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Introduction: Survival and growth of tree seedlings are key processes of

regeneration in forest ecosystems. However, little is known about how climate

warming modulates seedling performance either directly or in interaction with

understory vegetation and post-fire successional stages.

Methods: We measured survival (over 3 years) and growth of seedlings of three

tree species (Betula pubescens, Pinus sylvestris, and Picea abies) in a full-factorial

field experiment with passive warming and removal of two plant functional groups

(feather moss and/or ericaceous shrubs) along a post-fire chronosequence in an

unmanaged boreal forest.

Results: Warming had no effect on seedling survival over time or on relative

biomass growth. Meanwhile, moss removal greatly increased seedling survival

overall, while shrub removal canceled this effect for B. pubescens seedlings.

In addition, B. pubescens and P. sylvestris survival benefitted most from moss

removal in old forests (>260 years since last fire disturbance). In contrast

to survival, seedling growth was promoted by shrub removal for two out of

three species, i.e., P. sylvestris and P. abies, meaning that seedling survival and

growth are governed by different understory functional groups affecting seedling

performance through different mechanism and modes of action.

Discussion: Our findings highlight that understory vegetation and to a lesser

extent post-fire successional stage are important drivers of seedling performance

while the direct effect of climate warming is not. This suggests that tree

regeneration in future forests may be more responsive to changes in understory

vegetation or fire regime, e.g., indirectly caused by warming, than to direct or

interactive effects of rising temperatures.
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climate change, forest fire, moss, plant functional group removal, shrubs, survival, forest
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1. Introduction

The boreal forest is one of the world’s largest biomes and
it provides important ecosystem services such as carbon storage,
biodiversity refuges, and timber (Pan et al., 2011; Gauthier et al.,
2015). Recurrent fires are a natural part of the boreal biome
and a key driver of forest community dynamics (Bradshaw,
1993; Kuuluvainen and Aakala, 2011; Davis et al., 2018), because
fire-induced disturbance can among others create recruitment
opportunities for seedlings (Kuuluvainen and Rouvinen, 2000). The
frequency and severity of fire events in large parts of the boreal
region are expected to increase in response to climate change
(de Groot et al., 2013; Flannigan et al., 2013), although this is
counteracted by fire management and increasing precipitation in
some regions (Pinto et al., 2020; Krikken et al., 2021). Changes
in fire regimes coupled with rising temperatures, expected to be
particularly amplified in high latitudes (Previdi et al., 2021), are
likely to have large effects on boreal forest ecosystems, including on
those processes that are involved in post-fire seedling recruitment
(Walker et al., 2019; McDowell et al., 2020). Seedling recruitment
is essential for forest regeneration and ultimately influences the
composition and resilience of future forests. Warming and fire
history are also likely to alter under- and overstory vegetation
composition (Hedwall et al., 2019; Mekonnen et al., 2019), which
in turn impacts on forest regeneration (Nilsson and Wardle, 2005;
Johnstone et al., 2010). However, little is known about direct
effects of warming, and combined effects of warming, understory
vegetation and fire history, on seedling recruitment.

Seedling establishment is often temperature-limited (Körner
and Paulsen, 2004) and higher temperatures might therefore
increase seedling survival and growth in high latitude boreal
systems. Indeed, a recent study showed that seedling survival
increased in response to warming in greenhouse conditions, but in
contrast decreased in the field (Hansen and Turner, 2019). Further,
relaxation of cold-limitation can positively affect seedling growth
by alleviating physiological constraints on bud break (Walck et al.,
2011) and photosynthesis (Saxe et al., 2000; Danby and Hik,
2007; Ryan, 2013). However, seedling growth has been observed
to increase (Kellomaki and Wang, 2001; Xu et al., 2012), remain
unchanged (Lathi et al., 2005; Pumpanen et al., 2012) or decrease
(Day et al., 2005; Okano and Bret-Harte, 2015) in response to higher
temperatures. This suggests that both seedling survival and growth
responses to warming could be mediated by a variety of biotic and
abiotic conditions that vary considerably among unmanaged boreal
forest ecosystems, but the role of these mediators in influencing
seedlings in these forests is not well studied.

