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Abstract: Anaerobic digestion of animal manure results in the production of renewable energy
(biogas) and nutrient-rich biofertilizer. A further benefit of the technology is decreased greenhouse
gas emissions that otherwise occur during manure storage. Since animal manure makes anaerobic
digestion cost-efficient and further advance the technology for higher methane yields, it is of utmost
importance to find strategies to improve bottlenecks such as the degradation of lignocellulose, e.g.,
in cattle manure, or to circumvent microbial inhibition by ammonia caused by the degradation
of nitrogen compounds in, e.g., chicken, duck, or swine manure. This review summarizes the
characteristics of different animal manures and provides insight into the underlying microbial
mechanisms causing challenging problems with the anaerobic digestion process. A particular focus
is put upon the retention time and organic loading rate in high-ammonia processes, which should be
designed and optimized to support the microorganisms that tolerate high ammonia conditions, such
as the syntrophic acetate oxidizing bacteria and the hydrogenotrophic methanogens. Furthermore,
operating managements used to stabilize and increase the methane yield of animal manure, including
supporting materials, the addition of trace elements, or the incorporation of ammonia removal
technologies, are summarized. The review is finalized with a discussion of the research needed to
outline conceivable operational methods for the anaerobic digestion process of animal manure to
circumvent process instability and improve the process performance.

Keywords: anaerobic digestion; animal manure; operating parameters; methanogenic pathway;
microbiology

1. Introduction

Anaerobic digestion technology combines waste management with the production
of renewable energy (biogas). Biogas can replace fossil fuels in producing electricity and
heat, reducing greenhouse gas emissions. By removing carbon dioxide to reach a methane
content above 90% (i.e., upgrading), biogas can also be used to replace fossil gas (i.e., natural
gas) in gas grids and transportation [1,2]. Another valuable product from the anaerobic
digestion process is the digestate, which is rich in nutrients such as nitrogen, phosphorus,
and potassium and is, therefore, very suitable for utilization as organic fertilizer.

Biogas can be produced from various organic waste streams such as food waste,
wastewater sewage sludge, and animal manure. In particular, implementing anaerobic
degradation of animal manure as an efficient waste management technology brings many
benefits to society. Driven by the increase in global demand for meat, eggs, and dairy
products, the animal husbandry industry has expanded rapidly over the last few decades.
With that, large volumes of animal manure are constantly generated. According to FAO,
the amount of nitrogen in animal manure reached 128 million tons globally in 2019 [3]. This
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is of concern since the conventional manure storage facilities and the land-spreading of
untreated manure significantly contribute to greenhouse gas emissions [4,5]. About 10% of
the total CH4 emissions from the agricultural sector have been estimated to derive from
improper manure management [6]. By instead treating the animal manure with anaerobic
digestion, the methane will be captured and used as renewable energy. Other benefits of
the anaerobic treatment of animal manure are land-spreading of the generated digestate,
lower nitrogen leachate, and a reduced risk of spreading pathogens [7], antibiotics, and
antibiotic resistance [8].

During anaerobic degradation of the organic material, protein, lipids, and carbohy-
drates are step-wise converted to methane and carbon dioxide through hydrolysis, acido-
genesis, acetogenesis, and methanogenesis by anaerobic microorganisms [9]. However,
maintaining the process to be stable and well-performing can be challenging since the differ-
ent active microbial groups have their preferred requirements for optimal metabolism [10].
Hence, bottlenecks in the anaerobic degradation process may appear depending on operat-
ing conditions and the characteristic of the animal manure, such as the carbon/nitrogen
ratio. For instance, during the anaerobic treatment of animal manure with high lignocel-
lulose content, such as cattle manure, the hydrolysis step is often the rate-limiting step,
which obstructs the full exploitation of the methane potential [11] and raises the risk of
methane emission during the storage of the digestate [12]. The challenge for the anaerobic
degradation of nitrogen-rich manure is often related to the high level of ammonia formed
during protein and uric acid degradation, which causes the accumulation of volatile fatty
acid (VFA) and reduces methane production [13]. During increasing ammonia levels, the
inhibition of acetoclastic methanogens (AM) with low tolerance towards ammonia has
shown to be a significant reason for the accumulation of organic acids [14,15]. By allowing
the microbial community to adapt to the high ammonia levels, ammonia-tolerant popu-
lations can become established in the microbial community. This ammonia adaptation
often includes the development of an acetate-degrading pathway involving syntrophic
acetate-degrading bacteria (SAOB), which cooperates with hydrogenotrophic methanogens
(HM) [16]. While these microorganisms can tolerate ammonia, they can still be stressed
by the high ammonia levels, and methane production is generally slower than in the low-
ammonia process [17,18]. In addition, reducing the nitrogen content of the substrate by
co-digestion and modifying the C/N ratio to a suitable range (20–30) may be the primary
strategy to alleviate ammonia inhibition during the anaerobic digestion of nitrogen-rich sub-
strates, and it is easy to implement [13]. For example, co-digestion of cow manure and duck
manure [19], swine manure and corn straw [20], and cow manure and chicken manure [21]
have achieved good biogas production performance. It is, therefore, essential to design the
operating conditions to support ammonia-tolerant syntrophic microorganisms [16].

In addition to the animal manure characteristic, process operating conditions such
as hydraulic retention time (HRT), organic loading rate (OLR), and temperature strongly
influence the microbial community, the performance, and the stability of biogas produc-
tion [22]. Due to the complex and interlinked interactions between operating conditions
and microbial activities, it can be almost overwhelming for a plant operator to project
an efficient process. The optimal goal would be to find simple strategies to improve the
animal degradation processes and to circumvent bottlenecks, such as ammonia inhibition.
Even though general strategies for alleviating ammonia inhibition can be applied to a
broad range of processes, which has been described in the other literature [23,24], the
course of action still needs to be guided by the animal manure characteristics and operating
conditions. To disentangle these interactions and to present a possible course of action, the
present review summarizes the current understanding of links between process operation
and the microbial community. It discusses operating management approaches that can
improve biogas production from different types of animal manure.
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2. Anaerobic Digestion of Animal Manure
2.1. Characteristics of Animal Manure

Animal manure differs in physicochemical properties depending on the animal species,
diet and manure management, etc., which impact the methane production potential (Table 1
and Figure 1). Regarding the C/N ratio, cattle manure generally fulfills the recommended
value for anaerobic degradation (C/N 15–30) [25]. However, a fiber-rich diet and the
inclusion of bedding material, such as straw, often provide cattle manure with a high
lignocellulosic content (about 50% based on dry weight). Since lignocellulose is a highly
resistant material, it is resistant to anaerobic degradation and restricts the first hydrolytic
step [26]. Chicken, duck, and swine manure often have C/N ratios below the recommended
value of 3–10, 10–15, and 10–20, respectively (Table 1). For example, chicken manure has
been reported to contain a crude protein content of about 25–30% of the dry weight, of which
the uric acid content represents about 57–84% of the total nitrogen content [27–29]. Uric
acid can rapidly hydrolyze to form ammonia nitrogen in anaerobic environments, which
inhibits anaerobic microorganisms such as methanogens if formed at high levels [30,31].
Although lower ammonia nitrogen levels (0.05–0.2 g/L) are beneficial to bacteria as a
nitrogen-nutrient source for microbial cell synthesis, the anaerobic digestion of nitrogen-
rich manure with a higher protein content produces undesirably high concentrations for
many anaerobic microorganisms [13]. Consequently, the anaerobic processing of nitrogen-
rich animal manure as a mono-substrate has been a longstanding challenge.

