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Abstract

Proactive caching shows great potential to minimize peak traffic rates by storing

popular data, in advance, at different nodes in the network. We study three new

angles of proactive caching that were not covered before in the literature. We develop

more practical algorithms that bring proactive caching closer to practical wireless

networks.

The first angle is where the popularities of the cached files are changing over

time and the file delivery is asynchronous. We provide an algorithm that minimizes

files’ delivery rate under this setting. We show that we can use the file delivery

messages to proactively and constantly update the receiver finite caches. We show

that this mechanism reduces the downloaded traffic of the network. The proposed

scheme uses index coding [1], and app. A to jointly encodes the delivery of different

demanded files with the cache updates to other receivers to follow the changes in the

file popularities. An offline and online (dynamic) versions of the scheme are proposed,

where the offline version requires knowledge of the file popularities across the whole

transmission period in advance and the online one requires the file popularities for

one succeeding time slot only. The optimal caching for both the offline and online

schemes is obtained numerically.

The second angle is the study of segmented caching for delay minimization in

networks with congested backhaul. Studies have mainly focused on proactively storing

popular whole files. For certain categories of files like videos, this is not the best

strategy. As videos can be segmented, sending later segments of videos can be less

time-critical. Video is expected to constitute 82% of internet traffic by 2020 [2]. We
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study the effect of segmenting video caching decisions under the assumption that the

backhaul is congested. We provide an algorithm for proactive segmented caching that

optimizes the choice of segments to be cached to minimize delay and compare the

performance to the whole file proactive caching.

The third angle focuses on using reinforcement learning for coded caching

in networks with changing file popularities. For such a dynamic environment,

reinforcement learning has the flexibility to learn the environment and adapt

accordingly. We develop a reinforcement learning-based coded caching algorithm

and compare its performance to rule-based coded caching.
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Chapter 1

Introduction

In this Chapter, we discuss the research motivation and objective. At the end of the

Chapter, we provide the outline of the thesis. Then, in the following Chapters, we

discuss how our proposed research provides a resolution for these areas.

1.1 Research Motivation

Cellular network traffic has shifted over the past decade from mainly locally generated

instantaneous traffic (voice calls) to centrally generated delay-tolerant bulks of traffic

(data-driven communication) [3]. For example, video constituted 82% of the internet

traffic in 2020 [2]. This necessitates the development of new information-theoretic

analysis and new algorithms for communication networks. Contrary to voice calls,

the delay between the time of data generation and the time of data demand at the

receivers is generally large. In this context, the data can be stored midway in different

nodes along the paths from the transmitter to the receivers. Moreover, the shift from

voice to data traffic contradicts the classical assumption of network analysis that

1



the messages are generally independent. This assumption is not accurate for data

communication where a piece of data is generally demanded by multiple users over

time. Proactive caching is an efficient technique to reduce the peak traffic rate and

the delivery sum rate. This is achieved by storing parts of the popular content, at

various nodes in the networks, before being demanded by the mobile units (MUs). In

a practical sense, proactive caching can minimize the total cost of transmission, as

transmitters can optimize the time of performing proactive caching to be during less

congested times (e.g overnight) where the resources are in abundance.

The proactive caching model is a two-phase communication model. During

the first (placement) phase, a number of independently generated messages, each

corresponding to one piece of content, are stored proactively at the transmitter

and\or the receivers. The receivers’ demands are assumed to be limited to a number

of these messages. During the second (delivery )phase, the receivers’ exact demands

arrive at the transmitter and are satisfied in a manner that mainly reduces the

transmission rate over this phase. The main difference compared to traditional

communication is that the transmitter and receiver need to optimize the channel use

for the two phases jointly rather than a single delivery phase, where the demand is

probabilistic for the first phase.

As the research in the field of proactive caching is relatively new, there are

still several problems that need deeper analysis and need the development of

adequate caching algorithms. In this thesis, we focus on three main caching

problems, asynchronous delivery coded caching for networks with changing file

popularities, delay optimization of cache-aided networks with congested back-hauls,

and reinforcement learning for coded caching.
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Figure 1.1: Network architecture.
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1.1.1 Asynchronous coded delivery

Previous works found in the literature can be categorized into two groups in terms

of delivery. The first group studied synchronous delivery with no change in file

popularities paired with the use of coded 1 caching and/or delivery. The second

group studied asynchronous delivery with changing file popularities but with uncoded

caching and uncoded delivery. The use of coded caching and/or coded delivery

with asynchronous delivery is not well explored in the literature, especially in the

case of changing file popularity. However, asynchronous delivery is more dominant

in practice, and a change in file popularities is expected over long delivery phases.

Moreover, in most applications users expect their requests to be satisfied in a short

time window. In such case their coded messages can not satisfy more than one

user simultaneously. Coded messages however can be used to update other user

caches. This can be beneficial in the case that the content server learns the files

popularities and users preferences over time or in the case that file popularities

changes over time. Applications with changing file popularity is a case not previously

considered in a coded caching setting despite its prevalence in practical scenarios. An

example is traffic information which change fast. Another is a weather app that stores

information about daily weather changes. This brings a need for caching networks

to be able to continuously update the mobile local caches and update their coding

strategy to follow the change in the file popularities. We study coded caching when

the file popularities are changing and the demands are asynchronous, and we develop

algorithms that deliver users demands and update local caches.

1Throughout this work, coded caching refers mainly to index-coding different files/ parts of files

together.
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1.1.2 Reinforcement learning for asynchronous coded

delivery

The use of machine learning techniques is a natural evolution for proactive caching.

Machine learning has the flexibility to react to the changing dynamics of user requests

and the complexity of optimizing the available resources. Coded caching has proved

to be complex, where finding an optimal coding scheme is cumbersome, especially

for a dynamic environment. Motivated by the previous, we develop a reinforcement

learning-based coded caching algorithm for networks with changing file popularities

and asynchronous delivery.

1.1.3 Delay analysis of caching in back-haul congested

networks

Proactive caching studies have mainly focused on proactively storing popular whole

files. For certain categories of files like videos, this is not the best strategy. Storing

popular files reduces the overall throughput. However, the delay relation to caching

is more complicated and not well studied. In particular, queue delay is more related

to the scheduling interaction between cached and uncached files. Also, as videos can

be segmented, sending later segments of videos can be less time-critical. As such,

studying the effect of segmenting video caching decisions under the assumption that

the back-haul is congested is crucial to improve the average transmission delay. In

particular, we study the effect of the segment’s position in the file on the backhaul

delay in comparison to segment’s popularity and develop an algorithm to optimize

the choice of cached segments to minimize transmission delay.
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1.2 Research Objective and Contributions

The main objective of this thesis is to develop practical and efficient caching

algorithms that help minimize peak data rate of wireless networks and that can

work in dynamic environments with various degrees of knowledge about such

environments. The main contributions of this thesis can be summarized as follows:

• We formally define the problem of asynchronous delivery for coded caching with

changing file popularities.

• We provide an algorithm for asynchronous delivery and popularity-aware local

cache update with a reduced expected delivery rate. The algorithm has two

versions, one is built for complete prior knowledge of the file popularities changes

and the other is for limited knowledge.

• We develop a new linear-time algorithm to solve the sum rate optimization

problem as well as a similar class of linear optimization problems.

• We develop a reinforcement learning-based approach for designing the caching

policy to minimize the delivery rate in a cache-aided network with changing file

popularities.

• We develop a segmented caching algorithm for video delivery that minimizes

user delay in cache-enabled congested back-haul wireless networks.

A detailed contribution chart is presented in Figure 1.3.
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Figure 1.2: Thesis summary

Figure 1.3: Literature review outline
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1.3 Thesis Outline

In Chapter 2, we briefly discuss the related studies and highlight the areas not

covered before. In the following Chapters 3, and 4, we study the proactive caching

problem under time-Varying Files popularities and provide algorithms to optimize

the transmission rate. In Chapter 3, we consider that the caching decisions are

optimized offline with full prior knowledge about future file popularities variations,

while in Chapter 4, we consider the case where caching decisions are dynamic based

on limited knowledge of the file popularities variations. In Chapter 5, we provide

a learning-based proactive caching algorithm. In Chapter 6, we study delay based

caching. Finally, in Chapter 7, we provide our work conclusions and gained insights

as well as future work.

1.4 Thesis summary

In this thesis, our main aim is to develop practical and efficient caching algorithms

to work in real-world scenarios. In chapter three, we focus on the case where the

file popularities of the library are caching over the delivery period. We studied

the case when the information about the changing file popularities is available

offline at the placement phase through external help. We develop a novel caching

algorithm to continuously update the local caching by using indexing coding. The

rate optimization of the proposed algorithm is formulated as an optimization that is

solved using linear solvers. The achieved rate is compared to a developed genie-aided

lower-bound and other caching algorithms in the literature.
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In chapter 4, we study the same system model when the information about the

changing file popularities is available only one slot ahead. The main aim of the

chapter is to add flexibility and practicality to the main algorithm presented in the

previous chapter. The algorithm is designed to react swiftly in situations where it is

hard to accurately predict file popularities over a long period of time or a prediction

mismatch is discovered. The achieved rate is compared to the main algorithm and the

rate loss due to information limitations is discussed. To improve the practicality of the

developed algorithm, even more, a new linear time algorithm to solve the underlying

linear optimization problem is developed.

In chapter 5, we discuss the complexity of the algorithm provided in chapter

three. Because of it large memory resource demands for algorithm design, we develop

a dynamic programming approach to solve the underlying linear optimization which

is less memory intensive at a cost of needing more time and being slightly less rate-

efficient. In the second part of the chapter, we discuss the case where information

about file popularities is completely unavailable and it is learned by the network over

time. We develop a reinforcement learning-based algorithm for this scenario, where

the Deep reinforcement learning actor-critic algorithm is used due to its power in

learning in continuous state space.

In Chapter 6, we study the delay optimization of networks with congested

backhauls using proactive caching. We show an interesting, yet counterintuitive,

result that caching a chosen set of segments of less popular files is advantageous

delay-wise in comparison to popularity based proactive caching. We present a

reinforcement learning-based algorithm that optimizes the set segments to be cached

in order to minimize the average delay.
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While not discussed in depth, the algorithms provided in these chapters are rather

generic and can be optimized to achieve different targets. Age of Information, the

cache consistency problem, and mobility are direct applications of the provided work.

Since the provided algorithms provide zero-rate updates to local caches, they can

be easily used for cache updates to maintain consistency and/ or respond to user

mobility-induced cache update requests.
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Chapter 2

Literature Review

In this chapter, we briefly discuss the related studies and the areas not covered

before. Then, in the following chapters, we discuss how our proposed research provides

solutions for the problems founds in these areas.

The idea of proactive caching at the edge of wireless networks was introduced

in [4], where the authors proposed the idea of small-cell network cloud as a technique

to increase cloud capacity, relieve the backhaul constraints and increase the peak

rate. The transmission characteristics of proactive caching were studied in [5],

where the authors derived closed-form expressions for the outage probability and

the average delivery rate as a function of the signal-to-interference-plus-noise ratio,

small-cells density, transmission, bitrate, cache size, file length, and file popularity.

The caching policy design is a challenging problem especially if wireless networks’

realistic parameters are considered. The authors of [6] formulated the joint routing

and caching problem aiming to maximize the fraction of content requests served

locally by the deployed Small Base Stations (SBS)s under realistic wireless network
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constraints. The proactive caching research focuses on two main caching strategies.

The first is storing raw files in respective caches [4–8]. The second is the coding

of different files together (e.g., index coding [1]) to optimize the usage of the

resources [9–27].

2.1 Coded caching

The authors of [9] presented a novel coded caching scheme that exploits the

broadcast nature of the channel and index coding to further improve the performance

of traditional proactive caching. They introduced an information-theoretic framework

for the analysis of cache-aided communication in the context of broadcast channels

and showed that the availability of caches in a broadcast setting provides a coded

multi-casting gain. The main difference compared to traditional proactive caching

is that the transmitter and the receiver need to optimize the channel use for the

two phases jointly (the demand is probabilistic for the first phase) rather than for a

single delivery phase. This work was extended to the case of non-uniform demands

in [10–12]. The authors of [12] provided an optimization framework that handles

various heterogeneous aspects of practical coded caching. The framework is used to

develop a coded caching scheme that works for non-uniform file length, non-uniform

file popularity, and non-uniform user cache size simultaneously. The authors of [13]

developed an online version of the coded caching scheme proposed in [9]. In their

model, users have a new different demand vector each time slot, and there is a new

”popular files” set. The scheme sends an index-coded message of the parts of the files

demanded but that are missing from the users’ caches. The users then replace their
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caches with index-coded random parts of the most recently sent files. The authors

of [14] focused on the case of uncoded placement and coded delivery. Furthermore,

some work developed decentralized schemes for the coded caching problem such as

the works in [15, 16]. In [15], the authors proposed centralized and decentralized

caching schemes with smaller delivery rates when the number of users is relatively

large compared to the number of files. Coded caching was then extended to different

wireless network models. The achievable tradeoff between cache size and download

rate in decentralized caching systems was analyzed in [16]. Interference channel with

coded caching was studied in [17–19]. In [17], the authors formally introduced the

communication over a cache-aided interference channel where both transmitters and

receivers are equipped with caches and provided an achievable scheme and computed

its achievable degree-of-freedom (DoF). The DoF of the cache aide interference

channel was then computed in [18] in terms of the cache size. Meanwhile, the authors

of [19] studied the two-user Gaussian interference channel and computed the DoF for

a separation strategy that divides the physical and network layers and showed that

separation is optimal in regimes where the receiver caches are large. They provided

a constant-factor approximation of the system’s DoF. Coded caching within wireless

device-to-device (D2D) network was studied in [20], [21]. The authors proposed

decentralized caching schemes with smaller delivery rates when the number of users

is relatively large compared to the number of files. Uncoded cache placement and

decentralized coded caching in the finite file size regime was studied in [23], where

the authors proposed a decentralized random coded caching scheme and a partially

decentralized sequential coded caching scheme. They proposed a caching strategy

where the users send coded messages to each other in order to collectively satisfy
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their demands and showed that a caching D2D wireless network achieves the same

throughput scaling law of the infrastructure-based coded multicasting scheme if the

number of users and number of files in the system is large. The authors of [24]

propose game-theoretic proactive caching and study how the selfishness of different

parties may influence the overall wireless proactive caching. They designed caching

algorithms by considering the relations and interactions among different network

nodes using game theory.

All the previous coded caching works assumed synchronous demand/delivery. The

use of index-coded caching and/or index-coded delivery for asynchronous delivery is

not well explored in the literature. Caching for asynchronous coded delivery was

studied in [25], [26], where the authors studied the coded caching where the user’s

request is not instantaneously satisfied, instead, it is satisfied before a user set deadline

for delivery. A general algorithm for asynchronous coded delivery delivery is yet to

be developed. Cases like instantaneous response to requests and general request time

overlaps are not fully studied in literature. Moreover, in most applications where

users expect their requests to be satisfied in a short time window. In such case their

coded messages can not satisfy more than one user simultaneously. Coded messages

however can be used to update other user caches. This can be beneficial in the case

that the content server learns the files popularities and users preferences over time

or in the case that file popularities changes over time. Applications with changing

file popularity is a case not previously considered in a coded caching setting despite

its prevalence in practical scenarios. An example is traffic information which change

fast. Another is a weather app that stores information about daily weather changes.

14



2.2 Delay-Based Caching

Proactive caching based on files popularities generally reduces delay as it stores data

near end users and bypasses the congested resources of the network links. However,

the method of storing the most popular content is not proven to be optimal. Towards

that end, other works focused on delay-driven proactive caching [28–34]. Some of

this work was developed for web proxy caching. The authors of [28] developed an

algorithm that caches content based on both of its popularity and fetching time. They

showed that their algorithm is more advantageous in reducing delay than popularity-

driven algorithms like last recently used(LRU) algorithm. Segmented caching was

studied in various works [e.g. [29, 30]], the authors of [29] provided a web proxy

segmented caching algorithm that prioritizes earlier segments of videos. They showed

that it is advantageous in terms of the bit-hit ratio and the fraction of requests that

require a delayed start. They showed that segmentation-based caching is especially

advantageous when the cache size is limited and files popularities changes over time.

On the other hand, the authors of [30] focused on per-segment popularity and provided

an algorithm that can cache individual file segments based on their popularity and

their distance to the file start. In [31], the authors proposed a popularity-aware

partial caching algorithm that minimizes the average initial delay of the system while

allowing a small deviation from the desired starting point. The authors of [32] focused

on cooperative cell caching for mobile networks, where each base station cache popular

contents to improve the overall delay performance of users. Likewise, the authors

of [33] focused on caching for mobile networks, but with D2D communication. They

provided an algorithm that minimizes the average transmission delay for this type
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of network. The algorithm addresses a more general scenario, in which the values

of system parameters potentially change over time. On the other hand, in [34], the

authors investigated the trade-off between coded caching gain and delivery delay.

They developed a computationally efficient caching scheme that effectively exploits

coding opportunities while respecting delivery-delay constraints.

2.3 Learning-Based Caching

Using a learning algorithm to optimize the proactive caching performance was

studied in [8, 35–47]. In [8], content caching is optimized through the use of a

reinforcement learning algorithm while the transmitter is oblivious to the requests

statistics. In [35], the authors proposed an online proactive caching scheme based on

a bidirectional deep recurrent neural network (BRNN) model to predict time-series

content requests and update edge caching accordingly. While the authors of [36]

proposed a novel deep learning-based proactive caching framework in cellular

networks, called DeepCachNet, in which a vast amount of data is collected from

the mobile devices of users connected to small base stations. The deep-learning

methods called auto-encoder and stacked denoising autoencoders are applied to

the collected data to extract the features of users and content, respectively. The

extracted features are then used to estimate the content popularity at the core

network. Based on the estimated content popularity, the strategic content is

cached at the small base stations to obtain higher backhaul offloading and user

satisfaction. The authors of [37] proposed a proactive caching mechanism for mobile

edge computing architecture to reduce transmission cost and improve user quality of
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experience. They exploited a transfer learning-based approach for estimating content

popularity and then formulated the proactive caching optimization model. They

developed a greedy algorithm for solving the cache content placement problem as

the optimization problem is NP-hard. In [38], the authors studied the optimization

of the cache content of small cells. They modeled the problem as a multi-armed

bandit (MAB) problem where the cache content placement is optimized based on

the demand history. The authors of [39] modeled the proactive caching problem

as a Markov decision process, where the environment is the knowledge of the

channel quality, the content profile, and the user-access behavior, and the target

is to minimize the long-term average energy cost. They provide a threshold-based

proactive caching scheme, which dynamically caches or removes content. The

authors of [40] carried out a proactive caching experiment and collected users’

mobile traffic data from a telecom operator. They used big data platform to locally

analyze data and make the caching decision. Their results showed that proactive

caching gains depending on the level of available information and storage size. The

work in [41] leverages the spatial and social structure of the network to predict user

demands. They proposed an algorithm that predicts the set of influential users

to (proactively) cache important contents and distribute them to their social ties

via D2D communications. The authors of [39] used reinforcement learning-based

proactive caching to minimize the long-term energy used in wireless networks. The

authors of [42] studied a two-level network hierarchical caching, to serve end-user file

requests. A scalable deep reinforcement learning (DRL) approach based on hyper

deep Q-networks (DQNs) was developed to provide an adaptive caching policy that

leverages the interaction between caching decisions at different cache levels and
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reacts to the space-time evolution of file requests. They showed that their DRL

algorithm can perform close to the optimal policy. The authors of [43] explored

the usage of deep RL-based framework with Wolpertinger architecture for content

caching at the base station for maximizing the long-term cache hit rate with no

knowledge of the content popularity distribution. In [48], RL-based proactive caching

was studied in the context of 5G networks. The authors focused on developing RL

algorithms that learn the unknown popularity profiles, as well as the space-time

popularity dynamics of user file requests. In particular, Joint consideration of global

and local popularity demands along with cache-refreshing costs was impeded in

the developed algorithm. Users’ mobility adds to the complexity of the design of

efficient proactive caching algorithms. To tackle such complexity, the authors of [45]

considered proactive caching for vehicular networks. They developed a deep RL-

based resource allocation policy that accounts for the vehicles’ mobility and the hard

service deadline constraint. The authors of [46] designed D2D caching strategies

using multi-agent reinforcement learning. Specifically, multi-armed bandit problem

and Q-learning are used to learn how to coordinate the caching decisions. Storing

popular files reduces the overall throughput. However, the delay relation to caching

is more complicated and not well studied. In particular, queue delay is more related

to the scheduling interaction between cached and uncached files. Also, as videos

can be segmented, sending later segments of videos can be less time-critical. As

such, studying the effect of segmenting video caching decisions under the assumption

that the back-haul is congested is crucial to improve the average transmission delay.

Moreover, there is a need to study the effect of the segment’s position in the file on

the backhaul delay in comparison to segment’s popularity.
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2.4 Mobility in Proactive Caching

The authors of [7] studied a cache-aided small-cell system where users are moving

through the network. They proposed an algorithm that minimizes the total average

delay of all users and takes into account user mobility as well as geographical demand

distribution. The authors of [49] proposed a novel scheme for UAV-enabled proactive

caching at the users. Specifically, where a UAV is dispatched to serve a group of

ground nodes and the UAV proactively transmits the files to a subset of selected

ground nodes that serve the user requests directly. They showed that there exists a

fundamental trade-off between the time required for the UAV to transmit the files to

their designated caching ground nodes and the average time required for serving one

file request.

2.5 Applications for Caching

The works in [22,50–53] provided more practical applications of coded caching. In [22],

the authors studied the K-user broadcast channel (BC) and showed that caching

combined with a rate-splitting broadcast approach can reduce the need for channel

state information at the transmitter. In [51], the authors proposed a framework for

edge-facilitated wireless distributed computing in which several MUs are connected

to an access point. In [52], the authors studied the coded caching design for wireless

networks with unequal link (the backhaul networks of LTE-A or 5G system) rates.

In [50], the authors proposed a two-hop wireless network for video multicasting using

coded caching. In [53], the authors generalized the cache-aided coded multicast
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problem to specifically account for the correlation among content files, such as the

one between updated versions of dynamic data.
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Chapter 3

Coded Caching for Time-Varying

Files Popularities and

Asynchronous Delivery
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Abstract

1Data communication has seen exponential growth recently, and it currently

dominates wireless communication. As a result, proactive caching was developed

to minimize peak traffic rates by storing content, in advance, at different nodes in

the network. We consider proactive caching for a broadcast wireless network with

one central hub such as a satellite (ST) and K associated mobile units (MUs) such

as mobile mini-ground stations or end users. The ST has a library of files, and the

MUs demands are assumed to be limited to this library, while the popularity of the

library files changes over time. We assume that the MUs demands arrive at different

times, and hence, asynchronous file delivery is necessary. We propose a new scheme

that minimizes the files delivery sum rate and show that we can use the file delivery

messages to proactively and constantly update the MU finite caches. We show that

this mechanism reduces the downloaded traffic of the network. The proposed scheme

uses index coding to jointly encode the delivery of different demanded files with

the cache updates to other MUs to follow the changes in the files popularities. An

offline optimization of the delivery sum rate of the scheme is proposed, where it

requires knowledge of the files popularities across the whole transmission period. In

particular, the problem is formulated as a linear program and the optimal caching is

obtained numerically. Moreover closed form solutions to two special cases are derived

and a lowerbound to the achievable delivery sum rate is developed. Numerical

results show the benefits of the proposed scheme over conventional caching schemes,

in terms of reducing the delivery sum rate.

1This chapter was published as ”Coded Caching for Time-Varying Files Popularities and

Asynchronous Delivery”, in IEEE Open Journal of the Communications Society .

22



3.1 Introduction

Cellular traffic has shifted over the past decade from mainly locally generated

instantaneous traffic (voice calls) to centrally generated delay-tolerant bulks of

traffic (data driven communication) [3]. This necessitated the development of new

information theoretic analysis and new algorithms for communication networks.