The boreal understory vegetation is dominated by ericaceous
shrubs (e.g., Empetrum hermaphroditum, Vaccinium myrtillus, and
Vaccinium vitis-idaea) and feather mosses (e.g., Pleurozium
schreberi), which can suppress seedling establishment by
competition for light (Montgomery et al., 2010; Thrippleton
et al., 2016) and nutrients (Stuiver et al., 2014). In general,
climate warming is expected to promote competitive rather than
facilitative effects (Callaway et al., 2002). For example, climate
warming can increase competition for resources (Zackrisson et al.,
1998; Soudzilovskaia et al., 2011) and potentially exacerbate
the negative effect of surrounding vegetation on seedling
establishment. However, feather mosses can also retain water

(Oleskog and Sahlen, 2000; Turetsky, 2003; Elumeeva et al., 2011),
buffer soil temperatures (Blok et al., 2011; Wheeler et al., 2011)
and fix nitrogen (N) via association with cyanobacteria (DeLuca T.
H. et al., 2002; Turetsky, 2003; Sorensen et al., 2012), all of which
could potentially enhance seedling performance (Davis et al.,
2018). As such, seedlings growing in moss might be able to better
withstand moisture limitation resulting from climate warming
(Oleskog and Sahlen, 2000; Turetsky, 2003; Elumeeva et al., 2011)
and soil temperature fluctuations (Blok et al., 2011; Wheeler et al.,
2011). Seedlings growing among shrubs are likely to be exposed
to resource competition (Montgomery et al., 2010), which could
potentially be intensified by climate change. On the other hand,
shrubs can benefit seedlings, for example by protecting them from
herbivores or frost damage (Gomez-Aparicio et al., 2008; Barbosa
et al., 2009; Jensen et al., 2012). Thus, shrubs and mosses could
affect seedling responses to warming differently, but this has not
yet been studied. Furthermore, the combined effects of mosses and
shrubs could have either positive or negative interactive effects on
seedling performance (Wardle et al., 2008), yet our understanding
of such complex mechanisms is limited.

Boreal forest regeneration is governed by recurring fire events,
which drive successional trajectories in the forest under- and
overstory (Nilsson and Wardle, 2005). With increasing time
since fire, ericaceous dwarf shrubs with higher litter quality (e.g.,
V. myrtillus) are gradually replaced by dwarf shrubs with lower
litter quality (e.g., E. hermaphroditum) (Nilsson and Wardle, 2005).
This succession leads to a decline in nutrient availability (DeLuca T.
et al., 2002), which can reduce seedling establishment (Kuuluvainen
and Rouvinen, 2000; Mallik, 2003). Simultaneously, moss cover
increases in thickness in the understory during succession and
as time since fire increases (DeLuca T. et al., 2002; Turetsky
et al., 2010), thus potentially making it more competitive against
tree seedlings (Stuiver et al., 2014) especially if water becomes a
limiting factor (Lindo and Gonzalez, 2010; Soudzilovskaia et al.,
2013). However, warmer temperatures might also reduce moss
cover (Alatalo et al., 2020) and thus weaken potential moss-induced
facilitative as well as competitive interaction with tree seedlings.
The combined effects of warming, moss cover and shrub cover on
tree seedling performance change across post-fire successions have
not been studied, but understanding this is important for predicting
how boreal forest ecosystems will respond to future changes in
climate and fire regime.

The aim of our study is to investigate how climate warming
both directly and in interaction with plant functional groups and
post-fire successional stage can modify tree seedling performance
in unmanaged boreal forests. To investigate seedling performance,
we followed for 3 years the survival and growth of planted seedlings
of the three most common Fennoscandian boreal tree species
(Betula pubescens, Pinus sylvestris, and Picea abies) in response
to climate warming, understory functional group removal (i.e.,
feather mosses and/or ericaceous shrubs) and post-fire successional
stage. We hypothesized that (1) warming increases seedling
performance, with the positive effect of warming on seedling
performance being weakened by the presence of mosses and
shrubs, and (2) that the positive effect of warming on seedling
performance and the mediation of this effect by the presence of
mosses and/or shrubs, depends on post-fire successional stage,
with stronger positive effects in early- rather than in late-
successional stages.
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2. Materials and methods

