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Abstract

This dissertation is devoted to the calculation of perturbative corrections to deeply virtual Compton
scattering. This reaction is the gold-plated process for studying generalized parton distributions
that encode information on the three-dimensional tomographic imaging of the nucleon, which is
a significant part of the experimental program at major hadron physics experimental facilities at
Jefferson Laboratory and the upcoming Electron-Ion Collider at Brookhaven National Laboratory.
In this thesis I present the theoretical foundations and shortly describe the methods that were used
to obtain the main results: the complete next-to-next-to-leading order coefficient functions and
the resummation formula for threshold logarithms at the next-to-next-to-leading logarithmic order.
These results are expected to substantially improve the accuracy of the extraction of generalized
parton distributions from current and future experimental data.
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1 Introduction
The description of the hydrogen atom from the non-relativistic Schrödinger equation yields the
complete information about the electron’s energy eigenstates. For each state, a probability distri-
bution of the electron position with respect to the proton can be calculated and is visualized for
the first few states in Fig. 1.1. These pictures provide an illustrative example for the imaging of
quantum objects, in this case the spatial probability densities in a cross section of an hydrogen
atom. Similar probability distributions can be obtained for more complicated atoms and molecules.
The importance of the quantitative understanding of atoms for science and technology is hard to
understate.

In the usual treatment of the hydrogen atom, the proton is viewed as as static positively
charged massive object, whose internal structure is not relevant for atomic physics phenomena. This
approximation has high accuracy and is justified by vastly different energy scales associated to
atomic and nuclear physics, with the ground state energy of hydrogen being about 10 eV and the
mass of the proton being about 1GeV. Conversely, in order to uncover the proton structure one
needs much larger energies than are typical in atomic physics.

It is well known that the proton is not an elementary particle, but a bound state of quarks
and gluons. In the quark model of the 1960s the constituents are two up- and one down-quark,
as shown on the left in Fig. 1.2. The early quark model was essentially a classification scheme
for hadrons and successfully predicted for example the existence of the Ω− baryon [2–4]. However,
it does not give any quantitative tools to investigate hadron structure from first principles. Our
current fundamental theory governing particle interactions is the standard model of particle physics.
Quantum chromodynamics (QCD), being part of the standard model, is the dynamic theory governing
the interactions of quark and gluons in the proton.

The question arises whether one can obtain the multi-particle bound state wave functions of the
energy eigenstates in terms of those elementary constituents. Unfortunately, the QCD Hamiltonian
is much more complicated than any Hamiltonian in non-relativistic quantum mechanics. First of all,
like in any relativistic quantum field theory, particle number is not conserved. Thus, in addition to
the three so-called valence quarks predicted by the quark model, any number of quark-antiquark
pairs, called sea quarks, and gluons may pop into existence inside the proton in accordance with the
uncertainty principle. A visualization is shown on the right in Fig. 1.2. As it turns out sea quarks
and gluons make a significant contribution to the bound state structure of the proton. An exception
to this is for example the electric charge, which is the sum of charges of the valence quarks, since
quark-antiquark pairs and gluons have zero electric charge. The sea quarks and gluons do, however,
contribute to the total spin of the proton through their angular momentum and spin, as is illustrated
in Fig. 1.2.

The problem of particle number not being conserved is however the lesser problem when
investigating the proton in QCD. In any quantum field theory (QFT), such as QCD, observables
can generally only be calculated approximately. With an exception of first principles numerical
simulations of some key observables, using lattice QCD techniques, most of the interesting quantities
can only be calculated using perturbation theory. More precisely, an observable O is given by an
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Figure 1.1: Spatial probability densities in the xz-plane of the electron in the hydrogen atom
at different quantum numbers (`, across top; n, down side; m = 0), Taken from https://en.
wikipedia.org/wiki/Hydrogen_atom

infinite power series in the coupling constant α

O =
∞∑
n=0

αncn.

Most of the time only the first few coefficients cn in this expansion are calculated. The approximation
is of course only appropriate if the series is converging sufficiently fast. This is for example ensured
if α � 1 and cn ∼ 1. But in reality, any perturbative expansion for quantum systems is only
an asymptotic expansion in the mathematical sense and does not converge (has zero radius of
convergence) due to factorial growth of the coefficients cn ∼ n! at very high orders [5–8]. The
ultimate accuracy of the perturbative description is usually assumed to be of the order of the
minimum term in the series which can be an acceptably small number, suppressed by a power of the
large momentum.

The situation in QCD is, however, additionally complicated by the strong coupling becoming
“too strong”, of the order of unity at energy scales of the inverse proton size, so that no perturbative
description is possible at all.

There exist approaches to obtaining information about proton structure without the use of QCD,
most prominently the quark model, see Ref. [9] for a recent review. Such approaches have some
predictive power, but are generally unsatisfactory since they are not derived from the fundamental
principles. Lattice QCD on the other hand has this feature and though it had many successes, the
uses are limited and it should be viewed as complementary to perturbative QCD.

The bulk of the applications of QCD to the physics of hadrons exploit the “asymptotic freedom”
property, meaning that the interaction strength decreases with energy. The basic idea is that
the process of interest can be separated in subprocesses occurring at small and large distances
(or equivalently at large and small energies) which can be treated using different methods. This
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Figure 1.2: Evolution of our understanding of the nucleon. The arrows indicate how the total spin
of the proton arises in terms of its constituents. Left: The quark model picture, where the nucleon
consists of three quarks. Right: In QCD the nucleon is a complex object with many quark-antiquark
pairs and gluons in addition to the three valence quarks. Picture taken from [1].

approach is referred to as factorization. Short-distance/large-energy effects are treated using QCD
perturbation theory, whereas large-distance/small-energy physics input is obtained by matching
theory to experiment, or from lattice calculations.

The important point is that the non-perturbative physics can be encoded in certain universal
functions that encode information on hadronic structure. The historically first example of this
approach is Feynman’s parton model, applied, for example, to deep inelastic scattering (DIS). In
this process a highly energetic electron scatters off the proton. In a suitable frame of reference,
the proton can be viewed as a Lorentz-contracted “pancake” shaped composite system, with the
interaction between the constituents (partons) slowed down by relativistic time-dilation, such that
the partons can be considered to be quasi-free at the time scales relevant for the interaction with
an energetic (high-frequency) photon. This implies that the photon-proton interaction proceeds
via photon scattering from a single parton (quark or gluon) and the DIS cross section is given by
a sum of probabilities of scattering from different partons, i.e. there is no quantum interference.
The probability density to find a parton of a given species and with given longitudinal momentum
fraction inside a given hadron is called a parton distribution function (PDF). These functions are
key non-perturbative inputs for most QCD applications.

On a more detailed level, the proton structure can be described through a multitude of quantum
correlation functions (QCFs). An important subclass of QCFs, see Fig. 1.3, can be obtained
from the so-called Wigner distribution W (x,~bT ,~kT ) [11], which is the QCD analog of the Wigner
quasi-probability distribution W (~x, ~p) [12], which in some sense encodes the maximum amount of
information on the wave-function of the system. In particular

∫
d3~p W (~r, ~p) and

∫
d3~x W (~x, ~p) give

the usual quantum mechanical probability distributions in position and momentum, respectively.
Correspondingly, integrating W (x,~bT ,~kT ) over ~bT and ~kT gives the transverse momentum distribu-
tions (TMDs) and impact parameter distributions (IPDs), respectively. The TMDs integrated over
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Figure 1.3: Connections between different QCFs describing the distribution of partons inside the
proton. Taken from [1].

~kT and the IPDs integrated over ~bT in turn give the PDFs. W (x,~bT ,~kT ) of the proton is however
currently unattainable through experiment.

In this thesis we will focus on the generalized parton distributions (GPDs) [13–17], from which the
IPDs can be obtained directly. The IPDs are the spatial probability distributions for a given parton
with given longitudinal momentum fraction in the plane perpendicular to the hadron momentum. A
schematic representation is shown in Fig. 1.4 and an example from a lattice QCD calculation is
shown in Fig. 1.5. These studies, together with the momentum space picture of the TMDs, are
broadly gathered under the three-dimension “tomographic” imaging of the proton. The physics
program of the planned Electron-Ion Collider (EIC) [1, 18, 19] states this as a major goal. It should
be noted that this is not the only information that GPDs give about proton structure. Indeed, they
yield information on the decomposition of proton spin in terms of its constituents [14] and various
inter- and multi-parton correlations [20].

The most prominent process that gives access to GPDs is Deeply Virtual Compton Scattering
(DVCS) [14–16], which is the scattering of an electron from a proton, where the proton remains
intact and in addition an outgoing photon in the final state is measured. DVCS has been studied at
experimental facilities at DESY [21–32], JLAB [33–40] and CERN [41]. Further experiments are
planned at JLAB, CERN and the upcoming EIC. A good control over the perturbative physics will
be necessary to match the precision of these experiments. In particular, since GPDs are usually
determined from inventing models and matching the model parameters to data, the extraction of
the GPDs may depend strongly on small variations of the perturbative calculations.

There are two directions in which QCD theory predictions can be improved. The first one
is to consider higher order perturbative corrections to the leading power in αs of the underlying
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Figure 1.4: Schematic view of a parton with longitudinal momentum fraction x and transverse
position ~bT in the proton. Taken from [1].

short-distance subprocess, which are usually termed radiative corrections 1 These corrections are
the subject of this thesis, with the main goal to achieve the so-called next-to-next-to leading order
(NNLO) accuracy. The second one is to include power corrections corresponding to kinematic effects
and quark-gluon correlations. These terms generally involve more complicated QCFs and are very
poorly understood. They will be omitted in what follows. Although, in order to obtain an acceptable
theoretical precision, a good control of both types of corrections is needed in general.

To obtain αs corrections one needs to compute Feynman diagrams of increasing complexity. We
are way beyond the point where state-of-the-art calculations are feasible to do by hand. Instead,
computer algebra based methods are used to obtain results for Feynman diagrams. Probably the
most powerful method are the integration-by-parts (IBP) identities [46], which reduce a large set of
diagrams to a manageable set of master integrals. These integrals can then be calculated by various
methods, the most prominent being the method of differential equations [47].

This text is organized as follows. In Cha. 2 we present a review of DVCS at leading power. In
particular, we perform the leading twist expansion of the hadronic off-forward Compton tensor and
describe how it can be parameterized in terms of Compton form factors (CFFs). We also discuss
evolution equations for GPDs and the finite renormalization for the axial-vector GPD.

In Cha. 3 we first briefly introduce computer algebra methods for Feynman integrals and then
describe the calculation of the two-loop coefficient function (CF) of DVCS as it was performed in Ref.
[48]. We also introduce an alternative method, based on conformal symmetry, to calculate the CF.
Then we introduce the Goncharov polylogarithms [49] and their subset, the harmonic polylogarithms
(HPLs) [50]. The HPLs serve as a convenient basis of functions in which the CF can be expressed.

In Cha. 4 we first discuss some aspects of DVCS phenomenology. Then we introduce the
1Sometimes the term “radiative corrections” also refers to electromagnetic αem corrections. These have been

discussed in the context of DVCS in Refs. [42–45]
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Figure 1.5: Nucleon IPD of a quark for x = 0.3, 0.5 and 0.7 from lattice QCD calculation at the
scale of the physical pion mass [10].

Goloskokov-Kroll (GK) model [51] for the GPDs Hq, Hg and describe how one can perform the
convolution integral with the CF. We discuss some numerical results for NNLO corrections using
the GK model, in order to get an idea of the size of radiative corrections to DVCS.

Finally, in Cha. 5 we explain how contributions to the CFs that are logarithmically enhanced
in the threshold regions x→ ±ξ can be resummed to all orders [52]. Then we briefly discuss the
numerical impact.
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Basic notation and conventions
Throughout this work we use dimensional regularization with the space-time dimension denoted by
d = 4− 2ε and we use the MS-scheme. Feynman gauge is used throughout. We define

as = αs
4π = g2

(4π)2 , (1.1)

where g is the renormalized QCD coupling constant. We define the β function as

β(as) = µ
das
dµ

= −2as
(
ε+

∞∑
j=0

βja
j
s

)
, (1.2)

so that

β0 = 11
3 CA −

2
3nf , β1 = 2

3

(
17C2

A − 5nfCA − 3nfCF
)
, . . . , (1.3)

where nf is the number of quark flavors. In terms of the number of colors Nc the quadratic Casimirs
of the SU(Nc) group in the fundamental and adjoint representation are given by

CF = N2
c − 1
2Nc

and CA = Nc, (1.4)

respectively. For a general perturbative quantity X, we define

X =
∞∑
j=0

ajsX
(j) =

∞∑
j=0

∞∑
k=−2j

ajsε
kX(j,k), (1.5)

where we assumed that any relevant quantity diverges no worse than ε−2j for ε→ 0, where j is the
order in as.