One key characteristic of data communication is that the delay between the time

of data generation and the time of data demand at the receivers is mostly large.

This enables the data to be stored midway in different nodes along the path

from the transmitter to the receiver to relieve pressure of congested links. Future

expansions of future generation cellular networks are targeting satellite integration

with terrestrial networks to increase coverage and availability. Satellite links

have broadcast nature and introduces further delays; thus, strengthening the case

for midway storage (or caching). Moreover, the shift from voice to data traffic

contradicts the classical assumption of network analysis that messages are generally

independent. This assumption is not accurate for data communication, especially

in broadcast networks, where a piece of data is generally demanded by multiple

users over time. Proactive caching is an efficient technique to reduce the peak

traffic rate and the delivery sum rate (the total transmission rate of the BS through

out the predetermined delivery window). This is achieved by storing parts of the

popular content, at various nodes in the network, ahead of their demand by different

mobile units (MUs). Practically, proactive caching can minimize the total cost of

transmission, as transmitters can optimize the time of performing proactive caching

to be in less congested times (e.g. overnight) where the resources are in abundance.
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Wireless networks with caches have been considered extensively in the recent

literature [4, 7–11, 13–22, 25–27, 50]. The proactive caching research focuses on two

main caching strategies. The first is storing raw files in respective caches [4, 7, 8].

The second is coding of different files together (e.g., index coding [1]) to optimize

the usage of the resources [9–11, 13–22, 25–27, 50]. The authors of [4] proposed the

idea of small-cell network cloud as a technique to increase cloud capacity, relieve

the backhaul constraints2 and increase the peak rate through content caching.

Mobility and proactive caching are considered in [7], where a cache-aided small-cell

system is considered while users are moving through the network and the content

demand distribution is assumed to be known. The proactive content placement at

different small-cells is optimized to minimize the total average delay of all users.

In [8], the proactive content placement of a small cell is optimized while being

oblivious of the demands statistics using reinforcement learning. In this chapter, we

study index-coded caching and delivery for asynchronous delivery with changing file

popularity and instantaneous file delivery. We consider the general case of change

in file popularities. We study coded caching for a K-user network with local caches

at the receivers. The transmission from a broadcast Satellite (ST) is assumed to

occur over two phases, the placement and delivery phases. The users demands are

assumed to be asynchronous, i.e., the delivery phase is composed of multiple time

slots, where each mobile user (MU) demands a file delivery in a different time slot,

and these demands are assumed to be unknown at the placement. The remainder of

the chapter is organized as follows. In Section 3.2, we review the most related work

2Wireless backhaul are links that connects the base-stations to the core network. Their capacity

are hard to increase because of cost and physical limitations.
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to our contribution. In Section 5.2, the system model is described and the expected

delivery sum rate is formulated. In Section 3.4, the proposed caching scheme is

explained and the structure of the delivery plus update messages is provided. The

resulting delivery rate is formulated in Section 6.5 as an optimization problem over

the cached part sizes of all time-slots. The scheme size limitations are embedded in

the optimization problem as linear constraints. Numerical results and performance

measures for the scheme are provided in Section 3.9.

Notation: We use calligraphy fonts, i.e., S, to denote sets. We use A\B to denote

the information in A that is not available in B and A⊕ B to denote the the bitwise

XOR of A and B. We use
(S
k

)
to denote the set of all subsets of S with size k, while we

use LCk to denote the number of combinations when choosing k out of L. We use ⊕

to denote bit-wise XOR operation. We use O(.) to denote the worst case complexity

order.

3.2 Related Work and Motivation

Coded caching was first introduced in [9], where a two phase communication

model that mirrors the probabilistic and broadcast message characteristics was

developed. The authors studied a broadcast channel where transmission occurs over

two phases. A number of independently generated messages, each corresponding to

one piece of content, is available during the first transmission phase. During the

second transmission phase, each receiver has a deterministic demand for one of the

messages. The main difference compared to traditional network models is that the

transmitter and the receiver need to optimize the channel use for the two phases
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jointly (the demand is probabilistic for the first phase) rather than for a single

delivery phase. The authors presented a novel coded caching scheme that exploits

the broadcast nature of the channel and index coding to reduce the transmission rate.

They introduced an information-theoretic framework for the analysis of cache-aided

communication in the context of broadcast channels and showed that the availability

of caches in a broadcast setting provides a coded multi-casting gain. This work was

extended to the case of non uniform demands in [10,11]. The authors of [10] proposed

a near optimal coded caching scheme, whereas the authors of [11] derived a new

information-theoretic lower bound on the expected transmission rate and a scheme

that provides an expected transmission rate that is at most a constant factor away

from the lower bound. On the other-hand, the authors of [14] focused on the case of

uncoded placement and obtained the exact rate-cache size trade-off. Furthermore,

some work developed decentralized schemes for the coded caching problem such as

the works in [15,16]. Coded caching was then extended to different wireless network

models. Interference channel with coded caching was studied in [17–19] and coded

caching within wireless device-to-device (D2D) network was studied in [20], [21].

Moreover, the work in [22,50] provided more practical applications of coded caching.

The caching work can be categorized into two groups in terms of delivery

(synchronous and asynchronous) and in terms of file popularities (changing and non

changing). Synchronous delivery with no change in file popularities paired with the

use of coded caching and/or delivery was studied in [9–11, 13–22, 50]. Asynchronous

delivery with changing file popularities but with uncoded caching and uncoded

delivery was studied in [4, 7, 8]. The use of index-coded caching and/or index-coded

delivery for asynchronous delivery is not well explored in the literature. However,
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asynchronous delivery is more dominant in practice, and a change in file popularities

is expected over long delivery phases. Caching for asynchronous coded delivery

was studied in [25], and [26] without considering the change in file popularities.

The authors studied the asynchronous coded caching for network with constant file

popularities and time window (deadline) for delivery. The authors of [26] studied the

case where all receivers set an equal deadline for delivery, whereas the authors of [25]

studied the case where the deadlines are different. On the other-hand, the authors

of [27] studied the asynchronous delivery in the case a base station has to satisfy the

user demands instantaneously.

The caching schemes of the previous two papers used the time overlap between

users to send coded parts of the requested files (Fig. 3.1). However, since the cache hit
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rate for a large content library is generally low [54], the low cache hit rate renders the

users requests that can be satisfied from the cache, in most applications in a wireless

setting, distant in time. This is a huge challenge for the usage of synchronous coded

caching. Moreover, in most applications users expect their requests to be satisfied

in a short time window. In such case their coded messages can not satisfy more

than one user simultaneously. Coded messages however can be used to update other

user caches. This can be beneficial in the case that the content server learns the

files popularities and users preferences over time or in the case that file popularities

changes over time. Applications with changing file popularity is a case not previously

considered in a coded caching setting despite its prevalence in practical scenarios. An

example is traffic information which change fast. Another is a weather app that stores

information about daily weather changes. Users often check the weather of the next

hour or few hours; as such, content popularity changes over time. Video streaming is

another example for strong changes in file popularities over short periods of time. The

authors of [55] studied the demand patterns of video streaming and showed the change

in patterns over time. Fig. 3.2 shows the relative popularities of different video genres

throughout the day. Content popularity variations are stronger when localized, for

example, downtown servers serve businesses at daytime and leisure seekers at night.

Residential neighbourhoods’ servers serve schools and local businesses in the morning

and normal residents at night. Consequently, any overnight caching (placement phase)

is not optimal for a whole day (delivery phase) and the cache needs to be updated

throughout the delivery phase.

In [27], the authors provided a coded scheme for synchronous delivery and cache

update. They studied a special case where popular files popularities is fading at
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constant rate.

Index coding [1] transmission consists of a set of W independent messages available

at the transmitter

M = {M1,M2, ...,MV }, (3.1)

to be transmitted to a set of K receiving nodes

U = {U1, U2, ..., UK}. (3.2)

The kth destination node Uk is interested only in a set of messagesMk ⊂M and

has another set of messages Ak ⊂ M as side information (antidotes). A receiving

node does not demand a message that is already available to it, i.e.,Mk ∩ Ak = ϕ3.

The server knows the side information at each receiver. The goal of an index code

is to broadcast the minimum amount of information such that each user gets the

message it is interested in.

An index coding scheme Dn(S, n, R) consists of a finite alphabet S, chosen such

that its cardinality, |S| > 1, a coding function, f , and a decoding function gk,i, for

each demanded message Mi by each receiving node Uk. The coding function f maps

the messages to the sequence of transmitted symbols

f(M1,M2, ...,MK) = Sn, (3.3)

where Sn ∈ Sn is the sequence of symbols transmitted over n channel uses. A

message Mk, k ∈ 1, 2, ...,V is a random variable uniformly distributed over the set

Mk ∈ {1, 2, ..., |S|nRv}, where R ∈ Rv
+

4 is the rate vector R = (R1, R2, ..., RV ). The

3ϕ denotes an empty set
4RS

+ define a vector space, of size S, of positive real numbers.
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decoding function at each receiving node is

gk,i(Sn, Ak) = M̂k,i,∀i,Mi ∈Mk. (3.4)

It maps the transmitted symbols and the side information back to the needed

messages. An achievable rate tuple R = (R1, R2, ..., RK) ∈ RM
+ exists if for each

ϵ, δ > 0 there is a (S, n, (R̄1, R̄2, ..., R̄K)) coding scheme, for some S, n, such that

∀w ∈ 1, 2, ..., V , R̄v ≤ Rv − δ, and probability of error Pe ≤ ϵ. The probability of

error is defined as Pe = 1− Prob[M̂k,i =Mi,∀i, k such that Mi ∈Mk].

The proposed system model is different from typical coded caching studied in

the literature with one time slot delivery phase. Our model considers a more

general setting when compared to [14] and [27]. We assume that the demands are

non-uniform, with no constraints on the file popularities distributions, the MUs

demands, the demands times, or the delivery times. We assume that the users are

served by one ST or a number of STs that have the same file popularities.

The proposed scheme uses index coding to encode the missing information of a

certain MU and update the caches of other MUs (joint delivery and update) even

though the files are delivered at different time slots, and hence, reduces the expected

delivery sum rate. The placement phase cache content and the content of the update

messages are optimized according to the file popularities in order to minimize the

expected delivery sum rate. The optimal solution for the delivery rate optimization

of the scheme is obtained offline (at the placement phase) using linear programming,

where the index coding problem is formulated as a linear program. Numerical results

are provided to show the merits of the proposed scheme, over conventional caching

schemes, in terms of reducing the delivery sum rate. The contributions of this chapter
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can be summarized as follows:

• We formally introduce and formulate the problem of asynchronous delivery for

coded caching with changing file popularities and instantaneous delivery.

• We propose a scheme for asynchronous delivery and popularity-aware local

caches update with minimal expected delivery rate compared to general schemes

in literature.

• We develop a lowerbound to the achievable delivery sum rate.

• We derive a closed form solution to the case of two user network and the case

of K user network with fading demand probability.

3.3 System Model

We consider a broadcast channel, where a Base Station (BS) communicates with K

mobile units (MU). The BS and MUs are equipped with one antenna each and have

limited size caches. The BS has a library of L cached N bit-files, F = {F1, F2, ..., FL}.

The MUs may demand one of the library files at a time, where users demands are

independent.

The probability that a file Fi is demanded at the jth time slot by the jth MU is

denoted PFi,j, over the rest of the chapter we will use PFi,j and Pi,j interchangeably.

Let dj be the demand of the jth MU, DK = {d1, d2, ..., dK} be the full-size demand

vector of all K users, and Dj be the vector of demands arriving at (and before) time

slot j ≤ K (i.e. demands of j users). At the placement phase, the demand vector is
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Symbol Description

Fi The ith file in the library stored at the ST.

F The library of L files stored at the ST.

Fi,m The mth part of the ith file.

dj The jth demand at the jth time slot.

Dj Vector of the last j demands.

Pi,t The demand probability of file ith file at time slot t.

PDK
The aggregate demand probability of the demand vector DK .

Sϕ
i The normalized size of the parts of the ith file that are cached

at the placement phase.

SDl
i The normalized size of the parts of the ithfile that are cached

at each MU after Dl demands have been satisfied by the ST.

Si,j The normalized size of the parts of the ith file that are cached

at each MU at time j.

SF The set of all file parts Si, S
D1
i , ..., SDK

K .

Rt The expected delivery rate at time-slot t

Rd The total expected delivery rate that is optimized offline.

MDU The delivery plus update message sent by the ST to the MUs.

MD The delivery part of the message MDU .

MU The update part of the message MDU .

Table 3.1: Summary of the symbols used through out the chapter
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Figure 3.4: Placement and delivery phases
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an empty vector denoted ϕ. Given that the demands are not known a priori, and each

MU has only one demand {dj ∈ F , j ∈ 1, 2, ..., K}, there are LK different possible

full-size demand vectors over the entire delivery phase. Each possible demand vector

has a probability PDK
=
∏K

j=1 Pdj ,j. Each MU has a cache with size CN bits, i.e.,

can cache up to C files. A block diagram describing the system model is shown in

Fig. 3.3.

The transmission from the BS to the MUs occurs over two phases, the placement

phase and the delivery phase. During the first phase, i.e., the placement phase, the

caches of the MUs are proactively filled with parts of the files of F . During the second

phase, i.e., the delivery phase, each MU demands one of the files Fi, i ∈ {1, 2, ..., L}

at time t ∈ {1, 2, ..., K} and the BS sends the missing parts of this file that can not be

extracted from the MU local cache. The MUs file demands are assumed to arrive at

the beginning of different time slots (Fig. 3.4) within the delivery phase, and the BS

satisfies each demand during its time slot. In each slot, one or more user demands are

served while the other users’ caches are updated. Each MU is assumed to have one

demand within each placement-delivery window. The exact demands of the MUs are

not known at the placement phase. Without loss of generality, we assume that the

demand of MU j arrives at the jth timeslot. The demands occur according to known

file popularities (demand probabilities) that are changing over time. The popularities

are assumed to be known over all time slots.
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3.3.1 Placement phase

Let Sϕ
i be the normalized size (with respect to N) of the parts of file Fi that are

cached at the placement phase (before the arrival of any demand) at each MU, i.e.,∑L
i=1 S

ϕ
i = C. At the placement phase, each MU caches a part of each file i of size

Sϕ
i , i = 1, 2, ..., L, such that the MUs have different (possibly overlapping) but equally

sized parts of each file, while the cached parts of different files are not necessarily equal

in size. The reason behind storing different subfiles at the MUs in the placement phase

is to help the MUs decode the update messages. If the missing part at the demanding

user at any time slot is missing from the other users as well, the other users will not

be able to decode the delivery plus update message.

3.3.2 Delivery phase

At the delivery phase, each user should receive the missing parts of their demanded

files. Let S
Dj−1

i be the normalized size of the parts of file Fi that are cached at each

MU at time j after satisfying the demand vector Dj−1, where j = 2, ..., K. The

expected delivery rate is minimized by optimizing the normalized sizes of the cached

parts Sϕ
i , S

Dj

i , ∀ i = 1, 2, ..., L, j = 1, 2, ..., K − 1. The delivery phase is assumed to

occur over K time slots. The BS delivers the file demanded by the jth MU at the

jth time slot. The delivery rate of this scheme depends on the cache content of the

MUs and the MUs demands. Since the actual demands are not deterministic and not

known a priori, we optimize the expected delivery rate. At the first time slot, if file

i is demanded, the BS has to send the missing part (1 − Sϕ
i ). Since the probability

that file i is demanded at the first time slot is Pi,1, the expected delivery rate of the
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first time slot can be expressed as

R1 =
L∑
i=1

Pi,1(1− Sϕ
i ). (3.5)

In general, at time slot j ≥ 2, the BS has to transmit (1 − SDj−1

i ) with probability

given by Pi,j

∏j−1
l=1 Pdl,l , where dl ∈ F , ∀ l = 1, 2, ..., j − 1, and S

Dj−1

i is the size of

the cached part of file Fi at any MU after the demand vector Dj−1. Accordingly, at

any instant j ≥ 2 the expected delivery rate can be expressed as

Rj =
L∑

d1=1

...
L∑

dj−1=1

( j−1∏
l=1

Pdl,l

)( L∑
i=1

(1− SDj−1

i )Pi,j

)
,

∀ j = 2, ..., K. (3.6)

Our objective is to design the information transfer through the placement and delivery

phases to minimize the expected delivery sum rate of the delivery phase

Rd =
K∑
j=1

Rj. (3.7)

Throughout the rest of the chapter we will use MU and user interchangeably.

3.4 Time Varying Coded Caching Scheme

The main aim of the caching scheme is to minimize the expected delivery sum rate

of user demands using proactive caching and proactive updates. The system has

two main characteristics, asynchronous user demands and changing file popularities.

These characteristics are a challenge for proactive caching and for index coding

delivery. The caching scheme focuses on updating the user local caches to mirror

popularity change. In other words, the caching scheme makes the more popular files

more represented in the user caches. The main advantage of the scheme is that it
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performs the cache updates by using the delivery messages sent in the system without

sending additional update message and without increasing the expected sum rate of

the whole delivery phase. This is achieved using index coding. Moreover, given the

changes in the file popularities, the design of the caching at the placement phase is

optimized to these changes and do not depend only on the initial files popularities at

the placement phase. The messages delivering missing parts of each file are used to

update other MUs caches through joint index coding. The placement phase caching

is optimized in conjunction with the delivery phase cache updates where the expected

delivery rate of the delivery phase is the objective to be minimized.

3.4.1 Placement phase

The BS splits each file i into K + 1 subfiles, Fi,m,m = 1, 2, ..., K + 1. The first K

subfiles are of a size Sϕ
i each and are stored at the respective MUs, i.e., Fi,m is stored

at the mth MU. The last subfile is not cached ant any MU and is only available at

the satellite. Its size is max(0, 1 −KSϕ
i ). The last subfile size depends on Sϕ

i which

is chosen to minimize the expected delivery sum rate. The last subfile size is zero if

Sϕ
i is large (KSϕ

i > 1). In this case, the file is completely cached/distributed among

MUs’ caches (Fig. 3.5). On the other hand, for small subfiles KSϕ
i ≤ 1, the file is not

completely distributed among MUs’ caches and the remaining part of the file Fi,K+1

of size 1−KSϕ
i is available at the ST.

3.4.2 Delivery and update phase

In the delivery phase, each user demands a file at a separate time slot. Responding to

each demand, the BS sends a new delivery plus update message MDU . The missing
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Figure 3.5: Cache placement comparison.

parts of the demanded file are encoded in the delivery part of the message MD, the

updates are encoded in the update part MU , where MDU is the XOR of MD and MU .

As such, while delivering the missing part of the demanded file, the scheme uses the

messages to update the caches of other users that still did not send their demands.

In that sense, the scheme does not have an additional rate to that of delivery. For

example, assume without the loss of generality, that the first MU demands the file Fi

at the first time slot. The BS should deliver the missing subfiles of Fi that are not

cached at the local cache of the first MU , i.e., send

MD = Fi\Fi,1 (3.8)

= {Fi,2 ∪ Fi,3... ∪ Fi,G} \Fi,1,

G =

K, KSϕ
i ≥ 1,

K + 1, KSϕ
i < 1.

(3.9)

Meanwhile, the BS needs to update the caches of the remaining K− 1 MUs to reflect

the new file popularities. The BS needs to increase the size of the part belonging to
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Time P1,t P2,t P3,t

t = 1 0.5 0.25 0.25

t = 2 0.25 0.5 0.25

t = 3 0.25 0.5 0.25

Table 3.2: File demand probabilities over the delivery phase.

Time Sϕ
1 Sϕ

2 Sϕ
3

Placement (t=0) 0.5 0.25 0.25

Table 3.3: Cached parts sizes at the placement phase.

files that have seen a popularity increase by sending new parts to the MUs to cache.

This has to be at the cost of flushing parts of the files that have seen a popularity

decrease. Since, the update is XORed with delivery message sent to the first user,

the update contents should be available at the first user for it to be able to decode

the whole message and extract the missing subfile it demanded. The BS should send

the following cache update

MU = {F1,1 ∪ ... ∪ Fi−1,1 ∪ Fi+1,1 ∪ ... ∪ FL,1} \ Fi,1. (3.10)

Accordingly, the BS transmits a delivery plus update message

MDU =MD ⊕MU . (3.11)

Time SD1
1 SD1

2 SD1
3

t = 1 0.25 0.5 0.25

Table 3.4: Cached parts sizes after the first update (after the first time slot).
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The first MU can decode the message MDU and extract its demand MD = Fi\Fi,1

as it has the subfiles MU = {F1,1, Fi−1,1, ..., Fi+1,1, FL,1} in its caches. On the other

hand, each of the other MUs can partially decode MDU as each MU only has a part

of MD. Each MU can decode the part of the message that is XORed with a subfile it

has in its cache and use the extract new subfile to update its cache (Fig. 3.6). The

previous message (4.5) and subsequent cache update can be regarded as a cache swap

between the first MU and the other MUs where some subfiles cached at the first MU

are swapped with subfiles cached at other MUs.

Delivery plus Update message example: three users, three files:

Assume that we have a system that is composed of three users and three files. Assume

that the file demand probabilities are as in Table 3.2.

Assume that the first user demands F1 at the first time slot. The file parts are

cached at the placement phase according to Table 3.3. The BS needs to send F1\F1,1

to the first user while sending an update to the second and the third user to change

the cached sizes to be as in Table 3.4

The corresponding delivery plus update message is

MDU = [F1,2 ∪ F1,3]⊕ [F2,1, F3,1]. (3.12)

A depiction of the cache content and delivery plus update message is shown in Fig.

3.6.

The delivery rate of the delivery plus update message at the first time slot is equal

to the size of the missing part of F1 at the first user or 0.5. The expected delivery

rate of the second and the time slot is

R2 = P2,1(1− SD1
1 ) + P2,2(1− SD1

2 ) + P2,3(1− SD1
3 ) = 0.625. (3.13)
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Figure 3.6: Example of delivery plus cache update message.

On the other hand, if no cache update is performed, the expected delivery rate of the

second time slot would be

R2 = P2,1(1− Sϕ
1 ) + P2,2(1− Sϕ

2 ) + P2,3(1− Sϕ
3 ) = 0.6875. (3.14)

The reduction of the delivery rate comes with no increase in the delivery rate of the

first time slot. The expected sum rate depends on the files parts sizes Sϕ
i , S

Dj−1

i , j =

2, 3, ..., K, i = 1, 2, ..., L. The parts sizes are chosen to minimize the expected sum
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rate. In the next section, we present an offline (at the placement phase) optimization

of the scheme’s expected delivery sum rate in detail and formulate the cache sizes

and updates optimization. The expected delivery rate minimization is formulated as

a linear program.

3.5 Offline Delivery Rate Optimization

The delivery and cache update described in the previous section enables the users

caches to be partially updated according to the change in file popularities, which

decreases the expected delivery rate. However, since the size of the update message

MU is limited by the size of the delivery message MD, it is crucial to optimize the

use of the update messages and the placement phase caching to minimize expected

delivery rate of the scheme. These placement and update limitations are formulated as

constraints over the cache sizes Sϕ
i , S

Dj−1

i , j = 2, 3, ..., K, i = 1, 2, ..., L, of all time-slots

of the placement and delivery phases. The offline optimization of the scheme expected

delivery rate aims to minimize the expected delivery over all time slots jointly, under

the assumption that the file popularities changes over the delivery phase are known

at the placement phase. The expected delivery rate can be formulated as,

Rd =
L∑
i=1

Pi,1(1− Sϕ
i ) +

∑
d1∈F

L∑
i=1

Pd1,1Pi,2(1− Sd1
i ) + ...

+
∑
d1∈F

...
∑

dK−1∈F

L∑
i=1

Pd1,1...PdK−1,K−1Pi,K(1− SDK−1

i ).

