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Abstract

Parasitic nematodes pose a significant threat to human and animal health, as well as cause

economic losses in the agricultural sector. The use of anthelmintic drugs, such as Ivermectin

(IVM), to control these parasites has led to widespread drug resistance. Identifying genetic

markers of resistance in parasitic nematodes can be challenging, but the free-living nema-

tode Caenorhabditis elegans provides a suitable model. In this study, we aimed to analyze

the transcriptomes of adult C. elegans worms of the N2 strain exposed to the anthelmintic

drug Ivermectin (IVM), and compare them to those of the resistant strain DA1316 and the

recently identified Abamectin Quantitative Trait Loci (QTL) on chromosome V. We exposed

pools of 300 adult N2 worms to IVM (10−7 and 10−8 M) for 4 hours at 20˚C, extracted total

RNA and sequenced it on the Illumina NovaSeq6000 platform. Differentially expressed

genes (DEGs) were determined using an in-house pipeline. The DEGs were compared to

genes from a previous microarray study on IVM-resistant C. elegans and Abamectin-QTL.

Our results revealed 615 DEGs (183 up-regulated and 432 down-regulated genes) from

diverse gene families in the N2 C. elegans strain. Of these DEGs, 31 overlapped with genes

from IVM-exposed adult worms of the DA1316 strain. We identified 19 genes, including the

folate transporter (folt-2) and the transmembrane transporter (T22F3.11), which exhibited

an opposite expression in N2 and the DA1316 strain and were deemed potential candidates.

Additionally, we compiled a list of potential candidates for further research including T-type

calcium channel (cca-1), potassium chloride cotransporter (kcc-2), as well as other genes

such as glutamate-gated channel (glc-1) that mapped to the Abamectin-QTL.
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1 Introduction

Parasitic nematodes cause chronic and debilitating illnesses in humans and animals, as well as

economic losses in livestock and agriculture [1–3]. For example, soil-transmitted helminths,

infect more than one billion people and cost roughly five million disability-adjusted life years

reported in 2010 [4] and plant-parasitic nematodes affecting crops cause annual economic

losses of>$80 billion globally [5]. Control strategies for parasitic nematodes in domesticated

or livestock animals rely on anthelmintic drugs, which cost the European ruminant livestock

industry an estimated €320 million per year [6]. The three major classes of anthelmintic drugs

are benzimidazoles, tetrahydropyrimidines, and macrocyclic lactones (MLs). The MLs, such

as Ivermectin (IVM) and Abamectin, are the most commonly used drug class in veterinary/

human medicine and agriculture due to their high efficacy, low toxicity, and broad-spectrum

nature [7]. Glutamine-gated chloride ion channels (GluCls) are the primary target of MLs in

nematodes. This consequently leads to the depolarization of pharyngeal muscles and hyperpo-

larization of body wall muscles [8]. As a result, feeding becomes impaired, and the worm expe-

riences flaccid muscle paralysis [9, 10]. In addition, γ-aminobutyric acid (GABA) receptors

have been reported as secondary targets of IVM at concentrations [11] considered therapeuti-

cally insignificant.

However, due to the widespread use of anthelmintic drugs, extensive anthelmintic drug

resistance has developed in many parasitic nematode species of livestock [12]. Anthelmintic

resistance has been reported inHaemonchus contortus, Cooperia spp., and Ostertagia ostertagi
infecting sheep in Europe [13]. In addition, anthelmintic-resistant parasitic nematodes in

sheep, cattle and goats have been reported in a number of countries, including Brazil, Argen-

tina, the United States, Australia, New Zealand, and South Africa (reviewed [12]). Further-

more, there are growing concerns that mass drug administration (MDA) programs are

selecting for anthelmintic resistance among helminths that infect humans [14, 15]. In recent

years, there have been emerging reports of IVM resistance in human parasite Onchocerca vol-
vulus in Ghana [16] and Cameroon [17]. Evidently, understanding and identifying the genetic

markers underlying resistance in parasitic nematodes is necessary.

However, identification of candidate genes or gene variants that drive anthelmintic resis-

tance in parasitic nematodes can be challenging. This is partly due to the fact that parasitic

nematodes have a host-dependent life cycle, are difficult to cultivate, maintain, manipulate,

and study at scale, and often lack well-annotated genomes in full chromosomes. Until now,

only a few parasitic nematodes, have relatively complete chromosomal-level genomes [18–21],

allowing genetic and comparative genome analyses. In comparison, the free-living nematode

Caenorhabditis elegans is biologically simple, has a rapid 3.5-day life cycle, genetically amena-

ble, and molecular tools for manipulation are readily available [22]. In addition, the evolution-

ary relationship between C. elegans with parasitic nematodes [23], has led to the adoption of

this free-living nematode as a model for parasitic nematodes [22, 24] because it allows for com-

parative studies and translatable results [25].

Studies in C. elegans have begun to uncover IVM resistance mechanisms. For example,

simultaneous mutations in glc-1, avr-14, and avr-15 result in a ~4000-fold resistance to IVM

in C. elegans [26]. These genes, together with glc-2, glc-3, and glc-4, code for the GluCls sub-

units, which are capable of forming diverse homomeric and heteromeric chloride channels

[9, 10]. However, the discovery of IVM-resistant populations of the small-ruminant parasite

H. contortus lacking mutations in the glc-1, avr-14, and avr-15 genes [19, 27] suggests the

existence of alternative mechanisms of resistance to MLs. Several resistance mechanisms to

MLs have been proposed, including changes in gene expression in GluCl and transport pro-

tein genes [28]. For example, as previously postulated, decreased expression of drug target
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genes may result in fewer drug receptors and thus reduced drug efficacy [29, 30]. Gene

expression changes of transporter genes of the ATP-binding cassette family, particularly P-

glycoproteins (Pgps), also known as efflux pumps, have been linked to anthelmintic drug

resistance [31, 32]. This is because efflux pumps eliminate drugs from the cell, preventing

them from reaching their target sites. Furthermore, increased expression of genes encoding

drug metabolic enzymes, postulated to increase conversion of drugs into inactive metabo-

lites, has been associated with resistance [33]. Collectively, this highlights the multigenic

nature and multiple mechanisms of anthelmintic resistance. Although a previous microar-

ray-based study [34] examined the effect of IVM on gene expression in C. elegans, the strain

used was DA1316, which is highly resistant to IVM due to simultaneous mutations in three

genes (glc-1, avr-14, and avr-15). As a result, the current study is premised on the lack of a

previous transcriptomic study assessing the effect of IVM on gene expression in wild-type

(N2) C. elegans.
In this study, we investigated gene expression in an adult C. elegansN2 strain exposed to

IVM using an RNAseq transcriptomic approach in order to identify the underlying processes

and genes involved in the response to IVM in a wild type strain. In addition, we compared our

transcriptomic data with microarray data from the IVM-exposed C. elegansDA1316 strain

[34] in order to identify genes that may be uniquely associated with IVM response in IVM-

resistant strains. Additionally, we investigated the recently discovered Abamectin Quantitative

Trait Loci (QTL) on chromosome V in C. elegans [35] to determine any potential associations

between the identified genes and the QTL.