We denote by a bar over z ∈ C the number z̄ = 1− z. We will frequently use the variables

z = 1
2(1− x/ξ), L = log µ2

Q2 , (1.6)

where x, ξ, µ,Q are standard notation used in the DVCS literature.
We use light-cone coordinates with respect to two light-like vectors n, n̄ with n2 = n̄2 = 0 and

n · n̄ = 1. Without loss of generality we can define

nµ = 1√
2


1
0
0
1


µ

, n̄µ = 1√
2


1
0
0
−1


µ

. (1.7)

For a generic vector V we define V + = n · V, V − = n̄ · V and V⊥ − V +n̄− V −n. We will commonly
denote a vector V in terms of its light-cone components by

V = (V +, V −, V⊥). (1.8)
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2 Deeply virtual Compton scattering at
leading power

2.1 Preliminaries
In the DVCS process a highly energetic photon γ∗, produced by an energetic lepton `, scatters of a
nucleon N , without destroying it while producing a real photon γ,

γ∗(q)N(p)→ γ(q′)N(p′). (2.1)

It is fully exclusive, meaning that the recoiled proton and lepton as well as the real photon must be
measured. DVCS is part of the more general process of leptoproduction of a photon from a nucleon
target [14, 16, 53–62]

`(k)N(p)→ `(k′)γ(q′)N(p′), (2.2)

where in addition also the Bethe-Heitler (BH) process

`(k)→ γ∗(∆)γ(q′)`(k′), (2.3)

with ∆ = k − q′ − k′, contributes. The total scattering amplitude is the sum of the DVCS and BH
amplitudes

M =MDVCS +MBH. (2.4)

At leading order in the electromagnetic interactions and neglecting contributions from the exchange
of a massive vector boson, the corresponding Feynman diagrams are shown in Fig. 2.1. Applying

k′k

p p′

q′

p p′

k
q′

k′

p p′

k k′

q′

Figure 2.1: Leading order diagrams in electromagnetic interactions of electroproduction of a
photon from a nucleon target. First two graphs from the left: Bethe-Heitler process, Right-most
graph: Deeply virtual Compton scattering.
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the Feynman rules yields the expressions for the scattering amplitudes

iMBH = − e3

∆2 e
2
` ūλ′(k′)

(
/J

1
/k
′ + /∆−m`

/ε
∗
h′(q

′) + /ε
∗
h′(q

′) 1
/k − /∆−m`

/J

)
uλ(k),

iMDVCS = − ie
3

q2 e`ūλ′(k
′)γµuλ(k)ε∗h′,ν(q′)Tµν , (2.5)

where we introduced the nucleon electromagnetic current

Jµ = 〈N(p′, s′)|jµ(0)|N(p, s)〉 (2.6)

and the hadronic tensor

Tµν = i

∫
d4x e−iqx〈N(p′, s′)|T{jµ(x)jν(0)}|N(p, s)〉. (2.7)

We also introduced the (quark) electromagnetic currents

jµ(x) =
∑
q

eq q̄(x)γµq(x), (2.8)

with the sums over quark flavors q and corresponding charges eq.
Let us introduce the kinematical parameters of the DVCS process. It is conventional to define

the four-vectors

P = p+ p′

2 , ∆ = p′ − p, Q2 = −q2 (2.9)

and the Lorentz scalars

xB = Q2

2p · q , t = ∆2, m2 = p2 = p′2, (2.10)

where xB is the Bjorken variable and m is nucleon mass.
It is useful to choose a preferred frame of reference to analyze the process. Our choice of

frame in this thesis is defined by requirement that q′+, q′⊥, P⊥ = 0. In particular, q′ is taken to
be proportional to the light-like vector n, whereas the nucleon momenta are proportional to n̄ for
m2, t = 0. Explicitly

p =
(

(1 + ξ)P+, (1− ξ)4m2 − t
8P+ ,

∆⊥
2

)
,

p′ =
(

(1− ξ)P+, (1 + ξ)4m2 − t
8P+ ,−∆⊥

2

)
,

q =
(
− 2ξP+,

Q2 + t+ (4m2 − t)ξ2

4ξP+ ,−∆⊥
)
, (2.11)

q′ =
(

0, Q
2 + t

4ξP+ , 0
)
.

Here the transverse components of ∆ are defined only up to rotations in the transverse plane with
the constraint that

∆2
⊥ = 4m2ξ2 + t(1− ξ2). (2.12)
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We also introduced the skewness variable ξ = p+−p′+
p++p′+ . It is related to the Bjorken variable xB by

ξ = xB(Q2 + t)
2Q2 − xB(Q2 − t) . (2.13)

If we say that both p, p′ are particles (i.e. not antiparticles) we must have −1 < ξ < 1. Throughout
this work we will additionally assume that p′+ < p+, so that 0 < ξ < 1. Then the obvious statement
∆2
⊥ < 0 implies the maximum value t for a given ξ and m2

t < −4m2ξ2

1− ξ2 < 0. (2.14)

2.2 Factorization of the Compton tensor
In order to deal with the non-perturbative object Tµν we need to demand certain kinematical
order-of-magnitude restrictions to make use of factorization, which allows to encode non-perturbative
physics in the QCFs, in this case the GPDs. These kinematical restrictions are

Q2 � −t,m2, P+ ∼ Q. (2.15)

Contributions that are suppressed by powers of λ ∼
√
−t/Q, m/Q are called higher-twist corrections

or power-corrections. Here the relation ∼ means that a ∼ b if and only if a = O(b) and b = O(a) as
Q→∞. In this work we will only consider terms of leading power in λ, also called leading twist.
The standard proof of the factorization theorem of the Tµν [63, 64] uses the analysis of Libby and
Sterman [65], where leading regions of loop momentum space are identified through the Landau
criterion [66–68]. The standard arguments [63, 69] culminate in the leading regions represented by
the reduced graphs in Fig. 2.2. Two additional subtleties regard the possible q′ collinear subgraph
at the outgoing photon vertex and a soft subgraph that may attach to the collinear subgraphs.
However, it can be shown that these contributions are power suppressed [63].

Consider a generic graph Γ contributing to the Tµν written in a form corresponding to Fig. 2.2
a), where a reference to a specific region R(H,A) is suggested. Formally, in the region R(H,A) the
momenta of lines in the subgraph H are hard l ∼ q and the line momenta in the subgraph A are
n̄-collinear l ∼ P . The diagram may be written as

Γ(H,A) =
∫
ddk
(∫ N∏

j=1
ddlj

)
Hµνµ1...µN
α1,c1,α2,c2,a1,...,aN (q, q′, k, l1, ..., lN )δα1β1δα2β2δc1d1δc2d2

×
( N∏
j=1

gµjνjδajbj

)
Aν1...νN
β1,d1,β2,d2,b1,...,bN

(p, p′, k, l1, ..., lN ), (2.16)

where µj , νj are Lorentz indices, aj , bj , cj , dj are color indices (in the fundamental or adjoint
representation) and αj , βj are spin/Lorentz indices corresponding to the two outer parton lines,
quarks or transversely polarized gluons. Applying the region approximator TR(H,A) amounts to the
following replacements.

• For the two outer parton lines insert projectors on the leading components of spin/Lorentz
indices between the contraction of indices between H and A.

δα1β1 → Pα1β1 , δα2β2 → P̄α2β2 (2.17)
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Figure 2.2: a) Leading regions of the hadronic tensor Tµν . The dashed lines may be quark lines or
transversely polarized gluon lines. b) Tµν after application of the region approximation.

For quarks

Pα1β1 = 1
2(γ+γ−)α1β1 , P̄α2β2 = 1

2(γ−γ+)α2β2 , (2.18)

while for gluons

Pα1β1 = g⊥,α1β1 , P̄α2β2 = g⊥,α2β2 , (2.19)

where gµν⊥ = gµν − nµn̄ν − n̄µnν .

• In the hard subgraph H replace all momenta by their leading twist approximations, i.e. λ→ 0,
denoted by a hat over the symbol. For the loop momenta in H we must make the replacement

kµ → k̂µ = k+n̄µ,

lj → l̂µj = l+j n̄
µ. (2.20)

I.e. we replace H(q, q′, k, l1, ..., lN )→ H(q̂, q̂′, k̂, l̂1, ..., l̂N ).

• For the contraction of an µj index between H and A, replace the corresponding metric tensor
by

gµjνj →
l̂j,µjnνj

l̂j · n+ i0
. (2.21)

Then use Ward identities to decouple the collinear gluons from the hard subgraph. This
requires to sum over hard subgraphs

∑
H with the same number of collinear gluon insertions.
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Proving this decoupling rigorously in the graphical approach is very complicated in the case of
QCD. However, the results have become standard. We get∑

H

Hµνµ1...µN
α1α2,a1...aN (q̂, q̂′, k̂, l̂1, ..., l̂n)→

∑
Ĥ

Ĥµν
α1α2

(q̂, q̂′, k̂) Wµ1...µN
a1...aN (l+1 , ..., l+N ), (2.22)

where

Wµ1...µN
a1...aN (l+1 , ..., l+N ) =

∑
permutations
of {1,...,N}

(−g)N nµ1ta1 ...n
µN taN

(l+1 + i0)...(
∑N
j=1 l

+
j + i0)

(2.23)

is the gN contribution to a momentum space Wilson line that factors into the GPD. The
remaining sum

∑
Ĥ is over all possible hard subgraphs without the collinear gluon insertions.

We obtain an expression of the form∑
H

TR(H,A)Γ(H,A) =
∫
dk+

2π
∑
Ĥ

Ĥµν
α1α2

(q̂, q̂′, k̂)Pα1β1P̄α2β2

×
∫
dk−

2π

∫
dd−2k⊥
(2π)d−2W

µ1...µN
a1...aN (l+1 , ..., l+N )Aµ1...µN

β1,β2,a1,...,aN
(p, p′, k, l1, ..., lN ) +O(λ) (2.24)

When summing over all graphs and regions one has to subtract the resulting double counting
contributions. On the graphical level one can define a subtraction procedure defined recursively
from smaller to larger regions in the sense of set inclusion. Comparing this procedure to alternative
formulations that use an approach in terms of an operator expansion, such as soft-collinear effective
theory, one obtains that these double counting subtractions correspond to subdivergence subtractions
with respect to the UV renormalization of parton densities, which are implicit when the factorization
formula is viewed in its operator form. We elaborate more on this in Sec. 2.6.

Considering these statements as given, we obtain the factorization theorem

Tµν =
∑
j

∫
dk+ tr

[
PjCµνj (q̂, q̂′, k+)P̄jFj(p, p′, k+)

]
+O(λ) (2.25)

where the sum
∑
j runs over parton species and the trace goes over all remaining Dirac or color

indices. The trace over color indices can be simplified by noticing that Cj must be diagonal in color,
since photons do not carry color. Hence we may define Fj to be traced in the color indices.

2.3 Breakpoints at k+ = 0 and k+ = ∆+

Before continuing we discuss a subtlety concerning the above derivation. Recall that we classified the
two parton legs connecting the subgraphs Ĥ to A, carrying momenta k and k′ = k−∆, respectively,
as being n̄-collinear. In Eq. (2.25) we are naively integrating over k+ ∈ R, which includes regions
where k+, k′+ � Q, so that we can not count them as being n̄-collinear. This seemingly contradicts
the assumption that both parton legs are collinear which would be the case if q′2 ∼ Q2. Indeed the
region of collinear k includes the region of soft k′ and vice versa. This phenomenon arises only in
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the DVCS case q′2 = 0 and was first pointed out by Radyushkin Ref. [70] and then addressed by
Collins and Freund [63]. We summarize the arguments made in Ref. [63] in the following.

To illustrate the issue, consider the leading order s-channel contribution to the leading order
handbag diagram and in particular the denominator of the hard line connecting the electromagnetic
currents

(k + q)2 + i0 = 2(x− ξ)(k− + q−)P+ + k2
⊥ +O(−t,m2) + i0, (2.26)

where we wrote k+ = (x+ξ)P+. The collinear approximation, i.e. setting k−, k⊥,−t,m2 in the hard
subgraph to zero, is therefore only correct if |x− ξ| � max(−t,m2,−k2

⊥)/Q2. From Eq. (2.26) one
can observe that in the region of soft k′ ∼ (λ, λ, λ)Q, i.e. x−ξ ∼ λ and k2

⊥+O(−t2,m2) ∼ λ2Q2, the
collinear approximation remains correct, but in the Glauber region k′ ∼ (λ2, λ2, λ)Q, i.e. x− ξ ∼ λ2,
we can not neglect k2

⊥ +O(−t,m2) ∼ λ2Q2. However, a deformation out of the Glauber region is
possible [63], so the collinear approximation remains correct.

In fact, this contour deformation must be performed explicitly when evaluating the k+ integral
in Eq. (2.25) because the CF Cj has a pole at x = ξ. The direction of the deformation can be fixed
by considering the Feynman pole prescription in Eq. (2.26). For ξ > 0 we have q− > 0, so the k+

integration contour, or equivalently, the x integration contour, must be deformed into the upper
half plane, whereas for ξ < 0 the integration contour must be performed into the lower half plane.

The discussion of the region k+ � Q is analogous. For this we need to consider the handbag
diagram with crossed photon legs, where the hard denominator reads

(k − q′)2 + i0 = −2(x+ ξ)q′− + k2
⊥ + i0. (2.27)

Thus, for the pole at k+ = 0, the integration contour must be deformed into the lower half plane
for ξ > 0 and upper half plane for ξ < 0. It is convenient to introduce the ξ → ξ − i0 prescription
for the evaluation of the integral in Eq. (2.25), which ensures that the contour is deformed in the
correct way for all cases.