In addition to the C/N ratio, water and solid organic content of the animal manure
are other vital parameters impacting methane production. The solid content of different
manures varies significantly due to the different collection methods. For instance, cattle
manure can be collected with or without bedding material, giving a solid content range
of 5~12% [32]. However, swine manure is often collected with flushing water, resulting
in a low total solid (TS) content (TS < 10%) [10,28]. Chicken manure and duck manure
typically have a higher total solid (TS > 20%). Still, this material is often diluted to below
TS of 10% before entering the anaerobic digestion process to alleviate severe ammonia
inhibition [33,34]. Due to the high water content and the high content of lignocellulose,
cattle manure generally has a relatively low biogas-producing potential (0.2–0.3 L/g volatile
solid, VS) [10,27]. Chicken manure has a higher organic matter content (VS/TS), especially
protein, which results in higher methane production potential. The methane-producing
potential of chicken manure can reach 0.25–0.45 L/g VS and 0.20–0.40 L/g VS for pig
manure, as summarized in Table 1.

Table 1. Common characteristics of animal manure and operating parameters frequently used in the
anaerobic digestion of these substrates.

Feedstock
Total
Solid

(TS, %)

Volatile
Solid

(VS, % of TS)
C/N Ratio REQUIRED

HRT a (d)

Methane Yield
Potential
(L/g-VS)

CH4 Content
of Produced
Biogas (%)

Degree of vs.
Degradation

(%)

Frequent Problems
during the Anaerobic

Digestion Process
Possible Solutions References

Chicken/
Duck

manure
20–45 70–85 3–12 >30 0.20–0.40 60–80 40–70%

Ammonia inhibition;
hydrogen sulfide;

high solids content;
sediments (sand);

scum layers.

Long-term adaption;
Addition of iron and
other trace elements;
ammonia removal;
co-digestion with

material with a higher
C/N ratio and lower TS.

[35–45]

Duck
manure 15–30 70–85 10–15 >30 0.20–0.40 60–80 45–70%

Ammonia inhibition;
hydrogen sulfide;

High solids content;
Sediments (sand);

scum layers.

Long-term adaption; add
iron and other trace

elements;
Removal ammonia;
co-digestion with

material with a higher
C/N ratio and lower TS.

[46,47]

Swine
manure 5–25 78–80 10–20 20–40 0.20–0.35 60–70 30–70%

Ammonia inhibition;
Hydrogen sulfide;

Scum layers;
Sediments.

Long-term adaption;
Addition of iron and
other trace elements;

Removal of ammonia;
Co-digestion with

material with higher
C/N ratio.

[48–53]

Cattle
manure 5–12 75–95 15–30 20–30 0.15–0.30 55–65 20–35%

Scum layers;
Low hydrolysis;

Low degradation;
Poor biogas yield.

Increased operating
temperature; Phase

separation pretreatment.
[54–56]

Note: a: recommended hydraulic retention time required for stable operation; TS: Total solid; VS: Volatile solid.
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2.2. Common Anaerobic Bioreactors and Operating Parameters for Animal Manure

Anaerobic reactors most commonly used for animal manure include continuously
stirred tank reactors (CSTR), but in some places, such as in North America, plug flow
reactors (PFR) are frequently used [57]. In CSTR, this technology is suitable for treating
animal manure with a relatively low total solid concentration (TS 5–15%). The plug-flow
technology often involves a horizontal tank, in which the substrate is pushed or screwed
along, which enables handling substrates with high TS (8%~30%) [58,59].

The HRT and solid retention time (SRT) are often the same in CSTR and PFR. These
parameters must be managed carefully to avoid the washout of essential microorganisms.
For instance, in the anaerobic digestion of nitrogen-rich animal manure, such as chicken
manure, a long HRT (>30 days) is often required to avoid microbial loss and reactor failure
since the ammonia inhibition slows down the activity and growth rate of the anaerobic
microorganisms [38,40]. This is often observed by the accumulation of VFA and low
methane yield in processes operating at HRT for less than 30 days (Table 2). On the other
hand, in mesophilic anaerobic processes that are fed manure with higher C/N content
or when fed material diluted with water and thus exposed to less pressure for ammonia
inhibition, a generally shorter HRT of 20–40 days can be applied (Table 2) [34]. It is
important to consider that the degradation of lignocellulosic material is a slow process,
and implementing a short hydraulic retention time (HRT) can result in the incomplete
degradation of less resistant fibers. This can lead to a reduction in methane yield [60–62].
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Another critical parameter is the organic loading rate (OLR), which depends on the
feeding volatile solid (VS) ratio and the HRT and can be expressed as OLR = VSfeed/volume
reactor. A low OLR leads to the insufficient processing capacity of the anaerobic reactor.
In contrast, high OLR can cause overloading, resulting in the accumulation of VFA and
even failure of the anaerobic digestion process [35]. It is noted that the propionate level
should be focused on during anaerobic digestion, which is very unfriendly to methane
production. In the batch experiment of co-digestion of cow manure and food waste, when
the initial propionate concentration was 22–56 mM, the lag phase of biogas production
could reach 9–60 days [63]. The inhibitory threshold concentration of propionate varies
greatly, in the range of 4.2–43 mM, which may be related to the type of substrate, operating
parameters, etc. [64,65]. When propionate/acetate is greater than 1.4, and the concentration
of acetate is greater than 0.8 g/L, the fermentation system can experience serious acid
inhibition [66]. In anaerobic digestion of chicken manure, OLR around 2.0–3.0 g VS/(L·d))
has been reported in mesophilic full and pilot-scale reactors [34] (Table 2). Still, studies
have demonstrated the feasibility of operating high-solid anaerobic digestion of chicken
manure with satisfactory methane production performance at an extremely high ammonia
concentration (TAN, 6.5–7.5 g/L) when maintaining a low OLR of 1.5–2.5 g VS/(L·d)
(HRT 60 d, feeding TS 10–15%) [38,40]. Maintaining operation at a relatively low OLR
(<3 g-VS/(L·d)) condition at this point can be one solution to continue the operation at
high ammonia (TAN > 5 g/L), where the systems may enter an “inhibited steady-state”
and continue to produce methane with a smaller amount of it [67,68]. However, it is crucial
to monitor such processes constantly since if the OLR increases, the process can rapidly be
overloaded, often leading to synergistic ammonia and fatty acid inhibition [69].