2 Materials and methods

2.1 Caenorhabditis elegans exposure and RNA extraction

Adult C. elegansN2 Bristol strains obtained from the Caenorhabditis Genetics Center were

exposed in vitro to Ivermectin (IVM). We utilized IVM concentrations of 10−7 M and 10−8 M,

which are within the ranges (10−9 M- 10−6 M) employed in previous studies [34, 36–40] and

the 4 h exposure time was adapted from Laing et al. [34].

A detailed description of the experimental setup is described in [41]. Briefly, synchronized

worms at maximum reproduction stage (76 h post L1) were incubated at 20˚ C in S-complete

media supplemented with IVM in concentrations of 10−7 and 10−8 M (+ 0.025% DMSO final

concentration) and 0.025% DMSO (control) for 4 h. The experiment was performed in qua-

druplicates (~300 worms /replicate). After exposure worms were pelleted by centrifugation,

frozen in liquid nitrogen, ground with a pestle and subsequently suspended in Trizol (Invitro-

gen, Carlsbad, USA). Chloroform was added and the aqueous phase was advanced to NucleoS-

pin1 RNA Plus Kit (Macherey Nagel, Düren, Germany) for RNA extraction. RNA quality and

quantity checks were performed using the RNA ScreenTape kit on TapeStation 4150 (Agilent,

Santa Clara, USA).

2.2 Library preparation and RNA sequencing

The SNP -& SEQ Platform, SciLifeLab Uppsala, Sweden, did the library preparation and

sequencing. Using the TruSeq stranded mRNA library preparation kit with polyA selec-

tion (Illumina Inc, San Diego, USA); one microgram of RNA from each sample (biological

replicate) was used to prepare sequencing libraries. From the libraries, clusters were

made, and 150 cycles of paired-end sequencing were done in a single-end SP flowcell

using NovaSeq 6000 equipment and v1.5 sequencing chemicals (Illumina Inc., San Diego,

USA).
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2.3 Read processing, mapping and quantification

Ribosomal RNA reads were assessed and filtered out using SortMeRNA (v4.3.6) [42] and

rRNA databases from SILVA SSU, LSU (v111) [43] and the RFAM 5/5.8S (v11.0) [44]. Quality

trimming and adapter removal was performed using Trimmomatic (v0.39) [45] with the fol-

lowing non-default parameters: sliding window of length four; minimum quality 20; and mini-

mum length of 36. FastQC (v0.11.9) [46] was utilized to evaluate the quality of the resulting

reads.

Expression quantification against the C. elegans transcriptome was performed with Salmon

(v1.9.0) [47] using the entire genome (PRJNA13758, release WS283) as the decoy sequence.

The transcriptome used was a concatenation of mRNA, ncRNA, and pseudogene files of

PRJNA13758, release WS283 available at WormBase [48]. We have made the RNA sequencing

raw files available at the ENA database, accessible through the link https://www.ebi.ac.uk/ena/

browser/view/ (accession number: PRJEB59331). Additionally, we have uploaded the pipeline

for analysis and the necessary files for read processing, mapping, and quantification to the fol-

lowing GitHub repository: https://github.com/ruqse/N2IVM.

R version 4.1.2 was utilized for all R-based analyses. Salmon output was matrix-summarized

with tximport R package (v1.22.0) [49] utilizing the TxDb.Celegans.UCSC.ce11.ensGene

annotation R package (v3.12.0) [50], for downstream transcript/ gene-level analysis. As a qual-

ity control measure, exploratory analysis and visualization was performed on count data.

2.4 Principal component analysis

Principal component analysis (PCA) was utilized to investigate sample variation. The variance

stabilizing transformation function from the DESeq2 R package (v1.34.0) [51] was applied to

count data of genes across all samples (n = 12). Since IVM exposure was performed in batches

based on concentration, any batch effects were removed by removeBatchEffect function from

the limma R package (v3.50.3) [52]. Using R base prcomp function, principal component anal-

ysis was performed on the variance-stabilized transformed (VST) read counts. The top two

PCs that account for the most variation in the data were visualized in PCA plot for genes with

non-zero read counts using the ggplot2 R package(v3.3.5) [53]. Sample clustering was deter-

mined by the enclosing ellipses implemented by the geom_mark_ellipse function in the

ggforce R package (https://github.com/thomasp85/ggforce/).

2.5 Differential gene expression

Differential gene expression was determined on raw count data by DEseq function in the

DESeq2 R package using the following model design, ~batch + IVM concentration. The batch

variable was to compensate for any biases caused by the batch effect. Differentially expressed

genes (DEGs) were defined as those with an adjusted P-value< 0.05 and Log2foldchange

(Log2FC)� 0.5 or� -0.5 (1.4-fold change). These cut-offs are based on recommendations

by Schurch et al. [54]. Differentially expressed genes with average expression level (baseMean) of

<20 across all samples were discarded based on the independent filtering results from DESeq2.

The metadata of DEGs such as concise description, gene ontology association, interacting

gene, tissue expression and RNAi/allele phenotype observed were retrieved from WormBase

using the SimpleMine tool taking DEGs gene IDs as input. To assess genes shared by each

drug concentration, comparative Venn diagrams were constructed using gene IDs and the

venn.diagram function of the VennDiagram R package [55]. The get.venn.partition function

was utilized to acquire the gene IDs associated with each Venn diagram partition. The hyper-

geometric test was used to test the significance of the overlapping genes between concentra-

tions using the R base function, phyper.
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2.6 Over-representation analysis (ORA)

Over-representation analysis was performed on DEGs using all genes (19565) with a non-zero

total read count as a background based on Gene Ontology (GO: Release 2021-12-15), Kyoto

Encyclopedia of Genes and Genomes (KEGG: Release 2021-12-27) and TRANSFAC (Release

2021.3 classes: v2) databases. The analysis was carried out using the gost function from the

gprofiler2 R package (v0.2.1) [56], with default parameters and C. elegans as the set organism.

The output files were processed, and data visualized using ggplot2. Differentially expressed

genes from enriched terms putatively involved in drug metabolism/resistance, apoptosis and

transcription of regulation were retrieved, categorized, and characterized.

2.7 Comparative analysis gene expression between C. elegans strains N2

and DA1316 after IVM exposure

A comparative analysis of the obtained DEGs with those from a previous study [34] was per-

formed. In that study, C. elegans strain (DA1316), a triple mutant of the glutamate-gated chlo-

ride channel (GluCI) subunits avr-14, avr-15, and glc-1 was exposed to IVM 10−6 and 10−7 M

for 4 h. Differential gene expression was determined by microarray assays. To reduce ambigu-

ity prior to comparison, gene names and IDs of DEGs from the previous study were evaluated

to determine if they had been renamed, merged, or divided, using the WormBase Gene Name

Sanitizer tool. Only DEGs with a fold change of at least 1.4 were included in the comparison

and visualized in upsetR plot using the UpSetR R package (v1.4.0) [57]. The hypergeometric

test was used to test the significance of the overlapping genes between DA1316 and N2 strain

using the R base function, phyper.