There is one possible objection to the above contour deformation argument. It can be shown [70]
that Fj in Eq. (2.25) is supported only for −p′+ < k+ < p+, i.e. −1 < x < 1, and it is in general
non-analytic, but continuous, at x = ±ξ. In order to apply the contour deformation argument we
can perform the following manipulations to the convolution integral. For simplicity, let us only
consider the region 1 > x > 0. The case −1 < x < 0 can be handled analogously. It can be shown
[70] that we can write

F(x, ξ) = Θ(x− ξ)Fx>ξ(x, ξ) + Θ(ξ − x)Fx<ξ(x, ξ), (2.28)

where Fx>ξ and Fx<ξ can be analytically continued to the complex x-plane. Thus∫ 1

0
dx C(x, ξ − i0)F(x, ξ) =

∫ 1

0
dx C(x, ξ − i0)Fx<ξ(x, ξ)

+
∫ 1

ξ

dx C(x, ξ − i0)
(
Fx>ξ(x, ξ)−Fξ<x(x, ξ)

)
. (2.29)

For the first term of Eq. (2.29) the contour deformation argument can be applied literally, while
the integrand of the second term of Eq. (2.29) goes to zero like (x− ξ)p for x→ ξ for some p > 0.
But looking back at Eq. (2.26) it is clear that we can not deform out of the Glauber region for
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this term, since the point x = ξ is at the endpoint of the integral. Thus we can not apply the
collinear approximation strictly speaking. However, with the suppression at x→ ξ due to the factor
Fx>ξ − Fξ<x, the Glauber region is power-suppressed. Consequently, the errors of making the
collinear approximation in the second term of Eq. (2.29) are power-suppressed.

2.4 Form factor decomposition
We continue to decompose the leading twist contribution to Tµν in Eq. (2.25) in terms of form
factors.

2.4.1 Projections of the photon indices
Not all components of the tensor on the right-hand side of Eq. (2.25) are in fact of the leading
power in λ, i.e. of leading twist. Using the Ward identity qµTµν = q′µT

νµ = 0, we can write

Tµν =
(
nµ − n · q

n̄ · q
n̄µ
)
nνT−− +

(
nµ − n · q

n̄ · q
n̄µ
)
gνν

′

⊥ T−ν′ + nνgµµ
′

⊥ T −
µ′

+ 1
2g

µν
⊥ gµ

′ν′

⊥ Tµ′ν′ + 1
2ε

µν
⊥ ε

µ′ν′

⊥ Tµ′ν′ + τµνµ
′ν′

⊥ Tµ′ν′ , (2.30)

where

gµν⊥ = gµν − nµn̄ν − n̄µnν ,
εµν⊥ = εµνρσnρn̄σ, (2.31)

τµνρσ⊥ = 1
2

(
gµρ⊥ g

νσ
⊥ + gµσ⊥ gνρ⊥ − g

µν
⊥ gρσ⊥

)
and we have used the identity [71]

gµµ
′

⊥ gνν
′

⊥ = 1
2g

µν
⊥ gµ

′ν′

⊥ + 1
2ε

µν
⊥ ε

µ′ν′

⊥ + τµνµ
′ν′

⊥ . (2.32)

Firstly, note that the T−− component does not contribute to DVCS. Indeed, this follows immediately
from (2.5) and the transversity of the photon polarization vector, which implies ε∗h′,νnν = 0. The
same applies of course to gµµ

′

⊥ T −
µ′ . Therefore, we will ignore these contributions for the rest of this

work.
Secondly, the projection gνν′⊥ T−ν′ (and also gµµ

′

⊥ T −
µ′ ) is twist-three. Indeed, if one applies the

corresponding projections on the λ0 term on the right-hand-side of Eq. (2.25) one obtains gνν′⊥ C
−
ν′ .

The only possible tensors that can carry the single index in C−µ that can appear are q̂µ, q̂′µ, k̂, but
they all have zero transverse components, so gνν′⊥ C

−
ν′ = 0, proving that gνν′⊥ T−ν′ is O(λ). In fact it

is of size λ1, i.e. twist-three, see for example Ref. [20] for a detailed discussion.
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In this work, we focus on the twist-two quantities

V = −1
2g

µν
⊥

∑
j

∫
dk+ tr

[
PjCj,µν(q̂, q̂′, k+)P̄jFj(p, p′, k+)

]
,

A = 1
2ε

µν
⊥

∑
j

∫
dk+ tr

[
PjCj,µν(q̂, q̂′, k+)P̄jFj(p, p′, k+)

]
, (2.33)

T µν = τµνµ
′ν′

⊥

∑
j

∫
dk+ tr

[
PjCj,µ′ν′(q̂, q̂′, k+)P̄jFj(p, p′, k+)

]
.,

which parameterize the leading power contribution to the hadronic tensor

Tµν = −gµν⊥ V + εµν⊥ A+ T µν +O(λ). (2.34)

Note that while the vector V and axial-vector contribution A are also present in this forward case
for spin-1/2 targets, the transversity contribution T µν is not. But it does contribute to DVCS at
twist-two, even for spin-1/2 targets [71].

2.4.2 Quark contribution
We now insert the projectors P, P̄ in Eq. (2.25) and Eq. (2.33) for the quark contribution. The quark
projectors were defined in Eq. (2.18). In the process, we will define the corresponding projection of
the conventional GPDs and CFs. To distinguish them from the general tensor-valued object F , we
call F the parent GPD. Correspondingly, we call C the parent CF.

Consider now the contribution from quarks in Eq. (2.25). The lower subgraph amplitude can be
written as a non-local time-ordered (connected) correlator of two quark fields, which interpolate
the parton coming from the nucleon with the partonic scattering amplitude Cq. Furthermore, it is
integrated over the minus and transverse components of the parton momentum

Fq,αβ = 1
2π

∫
dk−

2π

∫
dd−2k⊥
(2π)d−2

∫
ddz eik·z

× 〈N(p′, s′)|T q̄β(0)Wn(0)†Wn(z)qα(z) |N(p, s)〉 . (2.35)

Clearly, the parent quark CF Cq must be diagonal in color, so an average of color in Cq and Fq is
always implied. The collinear Wilson lines

Wn(x) = P exp
[
ig

∫ 0

−∞
ds A+(x+ sn)

]
(2.36)

arise from the scalar-polarized collinear gluons and can be fixed by requiring gauge invariance of
the Fq. After performing the k−, k⊥ integration the quark correlator is projected onto the light-ray
spanned by n and the Wilson lines combine to a single Wilson line connecting the two quark fields

Fq,αβ =
∫
dz−

2π eik
+z− 〈N(p′, s′)|T q̄β(0)Wn(0, z−n)qα(z−n) |N(p, s)〉

=
∫
dz−

2π eixP
+z− 〈N(p′, s′)|T q̄β(−z−/2)Wn(−z−/2, z−/2)qα(z−n/2) |N(p, s)〉 (2.37)

=
∫
dz−

2π eixP
+z− 〈N(p′, s′)| q̄β(−z−/2)Wn(−z−/2, z−/2)qα(z−n/2) |N(p, s)〉
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where

Wn(z1, z2) = P exp
[
ig

∫ z1

z2

ds A+(sn)
]

(2.38)

and we defined x = k+/P+ − ξ. In the last equality of Eq. (2.37) we have used the fact that one
can drop the time-ordering in the light-cone correlator [72]. To summarize, the parent GPD Fq,αβ
can be written as a Fourier transformed hadronic matrix element of the light-ray operator

Oq,αβ(z−) = q̄β(−z−/2)Wn(−z−/2, z−/2)qα(z−n/2). (2.39)

On the other hand, the parent CF can be written as

Cµνq,αβ = i

∫
ddz1 e

−iq̂·z1

∫
ddz2 e

iq̂′·z2

∫
ddz3 e

−ik̂·z3

× 〈Ω|Tqβ(0)jν(z2)jµ(z1)q̄α(z3) |Ω〉connected, amputated . (2.40)

The trace in Eq. (2.25) becomes

1
4 tr
[
γ−Cµνq γ−γ+Fq(p, p′, k+)γ+

]
. (2.41)

Decomposing the Cµνq and Fq in terms of a basis of Dirac structures, we observe that, after the
light-cone projection, there are only three linearly independent structures that are possible, namely
γ±, γ±γ5 and σ±j = i

2 [γ±, γj ] (j ∈ {1, 2}), where the plus sign applies to Cµνq while the minus sign
applies to Fq. Hence we can exchange

Fq →
1
4 tr(γ

+Fq)γ− + 1
4 tr(γ

+γ5Fq)γ5γ
− + 1

4 tr(σ
+jFq)σ−j ,

Cµνq →
1
4 tr(γ

−Cµνq )γ+ + 1
4 tr(γ

−γ5Cµνq )γ5γ
+, (2.42)

where we used that tr(σ−jCµνq ) = 0, since it involves a trace over an odd number of gamma matrices.
Note that we can choose the light-like vectors n, n̄ such that n↔ n̄ under a parity transformation.

Then we find that

tr(γ−Cµνq )→ (−1)µ(−1)νtr(γ+Cµνq |n↔n̄),
tr(γ−γ5Cµνq )→ −(−1)µ(−1)νtr(γ+γ5Cµνq |n↔n̄) (2.43)

under a parity transformation, where (−1)µ = 1 for µ = 0 and −1 else. In Eq. (2.43) we have used
that QCD is invariant under parity. Note that εµν⊥ is odd while gµν⊥ and τµνµ

′ν′

⊥ are even under
n↔ n̄. On the other hand, εµν⊥ A must transform covariantly under a parity transformation with
a sequential spatial rotation that takes n ↔ n̄. But in order to compensate the minus sign from
εµν⊥ the structure A can only depend on the projection tr(γ−γ5Cµνq ). By the same reasoning this
projection can not occur in V.

Furthermore, note that the projection τµν⊥, µ′ν′tr(γ−Cµ
′ν′

q ) has two free indices and the only
possibility to obtain an invariant is to contract them. In d = 4 we have gµντµνρσ⊥ = 0, so the
projection vanishes. For general d, this is not the case, but suffice it to say that one can redefine τ⊥
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such that gµντµνρσ⊥ = 0 for arbitrary d. This is discussed in Sec. 2.5. Hence the only contribution
to V comes from tr(γ−Cµνq ) and we get the two CFs

Cq(x/ξ,Q, µ) = −ξ4
g⊥,µν

2 tr(γ−Cµνq ),

C̃q(x/ξ,Q, µ) = ξ

4
ε⊥,µν

2 tr(γ5γ
−Cµνq ), (2.44)

where we introduced the factor ξ to make the CFs depend only on the ratio x/ξ. This must be the
case, since all possible scalar products of the vectors q̂, q̂′, k̂ depend only on the ratio x/ξ.

The formulae in Eq. (2.44) apply in d = 4, but when using dimensional regularization, some
modifications must be made. This is discussed in Sec. 2.5.

We mention that another implication of symmetry for the CFs comes from charge conjugation
symmetry, under which the field bilinear in the correlator transforms as

q̄(z3)γµq(0)→ −q̄(0)γµq(z3), q̄(z3)γµγ5q(0)→ +q̄(0)γµγ5q(z3). (2.45)

Since QCD is invariant under charge conjugation and so is the product of two electromagnetic
currents, this implies that Cq is anti-symmetric with respect to exchanging the quark legs or
equivalently x→ −x, while C̃q is symmetric.

We define the quark GPDs as

Fq(x, ξ, t) = 1
2

∫
dz−

2π eixP
+z− 〈N(p′, s′)| tr(γ+Oq(z−)) |N(p, s)〉 ,

F̃q(x, ξ, t) = 1
2

∫
dz−

2π eixP
+z− 〈N(p′, s′)| tr(γ+γ5Oq(z−)) |N(p, s)〉 . (2.46)

Technically there is also the so-called quark transversity GPD F jq,T , given by tracing Fq with σ+j ,
although it clearly does not contribute to the DVCS amplitude, since the corresponding CF vanishes.

We conclude that the twist-two quark contributions to the hadronic tensor read

Vq(ξ,Q, t) =
∫ 1

−1

dx

ξ
Cq(x/ξ,Q)Fq(x, ξ, t),

Aq(ξ,Q, t) =
∫ 1

−1

dx

ξ
C̃q(x/ξ,Q)F̃q(x, ξ, t). (2.47)

The quark GPDs Fq, F̃q can be further decomposed into four GPDs Hq, Eq, H̃q, Ẽq, by the Gordon
decomposition

Fq(x, ξ, t) = 1
2P+

[
Hq(x, ξ, t)ūs′(p′)γ+us(p) + Eq(x, ξ, t)ūs′(p′)

iσ+α∆α

2m us(p)
]
,

F̃q(x, ξ, t) = 1
2P+

[
H̃q(x, ξ, t)ūs′(p′)γ+γ5us(p) + Ẽq(x, ξ, t)ūs′(p′)

γ5∆+

2m us(p)
]
, (2.48)
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where us(p) is the nucleon spinor. Thus the quark contribution to Tµν is, at leading twist, entirely
determined by the four quark CFFs, defined by

Hq =
∫
dx

ξ
Cq(x/ξ,Q)Hq(x, ξ, t), Eq =

∫
dx

ξ
Cq(x/ξ,Q)Eq(x, ξ, t),

H̃q =
∫
dx

ξ
C̃q(x/ξ,Q)H̃q(x, ξ, t), Ẽq =

∫
dx

ξ
C̃q(x/ξ,Q)Ẽq(x, ξ, t). (2.49)

2.4.3 Gluon contribution
The gluonic contribution to Tµν can be determined similarly. Demanding gauge invariant twist-two
gluon operators, we want to write the gluon GPDs as matrix elements of the light-ray operator

Oµνg (z−) = Gµ+(−z−n/2)Wn,A(−z−/2, z−/2)G+ν(z−n/2), (2.50)

where Gµν is the gluon field strength tensor. The trace over color is implicit and Wn,A denotes a
n-collinear Wilson line in the adjoint representation. Due to the projection POgP̄ we can treat µ, ν
as transverse indices. One can then define the gluon parent GPD as

F ijg (x, ξ, t) = 1
P+

∫
dz−

2π eixP
+z− 〈N(p′, s′)| Oijg (z−) |N(p, s)〉 , (2.51)

where i, j ∈ {1, 2} and the factor 1/P+ is introduced to make Fg dimensionless. The particular
gauge-invariant choice in Eq. (2.50) implies additional factors due to the derivatives in the gluon
field strengths that have to be taken into account in the CFs. The additional two factors of ∂+

produce a factor of k+k′+

(P+)2 = x2 − ξ2. We have

Cµν,ijg = i

2(x2 − ξ2)

∫
ddz1 e

−iq·z1

∫
ddz2 e

iq′·z2

∫
ddz3 e

−ik̂·z3

× 〈Ω|TAa,i(0)jν(z2)jµ(z1)Aa,j(z3) |Ω〉connected, amputated . (2.52)

Applying the decomposition of tensors in transverse space, Eq. (2.32), to the indices of the parent
GPD Fµνg leads to the following definition of the gluon GPDs

Fg(x, ξ, t) = 1
P+

∫
dz−

2π eixP
+z− 〈N(p′, s′)| gµ

′ν′

⊥ Og,µ′ν′(z−) |N(p, s)〉 ,

F̃g(x, ξ, t) = − i

P+

∫
dz−

2π eixP
+z− 〈N(p′, s′)| εµ

′ν′

⊥ Og,µ′ν′(z−) |N(p, s)〉 , (2.53)

F ρσg,T (x, ξ, t) = 2
P+

∫
dz−

2π eixP
+z− 〈N(p′, s′)| τµ

′ν′ρσ
⊥ Og,µ′ν′(z−) |N(p, s)〉 .