(3.15)

The expected delivery rate minimization (3.15) would be an unconstrained

optimization problem if the caches can be completely changed at any instant.
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However, since the scheme uses a limited size delivery plus update messages and

the update is constrained by the current cache content at any instant, the expected

delivery rate minimization is a constrained optimization problem where the decision

variables Sϕ
i , S

Dj−1

i , j = 2, 3, ..., K, i = 1, 2, ..., L, are bounded. In the rest of the

section, we will formulate the update constraints. First the formulation for a three

MUs system is given as an example in subsection 3.5.1.1, then the formulation will

be generalized to the K MUs case in subsection 3.5.1.2. Finally, we will formulate

the expected delivery sum rate optimization problem in subsection 3.5.2.

3.5.1 Constraint formulation

In this section, we will present the cache size change limitations of the scheme. They

are formulated as linear constraints on the expected delivery sum rate optimization

problem.

3.5.1.1 Constraint formulation (3 MUs, 3 files example)

In this part, for the ease of notation, we give an example for a deterministic demand

case. We will drop the demand vector notation Dj for the file parts sizes S
Dj

i and

use Si,j to represent the size of the part cached of file i at time slot j at any MU. To

elaborate the update dynamics and size constraints, consider a system that consists

of three MUs and three files {F1, F2, F3}. The cached parts of Fi at the first, second

and third MUs are {Fi,1, Fi,2, Fi,3}, respectively, and all have the same size Si,j at

time slot j. Assume that F1 is demanded by the second MU at the second time slot.
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The size of the missing part of F1 (i.e. {Fi,2, Fi,3}) to be delivered to the second user

is 1−S1,2 since the second MU has S1,2 cached of the first file at the time of demand.

Hence, the size of the delivery plus update message is 1 − S1,2, and the size of the

update at the second time slot (difference between cached part size at the third and

second time slots) of any file at any MU, is constrained as

Si,3 − Si,2 ≤ 1− S1,2, ∀i = 1, 2, 3. (3.16)

Moreover, since the update is XORed with the delivery message {Fi,2, Fi,3} and each

MU has only a part of F1 of size S1,2, each MU can only decode part of the update

message. The first MU can decode the part XORed with F1,1, while the third MU can

decode the part XORed with F1,3, both are of size S1,2. Therefore, the size update of

any file at any MU is constrained as

Si,3 − Si,2 ≤ S1,2, ∀i = 1, 2, 3. (3.17)

Since the cache partition is symmetric. The cache updates for the first and the third

files are constrained by the same constraints in (3.16) and (3.17). Finally, for the

same arguments of (3.16) and (3.17), any combination of cache size changes has to be

likewise constrained to the size of the decoded part at any MU min(S1,2, 1−S1,2). For

example, considering the updates of the second and third files, their sum is constrained

as,

S2,3 − S2,2 + S3,3 − S3,2 ≤ S1,2, (3.18)

S2,3 − S2,2 + S3,3 − S3,2 ≤ 1− S1,2. (3.19)

Note that the constraints (3.17) and (3.16) are still necessary despite the existence

of the constraints (3.18) and (3.19) because sizes of the cached parts are allowed to
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decrease, i.e. S2,3−S2,2 or S2,3−S3,2 can be of a negative value. Moreover, for the MU

demanding file F1 to be able to decode the update message, the XORed information

with the delivered parts of F1 should be locally available at its cache. In other words,

the information sent to other users is a subset of the demanding user cache. For

example, given the symmetry in the cache allocation, the information included in the

update about files F2 is constrained as

Si,3 − Si,2 ≤ Si,2 ∀i = 1, 2, 3. (3.20)

3.5.1.2 Constraint formulation (K MUs)

In the following, the previous constraints (3.16)-(3.21) will be generalized for the K

MUs and L files case.

Generalizing (3.16) and (3.19), the cache update of each MU is limited to the size

of the whole update message which can be formulated as

S
Dj−1

i − SDj−2

i ≤ 1− SDj−2

dj−1
,

∀i = 1, 2, ..., L, j = 2, 3, ..., K. (3.21)

The update message size constraint applies as well to any combination of cached file

size ∑
Fi∈W

S
Dj−1

i − SDj−2

i ≤ 1− SDj−2

dj−1
, ∀i = 1, 2, ..., L,

j = 2, ..., K, W =

(
F
l

)
, ∀l = 2, 3, ..., K. (3.22)

Generalizing to (3.17) and (3.18), the MUs’ caches being updated has a part of

the demanded file of size S
Dj−2

dj−1
, and can only decode an equal sized part of the update
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message. In other words, the cache update of each MU is limited such that the update

in file Fi at instant j (i.e., S
Dj−1

i − SDj−2

i ) is smaller than or equal to S
Dj−2

dj−1
which is

the size of the subfile it has in its cache. This can be represented as,

S
Dj−1

i − SDj−2

i ≤ S
Dj−2

dj−1
,

∀ i = 1, 2, ..., L, j = 2, 3, ..., K, (3.23)

where Dl = {dl, dl−1, ..., d1}, dl ∈ F . Similarly, the sum of any combination of

the updates is smaller than the decoded part of the update message, which can be

formulated as

∑
Fi∈W

S
Dj−1

i − SDj−2

i ≤ S
Dj−2

dj−1
,∀i = 1, 2, ..., L,

j = 1, 2, ..., K, W =

(
F
l

)
, ∀l = 2, 3, ..., L. (3.24)

At any instant j, the MU demanding file l has no more than S
Dj−1

i of file Fi. Therefore,

the update cannot contain more than S
Dj−1

i of Fi, i = 1, 2, ..., L, i ̸= l XORed with the

missing part of Fl such that the MU demanding Fl can decode the update message

and extract the missing part Fl\Fl,1. As a result, and similar to (3.20), the update

of any subfile at the other MUs’ caches can be constrained as

S
Dj−1

i − SDj−2

i ≤ S
Dj−2

i ,

∀i = 1, 2, ..., K, j = 2, 3, ..., K. (3.25)
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Finally, the cache size and file size limitations can be represented as

0 < Sϕ
i ≤ 1, ∀i = 1, 2, ..., L, (3.26)

0 < S
Dj−1

i ≤ 1, ∀j = 2, 3, , ..., K, ∀i = 1, 2, ..., L, (3.27)
L∑
i=1

Sϕ
i = C, (3.28)

L∑
i=1

S
Dj−1

i = C, ∀j = 2, 3, , ..., K, ∀i = 1, 2, ..., L. (3.29)

3.5.2 Delivery rate optimization problem formulation

The expected delivery rate (3.15) depends on all the demands probabilities and can be

optimized to reflect all possible demand scenariosDj, j = 1, 2, ..., K−1, by optimizing

the cached parts sizes and the updates sizes of all files over all time slots. The expected

delivery rate minimization can be represented as follows

Rd = min
SF

L∑
i=1

Pi,1(1− Si) +
∑
d1∈F

L∑
i=1

Pd1,1Pi,2(1− Sd1
i )

+
∑
d1∈F

...
∑

dj−1∈F

L∑
i=1

Pd1,1...Pdj−1,j−1Pi,j(1− S
Dj−1

i ), (3.30)

Subject to (3.23), (3.24), (3.21), (3.22), (3.25), (3.26), (3.27), (3.28),

and (3.29),

where SF is the set of all file parts Si, S
d1
i , ..., S

d1d2...dK
K . The previous optimization

problem is a linear programming optimization which can be solved by linear

programming methods [56].
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3.5.3 Complexity analysis

The dimension of the optimization problem of the provided scheme in (3.30) is KK ,

and can be solved using interior point methods (IPM) [57] in O((m + n)1.5n2L)

processing time, where n is the number of variables and L is at most the number

of bits used by the solver to represent the input. The quantity L is often defined

as L = log(m) + log(1 + dmax) + log(C0) where m = KK(2K+1 − 1) + KK−1) is

the number of constraint in the minimization problem, dmax = O(KK) is the largest

absolute value of the determinant of a square sub-matrix of the constraint coefficient

matrix, and C0 is a constant.

3.6 Lowerbound to The Delivery Sum Rate

In this section we provide a lowerbound on the expected delivery sum rate of the

system model of consideration. Consider a network where a genie would provide the

MUs with the required information to decode the entire message sent in the network

and update their caches. The message size is constrained to the size of the missing

information of the demanded file. For example if the message is

Fi,x, Fi,y ⊕ Fi,u, Fi,v, (3.31)

and an MU has only Fi,x, the genie will give the MU Fi,y to obtain Fi,u, Fi,v. This is

also equivalent to sending an independent update message to each MU at each time

slot which the same size of the delivery message. The expected delivery sum rate of

this network is a lowerbound for the expected delivery sum rate of any scheme for

the network in consideration.
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The cache size update of the genie aided update message size is constrained as

∑
Fi∈W

Si,j − Si,j−1 ≤
L∑

n=1

Pn,j−1(1− Sn,j−1),

∀j = 2, ..., K, W =

(
F
l

)
, ∀l = 2, 3, ..., K. (3.32)

The expected delivery sum rate of the genie aided network can be represented as

Rgenie = min
SF

K∑
j=1

L∑
i=1

Pi,1(1− Si,j) (3.33)

Subject to
L∑
i=1

Si,j = C, ∀j = 1, 2, ..., K

and (3.32).

The previous optimization problem is a mutli-period optimization and can be solved

using interior point methods [57].

3.7 Closed Form Solutions

In this section, we present closed form solutions for the expected delivery sum rate

optimization ,(3.31), for two special cases, posed in two theorems.

Theorem 1. For a two MUs network, the following expected delivery sum rate is

achievable

Rd = min

{
P2,1 + P2,2, P1,2 +min

{
1

2
, 1− 2P1,1P1,2

}}
. (3.34)

Proof. See Appendix 3.10
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Theorem 2. For a K MU network with decreasing file popularity of the demanded

files and equal file popularities of undemanded files, the following expected delivery

sum rate is achievable

Rd(K) = (K − (ψ(K + 1) + γ))N, (3.35)

where γ is the Euler-Mascheroni constant and ψ is the is the digamma function.

Proof. See Appendix 3.10

3.8 Mixed delivery

The previous sections showed how the proposed scheme serves asynchronous demands.

The scheme can be modified to serve mixed mode demands where some of the demands

are served in the same time slots and some are served in separate time slots. In this

section, we will show the extension for a three users, three files network, and the

asynchronous period precedes the synchronous period.

3.8.1 Placement phase

Assume without lose of generality that file one is demanded alone and files two and

three are demanded together. The caching at the placement phase is performed in the

same manner as the asynchronous case where the expected delivery rate is minimized

for two delivery time slots instead of three

{F1,11, F1,12, F2,11, F2,12, F3,11, F3,12}, (3.36)

{F1,21, F1,22, F2,21, F2,22, F3,21, F3,22}, (3.37)

{F1,31, F1,32, F2,31, F2,32, F3,31, F3,32}. (3.38)
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3.8.2 Delivery and update

In order to satisfy the demand of the first file at the first time slot, the BS sends a

delivery and update messages

MD = {F1,21, Od1, F1,31, Od2, F1,22, Od3, F1,32, Od4}, (3.39)

MU = {F2,11, Ou1, F2,12, Ou2, F3,11, Ou3, F3,12, Ou4}. (3.40)

where Odi, i = 1, ..., 4 , Oui, i = 1, ..., 4 are padding subfiles to accommodate for

sub-file size difference.

After updating the MUs caches, the cache contents of the last two users become

{F2,11, F2,21, F2,22, F3,11, F3,21, F3,22}, (3.41)

{F2,12, F2,31, F2,32, F3,12, F3,31, F3,32}. (3.42)

Alternatively, for the ease of notation the caches can be represented as

{F2,2, F3,2}, (3.43)

{F2,3, F3,3}. (3.44)

Finally, at the second time slot the BS sends

{F2,2 ⊕ F3,3}, (3.45)

to deliver the missing information of the second and the third file at the last two

users. The update constraints for this case are listed below ∀d1 ∈ {F1, F2, F3} and i ∈
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{1, 2, 3}:

Sd1
i ≤1− S

ϕ
d1
, (3.46)

Sd1
i ≤S

ϕ
d1
, (3.47)∑

i,Fi ̸=d1

Sd1
i ≤1− S

ϕ
d1
, (3.48)

∑
i,Fi ̸=d1

Sd1
i ≤S

ϕ
d1
, (3.49)

Sd1
i − S

ϕ
i <S

ϕ
i . (3.50)

The expected delivery sum rate of the previous scheme can be represented as

Rd = min
S

∑
i

Pi,1(1− Sϕ
i )

+
∑
dj

Pdj ,2max
l=1,2

(P<dj>+l,2(1− S
dj
<dj>+l))

subject to (3.26), (3.27), (3.28), (3.29), (3.46), (3.47), (3.48),

(3.49), and (3.50). (3.51)

where and < dj > to denote the index i of the file Fi of the demand dj. The

minimization problem in (3.51) can be reformulated as

Rd = min
∑

Pi,1(1− Sϕ
i ) +

∑
di

Pdi,2Zdi

subject toZdi ≥ P<di>+1,2(1− Sdi
<di>+1)

Zdi ≥ P<di>+2,2(1− Sdi
<di>+2)

(3.26), (3.27), (3.28), (3.29), (3.46), (3.47), (3.48),

(3.49), and (3.50). (3.52)

where Zdi is an auxiliary variable. Similar to the optimization in (3.31), the previous
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optimization is a linear program and can be solved using linear programming methods

[56].

3.9 Results

In this section, we provide results via system simulations to show the merits of the

proposed scheme in terms of the expected delivery sum rate. Additionally, we compare

the performance of the proposed scheme to the performance of two other schemes.

The first is the uncoded offline caching scheme, where this caching scheme typically

stores the most popular files at the placement phase [9]. The second is the caching

last used file scheme (LSC) [58]; this is an online caching scheme where users store

the most recent files sent to others users in the network. The LSC is beneficial in the

case that a small group files have the highest popularities over a long period of time,

but not in the case that the files popularities are rapidly changing. The efficiency

of the proposed caching algorithms does not only depend on the change of the file

popularities but also depends on how popularities or the demand distribution changes

from time to time. The simulations are carried out for two scenarios that represent

different behaviors of the change in popularities. The first is when the popularities

are randomly changing according to

Pi,t =
θFi,t∑
i θFi,t

∀t = 1, 2, ..., K, ∀i = 1, 2, ..., L, (3.53)

where θFi,t
∼ U(0, 1). Figure 3.7 plots the probabilities change of five files over

time according to distribution (3.53), and Fig. 3.8 shows the simulated probability

distributions for three of the five files. The second scenario is when the files

popularities are following a trend (i.e., some files have fading popularities and
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Time P1,t P2,t P3,t P4,t

t = 1 0.2469 0.0056 0.4443 0.3032

t = 2 0.2697 0.0505 0.3707 0.3091

t = 3 0.3297 0.2667 0.2212 0.1824

t = 4 0.2878 0.3564 0.0944 0.2613

Table 3.5: File demand probabilities over the delivery phase.

Time d1 d2 d3 d4

t = 1 2 2 4 3

Table 3.6: Worst case demand vector.

other have growing popularities). The demand probabilities in the second case are

generated according to

Pi,t =
itθFi,t∑K

i=1 i
t
∀t = 1, 2, ..., K, ∀i = 1, 2, ..., L, (3.54)

where it∑K
i=1 i

t
represent the exponential growth/decline trend line. For example, for

the fourth file (i = 4), the value 4t∑4
i=1 4

t grows with time while for the first file (i = 1)

1t∑4
i=1 1

t declines with time. θFi,t
is a smaller (on average) random change around the

dominant trend line.

Fig. 3.7 plots the probabilities change over time of five files according to

distribution (3.54), and Fig. 3.10 shows the simulated probability distributions

SD1
3 SD1

2 SD2
3 SD2

4

0.0326 0.0652 0.0543 0.5543

Table 3.7: Cached parts sizes of the worst case demand vector.
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Figure 3.7: Simulated distributions of demand probabilities of the first scenario

for three of the five files. The simulation of the delivery rate was performed using

Matlab, where the number of mont-carlo simulations was one million runs for

each simulation. User demands were generated according to the above mentioned

distributions for each simulation setting. Figure 3.9 and Fig. 3.12 show the expected

delivery sum rate of the uncoded caching, LSC, offline coded caching schemes,

and the genie aided lowerbound for the first and the second demand scenarios,

respectively. The network is simulated for a cache size of one file at each user in both

figures. The figures show the caching gain (reduction in delivery phase transmission

rate) of the proposed coded caching in comparison to uncoded proactive caching and

LSC. It can be observed that the caching scheme provides a significant reduction in

delivery rate.

For example, for a five users, five files network in the second scenario (Fig. 3.12),

the expected delivery sum rate if no caching is used is five for the case that the
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Figure 3.8: An instance of the first scenario demand probability trace for a five files

system.
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Figure 3.9: The performance of caching schemes in terms of the delivery rate for

different number of users for the first demand scenario.
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Figure 3.10: Simulated distributions of demand probabilities of the second scenario.

files popularity have the same distribution. The delivery rate reduction for using

the proposed scheme is 50%, 37.5%, and 27.5% relative to no caching, uncoded

caching, and LSC, respectively. The figures show that the proposed scheme achieves

an expected delivery sum rate close to the lowerbound. Since that the presented

lowerbound is aided with a large amount of side information, it is expected that

the optimal delivery sum rate is closer to the proposed scheme than the presented

lowerbound.

Moreover, both figures show a growing gain with the number of MUs in the system.

The aggregate cache of the MUs grows with the number of MUs which gives more

room for offloading more files to the MU side. It is observed that the performance

of the proposed coded caching scheme is better in the second scenario compared to

the first. This is due to the restrictions on the update message size which limits the
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Figure 3.11: An instance of the second scenario demand probability trace for a five

files system.

capacity of performing a very large update to the MUs caches compositions to track

big and swift changes in the file popularities.

It is worth noting that in a practical setting the popularities changes would be

more related to the trend line case (second scenario). Figures 3.13 and 3.14 show

the change in the expected delivery sum rate with increasing the cache size for a

four MUs network for the first and the second demand scenarios, respectively. The

uncoded caching saves on average an amount equal to the cache size. The simulation

shows that the proposed coded caching scheme is more beneficial when the cache size

is small due to optimized usage of the limited cache size. The previous figures show

the average performance of the proposed scheme. Meanwhile, the scheme has good

performance in the worst case where the users demand the least popular files since
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Figure 3.12: The performance of caching schemes in terms of the delivery rate for

different number of users in the second demand scenario.

the scheme caches parts of each file. An example with file popularities according to

Table 3.5, and worst case demand vector as in Table 3.6 is provided. The scheme

caching decision is as described in Table 3.7 and the resulting worst case rate is 3.29

compared to 4 if the most popular caching is used and 3 if LSC is used. Fig. 3.15, on

the other hand, shows the performance of the scheme for the special case of fading

file popularities discussed above.

3.10 Conclusion

We studied a K MUs satellite broadcast network where the satellite has a pool

of cached files, and the MUs demands are expected to be limited to that pool.

The popularities of the files are changing over time. The proposed scheme jointly

encodes the delivery of different demanded files with the cache updates to the MUs
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Figure 3.13: The performance of caching schemes in terms of the delivery rate with

the change in cache size for the first demand scenario.
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Figure 3.14: The performance of caching schemes compared to other caching schemes

for different cache sizes.
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Figure 3.15: The performance of caching scheme for a special case of fading

popularities compared to uncoded caching.

over different time slots to minimize the delivery sum rate.An offline optimization

of the scheme is proposed. Our simulation results show that the proposed scheme

significantly reduce the delivery rate for all cache sizes and different number of users

in the system for different distributions/behavior of the files popularities. Specifically,

the proposed scheme has better behavior when the files popularities follow a specific

trend, which would be a typical scenario in a practical setting, and/or when the

cache sizes are large relative to the number of files. We showed that proactively

and constantly updating the MU finite caches reduces the downloaded traffic of the

network.
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Appendix 3.A

Theorem 3. For a two MUs network, the following expected delivery sum rate is

achievable

Rd = min

{
P2,1 + P2,2, P1,2 +min

{
1

2
, 1− 2P1,1P1,2

}}
. (3.55)

Proof.

Placement Phase

In this phase, each user caches a part of each file of size Sϕ
1 and Sϕ

2 ). The cache

contents at the MU one and two are

{F1,1, F2,1}, (3.56)

{F1,2, F2,2}, (3.57)

respectively.

Delivery Phase

For a two files system we have two scenarios. The first is that one file is more popular

for the entire delivery phase. In this case, it is cached at both users and no update

is needed. Assume without loss of generality that file F1 is more popular, then the

delivery rate is

Rd = P2,1 + P2,2. (3.58)
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The second case is that the most popular file changes through the delivery phase. If

file F1 at the first delivery time slot is requested, then the BS transmits

MDU = F1 − F1,1 ⊕ F2,1. (3.59)

The second MU extracts F1 − F1,1, and then updates its cache by replacing a part of

F1 with F2,1 as the popularity of file F2 increases in the second time slot. As a result,

the updated cache of the second MU has a part F2 of size 2Sϕ
2 and a part of F1 of

size (1− 2Sϕ
2 ). At the second time slot, the BS transmits a part of size 2Sϕ

2 if file F1

is demanded by the second MU or a part of size (1− 2Sϕ
2 ) if file F2 is requested.

On the other hand, if file F2 is demanded by the first MU at the first delivery

time slot, then the BS sends

C = {F2,2 ⊕ F2,1, F2,3}. (3.60)

As such, the first MU extracts F2\F2,1, while the second MU updates its cache to

include the whole file F2 that becomes more popular for the coming second delivery

time slot and caching it is instantly optimal. At the second time slot, the BS transmits

nothing if file F2 is requested by the second MU, while it transmits the whole file F1

if it was requested by the second MU. The delivery phase sum rate for this scheme is

Rd = P1,1S
ϕ
2 + P2,1S

ϕ
1 + P2,1P1,2 + 2(P1,1P1,2)S

ϕ
2

+ P1,1P2,2(1− 2Sϕ
2 ). (3.61)

Given that P1j = 1− P2j and Sϕ
1 = 1− Sϕ

2 , then

Rd = 1 + P1,2 − 2P1,1P1,2 + (4P1,1P1,2 − 1)Sϕ
2 . (3.62)
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Hence, the minimum expected delivery sum rate can be formulated as

Rd = min
Sϕ
2

1 + P1,2 − 2P1,1P1,2 + (4P1,1P1,2 − 1)Sϕ
2

subject to Sϕ
2 ≤

1

2
. (3.63)

The solution of the expected delivery sum rate minimization problem in (3.63)

depends on the sign of (4P1,1P1,2 − 1), as the problem represents a one-dimensional

linear optimization problem. If 4P1,1P1,2 ≥ 1, then the term (4P1,1P1,2 − 1)Sϕ
2 is

positive and the minimizing value of Sϕ
2 is 0, i.e., Sϕ∗

2 = 0 and the resulting minimum

delivery sum rate is given as

Rd = 1 + P1,2 − 2P1,1P1,2, if 4P1,1P1,2 ≥ 1. (3.64)

On the other hand, if 4P1,1P1,2 < 1, then term (4P1,1P1,2 − 1)Sϕ
2 is negative and the

minimizing value of Sϕ
2 is 1

2
, i.e., Sϕ∗

2 = 1
2
, and the resulting minimum delivery sum

rate is given as

Rd =
1

2
+ P1,2, if 4P1,1P1,2 < 1. (3.65)

Similarly if Sϕ
1 ≤ Sϕ

2 at the placement phase, i.e., file F2 is fully cached while file

F1 is partially cached at the combined cache of the two MUs, the delivery phase sum

rate would be

R = P1,1S
ϕ
2 + P2,1S

ϕ
1 + P1,1P1,2 + P2,1P1,2, (3.66)

and given that P2,t = 1− P2,t and S
ϕ
1 = 1− Sϕ

2 , then

Rd = (2P1,1 − 1)Sϕ
2 − P1,1 + P1,2 + 1. (3.67)
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Hence, the minimum expected delivery sum rate if parts of files F1 and F2 are cached

at the placement phase and Sϕ
1 ≤ Sϕ

2 can be formulated as

Rd = min
Sϕ
2

(2P1,1 − 1)Sϕ
2 − P1,1 + P1,2 + 1

subject to Sϕ
2 ≥

1

2
. (3.68)

Since file F1 is more popular at the first delivery time slot, P1,1 >
1
2
and (2P1,1− 1) is

positive. The minimizing value for Sϕ
2 is 1

2
, i.e. Sϕ∗

2 = 1
2
. Accordingly, the minimum

delivery sum rate is

Rd =
1

2
+ P1,2. (3.69)

Finally, the minimum delivery sum rate can be expressed as

Rd = min

{
P2,1 + P2,2, P1,2 +min

{
1

2
, 1− 2P1,1P1,2

}}
.