Temperature is a critical parameter for the anaerobic degradation process. As previ-
ously reported, based on the summary, in articles published between 2010–2019, a vast
majority of anaerobic co-digestion processes of various scales fed animal manure oper-
ate under mesophilic conditions (85%). In contrast, operation at thermophilic conditions
(50–55 ◦C) is less common (13%) [70]. The reason is that a lower cost is needed for heating,
the microbial community structure is more abundant, and the fermentation performance
is more stable in the mesophilic digester [35,71]. Another reason is that high temperature
increases the free ammonia nitrogen (FAN, NH3) ratio, resulting in FAN levels above the
tolerance threshold of microorganisms, especially for high ammonia level digesters. As
free ammonia can diffuse into microorganisms, it is considered a key factor in inhibiting
the metabolic activity of anaerobic microorganisms. FAN is in equilibrium with NH4

+

(NH3 + H2O
HN4OH
NH4
+ + HO−) and increases with pH and temperature [23].

Therefore, high-temperature anaerobic treatment is usually not used in the methane pro-
duction stage to avoid ammonia inhibition for nitrogen-rich manure, such as chicken
manure, duck manure, and pig manure. In addition, thermophilic anaerobic digestion com-
monly provides a high biogas production rate and benefits pathogen reduction [7,72,73].
The thermophilic condition is also widely used in the hydrolysis and acidogenesis stage
compared to the methane production stage in the two-stage anaerobic digestion technology.
For example, hyper-thermophilic (70 ◦C) pretreatment is used in the hydrolysis and acido-
genesis process of chicken manure [74], and thermophilic (55 ◦C) pretreatment is used in
pig manure [7]. Of course, high temperature is more widely used in refractory substrate
anaerobic treatment, such as cattle manure.
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Table 2. Operating conditions and methane yields of different lab-, pilot-scale, and full-scale biogas
plants fed animal manure as the primary substrate (the following references are listed according to
the OLR from high to low).

Digester Type Temperature
(◦C)

Reactor
Scale

TS
(%)

OLR
(g VS/(L·d))

HRT
(d)

TAN
(g/L)

VFAs
(g/L)

Methane
Yield

(L/g-VS)
References

Chicken manure
LBR 36 Lab-scale 14.0–16.0 / / 10.0 15.0 0.11 [75]

CSTR 37 Lab-scale 20.0 7.1 20 8.5 25.2 0.02 [34]
CSTR 35 Lab-scale 17.0 6.3 20 8.6 12.9 0.21 [76]
CSTR 40 Lab-scale 15.0 6.0 40 6.9 9.3 0.27 [77]
CSTR 37 Lab-scale 15.0 5.3 20 6.9 13.6 0.19 [35]
CSTR 37 Lab-scale 15.0 5.3 20 6.8 21.9 0.19 [78]
CSTR 37 Lab-scale 10.0 3.6 20 6.5 6.7 0.28 [34]
CSTR 40 Lab-scale 15.0 3.5 35 6.9 8.2 0.19 [79]
CSTR 35 Lab-scale 11.0 2.8 30 8.0 5.0 0.30 [80]
CSTR 35 Full-scale 8.3 2.8 20 6.0 ND ND [81]
CSTR 35 Lab-scale 8.0 2.7 30 5.0 2.0 0.20 [44]
CSTR 37 Lab-scale 7.5 2.7 20 5.0 2.2 0.34 [34]
CSTR 55 Lab-scale 8.0 2.7 30 3.7 ND 0.13 [44]
CSTR 55 Lab-scale 10.0 2.7 30 3.7 4.0–6.0 0.14 [43]
CSTR 37 Full-scale 9.0 2.3 33 6.2 2.1 0.30 [36]
CSTR 37 Lab-scale 5.0 1.8 20 2.3 0.4 0.36 [34]
CSTR 35 Lab-scale 13.5 1.8 23 5.9 7.6 0.26 [82]
CSTR 37 Lab-scale 5.0 1.7 20 2.4 0.3 0.38 [83]
CSTR 55 Lab-scale 5.0 1.7 20 2.4 0.3 0.33 [83]
CSTR 37 Lab-scale 15.0 1.5 60 7.4 0.5 0.33 [40]

Swine manure
SBR 24 Farm-scale 5.6 8.0 7 4.6 ND ND [84]

CSTR 35 Lab-scale 23.6 5.2 41 4.0 3.5 0.20 [85]
CSTR 37 Lab-scale 7.3 3.5 15 1.5 0.2 0.22 [20]
CSTR 38 Lab-scale 7.6 3.0 21 4.7 ND 0.14 [20]
PFR 38 Pilot-scale 20.0 2.4 60 4.3 ND ND [86]
USR 36 Full-scale 3.3 1.8 15 1.4 ND 0.27 [87]

USR + PFR 26 Full-scale 6.2 1.3 15 + 22 1.6 ND ND [88]
CSTR 35 Full-scale 7.4 1.2 40 2.0 ND ND [81]
USR 36 Full-scale 3.5 1.2 22 1.5–2.4 ND 0.43 [87]
PFR 25 Lab-scale 5.8 0.9 67 ND 0.8 0.41 [89]
PFR 25 Pilot-scale 5.4 0.6 67 ND 0.9 0.41 [89]

Cattle manure
CSTR

(Cattle manure
+ energy crops)

47 Full-scale 12.2 5.4 34 4.8 0.6 0.24 [90]

CSTR 50 Pilot-scale 8.5 3.5 20 2.1 0.4 0.18 [91]
CSTR 35 Pilot-scale 8.5 3.5 20 1.9 0.3 0.16 [91]
CSTR 35 Full-scale 7.1 3.1 20 2.3 0.4 0.15 [91]
CSTR 37 Lab-scale 6.6 3.0 27 5.2 a 0.9 0.28 [92]
CSTR 35 Full-scale 6.4 0.8 50 1.5 ND ND [81]

Note: CSTR: continuous stirred tank reactor; PFR: plug flow reactor; LBR: leach bed reactor; USR: up-flow solid
reactors; SBR: sequencing batch reactors; TS: total solids; VS: volatile solids; OLR: organic loading rate; HRT:
hydraulic retention time; TAN: total ammonium nitrogen; VFAs: volatile fatty acids; a: add ammonium chloride
to increase ammonia nitrogen concentration; ND: data not involved.

