., 2009). Logistical challenges with eddy 

covariance-based techniques of estimating GPP can result in potentially extensive data gaps and 

systematic omission of diel cycle observations (Rodda et al., 2021; Erkkilä et al., 2017; Jung et 

al., 2011; Lasslop et al., 2010; 2008; Desai et al., 2008). For example, in a study of eddy-

covariance monitoring of CO2 flux, Jonsson et al. (2008) report only 34% data coverage of a 

growing season period, of which 54% was discarded as it did not demonstrate energy balance 

closure. To address these challenges Jung et al. (2011) employ Bowen ratio corrections of energy 

imbalance (Twine et al., 2000), quality control criteria to exclude sites with more than 20% 

missing observations, and monthly averages to alleviate noise. Where NEE observations are 

missing in space over time driver relationships can be utilized for multi-decadal extrapolation, 

though only 38% and 60% of Fluxnet sites with less than 15 years of observations capture mean 

conditions and interannual variability of drivers sufficiently well for this extrapolation as of 

2015, and most have been operating for less than five years (Chu et al., 2017). While the site-

level observations from Jung et al. (2011) originate from 212 sites, presenting a globally 

extensive network, regions with an important contribution to overall carbon stocks and fluxes are 

underrepresented (Jung et al., 2020), and even the recent global Fluxnet GPP data product by 

Jung and Tramontana et al. (2016) has just 14 tropical and 5 Arctic sites. GPP observations from 

Fluxnet products currently do not account for fire and waterbody emissions, which prompts 

regional and interannual bias (Jung et al., 2020). Despite these caveats, such global-scale data 

products provide a critical resource to the CMIP community in conducting model validation 
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(Collier et al., 2018), and the relatively common use of Jung et al. (2011) for validations by 

CMIP6 participants coincidentally reduces the influence of observational contradiction (Xie et 

al., 2020; Anav et al., 2015). Site-level GPP evaluation with observations from the tropics by 

Delire et al. (2020) and Vuichard et al. (2019) demonstrates a strategic approach to addressing 

the representation bias in GPP validations. Site-level evaluations often benefit from a wealth of 

available information including spatially consistent meteorological forcing, and avoid the 

influence of spatial extrapolation error. While Jung et al. (2011) do not provide uncertainty 

measures, several forms of uncertainty are explicitly presented for the Fluxnet2015 dataset by 

Pastorello et al. (2020). Therefore the utility of Fluxnet GPP data products could be improved 

with standardized use by participants in junction with other independent data products, select 

site-level evaluations, explicit uncertainty quantifications, and improved ecological 

representation in underlying site-level data.   

A1.4.3 Statistical Metrics and Validation Approaches 

Several participants relied primarily on residual-based metrics such as bias (simulated-

observed) for validation of terrestrial biogeochemical cycle model components. On a spatial 

basis bias can identify significant regional over-or under-estimations of a given variable. 

However, the attribution of model error from global maps of bias can be ambiguous, as the 

displayed bias is the combined result of different forms of uncertainty, including model structural 

representations, unforced variability, and spatial disagreement (Deser et al., 2020; Lovenduski 

and Bonan, 2017; Koch et al., 2016). Such residual-based metrics may not indicate how well the 

model would perform in simulating future conditions beyond the current contextual envelope of 

observations (Gulden et al., 2008), and neglect the contribution of uncertainty from observations. 

These limitations are considerable in the context of ESMs and LSMs as tools for predicting 
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terrestrial biogeochemical function. A more contextualized bias assessment is the Wilcoxon test 

as applied by Swart et al. (2019) to filter insignificant bias. In a LSM evaluation, Orth et al. 

(2017) provides an observationally robust bias assessment by subtracting mean seasonal cycles 

from each grid cell and correlating the resulting anomalies between observation-based datasets 

and model output. In addition, RMSE normalized by the mean or standard deviation of the 

observed quantity, NRMSE, contextualizes the difference between simulated and observed 

variable quantities in terms of the magnitude or inherent variability of the variable of interest 

(Swart et al., 2019; Fan et al., 2018), which is advantageous for variables such as GPP with large 

interannual variability.  

Beyond these, a variety of targeted model skill metrics have been published for process-

based modelling which provide detailed assessments of different forms of model uncertainty 

(Collier et al., 2018; Orth et al., 2017; Eyring et al., 2016b; Koch et al., 2016; Law et al., 2015; 

Kumar et al., 2012; Taylor, 2001; Kobayashi and Salam, 2000). Mean squared deviation, the sum 

of squared bias, squared difference between standard deviations, and lack of correlation weighted 

by standard deviations, presented by Kobayashi and Salam, (2000), was used by Vuichard et al. 

(2019). This metric is readily applicable to the objective validation and improvement of 

mechanistic models, as its dissection allows for the accurate attribution of different sources of 

model errors. Additionally, a Taylor diagram (Figure A1-4, Taylor, 2001) conveys several 

dimensions of model error and allows for the concise simultaneous display of variables and 

models and was utilized in the evaluation of BCC-AVIM2 (Li et al., 2019b), and NORESM2 

(Seland et al., 2020), as well as several LSMs and ESMs by Anav et al. (2015) and is 

incorporated into ILAMBv2.1 (Collier et al., 2018). The Taylor diagram was designed for 

simultaneous performance comparison of several simulated variables and serves as a concise and 
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informative validation tool. Caution is warranted however in the evaluation of fully coupled 

model output due to the inability of fully coupled models to reproduce the timing of internal 

climate variability phenomena such as El Niño-Southern Oscillation (ENSO; Flato et al., 2013). 

While the magnitude of observed and simulated internal climate variability may be statistically 

consistent, bias, RMSE, and NRMSE assessments of fully coupled model output should 

encompass decadal or longer periods to address the influence of temporal mismatches in 

simulated internal climate variability relative to observational records. Alternatively, as offline 

simulations can be directly forced with historical observation data, the output of offline 

simulations can be validated on a finer temporal scale.  

 

 
Figure A1-4. Taylor diagram from Taylor, (2001). The standard deviation of model fields is 

displayed as the radial distance from the origin and can be visually compared to the observed 

(reference) point, which is indicated by a circle on the abscissa. The correlation between the 

model and observed fields decreases with azimuthal angle (dotted lines), and the root-mean-

square difference between the model and observed fields is proportional to the distance from the 

reference point (quantified by dashed contours). 
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For example, Taylor diagrams of global and regional NPP by Anav et al. (2015) 

demonstrated consistent low correlation and high standard deviation for model estimates in the 

tropics which is substantially reduced in the extratopics and globally, warranting focus on 

tropical NPP. The validation process of terrestrial biogeochemical cycles and dissection of model 

uncertainty may also be enhanced through offline simulations or models with intermediate 

complexity as these allow for a greater replication of simulations with different initializations, 

forcing datasets, and model configurations, due to their computational affordability (Bonan et al., 

2019; Umair et al., 2018; Orth et al., 2017). Offline simulations also reduce the potential for 

incidental compounding error from coupling components, though this leads to an 

underestimation in uncertainty for equivalent fully coupled simulations. Replicate simulations 

with different initial conditions allow for the attribution of uncertainty from unforced variability, 

such as performed by Danabasoglu et al. (2020), which accounted for half of the inter-model 

spread in key variables previously (Deser et al., 2020; Eyring et al., 2019). In addition, replicate 

simulations with different forcing datasets can indicate the role of forcing uncertainty (Wei et al., 

2018), which Lawrence et al. (2019) found to be significant. Further, sensitivity analyses or 

perturbed parameter analyses involving replicated simulations with one or more variables fixed 

as performed by Hajima et al. (2020) and Lawrence et al. (2019) illuminate structural 

uncertainty. The use of well-established statistical and model performance metrics in addition to 

strategic simulations facilitates a detailed analysis of model uncertainty.  

A1.4.4 Moving Forward 

A model can only be expected to perform well in simulating past, present, and future 

conditions if provided with high quality observational constraints. Lovenduski and Bonan (2017) 

suggest that obtaining accurate observations and improving process understanding should take 
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precedence over reducing model spread, as constraining models to uncertain observations does 

not improve their predictive capacity, and even models which agree well with observations can 

prompt divergent projections. Several of the challenges inherent in implementing observations in 

model validation and development are now a key focus of the Observations for Model 

Intercomparison Project (obs4MIPs; Waliser et al., 2020) which strives to deliver long-term, 

high-quality observations from international efforts. An obs4MIPs meeting held in preparation 

for CMIP6 with more than 50 satellite data and global climate modelling experts identified 

underutilized observation products and recommended new efforts to address knowledge gaps, 

including an expanded inventory of datasets, higher-frequency datasets and model output, more 

reliable uncertainty measures, more datasets tailored to offline simulations, and more explicit 

metadata for modellers (Waliser et al., 2020). Further, recent satellite missions such as the 

Sentinel2A twin satellite launched in 2015 have unprecedented spectral, spatial, and temporal 

resolution combinations, which can be used alone or in combination with other satellite-based 

observations to provide higher fidelity references for validation (Vafaei et al., 2018). Field 

experimental data provide unique insight as to the functional responses of vegetation to elevated 

CO2 concentration (Goll et al., 2017), temperature change (Richardson et al., 2018), moisture 

availability (Williams et al., 2019; Hovenden and Newton, 2018), and nutrient limitations 

(Fleischer et al., 2019), outside the current context of observations. The integration of 

experimental findings in evaluations is challenging given the environmentally rapid application 

of treatments and limited ecological representation (Nowak et al., 2004), though sophisticated 

relationship-based techniques such as used by Goll et al. (2017) alleviate some of these issues. 

Increased collaboration between field and model researchers in designing experiments could 

improve the applicability of future experiments. In addition, enhanced field and remote sensing 



298 

 

collaboration would allow for higher fidelity calibrated global data products (Orth et al., 2017; 

Verger et al., 2016). Thus future CMIPs will benefit from forthcoming collaborations and 

reference data products tailored for validation. 

 A standard protocol for the validation of terrestrial biogeochemical variables would 

facilitate a thorough and objective assessment of model performance within and among 

participants. Further, the collective merits and limitations of the current variety of approaches 

utilized by participants could be consolidated and addressed in a comprehensive protocol. In the 

interest of model improvement and weighting for predictions, validation with an exhaustive 

assessment of variables across a range of spatiotemporal scales against all available peer-

recommended observation-based references is optimal. Dataset-specific expertise is also 

warranted to correctly implement reference datasets in these evaluations (Waliser et al., 2020; 

Liu et al., 2018). The procurement and application of reference datasets within validations is 

demanding for participants, considering their presiding obligation to continuously refine model 

components and participate in CMIP with computationally expensive ESM simulations. 