(3.70)

Appendix 3.B

Theorem 4. For a K MU network with decreasing file popularity of the demanded

files and equal file popularities of undemanded files, the following expected delivery

sum rate is achievable

Rd(K) = (K − (ψ(K + 1) + γ))N, (3.71)

where γ is the Euler-Mascheroni constant and ψ is the is the digamma function.
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Proof. In this section, we derive the closed form of the expected delivery sum rate

for the case when the files popularities are equal for all undemanded (K − t) files at

each time slot t.

The Placement Phase

The BS splits the ith file into a number of K(K− 1) subfiles {Fi,lh; i = 1, 2, ..., K; l =

1, 2, ..., K;h = 1, 2, ..., K − 1}. In the placement phase, MU m stores subfiles

{Fi,mh; i = 1, 2, ..., K;h = 1, 2, ..., K − 1}.

The Delivery Phase

Assume without loss of generality, that the first MU requests file F1 at the first time

slot. The BS transmits

{F1,21, F1,22, ..., F1,2K−1, F1,31, F1,32, ..., F1,3K−1, ...,

F1,K1, F1,K2, ..., F1,KK−1} ⊕ {F2,11, F3,11, ..., FK,11

F2,12, F3,12, ..., FK,12, ...., F2,1K , F3,1K , ..., FK,1K}.

In the previous process, each MU other than the first MU will update 1
K

of its

cache. After the update, the cache will be equally shared between K − 1 files totally

eliminating file F1, which reduces the delivery rate for the next delivery time slot.

In a similar fashion, in the next time slot the cache of the remaining MUs is

updated by eliminating the demanded file and replacing it with parts of the remaining

files. At the tth time slot, an MU would either demand a partially cached file or has a

repeated demand for an eliminated file. At each time slot, the cache of the remaining

MU is equally split between K−l files, where l is the number of files that were already
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demanded. Let L be the expected number of files to be demanded once , the expected

delivery sum rate for decreasing file popularities would be

Rd(L)=

L−1∑
l=0

K − l − 1

K − l
N + (K − L)N (3.72)

=

(
K −

L−1∑
l=0

1

K − l
+ (K − L)

)
N (3.73)

=

(
2K − L−

K∑
C=K−L+1

1

C

)
N (3.74)

=(2K − L− (ψ(K + 1)− ψ(K − L+ 1)))N, (3.75)

where ψ is the digamma function, and the expected delivery sum rate if all files are

demanded only once is

Rd(K) = (K − (ψ(K + 1) + γ))N, (3.76)

where γ is the Euler-Mascheroni constant.
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Chapter 4

Online Caching with Time-Varying

Files Popularities and Uncoded

Prefetching
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Abstract

1Proactive caching shows a great potential to minimize peak download rates by

caching popular data, in advance, at the edge. Fast-changing file features, such as fast-

changing file popularities and file contents, represent a challenge for proactive caching

if cache content update is much slower, which decreases the efficiency and usability of

caching. We present a dynamic coded caching scheme that updates local user caches

and optimizes the use of caching resources. The developed scheme assumes partial

knowledge of features variation. The developed scheme is presented for a network

with one cache-enabled server, that has a pool of files, communicating with K cache

enabled receivers with requests limited to the server’s file pool. Asynchronous file

delivery is assumed as a result of non-flexible receivers’ request timing. We show

that the file delivery messages can be used to proactively and constantly update

the receivers’ finite caches by index-coding the update with delivery messages at no

additional rate-cost. We also show that this mechanism reduces the downloaded

traffic and can be used to reduce other QoS metrics.

Keywords : Coded proactive caching, dynamic features, index-coding.

1This chapter was published as ”Dynamic Caching for Files with Rapidly-Varying Features and

Content”, in IEEE Transactions on Communications.
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4.1 Introduction

Data communication has increased exponentially over the last decade, which leads

to a shift from voice traffic with no delay tolerance to delay-tolerant data traffic [3].

This mandates the development of new communication algorithms that are built

around the characteristics of data communications. One of data-communication’s

most important characteristics is the gap between the time of data creation and

the time of users’ requests. This gap enables the storage of data along the path

between the data source and data consumers. In addition to delay tolerance, data

communication is characterized by the fact that the request for the generated data is

probabilistic, and messages with the same content are generally sent to more than one

receiver at different times. Proactive caching is an effective new technique that stores

popular content, before being requested, at different nodes in the network to reduce

the peak traffic rate. Proactive caching does not only improve the Quality of Service

(QoS) for the users by reducing the peak traffic rate, but it reduces the network cost

of transmission as well. This is because proactive caching enables the optimization of

the use of resources, where the caching process is generally done where the network

resources are in abundance.

Recent research works have extensively studied proactive caching in wireless

networks [4, 7–11, 13–22, 25, 26, 50, 59, 60]. The system models considered in recent

works can be categorized into two main categories in terms of file request/delivery

settings, synchronous file request/delivery, and asynchronous request/delivery. Also,

it can be categorized into two categories based on the coding strategies used. The

first strategy stores files or parts of files in target caches (uncoded caching) [4, 7, 8],
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while the second strategy encodes files or parts of files together before caching (e.g.,

index coding [1]), resulting in a coding rate gain. Pioneering the wireless proactive

caching research, the authors of [4] proposed adding a cloud storage small-cells to

wireless networks as a tool to increase cloud capacity, decrease latency, and decrease

the peak rate stressing network resources. In [7], a cache-aided small-cell network

with moving users was considered. The proactive content placement of different cells

is optimized based on localized content request distribution to minimize the average

delay of all users. In [8], the content placement of a small cell network that lacks the

request statistics is optimized using reinforcement learning.

In [9], the authors studied proactive caching for a K-user broadcast channel

and developed an index-coded caching scheme that exploits the broadcast nature

of the channel to minimize the expected delivery rate. They showed that a coded

multi-casting gain can be obtained through the availability of caches despite different

users’ requests. Coded caching differs from other traditional algorithms and uncoded

proactive caching by requiring the optimization of the channel use for the placement

and delivery phases jointly, where only request statistics is available at the placement

phase. The authors of [10, 11] extended the work of [9] to the case of nonuniform

requests. The authors of [10] developed a near-optimal scheme for the case of the non

uniform requests, while the authors of [11] presented a lower bound on the delivery

rate and developed an achievable scheme with a delivery rate that is within a constant

factor from the lower bound. The authors of [13] developed an extension to the

scheme proposed in [9] to work online, where the user issues a sequence of requests

and the cache is continuously updated. They characterize approximately the optimal

long-term average rate of the shared link. In contrast, the authors of [14] focused
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on the case of uncoded placement and derived the exact memory-rate trade-off.

Furthermore, other works developed decentralized schemes that can be used for coded

caching as in [15,16]. Coded caching was then extended to study various models, for

example, the interference channel as in [17–19], and wireless device-to-device (D2D)

network as in [20], [21]. The work in [22, 50] provided more practical applications of

coded caching. In [50], the authors proposed a two-hop wireless network for video

multicasting using coded caching.

The main challenge for proactive caching is that the cache hit rate is generally

low [54], especially when the content library is large. This is a bigger challenge for

classical coded caching because it depends on users requesting their files delivered at

the same time. However, the low cache hit rate shows that file requests that can be

fulfilled from cached contents in a wireless network are generally distant in time. As

such, some works relaxed the assumption of synchronous delivery for coded caching.

Caching with asynchronous coded delivery was studied in [25,26,59,60]. The authors

of [26] studied a network with constant file popularities where users’ requests are in

the form of a file request with a deadline for delivery. They investigated the case the

deadlines for all users are the same, whereas the authors of [25] studied the other case

where the users set different deadlines for delivery. They provided two different coding

schemes for the case where the requests are known at the placement phase and for

the case where the requests are revealed throughout the delivery phase. While index-

coded delivery struggles with a low cache hit rate, it can be used to update other user

caches. In practice, this can be useful when the file popularities and users’ preferences

are learned over time or in the case they change over time. Applications with changing

file popularity are rarely considered in a coded caching setting despite their prevalence
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in practice. An example is the effect of breaking news on the popularities of media

broadcast content. The authors of [55] studied video streaming request patterns

and presented the patterns change over time. They found that users’ video interests

change throughout the day. This necessitates continuous cache update to follow the

changes in file popularities. Fig. 4.1 plots the users’ interests of different video genres

throughout the day. The authors of [59, 60] studied asynchronous delivery for the

condition the server has to fulfill users’ requests within one time slots. They assumed

that the file popularities are time-variant (within the delivery phase), and assumed

that the user requests are not known a priori. The authors of [59] provided a coded

scheme for a special case where the popularities of the most popular-files are fading,

while the authors of [60] provided a coding scheme for arbitrary file popularities

variations. They provided cache update and delivery schemes for asynchronous and

mixed (synchronous plus asynchronous) deliveries. They used an offline approach

where the file popularities variations are assumed to be accurately predicted/provided

to the server at the placement phase. Files with time-varying content is another

category of files for which applying proactive caching is challenging. In this category,

the content of the same file partially or fully change from time to time. The usability

of each file in this category (e.g. sensor data) depends on its rate of change, i.e., on

its age of information (AoI) [61]. The authors of [62] studied the relation between

delay and data freshness in a cache-aided network. The authors of [61] developed an

update policy for a cache-aided server that minimizes the AoI in an uncoded caching

setting. Generally, the majority of files have fast-changing metrics/features that the

caching process must consider to have efficient utilization of the caching resources. For

example, file-specific delay and delay-jitter change as its route get congested. In this
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Figure 4.1: Request patterns for videos through daytime.

chapter, in contrast to the offline approach of [59], [60], we develop a dynamic code

caching scheme that works for the general case of arbitrary number of fast-changing

multiple features and any predefined importance metric. We present the results for the

special cases of files with time-varying popularity and time-varying content as well.

We study asynchronous coded caching for a network that consists of a server and K

receivers with local caches. We assume that the change in features/metrics is known

one time slot ahead. We provide a dynamic coded changing scheme that responds to

the changes in those features/metrics as information about them is constantly updated

at the server. The transmission of information from the server to the receivers occurs

over two phases: the placement and delivery phases. The receivers’ requests and the

delivery of the requested files occur in an asynchronous fashion, i.e., in a separate time

slot within multiple time slots in the delivery phase. As such, the system model in

consideration differs from other coded caching problems considered in the literature
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that have one time slot delivery phase. The new model tackles a less constrained

setting as compared to [13], [14], and [59] as well. In this model, the requests are

non-uniform, the distributions of the features are arbitrary, with no constraints on the

receivers’ requests or delivery times. The proposed scheme optimizes the receivers’

cache update to minimize future delivery sum rate. The proposed scheme does not

send separate messages that generate additional rate; instead, it uses index coding [1]

to send a joint delivery and update messages. The scheme’s index coding transmission

is formulated as a linear program. Linear programming fixed point methods are

leveraged to find the optimal expected delivery sum rate of the scheme. Additionally,

the structure of the formulated optimization problem of the scheme is exploited to

develop a low complexity optimal solution. Numerical results are used to elaborate

on the advantages of the proposed scheme compared to other caching schemes. The

key contributions of this work can be summarized as follows:

• We propose a caching scheme for dynamic coded file delivery and caches update.

The scheme is designed to take into consideration multiple changing files features

and partial knowledge of the features changes.

• We provide a general framework for using the proposed scheme to optimize

different dynamic metrics.

• The optimization of the proposed scheme is formulated as a linear program,

which enables achieving optimal solutions using efficient linear solvers.

• Based on the characteristics of our optimization problem, we identify a class of

linear problems with symmetric constraints’ coefficients. A new non-iterative
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Figure 4.2: Network architecture (e.g. Satellite broadcast network).

algorithm with a linear time complexity that solves any optimization problem

belonging to our newly identified class is developed.

Notation: We use calligraphy fonts, i.e., S, to denote sets. card(S) to denote its

cardinally, We use
(S
k

)
to denote the set of all subsets of S with size k. We use ⊕ to

denote bit-wise XOR operation and A\B to represent the bits in A that are not in

B. We use O(.) to denote the worst case complexity order and Φ to denote an empty

set.

4.2 System Model

The system model in consideration consists of a server that communicates with K

receivers. The server and receivers are assumed to have limited size caches and are all

single antenna nodes, and the receiver cache size is CN bits. The receivers’ requests
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Figure 4.3: Placement and delivery phases.

are assumed to be limited to an L-files-library F = {F1, F2, ..., FL}, N bits each,

that is available at the server. The system model is illustrated by the block diagram

shown in Fig. 4.2. An example application of the considered system model is satellite

broadcast networks, where the satellite is the server, receivers are the users, and

changing file popularities happens over on-demand contents.

The information transfer from the server to the receivers is split into two phases,

namely, the placement and delivery phases. At the first (placement) phase, a group

of chosen files parts of the library F is transferred from the server to the receivers’

local caches before the receivers’ requests arrive at the server. The receivers’ requests

then arrive at the server through the second (delivery) phase. Each receiver requests

one file from the library Fi, i ∈ {1, 2, ..., L}, at a separate time slot t ∈ {1, 2, ..., K}

of the delivery phase. Any missing files parts belonging to the requested file and that

are not available at the requesting receiver’s local cache are then sent by the server

to the receiver. The server sends the missing parts to the receiver request during the

same time slot of the request (Fig. 4.3). Without loss of generality, we assume that

the tth receiver request occurs at the tth time-slot.
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Figure 4.4: Cache placement comparison.

4.2.1 Changing file characteristics

We assume that each file is characterized by G different features that define the

conditions of its use and transmission. Weights that define the relative edge of each

file are stored in a feature vector bg,t = [bg,1,t....bg,L,t], g ∈ G, t ∈ K, where the feature

vector changes over time and is file specific. Larger values in the vector correspond to

higher priority to be cached. The case of time-varying popularities is an example of

file features that change with time. Specifically, the receiver requests are not known

a priori, while the probability that a receiver requests a certain file (file popularities)

is known one time-slot ahead. The file probabilities vector is a feature vector with

weights that differentiate the importance of each file. In the following, we assume

that the file popularities are changing over time.

4.2.2 Placement phase

Let Si,1 denotes the size, normalized with respect to N , of each part of file Fi chosen

to be cached at the placement phase at any receiver, i.e.,
∑L

i=1 Si,1 = C. While the

caching is symmetric in terms of size over all receivers, the content of each part is

different. That is to say, each receiver caches a different (possibly overlapping) equally
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sized part of size Si,1, i = 1, 2, ..., L, of each file i. Note that parts of different files

cached at the same receiver are generally different in size.

4.2.3 Delivery phase

The receivers’ requests are sent to the server, each in a separate time slot during

the delivery phase. The server sends missing parts of the files requested by respective

receivers, that are not available at the requesting receiver. Let Si,t, t = 2, ..., K, be the

normalized size, at the time slot t, of parts of file Fi that are cached at any receiver.

The normalized sizes of the cached parts, Si,t, ∀ i = 1, 2, ..., L, t = 2, ..., K, are to be

optimized to minimize the expected delivery sum rate. The request of the tth receiver

is assumed to arrive at the server at the tth time slot, without loss of generality, i.e.,

the delivery phase transmission occurs over K time slots. The server delivers the

missing parts of the file requested by each receiver by the end of the time-slot of the

request. Evidently, the delivery rate depends on both the receivers’ requests and the

caches’ contents of the receivers at the time of request. For the case that the actual

requests are not known a priori, we optimize the expected delivery sum-rate rather

than the actual delivery sum rate. Since the probability that the ith file is requested

at time slot t is Pi,t, the expected delivery rate of the tth time slot, is

Rt =
L∑
i=1

Pi,t(1− Si,t). (4.1)

Our aim is to design the coded cache placement of the coded message of the delivery

phase to minimize the expected transmission rate of the delivery phase.
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4.2.4 Index coding

In this subsection, we define index coding and the underlining transmission problem

it solves. The index coding transmission problem is a situation where a set of W

independent messages M = {M1,M2, ...,MW} are available at the transmitter, and

we need to send different subsets of them to K receivers. The kth receiver requests

a set of messages Mk ⊂ M, while it already obtained another set of message Ak as

side information. A receiving node does not need a message that is already available

to it, i.e., Mk ∩ Ak = Φ. An index code Πn(Z, n, R) is used by the transmitter to

fulfill the destination needs. The code Πn(Z, n, R) is composed of a finite alphabet

Z of cardinality |Z| > 1, a joint encoding function, hc, and a separate decoding

function, hdk,i, for the messageMi at the kth receiver. The encoding function hc maps

all the messages to the sequence of transmitted symbols hc(M1,M2, ...,MK) = Xn,

where Xn ∈ χn is the sequence of symbols transmitted over n channel uses. A

message Mk, k ∈ 1, 2, ...,W , is a random variable uniformly distributed over the set

Fk ∈ {1, 2, ..., |X|}nRw , where R ∈ RW
+ is a rate vector R = (R1, R2, ..., RW ) in

positive real vector space that satisfies the condition that |X|nRw is an integer for all

1, 2, ...,W . The decoding function at each receiving node is gk,i(Xn, Ak) = M̂k,i,∀i,

where Mi ∈ Mk. An achievable rate tuple R = (R1, R2, ..., RK) ∈ RM
+ exists if for

each ϵ, δ > 0, there is (Xn, n, (R̄1, R̄2, ..., R̄K)) coding scheme, for some Xn, n, such

that ∀w ∈ 1, 2, ...,W , R̄w ≥ Rw − δ.
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Figure 4.5: Examples of cache update message.

4.3 Dynamic coded caching

In this section, we present the proposed dynamic scheme used for coded caching. The

objective of the devised dynamic coded caching scheme is to minimize the delivery

phase expected sum rate using a limited knowledge of the dynamics of content and

features vector changes. To achieve this objective, it uses proactive caching and

proactive coded cache update. The caching scheme is similar to the scheme presented

in 3. However, caching and updates dynamically change according to the change

in file popularities according to the slot by slot acquired knowledge. The caching

scheme works to update the receivers’ local caches to follow the changes in popularity

using the delivery messages sent in the network. In other words, as the set of most

popular files is constantly changing, the caching scheme updates the caches to make

the caches have more parts of the newly popularized files. Since the scheme leverages

the delivery messages sent in the network to encode the required updates, it keeps

the caches updated without increasing the delivery phase expected sum rate. Index
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Figure 4.6: Cache plus delivery update message in details with exact bit alignment,

delivery message at the top and update message at the bottom.

coding is used to encode the required updates with the delivery messages. The scheme

will be reviewed in short for completeness.

4.3.1 Placement phase

Each user, m, caches a part (subfile) Fi,m,m = 1, 2, ..., K of size Si,1, 0 < Si,1 ≤ 1 of

each file i such that the overlap between the subfiles of each file is minimal (Fig. 4.4).

The value of Si,1 is chosen to minimize the expected delivery rate. For small subfiles

KSi,1 ≤ 1, the file has K + 1 parts as the file is not completely distributed among

receivers’ caches and the remaining part Fi,K+1 is only available at the server (Fig.

4.4b). This part has a size of 1 − KSi,1. While for Large subfiles sizes KSi,1 > 1,

the file is completely cached at the receivers side and the size of Fi,K+1 is zero (Fig.

4.4a). The motivation for storing different subfiles at different nodes is to help the

receivers decode the delivery messages as explained next.
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4.3.2 Delivery and update phase

The messages of the delivery phase are designed to deliver the missing part of the

requested file and to be used to update the non-requesting receivers caches at each

time slot. In that sense, we should note that the continuous update process does

not add any rate to the delivery phase sum rate by design. In a given time slot, the

BS sends a message for both delivery and update Mjoint, which is composed of two

messages XORed together, Mdelivery which is intended for the requesting users and

Mupdate which is intended for other users. Assume that file Fi is requested by the k

receiver at the kth time slot. The server’s responding delivery message should include

the missing subfiles of Fi at the kth receiver, i.e., the server sends

Mdelivery = Fi\Fi,k (4.2)

= {Fi,1 ∪ Fi,2... ∪ Fi,k ∪ Fi,k+1 ∪ Fi,Q}\Fi,k, Q =

 K, KSi,1 ≥ 1,

K + 1, KSi,1 < 1.

(4.3)

Meanwhile, the server exploits the message to update the otherK−1 receivers’ caches

in response to the change in the feature vector. The server needs to send subfiles of

files that have an improved feature vector ( increase in some of its components values).

This has to be at the cost of removing subfiles of files with deteriorated feature vector.

To achieve this, the server sends the following update

Mupdate = {F1,k ∪ ... ∪ Fi−1,k ∪ Fi+1,k ∪ ... ∪ FL,k}. (4.4)

As such, the server sends a delivery plus update message

Mjoint =Mdelivery ⊕Mupdate, (4.5)
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where the sizes of the content of the Mupdate, Fq,k, q ∈ L\i, are optimized to minimize

the delivery rate (as explained in Section 4.4). Given the design of the message

Mjoint, the requesting receiver is able to decode it to extract its request Fi \Fi,k

as it has the subfiles {F1,k, Fi−1,k, ..., Fi+1,k, FL,k} in its caches. Meanwhile, the

other receivers can decode their dedicated parts of the message Mupdate as they can

partially decode Mjoint using the parts they have of Mdelivery as shown in (Figures 4.5

and 4.6). Figure 4.5 shows the delivery plus update message and the receivers cache

content after update, while Figure 4.6 shows the exact XOR alignment of different

file parts, of the delivery plus update message, for successful decoding. Fi,l,A, Fi,l,B

are used to denote the first and second halves of part Fi,l, respectively. The slicing

of parts F2,1 and F3,l along with the arrangement in Fig. 4.6 guarantee a symmetric

cache update for the second and the third users. Figure 4.5 shows the components

of the delivery message (top middle), which the part of file one that user one needs,

and shows the components of the update message (bottom middle) which are parts

of the second and the third files distinated for the second and third users for cache

update.

Update example: three receivers, three files, one feature is time-varying (file

popularities):

Appraise a toy example network that is composed of three receivers and three files,

where the file popularities change according to Table 4.1, and files parts are cached

at each receiver at the placement phase with the sizes in Table 4.2.

If the first receiver requested the first file at the first time slot, then the server

delivery message is composed of F1\F1,1 to be delivered to the first receiver. Meanwhile
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Table 4.1: File request probabilities through the delivery phase.

Time P1,t P2,t P3,t

t = 1 0.4 0.3 0.3

t = 2 0.3 0.4 0.3

t = 3 0.3 0.4 0.3

Table 4.2: Placement Cached parts sizes.

Time S1,1 S2,1 S3,1

Placement 0.4 0.3 0.3

the update message is sent to the other two receivers according to Table 4.3. The

corresponding delivery plus update message (Figures 4.5,4.6) is

[F1,2 ∪ F1,3]⊕ [F2,1, F3,1]. (4.6)

The delivery rate of the delivery plus update message at the first time slot is equal

to the size of the missing part of F1 at the first receiver or 0.5. The expected delivery

rate at the second time slot is R2 = P2,1(1−S1,2)+P2,2(1−S2,2)+P2,3(1−S3,2) = 0.66.

On the other hand, if no cache update is performed, the expected delivery rate of the

second time slot would be R2 = P2,1(1−S1,1)+P2,2(1−S2,1)+P2,3(1−S3,1) = 0.74. The

previous results show a reduction of the expected delivery rate at the second time slot

due to using the proposed update scheme compared to using traditional caching. It

should be noted that the update did not add to the delivery rate of the first time slot.