2.8 Analysis of IVM-induced gene expression within Abamectin-QTL on

chromosome V

A recent study described quantitative trait loci (QTL) regions on chromosome V of C. elegans
after exposure to the macrocyclic drug, Abamectin [35]. Based on genome wide association

mapping, two regions were detected, left arm (VL) and right arm (VR) located at nucleotides

1,757,246–4,333,001 and 15,983,112–16,599,066, respectively. Linkage mapping approach

identified three regions, VL, VR and central (VC) located at 2,629,324–3,076,312, 15,933,659–

16,336,743 and 6,118,360–7,374,129, respectively. In our comparative analysis, VL and VR

from the genome wide association mapping and VC from the linkage mapping were used. The

BSgenome.Celegans.UCSC.ce11genome object from the BSgenome.Celegans.UCSC.ce11 R

package (v1.4.2) [58] was used in this analysis. All genes in the VL, VC and VR regions were

extracted using the GRanges function and subset based on our DEGs using subsetByOverlaps

function. Both functions are derived from GenomicRanges R package (v1.46.1) [59]. To elimi-

nate any chromosome length biases, the distribution/ enrichment of DEGs across all chromo-

somes was estimated using the Fisher’s Exact Test for Count Data in R. Differentially

expressed genes mapping to the QTL were subsequently identified and visualized on a karyo-

plot from karyoploteR R package (v1.20.3) [60].

3 Results

3.1 Transcriptomic variation amongst adult C. elegans worms exposed to

Ivermectin

Total RNA (RIN > 8) was sequenced from C. elegans adults at maximum reproduction

exposed to IVM 10−7 and 10−8 M yielding sequencing data of 21–60 million read-pairs/sample.

The used concentrations of IVM treatment were selected according to [41]. However, due to
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the very low number of differentially expressed genes in IVM 10−9 M, only data from IVM

10−7 and 10−8 M was used in the current study. Following quality control and evaluation with

SortMeRNA and Trimmomatic, 16–42 million read-pairs/sample were obtained with a mean

phred score above 33, indicating high quality reads. The read-mapping rate to the custom-

built PRJNA13758 C. elegans transcriptome (see Methods) and the C. elegans genome

(PRJNA13758, release WS283) as a decoy, was 97% using Salmon.

According to principal component analysis of the VST read counts, worm pools (n = 300

worms per pool), both PC1 and PC2 explained the separation by treatment condition (Fig 1).

3.2 Differential gene expression

Following DESeq2 analysis, 615 genes were differentially expressed after IVM 10−7 M and/or

10−8 M exposure (S1 Table). Of these, 76% (468 genes) had known functional annotations

including GO annotations according to WormBase (release WS283). Ninety five percent (582

genes) of DEGs were exclusively detected in 10−7 M, 1% (8 genes) in 10−8 M and 4% (25 genes)

showed significant (p-value = 0.00001) overlap between the two concentrations (Fig 2 & S2

Table). About 33% (201 genes) of DEGs were altered more than 2-fold, with 85 genes upregu-

lated and 116 genes downregulated. The top ten up- and downregulated DEGs consisted of a

Fig 1. Variation in gene expression among worms exposed to IVM. A PCA plot of C. elegansN2 strain based on variance stabilized read counts from

worm pools (n = 300) after exposure to IVM 10−7 M, 10−8 M or control +DMSO. Pools are separated by both PC1 and PC2, which represent the largest

variances in the data and are ellipsed by concentration/treatment.

https://doi.org/10.1371/journal.pone.0285262.g001
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diverse set of genes or gene families including transmembrane transporters, and heat shock

proteins (S3 Table).

To gain insights into the biological pathways underlying the differentially expressed genes,

we conducted over-representation analysis on both the upregulated (Fig 3A & S4 Table) and

downregulated genes (Fig 3B & S4 Table). We found that the downregulated DEGs exhibited

more enrichment terms (42) compared to the upregulated genes (17). The ORA on the upre-

gulated DEGs revealed enrichment of terms related to response to external stimulus, ABC-

transport activity, and Factor: elt-3; motif: TCTTATCA (TF: M07154) based on GO, KEGG

pathway, and TRANSFAC databases, respectively (Fig 3A & S4 Table). In contrast, ORA on

the downregulated genes showed enrichment of terms related to metabolism of glycans, amino

acids, and organic compounds, Factor: elt-3; motif: TCTTATCA (TF: M07154) among others,

based on the same databases (Fig 3B & S4 Table). Differentially expressed genes from ORA

terms with putative involvement in drug metabolism were explored further.

3.2.1 Differentially expressed genes encoding drug receptors. After exposure of N2

worms to IVM 10−7 M, the putative drug target glc-1, an alpha subunit of the GluCI receptor,

glc-1 was downregulated 1.4-fold. In addition, the putative drug target, lgc-26, a possible

Fig 2. Differentially expressed in IVM-exposed C. elegans N2 strain. Venn diagrams showing the number of DEGs in C. elegansN2

strain between IVM concentrations 10−7 and 10−8 M based recommendations by Schurch et al. [54]. The number of genes

differentially expressed above 2-fold are labelled in white.

https://doi.org/10.1371/journal.pone.0285262.g002
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Fig 3. A. Biological processes underpinned by upregulated genes. An over-representation plot showing significantly enriched for terms among

upregulated DEGs based on Gene ontology (molecular function, biological process and cellular component), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and TRANSFAC databases. The dots represent an enriched term. B. Biological processes underpinned by downregulated genes. An

over-representation plot showing significantly enriched for terms among downregulated DEGs based on Gene ontology (molecular function, biological

process and cellular component), Kyoto Encyclopedia of Genes and Genomes (KEGG), and TRANSFAC databases.

https://doi.org/10.1371/journal.pone.0285262.g003
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nicotinic acetylcholine receptor was downregulated 1.6-fold after exposure to IVM 10−7 M

(Table 1). However, in IVM 10−8 M concentration, differential expression of the putative drug

receptors was not observed.

3.2.2 Differentially expressed genes involved in Phase I and II xenobiotic metabolism.

There were 11 DEGs putatively classified to be involved in Phase I metabolism, of which eight

were downregulated (Table 2) and three were upregulated in IVM 10−7 M concentration

(Table 1). Eight genes were attributed to the cytochrome P450 family, of which three genes,

cyp-33C8, cyp-34A8 and cyp-13B2 were on average upregulated 1.8-fold while the rest, cyp-
33E1, cyp-13A5, cyp-25A1, cyp-35A2 and cyp-34A9 were downregulated between 1.5 and

2.2-fold. Other genes involved in drug metabolism with differential expression included Fla-

vin-containing monoxygenase, fmo-2, short chain dehydrogenase, dhs-7 and aldehyde dehy-

drogenase adh-5, which were downregulated between 1.5 and 6-fold.