2.1. Study site and experimental design

This experiment was carried out in northern Sweden on ten
experimental sites in the vicinity of Arvidsjaur (65◦35′–66◦07′N,
17◦15′–19◦26′E). The sites are distributed along a natural fire-
induced gradient of successional stages with time since the last fire
disturbance ranging from 48 to 368 years (Zackrisson et al., 1996).
Based on the time since last fire disturbance, the sites are classified
as young (<100 years since the last fire; N = 3), intermediate (100–
260 years since the last fire; N = 4), or old (>260 years since the
last fire; N = 3) (Jackson et al., 2013; Supplementary Figure 1 and
Supplementary Table 1). The most abundant tree species on all
sites are B. pubescens, P. abies, and P. sylvestris (Jackson et al., 2013).
The understory vegetation across the ten sites is characterized by
ericaceous shrubs (E. hermaphroditum, V. myrtillus, and V. vitis-
idaea) and the feather moss P. schreberi (Jackson et al., 2013). The
relative abundance of the various over- and understory species
is dependent on the time since the last fire: younger sites are
characterized by shallow feather moss layer (mean: 29.2 mm),
dominant biomass of V. myrtillus (mean: 102.3 g/m2) and high
basal area of P. sylvestris (mean: 18.4 m2/ha), whereas older sites
have a thick feather moss layer (mean: 51.4 mm), high biomass of
E. hermaphroditum (mean: 90.5 g/m2) and dominant basal area of
P. abies (mean: 8.9 m2/ha) (DeLuca T. et al., 2002; Jackson et al.,
2013; De Long et al., 2015; Supplementary Table 1). The soils of all
sites of the chronosequence are either Typic or Entic Haplocryods,
which are acidic podzols typical of cold and wet environments
(DeLuca T. et al., 2002). The mean annual air temperature across
the sites is −2◦C (average temperature in January: −14◦C; average
temperature in July: 12◦C) and the mean annual precipitation is
600 mm (Jackson et al., 2013).

We established the experiment in 2010 with a full factorial
combination of passive warming, shrub removal and moss removal
at each of the ten sites. To apply the treatments, we established
hexagonally shaped plots (diameter of 165 cm × 190 cm; total
area 2.35 m2), which each contained a homogeneous vascular
plant community composition and feather moss (Hylocomium
splendens and P. schreberi) coverage specific for each site (De
Long et al., 2015). Each of these plots was randomly assigned
to one of four full factorial combinations of warming (ambient
or increased temperature) and shrub removal (shrubs present or
removed). These plots were then halved by a north-south middle
line to create subplots randomly assigned to one level of the moss
removal treatment (moss present or moss removed). This resulted
in 8 different treatment combinations per site (Supplementary
Figure 1) and 80 experimental subplots across the 10 sites.

To increase soil and air temperature of the plots assigned
to warming we used transparent Perspex Open-Top Chambers
(OTCs) (diameter: 165 cm× 190 cm, height: 47 cm, central exposed
area: 0.95 m2, MakroLife, Arla Plast AB, Sweden); a widely used
method to investigate warming effects in tundra (Henry and Molau,
1997; Marion et al., 1997) and forested systems (Munier et al., 2010;
Kaarlejärvi et al., 2012). To simulate summer warming during the
growing season, we placed the OTCs over each plot assigned to
warming each year in June and removed them again in October.
The OTCs increased the air temperature by 0.4◦C and the soil
temperature by 0.2◦C during summer (De Long et al., 2015) which

is comparable to other studies in forest ecosystems (De Frenne
et al., 2009). To avoid interference due to continuous shading of the
forest canopy with the warming treatment the experimental plots
were placed under canopy gaps at each site. In addition, we severed
all roots around the outer edge of each plot with a shovel (to a depth
of approximately 25 cm or the nearest rock) to exclude interference
from tree roots.

For the shrub and moss removal treatments, we manually
removed the aboveground parts of the respective functional group
at the beginning of the growing season, but left the belowground
parts intact to avoid disturbance to the litter layer and other plants
(Wardle and Zackrisson, 2005; De Long et al., 2015). The functional
group removal treatment was done once per year.

2.2. Seedlings planting and harvest

In the summer of 2013, when the disturbance impact of the
initial vegetation cover removal was considered to have largely
ceased (Wardle and Zackrisson, 2005), we planted two cohorts
of tree seedlings in each subplot, one in June and one in
August (hereafter referred to as “first” and “second” seedlings,
respectively). Prior to transplanting, we grew all seedlings from
commercial seeds for northern Swedish and Finnish provenances
(Svenska Skogsplantor AB): B. pubescens (Patana I SV-421),
P. sylvestris (ZON 6800 200), and P. abies (Björkebo FP-19). Before
transplantation to the field in the beginning of June, the “first”
seedlings were grown in trays with sand; B. pubescens seedlings
in warmed (initially 20◦C, later 15◦C) and lit growth chambers
for two and a half weeks, and P. sylvestris and P. abies seedlings
in a greenhouse for one and a half weeks. The “second” seedlings
were all grown in individual small pots in a 1:1 (vol.) sand:potting-
soil mixture in the greenhouse for approximately 2 months before
transplantation to the field at the end of August 2013. The evening
before transplantation, we gently washed all seedlings free of sand
and soil and kept them between moist tissues at 5◦C overnight. At
the time of transplantation, all first seedlings had only developed
their first cotyledons and a limited root system (tap root with
beginning lateral roots), while the second seedlings had developed
several leaves and a viable root system.