3. The Methane Production Pathways under Different Operating Parameters and
Ammonia Stress
3.1. Hydrolysis and Acidogenesis Process

Depending on the characteristic of the animal manure, the rate of the hydrolytic step can
vary. For example, in the anaerobic degradation of non-calcitrant carbohydrates and specific
proteins, etc., the hydrolytic and acidogenic steps are performed relatively fast [93]. Conse-
quently, in two-stage animal manure degrading processes, the first digester in which these
steps are performed can operate with a relatively short HRT of 3–10 days [94,95]. Furthermore,
while treating cattle manure containing recalcitrant matter, the two-stage anaerobic digestion
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technology has also increased methane yield and VS removal at mesophilic and thermophilic
conditions [96–98].

Acetoclastic methanogens are believed to be the most sensitive microorganisms to
ammonia; the associated inhibition is also accounted for in the widely adopted Anaerobic
Digestion Model nr 1 (ADM1) [99]. However, hydrolysis and acidogenesis stages have been
reported to be inhibited during thermophilic anaerobic digestion of nitrogenous chicken
manure in which TAN reached 4.7–4.8 g/L (1.9 g FAN/L) [43]. At mesophilic conditions,
hydrolysis and acidogenesis stages were inhibited at 5.5 and 6.5 g/L of TAN (FAN, 0.7
and 0.8 g/L), respectively [35]. Consequently, even though it is vital to consider that the
high temperature can enhance the rate of hydrolysis and acidogenesis steps for animal
manure [100], care must be taken to avoid ammonia inhibition since the higher temperature
increases the ratio of the toxic ammonia. Additionally, in the anaerobic digestion of swine
manure, the hydrolytic step has been negatively affected by a higher temperature range of
50–60 ◦C [55]. Increasing temperature from 55 to 65 ◦C decreased methane production and
increased VFAs in the anaerobic digestion of cattle manure (HRT 15 days) [100]. Therefore,
a reasonable increase in temperature may be beneficial to the hydrolysis and acidogenesis
process of organic matter. Still, it must be controlled within a specific range below 60 ◦C.

3.2. Acetogenesis Process

In the acetogenesis stage, acidogenesis products such as lactic acid, butyrate, and
propionate are decomposed into acetate and CO2/H2 by acetogenic bacteria [101]. These
products are crucial precursors for methane production. Several of these acetogenic bacteria
require the hydrogenotrophic methanogens to maintain a low hydrogen partial pressure
during the process to make the acetogenic reaction thermodynamically feasible.

In the anaerobic digestion of animal manure, ammonia nitrogen can also influence
the acetogenesis step. For instance, by reducing the TAN concentration from 5.6 to 3.8 g/L
in a hyper-thermophilic (70 ◦C) digester treating chicken manure, the acetogenesis effi-
ciency increased by 52%. In addition, an increase in ammonia concentration (TAN, 0.8 to
6.9 g/L) has been shown to cause distinct shifts in the acetogenic population structure in a
mesophilic digester [102]. Since various microorganisms cooperate in the anaerobic system,
ammonia directly or indirectly affects their activities. Hence, structural changes in the
acetogenic population can also be driven by the fluctuation of organic acids and pH caused
by high ammonia concentration. As the acetogenic step is not considered the bottleneck
step, few studies have looked into the effect of ammonia inhibition on acetogenic bacteria.

3.3. Acetoclastic Methanogenesis and the Impact of the Operating Parameter on Methanogenic
Community Structure

The methanogenic pathway mediates methane production and the organic acid concen-
tration in anaerobic digestion. Certain methanogenic groups are known to be highly sensi-
tive to ammonia inhibition. For instance, pure culture inhibits the acetoclastic Methanosaeta
sp. at 3 g/L of TAN. In contrast, the mixotrophic Methanosarcina sp. can form methane
from acetate and hydrogen during levels of up to 7 g TAN/L [103]. In the anaerobic
degradation of cattle manure, Methanosaeta sp. is commonly the dominant species due
to the generally low ammonia level (<2.5 g/L) and the common use of slightly low OLR
(2.5–3.5 g VS/(L·d)) [91,104]. However, in the anaerobic digestion of swine and chicken
manure, Methanosarcina sp. is more often observed [20,44,85] (Table 3). The methanogenic
community structure subsequently impacts the acetate level in the digester since ace-
toclastic Methanosaeta sp. is known to have a high affinity (1–10 mM) for acetate and
a relatively low growth rate, whereas Methanosarcina sp. has a lower substrate affinity
(20–80 mM) [105]. This implies that Methanosarcina sp. will not reduce the acetate level as
low as Methanosaeta sp. Along with Methanosarcina sp., the hydrogenotrophic methanogenic
genera Methanoculleus sp. and members of the methanogenic order Methanobacteriales
are other methanogens with a high tolerance to ammonia [13]. For example, the growth of
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hydrogenotrophic Methanobacterium sp. has been observed up to a TAN concentration of
9 g/L in the pure culture [106].

The competitiveness for acetate by Methanosaeta sp. was demonstrated during the low-
ering of ammonia nitrogen concentration (from 6.6 to 2.9 g/L) by ammonia stripping [107].
Nevertheless, methane production from acetoclastic Methanosaeta sp. under a high am-
monia nitrogen concentration has also been reported in chicken manure digesters [36,44].
Consequently, the possibility of steering the process to support the acetoclastic methanogens
at a high ammonia level may still exist [36]. In a biogas plant of chicken manure under
a TAN of 6.2 g/L (FAN 1.1 g/L), the relative abundance of acetoclastic Methanosaeta sp.
reached 5% through adaption for more than 10 years. Interestingly, although acetoclastic
Methanosaeta sp. was less abundant, it contributed 42% of methane production [36]. There-
fore, the non-negligible role of acetoclastic Methanosaeta sp. under high ammonia nitrogen
conditions needs further exploration.

OLR is a factor of importance for the methanogen community. A summary of results
from digesters treating chicken manure demonstrated the dominance of Methanoculleus
sp., Methanobrevibacter sp., or Methanosarcina sp. in mesophilic conditions and Methanother-
mobacter sp. at thermophilic conditions during operation with an OLR below 3 g VS/(L·d)
(Table 3). It is also noticeable that it can be challenging to obtain high methane yields
during operation at OLR above 3 g VS/(L·d) to treat chicken manure under mesophilic
digestion (Table 3). This was particularly distinct during mesophilic degradation of chicken
manure, where OLR increased from 1.8 to 5.3 g VS/(L·d) at maintained HRT (20 days) [74].
The result showed that Methanosarcina sp. replaced Methanoculleus sp. as the dominant
methanogen and the methane yield decreased from 0.36 to 0.19 L/g VS [34].