It remains to identify which of the projections of Lorentz indices, see Eq. (2.33), matches to which
gluon GPD in Eq. (2.53). Firstly, parity invariance implies that the εµν⊥ structure can only appear
in combination with F̃g, by similar arguments as for the quark case. Secondly, the τ⊥ structure
must go together with Fg,T , since there is no other way to contract the remaining Lorentz indices.
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Finally, we find that gluon CFs can be written as

Cg(x/ξ,Q) = −ξ
2

4
g⊥,µνg⊥,ρσ

4 Cµν,ρσg ,

C̃g(x/ξ,Q) = ξ2

4
ε⊥,µνε⊥,ρσ

4 Cµν,ρσg , (2.54)

Cg,T (x/ξ,Q) = ξ2

4
τ⊥,µνρσ

2 Cµν,ρσg ,

where we introduced the factor ξ2 in order to make the CFs depend on the ratio x/ξ and again, the
definition for arbitrary d is discussed in Sec. 2.5. Furthermore, an argument based charge conjugation
symmetry, analogous to the quark case, implies that Cg, Cg,T are even under x/ξ → −x/ξ, while C̃g
is odd.

Note that, in contrast to the quark case, Cg,T is in fact not zero in DVCS, so the gluon transversity
GPD Fµνg,T does contribute at leading twist. The gluon contribution to the hadronic tensor therefore
reads

Vg(ξ,Q, t) =
∫ 1

−1

dx

ξ2 Cg(x/ξ,Q)Fg(x, ξ, t),

Ag(ξ,Q, t) =
∫ 1

−1

dx

ξ2 C̃g(x/ξ,Q)F̃g(x, ξ, t), (2.55)

T µνg (ξ,Q, t) =
∫ 1

−1

dx

ξ2 Cg,T (x/ξ,Q)Fµνg,T (x, ξ, t).

The gluon GPDs Fg, F̃g can be further decomposed similarly to the quark GPDs in Eq. (2.48)

Fg(x, ξ, t) = 1
2P+

[
Hg(x, ξ, t)ūs′(p′)γ+us(p) + Eg(x, ξ, t)ūs′(p′)

iσ+α∆α

2m us(p)
]
,

F̃g(x, ξ, t) = 1
2P+

[
H̃g(x, ξ, t)ūs′(p′)γ+γ5us(p) + Ẽg(x, ξ, t)ūs′(p′)

γ5∆+

2m us(p)
]
. (2.56)

The object Fg,T can be decomposed into four GPDs [72]

F ijg,T =
τ ij⊥, i′j′

2P+
P+∆j′ −∆+P j

′

2mP+ ūs′(p′)

×

[
Hg,T iσ

+i′ + H̃g,T
P+∆i′ −∆+P i

′

m2 (2.57)

+ Eg,T
γ+∆i′ −∆+γi

′

2m + Ẽg,T
γ+P i

′ − P+γi
′

m

]
us(p).
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We define the gluon CFFs as

Hg =
∫
dx

ξ2 Cg(x/ξ,Q)Hg(x, ξ, t), Eg =
∫
dx

ξ2 Cg(x/ξ,Q)Eg(x, ξ, t),

H̃g =
∫
dx

ξ2 C̃g(x/ξ,Q)H̃g(x, ξ, t), Ẽg =
∫
dx

ξ2 C̃g(x/ξ,Q)Ẽg(x, ξ, t),

Hg,T =
∫
dx

ξ2 Cg,T (x/ξ,Q)Hg,T (x, ξ, t), Eg,T =
∫
dx

ξ2 Cg,T (x/ξ,Q)Eg,T (x, ξ, t), (2.58)

H̃g,T =
∫
dx

ξ2 Cg,T (x/ξ,Q)H̃g,T (x, ξ, t), Ẽg,T =
∫
dx

ξ2 Cg,T (x/ξ,Q)Ẽg,T (x, ξ, t).

2.4.4 Total contribution
We conclude that the form factors defined in Eq. (2.33) are given by

V =
∑
q

Vq + Vg, A =
∑
q

Aq +Ag, T µν = T µνg . (2.59)

Note that the running of the factorization scale µ, which was omitted from notation so far, mixes
between quark and gluon contribution, so in fact only the sum of quark and gluon contributions is
invariant under the running of µ.

Decomposing V,A, T µν into CFFs leads to

V = 1
2P+

[
Hūs′(p′)γ+us(p) + E ūs′(p′)

iσ+α∆α

2m us(p)
]
,

A = 1
2P+

[
H̃ūs′(p′)γ+γ5us(p) + Ẽ ūs′(p′)

γ5∆+

2m us(p)
]

T ij =
τ ij⊥, i′j′

2P+
P+∆j′ −∆+P j

′

2mP+ ūs′(p′) (2.60)

×

[
Hg,T iσ+i′ + H̃g,T

P+∆i′ −∆+P i
′

m2

+ Eg,T
γ+∆i′ −∆+γi

′

2m + Ẽg,T
γ+P i

′ − P+γi
′

m

]
us(p),

where

H =
∑
q

Hq +Hg, H̃ =
∑
q

H̃q + H̃g,

E =
∑
q

Eq + Eg, Ẽ =
∑
q

Ẽq + Ẽg (2.61)

and Hg,T , H̃g,T , Eg,T , Ẽg,T are each individually invariant under running of µ.
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2.5 Projections of the parent CF in d dimensions
Let us discuss the modifications to Eqs. (2.44) and (2.54) in d dimensions. First of all notice that
CF is of course scheme dependent. Indeed, choosing a minimal subtraction-like scheme, we still
retain the freedom to multiply each of the eqs. in (2.44) and (2.54) by an overall factor f(d) such
that f(4) = 1. Because of the IR divergences in the CF, this factor will lead to different fixed
order results. Demanding that the hadronic tensor, and thus the observable, be independent of this
scheme, implies that the GPD is also scheme dependent. This is of course already true, since the
GPD depends on the factorization scale.

Some modifications for the continuation to d dimensions are natural. First of all, note that while
gµν⊥ , εµν⊥ can be taken to have identical expressions for arbitrary d, in order to preserve

gµντ
µνρσ
⊥ = gµντ

ρσµν
⊥ = 0 (2.62)

we need to define

τµνρσ⊥ = d− 2
4 gµρ⊥ g

νσ
⊥ + d− 2

4 gµσ⊥ gνρ⊥ −
1
2g

µν
⊥ gρσ⊥ . (2.63)

Secondly, in order to obtain a “canonical” choice of scheme, it is natural to make modifications
that take into account the modified traces of the Lorentz structures, i.e.

gµν⊥ g⊥,µν = d− 2,
εµν⊥ ε⊥,µν = (d− 2)(d− 3), (2.64)

τµνρσ⊥ τ⊥,µνρσ = 1
8d(d− 2)2(d− 3).

This is because the projection onto these structures should give exactly the coefficients, so we have
to take this normalization into account.

Furthermore, there are numerous possibilities to define γ5 in d dimensions. A convenient choice
is Larin’s scheme [73], which can be implemented by the exchange

γµγ5 →
i

3!ε
µµ1µ2µ3γµ1γµ2γµ3 . (2.65)

It is customary to introduce an additional finite “renormalization” that can be fixed by the
requirement that evolution kernels for the vector and axial-vector case coincide [74]. We discuss this
issue in Sec. 2.10. We denote the axial-vector CF in Larin’s scheme by C̃q,La.

This motivates the following definitions

Cq(x/ξ,Q) = −ξ4
g⊥,µν

(d− 2) tr(γ
−Cµνq ),

C̃q,La(x/ξ,Q) = ξ

4
ε⊥,µν

(d− 3)(d− 2)
i

3!ε
−µ1µ2µ3tr(γµ1γµ2γµ3Cµνq )

Cg(x/ξ,Q) = −ξ
2

4
g⊥,µνg⊥,ρσ

(d− 2)2 C
µν,ρσ
g , (2.66)

C̃g(x/ξ,Q) = ξ2

4
ε⊥,µνε⊥,ρσ

(d− 2)2(d− 3)2 C
µν,ρσ
g ,

Cg,T (x/ξ,Q) = ξ2

4
8 τ⊥,µνρσ

d(d− 2)2(d− 3)C
µν,ρσ
g .
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It is to be repeated that these definitions are subject to additional subtractions of IR divergences.
This issue is discussed in the following Sec. 2.6.

2.6 Infrared subtractions
The factorization theorem Eq. (2.25) can be written symbolically as

T = C ∗ F, (2.67)

where ∗ denotes a general convolution product. This notation will be frequently used throughout.
We formalize it to some degree in App. A.

Note that Eq. (2.67) strictly applies in terms of renormalized quantities T,C and F , while in
the corresponding formulas in terms of correlation functions (or hadronic matrix elements), Eqs.
(2.7), (2.40), (2.35), (2.40), (2.35), the renormalization is tacitly implied.

It is often considered a “bare” factorization theorem

T = Cbare ∗ F bare. (2.68)

While T is IR finite when evaluated with hadronic states, it does contain UV divergences when
defined in terms of renormalized quark fields. On the other hand, T in terms of bare quark fields
is finite, by the well-known fact that the electromagnetic current is UV finite, or equivalently, its
renormalization factor Zj , where j = Zjj

(bare), is equal to the quark wave-function renormalization
constant Z2, where qbare =

√
Z2q. This follows from standard arguments using the gauge symmetry

Ward identity. Consequently T is exactly given by (2.7) but in terms of bare quark fields. In
particular, it is finite, and so should be the right-hand-side of Eq. (2.68).

However, F bare is UV divergent and the renormalized GPD F can be written symbolically as

F = Z ∗ F bare, (2.69)

where ∗ denotes a convolution product similar to that of Eq. (2.25). Moreover, the renormalization
mixes the quark and gluon GPDs, so there is a vector space structure implicit in Eq. (2.69).

Consequently, in order for Eq. (2.68) to be true, we must have

C = Cbare ∗ Z−1, (2.70)

where Z−1 is the inverse operator to Z. Note that Z−1 in Eq. (2.70) does formally subtract the IR
divergences in Cbare, which motivates the name “IR subtractions” for the corresponding counterterm
subtractions. Those same subtractions arise in the graphical proof of the factorization, in which
case they correspond to subtractions of the double counting of regions. Furthermore the bare CF
Cbare is given by the amputated bare correlations functions in Eqs. (2.40) and (2.52) for the quark
and gluon cases, respectively.

The proper subtraction of divergences in Eq. (2.70) provides a highly non-trivial check of the
calculation of fixed order calculations of C and moreover, there are finite subdivergence subtractions
that arise beyond one-loop. The expressions for the integration kernels Z in momentum fraction
space are complicated due to their non-analyticity inside the integration regions. For analytical
computations, it is more convenient to use the light-ray position space formulation. For this we
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consider the renormalization of the light-ray operators

Ons(z1, z2) = 1
2

∑
q=u,d,s,...

(
q̄(z1n)γ+Wn(z1n, z2n)qα(z2n) + (z1 ↔ z2)

)
,

Os(z1, z2) = 1
2

∑
q=u,d,s,...

(
q̄(z1n)γ+Wn(z1n, z2n)qα(z2n)− (z1 ↔ z2)

)
,

Og(z1, z2) = Gµ+(z1n)Wn,A(z1n, z2n)G+
µ(z2n). (2.71)

The renormalization equations take the form

Ons = Zns ∗ Obare
ns ,(

Os
Og

)
=
(
Zss Zsg
Zgs Zgg

)
∗
(
Obare
s
Obare
g

)
, (2.72)

where the operators Zχχ′ act on functions f of two positions z1n, z2n on the light-ray spanned by n
as [20]

(Zχχ′ ∗ f)(z1, z2) = [i(z1 − z2)]ηχχ′
∫

∆2

d(α, β) Zχχ′(α, β)f(ᾱz1 + αz2, z2β̄ + z1β), (2.73)

where x̄ = 1−x and ∆2 = {0 ≤ β ≤ 1−α ≤ 1} is a two-dimensional simplex and η =
(

0 1
−1 0

)
. The

renormalized GPDs are then defined as in Eqs. (2.37) and (2.51), but in terms of the renormalized
light-ray operators like in Eq. (2.72). Explicit expressions for the Z factors are gathered in App. B.