In June 2013, we planted the first cohort: 50 B. pubescens
seedlings, 20 P. sylvestris seedlings, and 10 P. abies seedlings
per subplot. To account for heterogeneity in soil and vegetation,
individuals were planted in one of two locations for each species
within each subplot, resulting in two groups of 25 B. pubescens
seedlings, two groups of ten P. sylvestris seedlings, and two groups
of five P. abies seedlings per subplot. The number of transplanted
seedlings varied between species, due to interspecific differences
in germination and pre-transplantation survival, but the distance
between transplanted seedlings was kept constant across species
(approximately 1.5 cm). As there was very little within-species size
variation in this cohort of pre-grown first seedlings, we randomly
distributed all these seedlings across sites and subplots.

In late August 2013, we planted a second cohort of larger
seedlings than in the first cohort to make sure that there would
be enough many seedlings survive throughout the years for the
final biomass analysis. This was done because the seedlings of
the first cohort were very small and thus had a high risk of
dying before the end of the study. The second cohort consisted
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of five B. pubescens seedlings and four of each P. sylvestris and
P. abies seedlings per subplot. Each of these individual seedlings
was planted at its own location within each subplot, to account
for within-plot heterogeneity, and these locations were different
than the locations at which the first cohort seedlings were planted.
Further, to account for within-species size variation in the pre-
grown “second” seedlings, all these seedlings were grouped into
3–4 size classes and seedlings within each size class were then
randomly distributed across all sites and subplots. In addition, we
oven-dried (48 h at 60◦C) and weighed multiple seedlings of each
cohort and species to obtain an estimate of the initial species- and
cohort-specific total dry biomass (see Supplementary Table 2).

We planted all seedlings at least 30 cm from the outer edge of
the hexagonal plots and at least 10 cm from the border between
the subplots, as in Lett et al. (2020). The seedlings were planted at
a depth that is comparable to that at which naturally germinated
seedlings are positioned, i.e., in the feather moss layer with their
stem base a few cm below the tips of the mosses, or in the organic
soil with their stem base a few mm below the soil surface (Lett et al.,
2017). After transplantation, all living seedlings from the “first”
cohort were counted twice per year, in early (June/July) and late
(August/September) summer, through 2013 until 2016, to assess
their survival.

To obtain the biomass growth dataset in spite of a high seedling
mortality rate, we combined biomass data from both cohorts of
seedlings (see below). In August 2016, we thus harvested the
above- and belowground biomass of the largest of the surviving
seedlings of each species per subplot for both the first and second
seedling cohorts, in all cases in which at least one seedling was
still remaining. We used the largest seedlings because the size
of the largest seedling more accurately reflects treatment-induced
plot conditions on seedling biomass growth than the average
biomass of all surviving seedlings per plot, which is biased by

seedling mortality (Wardle et al., 2008). All harvested seedlings
were washed in water to remove soil particles and any attached
plant material. The seedlings were oven-dried for 48 h at 60◦C and
weighed. To combine the biomass data for the two cohorts, which
differed due to age differences and planting date, we fitted linear
regression models for each species describing the relation between
first and second seedling biomass (Supplementary Figure 2).
We then used these relations to convert the biomass values of
second seedlings into that of first seedlings. For subplots with
both second and first seedlings, we averaged the biomass of the
first and converted second seedling to be consistent with the
approach used for subplots with seedlings of only one cohort.
In total, we thus harvested 276 seedlings for biomass analysis
and obtained growth data for 94, 90, and 92 individuals of
B. pubescens, P. sylvestris, and P. abies, respectively. We then
calculated total relative biomass increase for each individual
seedling (hereafter called “growth”) as: (individual seedling total
dry mass at harvest− initial species-specific× cohort-specific total
dry mass) / initial species-specific× cohort-specific total dry mass.

2.3. Statistical analysis

To assess the main and interactive effects of warming, moss
removal, shrub removal and successional stage on seedling survival
from 2013 to 2016, we applied a Cox mixed effects model for each
tree species separately, using only the survival data from the first
cohort of seedlings. Cox models evaluate the survival probability for
each individual subject (here tree seedling) at a given time and allow
for integration of random factors. Here we used subplot nested
within plot nested within site as a random factor to account for
the nested experimental design. We assessed the significance of the
effects of the treatments and their interactions using Chi-square
tests (Therneau, 2020).