Evidently, the choice of the file parts sizes, Si,j, j = 0, 1, ..., K−1, i = 1, 2, ..., L, is the

main factor towards maximum rate reduction. In the following section, the dynamic
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Table 4.3: Cached parts sizes after the first update (after the first time slot).

Time S1,2 S2,2 S3,2

t = 2 0.3 0.4 0.3

optimization of the parts size (and the expected delivery sum rate) is presented in

detail and the underlying linear optimization is formulated. The minimization is

performed for the placement phase and for each time-slot independently.

4.4 Dynamic Delivery Rate Optimization

In this section, the cached files parts size Si,j, j = 1, ..., K, are optimized such that the

expected delivery sum rate is minimized. The optimization is performed with limited

knowledge about the file popularities change. Since the server station has only the

next time slot information, the cache content is optimized to minimize the next time

slot expected delivery rate each time a new message is sent. The delivery and update

problem can be formulated as K linear optimization problems. Each optimization

problem depends on the following time slot file popularity. It is expected that the

limited information would limit the ability to optimize the cache sizes and predictably

increase the delivery rate as compared to performing the optimization for all time slots

jointly if all information is available at the placement phase.

87



4.4.1 Formulation of cache update constraints

In this subsection, we will present the limitations that the finite size of the delivery

plus update message impose on the change of receivers caches contents. These

limitations are put in the form of linear constraints to the optimization problem

of the expected delivery sum rate.

Each part (normalized) size is limited by the size of the respective file. This

constraint is represented by

0 < Si,t ≤ 1, ∀t = 1, 2, ..., K, ∀i = 1, 2, ..., L. (4.7)

Since the normalized cache size of each user is C, the sizes of the parts cached at each

user are constrained as

L∑
i=1

Si,t = C, ∀t = 1, 2, ..., K, ∀i = 1, 2, ..., L. (4.8)

The size of the cache update message is limited to the size of the missing part of the

requested file 1 − Sdt,t. Therefore, any update to the size of the cached part of any

file can be formulated as

Si,t+1 − Si,t ≤ 1− Sdt,t, ∀i = 1, 2, ..., L, t = 1, 2, ..., K − 1. (4.9)

The above message-size constraint (1 − Sdt,t) applies to changes in the sizes of any

combination of size updates of different files as well, i.e.,

∑
Fl∈W

Si,t+1 − Si,t≤1− Sdt,t, ∀i = 1, 2, ..., L, t = 1, 2, ..., K − 1,

W =

(
F
l

)
, ∀l = 2, 3, ..., K. (4.10)
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Figure 4.7: Cache size update example, cache division before update at the top and

after update at the bottom.

where
(W

l

)
denotes the set of all subsets of F with size l and Fl denotes a sub-library

Fl ⊆ F composed of l files. Note that the value of the size update Si,t+1−Si,t can be

negative for a particular file i, which corresponds to reducing the size of the cached

part of such file to use the space for caching other files (Fig. 4.7), such that the

constraint in (4.8) is achieved. In such a case, the update message would not include

any parts of file i, which is the case for the first file in the three receivers example

explained above. While negative size updates are allowed, they do not translate into

more space in the update message for positive updates. They only affect the user

cache division. To mathematically establish this distinction, Eq. (4.10) constraints

the sum of size updates of any combination of files, in particular, any combination of

files with a positive size update is constrained by the update message size. In general,

the size updates are split into two groups; files with positive size update (cache content

increase) and files with negative size update (cache content reduction). Figure 4.7

explains in detail the sizes update example for the threes receiver given in Fig. 4.5.

In particular, the updated cache division of user two, and three, where two files (the
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second and the third files) experience positive size update and one file (the first file)

has a negative size update. The space released by reducing the size of the cached

part of the first file is used to accommodate the size increase of the cached parts of

the second and third files. We show which files experience a positive size update and

which files experience a negative cache update and explain negative updates in detail

in Section 4.6.

Given the above scheme, the receivers receiving a cache update have limited ability

decoding the update message. Each receiver can decode part of the update message.

This is a result of the fact that each receiver has part of the delivery message,Mdelivery,

which is the cached part of size , Sdt+1,t, of the requested file. Specifically, if a receiver,

t, requested Fi an a receiver, k ̸= j, has a subfile Fi,k, receiver k can decode the part

of the update message that is XORed with Fi,k. In other words, the cache update of

each receiver is limited such that the update in file Fi at instant t (i.e., Si,t+1 − Si,t)

is smaller than or equal to Sdt+1,t. This can be represented as

Si,t+1 − Si,t ≤ Sdt+1,t, ∀i = 1, 2, ..., L, t = 2, 3, ..., K − 1. (4.11)

Similarly, the sum of any combination of the updates is smaller than the decoded

part of the update message, which can be formulated as

∑
Fl∈W

Si,t+1 − Si,t ≤ Sdt+1,t,∀i = 1, 2, ..., L, t = 1, 2, ..., K − 1,

W =

(
F
l

)
, ∀l = 2, 3, ..., L. (4.12)

The Cache updates in (4.11) and (4.12) can be negative as explained above. Finally,

at an instant t, the receiver requesting file l has no more than Si,t of file Fi. Therefore,

the update cannot contain more than Si,t of Fi, i = 1, 2, ..., L, i ̸= l, XORed with the
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missing part of Fl such that the receiver requesting Fl be able to decode the update

message and extract the missing part Fl\Fl,t. Hence, the update of any subfile at the

other receivers’ caches can be constrained as

Si,t+1 − Si,t ≤ Si,t ∀ i = 1, 2, ..., K − 1, t = 2, 3, ..., K − 1. (4.13)

4.4.2 Rate optimization

Given the above constraints, the optimization problem to minimize the next time slot

expected delivery rate can be formulated as

min
St+1

Rt+1 =
L∑
i=1

Pi,t+1(1− Si,t+1), ∀t = 1, 2, ..., K − 1,

subject to Si,t+1 − Si,t ≤ Sdt,t, ∀t = 1, 2, ..., K − 1, ∀i = 1, 2, ..., L,∑
Fl∈W

Si,t+1 − Si,t ≤ Sdt,t, ∀t= 1, 2, ..., K − 1,W =

(
F
l

)
∀l = 2, ..., L,

Si,t+1 − Si,t ≤ 1− Sdt,t, ∀t = 1, 2, ..., K − 1, ∀i = 1, 2, ..., L,∑
Fl∈W

Si,t+1 − Si,t ≤ 1− Sdt,t, ∀t= 1, 2, ..., K,W =

(
F
l

)
∀l = 2, 3, ..., L,

0 ≤ Si,t+1 ≤ 2Si,t, ∀t = 1, 2, ..., K − 1, ∀i = 1, 2, ..., L,∑
Fi∈F

Si,t = C, ∀t= 1, 2, ..., K, (4.14)

where St+1 is the set of files parts sizes cached at t + 1, i.e., St+1 = {Si,t+1, i =

1, 2, ..., L}. The optimization problem (4.14) is a linear programming optimization

and can be solved using linear programming methods [56]. Note that the optimal

solution of the previous minimization problem is an achievable rate for the system

model in consideration. The opitmality of the proposed scheme is yet to be proven.

This problem is solved (K − 1) times at (t = 1, 2, ..., K − 1). On the other hand, at

the placement phase the files are cached in accordance with the initial file popularity.
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This results in Si,1 = Pi,1, ∀i = 1, 2, ..., L.

4.5 General Dynamic Optimization

In this subsection, we provide a general framework for using the same scheme to

optimize different dynamic metrics. The framework is valid as long as the relation is

linear and has a similar structure.

Other metrics bg,t,∀g ∈ 1, .., G, t ∈ 1, ..., K or combinations of metrics can be used

to establish the file importance and drive updates. A general optimization of the

weighted sum of those metrics and the associated trade-off can be represented as

min
St+1

Ωt+1 =
G∑

g=1

vg

L∑
i=1

bg,i,t+1(1− Si,t+1), ∀t = 1, 2, 3, ..., K − 1,

subject to (4.8), (4.9), (4.10), (4.11), (4.12), and (4.13)∑
W

Si,t+1 − Si,t ≤ Rb,W =

(
F
l

)
∀l = 2, 3, ..., L, (4.15)

Bmin
g,t+1 <

L∑
i

bg,i,t+1(1− Si,t+1) ≤ Bmax
g,t+1,∀t = 1, 2, 3, ..., K − 1.(4.16)

where G is the total number of metrics used, Bmin
g,t+1, and B

max
g,t are the constraints on

the metric bg,t, vg is the weight of feature g, and Rb = min(Sdt,t, 1− Sdt,t).

4.6 Linear Dynamic Caching (LDC) Algorithm

The dynamic caching algorithm developed in the previous section requires less

information to operate compared to the offline algorithm presented in chapter 3.

Additionally, the optimization is less complex and faster to solve. To reduce the

complexity even further, we propose a linear time solver for the proposed dynamic
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caching scheme. In this non-iterative algorithm, the linearity of the problem is

exploited to develop a low-complexity algorithm when compared to using traditional

linear programming methods. The algorithms are explained in the terms of the

changing file popularities case. The proposed algorithm focuses on minimizing

the terms of the expected delivery sum-rate that have the largest coefficients in a

descending order. In other words, it starts with increasing the sizes of the cached

parts of files with the highest probability. However, due to the constraints imposed

on the size of decoded update information, the aggregate cache increase, η, of these

files is constrained at time t as η = min(Sdt,t, 1− Sdt,t).

The basic idea of the LDC algorithm is to distribute the total possible cache increase

η among files in descending order of their popularity, where the cached part of

the file with the highest request probability is increased first to the maximum size

allowed by its specific constraints. Then, the file of next highest request probability

is increased in the same fashion until the caches increase η is depleted. On the other

hand, since the receiver cache size is limited, the size of the cached parts the files

with the lowest request probability is decreased with an amount equal to the total

cache increase η, namely, the total cache decrease. Such decrease is undertaken in

ascending order of the file popularities starting by the least probable file until the

cache decrease is satisfied.

The proposed low-complexity coded caching algorithm (LDC) can be formally

expressed as follows:
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Algorithm 1 Algorithm: LDC

1. Calculate η = min(1− Sdt,t, Sdt,t).

2. Maximize the sizes of the cached parts of the files with the highest probabilities

in turn, until respective constraints are met with equality.

3. Stop when the total cache size increase of the files with the highest probability

is equal to η.

4. Decrease the sizes of the files with lowest probability in turn (negative size

updates).

5. Stop when the total cache decrease is equal to η.

Theorem 5. For the proposed cache update scheme, the LDC algorithm is optimal

in the sense that it minimizes the expected sum rate of (4.14).

proof : The objective function of the expected sum rate in (4.14) can be rewritten

as

Rt+1 = 1−
L∑
i=1

Pi,t+1Si,t+1. (4.17)

In mathematical terms, in order to minimize the expected delivery rate, we

need to maximize the expected number of bits retrieved from the cache, i.e.,∑i=L,t=K
i=1,t=1 Pi,tSi,t. The algorithm identifies the most significant terms or variables and

the most significant constraints on each variable, then it maximizes these terms or

variables in turn. In the following part of this subsection, we show that transforming

the optimization problem into solving a sequence of partial maximization problems

is optimal. In other words, we show that ranking the maximization terms and the
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constraints according to the file popularity is optimal.

4.6.1 Proof of optimality

We first start with a three receivers proof to elaborate on the idea of the proof and

then provide the K receiver proof thereafter. The three receivers proof is composed

of two parts. In the first part, the optimization is solved graphically for different

cases depending on the values of the constraints. An optimal solution is derived

graphically for each case. In the second part, it is shown that the optimal solution

can be described as a solution of a corresponding system of equations and a simple

algorithm is developed to find those solutions. Let Ui,t be the size update (increase

or decrease) of file Fi given by Ui,t = Si,t+1−Si,t. The proof key strategy is as follows:

• First, it starts with an assumption that a subset of the updates U− = Ui,t, i ∈

1, 2, ..., K, has negative values and show the conditions under which this subset

has negative values. This assumption is a direct result of (4.8), as the updates

at any time slot sums to zero.

• It then shows that the constraints on the set of non-negative updates can be

reduced to a smaller number of constraints. These constraints can be ranked

and solved directly (non-iteratively).

• Finally, the proof shows that the argument holds for any number of negative

updates smaller than K, which is the maximum possible number of negative

updates.

• The strategy is explained for three receivers first, and the generalized for any
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K.

By combining (4.9) and (4.11) into one constraint and combining (4.10) and (4.12)

into one constraint as well, the constraints (4.8)-(4.13) can be rewritten as

Si,t+1 − Si,t ≤ min(1− Sdt,t, Sdt,t), ∀t = 1, 2, ..., K − 1, ∀i = 1, 2, ..., L, (4.18)∑
Fl∈W

Si,t+1 − Si,t ≤ min(1− Sdt,t, Sdt,t), ∀t = 1, 2, ..., K − 1, W =

(
F
l

)
, (4.19)

∀l = 2, 3, ..., L, (4.20)

0 ≤ Si,t+1 ≤ 2Si,t, ∀t = 1, 2, ..., K − 1, ∀i = 1, 2, ..., L, (4.21)
L∑
i=1

Si,t = C, ∀t = 1, 2, ..., K ∀i = 1, 2, ..., L. (4.22)

Moreover, by putting Ui,t = Si,t+1 − Si,t, and η = min(1 − Sdt,t, Sdt,t) in the

minimization problem (4.14) and its constraints (4.18)-(4.22), it can be rewritten as

min
Ut

Rt+1
on =

L∑
i=1

Pi,t+1(1− Ui,t)−
L∑
i=1

Pt+1,d(t+1)
Si,t, ∀t = 1, 2, 3, ..., K − 1,

subject to Ui,t ≤ η, ∀t = 1, 2, 3, ..., K − 1, ∀i = 1, 2, 3, ..., L,∑
Fl∈W

Ui,t ≤ η, ∀t = 1, 2, 3, ..., K − 1, ∀i = 1, 2, 3, ..., L,

−Si,t ≤ Ui,t ≤ Si,t, ∀t = 1, 2, 3, ..., K − 1, ∀i = 1, 2, 3, ..., L,
L∑
i=1

Ui,t = 0, ∀t = 1, 2, 3, ..., K − 1, ∀i = 1, 2, 3, ..., L, (4.23)

where the second term of the minimization problem is a constant and can be safely

dropped from the objective function. Let {U1,t, U2,t, ..., UK,t} = {U∗
1,t, U

∗
2,t, ..., U

∗
K} be

the optimal solution of the previous optimization problem. Since each Ul,t, l ∈ L, t ∈

K can be negative, and due to the structure of the constraints, where the RHS of

all the constraints are equal and all coefficients are equal, all constraints that include

one or more negative Ul,t will be inactive. This is because each of these constraints
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has a ”dual” with an equal RHS and includes all other Ui,t, i ∈ K, i ̸= l, except for

Ul,t, l ∈ K, (which are negative). For example if

U1,t ≤ 1, (4.24)

U1,t + U2,t ≤ 1, (4.25)

and if U2,t is negative, then,

U1,t ≤ 1, (4.26)

U1,t ≤ 1 + |U2,t|. (4.27)

In the following, we provide an example of three receivers, and three files system to

clarify the concept. Afterwards, we discuss the general case of K receivers.

1) Example: (K=3) For the updates of a three receivers three files system, at

time slot t, the constraints of (4.23) can be written as

U1,t ≤ η, U2,t ≤ η, U3,t ≤ η, (4.28)

U1,t + U2,t ≤ η, (4.29)

U2,t + U3,t ≤ η, (4.30)

U1,t + U3,t ≤ η, (4.31)

U1,t + U2,t + U∗
3,t ≤ η. (4.32)

−S1,t ≤ U1,t ≤ S1,t, (4.33)

−S2,t ≤ U2,t ≤ S2,t, (4.34)

−S2,t ≤ U3,t ≤ S3,t, (4.35)
3∑

i=1

Ui = 0. (4.36)
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The optimal solution for this problem can be classified into two categories. The first

is when only one update has a negative value and the second is when two updates

have a negative value.

Category one: one negative update

For an optimal solution that belongs to the first category, assume without loss

of generality that U∗
3,t has a negative value, while the other updates have a positive

value. The constraint in (4.31), can be eliminated as it is inactive due to the existence

of (4.28). Similarly, (4.30) and (4.32) can be eliminated because of (4.28) and (4.29),

respectively. Moreover, (4.28) and (4.35) are inactive given that U∗
3,t has a negative

value and η is greater than or equal to zero. Further, since the variables U1,t and U2,t

are guaranteed to have positive values by the definition that only U∗
3,t has a negative

value, (4.28) and (4.28) are redundant because of (4.29). As a result, The update

message size constraints (4.28) to (4.36) are further reduced to

Ui,t ≤ Si,t ∀i = 1, 2, ∀t = 1, 2, ..., K, (4.37)

|U∗
3,t| ≤ S3,t ∀t = 1, 2, ..., K, (4.38)

U1,t + U2,t ≤ S1,t + S2,t, (4.39)

U1,t + U2,t ≤ η, (4.40)

U1,t + U2,t = |U∗
3,t|, (4.41)

where (4.39) is the sum of the two inequalities in (4.37). Investigating (4.39), (4.40),

and (4.41), |U∗
3,t| is guaranteed not to be larger than min(η, S1,t + S2,t). Hence, for a
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given value of |U∗
3,t|, the constraints (4.37) to (4.41) are reduced to

Ui,t ≤ Si,t ∀i = 1, 2, (4.42)

U1,t + U2,t = |U∗
3,t|, (4.43)

and the solution to the optimization problem in this case can be explained as follows.

Given that the coefficients of the variables in the update message size constraints

(4.42) and (4.43) are equal to unity, Ui,t, i = 1, 2, should be maximized until the

constraints are satisfied. Given that we established the structure of the solution, it

remains to show that maximizing U1, U2 in order of the respective file popularity is

optimal. The objective function of the optimization problem (4.23) can be rewritten

as

Rt+1
on = co −

K∑
i=1

Pi,t+1Ui,t, ∀t = 1, 2, 3, ..., K − 1, (4.44)

where co is a constant that equals
∑L

i=1 Pi,t+1−Pt+1,d(t+1)
Si,t. Let P1,t+1 > P2,t+1, the

optimal solution depends on the relation between the values of S1,t, S2,t, and |U∗
3,t|.

There are four different cases for how the constraints (4.42) and (4.43) relate to each

other depending on the values of S1,t, S2,t, and |U∗
3,t|.

Through the second part of the proof, we will solve each of the four cases using the

graphical method [63], then show that the optimal solution is the same as the LDC

algorithm’s solution for all cases. Figure 4.8 shows the four cases and graphically

represents the solution in each case. Graphical method draws the constrains and

the corresponding feasible region to obtain an optimal solution. The feasible region

(bounded in our case) is the set of all points that satisfies the constraints and is the

convex hull outlined by the constraints. For a linear program, one (or more) of the

extreme (corner) points are optimal solution(s). In Fig. 4.8, the first two constraints
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in (4.42) are plotted in dashed black lines, while the third constraint (4.43) is plotted

in red solid line. The four subplots represent the four different cases for the value of

|U∗
3,t| relative to S1,t, S2,t or the relation between the first two constraints on one side

and the third constraint on the other side.

Let ΞI ,ΞII ,ΞIII , and ΞIV be the values of the expected total update size Ξ =∑K
i=1 Pi,t+1Ui,t at points I, II, III, and IV of Fig. 4.8, respectively. The point that

achieves the largest value of Ξ corresponds to the point of smallest value of Rt+1
on and

it represents the optimal solution,i.e.,

Rt+1∗
on = co −max(ΞI ,ΞII ,ΞIII ,ΞIV ). (4.45)

Next, we analyze the resultant four cases for the constraints (4.42) and (4.43) and

graphically find the optimal solution of (4.23) for each case. We then prove that the

LDC algorithm reaches the same solutions.

• Case 1: |U∗
3,t| ≥ S1,t, S2,t (Fig. 4.8(a)).

Given that the values of U1,t and U2,t at points I, II, III and IV are

I : U1,t = S1,t, U2,t = (|U∗
3,t| − S1,t), (4.46)

II : U1,t = (|U∗
3,t| − S2,t), U2,t = S2,t, (4.47)

III : U1,t = 0, U2,t = S2,t, (4.48)

IV : U1,t = S2,t, U2,t = 0, (4.49)

the corresponding average update sizes would be as follows
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U1=S1

U2=S2

U1+U2=|U3|

U1=S1

U2=S2

U1+U2=|U3|

U1= S1, U2=|U3|-S1

U1+U2=|U3|

U1=S1

U2=S2

U1=|U3|

U1=S1

U2=S2

U1+U2=|U3|

U1=|U3|

U2=|U3|

U1= S1, U2=|U3|-S1

II

I

III

IV I

III II

I

III

II

I

II

a) Case 1: |U3|> S1, S2 b) Case 2: S1 ≥ |U3| ≥ S2

U1=|U3|-S2 , U2=S2

U1=|U3|-S2  U2=S2

c) Case 3: S2 ≥ |U3| ≥ S1
d) Case 4:|U3| ≤ S1, S2

Figure 4.8: Graphical solution for the optimization problem (4.23) with three

receivers, three files: four different cases of the constraints.
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ΞI = P1,tS
t
1,t + P2,t(|U∗

3,t| − S1,t), (4.50)

ΞII = P1,t(|U∗
3,t| − S2,t) + P2,tS2,t, (4.51)

ΞIII = P2,tS2,t, (4.52)

ΞIV = P1,t(|U∗
3,t| − S2,t). (4.53)

Since ΞII > ΞIII and ΞI > ΞIV , the points III and IV are sub-optimal. Given

that

ΞI − ΞII = (P1,t − P2,t)((S1,t + S2,t)− |U∗
3,t|), (4.54)

and since (4.42) and (4.43) constrain |U∗
3,t|, i.e., |U∗

3,t| ≤ S1,t+S2,t, ΞI ≥ ΞII and

the optimal point that achieves the minimum Rt+1
on is I = {S1,t, |U∗

3,t| − S1,t}.

The reason the point I is the optimal solution can be warranted to the fact that

P1,t > P2,t in (4.50) and (4.51). The optimal rate can be alternatively obtained

by distributing the value of |U∗
3,t| over U1,t and U2,t in a two-step maximization.

First, maximize the size of the update with highest probability (U1,t = S1,t),

then maximize the size of the second one U2,t = (|U∗
3,t| − U1,t).

• Case 2: S1,t ≥ |U∗
3,t| ≥ S2,t (Fig. 4.8(b)).

The average update sizes at points I, II, III, and IV are

ΞI = P1,t|U∗
3,t|, (4.55)

ΞII = P1,t(|U∗
3,t| − S2,t) + P2,tS2,t, (4.56)

ΞIII = P2,tS2,t, (4.57)

ΞI − ΞII = P1,t|U∗
3,t| − (P1,t − P2,t)S2,t. (4.58)
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Since ΞI ≥ {ΞII ,ΞIII}, the solution is the point I = {|U∗
3,t|, 0}. Similar to the

previous case, the fact that P1,t > P2,t is the reason why the point I is the

optimal solution. Similarly, the rate can be obtained by distributing the value

of |U∗
3,t| over the other two updates using two-step maximization of the updates

in the order of their respective probability.

• Case 3: S2,t ≥ |U∗
3,t| ≥ S1,t (Fig. 4.8(c)).

ΞI = P1,tS1,t + P2,t(|U∗
3,t| − S1,t), (4.59)

ΞII = P2,t|U∗
3,t|, ΞIII = P1,tS1,t, (4.60)

ΞI − ΞII = (P1,t − P2,t)S1,t. (4.61)

Since {ΞI ≥ ΞII ,ΞIII}, the solution is the point I = {S1,t, |U∗
3,t| −S1,t}. Similar

to the two previous cases, the fact that P1,t > P2,t is the reason for the rate

optimality of point I and the rate can be obtained in a similar fashion.

• Case 4: |U∗
3,t| ≤ S1,t, S2,t (Fig. 4.8(d)).

