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Abstract

Homology and cohomology are considered valuable algebraic tools for studying topo-

logical spaces. Homology groups of the symmetric product of a Riemann surface were

determined by I.G.Macdonald [9] in 1962. The main object of this project is finding

the cohomology and homology groups of certain covering spaces of these spaces.
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Lay summary

Algebraic topology uses algebraic tools such as homology and cohomology to study

topological spaces. The n−th symmetric product of a compact Riemann space of

genus g is a 2n−dimensional orientable manifold. This thesis deals with the problem of

calculating homology and cohomology groups of certain covering spaces of symmetric

products of a Riemann surface.

We introduce the covering space as a pullback via the Abel-Jacobi map and use

the Euler characteristic to determine the Betti numbers of the covering space. As a

summary of results, apart from finding the homology and cohomology, we determine

the Poincaré polynomial, Euler characteristic and zeta function for the symmetric

product space and its covering space.
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Chapter 1

Introduction

The n−th symmetric product of a topological space X is defined as the quotient

space SP n(X) := Xn/Sn, where Xn is the n− fold product space and the symmetric

group on n−letters Sn acts on Xn by permutating factors. If M is a 2−dimensional

manifold, then SP n(M) is a 2n−manifold. These manifolds were studied in [2],[10],[9]

and they appear in many other papers in different contexts.

A Riemann surface of genus g, Σg is a 2−dimensional manifold with the cell

complex structure of one 0−cell, 2g 1−cells and one 2−cell.

Figure 1.1: Genus g surfaces

The 2n-dimensional manifold SP n(Σg) is the domain of the classical Abel-Jacobi

map [1], [6].

AJ : SP n(Σg)→ J(Σg)

where J(Σg) is the Jacobian of Σg.

The main objective of this thesis is to calculate the homology and cohomology of

certain covering spaces of SP n(Σg) constructed as pullbacks of covering spaces over

J(Σg). A study of SP n(M) for closed, even-dimensional manifolds was published by
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Hirzebruch [8] and SP n(Σg) was studied by Macdonald [9] in 1962.

In the 19th century, homological algebra had its origin through the work of Rie-

mann(1857) and Betti(1871) on homology numbers and then Poincaré in 1895. Emmy

Noether’s introduction of the homology groups of a space in the first half of the 20th

century sparked mathematicians’ interest in this approach. From 1940 to 1955, these

topologically modified procedures for computing the homology groups were extended

to define cohomology. Since then, homology and cohomology have become fundamen-

tal tools in algebraic topology.

Given a base point in Σg, there is a natural inclusion of SP n(Σg) into SP n+1(Σg).

The infinite symmetric space SP∞(Σg) is the colimit of the SP n(Σg) under this nat-

ural inclusion.

A space X with one nontrivial homotopy group πn(X) ' G is called an Eilenberg-

MacLane space K(G, n), where G is a group, and for n ≥ 2 is abelian. In particular,

the K(Z, n) has a natural geometric realization as SP∞(Sn). Moreover, K(G, n) plays

a main role in Dold and Thom [5], [11] who introduced homotopical decomposition

for connected CW-complexes of the infinite symmetric product,

SP∞(X) '
∞∏
n=1

K(Hn(X,Z), n).

The Σg satisfies the conditions of the Dold-Thom theorem and opens the possibility

to introduce the homology of infinite symmetric space. Note that SP∞(Σg) has a

cell complex structure such that every cell of dimension k ≤ n lies in SP n(Σg).

This argument implies that the homology of SP n(Σg) and SP∞(Σg) are the same up

to degree n; this result was introduced by MacDonald in 1962 [9]. The remaining

homology groups given are by the Poincaré Duality Theorem. We present the answer

using Poincaré polynomials, which are generating functions for the Betti numbers.

The pullback of a covering space along a continuous function is a covering space.

We use this fact to introduce that covering space of SP∞(Σg) as a pullback space,

and it has the same homology as SP∞(Σg).

Next we introduce a relation between the covering spaces of SP n(Σg) and SP∞(Σg)

respectively. Let π : Ỹ → Y be a covering map and Yn be the n−th skeleton of the

space Y ; then, π−1(Yn) = Ỹn is the n−th skeleton of the covering space Ỹ . This
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implies that the inclusion of ˜SP n(Σg) into ˜SP∞(Σg) is a homeomorphism up to the

n−skeleton and hence, their homology groups are isomorphic up to n− 1. It remains

to calculate the n−th homology; we use the Euler characteristic and its properties for

covering spaces to find it.

The rest of the homology groups and cohomology groups up to 2n are determined

by using the Poincaré Duality Theorem. Since the Betti numbers are independent of

the field, this also determines the homology over the integer coefficients.

1.0.1 Outline

This thesis presents the homology and cohomology groups of certain covering spaces

of the n−th symmetric product of a genus g Riemann surface. In particular, we

establish the answers over the integer coefficients Z. This section is a synopsis of the

subsequent chapters.

Chapter 2 will discuss the algebraic and topological background required for read-

ers who have minimal knowledge of algebraic topology. Then we will describe homol-

ogy and cohomology in chapter 3.

Chapter 4 will deal with Betti numbers and Poincaré polynomials, which are used

to calculate homology and cohomology groups.

The homology, and cohomology of SP n(Σg) are presented in chapter 5 . We show

all the answers are independent of the field and hence, define the results over integers.

We introduce the Abel-Jacobi map in chapter 6. Subsequently, we will discuss the

covering spaces and pullback in chapter 7. Then in chapter 8, we will prove our main

result.

In chapter 9 , we summarize our results.



Chapter 2

Background

2.1 Topological background

Definition 2.1.1. A topological space (X, τ) is a set X and a collection of open

sets τ of X, satisfying the following conditions:

1. ∅ and X are open,

2. An arbitrary union of open sets is open,

3. Any finite intersection of open sets is open.

Usually, we denote the topological space (X, τ) simply by X. A collection of open sets

B in a topological space X is called a basis if every other open set in X is a union

of sets in B.

Definition 2.1.2. A continuous map f : X → Y between topological spaces is a

map of sets for which pre-images of open sets are open. i.e,

If U ⊆ Y is open, then f−1(U) := {x ∈ X | f(x) ∈ U} ⊆ X is open.

Definition 2.1.3. A homeomorphism is a continuous bijection f : X → Y such

that the inverse f−1 is also continuous. This is the notion of isomorphism for topo-

logical spaces.

Proposition 2.1.1. Let X, Y and Z be topological spaces.
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1. The identity map IdX : X → X is continuous.

2. If f : X → Y and g : Y → Z are continuous, then the composition g◦f : X → Z

is continuous.

3. Any constant map f : X → Y is continuous.

2.1.1 Review of Topological Spaces

Definition 2.1.4. Let X be a topological space and A ⊆ X a subset. The subspace

topology on A is the topology for which V ⊂ A is open if and only if V = A∩U for

some open set U in X.

The inclusion map i : A ↪→ X is continuous with respect to the subspace topol-

ogy. We have the following special property: a map f : Y → A is continuous if and

only if the composition i ◦ f : Y → X is continuous.

Definition 2.1.5. The product space X×Y of two spaces X and Y is the Cartesian

product of sets X × Y, with a basis of open sets of the form U × V where U ⊂ X and

V ⊂ Y are both open.

Definition 2.1.6. Let {Xα} be an infinite collection of spaces indexed by α. The

coproduct space is the disjoint union of the sets Xα with U ⊆
∐

αXα and is open

if and only if U ∩Xα is open for all α.

The inclusions iα0 : Xα0 ↪→
∐

αXα are all continuous. A map F :
∐

αXα → Y is

continuous if and only if the composition F ◦ iα : Xα → Y is continuous for all α.

Definition 2.1.7. An equivalence relation on a set X is a relation ∼, satisfying

for all x, y ∈ X,

1. x ∼ x

2. x ∼ y implies y ∼ x

3. x ∼ y and y ∼ z implies x ∼ z.
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Given any relation R on X, we can generate the ’smallest’ equivalence relation ∼R
such that xRy implies x ∼R y. Explicitly, we define x ∼R y if and only if there exists

a finite sequence {xi ∈ X}ni=0 for n ≥ 0 satisfying,

1. x0 = x

2. xn = y, and

3. xiRxi−1 or xi−1Rxi for all i = 1, ..., n.

Given x ∈ X, the equivalence class of x is

[x] := {y ∈ X |x ∼ y}

The equivalence classes determine a partition ofX into disjoint non-empty sets. Notice

that [x] = [y] if and only if x ∼ y. Let E = X/ ∼ := {[x] |x ∈ X}; then, there is a

canonical map

Q : X → E, x→ [x]

called the quotient map.

Definition 2.1.8. Let X be a topological space and let ∼ be an equivalence relation

on the underlying set X. The quotient topology on E is the topology for which

U ⊂ E is open if and only if Q−1(U) is open in X.

2.1.2 Connectedness and Path-Connectedness

A topological space can be ‘separated’ if it can break up into at least two open sets;

otherwise, we can say that the space is connected.

Definition 2.1.9. Let X be a topological space. A separation of X is a pair U, V

of disjoint non-empty open subsets of X for which the union is X. The space X is

said to be connected if there does not exist a separation of X.

In other words, a space X is connected if there is no proper subset A ⊂ X which

is both open and closed.

Observe that if A ⊂ X is both open and closed, then the complement Ac is also

both open and closed. There is a natural isomorphism A
∐
Ac ∼= X. Thus, spaces
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that are not connected can be decomposed into a disconnected union of non-empty

spaces.

Definition 2.1.10. Let I denote the unit interval [0, 1] ⊂ R with the Euclidean

topology. A space X is called path-connected if for any two points p, q ∈ X there

exists a continuous map γ : I → X such that γ(0) = p and γ(1) = q.

Every path-connected space is connected, but the converse is not true in general.

Connectedness and path-connectedness are preserved under the following operations:

1. A product of (path-)connected spaces is (path-)connected.

2. The continuous image of a (path-)connected space is (path-)connected.

3. Let {Uα} be a covering of X such that each Uα is (path-)connected and the

intersection ∩αUα is non-empty. Then X is (path-)connected.

2.1.3 Covers and Compactness

Definition 2.1.11. An open (closed) cover of a topological space X is a collection of

open (closed) sets {Uα} such that the union ∪αUα = X.

Definition 2.1.12. A space X is called compact if every open cover {Uα} of X

contains a finite subcover. That is there exists a finite collection {U1, ..., Un} ⊆ {Uα}
such that ∪ni=1Ui = X.

2.1.4 Homotopy and Fundamental groups

Two continuous functions from one topological space to another are called homotopic

if one can be continuously deformed into the other when two functions are connected

in such a deformation, called homotopy.

Definition 2.1.13. Let X and Y be two topological spaces. A homotopy between

two continuous functions f, g : X → Y is a continuous function H : X × [0, 1] → Y

defined by H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. The notation for this

homotopy is f ' g.
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Note that homotopy between two continuous functions is an equivalence relation.