TABLE 1 Results of Cox mixed effect models testing the effects of warming, moss removal, shrub removal, successional stage, and their interactions on
seedling survival from 2013 to 2016 for B. pubescens, P. sylvestris, and P. abies.

B. pubescens P. sylvestris P. abies

Treatment df χ2 p χ2 p χ2 p

Warming (W) 1 1.22 0.270 1.34 0.247 <0.1 0.932

Moss removal (MR) 1 43.85 <0.001 17.08 <0.001 17.25 <0.001

Shrub removal (SR) 1 5.53 0.019 9.18 0.002 1.73 0.188

Successional stage (S) 2 4.75 0.093 7.52 0.023 3.00 0.223

W×MR 1 <0.1 0.870 0.47 0.492 0.20 0.655

W× SR 1 0.71 0.399 <0.1 0.870 1.28 0.258

W× S 2 5.33 0.070 4.03 0.133 0.40 0.819

MR× SR 1 6.18 0.013 0.86 0.352 0.178 0.674

MR× S 2 1.82 0.403 7.71 0.021 1.05 0.592

SR× S 2 7.43 0.024 3.75 0.153 4.00 0.135

W×MR× SR 1 <0.1 0.951 2.45 0.118 0.86 0.355

W×MR× S 2 2.17 0.337 0.59 0.746 0.12 0.943

W× SR× S 2 1.52 0.468 0.96 0.618 <0.1 0.995

MR× SR× S 2 10.79 0.005 3.35 0.188 0.46 0.793

W×MR× SR× S 2 1.23 0.541 4.6 0.100 1.48 0.477

Significant results (p < 0.05) are in bold. Trends (p < 0.1) are in italic.
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To analyze the main and interactive effects of warming,
moss removal, shrub removal, and successional stage on seedling
growth, we applied linear mixed effect models separately for each
specie, using the combined data from both seedling cohorts. We
used subplot nested within plot nested within site as random
factor to account for the nested experimental design. Due to
100% mortality in some of the treatment combinations (i.e., no
seedling was available for biomass harvest) we excluded four-way
interactions from the models. The significance of treatment effects
was assessed with F-tests. We used model diagnostic plots to check
the homogeneity of variances and the normality of errors (Crawley,
2007) and the data were log- or square-root-transformed whenever
necessary (Tables 1, 2).

We used the “coxme” package (Therneau, 2020) to run Cox mix
effect models, the “lme4” package (Bates et al., 2015) to run linear
mixed effect models, the “tidyverse” and the “reshape2” package
(Wickham, 2007; Wickham et al., 2019) to arrange data and the
“ggplot2” package (Wickham, 2016) for plotting in R statistical
software (R Core Team, 2020 version 4.0.2).

3. Results

3.1. Tree seedling survival

At the last survival counting occasion after 3 years 361 (9%)
out of 4,000 planted B. pubescens, 357 (22.3%) out of 1,600 planted
P. sylvestris and 105 (13.1%) out of 800 planted P. abies seedlings
had survived. Throughout the duration of the experiment, warming
had no significant effects on survival of any of the three tree seedling
species either by itself or in combination with any other factor
(Table 1), although there was a trend (p < 0.1) for a weak positive
warming effect in the younger successional stages changing into

a negative effect in the older stages for B. pubescens (Figure 1A,
warming× successional stage interaction, Table 1).

Moss removal, shrub removal and post-fire successional stage
all exhibited some significant species-specific main and interactive
effects on seedling survival. As such, moss removal increased
survival of all three species, with B. pubescens receiving the greatest
benefit (Table 1 and Figures 1A–C). For this species, moss removal
moreover increased survival more when shrubs were present
compared to when shrubs were removed (moss removal × shrub
removal interaction, Table 1) and this effect was more pronounced
in the late post-fire successional stage (moss removal × shrub
removal × successional stage interaction, Figure 1A and Table 1).
For P. sylvestris seedlings, the positive effect of moss removal
on survival was also highest in old successional stages (moss
removal × successional stage interaction, Figure 1B and Table 1)
but not dependent on shrub removal. The positive effect of moss
removal on P. abies seedlings was independent of shrub removal
and post fire successional stage (Figure 1C and Table 1).