As methanogens differ in growth rate depending on species and the growth conditions,
it is critical to operate at suitable HRT for the prevailing methanogenic community. In
laboratory cultivation of representative hydrogenotrophic methanogenic species, a dou-
bling time of around 10–65 h has been reported [108–111], which is longer than what
has been obtained for representative acetoclastic methanogenic species (2–20 h) [112–114].
Consequently, a long HRT can be required in a process dominated by hydrogenotrophic
methanogens. In cocultures comprising Methanoculleus bourgensis and syntrophic acetate
oxidizers (30 ◦C, pH 7.3), the doubling time of Methanoculleus bourgensis 8–18 d at a TAN of
0.7–2.8 g/L increased to 23–50 d at 4.8 g/L [115]. Therefore, it is necessary to appropriately
extend the HRT and decrease OLR at a high ammonia level to avoid the wash-out and
maintain the metabolic activity of the ammonia-tolerant methanogens.

Table 3. The most dominant methanogens detected in anaerobic degradation processes fed
animal manure.

Temperature (◦C) OLR
(g VS/(L·d)

HRT
(d)

TAN
(g/L)

FAN
(g/L) Archaea (Genus) Relative Abundance

(% of Total Archaea)
Methane Yield
(L-CH4/g VSadd)

Microbial Community
Investigation References

Chicken manure
37 1.7 20 2.4 0.7 Methanoculleus 94% 0.38 16S rRNA gene amplicon sequencing [83]
55 1.7 20 2.0 1.1 Methanothermobacter 96% 0.33 16S rRNA gene amplicon sequencing [83]
37 2.5 40 6.2 1.1 Methanobrevibacter 74% 0.31 16S rRNA gene amplicon sequencing [36]
55 2.7 30 5.2 2.4 Methanothermobacter 95% 0.08 16S rRNA gene cloning and sequencing [44]
37 2.7 20 5.0 1.4 Methanoculleus 99% 0.34 16S rRNA gene amplicon sequencing [34]
55 2.7 30 5.2 1.7 Methanothermobacter 95% 0.28 16S rDNA gene cloning and sequencing [43]

40 3.5 35 6.9 0.8 Methanosarcina 85% 0.33 Illumina sequencing, 454
pyrosequencing and T-RFLP analysis [79]

37 3.6 20 6.5 0.8 Methanosarcina 94% 0.28 16S rRNA gene amplicon sequencing [34]
37 5.3 20 6.8 0.5 Methanosarcina 73% 0.19 16S rDNA gene cloning and sequencing [78]
37 5.3 20 5.8 0.6 Methanosarcina 83% 0.25 16S rDNA gene cloning and sequencing [78]
Swine manure

38 3 21 4.7 0.3 Methanoculleus 3% (percentage of
total microbial) 0.10 a 16S rRNA gene amplicon sequencing [20]

37 3.5 15 1.5 0.07 Methanosaeta 76% 0.14 b 16S rDNA gene cloning and sequencing by
PCR-DGGE analysis [51]

35 5.2 35 4.0 0.8 Methanobrevibacter 45% 0.42 16s RNA amplification and Illumina Hiseq
sequencing [85]

37 NA ND ND ND Methanoculleus 58% 0.27 16s RNA amplification, Illumina sequencing [116]
35 NA ND ND ND Methanosaeta 23% 0.54 a 16S rRNA gene amplicon sequencing [117]
Cattle manure
37–40 2.7 25 ND ND Methanosarcina 49% 0.21 DNA extraction and Illumina sequencing [104]

37 2.8 25 ND ND Methanosarcina 98% ND 454 pyrosequencing of bacterial and archaeal 16S
rRNA genes [118]

37 2.1 27 5.2 0.3 Methanosarcina 99% 0.28 16S rRNA gene amplicon sequencing [92]

35 3.1 20 1.9 0.05 Methanosarcina 15% (percentage of
the total reads) 0.15 454 pyrosequencing of bacterial and archaeal 16S

rRNA genes [91]

50 3.1 20 2.1 0.11 Methanosarcina 12% (percentage of
the total reads) 0.18 454 pyrosequencing of bacterial and archaeal 16S

rRNA genes [91]
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Table 3. Cont.

Temperature (◦C) OLR
(g VS/(L·d)

HRT
(d)

TAN
(g/L)

FAN
(g/L) Archaea (Genus) Relative Abundance

(% of Total Archaea)
Methane Yield
(L-CH4/g VSadd)

Microbial Community
Investigation References

38 4.0 26 ND ND Methanobacterium
Methanosaeta

28%
26% 0.24 16S rRNA gene amplicon sequencing [104]

37 (WS: CM = 4:6) ND ND ND ND Methanoculleus
Methanosphaera

21%
17% 0.32 High-throughput 16S rRNA gene sequencing [119]

35 (CS:CM = 3:1) ND ND ND ND Methanosaeta 68% 0.17 High-throughput 16S rRNA gene sequencing [120]

35–40 ND ND ND ND Methanosarcina 43% 0.32 16s RNA gene amplification and DNA sequencing
using Illumina HiSeq 2500 [11]

Note: a: Methane yield based on the amount of VS removed; b: Methane yield based on COD of influent.
WS: wheat straw; CM: cattle manure; CS: corn stover; ND: data not involved.

3.4. Microbial-Mediated Methane Production Pathways under Ammonia Stress

As mentioned above, inhibiting acetoclastic methanogens by high ammonia conditions
often results in the development of a two-step pathway for acetate degradation. In this
pathway, syntrophic acetate-oxidizing bacteria convert acetate to carbon dioxide (CO2) and
hydrogen (H2), which is used by hydrogenotrophic methanogens to form methane [16].
However, since hydrogen is a product of acetate oxidation, hydrogen partial pressure
must be kept at very low levels to render this process exergonic. It was estimated that
the H2 partial pressure required for acetate oxidation can be even lower than the one
needed for some of the acetogenic pathways, for example, propionate oxidation [121].
Extensive literature has demonstrated the critical contribution of this pathway, referred
to as syntrophic acetate oxidation (SAO), during biogas production under high ammo-
nia levels [16,122–124]. This pathway has also been included in modifications of the
ADM1 proposed in the literature [121,125]. The characterized SAOB include Thermacetoge-
nium phaeum [126], Pseudothermotoga/Thermotoga lettingae [127], Schnuerera ultunense [128],
Syntrophaceticus schinkii [129], and Tepidanaerobacter acetatoxydans [130], where the three lat-
ter have been isolated from high-ammonia digesters (NH4

+-N, 6–7 g/L) have been shown
to tolerate ammonia nitrogen concentrations up to 10 g/L [126,127,130]. The mechanism
behind ammonia tolerance has not yet been fully explained. Still, it has been suggested
that the lack of ammonium transporters in SAOB can help them to avoid excess ammonia
influx [131]. For the ammonia-tolerant SAOB, ammonia levels up to 0.2 M, temperature
(up to 45 ◦C), and acetate concentrations (0.15–0.30 M) have shown a positive effect on
the methane yield [16]. In pure culture, the syntrophic bacteria (S. schinkii, S. ultunense,
and T. acetatoxydans) can grow at NH4Cl levels up to 7.0 g/L, showing their tolerance for
ammonia [132].