Definition 2.1.14. A homotopy equivalence between two topological spaces X and

Y is a pair of continuous functions f : X → Y and g : Y → X such that f ◦ g ' IdY

and g ◦ f ' IdX .

2.1.5 Homotopy Groups

Let In be the n−dimensional unit cube that is the product of n−many intervals

I = [0, 1]. The boundary ∂In of In is the subspace consisting of at least one coordinate

equal to 0 or 1. Let X be a set with a base point ? ∈ X and consider the set

Ωn(X) = {f : In → X | f(∂In) = ?}.

We can define the homotopy of two functions in Ωn(X) by following definition

2.1.13. Two functions f0, f1 : (In, ∂In) → (X, ?) in Ωn(X) are homotopic if there

exists a continuous function H : (In+1, ∂In × I)→ (X, ?) such that

f0(x1, ..., xn) = H(x1, ..., xn, 0)

and

f1(x1, ..., xn) = H(x1, ..., xn, 1).

Note that H(∂In × I) = ?.

Definition 2.1.15. For a space X with a base point ?, define the n−th fundamental

group πn(X, ?) to be the set of homotopy classes of maps in Ωn(X). In other words,

πn(X, ?) = Ωn(X)/ ' .

Note that πn(X, ?) is a group if n ≥ 1 and abelian if n ≥ 2.

Theorem 2.1.2. Whitehead Theorem

Let f : X → Y be a continuous map between connected cell complexes. Then f is a

homotopy equivalence if and only if f∗ : πk(X) → πk(Y ) is an isomorphism for all

k ≥ 1, where πk(X) and πk(Y ) are k−th homotopy groups of X and Y for k ≥ 1,

respectively.
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2.2 Algebraic background

Definition 2.2.1. A group is a set G which is closed under an operation ◦, satisfies

the following conditions, is denoted as (G, ◦):

1. Identity: there exists e ∈ G such that e ◦ x = x ◦ e = x for all x ∈ G

2. Inverse: for every x ∈ G, there exists i ∈ G such that x ◦ i = i ◦ x = e

3. Associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z for every x, y, z ∈ G

In addition, if x◦y = y ◦x for all x, y ∈ G, then we say that G is an abelian group.

Definition 2.2.2. A ring is a set R, which is closed under two operations + and ·
such that the (R,+) is an abelian group, the operation · is associative, and satisfies

the distributive properties.

Definition 2.2.3. A field is a set F which is closed under two operations + and

· such that F is an abelian group under addition (F,+), and the set without the

additive identity is an abelian group under multiplication (F\{0}, ·), and satisfies the

distributive property of multiplication over addition.

Definition 2.2.4. Module:

Let R be a ring and 1 be the multiplicative identity. A left R-module RM is an

abelian group (M,+) with an operation · : R ×M → M such that, for all r, s ∈ R
and x, y ∈M satisfies:

1. r · (x+ y) = r · x+ r · y

2. (r + s) · x = r · x+ s · x

3. (r · s) · x = r · (s · x)

4. 1 · x = x

The operation · is called the scalar multiplication and is usually written by jux-

taposition, i.e. r · x = rx for r ∈ R and x ∈ M. The right R-module MR is defined

similarly, except that the ring acts on the right.

Left group actions: An action of a group G on a non-empty set X is a function,

α : G×X → X, that satisfies the axioms:
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1. Identity: α(e, x) = x

2. Compatibility: α(h, α(g, x)) = α(hg, x)

for all g, h ∈ G and all x ∈ X, where e ∈ G is the identity. We often shortened α(x, g)

to x · g or xg,

1. Identity: e · x = x

2. Compatibility: h · (g · x) = (hg) · x

Suppose that G acts on X; then, we can define a relation ∼ on X by setting x ∼ y

for x, y ∈ X, iff there exists an element g ∈ G such that g · x = y. Then ∼ is an

equivalence relation and it gives mutually disjoint equivalence classes called orbits of

group action. The orbit of an element x ∈ X is the set of elements in X to which x

can be moved by the elements of G and is defined as:

G · x = {g · x | g ∈ G}.

2.3 Manifolds

2.3.1 Topological manifolds

A second countable space is a topological space, the topology of which has a count-

able base. A Hausdorff space is a topological space where for any two distinct

points, there exist neighbourhoods of each which are disjoint from each other.

An n−dimensional manifold is a topological space that locally looks like Rn. For-

mally, a topological n−manifold is a second countable Hausdorff space in which each

point has an open neighbourhood homeomorphic to Rn. A compact manifold is a

manifold that is compact as a topological space.

Examples:

• Rn is an n−manifold.

• Any discrete space is a 0−dimensional manifold.
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• The n−dimensional sphere Sn is a compact n−manifold.

• The n−dimensional torus T n is a compact n−manifold.

• Real projective space RP n is a n−dimensional manifold.

• Complex projective space CP n is an 2n−dimensional manifold.

2.3.2 Smooth manifolds

Let M be a topological manifold. A chart on M is a pair (U,ϕ), where U is an

open subset of M and ϕ : U → Ũ is a homeomorphism from U to an open subset,

Ũ = ϕ(U) ⊆ Rn.

If (U,ϕ) and (V, ψ) are two charts such that U ∩ V 6= ∅, then the composite map

ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is called the transition map from ϕ to ψ. Two

charts are said to be smoothly compatible if either U ∩ V = ∅ or the transition

map ψ ◦ ϕ−1 is a diffeomorphism.

An atlas A for M is a collection of charts the domains for which cover M. An

atlas is called a smooth atlas if any two charts in A are smoothly compatible with

each other. A smooth atlas A on M is maximal if it is not properly contained in any

larger smooth atlas. A smooth structure on M is a maximal smooth atlas.

A smooth manifold M is a pair (M,A), where M is a topological manifold and

A is a smooth structure on M. A differentiable manifold is a topological manifold

M, together with a maximal differentiable atlas on M.

2.3.3 Tangent map

Let M be a differentiable manifold of dimension n and pick a chart (U,ϕ) on M. For

any x ∈M, suppose that two curves γ1, γ2 : (−1, 1)→M with γ1(0) = x = γ2(0) are

given such that both ϕ ◦ γ1, ϕ ◦ γ2 : (−1, 1) → Rn are differentiable. Then γ1 and γ2

are said to equivalent if

(ϕ ◦ γ1)
′
(0) = (ϕ ◦ γ2)

′
(0).

This defines an equivalence relation, and equivalence classes of such curves are

known as the tangent vectors of M at x. The tangent space of M at x is the set of
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all tangent vectors of M at x and denoted by TxM. The equivalence class of a curve

γ is denoted by γ
′
(0).

We can define a bijection Dxϕ : TxM → Rn by

Dxϕ(γ
′
(0)) =

d

dt
[(ϕ ◦ γ)(t)]t=0

where γ ∈ γ
′
(0). We make TxM into a vector space by declaring Dxϕ to be an

isomorphism of vector spaces.

2.3.4 Transversality

Definition 2.3.1. Let M,X, Y be differentiable manifolds and let f : X → M and

g : Y → M be smooth maps. We say that f and g are transverse, if, whenever

f(x) = g(y) = m,

Dxf(TxX) +Dyg(TyY ) = TmM

where Dxf is the derivative of f and TxX is the tangent space at x ∈ X.

Observe that if dim(X)+ dim(Y ) < dim(M), and f, g are transverse, then f(X)∩
g(Y ) = ∅.



Chapter 3

Homology and Cohomology

The homology groups H0(X), H1(X), H2(X), ... of a topological space X are a set

of topological invariants of X represented by its homology groups, where the kth

homology group Hk(X) describes, informally, the number of k − dimensional holes

in X. For instance H0(X) describes the path-connected components of X.

Most of the theorems and proofs in this chapter can be found in the Allen Hatcher’s

Algebraic Topology book [7].

3.1 Singular Homology

3.1.1 Simplices

Given n+1 points v0, ..., vn ∈ Rn that do not lie in a hyperplane, the simplex [v0, ..., vn]

is the smallest convex set, where points vi are the vertices of the simplex.

The standard n − simplex ∆n is the simplex spanned by the zero vector e0 and

the standard basis vectors e1, ..., en in Rn. Thus,

∆n := {(t0, ..., tn) ∈ Rn+1 |
∑
i

ti = 1 and ti ≥ 0 for all i}

A singular n− simplex in a topological space X is a continuous map,

σ : ∆n → X.
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A singular 0− simplex in X is simply a point in X, and a singular 1− simplex is a

continuous path in X, etc..

Figure 3.1: Simplices

There is a canonical linear homeomorphism from the standard n − simplex ∆n

onto any other n − simplex [v0, ..., vn], preserving the order of vertices, such that

(t0, ..., tn) →
∑

i tivi. The coefficients ti are the barycentric coordinates of the point∑
i tivi in [v0, ..., vn].

A face of a simplex is the subsimplex and it can be any nonempty subset of the

vertices. We define the face maps for 0 ≤ i ≤ n, such that

F i
n : ∆n−1 → ∆n

by F i
n = [e0, ..., êi, ..., en], where the êi means omit ei.

The i− th face of a singular n− simplex σ : ∆n → X is the (n− 1)− simplex

σ(i) : ∆n−1 → X

defined by composition with the face map:

σ(i) = σ ◦ F i
n.

3.1.2 Chains, Cycles, and Boundaries

Define Sn(X) to be the free abelian group generated by singular n− simplices. The

elements of Sn(X) are called singular chains and are formal linear combinations of
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the form ∑
σ

aσσ,

where the coefficients aσ ∈ Z and the sum is over a finite number of singular n −
simplices σ.

The boundary map ∂n : Sn(X)→ Sn−1(X) is a homomorphism, defined on singular

simplices by

∂n(σ) =
n∑
i=0

(−1)iσi

and extended linearly to all of Sn(X) by the rule:

∂n

(∑
σ

aσσ

)
=
∑
σ

aσ∂n(σ).

We will often drop the subscript and write ∂ = ∂n when it is unlikely to cause

confusion.

Proposition 3.1.1. The composition ∂n−1 ◦ ∂n : Sn(X)→ Sn−2(X) is the zero map,

i.e. dropping subscripts, we write this

∂2 = 0.