Shrub removal reduced survival overall for B. pubescens
seedlings, increased survival overall for P. sylvestris seedlings and
had no effect on P. abies seedlings (Figures 1A–C and Table 1).
The effect of shrub removal on B. pubescens survival changed
from slightly positive to negative with increasing time since last
fire (shrub removal × successional stage interaction, Figure 1A
and Table 1), which was primarily due to a strong negative
effect of shrub removal on B. pubescens seedling survival when
combined with moss removal in the older successional stages
(shrub removal × moss removal × successional stage interaction,
Figure 1A and Table 1). There was no interactive effect of shrub
removal with any other factor on seedling survival of either
P. sylvestris or P. abies.

There was a significant main effect of post-fire successional
stage on P. sylvestris seedling survival, as more seedlings survived
in old compared to young and intermediate sites (Figure 1C and

TABLE 2 Results of the linear mixed effect models testing the effects of warming, moss removal, shrub removal, successional stage, and their
interactions on B. pubescens, P. sylvestris, and P. abies growth.

B. pubescens growth P. sylvestris growth P. abies growth

Treatment df F p F p F p

Warming (W) 1 3.74 0.065 <0.1 0.769 <0.1 0.841

Moss removal (MR) 1 <0.1 0.938 0.19 0.674 1.88 0.189

Shrub removal (SR) 1 3.1 0.091 7.74 0.011 10.68 0.003

Successional stage (S) 2 1.59 0.226 3.68 0.043 1.25 0.305

W×MR 1 0.67 0.427 0.32 0.583 1.60 0.224

W× SR 1 <0.1 0.881 0.63 0.436 <0.1 0.879

W× S 2 0.91 0.416 0.34 0.716 1.29 0.291

MR× SR 1 1.59 0.229 0.54 0.478 2.06 0.170

MR× S 2 1.98 0.178 0.77 0.486 0.66 0.530

SR× S 2 0.14 0.871 1.67 0.210 1.02 0.375

W×MR× SR 1 2.66 0.125 1.63 0.223 3.19 0.092

W×MR× S 2 0.19 0.825 2.93 0.092 1.62 0.228

W× SR× S 2 0.11 0.893 2.37 0.113 0.97 0.388

MR× SR× S 2 1.41 0.274 0.42 0.668 1.09 0.360

Significant results (p < 0.05) are in bold. Trends (p < 0.1) are in italic. All growth data is log-transformed.
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FIGURE 1

Mean survival (± SE) of B. pubescens seedlings (A, 50 initially planted individuals per subplot), P. sylvestris seedlings (B, 20 initially planted individuals
per subplot), and P. abies seedlings (C, 10 initially planted individuals per subplot) from 2013 to 2016. The seedlings were surveyed in warmed (red)
and ambient (gray) conditions, with shrubs present (triangle) or with shrubs removed (point), with mosses present (upper panel) or with mosses
removed (lower panel) along a post-fire chronosequence with young, intermediate and old sites. Seedling survival was assessed twice per year
during early (June/July) and late (August/September) summer.

Table 1). There was no significant main effect of successional stage
on seedling survival for P. abies, but a weak trend (p < 0.1) of
higher survival in young compared to intermediate and old sites
for B. pubescens (Figure 1A and Table 1).

3.2. Tree seedling growth

Warming did not significantly affect total seedling growth for
any of the three tree seedling species, although there was a positive
trend (p < 0.1) for B. pubescens (Table 2). Interestingly, despite its
strong effect on survival, moss removal did not have a significant
effect on growth of the surviving seedlings in any of the species
(Table 2).

Shrub removal increased growth for P. abies and P. sylvestris
and there was a weak positive trend (p < 0.1) for B. pubescens
as well (Figures 2A–C and Table 2). Furthermore, growth of
P. sylvestris seedlings exhibited weaker growth in intermediate and
old successional sites compared to young sites, which effect seemed
(p < 0.1) primarily to occur in combination with moss removal and
warming (Figure 2B and Table 2). However, growth of B. pubescens
and P. abies seedlings was not affected by post-fire successional
stage (Table 2). There were also no significant interactive effects
among factors for any of the three species (Table 2).