The ammonia level at which the methane production pathway gets dominated by the
syntrophic association has been shown to vary between different processes. For instance,
in anaerobic co-digestion of swine manure and nitrogen-rich waste, the TAN threshold for
dominance of acetate-degrading pathways has been reported to be 1.0 g/L (AM), 3.5 g/L
(SAO-HM and AM), and 6.0 g/L (SAO-HM) (Figure 2) [133]. For cattle manure and stillage,
a shift from AM to SAO-HM was reported at 0.15 g FAN/L [16,134]. It was reported that
the SAO-HM pathway begins to compete with the AM at FAN 0.2–0.5 g/L and outcompetes
the AM pathway with a FAN of more than 0.5 g/L with acetate (110 mmol/L) as a substrate
in mesophilic conditions [135] (Figure 2). Given the functional importance of syntrophic
bacteria in methanogenic systems, an increased understanding of these populations is
critical for predicting process failures and developing process optimization strategies.
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4. Operating Management with the Potential to Improve Anaerobic Treatment of
Nitrogen-Rich Animal Manure
4.1. Methods to Remove Ammonia from an Anaerobic System

Physico-chemical methods have been developed to reduce the ammonia nitrogen con-
centration of the biogas system and thereby avoid the ammonia inhibition of the anaerobic
consortia [136]. Such methods include ammonia stripping [137], membrane separation [33],
struvite precipitation [138], and ion exchange [139], in which ammonia stripping and mem-
brane separation have been the most investigated in animal manure processes (Table 4). For
example, in-situ ammonia stripping has been evaluated in several studies of the anaerobic
degradation of chicken manure, showing a higher methane yield and lower VFA levels,
and the possibility of reducing TAN by 12–72% (Table 4). Many factors affect ammonia
stripping, including temperature, pH, gas flow rate, CO2 composition in biogas, and diges-
tate composition [137]. Still, part of the ammonia removal in a digester can be achieved
by controlling parameters such as the stripping frequency so that the ammonia nitrogen
concentration can be maintained at an acceptable concentration. The hollow fiber mem-
brane method for ammonia separation has been tested in the anaerobic digestion of chicken
manure, where the TAN concentration decreased from 5.8 to 2.4 g/L within 20 days of
operation [33]. In another study, the membrane ammonia separation method was used
to remove ammonia nitrogen in the anaerobic digestion of chicken manure in the leach-
ing bed reactor. The study found that ammonia can significantly reduce the equilibrium
concentration in the digester from 10 g/L to 2 g/L [75]. A benefit of the abovementioned
methods is that degrees of ammonia removal can be adjusted by controlling the flow rate,
the concentration of the acid-absorbing liquid, and the membrane area [24,137]. However,
these methods require energy input, and no engineering case of membrane deamination
technology has been found yet. The biogas plant operator needs to make calculations to
ensure that the gained energy in the form of biogas exceeds the energy required for the
removal method.
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Table 4. Summary of ammonia removal methods during anaerobic degradation and the obtained
process performance.

Operation
Mode Substrate OLR

(g VS/(L·d))
HRT
(d)

Ammonia
Removed
Methods

Findings Reference

CSTR Chicken
manure 5.3 20 Ammonia

stripping

15% reduction in the TAN
(from 6.8 to 5.8 g/L),

30% reduction of volatile fatty
acids, and methane yield

increased by 34%.

[78]

Two stages
(CSTR +
stripping
AnMBR)

Chicken
manure 4.0 4 + 15 Ammonia

stripping

47% reduction in the TAN
(from 5.7 to 3.1 g/L),

29% reduction of volatile fatty
acids, and methane yield

increased by 65%.

[39]

CSTR Chicken
manure 9.0 15 Ammonia

stripping

35% reduction in the TAN,
The methane yield reached

0.20 L/g VS which was higher
than control digesters

(0.03 L/g VS).

[140]

CSTR Chicken
manure 5.3 40 Ammonia

stripping

12–72% reduction in TAN
concentration,

the specific gas yield was
0.39 L/g VS.

[77]

CSTR Chicken
manure 2.7 64 Activated

carbon particles

19% reduction in the TAN (from
14.2 to 11.5 g/L),

25% reduction of volatile fatty
acids, and methane yield

increased by 10%.

[141]

Leach-bed
process

Chicken
manure ND ND Membrane

separation

Methane production in the
membrane-integrated reactor

was 2.3 times higher than in the
control reactor.

[75]

CSTR Swine
manure 3.7 20 Membrane

separation

23% TAN reduction in the
membrane-separation reactor

Specific methane yield increased
by 17% compared with the

control reactor.

[142]

Note: AnMBR: anaerobic membrane bioreactor; ND: data not involved.

4.2. Supplementation of Trace Elements

Management methods that support and improve the activity of ammonia-tolerant
microorganisms are available and enable the operation of the anaerobic process without
investing energy to remove the ammonia. Such management approaches include supple-
menting certain trace elements, especially iron [143,144]. All these management approaches
still demand start-up and operation that allow microbial adaption and maintained activity
of ammonia-tolerant microorganisms. The anaerobic digestion process requires nutrients
such as carbon, nitrogen, and phosphorus, but also trace elements are essential in the
growth of anaerobic microorganisms. For example, Fe, Ni, Co, Se, W, Mo, and other metal
elements are used by microorganisms to construct critical coenzymes or cofactors needed
in various enzymatic reactions [145–147]. In the anaerobic digestion of chicken manure,
adding Co, Ni, and Se has increased methane yield (Table 5). For instance, adding Ni,
Co, Mo, W, Mo, and Se increased the methane production from 0.12 to 0.26 L/g VS com-
pared with a control reactor during anaerobic treatment of chicken manure at a high TAN
concentration (7.2 g/L) [148]. In another study, adding Fe, Mo, Ni, Mn, and Co to corn
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straw and chicken manure, co-digestion increased methane yield by 31–35% compared
with the control digester [149]. The level and specific trace elements that benefit the process
performance vary with the substrate characteristic and the microbial community composi-
tion [150]. Hence, general recommendations regarding the concentration of trace elements
that should be added for optimal performance of animal manure processes are challenging
to formulate.