In order to compute the IR subtractions for the vector contribution we consider Eq. (2.25) in
terms of renormalized quantities with partonic external states with light-like momenta

p̂ = (1 + ξ)P+n̄, p̂′ = (1− ξ)P+n̄, (2.74)

averaged over spin and color. We denote by F̂i/j for i, j ∈ {u, d, s, ..., g} the renormalized GPDs of
parton i evaluated with partonic external states of parton species j, normalized such that

F̂q/q′(x, ξ) = δqq′δ(1− x) +O(αs),

F̂g/g(x, ξ) = (1− ξ2)
(
δ(1− x) + δ(1 + x)

)
+O(αs). (2.75)

Note that for the corresponding bare versions F̂ bare
q/q , F̂

bare
g/g the O(αs) terms vanish exactly in dim.

reg., since they involve only scaleless integrals. For the same reason F̂ bare
q/g = F̂ bare

g/q = 0. In fact F̂i,j
are determined entirely by Zχχ′ . More precisely, the quark in quark partonic GPD is given by

F̂q/q′(x, ξ) = 1
2

∫
dz

2π e
ixzP+

〈q′(p̂′)| Oq(−z/2, z/2) |q′(p̂)〉

= 1
2

∫
dz

2π e
ixzP+

〈q′(p̂′)|
[
(Zns ∗ Obare

q )(−z/2, z/2) + 1
nf

(Zps ∗ Obare
q′ )(−z/2, z/2)

]
|q′(p̂)〉 (2.76)

=
∫

∆2

d(α, β)
[
δqq′Zns(α, β) + 1

nf
Zps(α, β)

]
δ
(
x− (1/2− α)(1− ξ)− (1/2− β)(1 + ξ)

)
,
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where Zps = Zss −Zns is the pure-singlet contribution. Furthermore

F̂q/g = 1
2nf

∫
dz

2π e
ixzP+

〈g(p̂′)| (Zsg ∗ Obare
g )(−z/2, z/2) |g(p̂)〉 ,

F̂g/q = 1
P+

∫
dz−

2π eixP
+z− 〈q(p̂′)| (Zgs ∗ Obare

s )(−z/2, z/2) |q(p̂)〉 , (2.77)

F̂g/g = 1
P+

∫
dz−

2π eixP
+z− 〈g(p̂′)| (Zgg ∗ Obare

g )(−z/2, z/2) |g(p̂)〉 .

The one-loop subtractions also get a contribution from F̂q/g. It reads

F̂q/g(x, ξ) = − (1− ξ2)
2nf

∫
∆2

d(α, β) Zsg(α, β)
[
δ′
(
x− (1/2− α)(1− ξ)− (1/2− β)(1 + ξ)

)
+ δ′

(
x+ (1/2− α)(1− ξ) + (1/2− β)(1 + ξ)

)]
, (2.78)

where δ′ is the derivative of the δ function.
To determine the IR subtractions, one can proceed to consider the hadronic tensor, here only

the vector case for simplicity, in terms of the same partonic states, denoted by V̂q(ξ) and V̂g(ξ) for
quarks and gluons, respectively. The CF can be obtained by matching the two sides in Eq. (2.67),
i.e.

V̂q(ξ) =
∫
dx

ξ
Cq(x/ξ)F̂q/q(x, ξ) +

∫
dx

ξ2 Cg(x/ξ)F̂g/q(x, ξ),

V̂g(ξ) =
∫
dx

ξ
Cq(x/ξ)F̂q/g(x, ξ) +

∫
dx

ξ2 Cg(x/ξ)F̂g/g(x, ξ). (2.79)

This gives the CFs Cj in terms of V̂j and F̂i/j , where the divergences in V̂j and F̂i/j have to cancel
such that Cj is finite.

For example, at one-loop we have

C(1)
q (y) = V̂

(1)
q (1/y)
y

−
∫ 1

−1
dx C(0)

q (xy)F̂ (1)
q/q(x, 1/y),

C(1)
g (y) = V̂

(1)
g (1/y)

2(y2 − 1) −
y

2(y2 − 1)
∑
q

∫ 1

−1
dx C(0)

q (xy)F̂ (1)
q/g(x, 1/y). (2.80)

The first terms of the right-hand-sides are that bare CFs Cbare,(1)
j , while the second terms are pure

IR poles, which subtract the IR singularity of Cbare,(1)
j . However, beyond one-loop also finite terms

∼ ε0 can arise, when the beyond-tree-level CF in d dimensions multiplies the beyond-tree-level
partonic GPD.

The resulting integrals can be readily calculated in terms of harmonic polylogarithms [50]. In
the two-loop calculation of the vector CF, the program HyperInt [75] was used. More details on
the IR subtractions for the vector case are discussed in App. B.
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Figure 2.3: The analytic structure of the DVCS CF as a function of x/ξ. Shown in blue are branch
cuts that continue to ±∞ for the left and right cut, respectively. At the branch points x/ξ = ±1
there are simple poles.

2.7 Analytic structure of the CFs
Let us consider the analytic structure of the CFs. For this, we introduce the partonic Mandelstam
variables of the photon-parton subprocess

ŝ = (q̂ + k̂)2 = 1
2(1− x/ξ)Q2, û = (q̂′ − k̂)2 = 1

2(1 + x/ξ)Q2. (2.81)

Furthermore t̂ = (q̂ − q̂′)2 = 0 and ŝ+ û+ t̂ = Q2. The customary assumption that singularities in
the scattering amplitudes are related to particle creation thresholds (and bound state poles) implies
that we have poles at the breakpoints ŝ, û = 0 (all particles are massless) with protruding branch
cuts. We choose the ŝ-channel cut to go from x/ξ = 1 to +∞ on the real axis and the û-channel cut
to go from x/ξ = −1 to −∞ on the real axis. Everywhere else, the CFs are analytic functions of
x/ξ, so they have the analytic structure shown in Fig. 2.3. According to the ξ → ξ− i0 prescription,
the physical values in the DGLAP region |x/ξ| > 1 are obtained by approaching the ŝ-channel cut
from the upper half plane and the û-channel cut from the lower half plane.

We have mentioned in the previous two sections that Cq is odd under ŝ ↔ û crossing, i.e.
x/ξ → −x/ξ, while C̃q is even. On the other hand, one similarly shows that Cg, Cg,T are even under
ŝ↔ û crossing, while C̃g is odd. This means that one only has to calculate half of the diagrams,
since the sum of ŝ-channel diagrams is obtained from the sum over the û-channel diagrams by
x/ξ → −x/ξ and an overall sign.

Throughout this work we will frequently consider the CFs as analytic functions of the variable

z = 1
2(1− x/ξ). (2.82)
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q̂ q̂′

k̂ k̂′

q̂ q̂′

Figure 2.4: Tree-level diagrams for the quark CF.

The ŝ ↔ û-channel crossing then corresponds to z → 1− z = z̄. It is clear that we can calculate
the CF in the ERBL region |x/ξ| < 1 or equivalently 0 < z < 1, where it is real, and then continue
uniquely to the complex plane, given that we do not cross the branch cuts seen in Fig. 2.3.

2.8 The CFs at NLO
At LO there are no subtractions and the CFs are given by the tree-level contribution in Eqs. (2.44)
and (2.54). For the quark CF we get the diagrams in Fig. 2.4, while the gluon CF clearly vanishes
at LO. We have

C(0)
q =

e2
q

2

(1
z
− 1
z̄

)
, C̃(0)

q =
e2
q

2

(1
z

+ 1
z̄

)
. (2.83)

At one-loop there are a total of eight quark diagrams contributing to V̂(1)
q . However, due to the

crossing symmetry ŝ ↔ û only four of them need to be calculated. These diagrams, denoted by
Dq,i, are shown in the upper row of Fig. 2.5. In order to get the CF C

(1)
q , the IR divergences need

to be subtracted according to Eq. (2.80). The resulting contributions, denoted by Dsub
q,i , can be

represented diagrammatically as the graphs in the lowest row of Fig. 2.5. It is clear that the lower
parts of these graphs are precisely the contributions to F̂q/q, while the upper parts of the graphs are
the one-loop CF C

(0)
q .

For V̂(1)
g there are a total of six diagrams. On the one hand, we have Dg,1, Dg,1 with crossed

photon lines, and those two with reversed fermion lines. On the other hand we have Dg,2 and Dg,2
with reversed fermion lines, for a total of six. Since reversing the fermion lines does not change
the value of the diagrams and crossing the photon lines simply corresponds to changing ŝ↔ û and
possibly an overall sign, there are effectively two diagrams that need to be calculated, namely Dg,1

and Dg,2. There is a single IR subtraction diagram for the one-loop gluon CF Dsub
g,1 , since F̂

(1)
q/g is

also given by a single diagram.
The diagrams in Fig. 2.5 can be easily evaluated, using the methods discussed in Cha. 3. The

subtraction diagrams together with their photon-crossed partners give∫ 1

−1
dx C(0)

q (xy)F̂ (1)
q/q(x, 1/y) = −1

ε
asCF

e2
q

2z (3 + 2 log z)− (z ↔ z̄)

y

2(y2 − 1)

∫ 1

−1
dx C(0)

q (xy)F̂ (1)
q/g(x, 1/y) = 1

ε
as2TF

∑
q

e2
q

1
z2 log z̄ + (z ↔ z̄), (2.84)
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Dq,1 Dq,2 Dq,3 Dq,4

Dg,1 Dg,2

Dsub
q,1 Dsub

q,2 Dsub
q,3 Dsub

g,1

Figure 2.5: Upper row: One-loop diagrams for the quark CF, Middle row: One-loop diagrams for
the gluon CF, Lower row: Graphical representation of the IR subtractions in Eq. (2.80).
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where y = x/ξ = 1− 2z. Similar expressions hold for the axial-vector case, but with the opposite
sign of the (z ↔ z̄) term. Subtracting these results from the corresponding bare expressions, as in
Eq. (2.80), gives a finite result for the CF at d = 4. Note that the transversity amplitude is finite,
so there is no subtraction for Cg,T .

One obtains the NLO expressions for the CFs [64, 76–80]

Cq =
e2
q

2z

[
1 + asCF

[
− L(3 + 2 log z) + log2 z − 3z

z̄
log z − 9

]]
− (z ↔ z̄),

C̃q,La =
e2
q

2z

{
1 + asCF

[
− L(3 + 2 log z) + log2 z + 7z

z̄
log z − 9

]]
+ (z ↔ z̄),

Cg =
∑
q

e2
qasTF

1
2z̄z

[
L
z

z̄
log z − z

2z̄ log2 z + 1 + z

z̄
log z

]
+ (z ↔ z̄), (2.85)

C̃g =
∑
q

e2
qasTF

1
2z̄z

[
L
z

z̄
log z − z

2z̄ log2 z +
(5z
z̄
− 1
)

log z + 1
]
− (z ↔ z̄),

Cg,T =
∑
q

e2
qasTF

1
zz̄
,

which hold up to terms O(a2
s) and L = log µ2

Q2 .
We have plotted the CFs on the real x/ξ axis in Fig. 2.6, where we have included the NNLO

CF, for which the explicit formulas can be found in App. C. A remarkable property that can be
noticed from these plots is that quark and gluon CFs have opposite signs.

2.9 Evolution equations for GPDs
So far we have so far largely ignored the discussion of the dependence on the factorization scale µ.
The CF and GPD depend on this scale, with the dependence cancelling order by order in T , i.e.

0 = d

dµ

(
C(µ) ∗ F (µ)

)
. (2.86)

The dependence on µ expresses the arbitrariness of separating the small scales −t,m2 from the hard
scale Q2. This is illustrated by the simple example

log m
2

Q2 = log µ2

Q2 − log µ2

m2 ,

where terms like logµ2/Q2 are factored into the CF and terms like logµ2/m2 are factored into the
GPD.

The µ-dependence of C is, at fixed order given through as(µ) and L = logµ2/Q2. The GPD F
is usually modeled at an input scale µ0 ∼ −t,m2 ∼ 1GeV, but evaluating

T = C(µ0) ∗ F (µ0)

is not ideal, since one wants to minimize the combination as(µ) log µ2

Q2 to get a decent convergence
of the perturbative series in which C is expanded, which is not the case for µ = µ0.
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Figure 2.6: Real and imaginary parts of the vector u-quark CF Cu and the gluon CF Cg for real
x/ξ. We have used the value αs(2 GeV) = 0.3.

34



Thus, since Q� µ0, one should resum terms of the form ajsL
j−k. This can be done by solving

perturbatively the evolution equation

µ
d

dµ
F = −K ∗ F, (2.87)

where the evolution kernel K is given by

K = −µdZ
dµ
∗ Z−1 = β(as)

dZ

das
∗ Z−1, (2.88)

where we used that Z does depend on µ only through its dependence on as in the MS-scheme. The
evolution equation (2.87) can be used to evolve the initial input model F (µ0) to some large scale
µ1 ∼ Q, so that the perturbative series for C(µ1) exhibits decent convergence. Effectively this
resums terms of the form ajsL

j−k to all orders in C, where k + 1 is the order in as to which K is
expanded.