Table 1. Upregulated genes putatively involved in IVM response in C. elegans N2 strain.

Category Gene LFC:N2:10−7

Ma
-Log10 Adjusted p-

value

LFC:N2:10−8

Mb
-Log10 Adjusted p-

value

Descriptionc

Phase I metabolism cyp-13B2 0.56 1.88 cytochrome P450

cyp-
33C8

1.29 7.43 cytochrome P450

cyp-
34A8

0.73 2.11 cytochrome P450

Phase II metabolism ugt-62 0.81 1.55 UDP-glycosyltransferase

Ion channels atp-6 1.88 34.40 2.06 46.06 ATP synthase subunit a

best-21 0.69 1.75 chloride channel activity

F58G6.9 1.62 1.62 copper ion transmembrane transporter

activity

kvs-5 1.10 2.84 potassium ion transmembrane transport

Solute transporters pgp-5 1.83 1.38 P-glycoprotein ATP-dependent efflux pump

pgp-6 1.15 1.93 P-glycoprotein ATP-dependent efflux pump

pgp-9 1.52 4.61 P-glycoprotein ATP-dependent efflux pump

folt-2 1.92 1.94 folate transporter

pmp-4 1.05 2.11 long-chain fatty acid transporter

Transcription
factors

fkh-3 0.52 1.71 forkhead transcription factor

fkh-4 0.58 1.50 forkhead transcription factor

mdl-1 0.50 2.99 basic helix-loop-helix (bHLH) protein

nhr-17 0.55 1.75 nuclear receptor super family

nhr-57 0.58 1.54 nuclear receptor super family

nhr-115 1.69 1.42 nuclear receptor super family

nhr-137 0.53 1.30 nuclear receptor super family

tbx-33 0.58 1.83 T-box transcription factor

tbx-38 0.99 1.33 T-box transcription factor

zip-3 0.86 2.53 bZip transcription factor

Involved in
apoptosis

pal-1 0.65 8.25 0.54 5.23 homeodomain protein

Alphabetically sorted upregulated genes putatively characterized as drug targets or involved in metabolite transport, xenobiotic metabolism, gene expression regulation,

and apoptosis processes
aLog2Foldchange for Ivermectin drug concentration 10−7 M
bLog2Foldchange for Ivermectin drug concentration 10−8 M
cFull description can be found in S1 Table

https://doi.org/10.1371/journal.pone.0285262.t001
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Table 2. Downregulated genes putatively involved in IVM response in C. elegans N2 strain.

Category Gene LFC:N2:10−7 Ma -Log10 Adj. p-value LFC:N2:10−8 Mb -Log10 Adj. p-value Descriptionc

Drug target glc-1 -0.50 2.18 alpha subunit of a glutamate-gated chloride channel

lgc-26 -0.71 1.55 nicotinic acetylcholine receptor-like LGIC

Phase I metabolism alh-5 -0.90 2.17 aldehyde dehydrogenase (NAD+) activity

cyp-13A5 -0.74 1.85 cytochrome P450

cyp-25A1 -0.87 1.43 cytochrome P450

cyp-33E1 -0.54 2.35 cytochrome P450

cyp-34A9 -1.12 6.73 cytochrome P450

cyp-35A2 -0.99 9.22 cytochrome P450

dhs-7 -2.60 6.50 regulation of reactive oxygen species metabolic process

fmo-2 -1.25 6.57 flavin-containing monoxygenase

Phase II metabolism gst-20 -1.02 3.67 glutathione transferase

gst-4 -0.56 1.33 glutathione transferase

gst-42 -0.60 4.21 glutathione transferase

gst-6 -0.86 1.62 glutathione transferase

gstk-2 -0.63 1.68 kappa class glutathione transferase

ugt-11 -0.71 1.62 UDP-glycosyltransferase

ugt-12 -0.64 1.34 UDP-glycosyltransferase

ugt-22 -0.91 3.56 UDP-glycosyltransferase

ugt-43 -1.61 4.48 UDP-glycosyltransferase

ugt-44 -1.20 8.77 UDP-glycosyltransferase

Ion channels atp-6 1.88 34.40 2.06 46.06 ATP synthase subunit a

best-1 -1.29 4.21 chloride channel activity

best-5 -1.06 2.37 chloride channel activity

catp-1 -0.51 2.06 alpha subunit of the Na+/K+- and H+/K+-pump P-type ATPase family

cca-1 -0.53 1.54 calcium channel alpha subunit

F47E1.4 -0.89 1.97 sodium-independent organic anion transmembrane transporter activity

kcc-2 -0.53 3.46 potassium chloride cotransporter

ncx-2 -0.62 1.43 3Na[+]/1Ca[2+] exchanger

nlr-1 -0.63 1.71 Neurexin Like receptor

tmc-2 -0.92 1.42 mechanosensitive ion channel activity

Y70G10A.3 -0.55 5.24 sodium-independent organic anion transmembrane transporter activity

ZK185.5 -0.60 2.71 cation transmembrane transporter activity

Solute transporters aat-3 -0.50 3.33 amino acid transporter catalytic subunit

amt-4 -0.91 3.73 ammonium transporter protein family

aqp-1 -1.07 3.43 aquaglyceroporin

C13C4.6 -1.20 4.82 transmembrane transporter activity

F11A5.9 -0.52 1.62 transmembrane transporter activity

F17C11.12 -0.52 3.28 transmembrane transporter activity

F23F12.13 -1.63 2.10 transmembrane transporter activity

gem-1 -0.65 2.26 monocarboxylic acid transmembrane transporter activity

glt-5 -0.93 4.85 glutamate/aspartate and neutral amino acid transporter

haf-9 -0.65 2.04 half-type ATP-binding cassette (ABC) transporter

hmit-1.3 -0.73 2.36 (H+)-dependent myo-inositol transporter

K09C4.1 -0.92 1.33 hexose transmembrane transporter activity

M162.5 -0.77 2.72 transmembrane transporter activity

pept-1 -0.87 2.05 low affinity/high capacity oligopeptide transporter

pmp-1 -0.77 1.57 ATP-binding cassette (ABC) transporter

slc-25A29 -0.78 2.57 high-affinity L-arginine transmembrane transporter activity

slc-28.1 -1.19 4.21 nucleoside:sodium symporter activity

slc-36.5 -0.62 2.31 amino acid transmembrane transporter activity

spp-1 -0.55 10.83 saposin (B) domain-containing caenopore

swt-1 -0.50 13.61 sugar transmembrane transporter activity

T07G12.5 -2.89 3.19 L-ascorbic acid transmembrane transporter activity

T22F3.11 -2.81 2.22 transmembrane transporter activity

wht-7 -1.03 4.12 -0.74 2.68 ABC-type transporter activity

Y4C6B.3 -0.59 2.30 transmembrane transporter activity

ZK550.2 -0.96 1.77 transmembrane transporter activity

(Continued)
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Twelve DEGs putatively identified as UDP-glycosyltransferases and glutathione S-transfer-

ases involved in Phase II metabolism were enriched exclusively in IVM 10−7 M (Tables 1 & 2).