An important aspect to highlight in the discussion of trace element addition is the effect
of iron addition on removing sulfide. Sulfide is produced during the anaerobic digestion
and causes process disturbance due to microbial inhibition and forms hydrogen sulfide
(H2S) in the biogas, which subsequently causes a corrosive effect on downstream pipelines.
Sulfides also form metal-sulfide complexes with essential trace elements for microorganisms
and can thus cause micronutrient deficiency. The addition of iron is a practical approach to
removing sulfide through the precipitation of iron sulfide (FeS) [151,152]. It has also been
reported that the process of hydrogen evolution from iron corrosion by the addition of
iron is beneficial to the metabolic activity of hydrogenotrophic methanogens [153,154], and
iron (zero-valence iron and Fe2+) is beneficial in reducing the oxidation-reduction potential
of the fermentation system [155]. All of the aforementioned reasons may explain why
iron enhances methane production. Many studies have proved the positive role of iron in
promoting the performance of the anaerobic digestion process [143,156,157]. The amount
of iron added in studies of animal-manure-degrading anaerobic processes varies greatly,
ranging from 20 mg/L to 20 g/L (Table 5), so care should be taken when choosing the iron
concentration since there is a risk of causing excessive heavy metal content in the digestate,
and high levels do not improve methane production.

Table 5. Impacts of multiple trace element supplementation on anaerobic digestion of animal manure.

Operation
Mode Substrate OLR

(g-VS/(L·d))
HRT
(d)

TAN
(g/L)

FAN
(g/L)

Types and
Concentrations

(mg/L)
Findings Reference

Continuous Chicken manure 4.8 20 6.8 0.6 Fe: 280, Ni: 2

Increased 34% methane production and 29% reduction of
VFAs against control.

SAMA and SHMA increased by 89% and 40%, respectively.
The relative abundance of Methanosarcina sp. in the control group was 75%,

significantly lower than in the trace element reactor (95%).

[45]

Continuous Chicken manure 3.6 30 6.6 0.7 Ni:1, Co:1, Mo: 0.2,
Se: 0.2, W: 0.2,

Methane yield increased by 117%.
The relative abundance of hydrogenotrophic

Methanoculleus bourgensis was 53%.
[158]

Continuous Chicken manure 3.7 30 6.0 0.7 Ni:1, Co:1, Mo: 0.2,
Se: 0.2, W: 0.2,

CH4 yield increased five times more than the control (0.05 vs. 0.31 L/g VS).
The relative abundance of Methanoculleus bourgensis in the control group was

only 3%, significantly lower than the trace element reactor (53%).
[148]

Continuous Chicken manure 2.8–3.0 30 5.9 0.5 Ni:1, Co:1, Mo: 0.2,
Se: 0.2, W: 0.2,

CH4 yield increased 146% to control (0.32 vs. 0.13 L/g VS).
The relative abundance of Methanobrevibacter sp. increased from 20% to 80%. [150]

Continuous Chicken manure 2.8 30 5.0 0.4 Se: 0.2
CH4 yield increased 107% to control (0.27 vs. 0.13 L/g VS).

The relative abundance of Methanoculleus bourgensis
increased from 5% to 63%.

[150]

Continuous Chicken manure 1.3–1.5 20 5.0 0.6

Ni:8, Co:1, Mo:2,
Se: 0.2, W: 0.3,

Zn:100, Mn: 150,
Fe:500

Improved methane production efficiency by 38% and
decreased the H2S content. [159]

Batch Chicken manure / / 6.0 / Ni:1, Co:1, Mo: 0.2,
Se: 0.2, W: 0.2, Fe: 5 CH4 production and production rate improved by 7–8% and 5–6%. [147]

Batch Chicken manure / / 4.0 / Ni:1, Co:1, Mo: 0.2,
Se: 0.2, W: 0.2, Fe: 5 CH4 production and production rate were increased by 20% and 40%. [147]

Batch Chicken manure
and corn stover / / ND / Fe: 5, Ni: 1.0, Mn:

0.5, Co: 0.5, Mo: 0.1

The relative abundance of Methanosarcina sp. in the control group was 86%;
it was higher than that of RFe (71%), R-Mo (54%), R-Ni (54%), R-Mn (53%),

and R-Co (56.7%).
Methanosarcina sp., Methanobacterium sp., and Methanospirillum sp. were

enriched in all trace element reactors.

[149]

Batch Livestock
manure / / ND / Fe: 20 Increased the biogas and methane volume by 1.45 and 1.59 times by the

control, respectively. [143]

Batch Livestock
manure / / ND / Fe3O4: 20 Increased the biogas and methane volume by 1.66 and 1.96 times by the

control, respectively. [143]

Batch Pig manure / / ND / ZVI: 20 (g/L) Increased 20–26% of CH4 yields. [160]

Batch Swine manure / / ND / ZVI: 5 (g/L)

Increased the CH4 yield by 17.6%.
ZVI significantly increased the relative abundances of Methanothrix sp. and
Methanolinea sp. to 37.5% and 8.6%, corresponding to an improvement of

19.8% and 16.2%.

[161]

Batch Cattle manure / / ND / ZVI: 80 Increased the CH4 yield by 6.56%. [144]

Batch Cattle Manure / / ND / Fe3O4: 18 Increased the biogas and methane production by 27.6% and 25.4%
compared to the control, respectively. [162]

Note: ZVI: microscale zero-valence iron; ND: data not involved.
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5. Challenges and Perspectives
5.1. Feedstock Pretreatment and Reactor Innovation

Cellulose, hemicellulose, and indigestible lignin compounds in manure are firmly bound
to form a complex structure. High contents of lignocellulose limit the hydrolysis of anaer-
obic digestion, which is usually the rate-limiting step in the whole process. Therefore, a
pretreatment process is required to break the dense structure of lignocellulose and improve the
accessibility of microorganisms to organic substances [163]. Currently, the pretreatment of lig-
nocellulose includes mechanical, thermal, biological, chemical, and combined methods [164].
Each of the aforementioned methods can be effective for pretreatment, but combining mul-
tiple methods can provide additional benefits. One example is the use of a combination of
heat and chemical treatments to process cow manure [165]; steam explosion is combined
with ultra-fine grinding to treat cow manure and straw [166,167]. For nitrogen-rich manure,
ammonia nitrogen removal became more critical, like stripping technology [78,168]. However,
pretreatment sometimes induces extra chemical and energy costs and contaminants and
requires complex operation [164]. There are still significant challenges in developing low-cost
and high-efficiency animal manure pretreatment technology.