The two-loop evolution equations, i.e. K expanded to a2
s accuracy, are known for the vector case

in momentum fraction space [81] and light-ray position space [82]. The three-loop equations for the
vector case are known in the non-singlet sector [83] while for the singlet sector only the first eight
moments are known [84].

We denote by K the evolution kernel in light-ray position space. For the non-singlet case there is
no mixing, so we have a single kernel Kns. The singlet sector has an additional matrix structure
Kχχ′ in position space, where χ, χ′ ∈ {s, g}. The kernels are directly related to Zns and Zχχ′ in Eq.
(2.73), by the light-ray position space version of Eq. (2.88)

K = −µdZ
dµ
∗ Z−1 = −β(as)

dZ
das
∗ Z−1. (2.89)

We write

(Kns ∗ f)(z1, z2) =
∫

∆2

d(α, β) Kns(α, β)f(ᾱz1 + αz2, z2β̄ + z1β),

(Kχχ′ ∗ f)(z1, z2) = [i(z1 − z2)]ηχχ′
∫

∆2

d(α, β) Kχχ′(α, β)f(ᾱz1 + αz2, z2β̄ + z1β). (2.90)

The leading, one-loop contribution reads [15, 17, 70, 85, 86]

Kns(α, β) = Kss(α, β) = −4asCF
{

1 +
[ ᾱ
α

]
+
δ(β) +

[ β̄
β

]
+
δ(α)− 1

2δ(α)δ(β)
}
,

Ksg(α, β) = −8asnfTF (ᾱβ̄ + 3αβ),

Kgs(α, β) = −4asCF
[
2 + δ(α)δ(β)

]
, (2.91)

Kgg(α, β) = −4asCA
{

4(ᾱβ̄ + 2αβ)

+
[ ᾱ2

α

]
+
δ(β) +

[ β̄2

β

]
+
δ(α) + 1

2(β0 − 6CA)δ(α)δ(β)
}
,

where the delta functions are defined such that
∫ 1

0 dα δ(α) = 1 and the plus distribution is defined
by [f(α)]+ = f(α)− δ(α)

∫ 1
0 dβ f(β).
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For practical calculations it is necessary to have a representation of the momentum fraction space
kernel Z which acts directly on the GPDs. For this, we have to perform the “Fourier transform”
from light-ray position space. Using the translation property

〈p′| Ons(z1, z2) |p〉 = e−iy·∆ 〈p′| Ons(z1 + y, z2 + y) |p〉 (2.92)

it is easy to show that

〈p′| Ons(z1, z2) |p〉 = 2P+
∫ ∞
−∞

dx eiP
+[(ξ+x)z1+(ξ−x)z2]Fns(x, ξ). (2.93)

Hence

µ
d

dµ
Fns(x, ξ) = −1

2

∫
dz

2π e
ixzP+

〈p′| (Kns ∗ Ons)(−z/2, z/2) |p〉

= −
∫

∆2

d(α, β)Kns(α, β)
1− α− βFns

(x+ (α− β)ξ
1− α− β , ξ

)
. (2.94)

However, because of the double integral, this form is not well-suited for numerical evaluation. In
fact, one can do one of the two integrals without loss of generality.

We demonstrate this in the following, setting P+ = 1 for simplicity. It is more elegant to consider
the Fourier transform of a function f(z1, z2) of two light-ray positions

F(f)(x1, x2) =
∫ ∞
−∞

dz1

2π

∫ ∞
−∞

dz2

2π e
−ix1z1−ix2z2f(z1, z2),

f(z1, z2) =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 e
ix1z1+ix2z2F(f)(x1, x2). (2.95)

Let

fns(z1, z2) = 1
2 〈p

′| Ons(z1, z2) |p〉 . (2.96)

Then the GPD and F(fns) can be written in terms of each other as the projective integrals

Fns(x, ξ) =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 δ
(
x− x1 − x2

2

)
F(fns)(x1, x2)

F(fns)(x1, x2) =
∫ 1

−1
dx δ(x1 − ξ − x)δ(x2 − ξ + x)Fns(x, ξ). (2.97)

The action of a momentum fraction space kernel K is given by

(K ∗ F(f))(x1, x2) =
∫ ∞
−∞

dx1

∫ ∞
−∞

e−ix1z1−ix2z2(K ∗ f)(z1, z2)

=
∫ ∞
−∞

dy1

∫ ∞
−∞

dy2 δ(x1 + x2 − y1 − y2)F(f)(x1, x2)K(x1, x2|y1, y2), (2.98)

where

K(x1, x2|y1, y2) =
∫

∆2

d(α, β) K(α, β)δ(x1 − ᾱy1 − βy2), (2.99)
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subject to the constraint x1 + x2 = y1 + y2. Applying this to the evolution equation for the GPD
gives

µ
d

dµ
Fns(x, ξ) = −

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 δ
(
x− x1 − x2

2

)
(Kns ∗ F(fns))(x1, x2)

= −
∫ 1

−1
dy Kns(ξ + x, ξ − x|ξ + y, ξ − y)Fns(y, ξ). (2.100)

We have written the evolution equation for the GPDs in terms of a single integral with the kernel K.
It is straightforward to apply the same manipulations in the singlet sector. Explicit formulas for
those kernels in terms of generalized step functions can be found in Ref. [20].

2.10 Finite renormalization of the axial-vector GPD

In Eq. (2.66) we have defined the axial-vector CF C̃q,La in Larin’s scheme. Typically, one applies
additional subtractions to this CF to get what is called “MS-scheme”. For the forward case these
subtractions are known to three loops [87].

In the following, we consider how these subtractions can be implemented, following [74]. The
axial-vector light-ray operator in Larin’s scheme can be defined as

Õq,La(z1, z2) = i

3!ε
+µ1µ2µ3 q̄(z1n)γµ1γµ2γµ3Wn(z1, z2)q(z2n). (2.101)

Let KLa denote its evolution kernel in light-ray position space, i.e.

µ
d

dµ
Õq,La = −KLa ∗ Õq,La. (2.102)

We write the light-ray operator in the MS-scheme by

Õq = U ∗ Õq,La. (2.103)

The light-ray position space operator U(as) = 1 +O(as) is defined by the requirement that

K = U ∗ KLa ∗ U−1 − β(as)
dU
das
∗ U−1, (2.104)

where K is the evolution kernel for the vector case, defined in Sec. 2.9. U is determined in Ref. [74]
to a3

s accuracy. For example, to a1
s accuracy it is given by

(U ∗ f)(z1, z2) = f(z1, z2)− 8asCF
∫

∆2

d(α, β) f(ᾱz1 + αz2, β̄z2 + βz1) +O(a2
s). (2.105)

The scheme rotation given by the operator U must be compensated in the axial-vector CF, such
that A is invariant, i.e.

C̃q = C̃q,La ∗ U−1, (2.106)
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where U is the momentum fraction space representation of U . As usual, we can circumvent the
tedious transformation to momentum fraction space and determine C̃q entirely in terms of the light-
ray position space representation U . The derivation is analogous to the one for the IR subtractions
in Sec. 2.6. We obtain that the one-loop axial-vector CF in the MS-scheme is given by

C̃(1)
q (y) = C̃

(1)
q,La(y) + 8CF

∫
∆2

d(α, β) C̃(0)
q

(
(1/2− α)(y − 1) + (1/2− β)(y + 1)

)
= C̃

(1)
q,La(y)−

[
4e2
qasCF

log z
z̄

+ (z ↔ z̄)
]

(2.107)

=
e2
q

2z

{
1 + asCF

[
− L(3 + 2 log z) + log2 z − z

z̄
log z − 9

]]}
+ (z ↔ z̄),

where y = x/ξ and z = 1
2 (1− y).

In Ref. [88] the two-loop axial-vector CF in the MS was computed using the approach in terms
of the U operator considered here, but the CF in Larin’s scheme was computed from conformal
algebra, using the techniques discussed in Sec. 3.3. On the other hand in Ref. [89] the CF was
calculated using Feynman diagrams and the authors used a different – but equivalent – approach to
determine the subtractions.
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3 Computation of the coefficient function

3.1 Computational methods for calculating Feynman dia-
grams

Methods using computer algebra have become a key part of Feynman diagram calculations, allowing
for efficient computations of multiloop diagrams. These methods involve using computer programs
that can perform algebraic manipulations and symbolic computations, enabling the manipulation of
large mathematical expressions that arise in Feynman diagram calculations.

The first step in the standard workflow is to generate the diagrams, using for example qgraf
[90]. The resulting output are then usually converted to expressions in FORM [91]. This step can be
omitted in the calculation of the two-loop CF, since there are only about 70 non-related diagrams
that need to be calculated.

In FORM one then needs to apply projections on the free indices. In the present case the projection
relations are given by Eq. (2.66). Consequently one obtains a set of scalar integrals. One can find
linear relations between these integrals by the means of integration-by-parts (IBP) identities [46]∫

ddk

(2π)d
∂

∂kµ

[
Kµf(k)

]
= 0,

where Kµ can be any linear combination of external and loop momenta and f(k) is a generic
Feynman integrand.

For the computation of the two-loop CF [52] the program FIRE6 [92] was used to perform the
IBP reduction. This results in a set of master integrals (MIs) in which the complete amplitude can
be expressed. For the case of the DVCS CF the MIs are discussed in Sec. 3.2.

The integrals in our case are effectively functions of a single variable, which can be taken to be z
defined in Eq. (2.82). To summarize, we are considering a 2→ 2 process

q(k̂) + γ∗(q̂)→ q(k̂′) + γ(q̂′) (3.1)
with momenta

k̂ = z̄P̃+n̄, k̂′ = −zP̃+n̄, q̂ = −P̃+n̄+ Q2

2P̃+
n, q̂′ = Q2

2P̃+
n. (3.2)

Furthermore, it is convenient to define P̂ = k̂ − k̂′ = P̃+n̄. We can set P̃+ = 2ξP+ = 1, since no
scalar product depends on it. The hard scale Q2 can also be set to one. The scale dependence can
be easily reintroduced later by multiplying with a factor of eεL for each loop and possibly factors
Q2 raised to integer powers from dimensional analysis.

Note that it is necessary to implement by hand the restriction that k̂ and k̂′ are linearly dependent,
since it is not assumed automatically in FIRE6. This can be done by applying the IBP reduction to
the right-hand side of the equation

0 =
∫
ddl (zk̂µ − z̄k̂′µ)lµf(l),

for a generic integrand f(l) and using the resulting identity to find further relations between integrals.
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3.2 Master integrals
At one-loop there is only a single master integral

M0(z) =
∫

ddl

iπd/2
eεγE

l2(l + q̂ + k̂)2
= eεγEΓ(ε)Γ(1− ε)2

Γ(2− 2ε) z−ε. (3.3)

Note that M0(1− z) and M0(1) also appear, but they can clearly be obtained from this result. M0
is easily evaluated using standard methods.

All MIs appearing in the two-loop calculation of the DVCS CF are shown in Fig. 3.1. We used
the notation Mi,j , where the first index i refers to the number internal lines, while j enumerates
the different MIs with the same number of internal lines. These graphs in their entirety were first
evaluated in Ref. [89]. The results are unpublished at this point.

A powerful method to evaluate MIs is the method of differential equations [47]. We illustrate
how this can be applied to the present case. We use the strategy of bringing the differential equation
for a Feynman integral into the so-called canonical form [93].

Here we use a simplified version of this argument where we consider a single integral I(ε, z),
which is one of the above two-loop MIs. Then one can determine by trial and error a factor zj(or
z̄j) for some power j ∈ Z, such that for J(ε, z) = zjI(ε, z), we get, after taking a derivative ∂z and
applying IBP reduction to the result, a differential equation of the form

∂zJ(ε, z) = f(ε, z) + εg(z)J(ε, z), (3.4)

where f(ε, z) is a function that depends on MIs that have a lower number of internal lines than I(z)
and g(z) is a rational function of z. In this way, one can calculate the MIs inductively in the number
of internal lines. We write

J(ε, z) = 1
ε4

∞∑
k=0

εkJk(z), f(ε, z) = 1
ε2

∞∑
k=0

εkfk(z), (3.5)

where we have used that f should have at most a ε−2 divergence (this is found by explicit calculation).
Clearly, this implies that J0 must be a constant. Further terms in the ε expansion of J can be
readily calculated iteratively by integrating Eq. (3.4) and comparing coefficients of εk−4, giving

Jk(z) =
∫ z

dz′
(
fk−2(z′) + g(z′)Jk−1(z′)

)
. (3.6)

The most difficult part in the computation is usually the determination of the integration constants
in Eq. (3.6). For this one must choose a value z0, usually 0 or 1, and evaluate explicitly Jk(z0).
This is particularly difficult if an analytical expression is required. A possible strategy is to use the
Mellin-Barnes representation [94], which relies on the identity

1
(A+B)λ = 1

Γ(λ)
1

2πi

∫ c+i∞

c−i∞
dz

Bz

Aλz
Γ(λ+ z)Γ(−z), (3.7)

where the position of the contour on the real axis c is to be choosen such that the poles from Γ(λ+ z)
are to the left and the poles of Γ(−z) are to the right of the contour. Formula (3.7) can be applied
to the Feynman integral in the Feynman parameter representation and the integral over the now
factored Feynman parameter dependent A,B can be taken more easily. The remaining task is to
evaluate the contour integral in Eq. (3.7). For some of the integrations constants the program MB
tools [95] was used in the calculation of the diagrams in Fig. 3.1.
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Figure 3.1: Master integrals for the two-loop DVCS CF, i.e. for the scattering amplitude in Eq.
(3.1).
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3.3 The CF from conformal symmetry
The DVCS CF can also be obtained without calculating any Feynman diagrams, by considering
a group of space-time transformations called conformal transformations. These include the usual
space-time transformations, i.e. Lorentz transformations and translations, and furthermore dilation
and space-time inversion. It is beyond the scope of this thesis to introduce this formalism from
scratch. See for example Ref. [96] for a comprehensive review in the context of QCD.