Additionally, the universal inclusion of often overlooked processes such as moisture limitation, 

nitrogen and phosphorus cycles, dynamic vegetation, prognostic leaf phenology, and natural 

disturbance regimes should be a priority focus for participants in developing diagnostic models 

as these processes are highly influential on terrestrial biogeochemistry and physics (Eyring et al., 

2020; Fleisher et al., 2019; Piao et al., 2019; Wieder et al., 2015; Achard et al., 2014; Richardson 

et al., 2013; Heimann and Reichstein, 2008; Tucker et al., 1986), and their omission contributes 

to widespread bias (Green et al., 2019; Anav et al., 2015). While outside the focus of this review, 

equal attention should be applied to the physical components of terrestrial biogeochemical 

cycles, including explicit representation of permafrost and riverine carbon transport dynamics. In 
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fact, a study including four CMIP5 ESMs found that soil moisture variability prompted 

variability in terrestrial NBP on the order of gigatonnes, with non-linear responses to both 

moisture scarcity and excess (Green et al., 2019). Further, many of the merits and limitations of 

the validation approaches discussed herein apply to the validation of these physical components 

as well. 

The communal use of software packages such as ESMValToolv2.0 and ILAMBv2.1 

(Eyring et al., 2020; Collier et al., 2018) could liberate time and computational resources for 

modellers. In addition, this would standardize validation protocols, address long-overlooked 

model uncertainty distinctions (Deser et al., 2020), and avoid terminology confusion (Lovett et 

al., 2006). While these packages include extensive suites of peer-verified observational reference 

datasets and performance metrics, these packages do not yet include evaluation of nitrogen and 

phosphorus cycles, which may be due to the combined scarcity of observations, upscaling 

approaches, and model representations (Lawrence et al., 2019; Zhu et al., 2018; Wieder et al., 

2015; Zaehle and Dalmonech, 2011). The strategic situation of nitrogen, phosphorus, and soil 

moisture monitoring which coincides with current Fluxnet sites (Jung et al., 2020) could provide 

high fidelity insight as to nutrient and environmental limitations on GPP, coherent turnover time 

assessments, and broadly applicable functional relationships to facilitate upscaling. The co-

situation of multiple observational monitoring objectives at Fluxnet sites would enhance the 

utility of each site-level dataset and alleviate errors due to spatiotemporal inconsistencies 

between datasets in both performing evaluations and developing large scale data products. 

Following increased collaboration between empirical and modelling communities to strategically 

expand observations, and their inclusion in a comprehensive evaluation software, the CMIP-

designated use of such software would standardize, conserve, and augment validation efforts. 
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A1.5 Conclusion 

The current generation of ESMs which participated in the sixth phase of the Coupled 

Model Intercomparison Project adopted a broad assortment of approaches to validate historically 

simulated terrestrial biogeochemical cycles. Validations which encompassed a large suite of 

variables over a range of spatiotemporal scales in conjunction with informative model 

performance metrics demonstrated relatively comprehensive assessments of model performance. 

Across CMIP6 participants, the variety of variables, reference datasets, evaluation dimensions, 

and statistical metrics utilized make general assessments of model performance in simulating 

terrestrial biogeochemistry challenging. To address this inconsistency and alleviate the immense 

responsibilities of participants, we recommend the designation of a standard validation protocol 

for CMIP participants, which is consolidated in an open-source software (such as the Earth 

System Model Evaluation Tool version 2 (ESMValToolv2.0) or the International Land Model 

Benchmarking version 2.1 (ILAMBv2.1)). This protocol should utilize a comprehensive suite of 

certainty-weighted observational reference datasets, targeted model performance metrics, and 

comparisons across a range of spatiotemporal dimensions.   The insights from a universally 

adopted validation protocol would precisely attribute model uncertainty and aid in directing 

future observational efforts to improve crucial process understanding within terrestrial 

biogeochemical cycles. 

Author contributions 

LS and AHMD both initiated the research and significantly contributed to the writing of the 

paper. LS conducted the analysis and wrote the original draft. AHMD provided supervisory 

support. 
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A1.6 Technical Summary of Validation Activities by Participants 

A1.6.1 CSIRO 

 The Australian Community Climate and Earth System Simulator (ACCESS-ESM1.5) 

was developed by the Australian modelling group Commonwealth Scientific and Industrial 

Research Organization (CSIRO) for participation in CMIP6 (Ziehn et al., 2020). The land 

surface model used in ACCESS-ESM1.5 is the Community Atmosphere Biosphere Land 

Exchange (CABLE) model (Kowalczyk et al., 2013; 2006) version 2.4. Ziehn et al. (2020) 

compared ACCESS-ESM1.5 simulated land carbon cycle variables against observation-based 

estimates for the 1986-2005 period. The spatial distribution of simulated average annual GPP 

was compared to upscaled Fluxnet observations from Jung et al. (2011), while average annual 

global GPP was compared to observation-based estimates from Beer et al. (2010) and Ziehn et 

al. (2011). Simulated LAI magnitude and seasonality was compared to global and regional 

estimates based on Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced 

Very High-Resolution Radiometer (AVHRR) data from Zhu et al. (2013).  Simulated surface 

CO2 concentrations in terms of mean seasonal cycle amplitude and timing were compared to four 

NOAA/Earth System Research Laboratory station flask samples provided in the GLOBAL 

VIEW data product (GLOBAL VIEW-CO2 2013).  

A1.6.2 BCC 

 The Beijing Climate Centre (BCC) participated in CMIP6 with the BCC Climate System 

Model version 2 with medium resolution (BCC-CSM2-MR; Wu et al., 2019). Land 

biogeochemistry in BCC-CSM2-MR was simulated through the BCC Atmosphere and 

Vegetation Interactive Model version 2.0 (BCC-AVIM2; Li et al., 2019b). While Wu et al. 

(2019) did not provide validation results for terrestrial biogeochemistry from BCC-CSM2-MR, a 
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detailed validation with offline simulations of BCC-AVIM2 was provided by Li et al. (2019b) 

using the Princeton global forcing dataset (Sheffield et al., 2006). Li et al. compared the annual 

peak month, seasonal average, and global average of LAI to satellite observations from 1982-

2010 by the AVHRR (Myneni et al., 1997). Surface carbon fluxes including GPP and ER were 

compared to upscaled Fluxnet observations from Jung et al. (2011). Above ground biomass was 

compared to Avitabile et al. (2016), while global total biomass carbon from 1990-2010 was 

compared to Saatchi et al. (2011). The performance of BCC-AVIM2 in estimating each of these 

variables was assessed through bias, RMSE, and Taylor diagram metrics (Taylor, 2001).  

A1.6.3 CCCma 

 The Canadian Centre for Climate Modelling and Analysis (CCCma) participated in 

CMIP6 with the CCCma fifth generation Earth System model (CanESM5; Swart et al., 2019). 

The land biogeochemistry component of CanESM5 is the Canadian Terrestrial Ecosystem Model 

(CTEM; Arora and Boer, 2010; 2005). Swart et al. (2019) compared CanESM5 simulated GPP 

from 1982-2009 with observation-based estimates from Jung et al. (2009) in terms of 

geographical distribution, zonal averages, as well as functional relationships with air temperature 

and precipitation. Several metrics were used to illustrate CanESM5’s performance in simulating 

GPP, including the correlation coefficient (r) between simulated and observed spatial patterns in 

GPP, bias (simulated – observed), as well as root mean squared error (RMSE) normalized 

(NRMSE) by observed spatial standard deviation. Global average decadal land-atmosphere CO2 

flux as well as net cumulative atmosphere-land CO2 flux from 1850-2014 were compared to 

observation-based estimates from the Global Carbon Project (GCP; Le Quéré et al., 2018), the 

latter by subtracting cumulative land use emissions from cumulative land carbon uptake. 
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A1.6.4 Climate and Global Dynamics Laboratory NCAR  

 The Community Earth System Model version 2 (CESM2) was developed by the Climate 

and Global Dynamics Laboratory at the American National Centre for Atmospheric Research 

(NCAR) for participation in CMIP6 (Danabasoglu et al., 2020). The land component of CESM2 

is the Community Land Model Version 5 (CLM5; Lawrence et al., 2019). Danabasoglu et al. 

(2019) and Lawrence et al. (2019) comprehensively assessed terrestrial biogeochemical cycle 

variable outputs from simulations of CESM2 and CLM5, respectively, with the International 

Land Model Benchmarking package (ILAMBv2.1; Collier et al., 2018), including an explicit 

analysis of interannual variability with a three member ensemble from different pre-industrial 

control initialization years (CESM2), the influence of forcing through the use of three forcing 

datasets (CLM5), and the influence of prescribed versus prognostic vegetation phenology 

(CLM5). ILAMBv2.1 utilizes a suite of data products weighted by certainty. These included 

vegetation biomass (tropical: Saatchi et al., 2011; global: Kellndorfer et al., 2013; Blackard et al., 

2008), burned area (Giglio et al., 2010), CO2 concentrations, GPP (Fluxnet: Lasslop et al., 2010; 

Global biosphere-atmosphere flux: Jung et al., 2010), LAI (AVHRR: Myneni et al., 1997; 

MODIS: de Kauwe et al., 2011), global net ecosystem carbon balance (GCP: Le Quéré et al., 

2014; Hoffman et al., 2014), net ecosystem exchange (Fluxnet: Lasslop et al., 2010; GBAF: Jung 

et al., 2010), NBP, ER,  NEP (equivalent to GPP-ER), soil carbon (Harmonized World Soil 

Database (HWSD): Todd-Brown et al., 2013; Northern Circumpolar Soil Carbon Database 

(NCSCDV22): Hugelius et al., 2013), as well as 10 functional relationships. Lawrence et al. 

(2019) also compared the relationship between apparent soil carbon turnover times versus air 

temperature to observation-based estimates developed from HWSD, NCSDV22, and MODIS. 

Lawrence et al. (2019) additionally compared maximum monthly LAI and average Vcmax25 
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(maximum rubisco carboxylation rate at 25°C and high irradiance per unit leaf area in µmol·m-

2·s-1) at the PFT-level for the year 2010 to  Zhao et al. (2005) and Kattge et al. (2009), 

respectively, as well as canopy height for the year 2005 for tree PFTs to Simard et al. (2011). 