ΞI = P1,t|U∗
3,t|, ΞII = P2,t|U∗

3,t|. (4.62)

Since ΞI ≥ ΞII , the point I = {|U∗
3,t|, 0} is an optimal solution. Similar to the

three previous cases, the fact that P1,t > P2,t is the reason of the rate optimality

of point I and the rate can be obtained in a similar fashion.

That said, the solutions of the four cases can be combined as

U1,t = min(S1,t, |U∗
3,t|), (4.63)

U2,t = max(0, |U∗
3,t| − S1,t). (4.64)
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From (4.38), (4.40), and (4.41), the optimal value for the third update is |U∗
3,t| =

min(S3,t, η). Therefore, the solution can be rewritten as

U1,t = min(S1,t,min(S3,t, η)), (4.65)

U2,t = max(0,min(S3,t, η)− S1,t). (4.66)

The previous solution assumed that U3 is negative, so it remains to show the

conditions under which an update is negative or positive. Let P1,t+1 ≥ P2,t+1 ≥ P3,t+1.

Given that U1,t + U2,t + U3,t = 0, the delivery rate can be rewritten as

Rt+1
on = co − (P1,t+1U1,t + P2,t+1U2,t + P3,t+1U3,t)

= co − (P1,t+1 − P2,t+1)U1,t + (P2,t+1 − P3,t+1)U3,t, (4.67)

where co is a constant. Since P2,t+1 > P3,t+1, the previous equation is minimized if

U3 is negative, where U3 belongs to the file with the lowest request probability. The

update U∗
3,t will be exclusively negative in two cases. The first case is when η < S3,t,

and the second case is when η ≥ S3,t ≥ S1,t. For the first case, the optimal value of

the third update would be |U3| = η. Since U1,t can not be increased beyond η, then

U2,t can not be negative because of the sum constraint (4.41). The solution in this

case can be represented as

|U∗
3,t| = η, (4.68)

U1,t = min(S1,t, η), (4.69)

U2,t = max(0, η − S1,t). (4.70)

A simple version of Algorithm (1) that is inspired by the two-step maximization
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method explained above can be written to find the optimal updates sizes defined by

(4.68), (4.69), and (4.70) for the case that η < S3,t as follows.

Algorithm 1.1: special case of Algorithm 1 for η < S3,t, 3 receivers

1. Calculate η, set Γ+ = η.

2. Set U1,t = min(S1,t, η)), and Γ+ = η − U1,t.

3. Set U2,t = Γ+, and Γ+ = 0.

4. Set U∗
3,t = −min(η, S3,t).

The second case for which U∗
3,t is exclusively negative is when η ≥ S3,t ≥ S1,t.

Similar to the previous case, Rt+1
on is minimized if U3,t is negative (4.67). The optimal

value of the third update is |U3| = S3,t. Since S1,t ≤ S3,t, and the first update is

constrained as U1,t ≤ S1,t, U2,t can not be negative due to the sum constraint (4.41).

The solution in this case can be represented as

|U∗
3,t| = S3,t, (4.71)

U1,t = S1,t (4.72)

U2,t = S3,t − S1,t. (4.73)

Another version of Algorithm 1 that can find the optimal updates sizes defined by

(4.71), (4.72), and (4.73) for the case that η ≥ S3,t is as follows.
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Algorithm 1.2: special case of Algorithm 1 for η ≥ S3,t, 3 receivers

1. Calculate η, set Γ+ = η.

2. Set U1,t = min(S1,t, η)), and Γ+ = η − U1,t.

3. Set U2,t = Γ+, and Γ+ = 0.

4. Set U∗
3,t = −min(η, S3,t), and Γ− = −η + U∗

3,t.

5. Set U2,t = U2,t + Γ−, and Γ− = 0.

Category two: two negative updates

Similarly, for the second group of the optimal solutions in which two updates

have negative values, assume that U∗
2,t and U

∗
3,t have negative values. All inequality

constraints would be inactive except for (4.28) and (4.33). The optimal solution would

be U1,t ≤ min(S1,t, |U∗
2,t + U∗

3,t|). For this case a direct extension of the Algorithm 1.2

can find the optimal solution.

2) General K receivers: In the following, the three receivers proof is extended

to the K receivers case. For a K receivers network, we have the following constraints

∑
Vl

Ui,t ≤ η, Vl =
(
F
l

)
, ∀l = 1, 2, ..., L, (4.74)

Ui,t ≤ Si,t, ∀i = 1, 2, ..., L, (4.75)
K∑
1

Ui,t = 0. (4.76)

The all zeros solution is not valid because the popularities are changing. Additionally,

one can notice from (4.76) that the optimal solution is composed of a set of negative

updates U− = {U−
i,t, i = 1, 2, ..., R} and a set of non negative updates U+ = {U+

i,t, i =
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1, 2, ..., Q}, where

Q∑
1

U+
i,t +

R∑
1

U−
i = 0. (4.77)

Let S+
i,t be the normalized cache size of the ith file that has a positive update, then

the constraints can be redefined as

∑
Vl

U+
i,t ≤ η, Vl =

(
U+

l

)
, ∀ l = 1, 2, ..., Q, (4.78)

U+
i,t ≤ S+

i,t, ∀i = 1, 2, ..., Q, (4.79)

Q∑
1

U+
i,t =

R∑
1

|U−
i,t|. (4.80)

Similar to the discussion on the 3 receivers scenario, we assume an optimal solution

{U+,U−} = {S+
1 , U

+
2,t, ..., U

+
Q,t, U

−
1,t, U

−
2,t, ..., U

−
R,t} for which the delivery rate is

Rt+1∗
on = P1,t+1(1− S+

1 ) +
∑L

i=2 Pi,t+1(1− Ui,t), ∀t = 1, 2, 3, ..., K − 1, (4.81)

For any other point that has U+
1,t = S+

1,t − ϵ, the delivery rate would be

Rt+1,ϵ
on =P1,t+1(1− S+

1 + ϵ) +
L∑
i=2

Pi,t+1(1− Ui,t − ϵi), ∀t = 1, 2, ..., K − 1,

=P1,t+1(1− S+
1 ) +

L∑
i=2

Pi,t+1(1− Ui,t) + P1,t+1ϵ−
L∑
i=2

Pi,t+1ϵi, ∀t = 1, 2, 3, ..., K−1,

=Rt+1∗
on + P1,t+1ϵ−

L∑
i=2

Pi,t+1ϵi, ∀t = 1, 2, 3, ..., K−1, (4.82)

where
∑K

i=2 ϵi = ϵ.Since P2,t+1 > P3,t+1 > ... > Pt+1,K , P1,t+1ϵ >
∑L

i=2 Pi,t+1ϵi and

Rt+1
on,ϵ is always larger than Rt+1∗

on , and the solution is sub-optimal. The concurrent

decrease in the update U1,t by ϵ with an increase of the other {Ui,t, i = 2, ..., L} by

ϵ in total will have two contradicting effects on the expected delivery rate. First, an

increase in the expected delivery rate of F1 and a decrease in the expected delivery
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rate generated by all other files. However, the decrease in the delivery rate due to

the increase in {Ui,t, i = 2, ..., L} is
∑L

i=2 Pi,t+1ϵi, which is smaller than the increase

in the delivery rate of F1 ( P1,t+1ϵ). Accordingly, the net change in the delivery rate

due to a decrease in U1,t by ϵ is always positive and its value is lower-bounded by

(P1,t+1 − P2,t+1)ϵ. As such, any point that has U+
1 ≤ S+

1,t is sub-optimal. Using the

same argument for all U+
i,t, i = 1, 2, ..., Q, and U−

i,t, i = 1, 2, ..., R, one gets

U+
i,t ≤ min(min(η, βR+1)− αi, S

+
i,t) ∀i = 1, 2, ..., Q, (4.83)

U−
i,t ≤ min(η − βi, S−

i,t) ∀i = 1, 2, ..., R, (4.84)

αi =
i−1∑
j=1

U+
j,t, ∀i = 1, 2, ..., Q, βi =

i−1∑
j=1

U−
j,t, ∀i = 1, 2, ..., R. (4.85)

Similar to the three receivers case, the solution of the above equations can be

found using an extension of the mentioned algorithms, where we update the highest

popularity files first by increasing the sizes of the cached parts then update the lowest

popularity files by decreasing their cached sizes. A detailed version of the algorithm

is presented below and its complexity analysis follows.

108



Algorithm 2: LDC procedure

for t = 1 : K do

Initialize the maximum total cache update:

CacheIncrease = min(Sdt,t, 1− Sdt,t);

CacheDecrease = CacheIncrease;

Set P t+1 = [P1,t+1...PL,t+1]

while CacheIncrease ≥ 0 do

Find File-to-update, Fl : l = argmax(P t+1);

Set: Si,t+1 = min(2Sl,t, Sl,t + CacheIncrease)

Update: CacheIncrease← CacheIncrease- (Sl,t+1 − Sl,t)

P t+1 ← P t+1 l

end

while CacheDecrease ≥ 0 do

Find File-to-update: Fl : l = argmini(P , ⟩t+1);

Set: Si,t+1 = max(Si,t,CacheDecrease)

Update: CacheDecrease← CacheDecrease - ( Si,t)

P t+1 ← P t+1\l

end

end

4.6.2 Complexity analysis

We have provided two sub-schemes of our caching scheme. The first scheme solves

K optimization problems (4.23), each of dimension K, and each can be solved using
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interior point methods in O((m+n)1.5n2L) processing time. Thus, the total processing

time is O((m + n)1.5n2LK), m = 2K+1 + K and dmax = O(K). Whereas, the LDC

algorithm solves the K online optimization problems in O(K) processing time each

for a total of O(K2) processing time. This can be explained as follows. Investigating

the LDC procedure, it is composed mainly of two non-nested while loops at each time

slot. The first while loop is for the Q positive cache size updates and the second is

for the R negative updates. The subroutine in each loop updates the cache size of

Q,R ≤ K − 1 files. As such, the maximum number of repetitions for both loops

combined is Q + R = K times or the total number of files. Each repetition of the

subroutines needs O(1) processing time, yielding a total of O(K) processing time for

each time slot.

4.7 Results

In this section, we evaluate the performance of the developed scheme and show the

advantages of using it in comparison to using other caching schemes available in

literature. System simulations is used to evaluate the expected delivery sum rate and

expected Age of information. The expected delivery rate of the scheme is compared

to that of three different schemes. The uncoded offline caching scheme (UOC) [9],

the (LRU) [58] , and the offline coded caching and updates (OCC) (chapter 3).

The UOC caches the most popular files once at the placement phase and does not

update the caches thereafter. The LRU caches the most recently file sent(used) in

the network. This scheme is beneficial if a small group of files sustains having the

highest popularities over large periods. However, it performs poorly through rapid
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variations in the files popularities. The OCC assumes full knowledge of the changes

of the file popularities and optimizes all the cache and updates decisions at offline at

the placement phase.

The simulations are performed for two types of variations in file popularities. For

each type a different sample of the file popularity distribution is used. The first

type is file popularity variations with high randomness, the second type assumes that

the variations in files popularities are following a trend (i.e., some files have fading

popularities and other have growing popularities). The request probabilities of the

first and the second types are generated according to

Pi,t =
ϕFi,t∑
i ϕFi,t

, Pi,t =
itϕFi,t∑K

i=1 i
t
∀t = 1, 2, ..., K, ∀ i = 1, 2, ..., L, (4.86)

respectively, where ϕFi,t
∼ U(0, 1);∀t = 1, 2, 3, ..., K, where it∑K

i=1 i
t
represents the

growth/decline trend-line, and ϕFi,t
captures the random (relatively smaller) change

around the dominant trend-line.

Fig. (4.9) and Fig. (4.10) compare the expected sum delivery sum rate of dynamic

coded caching, and LDC to the uncoded caching, LRU, and offline coded caching

schemes for the first and the second request models, respectively. The network used

for simulations consists of a server with NL bit cache and a number of receiver with

N bit cache each (can hold up to one file). The figures show the coded caching gain

(reduction of the delivery phase transmission rate) of dynamic coded caching when

compared to using uncoded proactive caching or LRU. The figures show the predicted

performance degradation compared to the offline coded caching due to the lack of

prior full knowledge at the server at the placement phase. However, the dynamic

coded caching achieves large reduction in the delivery rate with a small fraction of
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Figure 4.9: The performance of caching schemes compared to other schemes in terms

of the delivery rate for different number of receivers for the first request model.

knowledge which shows a diminishing return of obtaining knowledge about future file

popularities distant in time. Given that the scheme depends only on one time slot

knowledge ahead, the scheme is versatile in reacting to unpredictable change in the

network rapidly and minimizes the expected delivery sum rate. Compared to offline

coded caching that uses full knowledge and to uncoded caching.

Moreover, both figures show that the coding gain grows with the number of

receivers in the network. This can be explained by the fact that the aggregate cache

of the receivers increases, which in turn offloads more subfiles to the receiver side. It is

important to highlight the observed fact that the performance of the proposed scheme

is better for the second request model where the file popularities slowly changes. This

is due to the fact that the update messages size is limited and the cache updates

112



4 5

Number of users

1

1.5

2

2.5

3

3.5

4

E
x
p

e
c
te

d
 d

e
liv

e
ry

 s
u

m
 r

a
te

Uncoded offline caching [3]

Uncoded LSC [57]

Online coded caching

LDC algorithm

Offline coded caching [22]

Figure 4.10: The performance of caching schemes compared to other schemes in terms

of the delivery rate for different number of receivers for the second request model.
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Figure 4.11: The performance of caching schemes compared to other schemes in terms

of the expected delivery sum rate with the change in cache size for the first request

model.

are limited as well, preventing it from making large changes in the file popularities.

Note that in a practical setting, the popularities variations follows the trend-line case

(second model) more often. Figures (4.11) and (4.12) show the effect of increasing the

cache size on the expected delivery sum rate for a four receivers network with the first

and the second request models, respectively. The simulations show that the dynamic

coded scheme is more beneficial when the cache size is small due to the optimization

it provides for the usage of the limited cache size.
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Figure 4.12: The performance of caching schemes compared to other schemes in terms

of the expected delivery sum rate with the change in cache size for the second request

model.
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4.8 Conclusion

We studied a network that consists of a server that has a library of files, and K

receivers with future requests limited to the server’s library. We proposed a dynamic

coded caching scheme for multiple time-varying files features that updates the receiver

caches based on the availability of information about the files features. The proposed

scheme index-codes the updates with the delivery messages to minimize the expected

delivery rate, AoI, among other metrics. The framework is generalized to any set of

features. A new non-iterative dynamic caching algorithm with reduced complexity

and linear time computation was proposed and its optimality was proved. The

algorithm can solve a class of linear problems beyond the one studied in this chapter

while keeping the linear time computation. Our numerical results show that our

schemes significantly reduce the expected delivery sum rate for all cache sizes and

different number of receivers in the system for different distributions/behavior of the

files popularities. We showed that proactively and constantly updating the receiver

caches reduces the peak (delivery phase) rate of the network even when limited

knowledge about the file popularities is available.
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Chapter 5

Learning-Based Proactive Coded

Caching with Changing File

Popularities
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Abstract

Proactive caching has risen recently as a promising technique to minimize

peak traffic rates in wireless networks with limited resources. This is achieved by

proactively storing popular data at different nodes in the network. In this chapter,

we consider a wireless network that consists of a base station (BS), with a library

of files with changing file popularities, and mobile units MUs that request files from

the BS library. We propose a reinforcement learning-based coded caching scheme

that constantly updates the MUs caches to match the changing file popularity. The

scheme uses index coding to encode the updates with the delivery messages of the

requested files by other MUs at no increase in the file delivery rate. To further

minimize the delivery rate, the caching and update sizes are optimized. Numerical

results show the benefits of the proposed scheme, over conventional caching schemes,

in terms of reduced delivery sum rate.
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5.1 Introduction

The usage of machine learning techniques is a natural evolution for the design of

efficient proactive caching schemes. Machine learning has the flexibility to react

to the changing dynamics of the user demands and the complexity of optimizing

the available resources accordingly [8, 38, 47, 64–70]. In [38], the authors studied

the optimization of cache content of small cells. They modeled the problem as a

multi-armed bandit (MAB) problem where the cache content placement is optimized

based on the demand history. Machine learning based algorithms were developed

for coded proactive caching in [66–70]. The authors of [66] developed a deep

reinforcement learning approach for coded caching and coded multicast scheduling

to jointly minimize the average delay and power of ultra dense wireless networks. To

overcome the problem of large action space for coded caching with time-varying file

popularities, the authors of [67] proposed clustering based long short-term memory

approach to develop a learning based caching algorithm.

Coded caching has proved to be complex, where finding an optimal coding scheme

is cumbersome, especially for a dynamic environment. Motivated by the previous

discussion, we study coded caching in a network with changing file popularities and

asynchronous delivery. We develop a reinforcement learning-based design of our

index-coded caching and updates to minimize the delivery rate, where an agent is

trained to design the caching and updates to achieve this aim. Numerical results

are provided to show the merits of the proposed schemes, over conventional caching

schemes, in terms of reduced delivery sum rate.
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5.2 System Model

We consider a wireless network that consists of a BS that has a cached library of L

cachedM bit files F = {F1, F2, ..., FL}, andK cache enabled MUs whose demands are

limited to the contents of BS library. Each MU demands a file delivery in a different

time slot, and the BS and MUs are assumed to be equipped with one antenna each

and limited size caches. The local caches at the MUs are equally sized and can cache

up to C files, or CM bits.

The transmission from the BS to the MUs takes place over two phases. In the first

(placement) phase, the MUs caches are filled with parts of the files in the BS library

F . In the second (delivery) phase, each MU demands one file from F at a separate

time t ∈ {1, 2, ..., K}. In particular, the MU demands the missing parts of the file

that are not readily available in its cache. Accordingly, the BS sends the demanded

missing parts of the file to the respective MU.

The demand-delivery routine of the delivery phase is as follows. one MU demands

a file Fi ∈ F in a given time slot, then the BS delivers missing parts of that file

before the end of the same time slot. We assume that each MU has only one demand

per delivery phase (e.g., hour, day). The MUs’ demands are not known to the BS a

priori. However, the file popularities (demand probabilities), and their changes over

time are known to the BS at the placement phase. The probability that a file Fi is

demanded at the jth time slot by the jth MU is denoted by Pj,i. We assume, without

loss of generality, that the jth demand belongs to the jth user.
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5.2.1 Placement phase

Let Si,1, i = 1, 2, ..., L, be the normalized size (with respect to M) of the parts of

file Fi that are cached at the placement phase at each MU, i.e.,
∑L

i=1 Si,1 = C. The

MUs have different (possibly overlapping) but equally sized parts of each file.

5.2.2 Delivery phase

At the delivery phase, each user should receive the missing parts of their demanded

files. The delivery phase is assumed to consist ofK time slots. At the jth time slot, the

BS satisfies the demand of the jth MU. The cache content at a given MU can change

throughout the delivery phase if additional parts of the library are available at the

MUs. However, sending file parts solely to update the local caches is counted towards

the delivery sum rate. The delivery rate is minimized by optimizing the normalized

sizes of the cached file parts at all time slots St,i, t = 1, 2, ..., K, i = 1, 2, ..., L. Since

the actual demands are not known a priori to the BS, and since the file popularities

are known, we minimize the expected delivery sum rate rather than the exact sum

rate. Since the BS sends the missing part (1 − St,i), if file i is demanded at time t,

and since the probability that file i is demanded at time slot t is Pi,t, the expected

delivery sum rate of the delivery phase is expressed as

Rd =
K∑
t=1

L∑
i=1

Pi,t(1− St,i). (5.1)

Our objective is to design the information transfer through the placement and

delivery phases to minimize the expected delivery sum rate of the delivery phase.
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5.3 K Users Learning-Based Coded Caching

Reinforcement learning is a branch of machine learning that studies how an agent

learns to take actions that generate the largest predefined cumulative reward by

interacting with the environment. In terms of guidance, reinforcement learning

differs from supervised learning as it does not need guidance from an experienced

learner like providing labeled data. However, it does not learn completely in the

dark like unsupervised learning. Instead, it uses the environment’s feedback to learn

and improve its actions. In this learning process, reinforcement learning has to

find a balance between exploration to gain knowledge about the environment and

exploitation of current knowledge.

Generally, reinforcement learning can be divided into model free and model-based

reinforcement learning [71]. In this work, we consider two scenarios. In the first

scenario, the demand probabilities are already known through external help, while

in the second scenario, the agent has to learn the demand popularities as well.

The role of the reinforcement learning algorithm is to optimize its policy given the

known environment model. Markov decision process (MDP) [72] is a good model

for sequential decision-making tasks. The process can be represented by a tuple

(S,A,P , C), where S is the state space, A is the action space, P is the set of time-

varying transition probabilities between states, and C is the set of costs incurred by

the agent actions. In our work, the agent takes proactive cache update decision

a(t) ∈ A, when the system is at state s(t) ∈ S according to a policy π. Our

aim to is to find a cache update policy π ∈ Π that minimizes the expected sum

delivery rate of the delivery phase, where Π is the set of feasible policies. One key
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characteristic of our system is that the file popularities change with time. As a result

the transition probability from one cache distribution to another cache distribution

is time dependent. To decouple this dependency from the state definition, we add a

time feature to our state definition as explained below.

5.3.1 Reinforcement learning model

In the placement phase, the BS (agent) splits each file into K + 1 subfiles, Fi,m,m =

1, 2, ..., K + 1. The first K subfiles have a normalized size Si,0 and are stored at the

respective MUs, i.e., subfile Fi,k is stored at user k, ∀i = 1, 2, ..., L, k = 1, 2, ..., K.

This caches KSi,0 of the file at the MUs while leaving a max (0, 1 − KSi,0) subfile

uncached at any MU and is only available at the BS. The last subfile size can be

zero depending on the value of Si,0 which is chosen to minimize the expected delivery

sum rate. For large subfiles sizes (KSi,0 > 1), the overlapping subfiles contain all the

information in the original file and the file is completely cached/distributed among

MUs caches, and the size of Fi,K+1 is zero. For small subfiles (KSi,0 ≤ 1), the file is not

completely distributed among MUs caches and the remaining part is only available

at the BS.

During the delivery phase, the BS should deliver the missing subfiles to the MUs

at the time of demand. When user k demands file i, the BS sends the remaining part

in a delivery message

Mdelivery = Fi\Fi,k

= {Fi,2 ∪ Fi,3... ∪ Fi,G} \Fi,k,

G =

 K, KSi ≥ 1,

K + 1, KSi < 1.

(5.2)
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Figure 5.1: Two MUs delivery plus cache update example.

The BS needs to increase the size of the parts belonging to files that have seen

popularity increase by sending new parts to the MUs to cache. This has to be at the

cost of flushing parts of the files that have seen a popularity decrease. The BS sends

the following cache update

Mupdate = {F1,k ∪ ... ∪ Fi−1,k ∪ Fi+1,k ∪ ... ∪ FL,k}. (5.3)

Accordingly, the BS transmits an index coded delivery plus update message

Mjoint =Mdelivery ⊕Mupdate. (5.4)

The system state s(t) at time t is defined by the sizes of the cached file parts at

the users S(t) = [St,1St,2...St,L] and the demanded file d(t) ∈ F at that instant. The

system state can be represented as

s(t) = [S(t), d(t), t]. (5.5)

Let ai(t) be the change in the size of the cached part of file i at time t and let

a(t) = [a1(t), a2(t), ..., aL(t)] denote the caching action vector at time t, a(t) ∈ A.
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Upon taking an action a(t), the cached file sizes change to

S(t+ 1) = S(t) + a(t). (5.6)

Moreover, a new demand d(t+ 1) arrives at time t+ 1. As a result, the new system

state at t+ 1 is

s(t+ 1|a(t)) = [S(t) + a(t), d(t+ 1), t+ 1]. (5.7)

Since the file demands are probabilistic, the transition probability from state s to

another state s̃ given an action a, Pa(s̃, s), is the probability that the sizes of the

cached file parts change from S(s) to S(s̃), while the demand d(s̃) is subsequent to

d(s), i.e.,

Pa(s̃, s) = [Pt,d(s̃)|d(t+ 1) = d(s̃), d(t) = d(s),a(t) = a]. (5.8)

5.3.1.1 Action space

The action space is the possible caching decisions or the changes in cache content at

each state. The action space is limited by the delivery and update message size and

the ability of each MU to decode the message or parts of it. As explained above,

the message sent is an XOR of the missing part sent to the MU making the demand

(delivery message) and an update message. However, for any of the MUs to decode

the update message, it should have the entire delivery message in its cache. Since

each MU cache has a different part of the demanded file (delivery message), it can

partially decode an equal-sized part of the update message. In the example in Fig.