Proof. Since Sn(X) is generated by simplices, it suffices to check that ∂n−1 ◦ ∂n = 0

for all n− simplices σ. It is easily checked that if 0 ≤ j < i ≤ n, the free maps satisfy

F i
n ◦ F

j
n−1 = F j

n ◦ F i−1
n−1.
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∂n−1 ◦ ∂n(σ) = ∂n−1(
n∑
i=0

(−1)iσi)

=
n∑
i=0

(−1)i∂n−1(σ ◦ F i
n)

=
n∑
i=0

(−1)i
n−1∑
j=0

(−1)j(σ ◦ F i
n ◦ F

j
n−1)

=
n∑
i=0

n−1∑
j=0

(−1)i+j(σ ◦ F i
n ◦ F

j
n−1)

=
∑

0≤i≤j≤n−1

(−1)i+j(σ ◦ F i
n ◦ F

j
n−1) +

∑
0≤j≤i≤n−1

(−1)i+j(σ ◦ F i
n ◦ F

j
n−1)

=
∑

0≤i≤j≤n−1

(−1)i+j(σ ◦ F i
n ◦ F

j
n−1)−

∑
0≤j≤i−1≤n−1

(−1)i−1+j(σ ◦ F j
n ◦ F i−1

n−1)

= 0

The group of n− cycles Zn(X) is the kernel of ∂n :

Zn(X) := {α ∈ Sn(X) | ∂(α) = 0}

and the group of n− boundaries Bn(X) is the image of ∂n+1 :

Bn(X) := {∂(β) | β ∈ Sn+1(X)}

By the Proposition 3.1.1, Bn(X) is a normal subgroup of Zn(X). The n−th degree

singular homology of X is the quotient group:

Hn := Zn(X)/Bn(X).

Note that homology is a homotopy invariant, meaning that if f, g : X → Y are

homotopic, then the corresponding induced maps f∗, g∗ : H∗(X)→ H∗(Y ) are equal.
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3.1.3 Homology as a functor

Let f : X → Y be a continuous map. If σ is an n − simplex for X, then the

composition f ◦ σ is an n− simplex for Y. This defines a homomorphism:

Sn(f) : Sn(X)→ Sn(Y ), such that

Sn(σ) = f ◦ σ,

and linearity on Sn implies that,

Sn(
∑
σ

aσσ) =
∑
σ

aσf ◦ σ.

Clearly, Sn(IdX) = IdSn(X) and Sn(f◦g) = Sn(f)◦Sn(g) for composable continuous

maps f and g. Thus Sn is a functor from topological spaces to abelian groups.

It is clear that Sn(f) sends Zn(X) to Zn(Y ) and Bn(X) to Bn(Y ), and thus induces

a homomorphism between the quotient groups:

Hn(f) : Hn(X)→ Hn(Y ).

3.2 Chain Complexes

A chain complex of abelian groups C := (Cn, ∂n)n∈Z is a sequence of abelian groups

(Cn)n∈Z and homomorphisms ∂n : Cn → Cn−1 such that ∂n ◦ ∂n+1 = 0 for all n ∈ Z.
We usually write a chain complex as:

...Cn+1
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→ ...

∂1−→ C0
∂0−→ 0.

Typically Cn = 0 for all n < 0 and where 0 denotes the trivial group.

Let im(∂n+1) be the image of the boundary map ∂n+1 and ker(∂n) be the kernel

of the boundary map ∂n. We define the n − chains Zn(C) = ker(∂n) and the n −
boundaries Bn(C) = im(∂n+1) and hence, the n − th homology group of the chain

complex Hn(C) = Zn(C)/Bn(C). For z ∈ Zn(C), the coset represented by z is denoted

by [z] ∈ Hn(C).
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A morphism of chain complexes f : C → C ′ is a sequence of homomorphisms

(fn : Cn → C ′n)n∈Z that commutes with the boundary maps: fn−1 ◦ ∂n = ∂′n ◦ fn for

all n. In other words, the following diagram commutes:

Cn
∂n //

fn
��

Cn−1

fn−1

��
C ′n

∂′n // C ′n−1

(3.2.1)

A chain map h : C → D induces homomorphisms in homology Hq(h) : H(C) →
H(D) for all q ∈ Z by the rule

Hq(h)([z]) = [hq(z)].

Lemma 3.2.1. Let h : C → D be a morphism of chain complexes such that pi : Ci →
Di is an isomorphism for i ≤ n.

... // Ci+1
//

��

Ci
∂i //

∼= pi

��

Ci−1

∼= pi−1

��

// ... // 0

... // Di+1
// Di

δi // Di−1
// ... // 0

Then,

Hi(C) ∼= Hi(D) for i ≤ n− 1.

Proof. 1. First we prove that pi(ker(∂i)) = ker(δi).

Take any x ∈ ker(∂i). Since pi−1 is an isomorphism pi−1 ◦ ∂i(x) = 0 and since

the diagram is commutative, δi ◦ pi(x) = 0. Hence pi(x) ∈ ker(δi).

However, for any y ∈ ker(δi), by the isomorphism and the commutative diagram,

given that ∂i ◦ p−1
i (y) = p−1

i−1 ◦ δi(y) = 0. Therefore, y ∈ pi(ker(∂i)).

2. Next we prove that pi−1(im(∂i)) = im(δi).

Take any y ∈ im(∂i); then, there exists x ∈ Ci such that ∂i(x) = y. By the

commutative diagram pi−1(y) = δi ◦ pi(x), and by the isomorphism, there exists

z = pi(x) ∈ Di such that pi−1(x) = δi(z). Thus, pi−1(y) ∈ im(δi).

However, for any y ∈ im(δi), there exists x ∈ Di such that y = δi(x). By the
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diagram, p−1
i−1(y) = ∂i ◦ p−1

i (x) and by the isomorphism, there exists z ∈ Ci such

that p−1
i (x) = z. So, p−1

i (y) ∈ im(∂i) and hence y ∈ pi−1(im(∂i)).

By Case 1 and Case 2, the pi is restricted to isomorphisms ker(∂i) ∼= ker(δi) and

im(∂i) ∼= im(δi).

Now, by the definition of homology, we have

Hi(C,R) =
ker(∂i)

im(∂i+1)
∼=

ker(δi)

im(δi+1)
= Hi(D,R) for i ≤ n− 1.

The following theorem often reduces the problem of calculating homology groups

of Z to calculating homology groups over fields. It is a consequence of the Universal

Coefficient Theorem [7].

Theorem 3.2.2. Let X be a finite cell complex. If for any field F and all i ≥ 0 the

dimension of Hi(X,F) is independent of F, then Hi(X,Z) is a free abelian group of

the same rank as the Betti number 4.1.2.

3.3 Relative Homology

Let X be a topological space and A be a subset of X. A pair (X,A) gives rise to an

inclusion of chain groups Sn(A) ≤ Sn(X). Define the relative chain group of the pair

to be the quotient group:

Sn(X,A) := Sn(X)/Sn(A).

The relative chain groups combine to form the relative chain complex:

...Sn+1(X,A)
∂̄n+1−−−→ Sn(X,A)

∂̄n−→ Sn−1(X,A)
∂̄n−1−−−→ ...

∂̄1−→ S0(X,A)
∂̄0−→ 0
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where the boundary map is defined by the following commutative diagram:

Sn(X)
∂n //

��

Sn−1(X)

��
Sn(X,A)

∂̄n // Sn−1(X,A)

(3.3.1)

where the vertical arrows are quotient maps. Note that ∂̄n is well defined because

∂n sends Sn(A) to Sn−1(A) and that ∂̄2
n = 0 because ∂2

n = 0. It follows that we can

define relative cycles and relative boundaries, Zn(X,A) and Bn(X,A), respectively.

Thus, relative homology can be defined as:

Hn(X,A) = Zn(X,A)/Bn(X,A).

The quotient morphisms Sn(X)→ Sn(X,A) fit together into a morphism of chain

complexes, j : C(X)→ C(X,A) combined with inclusion chain morphism i : C(A)→
C(X). Then we get a commutative diagram:

... // Sn+1(A) //

i
��

Sn(A) //

i
��

Sn−1(A)

i
��

// ...

... // Sn+1(X) //

j

��

Sn(X) //

j

��

Sn−1(X) //

j

��

...

... // Sn+1(X,A) // Sn(X,A) // Sn−1(X,A) // ...

By functoriality, these chain morphisms give rise to homology homomorphisms

Hn(A)→ Hn(X)→ Hn(X,A) for all n ≥ 0. The most important property of relative

homology is the existence of a connecting homomorphism:

∂ : Hn(X,A)→ Hn−1(A), such that ∂([z]) = [∂(z)].

Definition 3.3.2. A sequence of abelian groups and homomorphisms

A
f // B

g // C

is called exact at B if ker(g) = im(f).
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Theorem 3.3.1. The long sequence of homomorphisms

... // Hn+1(X,A) ∂ // Hn(A)
Hn(i) // Hn(X)

Hn(j)// Hn(X,A) ∂ // Hn−1(A) // ... // 0

is exact (i.e. exact at all groups in the sequence) and is called the long exact homology

sequence associated to the pair (X,A).

Let us state the following lemma for later use.

Lemma 3.3.2. The Five-Lemma

In a commutative diagram of abelian groups as follows:

A
i //

α
��

B
j //

β
��

C
k //

γ
��

D
l //

δ
��

E

ε
��

A
′ i′ // B

′ j′ // C
′ k′ // D

′ l′ // E
′

If the two rows are exact and α, β, δ and ε are isomorphisms, then γ is also an iso-

morphism.

Proof. A proof can be found in Hatcher 2.1 [7].

3.4 Reduced Homology

The reduced homology is a modified version of singular homology. Let X be a space;

then there exists a unique map to a point ε : X → {pt}. Define the reduced homology

as:

H̃n(X) := kerHn(ε).

For a non-empty subset A of X, we define the reduced homology as:

H̃n(X,A) = Hn(X,A).
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3.5 Cellular Homology

3.5.1 Cell Complexes

Let

Dn := {x ∈ Rn | |x| ≤ 1}

be the unit disk or closed n-cell with the boundary

Sn−1 = ∂Dn := {x ∈ Rn | |x| = 1}.

For a topological space X and a continuous map f : Sn−1 → X, we can construct

a new quotient space

Y := (X tDn)/ ∼

by the equivalence relation generated by p ∼ f(p) for all p ∈ Sn−1. We say that Y is

obtained from X by attaching an n-cell and the map f is called the attaching map.

More generally, if we have a collection of maps fα : Sn−1 → X, then

Y = (X t (tαDn
α))/ ∼

where p ∼ fα(p) for all p ∈ Sn−1
α and α.

A cell complex (CW-complex) is a space obtained by iteratively attaching n−cells.

That is to say, a 0−dimensional cell complex is a discrete space, and an n-dimensional

cell complex Xn is a space obtained by attaching n-cells to (n− 1)−dimensional cell

complex Xn−1. An infinite dimensional cell complex is defined as a colimit.

A subspace A ⊆ X is called a subcomplex if it is a closed union of cells. For a

given subcomplex A ⊆ X, the quotient space X/A defined by identifying all points in

A with each other is naturally a cell complex, called a quotient complex of X.

The subcomplex Xn ⊆ X, consisting of all cells of dimension ≤ n, is called the

n-skeleton of X.