Nitrogen cycle variables evaluated by Lawrence et al. (2019) with observational references 

included nitrogen deposition (Fowler et al., 2013), symbiotic fixed nitrogen (Vitousek et al., 

2013), soy fixed nitrogen (Herridge et al., 2008), crop nitrogen fertilization (Fowler et al., 2013), 

denitrification (Fowler et al., 2013), hydrologic nitrogen losses (Fowler et al., 2013), fire losses 

(Lamarque et al., 2010), and N2O flux (Fowler et al., 2013). Different climate forcing datasets 

and anthropogenic forcings were utilized to examine the effect of climate, CO2 emissions, land 

use change, and nitrogen additions on carbon cycle variables as well as three CLM model 

versions to partition total uncertainty into forcing and model contributions using fixed-effect 

analysis of variance, with additional PFT-level analysis and prognostic versus prescribed 

vegetation and carbon cycling for CLM5. In addition to the ILAMB validation, Danabasoglu et 

al. (2019) and Lawrence et al. (2019) compared simulated global net biome production (NBP) 

and cumulative land carbon sink to observation-based estimates from 1850-2014 from the GCP 

for 1959-2014 (Le Quéré et al., 2016), and from Hoffman et al. (2014) for 1850-2010. 

Observation-based GPP, ER, and NEP (equivalent to GPP-ER), comparison data were obtained 

from Jung et al. (2011; 2010). Vegetation carbon was evaluated relative to observations for the 

tropics from Saatchi et al. (2011), as well as GEOCARBON and GlobalCarbon datasets (Collier 

et al., 2018; Avitabile et al., 2016; Santoro et al., 2015). ILAMBv2.1 results from these 

investigations comprised a collection of statistical metrics for annual mean, bias, relative bias, 

RMSE, seasonal cycle phase, spatial distribution, and interannual variability, in addition to 
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functional relationships. Bonan et al. (2019) provides a detailed analysis on the role of climate 

forcing uncertainty in influencing CLM5 output. 

A1.6.5 CNRM and CERFACS 

 The Centre National de Recherches Météorologiques (CNRM) and Centre Européen de 

Recherche et de Formation Avancée en Calcul Scientifique (CERFACS) contributed the CNRM-

ESM2-1 to CMIP6 (Séférian et al., 2019). The land component in CNRM-ESM2-1 is the 

Interaction Soil-Biosphere-Atmosphere with Total Runoff Integrating Pathways with carbon 

cycling (ISBA-CTRIP; Delire et al., 2020). Séférian et al. (2019) compared CNRM-ESM2-1 

simulated annual minimum and maximum LAI to AVHRR observations from 1998-2011 (Zhu et 

al., 2013). The simulated land carbon sink from 1982-2010 was compared to a multi-model 

estimate by Huntzinger et al. (2013). These validations included spatial bias, global mean bias, 

RMSE, as well as spatial error correlation between CNRM ESM versions to distinguish model 

sources of error. Delire et al. (2020) validated offline ISBA-CTRIP simulated GPP, NPP, 

autotrophic respiration, and ER from 1980-2010 with estimates with the mean of 12 products 

from the FluxComv1 dataset (Jung et al., 2017; 2016; Tramontana et al., 2016), and a satellite 

product from the Numerical Terradynamic Simulation Group: MODIS17A3 (NASA LP DAAC, 

2017; Zhao et al., 2005), with reference autotrophic respiration calculated as the mean of 

FLUXCOM GPP products minus MODIS17A3 NPP. Simulated crop NPP for the 2000s was 

compared to the Harvested Area and Yield dataset (Monfreda et al., 2008). Carbon use efficiency 

(CUE), calculated as the ratio of NPP to GPP, was evaluated with observation and model-based 

estimates for tropical evergreen forest from Malhi et al. (2009), and tropical deciduous, 

temperate, and boreal forests from He et al. (2018), Zhang et al. (2014), and theoretical 

derivations by Amthor, (2000). Simulated heterotrophic respiration was evaluated with a data 
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product from Hashimoto et al. (2015) which combines global and Amazonian in situ 

observations from the Soil Respiration database (Bond-Lamberty et al., 2018) and Malhi et al. 

(2009), respectively, and global gridded climate data. The simulated burned area and fire CO2 

emissions were compared to Mouillot and Field (2005) and the Global Fire Emissions Database 

version 4.1 (Randerson et al., 2017; van der Werf et al., 2017). Simulated dissolved organic 

carbon yield leached from soil was compared to model results of Mayorga et al. (2010), and 

observations by Dai et al. (2012). Simulated global aboveground biomass carbon was validated 

with observation-based estimates from 1993-2012 from Liu et al. (2015), regional datasets for 

mid-high northern latitudes from Thurner et al. (2014), and tropical datasets from Saatchi et al. 

(2011) and Baccini et al. (2012). Simulated above ground litter carbon was compared to site 

measurements from 1827-1997 from the Global Database of Litterfall Mass and Litter Pool 

Carbon and Nutrients (Holland et al., 2015). Simulated belowground organic carbon was 

validated with the HWSDv1.2 (FAO, 2012). Vegetation turnover time calculated as biomass 

divided by NPP and soil turnover time calculated as the combination of litter and soil carbon 

divided by NPP for 1984-2014 were also computed for validation. Delire et al. (2020) also used 

local scale Fluxnet data from Joetzjer et al. (2015) to assess ISBA-CTRIP performance. Each 

variable was validated through comparison of the distribution of simulated and observation-

based estimates of annual averages, as well as zonal averages, and the spatial distribution of the 

bias (simulated minus observed). Average simulated carbon fluxes from 2006-2015 and the trend 

from 1960-2015 were also compared to observation-based estimates from the GCP (Le Quéré et 

al., 2018) and Ciais et al. (2019). 
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A1.6.6 IPSL 

 The Institut Pierre Simon Laplace (IPSL) participated in CMIP6 with IPSL-CM6A-LR, 

the land component of which was the ORCHIDEE land surface model version 2.0 (Boucher et 

al., 2020; Hourdin et al., 2020). Boucher et al. (2020) evaluated IPSL-CM6A-LR simulated 

average annual carbon fluxes from 1990-1999 and 2009-2018 resulting from land cover change, 

fossil fuel emissions, the terrestrial sink, and total net land fluxes (the terrestrial sink minus land 

cover change) with observation-based estimates from the 2019 GCP (Friedlingstein et al., 2019). 

Vuichard et al. (2019) validated ORCHIDEE simulated GPP in terms of the mean annual, 

seasonal, and daily simulated GPP on a PFT, spatial, and global basis against observations from 

78 Fluxnet sites (Vuichard and Paple, 2015) and the global-scale MTE-GPP product based upon 

upscaled Fluxnet observations for 1982-2008 (Jung et al., 2011). RMSE as well as dissected 

mean squared deviation (MSE; which is the sum of squared bias, squared difference between 

standard deviations, and lack of correlation weighted by standard deviations; based on 

Kobayashi and Salam, (2000)), metrics were used to attribute different sources of uncertainty. 

The relative contribution of drivers of variation in present-day GPP were also assessed, including 

seasonal variability in NOx and NHx deposition as well as leaf carbon: nitrogen ratio. The 

sensitivity of ORCHIDEE output to model structure in terms of MSE was also analyzed on a 

global and PFT-level basis, including fixed and dynamic fully coupled carbon-nitrogen cycles.  

A1.6.7 GFDL 

 The American National Oceanic and Atmospheric Administration Geophysical Fluid 

Dynamics Laboratory (GFDL) participated in CMIP6 with GFDL-ESM4.1 (Dunne et al., 2020), 

in which land biogeochemistry is simulated with the GFDL Land Model version 4.1 (LM4.1; 

Shevliakova et al., 2020). Dunne et al. (2020) validated GFDL-ESM4.1’s simulated spatial 
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distribution of seasonal amplitude in CO2 concentrations and interannual variability of CO2 

concentrations compared to NOAA Global Monitoring Division sites with at least 15-year long 

records (Global Monitoring Laboratory, 2005) using RMSE and the coefficient of determination 

(r2), as well as the correlation coefficient (r) for individual sites.  

A1.6.8 JAMSTEC, University of Tokyo, and National Institute for Environmental Studies 

  The Japanese Agency for Marine-Earth Science and Technology (JAMSTEC), University 

of Tokyo, and National Institute for Environmental Studies participated in CMIP6 with the 

Model for Interdisciplinary Research on Climate Earth System version 2 for Long-term 

simulations (MIROC-ES2L; Hajima et al., 2020). The land biogeochemical component in 

MIROC-ES2L is Vegetation Integrative Simulator for Trace gases model (VISIT-e; Ito and 

Inatomi, 2012). Hajima et al. (2020) evaluated MIROC-ES2L simulated terrestrial carbon gain 

with and without land use, as well as land use emissions from 1850-2014 in comparison to multi-

model estimates from the GCP (Le Quéré et al., 2018). Observational-based data products used 

for other comparisons included 1) the spatial pattern, gradient across biomes, magnitude, 

seasonality, and length of growing season of global gridded GPP from 1986-2005 from Fluxnet 

(Jung et al., 2011), 2) the magnitude and density of forest carbon stock (Kindermann et al., 2008) 

and 3) global and regional soil organic carbon from the harmonized soil property values for 

broad-scale modelling (WISE30Sec; Batjes, 2016), the northern high latitudes from the Northern 

Circumpolar Soil Carbon Database version 2 (NCSCDv2; Hugelius et al., 2013), and an estimate 

from Todd-Brown et al. (2013) developed from the HWSD version 1.3 (FAO, 2012). Hajima et 

al. (2020) also compared simulated and observation-based estimates of annual biological 

nitrogen fixation (BNF) from 1850-2014 (Gruber and Galloway, 2008), present-day BNF 

(Galloway et al., 2008; Herridge et al., 2008), annual unperturbed state terrestrial N2 flux 
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(Gruber and Galloway, 2008), and change in annual soil nitrous oxide emissions from 1850-2014 

relative to a model comparison study by Tian et al. (2018). 

A1.6.9 MPI 

 The Max Planck Institute for Meteorology (MPI) Earth System Model version 1.2 Low 

Resolution (MPI-ESM1.2-LR) was developed for participation in CMIP6 (Mauritsen et al., 

2019) by the MPI, the land component of which is JSBACH3.2 (Goll et al., 2017). Mauritsen et 

al. (2019) compared the spatial variability and zonally averaged density of MPI-ESM1.2-LR 

simulated soil and litter carbon stocks to estimates by Goll et al. (2015) developed from the 

Harmonized World Soil Database. The simulated evolution in global total land carbon from 

1850-2013 was compared to estimates provided by Ciais et al. (2013). Additionally, simulated 

land use change carbon emissions from 1860-2013 were compared to estimates provided by 

Ciais et al. (2013). In a model description paper of JSBACH version 3.10, which was set to be 

used in CMIP6, Goll et al. (2017) compare JSBACH3.1 simulated present-day NPP to Ito 

(2011), while simulated present-day biomass carbon was compared to Saugier and Roy, (2001) 

and Ciais et al. (2013). The simulated response of NPP and GPP to increases in atmospheric CO2 

were compared to experimentally observed estimates from four free-air CO2 enrichment (FACE) 

experiments (Norby et al., 2005) and an intramolecular isotope distribution examination of plant 

metabolic shifts (Ehlers et al., 2015). Simulated present-day biomass nitrogen was compared to 

Schlesinger (1997) while simulated present-day total nitrogen was compared to Galloway et al. 