UDP-glycosyltransferases, ugt-62 was upregulated (Table 1) above 1.8-fold while ugt-11, ugt-
12, ugt-22, ugt-43 and ugt-44 were downregulated between 1.4 and 3-fold (Table 2). In addi-

tion, glutathione S-transferases, gst-4, gst-6, gst-20, gst-42 and gstk-2 were downregulated

between 1.5 and 2-fold. Only one gene, ugt-22, appeared in 10−8 M, and was downregulated

1.5-fold.

3.2.3 Differentially expressed genes involved in ion transporter activity. There were 15

DEGs putatively identified or confirmed as ion channels (Tables 1 & 2). Genes best-1, best-5,
catp-1, cca-1, F47E1.4, kcc-2, ncx-2, nlr-1, tmc-2, Y70G10A.3, and ZK185.5, were downregu-

lated between 1.4- and 2.4- fold (Table 2). Conversely, genes atp-6, best-21, F58G6.9 and kvs-5
were upregulated on average 2-fold (Table 1).

3.2.4 Differentially expressed genes involved in other solute transmembrane trans-

porter activity. There were 30 DEGs involved in transmembrane transport and comprised

of various genes and gene families (Tables 1 & 2). The DEGs consisted predominantly of P-gly-

coprotein efflux pumps (3 genes), other solute transporters (27 genes). Efflux pumps included,

Table 2. (Continued)

Category Gene LFC:N2:10−7 Ma -Log10 Adj. p-value LFC:N2:10−8 Mb -Log10 Adj. p-value Descriptionc

Transcription factors bar-1 -0.75 1.87 beta-catenin transcription coactivator

ceh-31 -1.11 3.11 homeobox domain protein

egl-43 -1.28 2.09 zinc finger protein

elt-2 -0.69 6.04 GATA-type transcription factor

fkh-6 -0.84 1.93 forkhead transcription factor

ham-2 -0.95 1.52 C2H2 zinc finger-containing protein

let-381 -0.95 2.15 forkhead transcription factor

lin-22 -1.09 1.99 basic helix-loop-helix (bHLH)-containing protein

M03D4.4 -0.79 6.49 DNA-binding transcription factor activity

myrf-2 -0.84 4.20 -0.78 1.42 glutamine/asparagine-rich domain protein

nhr-21 -0.77 1.52 nuclear receptor super family

nhr-55 -1.46 3.84 nuclear receptor super family

nhr-99 -1.04 2.21 nuclear receptor super family

nhr-119 -0.69 1.80 nuclear receptor super family

nhr-173 -0.89 1.51 nuclear receptor super family

odd-2 -0.66 3.78 ODD-SKIPPED family

pros-1 -0.97 2.24 homeodomain protein

sta-1 -0.70 3.17 STAT family transcription factor

tbx-2 -0.51 4.91 T-box transcription factor

ttx-1 -0.90 1.84 OTD/OTX hoemeodomain protein

unc-62 -0.80 1.54 Meis-class homeodomain protein

unc-98 -0.76 2.56 C2H2 zinc finger protein

unc-120 -0.62 3.87 MADS-box transcription factor

unc-130 -0.64 1.82 forkhead domain transcription factor

Involved in apoptosis ces-1 -1.22 8.81 C2H2-type zinc finger transcription factor

ces-2 -0.67 2.65 basic region leucine-zipper (bZIP) transcription factor

lec-6 -0.56 2.18 ’proto’ type galectin (beta-galactosyl-binding lectin)

T05C3.6 -1.00 1.55 paralog of T05C3.2

Alphabetically sorted downregulated genes putatively characterized as drug targets or involved in metabolite transport, xenobiotic metabolism, gene expression

regulation, and apoptosis processes
aLog2Foldchange for Ivermectin drug concentration 10−7 M
bLog2Foldchange for Ivermectin drug concentration 10−8 M
cFull description can be found in S1 Table

https://doi.org/10.1371/journal.pone.0285262.t002
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pgp-5, pgp-6, and pgp-9, appeared exclusively in IVM 10−7 M and, were all upregulated above

2-fold (Table 1). Other solute transporters included folate transporter (folt-2), long-chain fatty

acid transporter (pmp-1 and pmp-4), amino acid transporter (aat-3, slc-25A29, slc-36.5, pept-1,
glt-5, and slc-28.1), myo-inositol transport (hmit-1.3), sugar transmembrane transporter (swt-
1, K09C4.1) etc. Of these, only folt-2 and pmp-4 were upregulated (Table 1).

3.2.5 Differentially expressed genes involved in transcriptional regulation of xenobiotic

metabolism. The differential screening identified 35 transcriptional factors (Tables 1 & 2), of

these, nine were nuclear hormone receptors (NHRs) and one was a GATA-type transcription

factor. These ten have been postulated to be involved in xenobiotic metabolism (see review

[61]). The NHRs, nhr-17, nhr-57 and nhr-115, nhr-137 were upregulated between 1.4 and

3.2-fold (Table 1) whereas nhr-21, nhr-55, nhr-99, nhr-119, nhr-121 and nhr-173 were downre-

gulated between 1.6 and 2.8-fold. The GATA transcription factor, elt-2 was downregulated

1.6-fold (Table 2).

3.2.6 Differentially expressed genes involved in apoptosis. The Ivermectin concentra-

tion of 10−7 M was found to exhibit a greater number of differentially expressed genes (ces-1,
ces-2, lec-6, T05C3.6, and pal-1) involved in apoptosis compared to the concentration of 10−8

M (pal-1) (Tables 1 & 2). Four of these DEGs (ces-1, ces-2, lec-6, and T05C3.6) were observed

to be downregulated between 1.4 and 2.3-fold at IVM 10−7 M (Table 2). C2H2-type zinc finger

transcription factor ces-1 and basic region leucine-zipper (bZIP) transcription factor ces-2
have been previously reported as repressors of the gene egl-1, a key activator of apoptosis in C.

elegans [62]. The presence of caudal-type homeodomain transcription factor pal-1, an activator

of the apoptotic gene ced-3 (Fig 4), was detected in both IVM 10−7 M and 10−8 M and was

found to be equally upregulated (~ 1.5-fold) in both concentrations (Table 1). This suggests

that IVM (at 10−7 M and 10−8 M) partially activates the apoptotic machinery in the N2 C. ele-
gans strain.

3.3 Comparative analysis of gene expression in the C. elegans strains N2

and DA1316 following exposure to IVM

We compared our transcriptomic data from the C. elegans strain N2 to microarray data

obtained from the IVM-resistant C. elegans strain DA1316 in a previous study [34]. Based on

our preset criteria (see Methods), 152 genes were differentially expressed in the DA1316 strain

after IVM exposure for 4 h. Ninety-one percent (139 genes) of DEGs were exclusively detected

in 10−6 M, 7% (11 genes) in10-7 M and 1% (2 genes) occurred in both concentrations (S1 Fig).