4. Discussion

Warming of air and soil temperature, induced by the OTCs,
during the vegetation period had no significant effects on the
survival and growth of B. pubescens, P. sylvestris, or P. abies
seedlings in an unmanaged boreal forest system that includes
different successional stages. Instead, for all three tree species, the
overall seedling survival benefited from absence of mosses, and this
effect was sometimes reduced by shrub removal or mediated by
post-fire successional stage depending on the species. In contrast,
seedling growth was not affected by absence of mosses for any of

the tree species, but instead primarily promoted by shrub removal
for P. sylvestris and P. abies. Taken together, our results highlight
the importance of understory vegetation and fire history for tree
seedling establishment, and show that seedling survival and growth
can be affected by different understory functional groups regardless
of temperatures.

4.1. Lack of seedling response to
warming

In contrast to the prediction of our first hypothesis,
experimental warming of air and soil temperature did not
significantly increase seedling survival or growth. This is consistent
with the results of Marty et al. (2020) who found no effect of
experimental warming on seedling growth, but is in contrast to
Nissinen et al. (2020) and Okano et al. (2021) who observed a
positive effect on growth, and Wright et al. (2018) who found a
negative effect on survival. These divergent responses can origin
from different magnitudes of warming in different experiments,
ranging from 0.4◦C in our experiment, over 2◦C in the experiment
of Marty et al. (2020) to 3.4◦C in the experiment of Wright et al.
(2018). Boreal forests are expected to experience a 1.5–4◦C increase
of temperature (Gauthier et al., 2015; IPCC, 2021) suggesting
that the magnitude of warming in our study was comparatively
small and therefore may not have triggered a seedling response.
It is also possible that other essential factors such as nutrient,
water and light availability could act as limiting factor for seedling
responses to warming (Luo et al., 2019). We observed weak trends
of positive warming responses on B. pubescens survival and growth
and P. sylvestris growth that were limited to the young sites.
This may be related to higher nutrient availability, because an
earlier study conducted in the same experiment measured higher
ammonium amounts in warmed and young successional stage
plots (De Long et al., 2015). Besides nutrient availability, light
availability, soil moisture, and/or surrounding vegetation might be
other factors more strongly affecting seedling performance than
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FIGURE 2

Growth (± SE) of B. pubescens seedlings (A), P. sylvestris seedlings (B), and P. abies seedlings (C) at the point of harvest in 2016. The numbers below
the histogram bars represent the number of replicates with surviving seedlings (maximum number of replicates possible is 8 including first and
second seedlings). The seedlings were harvested in warmed (red) and ambient (gray) conditions, with shrubs present or with shrubs removed, and
with mosses present (upper panel) or with mosses removed (lower panel) along a post-fire chronosequence with young (<100 years since fire),
intermediate (100–260 years since fire), and old (>100 years since fire) sites. Seedling growth was defined as total biomass at the point of harvest
after 3 years, relative to biomass shortly after transplantation.

warming (Lett and Dorrepaal, 2018) especially when they are a
limiting factor and not alleviated by warming.

4.2. Seedling performance and
understory functional groups

We did not find support for the second part of our first
hypothesis that warming responses in seedlings would depend
on the presence of mosses and shrubs. Still, the main and
some interactive effects of moss and/or shrub removals strongly
impacted seedling performance. Interestingly, survival and growth
were strongest affected by different understory functional groups:
seedling survival of all three species responded positively to
moss removal and seedling growth of P. sylvestris and P. abies
responded positively to shrub removal. This may indicate different
mechanisms for seedling survival and growth, as well as different
modes of action for mosses and shrubs, such as facilitation or
competition. Earlier findings have shown that the presence of
mosses can be a great barrier for seedling germination and survival
in the boreal forest (Valkonen and Maguire, 2005; Hypponen
et al., 2013; Kokkonen et al., 2018) and relate that to changes
in moisture (Lindo and Gonzalez, 2010; Soudzilovskaia et al.,
2013) and competition for space as mosses can also suffocate
tree seedlings (Stuiver et al., 2014). Shrubs have also been
shown to suppress seedling growth (Wardle et al., 2008), e.g.,
E. hermaphroditum is known to produce poor quality litter
with allelopathic compounds hampering seedling establishment
(Nilsson and Zackrisson, 1992). This assumption is supported by
positive effects of shrub removal on P. sylvestris root and shoot
biomass and P. abies shoot biomass (Supplementary Table 3).
Furthermore, interspecific competition, for nutrients and light,
could be another mechanism, explaining why shrubs have a
negative effect on seedling growth because established shrubs have
a better developed root system and higher photosynthetic biomass

than young tree seedlings (Kuuluvainen and Rouvinen, 2000).
Seedling survival might thus be governed by competition for
water and space while seedling growth might be more affected
by competition for light and nutrients, overall highlighting the
importance of different understory functional groups and their
influences on resource availability as drivers of tree seedling
performance.