(2013). Simulated values of pre-industrial (1850) and present-day leaching and BNF were 

compared to Galloway et al. (2013; 2004), Vitousek et al. (2013), and short-term experimental 

results from a meta-analysis by Liang et al. (2016), while simulated present-day denitrification 

was compared to Galloway et al. (2013). Goll et al. (2017) also verified the simulated spatial 
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variability in reactive nitrogen-loss pathways using a compilation of nitrogen-15 isotopic data 

(Houlton et al., 2015) with the statistical metrics r, RMSE, and Taylor score (Taylor 2001).  

A1.6.10 NCC 

 The Norwegian Earth System Model (NORESM2) was developed for participation in 

CMIP6 (Seland et al., 2020) by the Norwegian Climate Consortium (NCC) and is based on 

CESM2. As in CESM2, the land model in NORESM2 is CLM5 (Lawrence et al., 2019).  The 

performance of NORESM2 was validated through a three-member ensemble of historical 

simulations from 1850-2014 with slightly varying initial conditions. Simulated carbon cycle 

variables which were compared to observation variables included GPP, soil carbon, and 

vegetation carbon, from Jung et al. (2011), FAO, (2012), and Avitabile et al. (2016) and Santoro 

et al. (2015), respectively. Seland et al. (2020) NORESM2 results in terms of carbon stocks and 

fluxes broadly agree with those of Lawrence et al. (2019) while conducting land-only 

simulations of CLM5. 

A1.6.11 NERC and Met Office 

 The United Kingdom Community Earth System Model (UKESM1-0-LL) was developed 

for participation in CMIP6 by the United Kingdom Natural Environmental Research Council 

(NERC) and National Meteorological Service (Met Office; Sellar et al., 2019). The land 

component in UKESM1-0-LL is an updated version of the Joint UK Land Environment 

Simulator (JULES; Clark et al., 2011) with an additional PFT updated competition scheme 

(Harper et al., 2018). Sellar et al. (2019) evaluated UKESM1-0-LL simulated global GPP 

magnitude and evolution in time through comparisons to recent decadal GPP from the Fluxnet 

model tree ensemble data product (Jung et al., 2011). The areal land cover of aggregated plant 

functional types (PFTs) was validated with satellite observation-based datasets from the 
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European Space Agency Climate Change Initiative Land Cover data (Poulter et al., 2015) as well 

as the International Geosphere-Biosphere Programme (IGBP) Land Use and Cover Change 

project (Loveland et al., 2000) using the model year 2005. The coverage of PFTs were validated 

using these observation-based datasets as references both spatially and as a fraction of biomes 

based upon regions defined by Olson et al. (2006). The simulated vegetation carbon distribution 

was validated on a latitudinal basis with observation-based estimates from GEOCAROBON 

(Avitabile et al., 2016) and Saatchi et al. (2011), while the spatial distribution of soil carbon was 

validated with observation-based estimates WISE30sec (Batjes, 2016), IGBP-DIS (Global Soil 

Data Task Group, 2002), and Carvalhais et al. (2014). The magnitude of simulated global total 

soil carbon was compared to whole soil profile observation-based estimates from Carvalhais et 

al. (2014) and upper 2 m observation-based estimates from Batjes, (2016). Cumulative carbon 

uptake and land use emissions from 1850-2014 was compared to observation-based estimates 

from the GCP (Le Quéré et al., 2018).  
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Appendix II: Supplementary Information for Chapter 2 

To evaluate the sensitivity of our simulation to the assumed prior distributions of the 

input parameters, we conducted a number of sensitivity analyses. Assuming a normal distribution 

for all of the input variables (Figure A2-1) had a negligible influence upon the form and statistics 

of the calculated TCRE probability distribution function (PDF) (Figure A2-2). With normally 

distributed input parameters, the calculated TCRE PDF had a log-normal distribution, with a 

mean of 1.8 K EgC−1, and a median of 1.7 K EgC−1. 
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Figure A2-1. Probability density functions (PDFs) of parameters used in the sensitivity analysis 

of the TCRE assuming normal parameter distributions. The light grey bar designates a 16-84% 

confidence interval, and the dark grey bar designates a 5-95% confidence interval. 
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Figure A2-2. Probability density function of calculated TCRE values resulting from assumed 

normal parameter distributions. The light grey bar designates a 16-84% confidence interval, and 

the dark grey bar designates a 5-95% confidence interval. 

 

Table A2-1 displays the range in TCRE values resulting from a uniform prior PDF 

for each of the input parameters while holding all other parameters at the best estimate 

value. The TCRE was most sensitive to the climate feedback parameter, followed by 

the fraction of landborne carbon emissions, effective ocean diffusivity, radiative forcing 

from an e-fold increase in atmospheric CO2, and least sensitive to the ratio of sea to 

global surface temperature change. 
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Table A2-1. The TCRE range resulting from assuming a uniform probability distribution 

function for each input parameter of interest while maintaining all other parameters at a best 

estimate value. 

Parameter from Uniform Resultant  

TCRE Distribution (n=1,000,000) 

Resultant TCRE 

Range (K EgC−1) 

Effective Ocean Diffusivity (µ) (m2a−1) 1.04 -3.09 

Climate Feedback (λ) (Wm−2 ◦C−1) 0.64 -3.65 

Radiative Forcing from an e-fold Increase in 

atmospheric CO2 (R) (Wm−2) 

1.08 -2.41 

Ratio of Sea to Global Surface Temperature 

Change () 

1.64 -1.87 

Land-borne Fraction of Carbon (l) 0.07 -3.05 

 

We conducted an analysis to examine the effect of assuming independent rather than 

linked probabilities between the climate feedback and radiative forcing from an e-fold increase 

in atmospheric CO2 parameters. Assuming that these two parameters had linked probabilities had 

a negligible influence on the shape and statistics of the resultant TCRE PDF (Figure A2-3), 

which had a log-normal distribution, with a mean of 1.9 KEgC−1, and a median of 1.8 K EgC−1. 

 
Figure A2-3. Probability density function of calculated TCRE values resulting from assuming 

linked probabilities between radiative forcing from an e-fold increase in CO2 and climate 

feedback parameters. The light grey bar designates a 16-84% confidence interval, and the dark 

grey bar designates a 5-95% confidence interval. 
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We examined the influence of utilizing an alternative estimate for Earth’s Energy 

Imbalance (EEI) from Trenberth et al. (2016; 0.9 ± 0.3 W m−2, from 2005-2014) rather than 

Johnson et al. (2016; 0.71 ± 0.11 W m−2, from 2005.5-2015.5) in constructing the effective ocean 

diffusivity PDF and calculating the PDF of the TCRE. Using the estimate of EEI by Trenberth et 

al. (2016) had negligible impact on the shape and statistics of the resultant TCRE PDF (Figure 

A2-4), which had a log-normal distribution, with a mean of 1.8 K EgC−1 , and a median of 1.7 K 

EgC−1. 

 

 
Figure A2-4. Probability density function of calculated TCRE values resulting from using the 

Earth Energy Imbalance estimate (0.9 ± 0.3 W m−2, from 2005-2014) provided by Trenberth et 

al. (2016). The light grey bar designates a 16-84% confidence interval, and the dark grey bar 

designates a 5-95% confidence interval. 

 

We examined the implications of calculating the PDF for climate feedback with and 

without varying the forcing associated with a doubling of atmospheric CO2, 3.71 W m−2 (Myhre 

et al., 1998). The effect of varying forcing from a doubling of atmospheric CO2 was negligible 
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in terms of both the resultant climate feedback PDF and the TCRE PDF (Figure A2-5). The 

resultant climate feedback PDFs in both cases had a mean of 1.3 W m−2°C−1 and a median of 1.2 

W m−2°C−1, while the resultant TCRE PDFs were both log-normal with a mean of 1.9 K EgC−1, 

and a median of 1.8 K EgC−1. 

 

 
Figure A2-5. Climate feedback (left) and Transient Climate Response to Cumulative CO2 

Emissions (right) probability distribution functions resulting from Monte-Carlo simulations 

(n=1,000,000) wherein climate feedback is calculated with a varying radiative forcing from a 

doubling of CO2 (top) and wherein climate feedback is calculated with a fixed radiative forcing 

from a doubling of CO2 (bottom). The light grey bar designates a 16-84% confidence interval, 

and the dark grey bar designates a 5-95% confidence interval. 
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Appendix III: Supplementary Information for Chapter 4 

Table A3-1. Leaf emergence process models included in this study for estimating the timing of 

the start of season (SOS) or leaf emergence. Note that each leaf emergence site-year runs from 

September 1st to August 31st such that a starting date of January 1st corresponds to a 𝑡0 of 103. 

𝑅𝑓𝑟𝑐 and 𝑅𝑐ℎ𝑙   denote the rate of forcing and chilling, respectively.  𝑆𝑓𝑟𝑐 and 𝑆𝑐ℎ𝑙 denote the 

accumulated state of forcing and chilling, respectively. 𝐷𝑅𝑡 and 𝐷𝑅𝑝 denote the rate of 

dormancy induction based on temperature and photoperiod, respectively. 𝑆𝐷𝑅 denotes the state 

of dormancy induction accumulation. 