Proposition 3.5.1. If A ⊆ X is a subcomplex, then Hn(X,A) ∼= H̃n(X/A) and we

have a long exact sequence in homology

... // H̃n+1(X/A) // Hn(A) // Hn(X) // H̃n(X/A) // Hn−1(A) // ... // 0.
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Lemma 3.5.2. Let X be a cell complex and C ⊂ X a compact subspace. Then C is

contained within the union of finitely many cells of X.

Lemma 3.5.3. If X is a cell complex, then:

1. Hk(Xn, Xn−1) is zero if k 6= n and is a free abelian group with generators corre-

sponding to the n-cells when k = n.

2. Hk(Xn) = 0 for k > n. Thus Hk(X) = 0 for k > dim(X).

3. The inclusion i : Xn ↪→ X induces an isomorphism Hk(i) : Hk(Xn) → Hk(X)

for k < n.

Proof. By Proposition 1.2, we have an isomorphism Hk(Xn, Xn−1) = H̃k(Xn/Xn−1)

and Xn/Xn−1 is a wedge of spheres indexed by the n− cell of X. Property 1 follows.

Property 2 is proven by induction, and is clearly true for n = 0. Now suppose it

has been proven for n− 1. The long exact sequence of the pair contains

... // Hk(Xn−1) // Hk(Xn) // Hk(Xn, Xn−1) // ...

where both Hk(Xn−1) = Hk(Xn, Xn−1) = 0 for k > n by induction and property 1.

Thus Hk(Xn) = 0 as well.

To prove property 3, consider the exact sequence

Hk+1(Xn+1, Xn) // Hk(Xn) // Hk(Xn+1) // Hk(Xn+1, Xn).

By property 1, the groups on the end vanish for k < n so Hk(Xn) ∼= Hk(Xn+1).

Repeating this argument, we get

Hk(Xn) ∼= Hk(Xn+1) ∼= Hk(Xn+2) ∼= ...

which suffices if X is finite dimensional. For the infinite dimensional case, observe

that Lemma 1.1 implies that every chain Sk(X) must be in the image of Sk(Xn) for

some n (since the union of images of simplices occurring in the chain is a compact

subset of X). Thus every cycle Zk(X) arises as the image of a cycle in Zk(Xn) for

some n, and every boundary Bk(X) arises as the image of a boundary in Bk(Xn) for

some n. Thus, the result follows.
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Let X be a CW complex. Using Lemma 3.5.3, we can define a homomorphism

dn : Hn(Xn+1, Xn)→ Hn−1(Xn−1, Xn−2) by the commutative diagram

0

0

((

Hn(Xn+1) ∼= Hn(X)

55

Hn(Xn)
jn

((

66

Hn+1(Xn+1, Xn)

∂n+1

66

dn+1 // Hn(Xn, Xn−1)

∂n ))

dn // Hn−1(Xn−1, Xn−2)

Hn−1(Xn−1)

jn−1

55

0

55

(3.5.1)

where dn+1 and dn are defined as the compositions jn◦∂n+1 and jn−1◦∂n. Note that the

diagonal maps occur in the long exact sequences of pairs and hence, the composition

dn ◦ dn+1 = 0. Thus (Hn(Xn, Xn−1), dn)N∈Z forms a chain complex, called the cellular

chain complex. The homology of the cellular chain complex is called the cellular

homology.

Theorem 3.5.4. The cellular homology groups are naturally isomorphic to the sin-

gular homology groups.

Proof. From the diagram above, we may identify Hn(X) ∼= Hn(Xn)/im(∂n+1). Since

jn is injective, it maps im(∂n+1) isomorphically onto im(jn∂n+1) = im(dn+1) and by

exactness, Hn(Xn) isomorphically onto im(jn) = ker(∂n). Finally, jn−1 is injective,

ker(∂n) = ker(dn) and hence Hn(X) ∼= ker(dn)/im(dn+1).

3.5.2 Examples for homology

Example 3.5.2. Genus g Riemann surface Σg is constructed by attaching a 2-cell to

a wedge of 2g circles using an attaching map
∏g

i=1[ai, bi]. The cellular chain complex
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is

0 // Z d2 // Z2g d1 // Z with both d1 = d2 = 0

and it follows that the result is:

Hk(Σg,Z) ∼=


Z if k = 0, 2,

Z2g if k = 1,

0 otherwise.

Example 3.5.3. n− dim sphere is defined by attaching an n−cell to a 0−cell, and

Hk(S
n,Z) ∼=

Z if k = 0, n,

0 otherwise.

Example 3.5.4. The infinite complex projective plane is a cell complex with one cell

in each even degree

Hk(CP∞,Z) ∼=

Z if k = 0, even,

0 if k = odd.

Example 3.5.5. The real projective plane has a cell complex structure with one cell

in each dimension. However, the homology groups are dependent on the field.

Hk(RP n,Z2) ∼=

Z2 if 0 ≤ k ≤ n,

0 otherwise.

Hk(RP n,Q) ∼=

Q if k = 0, and k = n if n is odd,

0 otherwise.

Hk(RP n,Z) ∼=


Z if k = 0, and k = n odd,

Z/2Z if 0 < k < n, and k odd,

0 otherwise.
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3.6 Cohomology Groups

Homology groups Hn(X) are the result of forming a chain complex ... → Cn
∂−→

Cn−1
.−→ ... of singular, simplicial, or cellular chains, and then take the homology

groups of this chain complex, Zn/Bn, as we defined. To obtain the cohomology groups

Hn(X), we dualize this chain complex as follows:

Let R be a commutative ring and consider a usual chain complex C of free abelian

groups,

... −→ Cn+1
∂−→ Cn

∂−→ Cn−1
.−→ ..

To dualize this complex we replace each chain group Cn by its dual cochain group

C∗n = Hom(Cn, R), the group of homomorphisms Cn → R, and we replace each

boundary map ∂ : Cn → Cn−1 by its dual coboundary map δ = ∂∗ : C∗n−1 → C∗n.

The reason why δ goes in the opposite direction, increasing rather than decreasing

dimension, is purely formal: For a homomorphism α : A → B, the dual homomor-

phism α∗ : Hom(B,R)→ Hom(A,R) is defined by α∗(ϕ) = ϕα, so α∗ sends B
ϕ−→ R

to the composition A
α−→ B

ϕ−→ R.

That is

A

ϕ◦α ��

α // B

ϕ
��
R

The dual homomorphisms obviously satisfy (αβ)∗ = β∗α∗, I∗ = I, and 0∗ = 0. In

particular, since ∂∂ = 0, it follows that δδ = 0, according to the following cochain

complex

...← C∗n+1
δ←− C∗n

δ←− C∗n−1 ←− ...

and the cohomology group Hn(X;R) can be defined as the homology group. We can

now define cochains Zn := ker δn+1, coboundaries Bn := imδn, and cohomology

Hn := Zn/Bn.

Definition 3.6.1. Let R be a commutative ring. The singular cohomology of a pair

of spaces (X,A), denoted by Hn(X,A;R) for n ≥ 0, is the cohomology of the singular
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cochain complex

... // Sn−1(X,A;R) // Sn(X,A;R) // Sn+1(X,A;R) // ...

obtained by dualizing the singular chain complex of X.

Theorem 3.6.1. Let X have a finite cell complex. Then, for any field F,

Hk(X,F) ∼= Hk(X,F) for k ∈ N.

Proof. Let us consider the cellular chain and cochain complexes of X :

... −→ Ci+1
∂i+1−−→ Ci

∂i−→ Ci−1
∂i−1−−→ ...

...←− C∗i+1

δi+1←−− C∗i
δi←− C∗i−1

δi−1←−− ...

with Ci = Hi(Xi, Xi−1) ∼= FNi , where Ni is the number of i − cells and C∗i =

Hom(Ci;F) = Hom(FNi ;F) ∼= FNi have the same dimension. Also, since δi = ∂Ti , we

have rank(∂i) = rank(δi). In other words, the dimensions of the image of ∂i and δi

are the same.

By the definition of homology, we have Hi(X,F) = ker(∂i)/im(∂i+1) and hence,

dim(Hi(X,F)) = dim(ker(∂i))− dim(im(∂i+1)).

Now, by using the Rank-Nullity Theorem,

dim(Hi(X,F)) = dim(Ci)− rank(∂i)− rank(∂i+1).

Similarly, by the definition of cohomology, we have

dim(H i(X,F)) = dim(C∗i )− rank(δi)− rank(δi+1),

and hence dim(Hi(X,F)) = dim(H i(X,F)).

This result leads us to complete the proof.
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3.6.1 The cup product

A graded R-algebra A∗ is a direct sum of R−modules

A∗ =
⊕
i∈Z

Ai

equipped with a multiplication Ai × Aj → Ai+j which is distributive with respect to

addition. The elements of Ai ⊆ A∗ are called homogeneous of degree i. We say A∗ is

a graded commutative if the multiplication satisfies

m · n = (−1)i+jn ·m

for homogeneous elements m ∈ Ai and n ∈ Aj.

Theorem 3.6.2. There is a multiplication called the cup product that makes the direct

sum

H∗(X;R) :=
∞⊕
i=0

H i(X;R)

into a graded commutative, associative R-algebra for which H i(X;R) has degree i.

We begin by defining the cup product at the level of cochains,

Sp(X,A;R)× Sq(X,A;R)→ Sp+q(X,A;R), (ϕ, ψ)→ ϕ ∪ ψ

defined on a (p+ q)−simplex σ by

(ϕ ∪ ψ)(σ) = ϕ(σ ◦ [e0, ..., ep])ψ(σ ◦ [ep, ..., ep+q]),

where [e0, ..., ep] : ∆p → ∆p+q and [ep, ..., ep+q] : ∆q → ∆p+q are affine simplices. The

cup product is both associative and distributive with respect to addition.

Lemma 3.6.3. The cup product satisfies the Leibniz rule

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)pϕ ∪ δψ

for ϕ ∈ Sp(X) and ψ ∈ Sp(X).

Consequently, it implies that the product of two cocycles is a cocycle. Also, if the
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product of a cocycle with a coboundary is a coboundary, because

ϕ ∪ δψ = ±δ(ϕ ∪ ψ)± δϕ ∪ ψ = ±δ(ϕ ∪ ψ) if δϕ = 0

and

δϕ ∪ ψ = δ(ϕ ∪ ψ)± ϕ ∪ δψ = δ(ϕ ∪ ψ) if δψ = 0.

It follows that the cup product descends a map

∪ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R)

which is both associative and bilinear with respect to the R−module structure. Thus

the cup product makes the direct sum

H∗(X;R) :=
∞⊕
i=0

H i(X;R)

into a graded, associative R−algebra. There is a multiplicative identity, denoted by

1, which is represented by the 0−cocycle that sends every 0−simplex to 1.

3.6.2 The cap product and Poincaré Duality

The cap product is a bilinear map that takes as input a singular n−chain and singular

k−cochain, and outputs an (n− k)−chain for n ≥ k:

∩ : Sn(X;R)× Sk(X;R)→ Sn−k(X;R).