We also found species-specific effects of shrub removal on
seedling survival. B. pubescens seedlings generally survived better
with shrubs, while P. sylvestris seedlings survived better without
them. This difference in response between these two species could
be due to a trade-off between avoiding competition and being
eaten. Notably, B. pubescens seedlings are more palatable for
small mammalian herbivores than conifer seedlings (Lyly et al.,
2014) and potentially benefit from being surrounded by shrubs of
low palatability as this will lower their accessibility to herbivores
and thus reduce their mortality (Callaway et al., 2005; Barbosa
et al., 2009; Jensen et al., 2012). This can also explain why the
positive effect of moss removal on B. pubescens survival was
more pronounced when shrubs were present than when they
were absent. In addition, the presence of shrubs could have
increased moisture in understory vegetation (Angell and Kielland,
2009), promoting slug herbivory particularly targeting P. sylvestris
seedlings (Nystrand and Granstrom, 1997). Overall, this further
implies the importance of understory functional groups for forest
regeneration in terms of seedling survival and illustrates potential
facilitating effects which are, however, species-specific.

4.3. Seedling performance, understory
functional groups, and fire history

We also found no support for our second hypothesis that the
effect of warming on seedling survival and growth, and how this
is governed by understory functional groups, is mediated by the
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post-fire successional stage. However, we found stronger positive
effects of moss removal on seedling survival in late compared to
early post-fire successional stages for B. pubescens and P. sylvestris.
Old post-fire sites in our chronosequence have higher moss biomass
than do intermediate and young sites (DeLuca T. et al., 2002;
Jackson et al., 2013), therefore the removal of mosses likely relaxed
the competition from mosses for space and resources more in the
older sites (Nilsson and Wardle, 2005). Furthermore, B. pubescens
survival also benefitted from the combined effect of moss removal
and shrub presence in old post-fire successional stages. These older
successional stages support a higher biomass of E. hermaphroditum
relative to that of V. myrtillus (DeLuca T. et al., 2002; Jackson
et al., 2013; De Long et al., 2015), and it could therefore be
expected that seedling survival in these older forests would be
impaired because of the ability of E. hermaphroditum to produce
phytotoxic allelochemicals (Nilsson et al., 2000). However, as the
effects of shrub presence on B. pubescens seedlings was positive
and not negative, a different mechanism must have been involved.
For example, a high abundance of E. hermaphroditum, which is a
species of low nutritional quality, might have protected B. pubescens
seedlings from consumption by small mammalian herbivores like
hare, vole and/or lemmings (Callaway et al., 2005; Barbosa et al.,
2009; Jensen et al., 2012; Lyly et al., 2014).

4.4. Implications for future forests

In general, our results show that understory functional groups
are stronger drivers of tree seedling performance than direct effects
of experimentally generated warmer temperatures ranging at the
lower end of other experimental warming studies (Rustad et al.,
2001). However, warmer temperatures at the level expected in
boreal forests (1.5–4◦C) and an increase in precipitation (Gauthier
et al., 2015; IPCC, 2021) can also affect the cover and abundance of
understory functional groups (Hedwall et al., 2015, 2019) and thus
indirectly influence seedling responses. Overall, climate change is
expected to decrease the cover of shrubs (Hedwall et al., 2015;
Jonsson et al., 2021), while climate change effects on moss cover are
less clear; potentially leading to an increase (Jonsson et al., 2021),
but also a reduction (Alatalo et al., 2020). A decrease in shrub cover
in future forests may in particular favor P. abies and P. sylvestris
regeneration, because these species profited from shrub removal in
terms of growth and P. sylvestris additionally benefitted from shrub
removal in terms of survival.

In addition, climate change is also expected to promote fire
events due to warmer temperatures (de Groot et al., 2013; Flannigan
et al., 2013), resulting in post fire understory vegetation change
following successional trajectories (Nilsson and Wardle, 2005).
However, fire suppression (Pinto et al., 2020) and likely increasing
precipitation in the boreal forests of northern Europe might also
dampen the risk of forest fires (Krikken et al., 2021), leading
to a higher number of old forest sites (>260 years since fire
disturbance). In our study, time since last fire disturbance modified
B. pubescens and P. sylvestris responses to moss and shrub removal
such that performance was always worse at old sites. However,
this effect was clearly weaker than the effect of functional group
removal leading to the conclusion potential climate change effects
on future forest regeneration may primarily act through changes in
understory functional groups.
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