Fig 4. Adapted illustration of the genetic pathway of apoptosis from Conradt and Xue [62]. The boxes symbolize genes, where red and green boxes

represent apoptotic genes that in the current study were downregulated or upregulated, respectively according to our thresholds (see Methods). Solid

and dashed T-shaped lines represent repression of gene expression, whereas solid and dashed black arrows represent the opposite. Hypothetically, the

green and red arrows represent the respective gene’s upregulation and downregulation consequent of T-lines and black arrows.

https://doi.org/10.1371/journal.pone.0285262.g004
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Overall, irrespective of IVM concentration, comparison of DEGs between DA1316 and

N2 strains revealed that the N2 strain showed four times more differentially expressed

genes. Thirty-one genes showed significant overlap (p-value < 0.00001) between the two

strains (Fig 5 & Table 3). Of these, 61% (19 genes) showed an opposite expression i.e., upre-

gulation in one strain and downregulation in another, notably folate transporter gene, folt-2
and putative transmembrane transporter, T22F3.11 (Table 3 & S5 Table). Gene folt-2 was

downregulated 6-fold and 2-fold in DA1316: 10−6 and DA1316: 10−7, respectively, and

upregulated 4-fold in N2:10−7 M concentration (S5 Table). Similarly, T22F3.11 was upregu-

lated 3-fold in DA1316: 10−7 M and downregulated 7-fold in N2:10−7 M concentration.

Eighteen of the 31 genes were enriched for Phase II metabolic, transmembrane transport

and stress response processes. Twelve of the shared genes (acox-1.5, cpt-5, drd-5, F42A10.7,
gst-4, pud-1.2, pud-2.1, pud-3, pud-4, sams-1, ugt-12 and ugt-22) were downregulated in

both strains. The majority of the shared DEGs (22 genes) occurred in DA1316: 10−6 M

and N2:10−7 M concentrations, whereas six genes (mtl-1, C23G10.11, scl-2, F21C10.10,
T22F3.11 and adh-1) occurred in DA1316: 10−7 M and N2:10−7 M concentrations (Fig 5 &

S5 Table).

Fig 5. Differentially expressed genes in IVM-exposed C. elegans N2 and DA1316 strains. An UpSetR plot and Venn diagrams displaying the number

of differentially expressed genes that overlap within and between C. elegans strains N2 and DA1316 [34] exposed to IVM 10−7 M, 10−8 M and 10−6 M,

10−7 M, respectively. The black boxes indicate the number of genes contained within each partition.

https://doi.org/10.1371/journal.pone.0285262.g005
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3.4 Ivermectin-induced DEGs are mapped within the Abamectin QTL on

chromosome V

Evans et al. [35] identified three major QTL (VL, VR and VC) correlated to natural variation

in Abamectin response, on chromosome V in C. elegans. We decided to use this information

to see if any of the DEGs induced by IVM, map in the QTL regions. There was significant

(adjusted p = 0.01) enrichment for DEGs in chromosomes X and V (S6 Table). A comparison

of the DEGs of IVM-exposed C. elegansN2 adult worms to the QTL revealed that 45 DEGs

Table 3. Overlapping differentially expressed genes between IVM-exposed C. elegans N2 and DA1316 strain.

Gene LFC:N2:10−7 Ma LFC:N2:10−8 Mb LFC:DA1316:10−6 Mc LFC:DA1316:10−7 Md Description

acox-1.5 -0.89 -0.72 acyl-CoA oxidase

adh-1 -1.30 1.07 alcohol dehydrogenase

C09B8.4 0.59 -1.20 integral component of membrane

C23G10.11 -3.60 1.23 N.A.

C35A5.3 1.29 -1.83 transmembrane transporter

cpt-5 -1.05 -0.71 acyltransferase

dod-19 0.50 -0.99 innate immune response

drd-5 -0.63 -0.84 oxidoreductase activity

F19B2.5 2.18 -1.39 ATP-dependent chromatin remodeler

F21C10.10 -0.88 1.10 N.A

F42A10.7 -0.78 -0.73 N.A.

F58G6.9 1.62 -1.72 copper ion transmembrane transport

folt-2 1.92 -2.55 -1.17 folate transporter

gst-4 -0.56 -1.41 glutathione transferase

hsp-17 2.04 -0.79 heat shock protein

msra-1 0.85 -1.08 methionine sulfoxide-S-reductase

mtl-1 -0.63 1.59 metallothioneins, small, cysteine-rich, metal-binding protein

pud-1.2 -0.96 -0.58 N.A.

pud-2.1 -0.83 -0.59 N.A.

pud-3 -2.13 -1.13 N.A.

pud-4 -0.73 -0.66 N.A.

rips-1 0.87 -1.04 S-adenosyl-L-methionine-dependent methyltransferase

sams-1 -0.84 -1.02 S-adenosyl methionine synthetase

scl-2 -0.96 1.31 sperm coating protein

T05E12.6 0.86 -1.23 N.A.

T13F3.6 1.13 -0.81 N.A.

T22F3.11 -2.81 1.44 transmembrane transport"

ugt-12 -0.64 -0.79 UDP-glycosyltransferase

ugt-22 -0.91 -0.61 -0.77 UDP-glycosyltransferase

Y94H6A.10 1.31 0.64 -1.27 N.A.

ZK228.4 2.58 -1.01 N-acetyltransferase

Alphabetically sorted differentially genes that overlap between IVM-exposed C. elegans N2 and DA1316 strain. Genes in bold showed an opposite expression i.e.,

upregulation in one strain and downregulation in another.
aLog2Foldchange for Ivermectin drug concentration 10−7 M in the N2 strain
bLog2Foldchange for Ivermectin drug concentration 10−8 M in the N2 strain
cLog2Foldchange for Ivermectin drug concentration 10−7 M in the DA1316 strain
dLog2Foldchange for Ivermectin drug concentration 10−8 M in DA1316 strain

https://doi.org/10.1371/journal.pone.0285262.t003
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mapped to the three QTL, 51% (23 genes) were upregulated, and the majority (71%) mapped

to the VL locus (Fig 6 & S7 Table). Of the 45 DEGs, nine (folt-2,mtl-1, pud-1.2, pud-2.1, pud-3,
pud-4, rips-1, T13F3.6 and T22F3.11) overlap with microarray data from IVM-resistant strain

(DA1316) [34]. In addition, eight other DEGs from the DA1316 strain mapped to the QTL (S8

Table). The VL locus contained 32 DEGs (S7 Table) from N2 strain, which included seven

metabolic genes (cyp-33C8, cyp-34A9, acs-3, T06A1.5, dach-1, alh-5, cyp-34A8), six transport-

related genes (dod-3, T22F3.11, Y39H10B.2, folt-2, Y32G9B.1, slc-28.1), six stress response

genes (hsp-16.2, irg-1, hsp-16.41, Y73C8C.3, irg-2, Y73C8C.8), two transcription factors (nhr-
57, nhr-115), a muscle contraction regulator (tnt-4) and 11 others, including pud-genes (S7

Table). Genes cyp-33C8, cyp-34A9, dod-3, F40C5.2, hsp-16.2, hsp-16.41, pud-1.2, pud-2.1, pud-
3, and pud-4 were the ten most significantly (adjusted p<0.001) expressed at the VL locus. Of

the 10 genes, seven (cyp-34A9, dod-3, F40C5.2, pud-1.2, pud-2.1, pud-3 and pud-4) were down-

regulated between 1.6 and 4.4-fold while the rest were upregulated on average 2.3-fold (Fig 6).