Given an n−simplex σ : ∆n → X and a cochain ψ ∈ Sk(X;R), the cap product is

dual to the cup product in the sense that if ϕ ∈ Sn−k(X;R) is a cochain, then

ϕ(σ ∩ ψ) = (ψ ∪ ϕ)(σ),

so that the homomorphism

ψ ∪ () : Sn−k(X;R)→ Sn(X;R)
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is the transpose of the linear map

() ∩ ψ : Sn(X;R)→ Sn−k(X;R).

Theorem 3.6.4. The cap product determines a bilinear map,

∩ : Hn(X;R)×Hk(X;R)→ Hn−k(X;R)

by the rule

[α] ∩ [ψ] = [α ∩ ψ].

Lemma 3.6.5. If α ∈ Sn(X) and ψ ∈ Sk(X) then

∂(α ∩ ψ) = (−1)k(∂α ∩ ψ − α ∩ δψ).

Theorem 3.6.6. Poincaré Duality Theorem: Let M be a closed, R−oriented

n−manifold with fundamental class [M ] ∈ Hn(M ;R). The cap product with respect to

[M ] defines an isomorphism

[M ] ∩ () : Hk(M ;R)
∼=−→ Hn−k(M ;R).

3.7 The Ku̇nneth Formula

For two given spaces, we may form the product space X × Y, which comes equipped

with projection maps π1 : X × Y → X and π2 : X × Y → Y. These can be used to

define the cross product:

Hp(X;R)×Hq(Y ;R)→ Hp+q(X × Y ;R)

given by a× b = π?1(a) ∪ π?2(b).

The cross product is bilinear, so it determines a homomorphism

Hp(X;R)⊗Hq(Y ;R)→ Hp+q(X × Y ;R), a⊗ b 7→ a× b. (3.7.1)
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Theorem 3.7.1. If both Hp(X;R) and Hq(Y ;R) are free R−modules for all degrees

of p and q respectively, then there is an isomorphism:

Hn(X × Y ;R) ∼=
⊕
p+q=n

Hp(X;R)⊗R Hq(Y ;R)

defined by adding up the natural homomorphism 3.7.1.

A proof in the case when X and Y are cell complexes can be found in the Hatcher,

section 3.2 [7].



Chapter 4

Betti Numbers and Poincaré

Polynomials

4.1 Betti Numbers

4.1.1 Fundamental theorem of finitely generated abelian groups

Let G be a finitely generated abelian group. Then it decomposes as follows:

G ∼= Zr × Zn1 × Zn2 × ...× Zns for some integers r, n1, n2, ..., ns,

and uniquely satisfying the following conditions:

1. r ≥ 0 and ni ≥ 2 for all i,

2. ni+1 | ni for 1 ≤ i ≤ s− 1.

Then,

1. the integer r in the decomposition is called the free rank of G,

2. n1, n2, ..., ns are called invariant factors of G,

3. the decomposition is called the invariant factor decomposition of G.
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Definition 4.1.1. We say that a group G is finitely generated if there exists a finite

set S ⊆ G such that every element of G can be written as a product of finitely many

elements of S and the inverses of such elements.

Definition 4.1.2. For each positive integer r, let Zr = Z× Z× ...× Z be the direct

product of r copies of Z. Then Zr is called the free abelian group of order r.

Definition 4.1.3. For each positive integer n, we call Zn = Z
nZ the cyclic group of

order n.

4.1.2 Betti Numbers

Definition 4.1.4. Let X be a topological space and the abelian group Hk(X) be the

nth homology group of X. Then for a non-negative integer k, the kth Betti number

bk(X) of X is the dimension of Hk(X), i.e.,

Hk(X,F) = Fbk for a field F. (4.1.5)

The Betti numbers depends on the field F and only through the characteristic of

F . If the homology groups are torsion-free, then the Betti numbers are independent

of the filed.

Example 4.1.6. n− dim sphere.

Consider

Hk(S
n,F) =

F if k = 0, n,

0 otherwise.

Therefore b0(Sn) = bn(Sn) = 1 and all the other Betti numbers are 0.

Example 4.1.7. Genus g Riemann surface.

Consider

Hk(Σg,F) =


F if k = 0, 2,

F2g if k = 1,

0 otherwise.

Therefore b0(Σg) = b2(Σg) = 1, b1(Σg) = 2g and all the other Betti numbers are 0.
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Example 4.1.8. The infinite complex projective plane.

Consider

Hk(CP∞,F) =

F if k = 0, even,

0 if k = odd.

Therefore bn(CP∞) =

1 if k = 0, even,

0 if k = odd.

Example 4.1.9. The real projective plane.

Hk(RP n,Z2) ∼=

Z2 if 0 ≤ k ≤ n,

0 otherwise.

Hk(RP n,Q) ∼=

Q if k = 0 and, k = n, odd

0 otherwise.

Therefore, over the field Z2, bn(RP n) =

1 if 0 ≤ k ≤ n,

0 otherwise,

and over Q, bn(RP n) =

1 if k = 0, and k = n odd,

0 otherwise.

4.2 Poincaré Series

Definition 4.2.1. For a fixed coefficient field F, define the Poincaré polynomial PX(t)

of a topological space X to be the generating power series of its Betti numbers.

i.e. PX(t) =
∑
i

bit
i,

where bi is the dimension of Hi(X,F) as a vector space of F (or the ith Betti number

of X).

Example 4.2.2. n− dim sphere.

By Example 4.1.6, the Betti numbers are b0(Sn) = bn(Sn) = 1 and all the other Betti

numbers are 0. Therefore PSn(t) = 1 + tn.
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Example 4.2.3. Genus g Riemann surface.

By Example 4.1.7, the Betti numbers are b0(Σg) = b2(Σg) = 1, b1(Σg) = 2g and all

the other Betti numbers are 0. Therefore PΣg(t) = 1 + 2gt+ t2.

Example 4.2.4. The infinite complex projective plane.

By Example 4.1.8, the Betti numbers are bk(CP∞) =

1 if k = 0, even,

0 if k = odd.
.

Therefore PCP∞(t) = 1 + t2 + t4 + t6 + ...

Theorem 4.2.1. Let X and Y be two topological spaces. Then the Poincaré polyno-

mial of the tensor product X × Y can be written as:

PX×Y (t) = PX(t)PY (t).

This theorem follows from the Künneth Theorem for fields.

Example 4.2.5.

PS1×S1(t) = PS1(t)PS1(t) = (1 + t)(1 + t) = 1 + 2t+ t2.

Example 4.2.6.

P(S1)2g(t) = PS1×S1×...×S1(t) = PS1(t)PS1(t)...PS1(t) = (1 + t)2g.

Example 4.2.7.

PCP∞×(S1)2g(t) = PCP∞(t)P(S1)2g(t)

= (1 + t2 + t4 + t6 + ...)(1 + t)2g

= (1 + t2 + t4 + t6 + ...)

2g∑
l=0

(
2g

l

)
tl

=
∞∑
l=0

2g∑
i=0

(
2g

i

)
ti+2l.



Chapter 5

The Symmetric Product Space and

The Infinite Symmetric Product

Space

5.1 The symmetric product space SP n(Σg)

The symmetric product of a topological space X can be thought of as a set of finite

unordered n − tuples drawn from space X. Key to this construction is that the

symmetric group Sn acts naturally on the product space Xn by permuting elements,

namely,

σ(x1, x2, ..., xn) = (xσ(1), xσ(2), ..., xσ(n)) for all σ ∈ Sn and (x1, x2, ..., xn) ∈ Xn.

Definition 5.1.1. Let X be a topological space. For any natural number n, the nth

symmetric product of X is the orbit space:

SP n(X) = Xn/Sn

of the natural permutation action described above, where Xn = X ×X × ... ×X is

the product space.

In case X = Σg, then SP n(Σg) may be interpreted as the space of all effective

divisors of order n. In addition to that, SP n(Σg) serves as the domain of the classical
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Abel-Jacobi map:

AJn : SP n(Σg)→ Jac(Σg),

which we will explain in Chapter 7. In this case SP n(Σg) is a complex manifold of

dimension n (a real manifold of dimension 2n).

5.2 The infinite symmetric product space SP∞(X)

Let X be a topological space and ∗ ∈ X be a given base point. Then, there is an

embedding

SP n(X) ↪→ SP n+1(X)

given by

j(x1, x2, ..., xn) = (x1, x2, ..., xn, ∗).

Thus SP n(X) can naturally considered as a subset of SP n+1(X) and this is given

a sequence

SP 1(X) ⊂ SP 2(X) ⊂ ... ⊂ SP n(X) ⊂ SP n+1(X) ⊂ ... (5.2.1)

that allows defining an infinite symmetric space.

Let X1 ↪→ X2 ↪→ ... be a sequence of inclusions. Consider the union X = ∪Xn

and define the topology of X by the rule that U ⊆ X is open if U ∩ Xn is open for

all n. If the Xn are a sequence of cell complexes, that is, Xn is a subcell complex of

Xn+1, then X is also a cell complex. We call X the colimit of the sequence.

Definition 5.2.2. Let X be a topological space. The infinite symmetric product of

X is the colimit

SP∞(X) ' colimSP n(X)

according to this sequence.

Theorem 5.2.1. Let Σg be a compact Riemann surface of genus g. Then there is a

homotopy equivalence such that

SP∞(Σg) ∼= CP∞ × (S1)2g. (5.2.3)

Theorem 5.2.1 is a consequence of the Dold-Thom Theorem 5.2.2, which we now
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explain.

5.2.1 Eilenberg-Maclane Space

Given a positive integer n and a group G (necessarily abelian if n ≥ 2) then a con-

nected topological space X is called an Eilenberg-Maclane space of the type K(G, n),

if it has nth homotopy group

πn(X) ' G

and

πi(X) = 0 for i 6= n.

The homotopy type of a CW complex K(G, n) is uniquely determined by G and

n. Moreover, K(G, n) is a cell complex structure and it is unique up to homotopy

equivalence.

Example 5.2.4. The unit circle S1 with G = Z :

K(Z, 1) ' S1.

Example 5.2.5. The infinite dimensional real projective space RP∞ with G = Z2 :

K(Z2, 1) ' RP∞.

Example 5.2.6. The infinite dimensional complex projective space CP∞ with G =

Z :

K(Z, 2) ' CP∞.

5.2.2 Dold-Thom Theorem

Theorem 5.2.2. Let X be a connected cell complex. Then, there is a homotopy

equivalence

SP∞(X) '
∞∏
n=1

K(Hn(X,Z), n). (5.2.7)
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5.2.3 Proof of Theorem 5.2.1

Note that Σg is a connected cell complex and

Remark 5.2.3. Hn(Σg,Z) =


Z if n = 0, 2

Z2g if n = 1

0 otherwise.