Model 

Variables, 

Parameters, & 

Release 

Process(es) 

Included 

Equation Reference 

Null 

-mean date from 

all observations 

𝑆𝑂𝑆̅̅ ̅̅ ̅
𝑜 

None 

 

𝑆𝑂𝑆 = 𝑆𝑂𝑆̅̅ ̅̅ ̅
𝑜 

- 

Thermal 

Time (TT) 

-starting date 𝑡0 

-daily mean 

temperature 𝑇𝑖 

-base 

temperature for 

accumulation 𝑇𝑏 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Ecodormancy 

𝑅𝑓𝑟𝑐(𝑖) =  {
𝑇𝑖 > 𝑇𝑏:  𝑇𝑖 − 𝑇𝑏
𝑇𝑖 ≤ 𝑇𝑏:  0          

 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

Hufkens et 

al., 2018; 

Basler, 2016; 

Wang 1960;  

Réaumur, 

1735 

Thermal 

Time with 

Sigmoidal 

Temperature 

Response 

(TTs) 

-starting date 𝑡0 

-daily mean 

temperature 𝑇𝑖 

-response 

parameter b 

-response 

parameter c 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Ecodormancy 

𝑅𝑓𝑟𝑐(𝑖) =  
1

1 + 𝑒−𝑏(𝑇𝑖−𝑐)
 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

Hufkens et 

al., 2018; 

Basler, 2016; 

Kramer, 

1994; 

Hänninen, 

1990 
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Photo-

Thermal 

Time (PTT) 

-starting date 𝑡0 

-daily mean 

temperature 𝑇𝑖 

-base 

temperature for 

accumulation 𝑇𝑏 

-daylength 𝐿𝑖 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Ecodormancy 

𝑅𝑓𝑟𝑐(𝑖) =   
𝐿𝑖

24
 * {

𝑇𝑖 > 𝑇𝑏:  𝑇𝑖 − 𝑇𝑏
𝑇𝑖 ≤ 𝑇𝑏:  0            

 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

Hufkens et 

al., 2018; 

Basler, 2016; 

Črepinšek et 

al., 2006; 

Masle, 1989 

Photo-

Thermal 

Time with 

Sigmoidal 

Temperature 

Response 

(PTTs) 

-starting date 𝑡0 

-daily mean 

temperature 𝑇𝑖 

-response 

parameter b 

-response 

parameter c 

-daylength 𝐿𝑖 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Ecodormancy 

𝑅𝑓𝑟𝑐(𝑖) =  
𝐿𝑖

24
∗ 

1

1+ 𝑒−𝑏(𝑇𝑖−𝑐)
 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

Hufkens et 

al., 2018; 

Basler, 2016; 

Črepinšek et 

al., 2006; 

Kramer, 

1994; 

Hänninen, 

1990; Masle, 

1989 

 

M1 

-starting date 𝑡0 

-daily mean 

temperature 𝑇𝑖 

-base 

temperature for 

accumulation 𝑇𝑏 

-daylength 𝐿𝑖 

-response 

parameter k 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Ecodormancy 

𝑅𝑓𝑟𝑐(𝑖) =  (
𝐿𝑖
10
)
𝑘

∗   {
𝑇𝑖 > 𝑇𝑏:  𝑇𝑖 − 𝑇𝑏
𝑇𝑖 ≤ 𝑇𝑏:  0            

 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

Hufkens et 

al., 2018; 

Basler, 2016; 

Blümel and 

Chmielewski, 

2012 

Alternating 

(AT) 

-starting date 𝑡0 

-daily mean 

temperature 𝑇𝑖 

-base 

𝑅𝑐ℎ𝑙(𝑖) =  {
𝑇𝑖 < 𝑇𝑏:  0
𝑇𝑖 ≥ 𝑇𝑏:  1

 

 

Hufkens et 

al., 2018; 

Basler, 2016; 

Murray et al., 
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temperature for 

accumulation 𝑇𝑏 

-response 

parameter a 

-response 

parameter b 

-response 

parameter c 

Endodormancy 

& 

Ecodormancy 

𝑆𝑐ℎ𝑙 = ∑ 𝑅𝑐ℎ𝑙

𝑛

𝑖=𝑡0

 

 

 

𝑅𝑓𝑟𝑐(𝑖) =  {
𝑇𝑖 > 𝑇𝑏:  𝑇𝑖 − 𝑇𝑏
𝑇𝑖 ≤ 𝑇𝑏:  0          

 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝐹𝑐𝑟𝑖𝑡 = 𝑎 + 𝑏 ∗ 𝑒
𝑐∗𝑆𝑐ℎ𝑙  

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

1989; Cannel 

and Smith 

1983 

Sequential 

(SQ) 

-chilling starting 

date 𝑡0𝑐 

-forcing starting 

date 𝑡0𝑓 

-daily mean 

temperature 𝑇𝑖 

-minimum 

temperature for 

chilling 

accumulation 

𝑇𝑚𝑖𝑛 

-optimal 

temperature for 

chilling 

accumulation 

𝑇𝑜𝑝𝑡 

-maximum 

temperature for 

chilling 

accumulation 

𝑇𝑚𝑎𝑥 

-threshold for 

forcing 

accumulation 

𝑅𝑡𝑐ℎ𝑙(𝑖)

=  

{
  
 

  
 𝑇𝑚𝑖𝑛 ≤  𝑇𝑖 < 𝑇𝑜𝑝𝑡 ∶   

𝑇𝑖 − 𝑇𝑚𝑖𝑛
𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛 

       

𝑇𝑜𝑝𝑡 ≤  𝑇𝑖 < 𝑇𝑚𝑎𝑥 ∶ 1 −
𝑇𝑖 − 𝑇𝑜𝑝𝑡

𝑇𝑚𝑎𝑥 −  𝑇𝑜𝑝𝑡 

𝑇𝑖 < 𝑇𝑚𝑖𝑛 ∶ 0               
𝑇𝑖 > 𝑇𝑚𝑎𝑥 ∶ 0               

 

 

 

𝑆𝑐ℎ𝑙 = ∑ 𝑅𝑡𝑐ℎ𝑙

𝑛

𝑖=𝑡0𝑐

 

 

𝑘 =  {
𝑆𝑐ℎ𝑙 < 𝐶𝑟𝑒𝑞: 0

𝑆𝑐ℎ𝑙 ≥ 𝐶𝑟𝑒𝑞: 1
 

 

 

𝑅𝑓𝑟𝑐(𝑖) =  𝑘 ∗  {
𝑇𝑖 > 𝑇𝑏:  𝑇𝑖 − 𝑇𝑏
𝑇𝑖 ≤ 𝑇𝑏:  0          

 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0𝑓

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 

Hufkens et 

al., 2018; 

Basler, 2016; 

Kramer, 

1994; 

Hänninen, 

1990 
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𝐶𝑟𝑒𝑞 

-base 

temperature for 

forcing 

accumulation 𝑇𝑏 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Endodormancy 

& 

Ecodormancy 

Dormphot 

(DP) 

-dormancy 

induction 

sensitivity 

parameter 𝑎 

-daily mean 

temperature 𝑇𝑖 

-response 

parameter for 

dormancy 

induction 

accumulation 𝑏 

-daylength 𝐿𝑖 

-threshold 

daylength for 

dormancy 

induction 

accumulation 

𝐿𝑐𝑟𝑖𝑡 

-threshold for 

dormancy 

induction 𝐷𝑐𝑟𝑖𝑡 

-chilling 

sensitivity 

parameter 𝑐 

-rate of chilling 

accumulation 

parameter 𝑑 

-forcing 

sensitivity 

 

𝐷𝑅𝑡(𝑖) =  
1

1 + 𝑒𝑎( 𝑇𝑖− 𝑏)
 

 

𝐷𝑅𝑝(𝑖) =  
1

1 + 𝑒10( 𝐿𝑖− 𝐿𝑐𝑟𝑖𝑡)
 

 

𝑆𝐷𝑅 = ∑ 𝐷𝑅𝑡 ∗ 

𝑛

𝑖=𝑡0

𝐷𝑅𝑝 

 

𝑅𝑐ℎ𝑙(𝑖)

=  {

𝑆𝐷𝑅 < 𝐷𝑐𝑟𝑖𝑡:  0                                        

𝑆𝐷𝑅 ≥ 𝐷𝑐𝑟𝑖𝑡 : 
1

1 + 𝑒𝑐( 𝑇𝑖− 𝑑)
2+( 𝑇𝑖− 𝑑)

 

 

𝑆𝑐ℎ𝑙 = ∑ 𝑅𝑐ℎ𝑙

𝑛

𝑖=𝑡0

 

 

𝑑𝑙50(𝑖) =  
24

1 + 𝑒ℎ𝐿(𝑆𝑐ℎ𝑙(𝑖)−𝐶𝑟𝑒𝑞)
 

 

𝑇50(𝑖) =  
60

1 + 𝑒𝑔𝑇(𝐿𝑖−𝑑𝑙50)
 

 

𝑅𝑓𝑟𝑐(𝑖)

=  {

𝑆𝐷𝑅 < 𝐷𝑐𝑟𝑖𝑡:  0                                

𝑆𝐷𝑅 ≥ 𝐷𝑐𝑟𝑖𝑡 : 
1

1 + 𝑒𝑑𝑓( 𝑇𝑖−𝑇50(𝑖) )
 

Hufkens et 

al., 2018; 

Basler, 2016; 

Caffarra et 

al., 2011 
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parameter ℎ𝐿 

-chilling 

threshold 

parameter for 

forcing 

accumulation 

𝐶𝑟𝑒𝑞 

-daylength 

sensitivity 

parameter 𝑔𝑇 

-forcing 

accumulation 

parameter 𝑑𝑓 

-critical 

threshold for leaf 

emergence 𝐹𝑐𝑟𝑖𝑡 

Dormancy 

Induction, 

Endodormancy, 

& 

Ecodormancy 

 

𝑆𝑓𝑟𝑐 = ∑ 𝑅𝑓𝑟𝑐

𝑛

𝑖=𝑡0

 

 

𝑆𝑓𝑟𝑐  ≥  𝐹𝑐𝑟𝑖𝑡 
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Table A3-2. Optimal parameters and initial parameter range in square brackets for or each leaf 

emergence model using general simulated annealing. Note that each leaf emergence site-year 

runs from September 1st to August 31st such that a starting date of January 1st corresponds to a 

𝑡0 of 103. 

Model Parameters Acer rubrum 
Betula 

papyrifera 

Abies 

balsamea 

Thermal Time (TT) 

-starting date 𝑡0 

-base temperature 

for accumulation 

𝑇𝑏 

-critical threshold 

for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 

 

𝑡0: 192 [1-365] 

𝑇𝑏: 4.062 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 212.5 [0 

-2000] 

𝑡0: 181 [1-365] 

𝑇𝑏: 4.804 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 157.6 [0 

-2000] 

𝑡0: 175 [1-365] 

𝑇𝑏: 9.989 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 6.584 [0 

-2000] 

Thermal Time with 

Sigmoidal 

Temperature 

Response (TTs) 

-starting date 𝑡0 

-response 

parameter b 

-response 

parameter c 

-critical threshold 

for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 

𝑡0: 185 [1-365] 

𝑏: 0.1443 [0 -

100] 

𝑐: 30.74 [0 -

100] 

𝐹𝑐𝑟𝑖𝑡: 2.188 [0 

-350] 

𝑡0: 193 [1-365] 

𝑏: 0.1778 [0 -

100] 

𝑐: 20.33 [0 -

100] 

𝐹𝑐𝑟𝑖𝑡: 5.147 [0 

-350] 

𝑡0: 177 [1-365] 

𝑏: 2.1472 [0 -

100] 

𝑐: 12.99 [0 -

100] 

𝐹𝑐𝑟𝑖𝑡: 0.9415 

[0 -350] 

Photo-Thermal Time 

(PTT) 

-starting date 𝑡0 

-base temperature 

for accumulation 

𝑇𝑏 

-critical threshold 

for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 

𝑡0: 191 [1-365] 

𝑇𝑏: 4.888 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 103.7 [0 

-2000] 

𝑡0: 181 [1-365] 

𝑇𝑏: 4.319 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 101.8 [0 

-2000] 