Six DEGs mapped to the VC locus (Fig 6), which comprised of three stress response genes

(F31F7.1,mtl-1, clec-7), a transport-related gene (col-143), a metabolic gene (lipl-4), and an

unknown gene (S7 Table). Genes F31F7.1,mtl-1, clec-7, lipl-4, and spp-27 were downregulated

between 1.5 and 3.6-fold, with the exception of col-143, which was upregulated 2.4-fold (Fig 6

& S7 Table). Seven DEGs mapped to the VR locus (Fig 6) composed of a GluCl subunit (glc-1),

Fig 6. Differentially expressed genes of IVM-exposed C. elegans N2 strain map to Abamectin-QTL on chromosome V. The DEGs are represented

by green (upregulated) and red (downregulated) dots, with the size of the dot representing the -log10 (adj. p-value) of expression, where the larger the

dot, the more significantly expressed. The x-axis represents chromosome V and the y-axis represents the Log2 fold change. The karyoplot shows DEGs

(labeled in green and red) mapped to abamectin-QTL VL, VC, and VR represented by yellow, blue, and yellow boxes, respectively.

https://doi.org/10.1371/journal.pone.0285262.g006
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a transporter (F11A5.9) and five unknown genes (S7 Table). The expression of the genes glc-1,
F11A5.9, and oac-18 was decreased by 1.4-fold, 1.4-fold, and 2.6-fold, respectively. The

remaining genes had 1.54- to 10-fold higher expression levels (Fig 6).

A list of candidate genes for further study (S9 Table) has been created, including genes

with an opposite expression between N2 and DA1316 C. elegans strain, genes within Abamec-

tin-QTL, exclusive genes in DA1316 strain, and other putative drug-responsive genes.

4 Discussion

Parasitic nematodes pose a threat to human and animal health [2, 3], while the development of

resistance against MLs such as IVM exacerbates the problem [16, 17, 63]. Therefore, it is cru-

cial to understand the molecular mechanisms underlying ML resistance. In this study, we

investigated gene expression in wild-type (N2) IVM-exposed C. elegans adults at maximum

reproduction to understand the transcriptomic response to IVM exposure. Furthermore, the

transcriptomic data was compared to microarray data from the IVM-resistant C. elegans
(DA1316) strain [34], and the recently identified Abamectin-QTL [35]. We identified 615 dif-

ferentially expressed genes in the wild-type C. elegans (N2) strain following exposure to IVM,

of which 95% occurred in the IVM 10−7 M concentration. Only 31 N2 strain DEGs overlapped

with the IVM-resistant C. elegans (DA1316) strain, 19 of which, including folate transporter

FOLT-2 (folt-2) and transmembrane transporter T22F3.11 (T22F3.11), displayed an opposite

expression in either strain. Eighteen of the overlapping genes were enriched for metabolic

Phase II enzymes, transmembrane transport, and stress response processes. In addition, we

identified 45 differentially expressed genes that mapped within the Abamectin-QTL on C. ele-
gans chromosome V, nine of which overlapped with DEGs from the IVM-resistant C. elegans
(DA1316) strain. Following comprehensive analysis we identified potential candidate genes,

T-type calcium channel CCA-1 (cca-1), potassium chloride cotransporter KCC2 (kcc-2), folate

transporter FOLT-2 (folt-2) and alpha subunit of glutamate-gated channel GluCl-1 (glc-1) for

further investigation with possible involvement in IVM resistance.

The ML drug target glc-1 and the putative drug target lgc-26 encoding ion channel subunits

were downregulated in the IVM 10−7 M concentration. The significance of glc-1 in ML

response is evident through RNAi knockdown and loss-of-function-mutations [26, 36, 64, 65].

Heterologous expression of C. elegans glc-1 and formation of a functional chloride channel has

been reported in Xenopus oocytes [66]. The role of lgc-26 in ML response remains unknown

in C. elegans, but other cys-loop GABA receptor members have been implicated in the ML

response of parasitic nematodes. For example, lgc-37 was upregulated in the horse roundworm

parasite, Parascaris univalens after IVM exposure [41] and the lgc-54 in the sheep parasite Tel-
adorsagia circumcincta was reported as potential candidate in IVM resistance through

genome-wide studies [67]. However, Evans, Wit [35] recently challenged this claim, as they

observed that lgc-54mutants did not display a competitive advantage over wild-type in control

conditions.

We observed a downregulation of the calcium channel alpha subunit (cca-1) and potassium

chloride cotransporter (kcc-2) genes after IVM exposure. Gene cca-1 regulates pharyngeal

pumping by facilitating the effective start of action potentials by influx of calcium ions in

response to marginal cell motor neuron stimulation in C. elegans [68, 69]. A loss of function in

cca-1 has been reported to significantly reduce pharyngeal pumping [69]. Furthermore it is

established that IVM reduces pharyngeal pumping in C. elegans by allosterically modulating

GluCl hence increased influx of chloride ions [9]. Hypothetically, a pharyngeal pump regulator

such as cca-1 would be upregulated in response to decreased pharyngeal pumping rate, how-

ever, our results showed the opposite trend. Alternatively, the downregulation of cca-1 could
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be a downstream effect, a consequence of the negative membrane potential induced by the

chloride ion influx, or a defense/ protective mechanism aimed at reducing the adverse effects

of IVM. Nonetheless, this highlights the importance of cca-1 in IVM response in C. elegans.
The kcc-2 gene encodes a potassium chloride cotransporter, which, in conjunction with the

sodium-driven chloride-bicarbonate transporter abts-1, mediates inhibitory GABA signaling.

Mediation involves control of cellular chloride gradient to maintain membrane potential in

neurons that control locomotion [70]. In addition, kcc-2 and abts-1mutant of C. elegans were

reported to exhibit paralysis after exposure to a GABA receptor agonist, muscimol [70]. Con-

sidering that IVM agonistically mediates GABA signaling through the inflow of chloride ions

to cause paralysis [9], the role of kcc-2 in IVM response is unknown and warrants exploration.

Overall, these findings shed light on additional channels, such as cca-1 and kcc-2, which could

be investigated further as potential candidates for involvement in IVM resistance.