Now the Dold-Thom theorem implies:

SP∞(Σg) '
∞∏
n=1

K(Hn(Σg,Z), n)

= K(H1(Σg,Z), 1)×K(H2(Σg,Z), 2)

= K(Z2g, 1)×K(Z, 2)

= (S1)2g × CP∞. (by Ex.5.2.4 and Ex.5.2.6)

5.3 The Betti numbers and Homology of SP∞(Σg)

By Theorem 5.2.1 and Theorem 4.2.1, we have the Poincaré polynomial for SP∞(Σg)

as:

PSP∞(Σg)(t) = PCP∞×(S1)2g(t)

= (1 + t)2g(
1

1− t2
)

=
∞∑
l=0

2g∑
i=0

(
2g

i

)
ti+2l.

Note that the k − th Betti number bk of a space is the coefficient of tk of its own

Poincaré polynomial. For example, consider b4, has the following combinations to be

i+ 2l = 4,

i 0 2 4

j 2 1 0

Table 5.1: i and l values for b4
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and hence, b4 =
(

2g
0

)
+
(

2g
2

)
+
(

2g
4

)
. So,

k bk

0 b0 =
(

2g
0

)
1 b1 =

(
2g
1

)
2 b2 =

(
2g
0

)
+
(

2g
2

)
3 b3 =

(
2g
1

)
+
(

2g
3

)
4 b4 =

(
2g
0

)
+
(

2g
2

)
+
(

2g
4

)
5 b5 =

(
2g
1

)
+
(

2g
3

)
+
(

2g
5

)
6 b6 =

(
2g
0

)
+
(

2g
2

)
+
(

2g
4

)
+
(

2g
6

)
7 b7 =

(
2g
1

)
+
(

2g
3

)
+
(

2g
5

)
+
(

2g
7

)
...

...

Table 5.2: Classification of Betti numbers of SP∞(Σg).

In general,

bk(SP
∞(Σg)) =


∑k/2

i=0

(
2g
2i

)
if k = 0, even,∑(k−1)/2

i=0

(
2g

2i+1

)
if k = odd.

(5.3.1)

Recall that the homology of a space X,

Hk(X,F) = Fbk for a field F.

and hence, as a conclusion, we have:

Hk(SP
∞(Σg),F) =


F
∑k/2

i=0 (2g
2i) if k = 0, even,

F
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd.

(5.3.2)
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5.4 The relationship between SP n(Σg) and SP∞(Σg)

As we described in subsection 5.2, SP∞(Σg) is the colimit of SP n(Σg). SP
∞(Σg) has

a cell complex structure [9] for which the SP n(Σg) are subcomplexes such that the

natural inclusion i : SP n(Σg) ↪→ SP∞(Σg) is an isomorphism up to the n-skeletons:

(SP n(Σg))n ∼= (SP∞(Σg))n.

This inclusion determines an isomorphism between cellular chain complexes pi :

Ci(SP
n(Σg))→ Ci(SP

∞(Σg)) for i ≤ n.

Theorem 5.4.1. Let Σg be a compact Riemann surface of genus g with an nth sym-

metric product space SP n(Σg) and infinite symmetric product space SP∞(Σg). Then,

Hk(SP
n(Σg),F) ∼= Hk(SP

∞(Σg),F) for k = 0, 1, .., n− 1. (5.4.1)

Proof. The proof follows directly by Lemma 3.2.1.

In fact, I.G MacDonald [9] proved that 5.4.1 is also an isomorphism for k = n.

5.4.1 The Homology and Betti numbers of SP n(Σg)

Theorem 5.4.1 allows us to find homology groups of SP n(Σg) and Equation 5.3.2

implies that

Hk(SP
n(Σg),F) =


F
∑k/2

i=0 (2g
2i) if k = even,

F
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd

(5.4.2)

for k = 0, 1, 2, ..., n.

To calculate the rest, from n + 1, ..., 2n of the homology groups, we need to use

Theorem 3.6.1 and the Poincaré duality.

Since SP n(Σg) has a finite cell complex structure, by Theorem 3.6.1:

Hk(SP
n(Σg),F) ∼= Hk(SP n(Σg),F) for k ∈ N.
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Recall that the n− th symmetric product space SP n(Σg) of a compact Riemann

surface Σg of genus g is a closed R− orientable 2n-dimensional manifold and satisfies

the Poincaré duality theorem. Thus we have

Hk(SP n(Σg),F) ∼= H2n−k(SP
n(Σg),F).

Therefore, the conclusion is:

Hk
∼= Hk ∼= H2n−k ∼= H2n−k.

As results:

• Poincaré polynomial

Pt(SP
n(Σg)) =

∑
i+k≤n

(
2g

i

)
ti+2k; (5.4.3)

• Euler characteristic

χ(SP n(Σg)) = (−1)n
(

2g − 2

n

)
; (5.4.4)

• In addition to these results, we introduce the zeta function [9], ζ(u, t), which is

the power series of Poincaré polynomials of each symmetric product:

ζ(u, t) =
∞∑
n=0

Pt(SP
n(Σg))u

n =
(1 + ut)2g

(1− u)(1− t2u)
. (5.4.5)

Moreover, all the Betti numbers are independent of the field, SP n(Σg) satisfies all

the conditions of Theorem 3.2.2, and hence, we can introduce all the homology and

cohomology groups of SP n(Σg) over Z.



Chapter 6

Fiber Bundles and Covering Spaces

6.1 Fiber Bundles

Definition 6.1.1. Let E,B and F be topological spaces, called total space, base

space and fiber respectively. A fiber bundle is a structure (E,B, q, F ) with continuous

surjection q : E → B satisfying the following conditions:

1. For any b ∈ B the pre-image q−1(b) is homeomorphic to F and is called the fiber

over b.

2. For every b ∈ B there is an open neighbourhood U ⊆ B of b such that there is a

homeomorphism ϕ : q−1(U) :→ U×F with subspace topology and the following

diagram commutes:

q−1(U)
ϕ //

q

��

U × F

proj1
yy

U

where proj1 is the natural projection onto the first coordinate. The set of all {Ui, ϕi}
is called a local trivialization of the bundle.

Since projections are open maps, every fiber bundle q : E → B is an open map

and hence, B has the quotient topology determined by the map q. The fiber bundle
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structure is determined by the projection map q, but we sometimes write a fiber

bundle as a short exact sequence to indicate which space is the fiber, total space, and

base space.

F −−−→ E
q−−−−→ B

Note that when the fiber is a vector space, the bundle is called a vector bundle.

Example 6.1.2. A fiber bundle with fiber a discrete space is a covering space. Con-

versely, a covering space with fibers which all have the same cardinality, such as a

covering space over a connected base space, is a fiber bundle with a discrete fiber.

Example 6.1.3. Trivial Bundle.

Let E = B × F and let q : E → B be the projection onto the first coordinate. Then

E is a fiber bundle over B and is called a trivial bundle.

Example 6.1.4. The n−dimensional real projective space RP n defined by:

RP n := Sn/ ∼

where x ∼ −x for x ∈ Sn ⊂ Rn+1. Let q : Sn → RP n be the projection map, then

this is a fiber bundle with fiber in the two point set and it is also a covering map.

Example 6.1.5. The n−dimensional complex projective space CP n defined by:

CP n := S2n+1/ ∼

where x ∼ ux for x ∈ S2n+1 ⊂ Cn and u ∈ S1. Then q : S2n+1 → CP n is a fiber

bundle with fiber S1.

Example 6.1.6. One of the simplest examples of a nontrivial bundle E is the Möbius

band, which is a bundle over S1 with fiber an interval.

Theorem 6.1.1. Given a fiber bundle (E,B, q, F ) and choosing a base point e0 ∈ E;

then, there is a long exact sequence of homotopy groups

... // π2(F, e0) // π2(E, e0) // π2(B, q(e0)) // π1(F, e0) // π1(E, e0) // π1(B, q(e0)) .
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6.1.1 Sections

Let q : E → M be a fiber bundle with the fiber Em = q−1(m) for m ∈ M. A section

is a continuous map s : M → E such that q ◦ s = idM , i.e.,

s(m) ∈ Em for all m ∈M.

If E →M is a vector bundle, then every fiber Em of E is a vector space and thus

has a distinguished element, the zero-vector in Em, denoted by 0m. It follows that

every vector bundle admits the zero-section:

s0(m) = (m, 0m) ∈ Em.

6.1.2 Pullback Bundle

Definition 6.1.7. Let q : E → B be a fiber bundle with the fiber F and let f : B
′ →

B be a continuous map. Define the pullback bundle by

f ∗E = {(b′, e) ∈ B′ × E | f(b′) = q(e)} ⊆ B
′ × E

and the projection map q
′

: f ∗E → B
′
, given by the projection onto the first coor-

dinate and g : f ∗E → E, given the projection onto the second coordinate, such that

the following diagram commutes:

f ∗E
g //

q
′

��

E

q

��
B
′ f // B

(6.1.8)

If (U,ϕ) is a local trivialization of E, then (f−1(U), ψ) is a local trivialization of

f ∗E, where ψ(b′, e) = (b′, proj2(ϕ(e))). It then follows that f ∗E is a fiber bundle over

B
′

with fiber F and the bundle is called the pullback of E by f.

Proposition 6.1.2. Let (E,B, q, F ) be a trivial fiber bundle and f : C → B be a

continuous map. Then the pullback of the fiber bundle along f is also a trivial fiber

bundle on C with the same fiber F.
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Proof. Considering the pullback of the commutative diagram:

q∗C //

��

C

f
��

B × F q // B

we have

q∗C = {((b, d), c) ∈ B × F × C | q(b, d) = b = f(c)}

= {(b, c) ∈ B × C | f(c) = b} × F

= {(f(c), c) | c ∈ C} × F
∼= C × F.

6.1.3 Covering Spaces

Definition 6.1.9. A covering space of a space X is a space X̃ together with a map

p : X̃ → X satisfying the following condition: every point x ∈ X has an open

neighbourhood Ux ⊆ X, such that p−1(Ux) is a disjoint union of open sets, each of

which is mapped by p homeomorphically onto Ux.

Example 6.1.10. The map p : R → S1 given by p(t) = eit is a covering map,

wrapping the real line round and round the circle. The pre-image of a little open arc

in the circle is a collection of open intervals in the real line, offset by multiples of 2π.

Example 6.1.11. Another cover of the circle is the map p : S1 → S1 given by

p(eit) = eint, where n is a positive integer. This wraps the circle around itself n times.

Example 6.1.12. The map p : (S1)2g → (S1)2g given by p(eit1 , eit2 , ..., eit2g) =

(e2it1 , e2it2 , ..., e2it2g) is a covering map, wrapping each component two times, which

makes 22g cover.

Theorem 6.1.3. If X is a cell complex with the n−skeleton Xn and X̃ is a covering

space with the covering map p, then X̃ is a cell complex with the n−skeleton p−1(Xn) =

X̃n.
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Proof. The proof and the explanation can be found in Hatcher [7].