Techniques using conformal symmetry in QCD can, for example, be used to obtain the evolution
kernels. This method was developed in Refs. [97, 98] and it was used to calculate the complete
two-loop mixing matrix for twist-two operators in QCD [77, 99, 100]. Moreover, it was used to
calculate the two-loop evolution kernel K(2) of the GPDs [81, 82, 101, 102] and the three-loop
non-singlet evolution kernel [83].

In a similar way, one can also obtain the CF of DVCS, as was first shown in Ref. [77]. The
non-singlet CF at NNLO was first calculated using this method [82] and it was also used to compute
the axial-vector non-singlet CF at NNLO [88]. The results were reproduced in Ref. [48] and [89],
respectively by calculation of the Feynman diagrams. The singlet case is significantly more involved
however, in particular because one ingredient is missing in the two-loop singlet conformal anomaly.

In this section we present a review of this method, based on [103]. The essential statement is the
conformal symmetry of QCD in (possibly non-integer) d dimensions at the critical point where the
QCD β vanishes [104]

0 = β(as) = 2as
(
ε+

∞∑
j=0

βj(as)j
)
. (3.8)

This equation can be understood in the way that for a given non-integer ε we can tune the value of
as = as∗ such that Eq. (3.8) holds, or equivalently, for a given value of the coupling as, we tune the
value of ε = ε∗ such that Eq. (3.8) holds. We will adopt the latter viewpoint in the following. Also
we consider only the non-singlet piece of the quark CF Cns, defined by

Cq = e2
qCns +

(∑
q′

eq′
)
Cps. (3.9)

The CF in d∗ = 4− 2ε∗ dimensions can be written as

Cns∗ = Cns|ε=ε∗(as) =
∞∑

j,k=0
ajsε

k
∗C

(j,k)
ns =

∞∑
j

ajsC
(j)
ns∗. (3.10)

The coefficients C(j)
ns∗ can be easily determined in terms of C(j,k)

ns and β function coefficients, e.g.

C
(0)
ns∗ = C(0)

ns , C
(1)
ns∗ = C(1,0)

ns , C
(2)
ns∗ = C(2)

ns − β0C
(1,1)
ns . (3.11)

For the rest of this section we drop the “ns” index and tacitly omit any flavor-singlet contributions.
Furthermore, we frequently use the notation for integral operators, which was already used in Cha.
2, and is summarized in App. A.
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3.3.1 Conformal operator product expansion
Retaining the contributions of vector operators only, the most general expression for the operator
product expansion (OPE) of two electromagnetic currents to the twist-two accuracy has the form

T{jµ(x1)jν(x2)} =
∑
N,even

µγN

(−x2
12 + i0)tN

∫ 1

0
du

{
−1

2AN (u)
(
gµν − 2xµ12x

ν
12

x2
12

)
+BN (u)gµν

+ CN (u)xν12∂
µ
1 − CN (ū)xµ12∂

ν
2 +DN (u)x2

12∂
µ
1 ∂

ν
2

}
Ox12...x12
N (xu21) , (3.12)

where

∂µk = ∂

∂xµk
, x12 = x1 − x2 , ū = 1− u , xu21 = ūx2 + ux1 , (3.13)

and

Ox...xN (y) = xµ1 . . . xµNO
µ1...µN
N (y) . (3.14)

Here Oµ1...µN
N (y) are the leading twist conformal operators that transform in the proper way under

conformal transformations. That is, given that Kµ is the quantum Hilbert space representation of
the generator of special conformal transformations, we have

[Kµ,Ox...xN (y)] =
(

2yµyν
∂

∂yν
− y2 ∂

∂yµ
+ 2∆Nyµ + 2yν

(
xµ

∂

∂xν
− xν

∂

∂xµ

))
Ox...xN (y). (3.15)

Here and below N is the operator spin, ∆N is its scaling dimension, ∆N = d∗ +N − 2 + γN where
d∗ = 4 − 2ε∗, γN = γN (as) is the anomalous dimension, tN = 2 − ε∗ − 1

2γN (as) is the twist and
jN = N + 1− ε∗ + 1

2γN (as) is the conformal spin. We have separated in Eq. (3.12) the scale factor
µγN to make the functions AN (u), . . . , DN (u) dimensionless. Note that only vector operators with
even spin N contribute to the expansion.

The conditions of conformal invariance and current conservation ∂µjµ = 0 lead to constraints on
the functional form and also certain relations between the invariant functions AN (u), . . . , DN (u) in
Eq. (3.12). One obtains

AN (u) = aN u
jN−1ūjN−1, BN (u) = bN u

jN−1ūjN−1. (3.16)

The remaining functions CN (u) and DN (u) are given by the following expressions:

CN (u) = uN−1
∫ 1

u

dv

vN
vjN v̄jN−2

(
cN −

bN
v

)
, (3.17)

DN (u) = − 1
N − 1

∫ 1

0
dv(vv̄)jN−1

[
θ(v − u)

(u
v

)N−1
+ θ(v̄ − ū)

(
ū

v̄

)N−1
](

dN −
cN − bN

2vv̄

)
.

The coefficients cN and dN are not independent and are given in terms of aN and bN by linear
relations

(jN − 1) aN = 2 tN (cN − bN ) ,

2 (tN − 1) dN = −1
2aN (N − jN )− γNbN +

(
jN − 2 + 2tN

)
(cN − bN ). (3.18)
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Thus the form of the OPE of the product of two conserved spin-one currents in a conformal theory
is fixed up to two constants, aN (as) and bN (as), for each (even) spin N . In QCD the expansion of
aN (as) starts at order O(as), so that also cN − bN = O(as) and dN = O(as).

3.3.2 Relating DIS and DVCS
It is convenient to fix the normalization of the leading twist conformal operators such that

Oµ1...µN
N (0) = iN−1q̄(0)γ{µ1Dµ2 . . . DµN}q(0) + total derivatives , (3.19)

where Dµ are covariant derivatives and {. . .} denotes the symmetrization of all enclosed Lorentz
indices and the subtraction of traces. In this way, the forward matrix elements of these operators
are related to moments f (DIS)

N of quark PDFs.

〈p|Oµ1...µN
N (0)|p〉 = p{µ1 . . . pµN}f

(DIS)
N . (3.20)

Note that the CF does not depend on the external states so we can use unpolarized nucleon states.
Using this parametrization and taking the Fourier transform of the forward matrix element of Eq.
(3.12) one obtains the OPE for the forward Compton tensor in a generic conformal theory

T (DIS)
µν = i

∫
ddx e−iqx〈p|T{jµ(x)jν(0)}|p〉

=
∑
N,even

f
(DIS)
N

(
2p · q
Q2

)N(
µ

Q

)γN
×
[(
−gµν + qµqν

q2

)
c1,N (a∗) + (qµ+2xBpµ)(qν+2xBpν)

Q2 c2,N (a∗)
]
, (3.21)

where

c1,N = iNπd/22γNB(jN , jN )Γ(N + γN/2)
Γ(tN )

(
tN − 1

2tN
aN − bN

)
,

c2,N = iNπd/22γNB(jN , jN )Γ(N + γN/2)
Γ(tN )

(
−bN + 2N + d− tN − 1

2tN
aN

)
. (3.22)

Here and below B(jN , jN ) is the Euler Beta function.
The same expansion in QCD is usually written as [105]

T (DIS)
µν =

∑
N,even

f
(DIS)
N

(
2p · q
Q2

)N [(
gµν −

qµqν
q2

)
cL

(
N,

Q2

µ2 , as

)

−
(
gµν − pµpν

4x2
B

Q2 − (pµqν + pνqµ)2xB
Q2

)
c2

(
N,

Q2

µ2 , as

)]
, (3.23)

where we dropped electromagnetic charges and the sum over flavors. Thus we can identify

c2,N (as)
(
µ

Q

)γN
= c2

(
N,

Q2

µ2 , as, ε∗

)
,

c1,N (as)
(
µ

Q

)γN
= c2

(
N,

Q2

µ2 , as, ε∗

)
− cL

(
N,

Q2

µ2 , as, ε∗

)
= c1

(
N,

Q2

µ2 , as, ε∗

)
. (3.24)

44



The OPE coefficient functions c2 and cL contribute to the OPE for the well-known DIS structure
functions F2 and FL, respectively, and are known to NNNLO.

Let us now consider the off-forward case of DVCS. In comparison to forward scattering there
are two modifications. Firstly, the position of the operator ON (ux) in Eq. (3.12) (we take x1 → x,
x2 → 0) becomes relevant since

〈p′|ON (ux)|p〉 = eiu(x·∆)〈p′|ON (0)|p〉. (3.25)

This effectively results in a shift of the momentum in the Fourier integral q → q − u∆. Secondly,
the matrix element becomes more complicated and can be parameterized as

〈p′|nµ1 . . . nµNOµ1...µN (0)|p〉 =
∑
k

(
−1

2

)k
f

(k)
N (P+)N−k(∆+)k = (P+)NfN (ξ) ,

fN (ξ) =
∑
k

f
(k)
N ξk , f

(0)
N = f

(DIS)
N . (3.26)

Hence one needs the more general Fourier integral
N∑
k=0

(
−1

2

)k
f

(k)
N

∫
ddx e−i(q−u∆)x Γ(tN )

(−x2 + iε)tN (x · P )N−k(x ·∆)k =

= iN−12γNπ d2
Γ( 1

2γN +N)
ūN+ 1

2γNQγN

(
2P · q
Q2

)N N∑
k=0

f
(k)
N ξk, (3.27)

where we neglected all power suppressed corrections O(−t/Q2) and also used that to this accuracy
(q − u∆)2 = −ūQ2.

Up to the obvious replacement p 7→ P there are two differences to the forward case (DIS): an
extra factor ū−N− 1

2γN , and the matrix element fN → fN (ξ). In Eq. (2.33) we have defined the
vector amplitude V as the projection on the Lorentz structure gµν⊥ in the Compton tensor. Therefore,
it can be traced by contributions ∝ gµν (in momentum space). Starting from the position space
expression in Eq. (3.12), such terms can only originate from structures ∝ gµν and ∝ xµxν which
involve the functions AN (u) and BN (u), which have the same u-dependence. The extra factor
ū−N−

1
2γN , therefore, results in both cases in the following modification

B(jN , jN ) =
∫
du (uū)jN−1 7→

∫
du(uū)jN−1ū−N−

1
2γN = B(jN , d2 − 1) . (3.28)

Since this modification affects the contribution of AN (u) and BN (u) structures in the same way,
we actually do not need to consider them separately. Thus the OPE for the vector non-singlet
amplitude in conformal QCD in d∗ dimensions can be written as

V =
∑
N,even

fN (ξ)
(

2P · q
Q2

)N
c1

(
N,

Q2

µ2 , as, ε∗

) Γ(d∗2 − 1)Γ(2jN )
Γ(jN )Γ(jN + d∗

2 − 1)

=
∑
N,even

fN (ξ)
(

1
2ξ

)N
c1

(
N,

Q2

µ2 , as, ε∗

) Γ(d∗2 − 1)Γ(2jN )
Γ(jN )Γ(jN + d∗

2 − 1)
. (3.29)

Note that it is completely determined by the forward-scattering coefficients c1(N) (in d∗ dimensions).
For d = 4 the above expression agrees with [77, Eq. (22)].
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3.3.3 Coefficient function in momentum fraction space
In Eq. (2.46) we have defined the vector quark GPD as a matrix element of the non-local light-
ray operator Oq = tr(γ+Oq). As before, we omit the q index and flavor-singlet contributions.
Furthermore, we consider all operators as renormalized. In order to relate the CF to the OPE
coefficients, one needs an expansion of the type

O(z1, z2) =
∑
N,k

ΨN,k(z1, z2) (∂+)kON (0) , (3.30)

where ON = nµ1 . . . nµNO
µ1...µN
N are renormalized conformal operators that satisfy the renormaliza-

tion group equation (RGE) (
µ
d

dµ
+ γN (as)

)
ON = 0 . (3.31)

We will tacitly assume that conformal operators are normalized as in Eq. (3.19). The light-ray
operator O(z1, z2), in turn, satisfies an RGE of the form

µ
d

dµ
O(z1, z2) = −(K(as) ∗ O)(z1, z2) , (3.32)

where K is the vector non-singlet evolution kernel in position space, introduced in Sec. 2.9. Conformal
symmetry ensures that K commutes with the three generators S±,0 of SL(2,R) subgroup of the
conformal group. Translation-invariant polynomials zN12 = (z1 − z2)N are eigenfunctions of the
evolution kernel and corresponding eigenvalues define the anomalous dimensions

K(as) ∗ zN−1
12 = γN (as)zN−1

12 . (3.33)

The expansion coefficients ΨN,k in Eq. (3.30) are homogeneous polynomials in z1, z2 of degree
N+k−1 and are given by a repeated application of the generator of special conformal transformation
S+ to the coefficient of the conformal operator, ΨN,k(z1, z2) ∝ Sk+ ∗ zN12. The problem is that S+ in
the interacting theory in the MS-scheme contains a rather complicated conformal anomaly term
z12∆+ [106], so that finding an explicit expression for Sk+zN12 is difficult.