Seven of the 11 differentially expressed Transcription factors were downregulated and pre-

dominantly enriched for NHRs, which included nhr-17, nhr-21, nhr-55, nhr-57, nhr-99, nhr-
115, nhr-119, nhr-121, nhr-137 and nhr-173. Although NHRs have generally been suggested to

regulate expression of detoxification genes (phase I, II and III), only a handful have experimen-

tal evidence (see review [61]). To our knowledge, none of the NHRs in the current study has

been implicated in xenobiotic detoxification regulation. However, a notable example, nhr-8
upregulation has been reported to increase expression of detoxification genes cyp14A2,
cyp14A5 and cyp37B1, and Pgp genes (pgp-1,-3,-6,-9 and -13) resulting in the reduced IVM

efficacy [71]. Recent work by Guerrero et al. [72] emphasized this phenomenon, demonstrat-

ing nhr-8 role in upregulation of Pgp genes (pgp-3, -5, -11 and -13) in the presence of the drug

tunicamycin. The GATA-type transcription factor, elt-2 was downregulated in the current

study. The proposed genes regulated by elt-2 in C. elegans include those involved in protection

against xenobiotic compounds: CYPs, GSTs, and UGTs such as ugt-22 [73]. While it is con-

ceivable that this downregulation of elt-2might explain the previously described downregula-

tion of ugt-22, it is unclear why elt-2 is downregulated in the presence of a xenobiotic such as

IVM.

In this study, an analysis of putative apoptotic genes showed that four out of the five genes

identified were downregulated, including C2H2-type zinc finger transcription factor ces-1 and

basic region leucine-zipper (bZIP) transcription factor ces-2. These genes have been previously

shown to act as repressors of the key apoptotic activator egl-1 under anti-apoptotic conditions.

Under pro-apoptotic conditions, egl-1 represses ced-9, thereby activating the pro-apoptotic

genes ced-3 and ced-4, hence apoptosis. The downregulation of ces-1 and ces-2 in this study is

indicative of egl-1 being liberated and subsequently able to repress ced-9, thereby activating the

pro-apoptotic genes ced-3 and ced-4, leading to apoptosis [62]. Additionally, caudal-type

homeodomain transcription factor pal-1, a reported activator of ced-3 [74], was found to be

upregulated. To further support the pro-apoptotic response hypothesis, genes ces-1, ces-2, and

pal-1 were predominantly present in the highest IVM concentration (10−7 M), in which all

worms were previously reported to be immobile [41]. While these findings suggest that IVM

at concentrations of 10−7 M and 10−8 M partially activates the apoptotic machinery in the N2

C. elegans strain, it is important to note that other mechanisms involving above genes may also

be at play as not all relevant apoptotic genes were detected in the data.

Our second objective was to compare C. elegans strains N2 (wild-type) and DA1316 (IVM-

resistant) following IVM exposure. Comparing the RNAseq and microarray data from the N2

and DA1316 strains, respectively, revealed that the N2 strain had four times the number of dif-

ferentially expressed genes with only a 4% (31 genes) overlap between the two strains. Nine-

teen of these overlapped genes displayed an opposite expression and may have a role in IVM

metabolism or resistance. For example, the folate transporter folt-2, whose expression was

PLOS ONE Transcriptomics of Ivermectin response in C. elegans: Integrating abamectin QTLs and DA1316 strain

PLOS ONE | https://doi.org/10.1371/journal.pone.0285262 May 4, 2023 17 / 24

https://doi.org/10.1371/journal.pone.0285262


reduced 6-fold and 2-fold in the resistant DA1316 strain, but increased 4-fold in the sensitive

N2 strain, may be involved in the import of IVM. Another potential candidate is the trans-

membrane transporter T22F3.11, whose expression increased by 3-fold in the resistant strain,

but decreased 7-fold in the sensitive N2 strain, suggesting a role in IVM efflux. In addition,

genes are that are exclusively expressed in the resistant strain could also be an important group

for further exploration. Overall, further studies are needed to confirm the role of these genes

in IVM response. Twelve of the 31 overlapping genes were downregulated, including four

pud-genes, pud-2.1, pud-3, and pud-4. Pud-genes are unique to Caenorhabditis spp. without

known orthologues in other nematodes and their function remains elusive. In spite of that,

Cui et al. [75] reported slow growth and hypersensitivity to cadmium of C. elegans after pud-4
(F15E11.12) RNAi knockdown. Another study reported downregulation of pud-1.2 and pud-4
following viral infection of C. elegans [76]. Other overlapping genes such as hsp-17 encoding a

heat shock protein, exhibited inverted regulation in either strain. Gene hsp-17, a stress

responder, was downregulated 1.7-fold in DA1316 and upregulated 4-fold in N2 strain. This

re-emphasizes the inherent sensitivity of the N2 strain to IVM than its resistant or tolerant

counterpart. The discrepancy in gene expression between the two studies could be attributable

to strain, technique, life-stage, or IVM concentration. Strain differences may account for most

of the difference in DEGs, since N2 is more sensitive to IVM than resistant or tolerant strains

[34, 77]. Thus, the N2 strain may have more elevated cellular and biological processes, which

could account for the increase in DEGs. Overall, we speculate that pud-genes may be universal

stress responders exclusively in C. elegans.
As a final objective, we mapped the 615 DEGs derived from the IVM-exposed C. elegans

to the recently identified Abamectin-QTL [35]. We identified 45 DEGs that corresponded to

the QTL regions and compared them to the proposed list of candidate genes from the QTL

[35], but only two genes, putative folate transporter (folt-2) and dod-3, between the two data

sets overlapped. Gene folt-2 supposedly participates in the active uptake of folate [78], a B-

class vitamin central in the synthesis of nucleotides and amino acids [79]. Like other eukary-

otes, C. elegans are intrinsically deficient in folate [80], and therefore rely on dietary sources

such as OP50 E. coli. In our data, folt-2 was upregulated, which may be caused by restriction

in dietary intake due IVM-induced decreased pharyngeal pumping [9]. This could lead to

folate deficiency in the worm. Whether this folate deficiency triggers upregulation of folt-2
remains unclear and therefore entails further study. In contrast, the function dod-3 and its

role ML response is unknown. Overall, the role of folt-2, dod-3 and other 43 genes that

corresponded to the Abamectin-QTL in ML response is unknown and prompts further

investigation.

In conclusion, we have profiled the transcriptomes of adult wild-type (N2) C. elegans after

exposure to different IVM concentrations and revealed predominantly downregulated

diverse sets of genes. Some genes overlapped with a previous microarray study on IVM-resis-

tant C. elegans while others mapped to recently described abamectin-QTL. Based on this, we

have a compiled a list of potential candidate genes for further investigation. Although Aba-

mectin and Ivermectin (IVM) belong to the same subgroup of avermectins, it is important to

exercise caution when making comparisons between the two drugs. While Abamectin serves

as a precursor drug for IVM, the pharmacokinetics of these drugs have been reported to be

considerably different [81, 82]. These differences have been attributed, in part, to variations

in the drugs’ lipophilicity [83]. Future studies employing quantitative genetics approaches,

such as identifying IVM-QTL and corresponding candidate genes, validated through the use

of near-isogenic lines, mutant strains, and transcriptomic profiling, would provide more

detailed information.
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