Corollary 6.1.4. Let p : Ỹ → Y be a covering map and f : X → Y be a continuous

map. Pullback f ∗p of the covering map p along f is a covering map.

f ∗(Ỹ )
f̄ //

f∗p
��

Ỹ

p

��
X

f // Y

(6.1.13)

Proof. Take any x ∈ X and let f(x) = y in Y. Since p is a covering map, there exists

an open neighbourhood Uy ⊂ Y such that p−1(Uy) =
⋃
i∈I
Vi, where each Vi is open

in Ỹ for i ∈ I and maps homeomorphically to Uy by p. Now, since f is continuous,

f−1(Uy) is an open set, and let Ux = f−1(Uy) be the open neighbourhood of x.

Claim : Ux is covered by f ∗p . That is (f ∗p )−1(Ux) = (f ∗p )−1(f−1(Uy)) = f̃−1(p−1(Uy)) =

f̃−1(
⋃
i∈I
Vi) =

⋃
i∈I
f̃−1(Vi).

So we need to check that each f̃−1(Vi) is mapped homeomorphically onto Ux by

f ∗p . By Corollary 6.1.5 we have f̃ as a homeomorphism and hence we have the result.

Corollary 6.1.5. Let p : Ỹ → Y be a covering map and f : X → Y be a homeomor-

phism. If the pullback of p along f is X̃, and the covering map f ∗p : X̃ → X, then the

function f̃ : X̃ → Ỹ is a homeomorphism.

X̃
f̄ //

f∗p
��

Ỹ

p

��
X

f

∼=
// Y

(6.1.14)

6.1.4 Vector Bundles

An n−dimensional vector bundle is a structural (E,M, q) fiber bundle, such that the

fibers are vector spaces isomorphic to Rn.

Every point m ∈M has an open neighbourhood U along with a homeomorphism
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h : q−1(U) → U × Rn which takes fibers q−1(m) → {m} × Rn so that the following

diagram commutes:

q−1(U) h //

q

��

U × Rn

proj1
yy

U

A smooth vector bundle is a vector bundle (E,M, q), where E and M are smooth

manifolds and q : E →M is a surjective submersion.

Theorem 6.1.6. Let E → M be a smooth vector bundle with fibers Em ∼= Cn and

g : X → E be a smooth map on a smooth manifold X. Then, there exists a smooth

section s : M → E, such that g is transverse to s.

Proof. Theorem 15.3, Chapter 02 [4]

Corollary 6.1.7. Let E →M be a smooth vector bundle with fibers Em for m ∈M.

If the dimension of E is greater than twice the dimension of M , then there exists a

non-vanishing section.

Proof. Let s0 : M → E be the zero-section, which is a smooth map on M. Now, by

Theorem 6.1.6, there is a smooth section s such that s0 is transverse to s. In fact,

since the dimension of TxM for x ∈M is equal to the dimension of M , whenever the

dimension of E is greater than twice the dimension of M , then transversality 2.3.1

implies that there is no intersection, which is for all m ∈M, sm 6= 0m and hence, there

exists a non-vanishing section.

6.1.5 Projective Bundles

Let V be a topological vector space over C. The set of all 1− dim vector subspaces of

V is called the projective space P (V ). Topologically, it is the quotient space endowed

with the quotient topology, the set of equivalence classes of V \ {0} under the equiv-

alence relation ∼ defined by x ∼ y if there is a nonzero element λ of the field such

that x = λy. If V is a finite dimension (say n− dim), then the dimension of P (V ) is

n− 1.
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Definition 6.1.15. Let q : E → X be a topological vector bundle over C with the

base of topological space X. Then its projective bundle is the fiber bundle P (q) :

P (E)→ X, the total space of which is a bundle of projective spaces, and the bundle

projection is

P (E) −→ X

[v] 7−→ q(v).

Proposition 6.1.8. Suppose that M is a manifold and E → M is a smooth vector

bundle of rank greater than dim(M). Then the associated projective bundle P (E)

admits a section.

Proof. Let E →M be a topological vector bundle with total space E and fibers Em.

By Corollary 6.1.7, there exists a non-vanishing section s1 : M → E.

For the associated projective bundle P (E) → M with fiber P (Em) = P (Cn) ∼=
CP n−1, we can define a section

s2 : J(M)→ P (E) by s2(m) = [s1(m)]. (6.1.16)

This implies that every non-zero section of E gives a section of P (E).



Chapter 7

The Abel-Jacobi Map

7.1 The Jacobian

Let Σg be a compact Riemann space of genus g. The first step is to introduce the

Jacobian of Σg, which we will define to be the compact quotient of Cg by a certain

lattice.

Choose smooth closed loops γ1, γ2, ..., γ2g representing a basis [γ1], [γ2], ..., [γ2g] for

the homology group H1(Σg;Z) ∼= Z2g.

Figure 7.1: Genus-g Riemann surface with closed loops γ1, γ2, ..., γ2g

LetH0(Σg; Ω1,0) be the vector space of holomorphic 1−forms on Σg. Let ω1, ω2, .., ωg

be a basis for H0(Σg; Ω1,0) ∼= Cg.

Now define a 2g − dimensional lattice Λ = {
∑2g

i=1 nivi |ni ∈ Z} ≤ Cg, generated

by the basis of v1, ..., v2g ∈ Λ such that integrating each of ωi 1−forms over γi,

vi = (

∫
γi

ω1, ...,

∫
γi

ωg).
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Alternatively, we can define

Λ = {(
∫
γ

ω1, ...,

∫
γ

ωg) | [γ] ∈ H1(X;Z)}.

The Jacobian of the Riemann surface Σg, denoted by J(Σg) is the compact quotient

space,

J(Σg) = Cg/Λ ∼= R2g/Λ.

Since Λ is a discrete subgroup in Cg of maximal rank, Cg/Λ is a (2g)−dimensional

torus which is homeomorphic to (S1)2g as a topological space.

7.1.1 The Abel-Jacobi Map

Fix a point p0 ∈ Σg. The Abel-Jacobi map is a map AJ : Σg → J(Σg). For every

point p ∈ Σg, choose a curve γ from p0 to p and define the map AJ as follows:

AJ(p) = (

∫ p

p0

ω1,

∫ p

p0

ω2, ...,

∫ p

p0

ωg) + Λ

Although
∫ p
p0
ωi seemingly depends on the path from p0 to p, its image in J(Σg)

depends only on the point p. Moreover, any two different paths γ1, γ2 from p0 to

p define a loop with the path concatenation in Σg; therefore, it become an element

in H1(X;Z), so integration over it gives an element of Λ. That means the difference

is erased to the quotient by Λ. Hence AJ(p) is well-defined as a function of p and

independent for choice of curve (It does however depend on the choice of the base

point p0).

In the case of general curve Σg, the map AJ is far from being an isomorphism

unless g = 1. Since J(Σg) is an abelian group, the Abel-Jacobi map AJ can be

extended to a symmetric product,

AJn : SP n(Σg)→ J(Σg)

defined by

AJn(P ) := AJ(x1) + ...+ AJ(xn)

where P = (x1, ..., xn) ∈ SP n(Σg).
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7.2 Abel-Jacobi map as a fiber bundle

Theorem 7.2.1. For n > 2g − 2 the Abel-Jacobi map AJn : SP n(Σg) → J(Σg) is a

fiber bundle with fiber CP n−g, where CP n−g is a complex projective space of dimension

n− g. Moreover, SP n(Σg) is isomorphic to the associated projective bundle P (E) for

a vector bundle E → J(Σg).

Proof. The proof for the first statement is Theorem 2.4 of [3] and the proof of the

second part directly follows Chapter VII, Prop: 2.1 of [1]

Since there is a natural inclusion, SP n(Σg) ↪→ SP n+1(Σg), and a sequence of

subspaces, 5.2.1, we have a sequence of fiber bundles as follows:

CP n−g

��

// SP n(Σg)
AJn //

��

J(Σg)

��
CP n+1−g

��

// SP n+1(Σg)
AJn+1 //

��

J(Σg)

��
CP n+2−g

��

// SP n+2(Σg)
AJn+2 //

��

J(Σg)

��
...

...
...

Hence, taking the direct limit, we can observe that the result of a fiber bundle is

CP∞ // SP∞(Σg)
AJ∞ // J(Σg) (7.2.1)

with fiber CP∞. Hence, for the identity element ∗ ∈ J(Σg) by the definition of the

fiber bundle, there is a homeomorphism

f : CP∞ → AJ−1
∞ (∗). (7.2.2)

Lemma 7.2.2. If n ≥ 2g or n = ∞, then the Abel-Jacobi map AJn : SP n(Σg) →
J(Σg) admits a section.

Proof. Now, by Theorem 7.2.1, we have an isomorphism h, and since n ≥ 2g, by

Proposition 6.1.8 there is a section s2, such that
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P (E)

∼= h
��

// J(Σg)

s2

{{

SP n(Σg)

AJn

99

So, we can define the section s : J(Σg)→ SP n(Σg) by s = h ◦ s2.

Define the map ϕ : CP∞ × J(Σg)→ SP∞(Σg) by ϕ(x, y) = f(x) + s(y). Observe

that (AJ∞ ◦ ϕ)(x, y) = y.

Lemma 7.2.3. The function ϕ : CP∞ × J(Σg) → SP∞(Σg) is a homotopy equiva-

lence.

Proof. Consider the trivial fiber bundle CP∞ i−→ CP∞ × J(Σg)
proj2−−−→ J(Σg) which

gives the first row of the following diagram, and since AJ∞ : SP∞(Σg) → J(Σg) is

a fiber bundle, the second row according to the Theorem 6.1.1. Recall that f is a

homeomorphism 7.2.2.

... // πn+1(J(Σg)) //

Id
��

πn(CP∞) //

f∗
��

πn(CP∞ × J(Σg)) //

ϕ∗

��

πn(J(Σg)) //

Id
��

πn−1(CP∞) //

f∗
��

...

... // πn+1(J(Σg)) // πn(AJ−1
∞ (?)) // πn(SP∞(Σg)) // πn(J(Σg)) // πn−1(AJ−1

∞ (?)) // ...

Since all the homotopy groups here are abelian groups, by the Five-Lemma 3.3.2,

the map ϕ∗ is an isomorphism and hence, by Theorem 2.1.2, ϕ : CP∞ × J(Σg) →
SP∞(Σg) is a homotopy equivalence.



Chapter 8

The Relationship Between ˜SPn(Σg)

and ˜SP∞(Σg)

8.1 Covering space of SP n(Σg) as a pullback

We will construct a homomorphism J(Σg)→ J(Σg) which is also a covering map. As

described in Chapter 7, the Jacobian is the compact quotient space J(Σg) = R2g/Λ.