5.1, there are three MUs in the network, the first MU demands F1,2 which is XORed

with parts of F2,1, F3,1. The second MU can only decode part of F2,1. In general terms,

the cache update of each MU is limited such that the update in file Fi at instant j
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(i.e., St+1,i−St,i) is smaller than or equal to St,d which is the size of the subfile it has

in its cache. This can be represented as

St+1,i − St,i ≤ St,d, ∀ i = 1, 2, ..., L, ∀t = 1, 2, ..., K − 1. (5.9)

For the same reason mentioned above, the sum of any combination of the updates is

smaller than the decoded part of the update message, which can be formulated as

∑
Fi∈W

St+1,i −St,i ≤ St,d, W=

(
F
l

)
,

∀ l = 1, 2, ..., L, ∀ i = 1, 2, ..., L ∀ t = 1, 2, 3, ..., K − 1. (5.10)

Moreover, the cache update of each MU is limited to the size of the whole update

message which is in turn limited by the size of the delivery message (the missing part

of the demanded file) 1− St,d. This can be formulated as

St+1,i − St,i ≤ 1− St,d,∀i = 1, 2, ..., L, t = 1, 2, ..., K − 1.

∑
Fi∈W

St+1,i − St,i ≤ 1− St,d, W =
(F
l

)
,

i = 1, 2, ..., L, t = 1, 2, ..., K − 1, ∀ l = 2, 3, ..., K. (5.11)

On the other-hand, at any instant t, the MU demanding file h has no more than St,i

of file Fi. Therefore, the update message cannot contain more than St,i of Fi, i ̸= h

XORed with the missing part of the demanded file Fh such that the MU demanding

Fh can decode the update message and extract the missing part of Fh. As a result,

the update size of any subfile of the other files Fi, i ̸= h, at the other MUs’ caches

can be constrained as

St+1,i − St,i ≤ St,i, ∀ i = 1, 2, ..., L, t = 1, 2, ..., K − 1. (5.12)
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Finally, the file size limitation can be represented as

0 < St,i ≤ 1, ∀ i = 1, 2, ..., L, ∀ t = 1, 2, ..., K − 1, (5.13)

and the MU cache size limitation on the possible cached part sizes at all time slot

can be represented as
L∑
i=1

St,i = G, ∀ t = 1, 2, ..., K. (5.14)

5.3.2 Cost function

The efficiency of the caching scheme is measured in terms of the expected delivery

rate. The cost function driving our reinforcement learning is the expected delivery

rate at each time slot. If a user demands file i at time t, then the expected delivery

rate is equal to 1 − St,i. As the demands are probabilistic, the average delivery rate

or the average cost at a time t, when the system is at state s(t), is

C(s(t),a(t)) =
L∑
i=1

Pt,i(1− St,i + a(t)). (5.15)

The best policy is the policy that minimizes the average cost over all time slots. Given

the afore-defined state space and feasible action set, we define the policy function

π : S → a, which maps each state s to the action a. In other words, for a system

in state s(t), the caching decision (the change in the cached part sizes) is carried

out according to an action a(t) = π(s(t)). Finally, under a policy π the state value

function [71] is

Vπ(s(t)) = lim
T→∞

E
T∑

τ=t

γτ−tC(s(τ), π(s(τ))), (5.16)
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which is the average cost incurred over infinite time, given a discount factor γ ∈ [0, 1]

per time slot. Equivalently, after dropping the time index, the Bellman equation [71]

provide a recursive form of the state value function

Vπ(s) = C(s, π(s)) + γ
∑
s̃∈S

Pπ(s(t))(s̃, s)Vπ(s̄). (5.17)

5.3.3 Known file popularities

For a known file popularity, solving the bellman equations recursively (dynamic

programming) corresponds to solving the main optimization problem. Using dynamic

programming is advantages to using linear programming, in our setup, in a sense that

the problem is broken to a number of smaller problems which requires less resources

(computer memory in practice) in a time. Finding Vπ(s) is equivalent to solving a

system of linear equations for each policy π ∈ Π. Given that the number of policies is

infinite for non-quantized 1 cache parts X(t), t = 1, 2, ..., K and grows exponentially

with the quantization factor q, St,i ∈ {Cq ,
2C
q
, ..., C}, it would be computationally

prohibitive in practice. As such, a typical approach in reinforcement learning problem

is to employ the so-called policy/value iteration algorithms [71]. An optimal policy π∗

can be found by solving the Bellman equation using the value iteration algorithm [71].

A value iteration algorithm to solve our problem is presented in Algorithm 5

(RLICCU). The state space is defined according to (5.5), the number of states is

controlled by the quanization factor q. The set of possible actions at state s, i.e.,

A(s) is constrained by the equations (5.9), (5.10), (5.11), (5.11), (5.12), (5.13), and

(5.14).
1Cache decisions (part size) are chosen from a continuous space, where quantized decision space

is limited to a finite number of allowed part sizes.
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Algorithm 5 RLICCU caching algorithm

for iteration= 1,2,... do

initialize: V ∗(s) = 0 ∀ s ∈ S

for t = 1, 2, ..., K do

for s = 1, ..., NS do

a= argmin
a

C(s, a) + γP (s̃|s, π(s))Vπ(s̃)

end

update : V ∗(s)← C(s, a) + γ
∑
P (s̃|s, a))Vπ(s̃)

end

end

5.3.4 Unknown file popularities: Actor-critic

In this scenario, the agent has to learn the file popularites and balance between

exploration and exploitation of the learning experience. Actor critic methods are RL

temporal difference methods that adopt both policy and value function methods to

improve learning accuracy. The actor is responsible for choosing an action based on

the current state and the developed policy, while action evaluation through computing

the value function is known as the critic. The critic’s role is to show the disadvantage

of the policy currently being followed by the actor in terms of the long-term reward.

The critic output is in the form of a temporal difference error [73], which drives all

learning of both actor and critic.

The critic teaches the actor to seek out good states and avoid bad states. The

actor and critic participate in a game where by playing, both get to perform better

with time and the resulting performance is better compared to them engaging in
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learning separately.

5.3.4.1 The advantage function

In temporal difference learning, the agents adjust their actions based on the

reward/cost prediction error (temporal difference error). In the actor-critic

algorithm, the action adjustment is based on the advantage function, which is the

difference between the expected cost of following the actor policy and the value

function of the current state.

H(s, a) = C(s(t), a) + Vπ(s̃|ϕ)− Vπ(s|ϕ) (5.18)

5.3.4.2 Actor policy update

The actor is represented by a neural network with parameters θ, the policy is updated

using the policy gradient algorithm [74]. Let J (θ) be the reward of a trajectory τ

sampled from the policy π,

J0(θ) = E
∑
t

C(s(t), π(s(t))). (5.19)

A low-variance unbiased estimator for the reward gradient using Vπ(s) as a baseline

can be represented as [74]

∇θJ (θ) =
∑
i

∇ log πθ(ai|si)Hπ(si, ai), (5.20)

where the last equations shows the importance of the advantage function in building a

low variance estimator. Then for each iteration the policy parameters θ is a updated

as

θ ← θ +∇θJ(θ). (5.21)
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Figure 5.2: Actor-critic neural network with parameters θ and Φ.
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5.3.4.3 The critic update

Similarly, the critic is represented by a neural network with parameters Φ to

approximate the value function. After each iteration, the parameters are updated to

fit the new value function as

θ ← Φ +∇ΦL(Φ). (5.22)

where

L(Φ) = 1

2
|Vπ(s)−

∑
t

C(st, π(st))|. (5.23)

Algorithm 6 Actor-critic-caching algorithm

for iteration= 1,2,... do

initialize:

for t = 1, 2, ..., K do

H(s,ai) = C(s, ai) + γVπ(s̃|ϕ)− Vπ(s|ϕ)

∇θJ (θ) =
∑

i∇ log πθ(ai|si)Hπ(si, ai)

θ → θ + α∇θJ(θ)

∇θL(ϕ) =
∑

i∇ϕ||Hπ(si, ai)||

ϕ→ ϕ+ β∇ϕL(ϕ)

end

end
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5.4 Numerical Results

In this section, we provide numerical results that show the performance of the

proposed scheme when compared to the state-of-the-of-art schemes in the literature.

Results are shown for a K MUs and L files network. The simulation setup is a

network with a cache size of one file. The simulation is performed using the following

distribution

Pi,t =
ϕFi,t∑
i ϕFi,t

∀t = 1, 2, ..., K, ∀ i = 1, 2, ..., L, (5.24)

where ϕFi,t
∼ U(0, 1);∀t = 1, 2, 3, ...K. The performance of the developed scheme

is compared to uncoded proactive caching [7] (caching the most popular file/s at

the placement phase) and last recently used (LRU) caching. LRU is a scheme

that continuously updates the local caches by caching the files that were recently

sent in the network [75]. The performance metrics used in the comparison are the

expected delivery sum rate and the fairness of the resource distribution among MUs.

Moreover, the effect of quantization of possible St,i, t = 1, 2, ..., K, i = 1, 2, ..., L on

the performance of the developed RL scheme is discussed.

Fig. 5.3 compares the expected delivery sum rate (in terms of the number of files) of

the proposed RLICCU to that of LRU and uncoded proactive caching for a different

number of users in the network. The figure shows the caching gain (reduction in

delivery phase transmission rate) of the developed RL-based caching update when

compared to proactive caching and LRU. The quantization factor q used is equal to

the number of files.

Quantization is a key characteristic of RL algorithms that deals with continuous

state space. Fig. 5.4 shows the effect of quantization on both times of convergence and
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Figure 5.3: Expected delivery sum rate (no. of files) of the RL Caching compared to

uncoded caching and LRU.

the expected delivery sum rate for four MUs networks using the RLICCU. The figure

shows an almost exponential decrease of the expected sum rate with the increase in

the quantization factor, whereas the convergence time grows exponentially with the

increase in the quantization factor. From the figure, we can see that a quantization

factor that equals eight is a very good choice for a four MUs network resulting in

less than 50 seconds till convergence to good set of caching actions for all time slots,

whereas a quantization factor of four still achieves a good results in a about 2.5

seconds.

Fairness is an important aspect of wireless network QoS that is rarely considered

in proactive caching works. Generally, the minimization of delivery rate and fairness

are conflicting goals since caching the most popular files affects the QoS for MUs
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Figure 5.5: Minmax fairness performance of the caching schemes.
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demanding the least popular files. Since our scheme caches parts of less popular

files at the placement phase, it achieves good performance on the min-max fairness

measure (Fminmax) compared to other proactive caching algorithms as can be seen

from Fig. 5.4. The min-max fairness is defined as

Fminmax =
min(R)
max(R)

, (5.25)

where R = {R1, R2, ..., RK}. Fig. 5.5 shows the min-max fairness performance of the

RLICCU scheme compared to uncoded proactive caching and LRU. The RLICCU

fairness improves with increasing the number of MUs in the network while the

performances of uncoded proactive caching and LRU deteriorate. This is because

uncoded proactive caching and LRU focus on a limited number of files and as the

number of mobile units increases, the disparity between the rates of the best served

MU and worst served MU increases.

5.5 Conclusion

In this chapter, we studied proactive caching for a cellular network with one BS

and multiple MUs. We proposed an index coding scheme that constantly updates

the MUs’ local cache with no increase in the delivery sum rate. We developed a

reinforcement learning algorithm that optimizes the cache placement and update

independently. We showed that the developed reinforcement learning achieves faster

convergence using limited computing resources which presents almost no load to the

BS operation.
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Chapter 6

Delay Optimization of Cache-Aided

Networks with Congested

Backhual: a Learning Approach
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Abstract

Proactive caching emerged as a great tool to minimize peak traffic rates by storing

popular data, in advance, at different nodes in the network. Current studies have

mainly focused on proactively storing popular whole files. However, for certain

categories of files like videos which constitute the majority of internet traffic, this

is not the best strategy delay-wise. As videos can be easily segmented, sending

later segments of videos can be less time-critical. In this paper, we study the effect

of segmenting video caching decisions under the assumption that the back-haul is

congested. We provide a reinforcement learning algorithm for optimizing segmented

caching decisions to minimize the average delay. The caching decision is modeled

as a combinatorial multi-armed problem and an O(log n) algorithm is presented for

an n number of iterations. The algorithm is then leveraged to gain insights into the

caching-queues-delay dynamics. Numerical results show the benefits of the proposed

algorithm over conventional caching schemes, in terms of reducing the average delay

and improving the fairness of resource distribution.
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6.1 Introduction

Cellular network traffic has shifted over the past decade from mainly locally generated

instantaneous traffic (voice calls) to centrally generated delay-tolerant bulks of traffic

(data-driven communication) [3]. Video constituted 82% of Internet traffic in 2020

[2] and continues to grow. It is expected that proactively cached content will be

mainly video. Data traffic and voice traffic differ in their delay tolerance. Data traffic

generally experiences a large delay between the time of data generation and the time

of demand. In this context, the data can be stored in different nodes along the

path between the transmitter and receivers. Proactive caching has attracted much

research interest recently as an efficient technique to reduce the peak traffic rate and

the delivery sum rate. This is achieved by storing parts of the popular content, at

various nodes in the networks, before being demanded by the mobile units (MUs).

In a practical sense, proactive caching can minimize the total cost of transmission,

as transmitters can optimize the time of performing proactive caching to be in less

congested times (e.g overnight) where the resources are in abundance. The authors

of [4] proposed the idea of a small-cell network cloud as a means to increase cloud

capacity and relieve the backhaul constraints while increasing the peak rate through

content caching. In [7], a cache-aided small-cell system is considered where the users

are moving through the network and the content demand distribution is assumed

to be known. The optimum way of assigning files to various small cells distributed

through the network is analyzed, in order to minimize the expected downloading

time for files. The extreme majority of proactive caching works is popularity-based

caching. For example, the authors of [76] focused on exploiting the spatial and social
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structure of the network to optimize the caching decisions. To alleviate backhaul

congestion, they proposed a proactive caching that caches files during off-peak times

based on the file popularity and correlations among users’ file request patterns, while

leveraging social networks and device-to-device (D2D) communications. In [48], the

authors studied the effect of caching on enhancing video streaming quality. They

proposed a framework of caching-based video transmission, using layered coding to

provide standard definition and high-definition versions of each video. They developed

a caching policy that caches each layer of the code according to the popularity of each

version.

Proactive caching based on files popularities generally reduces delay as it stores

data near end users and bypasses the congested resources of the network links.

However, the method of storing the most popular content is not proven to be optimal.

Towards that end, other works focused on delay-driven proactive caching [28–34,

77–79]. The authors of [28] developed an algorithm that caches content based on

both its popularity and fetching time. They showed that their algorithm is more

advantageous in reducing delay than popularity-driven algorithms like least recently

used (LRU) algorithm. Segmented caching, where caching is performed segment-wise

rather than file-wise, was studied in various works [e.g. [29, 30]]. The authors of [29]

provided a web proxy segmented caching algorithm that prioritizes earlier segments

of videos. They showed that it is advantageous in terms of the bit-hit ratio and the

fraction of requests that require a delayed start. They also showed that segmentation-

based caching is especially advantageous when the cache size is limited and files

popularities change over time. On the other hand, the authors of [30] focused on per-

segment popularity and provided an algorithm that can cache individual file segments
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based on their popularity and their distance to the file start. In [31], the authors

proposed a popularity-aware partial caching algorithm that minimizes the average

initial delay of the system while allowing a small deviation from the desired starting

point. The authors of [32] focused on cooperative cell caching for mobile networks,

where each BS caches popular contents to improve the overall delay performance

of users. Likewise, the authors of [33] focused on caching for mobile networks, but

with D2D communication. They provided an algorithm that minimizes the average

transmission delay for this type of network. The algorithm addresses a more general

scenario, in which the values of system parameters potentially change over time.

On the other hand, in [34], the authors investigated the trade-off between coded

caching gain and delivery delay. They developed a computationally efficient caching

scheme that effectively exploits coding opportunities while respecting delivery-delay

constraints. The authors in [77] compared the performance of four different video

caching algorithms in terms of delay in a RAN with a congested backhaul. They

presented a scheduling algorithm for utilizing the backhaul resources to serve the

caching requirements while meeting a delay threshold. In [78], the authors proposed a

two-tier segment-based D2D caching algorithm to decrease the startup and playback

delay of Video on Demand in a cellular network. In their algorithm, the cache of

each mobile unit is divided into two cache blocks. The first block is for caching and

delivering the earliest section of the most popular video and the second block caches

the latter portions fully or partially depending on the users’ video-watching behaviour

and the popularity of videos. Meanwhile, the authors of [79] proposed a delay-based

caching algorithm for D2D networks. They obtained the expression of the average file

delivery delay based on the inter-contact user mobility model, which is formulated as
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an optimization problem. The problem of finding a delay optimal caching algorithm

is still open, where the contribution of each file/segment to the overall delay is still

unknown.

Caching is typically performed in highly dynamic and complex environments.

This has encouraged the usage of machine learning algorithms to learn and adapt

to such environments. Using learning algorithms to optimize the proactive caching

performance was studied in [8, 35–47]. In [8], content caching is optimized through

the use of a reinforcement learning algorithm while the transmitter is oblivious to

the request statistics. In [35], the authors proposed an online proactive caching

scheme based on a bidirectional deep recurrent neural network (BRNN) model to

predict time-series content requests and update edge caching accordingly. While the

authors of [36] proposed a novel deep learning-based proactive caching framework

in cellular networks. Their deep learning algorithm extracts the features of users

and content from small base station traffic data and then uses them to estimate the

content popularity at the core network. The caching decisions are then made based

on the estimate to obtain higher backhaul offloading and user satisfaction. Despite

the described research interest and numerous contributions to delay-based caching.

In this chapter, we focus on delay-driven caching, i.e., We provide an algorithm

for proactive segmented caching that is based on delay minimization rather than

file/segments popularities. To aid in finding a delay-minimizing algorithm, we study

the effect of segmenting video caching decisions under the assumption that the back-

haul is congested. We apply the proposed algorithm to a cache-aided cellular network

with congested backhauls. In this network, the base stations (BSs) are equipped

with limited-sized caches to store content expected to be demanded by the MUs.

142



The cache placement is designed to minimize the average delay experienced by the

MUs. We assume that the files requested by the MUs can each be segmented into a

number of segments where each segment is fetched and cached separately. We show

the advantage of the strategy of segmentation on the average experience delay. The

problem of finding the optimal policy is modeled as a combinatorial multi-armed

problem (CMAB). Due to the complex backhaul queue dynamics, finding the optimal

solution to the formulated problem is complex. Thus, we provide an approximate

solution to the CMAB problem that is asymptotically optimal. Simulation results

show the benefits of the proposed scheme over conventional caching schemes based

on file popularity, in terms of reducing the delivery average delay.

The remaining of the paper is structured as follows. We present the system model

in Section 6.2. The effect of segmentation on the delivery average delay is studied

in Section 6.3, while the effect of file length on the delay is studied in Section 6.4.1.

We formulate the delay optimization problem and present the segmented caching

algorithm in Section 6.6. Simulation results are presented in Section 6.7, and the

paper is concluded in section 6.8

6.2 System Model

We consider a wireless network where each BS is connected to the core network

through a backhaul link with a download rate Rb. Each BS has a cache of size C that

proactively store a number of files. There is a library of files F = {Fi, F2, ..., FL},

and the users are expected to request one of them at the delivery phase. The files are

assumed to have different sizes and each file is segmented into Mi separate segments
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Figure 6.1: System model.

Zi,j of Ns bits each. As such the file library can be described as a library of segments

ZL = {Z1,1, ..., Z1,M1 , ..., ZL,ML
}. For simplicity, we assume that the file popularities

are identical among users at any time instant. If the requested file is completely

available at the BS cache at the time of the user request, it is sent to the requesting

user with a channel propagation delay ych. If some segments are not available at the

BS, they are requested from the core network enduring an additional core fetching

delay yc. Since the back-haul link is assumed to be congested, file segments requested

from the core network will exhibit additional queuing delay yq. All files are assumed

to have the same priority and the back-haul queue has an average service rate µ. On

the other hand, the arrival rate λ of the queue would differ according to the caching

policy used by the BS. We assume that the caching policy runs through repetitive

periods of time (e.g., overnight) denoted by the placement phase. Afterward, through

the delivery phase, the users’ requests arrive at the BS where they should be satisfied
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with a minimum delay.

6.2.1 Placement phase

In this phase, the BS proactively fills its cache with parts of the segment library F

according to a predefined caching policy π. The proactive caching is constrained as∑Mi,L
i=1,j=1 I(Zi,j)Ns = C, where I(Zx,y) is a function that is equal to one if Zx,y is

cached and zero otherwise. The size of the cached parts (i.e., the cached fraction) of

file i is denoted Si. The caching policy is designed such that the segments are chosen

to minimize the expected average delay in the network within the delivery phase.

6.2.2 Delivery phase

In the delivery phase, each user should receive the requested segments either directly

from the BS cache or the core network through the BS. The probability that a file

Fi is requested at time t is denoted Pi,t. For a scenario where the request probability

is constant over the entire delivery phase, the index t is dropped and the request

probability is denoted Pi. The delay of each caching policy depends on the cached

content in the BSs and the MUs’ demands. Since the actual demands and associated

delays are not deterministic and not known a priori, we optimize the expected average

delay instead.
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6.3 Delay Minimization through Segmented

Caching

Delay is an important QoS factor, especially for video and music files. Caching

files based on their popularity decreases the average sum rate of the delivery

phase. However, the delay performance of such an approach is complicated and

requires in-depth studies, especially in times of congestion. While caching the

most popular files decreases contention for resources and, in turn, decreases the

delay for both cached and uncached files, it may not be the best approach delay-

wise at times of congestion. We will show that caching parts of unpopular files

can significantly decrease the delay for congestion-time requests. This of course

comes at the cost of higher delivery rates (back-haul throughput). Since the

delay is minimal at times of no congestion, focusing on minimizing the delay at

times of congestion is a good strategy for decreasing the average delay for all requests.

6.3.1 Single library-file request

Consider the simple case of a network that receives one file request from the library

at a time. For example, assume that the library is composed of two files, A and B,

with popularities PA and PB, respectively. Assume that both files have the same size

4Ns, i.e., each file is composed of four segments. Assume that the BS has a cache

that can only store one file and that the back-haul link rate is Ns. To elaborate on

the effect of segmented caching on the delay experienced by a user that requests one

file at a time of congestion, assume that the traffic contention with other file requests
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results in the requests for {A,B} being served by only half of the link capacity Ns

2
.

Thus, one segment can be fetched from the core network every two time-slots or one

file can be fetched in eight time-slots. Figs. 6.2 and 6.3 show the delivery of the files

and the experienced delay under two policies; caching the most popular file (Fig. 6.2)

and caching half of each file (Fig. 6.3). Specifically, it caches two nonadjacent parts

of each file including the first part of each file. For the first policy, the cached file

A is sent to the user upon request with no back-haul delay. However, if file B was

requested, the user would experience a total delay of five time-slots due to congestion

(Fig. 6.2). Thus, if the time slot is of length Ts , the average delay for caching the

whole file policy, Y w, for this particular scenario is

Y w = 5PBTs. (6.1)

Meanwhile, if the second policy is used where half of each file is cached at the

BS, the user will experience only one time-slot of delay if he requested either file. In

this case, the BS has only to transfer two segments (for example A2, A4) from the

core network and can instantly send the other two segments (A1, A3) cached at the

BS to the requesting user. The time needed for the BS to send them to the user and

for the user to consume them (A1, A3) would compensate for the back-haul delay of

transferring (A2, A4). The average delay, Y s, for caching parts {A1, A3, B1, B3}, for

this scenario is

Y s = Ts. (6.2)

As such, partial file caching is more advantageous in terms of delay for PB > 1
5
.