Given the differences in suitable conditions for various microorganisms in different fer-
mentation steps of anaerobic digestion, a multi-step reactor would be helpful. The reactor can
provide the desired fermentation conditions for hydrolysis, acidogenesis, and methanogene-
sis [97,98]. For example, CSTR can be combined with AnMBR to treat chicken manure, which
realizes the treatment of chicken manure (TS 10%) by a membrane bioreactor. In addition, re-
actors combine thermophilic and mesophilic to treat swine manure [7], cattle manure [62], etc.
Additionally, part of the hydrogen sulfide, mainly in protein-rich animal manure, is produced
and emission in the hydrolysis and acidogenesis stage. Compared with the single-step reactor,
the hydrogen sulfide concentration in the methanogenesis process is reduced, alleviating the
toxic effects of hydrogen sulfide on methanogens. Therefore, advanced anaerobic reactors and
technology for animal manure treatment still need deliberation.

5.2. Identifying the Functional Microbial Community

The microbial composition and the networks formed in anaerobic systems vary widely
depending on the operating factors and substrate composition. Studies reported the
changes in microbial community structure that may be linked to process operation and
performance using 16S rRNA gene amplicon sequencing. The results helped to take the
first step toward understanding the link between process and microbiology. However, the
abundance of microbial species might not be directly linked to microbial activity and its
importance for the degradation process [169]. One example is the methanogenic group,
which is often detected with low relative abundance but significantly contributes to methane
production [170]. When analyzing the microbial community, both viable and dead cells
were detected through a response on DNA [169]. Consequently, the results may not reflect
the actual functioning bacteria. RNA-based assays should become mainstream, which
can represent an active community. At present, fluorescence in situ hybridization (FISH)
analysis has become the primary tool, which mainly uses genetic probes and fluorochrome
for labeling to distinguish between viable and dead cells, and it is widely used to identify
active methanogens in anaerobic digestion [171,172]. In addition, propidium monoazide
(PMA) polymerase chain reaction (PCR) or quantitative PCR (qPCR) can analyze viable
cells in samples qualitatively or quantitatively [173]. The functional microbial community
structure was accurately identified by viable cells, thus providing accurate information for
adjusting operating parameters and realizing the efficient fermentation process.

5.3. Quantitative Supplementation of Trace Elements

Positive effects on process performance and stability by adding trace elements have
been demonstrated during the anaerobic treatment of various animal manure. However,
there are significant differences in the metals species and the dosage depending on feedstock
and operating conditions. For example, Fe, Co, and Ni can effectively optimize hydrolysis
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and acidogenesis, as adding trace elements increases the dissolution and production of
organic acids [152,174]. Fe, Co, Ni, Se, W, Mo, etc., especially Se, can rapidly increase the
activity of methanogens [147,148]. The interlinkage between chemical and microbiological
interactions makes trace elements supplementation technology complex. A critical aspect
regarding supplementation in processes’ nitrogen-rich animal manure is the degradation of
protein-rich substrates, which can also lead to high sulfide concentration in addition to the
high ammonia, which in turn can lead to the formation of metal sulfide precipitates that
reduce the bioavailability of essential trace elements [151,175]. Although adding biological
chelating agents (soluble microbial products, extracellular polymeric substances, yeast extract,
etc.) can improve the bioavailability of trace elements, the effect of chelating agents on
the anaerobic consortia and whether it improves the utilization efficiency of trace elements
remains uncertain [151]. The goal is that a few trace elements can significantly improve the
performance and not introduce unnecessary metals in the digestate. Therefore, improving
trace elements’ bioavailability is a challenge. Further research is needed to provide a complete
picture of the effects of adding trace elements to animal manure digesters.

5.4. Solid-Liquid Separation of Digestate

Solid-liquid separation is usually carried out by press filtration and centrifugal dehy-
dration [176]. The solid-liquid separation process reduces the organic content of the biogas
slurry and methane emissions from the uncovered digestate storage tank [176]. Efficient
separation requires serious consideration. However, various factors affect the effectiveness
of digestate solid-liquid separation [177]. Suppose the solid and liquid components cannot
be sufficiently separated. In that case, the suspended solids will enter the liquid phase that
needs further treatment by both biological and chemical processes. Flocculants that can
enhance the solid-liquid separation have been extensively studied but more for sewage
sludge than animal manure digestate [178]. In addition, the digestate as inoculum for other
anaerobic digestion processes and interconnected different types of anaerobic digestion
after solid-liquid separation can increase the diversity of microorganisms and enhance
the stability of the anaerobic system. Examples include cow dung biogas for pig manure
anaerobic digestion inoculation, and cow manure and sludge for municipal solid waste
anaerobic treatment [179,180]. Current commercial technologies can handle high flow rates
and efficient dewatering of solid components but still cannot achieve deep dewatering at
high loads. Then, the more efficient and convenient solid-liquid separation technology of
the digestate needs further exploration.

5.5. High-Value Products from Methane

Methane in biogas is mainly used for power generation. However, the low price
of methane makes anaerobic digestion projects challenging to operate without a subsidy.
High-price products generated from methane that can extend the value of methane are
an excellent way for animal anaerobic treatment. For example, methane can produce
hydrogen through chemical looping and reforming technology [181–183]. Furthermore,
producing single-cell protein or microbial protein from methane has high economic value.
It can be based on a circular economy, thereby alleviating environmental and socioe-
conomic pressures due to the limitations of traditional agriculture [184,185]. Microbial
protein is a biomass of microorganisms, such as fungi, yeast, microalgae, bacteria, etc.,
that contains essential amino acids and can replace conventional protein food or feed
sources [185]. Currently, there are commercial applications for producing microbial pro-
tein using hydrogen-oxidizing bacteria (HOB), mainly for food and feed ingredients [186].
However, it is noted that the anaerobic digestion of animal manure will produce hydrogen
sulfide (H2S), especially poultry manure. Therefore, it is necessary to purify the biogas
to remove harmful gases such as H2S before methane valorization. For example, in situ
biological desulfurization significantly reduces the cost and complexity of subsequent
biogas purification in the anaerobic digestion of chicken manure [187]. The high-value



Fermentation 2023, 9, 436 15 of 22

utilization of methane is a new concept for the biogas industry, and more efforts should be
made to demonstrate the benefits and the possibilities for wide application.

6. Conclusions

Even though anaerobic digestion processes are widely applied and commercialized, some
processes still face challenges depending on the animal manure composition and operating
conditions. Pre-treating animal manure to enhance hydrolysis can be dependent on the energy
efficiency of the process as well as the complexity of the pre-treatment unit. For cattle manure,
pretreatment can improve the biodegradability of the content of lignocellulose matter. Ammo-
nia inhibition is a longstanding challenge for nitrogen-rich manure. It requires more profound
insights into the functional microbial community, the importance of syntrophic metabolism,
how that can be increased, and the impact of adding trace elements. Hence, several potentials
exist to overcome the inhibitory effects of ammonia, such as the design of innovative reactors
and process technologies that support high activities of essential microorganisms, which are
crucial for the development of the next generation of anaerobic digestion of animal manure
for biogas production and nutrient recovery.
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