𝑡0: 173 [1-365] 

𝑇𝑏: 9.918 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 3.876 [0 

-2000] 

Photo-Thermal Time 

with Sigmoidal 

Temperature 

Response (PTTs) 

-starting date 𝑡0 

-response 

parameter b 

-response 

parameter c 

-critical threshold 

for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 

𝑡0: 185 [1-365] 

𝑏: 0.1696 [0 -

100] 

𝑐: 30.36 [0 -

100] 

𝐹𝑐𝑟𝑖𝑡: 0.8392 

[0 -350] 

𝑡0: 177 [1-365] 

𝑏: 0.2260 [0 -

100] 

𝑐: 16.94 [0 -

100] 

𝐹𝑐𝑟𝑖𝑡: 4.019 [0 

-350] 

𝑡0: 178 [1-365] 

𝑏: 2.552 [0 -

100] 

𝑐: 12.79 [0 -

100] 

𝐹𝑐𝑟𝑖𝑡: 0.6102 

[0 -350] 

M1 
-starting date 𝑡0 

-base temperature 

𝑡0: 151 [1-365] 

𝑇𝑏: 6.708 [-5 -

𝑡0: 174 [1-365] 

𝑇𝑏: 4.753 [-5 -

𝑡0: 174 [1-365] 

𝑇𝑏: 9.996 [-5 -
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for accumulation 

𝑇𝑏 

-response 

parameter k 

-critical threshold 

for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 

+10] 

𝑘: 4.991 [0 -5] 

𝐹𝑐𝑟𝑖𝑡: 710.7 [0 

-2000] 

+10] 

𝑘: 3.079 [0 -5] 

𝐹𝑐𝑟𝑖𝑡: 470.1 [0 

-2000] 

+10] 

𝑘: 4.392 [0 -5] 

𝐹𝑐𝑟𝑖𝑡: 31.98 [0 

-2000] 

Alternating (AT) 

-starting date 𝑡0 

-base temperature 

for accumulation 

𝑇𝑏 

-response 

parameter a 

-response 

parameter b 

-response 

parameter c 

𝑡0: 193 [1-365] 

𝑇𝑏: 3.425 [-5 -

+10] 

𝑎: 226.2 [0 -

500] 

𝑏: 2.549 [0 -

1000] 

𝑐: 4.774 [0 -5] 

𝑡0: 182 [1-365] 

𝑇𝑏: 4.023 [-5 -

+10] 

𝑎: 36.65 [0 -

500] 

𝑏: 148.1 [0 -

1000] 

𝑐: 0.7998 [0 -

5] 

𝑡0: 175 [1-365] 

𝑇𝑏: 9.999 [-5 -

+10] 

𝑎: 0.8163 [0 -

500] 

𝑏: 5.783 [0 -

1000] 

𝑐: 2.780 [0 -5] 

Sequential (SQ) 

-chilling starting 

date 𝑡0𝑐 

-forcing starting 

date 𝑡0𝑓 

-minimum 

temperature for 

chilling 

accumulation 𝑇𝑚𝑖𝑛 

-optimal 

temperature for 

chilling 

accumulation 𝑇𝑜𝑝𝑡 

-maximum 

temperature for 

chilling 

accumulation 

𝑇𝑚𝑎𝑥 

-threshold for 

forcing 

accumulation 𝐶𝑟𝑒𝑞 

-base temperature 

for forcing 

accumulation 𝑇𝑏 

𝑡0𝑐: 30 [1-365] 

𝑡0𝑓: 192 [1-

365] 

𝑇𝑚𝑖𝑛: -3.191 [-

5 -+10] 

𝑇𝑜𝑝𝑡: 7.873 [-5 

-+10] 

𝑇𝑚𝑎𝑥: 14.56 [-

5 -+10] 

𝐶𝑟𝑒𝑞: 12.82 [0 

-350] 

𝑇𝑏: 3.009 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 246.8 [0 

-2000] 

 

𝑡0𝑐: 14 [1-365] 

𝑡0𝑓: 181 [1-

365] 

𝑇𝑚𝑖𝑛: -3.882 [-

5 -+10] 

𝑇𝑜𝑝𝑡: 0.3103 [-

5 -+10] 

𝑇𝑚𝑎𝑥: 1.314 [-

5 -+10] 

𝐶𝑟𝑒𝑞: 2.801 [0 

-350] 

𝑇𝑏: 4.816 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 157.2 [0 

-2000] 

 

𝑡0𝑐: 19 [1-365] 

𝑡0𝑓: 177 [1-

365] 

𝑇𝑚𝑖𝑛: -4.331 [-

5 -+10] 

𝑇𝑜𝑝𝑡: 5.636 [-5 

-+10] 

𝑇𝑚𝑎𝑥: 12.01 [-

5 -+10] 

𝐶𝑟𝑒𝑞: 3.838 [0 

-350] 

𝑇𝑏: 9.984 [-5 -

+10] 

𝐹𝑐𝑟𝑖𝑡: 6.641 [0 

-2000] 
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-critical threshold 

for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 

Dormphot (DP) 

-dormancy 

induction 

sensitivity 

parameter 𝑎 

-response 

parameter for 

dormancy 

induction 

accumulation 𝑏 

-threshold 

daylength for 

dormancy 

induction 

accumulation 𝐿𝑐𝑟𝑖𝑡 

-threshold for 

dormancy 

induction 𝐷𝑐𝑟𝑖𝑡 

-chilling 

sensitivity 

parameter 𝑐 

-rate of chilling 

accumulation 

parameter 𝑑 

-forcing 

sensitivity 

parameter ℎ𝐿 

-chilling threshold 

parameter for 

forcing 

accumulation 𝐶𝑟𝑒𝑞 

-daylength 

sensitivity 

parameter 𝑔𝑇 

-forcing 

accumulation 

parameter 𝑑𝑓 

-critical threshold 

𝑎: 4.351 [-5 -

+5] 

𝑏: 13.95 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 11.11 [8 

-14] 

𝐷𝑐𝑟𝑖𝑡: 35.89 [0 

-100] 

𝑐: 0.3875 [0 -

5] 

𝑑: 17.88 [0 -

100] 

ℎ𝐿: 0.0383 [0 -

20] 

𝐶𝑟𝑒𝑞: 0.7199 

[0 -100] 

𝑔𝑇: 0.6398 [0 

-10] 

𝑑𝑓: -0.3400 [-

1000 -0] 

𝐹𝑐𝑟𝑖𝑡: 10.34 [0 

-100] 

 

𝑎: 2.775 [-5 -

+5] 

𝑏: 18.25 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 12.54 [8 

-14] 

𝐷𝑐𝑟𝑖𝑡: 21.89 [0 

-100] 

𝑐: 0.01198 [0 -

5] 

𝑑: 79.89 [0 -

100] 

ℎ𝐿: 16.14 [0 -

20] 

𝐶𝑟𝑒𝑞: 27.51 [0 

-100] 

𝑔𝑇: 0.1176 [0 

-10] 

𝑑𝑓: -0.5319 [-

1000 -0] 

𝐹𝑐𝑟𝑖𝑡: 16.04 [0 

-100] 

 

𝑎: 1.807 [-5 -

+5] 

𝑏: 3.461 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 13.16 [8 

-14] 

𝐷𝑐𝑟𝑖𝑡: 10.42 [0 

-100] 

𝑐: 0.6685 [0 -

5] 

𝑑: 16.39 [0 -

100] 

ℎ𝐿: 2.321 [0 -

20] 

𝐶𝑟𝑒𝑞: 0.2033 

[0 -100] 

𝑔𝑇: 4.6868 [0 

-10] 

𝑑𝑓: -386.4 [-

1000 -0] 

𝐹𝑐𝑟𝑖𝑡: 4.005 [0 

-100] 
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for leaf emergence 

𝐹𝑐𝑟𝑖𝑡 
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Table A3-3. Leaf senescence process models included in this study. Note that each leaf 

senescence site-year runs from January 1st to December 31st such that a starting date of 

January 1st corresponds to a 𝑡0 of 1. 𝑅𝑡𝑝, 𝑅𝑡, and 𝑅𝑝 denote the rate of temperature cooling and 

photoperiod reducing, the rate of temperature cooling, and the rate of photoperiod reducing, 

respectively. 𝑆𝑡𝑝, 𝑆𝑡, and 𝑆𝑝 denote the accumulated state of temperature cooling and 

photoperiod reducing, the accumulated state of temperature cooling, and the accumulated state 

of photoperiod reducing, respectively. 

Model 

Variables, 

Parameters, 

and 

Process(es) 

Included 

Equation Reference 

Null 

-mean date 

from all 

observations 

𝐸𝑂𝑆̅̅ ̅̅ ̅̅
𝑜 

None 

 

𝐸𝑂𝑆 = 𝐸𝑂𝑆̅̅ ̅̅ ̅̅
𝑜 

- 

White 

(WM) 

-starting date 

fixed to July 

1st 

-daily mean 

temperature 

𝑇𝑖 

-temperature 

for combined 

temperature 

daylength 

senescence 

trigger 𝑇𝑏1 

-daylength 𝐿𝑖 

-daylength for 

combined 

temperature 

daylength 

senescence 

trigger 𝐿𝑐𝑟𝑖𝑡 

-temperature 

for singular 

temperature 

senescence 

𝑅𝑡𝑝(𝑖) =   {
𝑇𝑖 < 𝑇𝑏1  ∧  𝐿𝑖 < 𝐿𝑐𝑟𝑖𝑡 ∶ 1 
𝑇𝑖 ≥ 𝑇𝑏1 ∨ 𝐿𝑖  ≥  𝐿𝑐𝑟𝑖𝑡 ∶  0   

 

 

𝑅𝑡(𝑖) =   {
𝑇𝑖 < 𝑇𝑏2 : 1   
𝑇𝑖 ≥ 𝑇𝑏2:  0   

 

 

𝑅𝑡𝑝 > 0 

 

𝑅𝑡 > 0 

Liu et al., 

2020; 

White et 

al., 1997 
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trigger 𝑇𝑏2 

-criteria for 

senescence: 

first day of 

either 𝑅𝑡𝑝 or 

𝑅𝑡 not equal 

to 0 

Dormancy 

Induction 

Delpierre 

(DM) 

-starting date 

fixed to July 

1st 

-daily mean 

temperature 

𝑇𝑖 

-daylength 𝐿𝑖 

-temperature 

threshold and 

parameter for 

accumulation 

𝑇𝑏 

-daylength 

threshold and 

parameter for 

accumulation 

𝐿𝑐𝑟𝑖𝑡 

-exponential 

weight 

parameter for 

temperature 

importance 𝑥 

-exponential 

weight 

parameter for 

daylength 

importance 𝑦 

-critical 

threshold for 

leaf 

senescence 

𝑅𝑡𝑝(𝑖)