Let {v1, ..., v2g} ∈ R2g be a basis for Λ and C = [v1, ..., vi, ..., v2g] be the column matrix

for the basis. Let A be a 2g × 2g matrix with integer entries such that det(A) 6= 0.

Then, CAC−1 = B is a surjective linear map R2g → R2g that sends Λ to Λ. This is

determined to be a surjective homomorphism p : J(Σg)→ J(Σg) by p([x]) = [Bx] for

x ∈ R2g.

Then p determines a covering map J(Σg)→ J(Σg) with the number of sheets equal

to | det(A)|. Now we shall consider the pullback diagram of p along the Abel-Jacobi

map:

˜SP n(Σg) //

f∗p

��

J(Σg)

p

��
SP n(Σg)

A.J // J(Σg)

(8.1.1)

By Corollary 6.1.4, the pullback f ∗p of the covering map p is also a covering map

with | det(A)| number of sheets.
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8.2 Homology groups of the covering space ˜SP∞(Σg)

In this section, we will prove that a covering space of SP∞(Σg) has the same homol-

ogy as SP∞(Σg). To begin, let us start with the following commutative diagram of

continuous functions and topological spaces:

Z
′ f

′
//

ϕz

��

X
′

ϕx

��

Y
′g

′
oo

ϕy

��
Z

f // X Y
goo

Then we have, two respective pullback spaces Z
′×X′Y

′
and Z×XY to the diagrams

Z
′ → X

′ ← Y
′

and Z → X ← Y such that

Z
′×X′Y

′
= {(z′ , y′) ∈ Z ′×Y ′ | f ′(z′) = g

′
(y
′
)} and Z×XY = {(z, y) ∈ Z×Y | f(z) = g(y)}.

Hence, we can define a function

ψ : Z
′ ×X′ Y

′ → Z ×X Y (8.2.1)

such that ψ(z
′
, y
′
) = (ϕz(z

′
), ϕy(y

′
)).

We can define the pullback space for the diagram CP∞ × J(Σg)
proj2−−−→ J(Σg)

p←−
J(Σg), as a covering space ˜CP∞ × J(Σg) of CP∞ × J(Σg). Similarly, the pullback

space for the diagram SP∞(Σg)
AJ∞−−−→ J(Σg)

p←− J(Σg) is ˜SP∞(Σg).

Following 8.2.1, this determines the function ψ : ˜SP∞(Σg)→ ˜CP∞ × J(Σg).

Note that the pullback of a trivial fiber bundle is a trivial fiber bundle with the

same fiber. Thus ˜CP∞ × J(Σg) → J(Σg) is a trivial bundle. Moreover, since we

consider the pullback as the covering space, by Proposition 6.1.2,

˜CP∞ × J(Σg) ∼= CP∞ × J(Σg). (8.2.2)

Lemma 8.2.1. ψ : ˜SP∞(Σg)→ ˜CP∞ × J(Σg) is a homotopy equivalence.
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Proof. Since we have pullback diagrams of a trivial fiber bundle and fiber bundle,

we can say that CP∞ → ˜CP∞ × J(Σg) → J(Σg) is a trivial bundle and CP∞ →
˜SP∞(Σg) → J(Σg) is a fiber bundle. Now, by Theorem 6.1.1, we have long exact

sequence of homotopy groups, which make the following commutative diagram:

... // πn+1(J(Σg)) //

Id

��

πn(CP∞) //

f∗

��

πn( ˜CP∞ × J(Σg)) //

ϕ∗
��

πn(J(Σg)) //

Id

��

πn−1(CP∞) //

f∗

��

...

... // πn+1(J(Σg)) // πn(AJ−1
∞ (?)) // πn( ˜SP∞(Σg)) // πn(J(Σg)) // πn−1(AJ−1

∞ (?)) // ...

Since all the homotopy groups here are abelian, by the Five-Lemma 3.3.2 the map,

ψ∗ is an isomorphism. Hence, by Theorem, 2.1.2, ψ is a homotopy equivalence.

Corollary 8.2.2. Let Σg be a genus g compact Riemannian space and F be a field.

Then

Hk( ˜SP∞(Σg),F) = Hk(SP
∞(Σg),F).

Proof. By Lemma 8.2.1, we have the homotopy equivalences,

˜SP∞(Σg) ∼= ˜CP∞ × J(Σg)

∼= CP∞ × J(Σg)

∼= SP∞(Σg).

As a consequence of Corollary 8.2.2 we have

Hk( ˜SP∞(Σg),F) =


F
∑k/2

i=0 (2g
2i) if k = 0, even

F
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd.

(8.2.3)

Now let us consider the relationship between the covering spaces. Let p : X̃ → X

be a covering map and let X be a cell-complex with the n−skeleton Xn. Then X̃ is a

cell-complex with X̃n = p−1(Xn) representing the n−skeleton of X̃.
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Proposition 8.2.3. Let Σg be a compact Riemann surface of genus g. Then,

Hk( ˜SP n(Σg),F) ∼= Hk( ˜SP∞(Σg),F) for k = 0, 1, .., n− 1. (8.2.4)

Proof. Consider the following pullback diagram:

˜SP n(Σg)n
f̃ //

f∗p

��

˜SP∞(Σg)n

p

��
SP n(Σg)n

f // SP∞(Σg)n

Recall that we have a homeomorphism of n−skeletons SP n(Σg)n ∼= SP∞(Σg)n for

up to the n− th skeleton, and by Corollary 6.1.5, we have ˜SP n(Σg)n
∼= ˜SP∞(Σg)n for

up to the n− th skeleton. Now Lemma 3.2.1 gives the proof.

Thus, as a result

Hk( ˜SP n(Σg),F) =


F
∑k/2

i=0 (2g
2i) if k = even,

F
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd.

(8.2.5)

for k = 0, 1, 2, ..., n− 1.

Since SP n(Σg) is a closed manifold, its covering space is also a closed manifold.

By the Poincaré duality theorem

H2n−k( ˜SP n(Σg),F) = Hk( ˜SP n(Σg),F) (8.2.6)

for k = 1, 2, ..., n − 1 and it remains to determine the n − th Betti number of the

covering space.

8.3 Euler Characteristics

The Euler characteristic χ(X) can be defined purely in terms of homology and hence

depends only on the homotopy type of X. In particular, χ(X) is independent of the

choice of the cell complex structure on X.
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Definition 8.3.1. Euler characteristic.

Let X be a finite cell complex, and ci be the number of i−cells of X. Then, the Euler

characteristic χ(X) is defined as:

χ(X) =
∑
i

(−1)ici.

There is an alternative definition for the Euler characteristics connected with the

Betti numbers. We are going to use that definition for the calculations.

Proposition 8.3.1. For a finite cell complex the Euler characteristic is equal to the

alternating sum of Betti numbers:

χ(X) =
∑
i

(−1)ibi.

Theorem 8.3.2. Let X be a finite cell complex and p : X̃ → X be an m−fold covering

map for the covering space X. Then,

χ(X̃) = mχ(X).

Proof. Since p is an m−fold covering map, we have the number of i− cells of X̃,

ci(X̃) = mci(X).

Now, by the Definition 8.3.1,

χ(X̃) =
∑
i

(−1)ici(X̃)

=
∑
i

(−1)imci(X)

= mχ(X).
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8.3.1 The n-th Betti number of ˜SP n(Σg)

Let bi and b̃i be the i−th Betti number of SP n(Σg) and its covering space, respectively.

Then we have bi = b̃i for all i except i = n, and from section 8.1 we have the covering

map f ?p : ˜SP n(Σg)→ SP n(Σg) with | det(A)| number of sheets.

For m = | det(A)|, by Theorem 8.3.2 and (5.4.4) we have:

b̃n = bn + (m− 1)χ(SP n(Σg)) (8.3.2)

= bn + (m− 1)(−1)n
(

2g − 2

n

)
, (8.3.3)

where

bn =


∑n/2

k=0

(
2g
2k

)
if n = 0, even,∑(n−1)/2

k=0

(
2g

2k+1

)
if n = odd.

So the results are:

• Euler characteristic by using (5.4.4):

χ( ˜SP n(Σg)) = mχ(SP n(Σg)) = m(−1)n
(

2g − 2

n

)
(8.3.4)

• The Poincaré polynomial

Pt ˜(SP n(Σg)) = Pt(SP
n(Σg)) + (m− 1)

(
2g − 2

n

)
tn (8.3.5)

• Zeta function

ζ̃(u, t) =
∞∑
n=0

Pt ˜(SP n(Σg))u
n =

(1 + ut)2g

(1− u)(1− t2u)
+ (m− 1)(1 + tu)2g−2 (8.3.6)

Finally, note that the Betti numbers are independent of the characteristic of F. It

follows by Theorem 3.2.2 that
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Hn( ˜SP n(Σg),Z) = Zb̃n (8.3.7)

where b̃n is given by the equation 8.3.2.



Chapter 9

Results

1. Homology and Cohomology of SP∞(Σg) :

Hk(SP
∞(Σg),Z) = Hk(SP∞(Σg),Z) =


Z

∑k/2
i=0 (2g

2i) if k = 0, even,

Z
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd.

2. Homology and Cohomology of ˜SP∞(Σg) :

Hk( ˜SP∞(Σg),Z) = Hk( ˜SP∞(Σg),Z) =


Z

∑k/2
i=0 (2g

2i) if k = 0, even,

Z
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd.

3. Homology and Cohomology of SP n(Σg) :

Hk(SP
n(Σg),Z) = Hk(SP n(Σg),Z) =


Z

∑k/2
i=0 (2g

2i) if k = 0, even,

Z
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd

for k = 0, 1, 2, ..., n and Hk
∼= Hk ∼= H2n−k ∼= H2n−k.

4. If the zeta function is ζ(u, t) =
∑∞

n=0 Pt(SP
n(Σg))u

n, then



62

ζ(u, t) =
(1 + ut)2g

(1− u)(1− t2u)
.

5. Homology and cohomology of ˜SP n(Σg) :

Hk( ˜SP n(Σg),Z) = Hk( ˜SP n(Σg),Z) =


Z

∑k/2
i=0 (2g

2i) if k = 0, even,

Z
∑(k−1)/2

i=0 ( 2g
2i+1) if k = odd

for k = 0, 1, ..., n− 1 and Hk
∼= Hk ∼= H2n−k ∼= H2n−k for all k except n.

For k = n,

Hn( ˜SP n(Σg),Z) = Hn( ˜SP n(Σg),Z) = Zb̃n ,

where

b̃n = bn + (m− 1)(−1)n
(

2g − 2

n

)
and

bn =


∑n/2

k=0

(
2g
2k

)
if n = 0, even,∑(n−1)/2

k=0

(
2g

2k+1

)
if n = odd.

6. If ζ̃(u, t) =
∑∞

n=0 Pt
˜(SP n(Σg))u

n, then

ζ̃(u, t) =
(1 + ut)2g

(1− u)(1− t2u)
+ (m− 1)(1 + tu)2g−2.
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