In general, the delay experienced by a user is governed by the difference between the

total backhaul time needed for the uncached segment to arrive at the BS and the
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Figure 6.2: Caching most popular files delay with two concurrent requests.

total time for the cached segments to be sent and consumed by the user. For a file

of size Ni and an available link capacity Rb, if Si is the fraction of file i, then the

backhaul time TBH can be represented as,

TBH =
(1− Si)Ni

Rb

. (6.3)

while the total time for sending and consuming the cached segments is

TU =
Ni

Ru

− 1. (6.4)

, Ru is the rate at which the BS sends and the user consumes the transmitted data.

Effectively, Ru is the rate at which the requests for the next segments arrive. Given

(6.3) and (6.4), the delay experienced by a user requesting file i is the sum of all

148



segment delays ysi,j , and can be represented as

Y s
i = TBH − TU + 1, (6.5)

=
(1− Si)Ni

Rb

− (
Ni

Ru

− 1), (6.6)

= Ni

(
(1− Si)

Rb

− 1

Ru

)
+ 1, (6.7)

where (6.9) is due to the fact that the TBH should be at least a one-time slot smaller

than TU for the user to experience no delay. Subsequently, the average delay for a

network with an L file library is

Y s = 1 +
L∑
i=1

PiNi

(
(1− Si)

Rb

− 1

Ru

)
. (6.8)

The previous average delay can be optimized over the set of cached fractions of

the file library S = {S1, S2, ..., SL}. Since Y s
i is non-negative, where a negative

value translates to a situation where the segments are being downloaded through the

backhaul faster than it is needed, or

Y s
i ≥ 0, (6.9)

Ni

(
(1− Si)

Rb

− 1

Ru

)
+ 1 ≥ 0. (6.10)

Equivalently, The cached fractions can then be constrained as

Si ≤ 1− (
Rb(Ru +Ni)

NiRu

), i = 1, 2, ..., L. (6.11)
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Figure 6.3: Caching half of each file delay with two concurrent requests.

Consequently, the minimum average delay can be represented as

Y s = min
S1,S2

L∑
i=1

PiY
s
i ,

= 1 +
L∑
i=1

PiNi

(
(1− Si)

Rb

− 1

Ru

)
subject to 0 < Si ≤ 1− (

Rb(Ru +Ni)

NiRu

),

i = 1, 2, ..., L. (6.12)

Meanwhile, the average delay for caching the whole file policy can be represented as

Y w = 1 +
∑
i∈FU

PiNi

(
1

Rb

− 1

Ru

)
(6.13)

+ PhNh

(
(1− Sh)

Rb

− 1

Ru

)
, (6.14)
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where FU is the set of uncached files, h is the index of a file that is partially cached

if the size of the cache size in relation to the cached files sizes is not an integer, and

Sh is equal to zero if this relation is an integer.

6.3.2 Overlapping library-files requests

Similarly, in the more general case of multiple overlapping file requests, segmented

caching focuses on parts that generate more delay rather than parts that are more

popular. The benefit of segmented caching is more intuitive in this case. The example

shown in Fig. 6.4 consists of three files {A,B,C}, requested in the same order with

two-time slots difference between each request at the begging of time-slots {T1, T3, T5},

respectively. Assume that file A is the most popular file and that the back-haul link

can serve one file at a time. Since the request times are separated by two time-

slots each, and due to the overlap of the requested delivery time, the file delivery

would result in four time-slots of congestion if no caching is used. Using the most

popular file caching policy would relieve two time-slot of congestion (Fig. 6.5) and

generate two time-slots of delay. However, using segmented caching can achieve zero

delays as shown in (Fig. 6.4). The reason is that the proposed segmented caching

method focuses on congestion rather than the system throughput. In general, the

delay experienced by file i given the proposed algorithm can be represented as

Y s
i = Y s

i−1 − (Tr,i − Tr,i−1) +Ni

(
(1− Si)

Rb

− 1

Ru

)
+ 1,

∀i = 2, 3, ..., nr, (6.15)
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Figure 6.4: Delay for segmented caching for overlapping demands.
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Figure 6.5: Delay for whole file caching for overlapping demands.

where nr is the number of requested files, Tr,i is the time of request of file i, and Y0 is

assumed to be equal to zero due to an empty queue. On the other hand, the overall

delay for an overlapping number of requests can be represented as

Y s = min
S

nr − 2
nr∑
i=1

(Tr,i − Tr,i−1)

+2
nr∑
i=1

Ni

(
(1− Si)

Rb

− 1

Ru

)
+Nnr

(
(1− Snr)

Rb

− 1

Ru

)
subject to 0 < Si ≤ 1− (

Rb(Ru +Ni)

NiRu

),

i = 1, 2, ..., L. (6.16)

where S = {S1, S2, ..., SL}. The previous linear program can be solved using linear

optimization methods [56, 80]. The complexity arises from the fact that times Tr,i
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are not deterministic and the fact that the set of possible combinations of demand

timings is large. Moreover, the file delivery period is typically composed of successive

periods of overlapping and no overlapping demands which compound the system’s

complexity. In section 6.5, we discuss a reinforcement learning approach to optimize

the caching decision given the complexity of the problem.

6.4 Effect of File Features on Delay

This section discusses the effect of other features; the file size and dynamic file

popularities, on the choice of the optimal caching segments subset.

6.4.1 The Effect of Video Length (File Size)

The length of the requested files has an important effect on the delays because it affects

the queue length of the backhaul link. Small files utilize the backhaul resources in

the form of small, possibly overlapping, periods, while large files utilize the backhaul

resources in the form of large and less overlapping periods (bursts). While small file

requests are more likely to overlap in time and cause congestion, large files’ backhaul

usage is less dispersed in time and is more likely to contend with (other) requests.

Thus, the effect of file size on caching optimality is not straightforward. The choice

of the optimal cache set of files/segments is affected by file sizes and the dynamics of

requests.
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6.4.2 The Effect of dynamic file populartities

Caching typically occurs over the placement phase (e.g overnight) with a little update

to the cached content through the delivery (time of congestion). In a practical

scenario with a dynamic environment, file popularities are expected to change within

the delivery phase [80], where caching decisions are typically made based on the

average file popularities. However, in terms of backhaul congestion and the associated

generated delay, it is important to focus on the file popularities within the exact

congestion periods. Figure 6.6 shows BS traffic data over four consecutive days,

where the data was acquired from the open source dataset [81,82]. The figure shows

a spike in traffic once per day. Foremost, the figure shows that the congestion time

changes from day to day. The traffic dataset shows a similar pattern for other BSs,

where the changes in congestion times range from one to a few hours, while some BSs

have multiple congestions per day. Such traffic behavior represents a challenge for

popularity based caching. First, in terms of queue dynamics, the caching decisions

should be based on the file popularities at times of congestion rather than the average

file popularities over the whole delivery period. Second, the prediction error for

the time of congestion as well as the popularities within a smaller time frame is

expected to be high in practice, which induces a high variability in the algorithm

performance. Clearly, a delay-based algorithm is advantageous in such a practical

scenario. Moreover, an algorithm that caches multiple parts of different files would

have a more stable performance.
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Figure 6.6: Delay for segmented caching for overlapping demands.

6.5 Delay Optimization

The effect of different features of the subset of the cached segments was shown in

the previous sections. We instigated the delay experienced when using whole caching

and segmented caching policies for a few special cases in terms of the size of the file,

requests order, etc. In this section, we formulate the general problem of choosing

the optimal subset of segments to be cached. The cached segments are chosen to

minimize the average delay of the delivery phase given a limited size cache. Let ZC

denote the vector of cached segments chosen according to a policy π at the placement

phase t = 0, and ZU denotes the set of the remaining uncached segments of the library

F , i.e., F = {ZC ,ZU}. Let yπi,j,t be the delay experienced by the jth segment of file

i at time t when using caching policy π. The network delay at time t is the sum of
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delays yπi,j,t of uncached files and can be expressed as

min
ZC

T∑
t=0

∑
i,j,Zi,j∈ZC

yπi,j,t, (6.17)

subject to
∑

i,j,Zi,j∈ZC

I(Zi,j)Ns = C. (6.18)

Note that in contrast to (6.12) and 6.16 has a time index t due to multiple requests

over a long period of time. The complexity of the previous problem arises from the

coupling of the delays yπi,j,t of different segments at different times. This is a result

of the fact that the contents of the queue of the congested backhaul depend on the

state of the previously demanded segments as well as current demands. As such, the

optimization variables yπi,j,t are not independent and are a function of caching policy π.

While there are approximations for the average delay of similar queues, specifically,

burst fed queues (e.g. Poisson Pareto processes) [83], exact delay calculation that

does not depend on an exhaustive search for the above case is not known to the best

of our knowledge. The problem can be solved exactly through an exhaustive search

with exponential complexity. In the next section, we leverage the work of [84] to

present a learning-based approach with linear complexity for the cache placement, to

minimize the average delay.

6.6 Learning The Cache Placement

The complexity of modeling the cashing-queueing process discussed previously makes

the development of a model-free algorithm desirable. In the following, we discuss how

reinforcement learning can be a tool for achieving this aim.
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6.6.1 The multi-armed bandit problem

The Multi-Armed Bandit (MAB) problem [85] is a resource allocation problem that

belongs to decision science (Reinforcement learning). An agent with partial knowledge

of the system takes actions that maximize the gain of resources available. At the

same time, the agent aspires to acquire new knowledge of the system to improve its

future actions, all aiming to maximize long-term gain. The typical MAB model is

a machine with A arms. The agent is allowed to pull an arm l at a time and the

system generates a reward rl which is i.i.d over time, with unknown mean. The agent

action, at, at time t is the decision of which arm to be pulled with the objective to

maximize the cumulative reward. A policy π is an algorithm used by the agent to

manage its actions (cache content at each placement phase in this paper context).

The policy objective is to make the optimal decisions (cache placement) based on the

history of the arms pulled (cached segments) and the knowledge of the associated

rewards r(yi,ZC) (previous delays) to maximize the expected associated long-term

reward (minimize average delay). The expected rewards associated with each arm are

estimated based on the observations of the previous rewards. Intuitively, the estimate

becomes more accurate as the number of times the arms are pulled increases. Hence,

the problem has an associated tradeoff between the exploration of new arms and

the exploitation of known arms, a well-known tradeoff in learning problems. If the

rewards are known exactly, the optimal policy is simply to pull the arms with higher

rewards at each time slot. Accordingly, the regret of a policy π can be defined as the

loss in the long-term reward compared to the optimal policy.

A MAB problem in which more than one arm is pulled together is a variant
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known as the CMAB problem [84], where the combination of pulled arms is called

a super arm. The problem considered in our work is a typical CMAB problem,

due to the coupling of the delays experienced by different segments as explained

in the previous section, and the fact that the cache placement can be represented

by pulling multiple arms. Solving the CMAB problem is more complicated and

more resource-demanding than the traditional MAB problem. If the total number

of available arms is X and only x arms can be pulled together at once, the number

of possible subsets of arms (superarms) is (Xx ), i.e., the number of subsets of size x

that can be formed of the elements of the set of available X arms. As the number of

superarms grows exponentially, some works focused on developing CMAB algorithms

that are less resource-demanding. The authors of [84] developed an algorithm that

uses the information gained at each iteration (superarm pulled) to learn about the

‘‘approximate′′ rewards associated with the arms that compose the pulled subset. As

such, the learning rate achieved is faster and the achieved regret is O(log n) for n

number of trials.

6.6.2 The combinatorial upper confidence bound algorithm

The combinatorial upper confidence bound (CUCB) algorithm was proposed in [84].

The algorithm has a good theoretical regret and provides a faster learning pace than

learning the reward of each arm (file) independently. However, the algorithm does not

converge to the optimal solution. The CUCB Algorithm 7 is composed of two main

parts; the estimation of the average delay associated with each arm and the action

computation. For each superarm played, the agent calculates the average delay vector

ȳ = {ȳ1, ȳ2, ..., ȳAs} which is the vectors of the means of the delays experienced by the
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chosen segments over the past plays. Also, the agent calculates a modified average

delay vector ŷ that is a version of the average delay that encourages exploration. The

statistics are fed to a computation assistant that calculates the optimal superarm to

play next given the statistics.

6.6.3 CUCB Conditions

There are two conditions for the algorithm presented in [84] to be valid for a certain

problem. These conditions are monotonicity and bounded smoothness, and they are

achieved in our problems since we define the reward as a linear function of the delay.

In more detail, we have

• Monotonicity: The algorithm requires that the expected reward of playing

any super arm Z ∈ Z is monotonically non-decreasing with respect to the

expectation vector, i.e., if for all i, j ∈ R, yi ≤ yj, we have r(yi, Z) ≤ r(yj, Z)

for all A ∈ Z.

• Bounded smoothness: There exists a strictly increasing invertible function

f(.), called bounded smoothness function, such that for any two delay

expectation vectors ȳi and ȳj, we must have |r(yi, Z) − r(yj, Z)| ≤ f(η) if

max
i,j
|ȳi − ȳj| ≤ η.

6.6.4 Computation Assistant (CA)

The algorithm assumes that the agent has a computation assistant that has knowledge

of the problem composition, and if given the delay vector y as the input, it computes

the optimal super arm ZC = arg max
ZC∈ZC

r(ZC , ŷ). Assuming that the average delays
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associated with segments yi are known, the average delay can be represented as

min
ZC

∑
i,j,Zi,j∈ZC

ŷi,j, (6.19)

subject to
∑

i,j,Zi,j∈ZC

I(Zi,j)Ns = C. (6.20)

Compared to (6.17), the previous optimization problem is easier to solve. The reason

is that the modified delay estimates ŷi,j are independent. It is a simple linear program

that can be solved by choosing ZC to include the segments with the highest delay.

Algorithm 7 CUCB based caching

1. For each segment l, maintain:

(a) Tl which represents the number of times the segment l has been cached so

far

(b) ȳl which is the mean of all outcome delays for yl for segment l observed so

far.

2. Initialize: Play As =
∑L

i=1Mi rounds, choose the superarms to cache all

segments at least once, i.e., for each segment l, play an arbitrary super arm

ZC ∈ ZC such that zl ∈ ZC and update Tl and ȳl. set t← L

3. While true do:

(a) t← t+ 1.

(b) For each segment l, set ŷl = ȳl +
√

ln3t
2Tl

.

(c) Calculate the new superarm ZC = Computation assistant (ŷ1, ŷ2, ..., ŷL).

(d) Play ZC .
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6.7 Results

In this section, we show the advantages of using the proposed segmented caching

scheme compared to conventional caching methods used in practice that are based on

file popularity. We compare the average delay of the proposed scheme, i.e., caching file

segments based on their contribution to system delay, to caching files based solely on

their popularity. Also, we exhibit the delay performance of the developed algorithm

in terms of delay distribution, and delay fairness between users and compare it to

the popularity based caching. Moreover, we investigate the performance of the

proposed algorithm to gain insights into the cache-queue-delay dynamics. Finally,

we investigate distances to the start of the file of the most cached parts to study the

relationship between this distance and the part contribution to delay.

A backhaul link with a capacity of 960 Mbps was considered and all files were

assumed to be equal in size (1.2 Gb). Parts of a specific file are equally probable to

be requested. The small cell has a cache that can hold one file. The users’ demands

were generated according to Poisson distribution with a rate of one file per second.

Figure 6.7 shows the total delay experienced by users served by the small cell,

over the simulation period, for the two schemes in comparison. The figure shows the

reduction of the delay (in seconds) as a result of using the proposed caching scheme

compared to caching popular files. The figure shows a growing gap (note that it

uses a logarithmic scale on the total delay axis) between using whole file popularity

caching and partial delay-based caching. Figure 6.8 compares the performance of both

schemes for different backhaul link capacities. The figure shows that the proposed

algorithm performs much better than caching popular files in times of congestion
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Figure 6.7: Delay vs number of users for whole file caching and segmented caching

with overlapping demands.

Figure 6.8: The effect of backhaul link capacity on the delay for whole file caching

and segmented caching with overlapping demands.
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Figure 6.9: Delay Histogram for segmented caching.

(relatively low backhaul link capacity).

Figures 6.9, 6.10 show the delay histograms of the three different files for the

segmented caching and whole file caching, respectively. For the whole file caching, a

disparity between the delays experienced by users requesting the cached most popular

file and the other users, while for the segmented caching the delay histograms for users

requesting different files are relatively similar. In a sense, segmented caching provides

a more ”stable” performance and a more ”fair” QoS.

Fairness is an important aspect of wireless networks’ QoS that is rarely considered

in proactive caching works. Generally, the minimization of delivery rate and fairness

are conflicting goals since caching the most popular files affects the QoS for MUs

demanding the least popular files. Our scheme achieve good performance on different

fairness measures compared to other proactive caching algorithms. The min-max
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Figure 6.10: Delay histogram for whole file caching.

fairness measure (Fminmax) is defined as

Fminmax =
min(D)
max(D)

, (6.21)

where D = {y1, y2, ..., yL}, and 0 ≤ Fminmax ≤ 1. The fairest algorithm achieves

Fminmax = 1. Figure 6.11 shows the min-max fairness performance of the segmented

caching scheme compared to the most popular caching scheme. The popularity based

caching performs poorly with respect to this measure compared to the developed

scheme as expected. The reason is that the most popular files get all the caches and

the other files get all the delay.

Figure 6.12 shows the fairness performance according to the Resource Allocation

Queuing Fairness Measure (RAQFM) fairness measure [86]. In RAQFM, the

underlying principle is that users should be fairly granted an equal share of system

resources. While actual delay (or the lack of it) is not an actual system resource like
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Figure 6.11: Minmax fairness comparison.

Figure 6.12: RAQFM fairness comparison.
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the cache or backhaul rate, the user experience in the system under consideration is

mainly governed by delay. To measure the deviation from the fair equally distributed

delay reference, the temporal discrimination can be calculated as in [86]

TDi = ȳ − yi, (6.22)

where ȳ is the average delay in the system. The temporal discrimination measures

the amount of deviation away from receiving fair share for a given user, where

the fairest algorithm achieves TDi = 0 for all i. Positive temporal discrimination

represents an under-served user and negative temporal discrimination represents

an over-served user. The figure shows that the developed delay-based algorithm

outperforms popularity based caching for all levels of congestion, while their RAQFM

fairness performance coincides when the demand is much smaller than the available

resources.

Figure 6.13 shows the relative importance of each segment due to its position in

the file. It shows the relative normalized average number of times a certain segment

has been cached by the developed algorithm. It shows the edge segments are more

significant to delay minimization (even if they are less popular) when compared to

the middle segments. This result is quite intuitive as earlier segments help with initial

delay and relieve congestion with the preceding requested file, while final segments

help with queue saturation (self-induced congestion) and congestion with overlapping

succeding files. It should be noted that the heat map is affected by different system

parameters and this figure shows the average heat map.

167



Figure 6.13: Heat map for segments relative importance.

6.8 Conclusion

We studied caching in a cellular network with a congested backhaul. The network

is composed of multiple BSs with limited-size caches being leveraged to minimize

the average user delay given that the backhauls have large queues due to congestion.

We presented a reinforcement learning-based algorithm that optimizes the choice

of segments to be cached to minimize the average delay. We showed that caching

some segments of less popular files is advantageous delay-wise when compared to

popularity-based proactive caching at times of congestion.
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Chapter 7

Conclusion and Future Work

In this chapter, we provide insights and conclusions learned through the accomplished

work. Moreover, we discuss the directions of future extensions of this work. We

studied mobile network where the BS has a library of cached files, and the MUs

demands are expected to be limited to that library. We studied different approaches

to improve the network QoS through the use of proactive caching.

In Chapters 3, 4, 5, we focused on the case where the file popularities of the

library are caching over the delivery period. We studied three different scenarios for

popularities information availability at the network. The first is when the information

is available offline at the placement phase through external help. The second is

when the information is available only one slot ahead. In the third, it is learned by

the network overtime. We proved that proactively updating the local finite caches

and jointly encoding the files delivery to the MUs over different time slots minimize

the delivery sum rate. We developed different algorithms for the three scenarios
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and evaluated their performance through simulations. In particular, we developed

rule-based algorithms for the first and the second scenarios, while we developed a

reinforcement learning based algorithm for the third scenario. The complexity of the

developed algorithms were discussed. The offline rule-based algorithm depends on an

optimization problem that grows exponentially with the number of users requiring

large memory resources for large number of users. On the other hand, the dynamic

programming offline rule-based algorithm has much less memory requirements at the

expense of using more computational resources. The developed reinforcement learning

algorithm for the third scenario showed good resources requirements and convergence

time.

While not discussed in depth, the algorithms provided in these chapter are rather

generic and can be optimized to achieve different targets. AoI, the cache consistency

problem, and mobility are direct applications of the provided work. Since the provided

algorithms provide zero-rate update to local caches, it can be easily used for cache

updates to maintain consistency and/ or respond to user mobility-induced cache

update requests.

In Chapter 6, we studied the delay optimization of network with congested

backhauls using proactive caching. We showed an interesting, yet counter intuitive,

result that caching a chosen set of segments of less popular files is advantageous

delay-wise in comparison to popularity based proactive caching. Moreover, we

showed that the overall delay is affected by the length of the file whose segment was

chosen to be cached. We presented a reinforcement learning based algorithm that

optimizes the set segments to be cached in order to minimize the average delay.

Over the course of this work, we came to the conclusion that there are several
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important problems that need to be studied further, to develop a generic fully

functional caching algorithm that performs well in practical wireless networks. We

plan to study some of these problems in the near future. In particular, we plan to

study the following problems,

• The trade-off between various network parameters like delay, spectrum

efficiency, energy,...etc when using coded caching under real wireless networks

constraints.

• The design of a generic algorithm that can optimize the coded cache design for

a mix of synchronous and asynchronous demands.

• Developing a general upper-bound for coded caching under different practical

scenarios.

• Modifying the developed centralize algorithms to include cooperative and D2D

caching for further performance improvement.
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Appendix A

Index Coding

In this subsection, we define index coding [1] and the underlining transmission

problem it solves. The index coding transmission problem is a situation where a set

of W independent messagesM = {M1,M2, ...,MW} are available at the transmitter,

and we need to send different subsets of them to K receivers. The kth receiver

requests a set of messages Mk ⊂M, while it already obtained another set of message

Ak as side information. A receiving node does not need a message that is already

available to it, i.e.,Mk∩Ak = ∅. An index code Πn(Z, n, R) is used by the transmitter

to fulfill the destination needs. The code Πn(Z, n, R) is composed of a finite alphabet

Z of cardinality |Z| > 1, a joint encoding function, hc, and a separate decoding

function, hdk,i for the message Mi at the kth receiver. The encoding function hc maps

all the messages to the sequence of transmitted symbols hc(M1,M2, ...,MK) = Xn,

where Xn ∈ χn is the sequence of symbols transmitted over n channel uses. A

message Mk, k ∈ 1, 2, ...,W , is a random variable uniformly distributed over the

set Fk ∈ {1, 2, ..., |X|}nRw , where R ∈ RW
+ is a rate vector R = (R1, R2, ..., RW ) in
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positive real vector space that satisfies the condition that |X|nRw is an integer for all

1, 2, ...,W . The decoding function at each receiving node is gk,i(Xn, Ak) = M̂k,i,∀i,

where Mi ∈ Mk. An achievable rate tuple R = (R1, R2, ..., RK) ∈ RM
+ exists if for

each ϵ, δ > 0, there is (Xn, n, (R̄1, R̄2, ..., R̄K)) coding scheme, for some Xn, n, such

that ∀w ∈ 1, 2, ...,W , R̄w ≥ Rw − δ.
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