=   {
𝑇𝑖 < 𝑇𝑏  ∧  𝐿𝑖 < 𝐿𝑐𝑟𝑖𝑡 : (𝑇𝑏 − 𝑇𝑖)

𝑥 ∗  (
𝐿𝑖
𝐿𝑐𝑟𝑖𝑡

)
𝑦

  

𝑇𝑖 ≥ 𝑇𝑏 ∨ 𝐿𝑖  ≥  𝐿𝑐𝑟𝑖𝑡 ∶  0                                         

 

 

𝑆𝑡𝑝 = ∑ 𝑅𝑡𝑝

𝑛

𝑖=182

 

 

𝑆𝑡𝑝  ≥  𝐹𝑐𝑟𝑖𝑡 

Liu et al., 

2020; 

Delpierre 

et al., 

2009 
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𝐹𝑐𝑟𝑖𝑡 

Dormancy 

Induction 

Jeong 

(JM) 

-starting date 

fixed to July 

1st 

-daily mean 

temperature 

𝑇𝑖 

-daylength 𝐿𝑖 

-temperature 

threshold and 

parameter for 

accumulation 

𝑇𝑏 

-daylength 

threshold for 

accumulation 

𝐿𝑐𝑟𝑖𝑡 

-critical 

threshold for 

leaf 

senescence 

𝐹𝑐𝑟𝑖𝑡 

Dormancy 

Induction 

𝑅𝑡𝑝(𝑖) =   {
𝑇𝑖 < 𝑇𝑏  ∧  𝐿𝑖 < 𝐿𝑐𝑟𝑖𝑡 ∶  𝑇𝑏 − 𝑇𝑖   
𝑇𝑖 ≥ 𝑇𝑏 ∨ 𝐿𝑖  ≥  𝐿𝑐𝑟𝑖𝑡 ∶  0               

 

 

𝑆𝑡𝑝 = ∑ 𝑅𝑡𝑝

𝑛

𝑖=182

 

 

𝑆𝑡𝑝  ≥  𝐹𝑐𝑟𝑖𝑡 

 

Liu et al., 

2020; 

Jeong et 

al., 2014 

Dormphot 

with just 

Dormancy 

Induction 

(DPDI) 

-dormancy 

induction 

sensitivity 

parameter 𝑎 

-daily mean 

temperature 

𝑇𝑖 

-response 

parameter for 

dormancy 

induction 

accumulation 

𝑏 

-daylength 𝐿𝑖 

 

𝑅𝑡(𝑖) =  
1

1 + 𝑒𝑎( 𝑇𝑖− 𝑏)
 

 

𝑅𝑝(𝑖) =  
1

1 + 𝑒10( 𝐿𝑖− 𝐿𝑐𝑟𝑖𝑡)
 

 

𝑆𝑡𝑝 = ∑ 𝑅𝑡 ∗ 

𝑛

𝑖=182

𝑅𝑝 

 

𝑆𝑡𝑝 ≥ 𝐷𝑐𝑟𝑖𝑡 

Liu et al., 

2020; 

Hufkens et 

al., 2018; 

Caffarra et 

al., 2011 
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-threshold 

daylength for 

dormancy 

induction 

accumulation 

𝐿𝑐𝑟𝑖𝑡 

-critical 

threshold for 

senescence 

𝐷𝑐𝑟𝑖𝑡 

Dormancy 

Induction 

Delpierre’

s with 

Preceding 

Spring 

Leaf 

Emergenc

e (DMs) 

-starting date 

fixed to July 

1st 

-daily mean 

temperature 

𝑇𝑖 

-daylength 𝐿𝑖 

-temperature 

threshold and 

parameter for 

accumulation 

𝑇𝑏 

-daylength 

threshold and 

parameter for 

accumulation 

𝐿𝑐𝑟𝑖𝑡 

-exponential 

weight 

parameter for 

temperature 

importance 𝑥 

-exponential 

weight 

parameter for 

daylength 

importance 𝑦 

-threshold 

 

𝑅𝑡𝑝(𝑖)  

=   {
𝑇𝑖 < 𝑇𝑏  ∧  𝐿𝑖 < 𝐿𝑐𝑟𝑖𝑡 : (𝑇𝑏 − 𝑇𝑖)

𝑥 ∗  (
𝐿𝑖
𝐿𝑐𝑟𝑖𝑡

)
𝑦

  

𝑇𝑖 ≥ 𝑇𝑏 ∨ 𝐿𝑖  ≥  𝐿𝑐𝑟𝑖𝑡 ∶  0                                         

 

 

𝑆𝑡𝑝 = ∑ 𝑅𝑡𝑝

𝑛

𝑖=182

 

 

𝑆𝑎 = 𝑆𝑂𝑆𝑦 − 𝑆𝑂𝑆̅̅ ̅̅ ̅
30𝑦 

 

𝐹𝑐𝑟𝑖𝑡 = 𝑎 + 𝑏 ∗ 𝑆𝑎 

 

𝑆𝑡𝑝  ≥  𝐹𝑐𝑟𝑖𝑡 

 

 

Liu et al., 

2020; 

Delpierre 

et al., 

2009 
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modification 

parameter of 

anomaly in 

leaf 

emergence in 

the preceding 

spring relative 

to the 30-year 

average 

estimated 

with the PTTs 

model 𝑆𝑎 

-threshold 

modification 

parameter 𝑎 

-threshold 

modification 

parameter 𝑏 

-critical 

threshold for 

leaf 

senescence 

𝐹𝑐𝑟𝑖𝑡 

Preceding 

Ecodormanc

y Release & 

Dormancy 

Induction 

Dormphot 

Dormancy 

Induction 

with 

Preceding 

Spring 

Leaf 

Emergenc

e (DPDIs) 

-dormancy 

induction 

sensitivity 

parameter 𝑎1 

-daily mean 

temperature 

𝑇𝑖 

-response 

parameter for 

dormancy 

induction 

accumulation 

 

𝑅𝑡(𝑖) =  
1

1 + 𝑒𝑎1( 𝑇𝑖− 𝑏1)
 

 

𝑅𝑝(𝑖) =  
1

1 + 𝑒10( 𝐿𝑖− 𝐿𝑐𝑟𝑖𝑡)
 

 

𝑆𝑡𝑝 = ∑ 𝑅𝑡 ∗ 

𝑛

𝑖=182

𝑅𝑝 

 

 

𝑆𝑎 = 𝑆𝑂𝑆𝑦 − 𝑆𝑂𝑆̅̅ ̅̅ ̅
30𝑦 

Liu et al., 

2020; 

Caffarra et 

al., 2011 
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𝑏1 

-daylength 𝐿𝑖 

-threshold 

daylength for 

dormancy 

induction 

accumulation 

𝐿𝑐𝑟𝑖𝑡 

-threshold 

modification 

parameter of 

anomaly in 

leaf 

emergence in 

the preceding 

spring relative 

to the 30-year 

average 

estimated 

with the PTTs 

model 𝑆𝑎 

-threshold 

modification 

parameter 𝑎2 

-threshold 

modification 

parameter 𝑏2 

-critical 

threshold for 

leaf 

senescence 

𝐷𝑐𝑟𝑖𝑡 

 

Preceding 

Ecodormanc

y Release & 

Dormancy 

Induction 

 

𝐷𝑐𝑟𝑖𝑡 = 𝑎2 + 𝑏2 ∗ 𝑆𝑎 

 

𝑆𝑡𝑝  ≥  𝐷𝑐𝑟𝑖𝑡 
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Table A3-4. Optimal parameters and initial parameter range in square brackets for or each leaf 

senescence model using general simulated annealing. Note that each leaf senescence site-year 

runs from January 1st to December 31st such that a starting date of January 1st corresponds to 

a 𝑡0 of 1. 

Model Parameters Acer rubrum 
Betula 

papyrifera 

Abies 

balsamea 

White (WM) 

-temperature for 

combined 

temperature 

daylength 

senescence trigger 

𝑇𝑏1 

-daylength for 

combined 

temperature 

daylength 

senescence trigger 

𝐿𝑐𝑟𝑖𝑡 

-temperature for 

singular 

temperature 

senescence trigger 

𝑇𝑏2 

𝑇𝑏1: 28.52 [0 -

30] 

𝐿𝑐𝑟𝑖𝑡: 11.55 [6-

18] 

𝑇𝑏2: 7.170 [-20 

-+20] 

 

𝑇𝑏1: 16.39 [0 -

30] 

𝐿𝑐𝑟𝑖𝑡: 12.14 [6-

18] 

𝑇𝑏2: 3.281 [-20 

-+20] 

 

𝑇𝑏1: 10.73 [0 -

30] 

𝐿𝑐𝑟𝑖𝑡: 11.47 [6-

18] 

𝑇𝑏2: -1.388 [-

20 -+20] 

 

Delpierre (DM) 

-temperature 

threshold and 

parameter for 

accumulation 𝑇𝑏 

-daylength 

threshold and 

parameter for 

accumulation 𝐿𝑐𝑟𝑖𝑡 

-exponential 

weight parameter 

for temperature 

importance 𝑥 

-exponential 

weight parameter 

for daylength 

importance 𝑦 

 

 

 

 

𝑇𝑏: 39.76 [0 -

40] 

𝐿𝑐𝑟𝑖𝑡: 12. 92 [6 

-18] 

𝑥: 2 {0,1,2} 

𝑦: 0 {0,1,2} 

𝐹𝑐𝑟𝑖𝑡: 16192 [0 

– 100,000] 

 

 

 

 

𝑇𝑏: 33.06 [0 -

40] 

𝐿𝑐𝑟𝑖𝑡: 15.33 [6 

-18] 

𝑥: 1 {0,1,2} 

𝑦: 2 {0,1,2} 

𝐹𝑐𝑟𝑖𝑡: 981.9 [0 

– 100,000] 

 

 

 

 

𝑇𝑏: 22.57 [0 -

40] 

𝐿𝑐𝑟𝑖𝑡: 15.48 [6 

-18] 

𝑥: 0 {0,1,2} 

𝑦: 2 {0,1,2} 

𝐹𝑐𝑟𝑖𝑡: 69.73 [0 

– 100,000] 
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-critical threshold 

for leaf 

senescence 𝐹𝑐𝑟𝑖𝑡 

 

Jeong (JM) 

-temperature 

threshold and 

parameter for 

accumulation 𝑇𝑏 

-daylength 

threshold for 

accumulation 𝐿𝑐𝑟𝑖𝑡 

-critical threshold 

for leaf 

senescence 𝐹𝑐𝑟𝑖𝑡 

 

 

𝑇𝑏: 34.63 [0 -

50] 

𝐿𝑐𝑟𝑖𝑡: 13.15 [6 

-18] 

𝐹𝑐𝑟𝑖𝑡: 613.1 [0 

– 2000] 

 

𝑇𝑏: 30.60 [0 -

50] 

𝐿𝑐𝑟𝑖𝑡: 15.31 [6 

-18] 

𝐹𝑐𝑟𝑖𝑡: 1003 [0 

– 2000] 

 

𝑇𝑏: 35.69 [0 -

50] 

𝐿𝑐𝑟𝑖𝑡: 15.48 [6 

-18] 

𝐹𝑐𝑟𝑖𝑡: 1911 [0 

– 2000] 

Dormphot with just 

Dormancy Induction 

(DPDI) 

-sensitivity 

parameter 𝑎 

-response 

parameter for 

accumulation 𝑏 

-threshold 

daylength for 

dormancy 

induction 

accumulation 𝐿𝑐𝑟𝑖𝑡 

-threshold for 

dormancy 

induction 𝐷𝑐𝑟𝑖𝑡 

 

𝑎: 0.1432 [-5 -

+5] 

𝑏: 2.120 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 12.83 [8 

-18] 

𝐷𝑐𝑟𝑖𝑡: 44.42 [0 

– 100] 

𝑎: 3.141 [-5 -

+5] 

𝑏: 16.31 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 12.93 [8 

-18] 

𝐷𝑐𝑟𝑖𝑡: 98.61 [0 

– 100] 

𝑎: 4.885 [-5 -

+5] 

𝑏: 12.02 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 11.56 [8 

-18] 

𝐷𝑐𝑟𝑖𝑡: 33.87 [0 

– 100] 

Delpierre’s with 

Preceding Spring 

Leaf Emergence 

(DMs) 

-temperature 

threshold and 

parameter for 

accumulation 𝑇𝑏 

-daylength 

threshold and 

parameter for 

accumulation 𝐿𝑐𝑟𝑖𝑡 

-exponential 

weight parameter 

for temperature 

 

𝑇𝑏: 39.63 [0 -

40] 

𝐿𝑐𝑟𝑖𝑡: 12.88 [6 

-18] 

𝑥: 2 {0,1,2} 

𝑦: 0 {0,1,2} 

𝑎: 15754 [0 -

100000] 

𝑏: 0.07018 [0 -

1000] 

 

𝑇𝑏: 39.44 [0 -

40] 

𝐿𝑐𝑟𝑖𝑡: 15.33 [6 

-18] 

𝑥: 2 {0,1,2} 

𝑦: 1 {0,1,2} 

𝑎: 34388 [0 -

100000] 

𝑏: 92.98 [0 -

1000] 

 

𝑇𝑏: 39.59 [0 -

40] 

𝐿𝑐𝑟𝑖𝑡: 15.48 [6 

-18] 

𝑥: 1 {0,1,2} 

𝑦: 2 {0,1,2} 

𝑎: 1723 [0 -

100000] 

𝑏: 0.05690 [0 -

1000] 
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importance 𝑥 

-exponential 

weight parameter 

for daylength 

importance 𝑦 

-threshold 

modification 

parameter 𝑎 

-threshold 

modification 

parameter 𝑏 

 

   

Dormphot Dormancy 

Induction with 

Preceding Spring 

Leaf Emergence 

(DPDIs) 

-dormancy 

induction 

sensitivity 

parameter 𝑎1 

-response 

parameter for 

dormancy 

induction 

accumulation 𝑏1 

-threshold 

daylength for 

dormancy 

induction 

accumulation 𝐿𝑐𝑟𝑖𝑡 

-threshold 

modification 

parameter 𝑎2 

-threshold 

modification 

parameter 𝑏2 

 

𝑎1: 0.1573 [-5 

-+5] 

𝑏1: 6.478 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 12.79 [8 

-18] 

𝑎2: 63.93 [0 -

100] 

𝑏2: 0.003743 

[0 -10] 

 

𝑎1: 4.537 [-5 -

+5] 

𝑏1: 16.75 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 12.86 [8 

-18] 

𝑎2: 99.78 [0 -

100] 

𝑏2: 0.01281 [0 

-10] 

 

𝑎1: 4.701 [-5 -

+5] 

𝑏1: 12.03 [0 -

100] 

𝐿𝑐𝑟𝑖𝑡: 11.59 [8 

-18] 

𝑎2: 34.37 [0 -

100] 

𝑏2: 0.001405 

[0 -10] 
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Table A3-5. Leaf emergence observations at sites across the Acadian Phenocam Network used in 

this study. Day of year (DOY) is the calendar day of year from December 31st of the previous 

year. 

Site Year Species Emergence (DOY) 

NE1 2019 Acer rubrum 161 

NE3 2019 Acer rubrum 165 

NE4 2019 Acer rubrum 162 

NE6 2019 Acer rubrum 159 

SW1 2019 Acer rubrum 159 

SW2 2019 Acer rubrum 164 

SW4 2019 Acer rubrum 163 

SW5 2019 Acer rubrum 160 

NE4 2020 Acer rubrum 156 

NE6 2020 Acer rubrum 151 

SW4 2020 Acer rubrum 152 

SW5 2020 Acer rubrum 150 

NE1 2021 Acer rubrum 152 

NE2 2021 Acer rubrum 152 

NE3 2021 Acer rubrum 151 

NE4 2021 Acer rubrum 153 

NE5 2021 Acer rubrum 152 

NE6 2021 Acer rubrum 145 

SW1 2021 Acer rubrum 146 

SW2 2021 Acer rubrum 150 

SW3 2021 Acer rubrum 147 

SW4 2021 Acer rubrum 146 

SW6 2021 Acer rubrum 150 

NE1 2022 Acer rubrum 152 

NE2 2022 Acer rubrum 157 

NE3 2022 Acer rubrum 149 

NE4 2022 Acer rubrum 160 

NE5 2022 Acer rubrum 156 

NE6 2022 Acer rubrum 146 

SW1 2022 Acer rubrum 145 

SW2 2022 Acer rubrum 152 

SW3 2022 Acer rubrum 150 

SW4 2022 Acer rubrum 147 

SW6 2022 Acer rubrum 152 

NE1 2019 Betula papyrifera 158 
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SW3 2019 Betula papyrifera 154 

SW4 2019 Betula papyrifera 158 

SW5 2019 Betula papyrifera 155 

NE4 2020 Betula papyrifera 155 

SW4 2020 Betula papyrifera 155 

SW5 2020 Betula papyrifera 145 

NE1 2021 Betula papyrifera 145 

NE2 2021 Betula papyrifera 149 

NE4 2021 Betula papyrifera 148 

SW2 2021 Betula papyrifera 158 

SW4 2021 Betula papyrifera 144 

SW5 2021 Betula papyrifera 142 

NE1 2022 Betula papyrifera 145 

NE2 2022 Betula papyrifera 154 

NE4 2022 Betula papyrifera 153 

SW2 2022 Betula papyrifera 153 

SW3 2022 Betula papyrifera 141 

SW4 2022 Betula papyrifera 147 

SW5 2022 Betula papyrifera 141 

NE1 2019 Abies balsamea 160 

NE3 2019 Abies balsamea 155 

NE4 2019 Abies balsamea 163 

NE6 2019 Abies balsamea 158 

SW3 2019 Abies balsamea 154 

SW4 2019 Abies balsamea 157 

SW6 2019 Abies balsamea 147 

NE4 2020 Abies balsamea 154 

NE6 2020 Abies balsamea 148 

SW4 2020 Abies balsamea 147 

NE1 2021 Abies balsamea 149 

NE2 2021 Abies balsamea 158 

NE3 2021 Abies balsamea 144 

NE4 2021 Abies balsamea 150 

NE5 2021 Abies balsamea 152 

NE6 2021 Abies balsamea 146 

SW3 2021 Abies balsamea 143 

SW4 2021 Abies balsamea 146 

SW6 2021 Abies balsamea 158 

NE1 2022 Abies balsamea 144 
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NE2 2022 Abies balsamea 155 

NE3 2022 Abies balsamea 142 

NE4 2022 Abies balsamea 154 

NE5 2022 Abies balsamea 159 

NE6 2022 Abies balsamea 144 

SW3 2022 Abies balsamea 148 

SW4 2022 Abies balsamea 147 

SW6 2022 Abies balsamea 158 
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Table A3-6. Leaf senescence observations at sites across the Acadian Phenocam Network used 

in this study. Day of year (DOY) is the calendar day of year from December 31st of the previous 

year. 

Site Year Species Senescence (DOY) 

NE1 2019 Acer rubrum 241 

NE3 2019 Acer rubrum 244 

NE4 2019 Acer rubrum 298 

NE5 2019 Acer rubrum 253 

NE6 2019 Acer rubrum 258 

SW1 2019 Acer rubrum 263 

SW2 2019 Acer rubrum 270 

SW4 2019 Acer rubrum 266 

SW5 2019 Acer rubrum 256 

SW5 2020 Acer rubrum 281 

SW6 2020 Acer rubrum 268 

NE1 2021 Acer rubrum 270 

NE2 2021 Acer rubrum 252 

NE3 2021 Acer rubrum 258 

NE4 2021 Acer rubrum 243 

NE5 2021 Acer rubrum 279 

NE6 2021 Acer rubrum 256 

SW1 2021 Acer rubrum 271 

SW2 2021 Acer rubrum 270 

SW3 2021 Acer rubrum 242 

SW4 2021 Acer rubrum 237 

SW6 2021 Acer rubrum 253 

NE1 2019 Betula papyrifera 241 

SW3 2019 Betula papyrifera 233 

SW4 2019 Betula papyrifera 259 

SW5 2019 Betula papyrifera 275 

SW5 2020 Betula papyrifera 277 

SW6 2020 Betula papyrifera 278 

NE1 2021 Betula papyrifera 224 

NE2 2021 Betula papyrifera 245 

NE4 2021 Betula papyrifera 268 

SW2 2021 Betula papyrifera 248 

SW3 2021 Betula papyrifera 224 

SW4 2021 Betula papyrifera 224 

SW5 2021 Betula papyrifera 286 
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SW6 2021 Betula papyrifera 246 

NE1 2019 Abies balsamea 249 

NE3 2019 Abies balsamea 289 

NE5 2019 Abies balsamea 249 

NE6 2019 Abies balsamea 259 

SW3 2019 Abies balsamea 285 

SW4 2019 Abies balsamea 254 

NE1 2021 Abies balsamea 264 

NE2 2021 Abies balsamea 251 

NE3 2021 Abies balsamea 244 

NE4 2021 Abies balsamea 273 

NE5 2021 Abies balsamea 302 

NE6 2021 Abies balsamea 247 

SW3 2021 Abies balsamea 286 

SW4 2021 Abies balsamea 219 

SW6 2021 Abies balsamea 288 

 

 