The way out is to do a rotation to the “conformal scheme” at the intermediate step using a
similarity transformation defined in Ref. [83]

O(z1, z2) = U ∗ Oq(z1, z2) , K = U−1 ∗K ∗U , S±,0 = U−1 ∗ S±,0 ∗U . (3.34)

Note that K and K obviously have the same eigenvalues (anomalous dimensions). Going over to the
“boldface” operators can be thought of as a change of the renormalization scheme. The GPD in
conformal scheme, F, is related to the GPD F in the MS scheme by the U-“rotation”1

F(x, ξ) = (U ∗ F )(x, ξ) =
∫ 1

−1

dx′

ξ
U(x, x′, ξ)F (x′, ξ) , (3.35)

1Note that the kernel U(x, x′, ξ) in Eqs. (3.35), (3.36) has to be taken in the momentum fraction representation.
The corresponding expressions can be derived from the results in [83], given in light-ray position space, but in fact are
not needed as we will find a possibility to avoid this step.
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and, similarly, for the CF

C(x/ξ, µ2/Q2) = (C ∗U)(x/ξ, µ2/Q2) =
∫ 1

−1

dx′

ξ
C(x′/ξ, µ2/Q2)U(x′, x, ξ) . (3.36)

The “rotated” light-ray operator O(z1, z2) at d = 4 satisfies the RGE

µ
d

dµ
O = −K ∗O . (3.37)

Looking for the operator U in the form

U = eX , X(as) = asX
(1) + a2

sX
(2) + . . . , (3.38)

we require that the “boldface” generators do not include conformal anomaly terms,

S− = S
(0)
− ,

S0 = S
(0)
0 − ε∗ + 1

2K , (3.39)

S+ = S
(0)
+ + (z1 + z2)

(
−ε∗ + 1

2K
)
,

where

S
(0)
− = −∂z1 − ∂z2 , S

(0)
0 = z1∂z1 + z2∂z2 + 2 , S

(0)
+ = z2

1∂z1 + z2
2∂z2 + 2(z1 + z2) , (3.40)

are the canonical (free, i.e. as = 0) generators. Explicit expressions for X(1) and X(2) are given in
[83].

With this choice, the generators Sα on the subspace of the eigenfunctions of the operator K with
a given anomalous dimension γN take the canonical form with shifted conformal spin

S+ = S
(0)
+ + (z1 + z2)

(
−ε∗ + 1

2γN
)

(3.41)

and the eigenfunctions of the rotated kernel, K∗ΨN,k = γNΨN,k, can be constructed explicitly [107]:

ΨN,k = U ∗ ΨN,k ∝ (S+)k ∗ zN−1
12 = zN−1

12
Γ(2jN + k)

Γ(jN )2

∫ 1

0
du (uū)jN−1 (zu21)k. (3.42)

For the forward matrix element of the light-ray operator one obtains, in our normalization,

〈p|O(z1, z2)|p〉 =
∑
N

iN−1

(N − 1)!z
N−1
12 〈p|ON |p〉, (3.43)

and for the rotated light-ray operator

〈p|O(z1, z2)|p〉 =
∑
N

iN−1

(N − 1)!z
N−1
12 σN 〈p|ON |p〉 , (3.44)
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where σN are the eigenvalues of U:

U ∗ zN−1
12 = σNz

N−1
12 , σN = σN (as) . (3.45)

The generalization of this expansion to include off-forward matrix elements is completely fixed by
conformal algebra and effectively amounts to the operator relation

O(z1, z2) =
∑
N,k

iN−1

(N − 1)!σN aN,k
[
(S+)k ∗ zN−1

12

]
(∂+)kON (0) , (3.46)

where

aN,k = Γ(2jN )
k!Γ(2jN + k) . (3.47)

This expression can be derived applying ∂+ to Eq. (3.44). On the one hand, taking a derivative
amounts to a shift k → k− 1. On the other hand, it corresponds to an application of −S− and using
the commutation relation S−Sk+zN−1

12 = −k(2jN + k − 1)Sk−1
+ zN−1

12 , one gets a recurrence relation
aN,k−1 = k(2jN + k − 1)aN,k. The overall normalization (function of N) is fixed by the condition
aN,0 = 1.

Taking a matrix element of Eq. (3.46) between states with fixed momenta and using that
〈p′|(∂+)kO(0)|p〉 = (i∆+)k〈p′|O(0)|p〉, one obtains

〈p′|O(z1, z2)|p〉 =
∑
N

iN−1

(N − 1)!σN 〈p
′|ON (0)|p〉

∞∑
k=0

aN,k(i∆+)kSk+(γN ) ∗ zN−1
12 . (3.48)

The sum over k can be evaluated with the help of Eq. (B.10) in Ref. [108] (for the special case
n = 2):
∞∑
k=0

(i∆+)N−1+k aN,kS
k
+(γN ) ∗ zN−1

12 = 1
2ωN (−1)N−1

∫ 1

−1
dx e−iξP

+(z1+z2−xz12) P
(λN )
N−1 (x) , (3.49)

where

P
(λN )
N−1 (x) =

(
1− x2

4

)λN− 1
2

C(λN )
N−1(x) , λN = 3

2 − ε∗ + 1
2γN (as) , (3.50)

C(λ)
N are Gegenbauer polynomials, and

ωN = (N − 1)! Γ(2jN )Γ(2λN )
Γ(λN + 1

2 )Γ(jN )Γ(N − 1 + 2λN )
. (3.51)

Using this representation and the parametrization of the matrix element in Eq. (3.26), we obtain

〈p′|O(z1, z2)|p〉 = P+
∑
N

σNfN (ξ)
(N − 1)!

(
1
2ξ

)N−1
ωN
2

∫ 1

−1
dx e−iξP+(z1+z2−xz12) P

(λN )
N−1 (x) . (3.52)
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This expression should be matched to the definition of the GPD in the rotated scheme

〈p′|O(z1, z2)|p〉 = 2P+
∫ 1

−1
dx e−iP+[z1(ξ−x)+z2(x+ξ)]F(x, ξ, t) . (3.53)

Changing variables x→ x/ξ, one can bring the exponential factor in Eq. (3.52) to the same form as
in Eq. (3.53) and try to interchange the order of summation and integration to obtain the answer
for the GPD as a series in contributions of local conformal operators. Attempting this one would
find, however, that F(x, ξ, t) vanishes outside the ERBL region |x| ≤ ξ that is certainly wrong. This
problem is well known and is caused by non-uniform convergence of a sum representation for GPDs
in the DGLAP region ξ < |x|. It can be avoided, however, because the CF in DVCS only depends on
the ratio x/ξ so that for our purposes we can set ξ = 1 and eliminate the DGLAP region completely.
In this way we obtain

F(x, ξ = 1) = 1
4
∑
N

σN ωN
2N−1(N − 1)! fN (ξ = 1)P (λN )

N−1 (x) (3.54)

and the vector non-singlet amplitude is then given by

V(ξ = 1, Q2) =
∫ 1

−1
dxC(x,Q2)F (x, ξ = 1) =

∫ 1

−1
dxC(x,Q2)F(x, ξ = 1)

= 1
4
∑
N

σN ωN
2N−1(N − 1)! fN (ξ = 1)

∫ 1

−1
dxC(x,Q2)P (λN )

N−1 (x) . (3.55)

On the other hand, from the conformal OPE, Eq. (3.29), we have

V(ξ = 1, Q2) =
∑
N

fN (ξ = 1)
(

1
2

)N
c1

(
N,

Q2

µ2 , as, ε∗

) Γ(d2 − 1)Γ(2jN )
Γ(jN )Γ(jN + d

2 − 1)
. (3.56)

Comparing the coefficients in front of fN (ξ = 1) for these two expressions we obtain∫ 1

−1
dxC(x,Q2, as)P (λN )

N−1 (x) = c1

(
N,

Q2

µ2 , as, ε∗

) 2Γ(d∗2 − 1)Γ(λN + 1
2 )Γ(N − 1 + 2λN )

σN Γ(2λN )Γ(jN + d∗
2 − 1)

. (3.57)

It remains to solve this equation to obtain an explicit expression for the CF in momentum fraction
space and, in the last step, to go over from the “rotated” to the MS scheme. In the remaining part
of this section we outline the general procedure for this calculation.

To leading order (tree level) everything is simple. To this accuracy γN = 0, λN = 3/2, jN = N+1
and c(0)

1 (N) = 1 for even N and zero otherwise. Eq. (3.57) reduces to∫ 1

−1
dxC(0)(x)

(
1− x2

4

)
C

(3/2)
N−1 (x) = 1 (3.58)

for all even integers N . This has the unique analytical solution

C(0)(x) = C(0)(x) = 1
1− x −

1
1 + x

, (3.59)
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as expected. A remaining technicality is that beyond the leading order λN depends on N in a
nontrivial way and the functions P (λN )

N−1 (x) are not orthogonal for different N with some simple
weight function. Note, however, that they are eigenfunctions of the (exact) “rotated” evolution
kernel

(K ∗ P (λN )
N−1 )(x) =

∫ 1

−1
dx′K(x, x′)P (λN )

N−1 (x′) = γNP
(λN )
N−1 (x) (3.60)

and they are also eigenfunctions of the “rotated” SL(2) Casimir operator.
This property suggests the following ansatz for the CF:

C(x) = (C(0) ∗ Y )(x) =
∫ 1

−1
dx′ C(0)(x′)Y (x′, x) , (3.61)

where Y is an SL(2)-invariant operator, i.e. [Y,S±,0] = 0. Since the polynomials P (λN )
N−1 (x) are

eigenfunctions of the quadratic Casimir operator, they are also eigenfunctions of any SL(2)-invariant
operator, in particular

(Y ∗ P (λN )
N−1 )(x) =

∫ 1

−1
dx′ Y (x, x′)P (λN )

N−1 (x′) = Y (N)P (λN )
N−1 (x) . (3.62)

Using the above ansatz one obtains

C ∗ P (λN )
N−1 =

∫ 1

−1
dxC(x)P (λN )

N−1 (x)

=
∫ 1

−1
dx

∫ 1

−1
dx′ C(0)(x′)Y (x′, x)P (λN )

N−1 (x) (3.63)

= Y (N)
∫ 1

−1
dxC(0)(x)P (λN )

N−1 (x) = 2Y (N)B(λN + 1
2 , λN −

1
2 ) .

Comparing this expression with Eq. (3.57) gives

Y (N) = c1

(
N,

Q2

µ2 , as, ε∗

)
σ−1
N

Γ(d∗2 − 1)Γ(jN + λN − 1
2 )

Γ(λN − 1
2 )Γ(jN + d∗

2 − 1)
, (3.64)

i.e. the spectrum of Y is given directly in terms of moments of the DIS CF and the spectrum of the
rotation operator U.

An SL(2,R)-invariant operator, i.e., an operator that commutes with the generators S±,0 in Eq.
(3.39), is fixed uniquely by its spectrum. Therefore Eq. (3.64) uniquely defines the operator Y and,
by virtue of Eqs. (3.61), (3.36), also the CF C(x). In the next two subsections we describe this
calculation for the one-loop and the two-loop CFs, respectively.

3.3.4 One-loop
In this section we set µ = Q, as logarithmic terms Lj in the CF can easily be restored from the
evolution equation. To one-loop accuracy one needs to expand Eq. (3.64) to order O(as), taking
into account that ε∗ = −β0as + . . .. Since the tree-level CF does not depend on the space-time

50



dimension, the ε-dependence in c1
(
N, Q

2

µ2 , as, ε∗

)
starts at order O(as) and can be neglected here.

Thus we only need the one-loop result for c1(N) in d = 4 dimensions, which can be taken from [105]:

c1(N) = 1 + asc
(1)
1 (N) + . . .

c
(1)
1 (N) = CF

[
9(S1 − 1) + 2(N+ +N−)(S11 − S2 + 2S1)− 7(N− + 1)S1 − 4(N+ − 1)S1

]
, (3.65)

where Sk1...kn = Sk1...kn(N) are harmonic sums and N± are shift operators that change the argument
of harmonic sums by unity: N± Sk1...kn(N) = Sk1...kn(N ± 1). We also need the one-loop flavor-
nonsinglet anomalous dimension

γ
(1)
N = 4CF

[
2S1(N)− 1

N(N + 1) −
3
2

]
(3.66)

and the (one-loop) eigenvalues σN = 1 + asσ
(1)
N + . . . of the rotation matrix Eq. (3.38) U =

1 + asX
(1) + . . .. This is the only new element that requires a calculation. From Ref. [83]

(X (1) ∗ f)(z1, z2) = 2CF
∫ 1

0
dα

logα
α

[2f(z1, z2)− f(zα12, z2)− f(z1, z
α
21)], (3.67)

where X denotes the light-ray position space representation of X. In order to calculate σN we take
f(z1, z2) = zN−1

12 and get

X (1) ∗ zN−1
12 = 4CF

∫ 1

0
dα

logα
α

(1− ᾱN−1)zN−1
12 = σ

(1)
N zN−1

12 , (3.68)

where

σ
(1)
N = −2CF

[
S2

1(N − 1) + S2(N − 1)
]
. (3.69)

Collecting everything, we obtain

Y (N) = 1 + asY
(1)(N) + . . . ,

Y (1)(N) = c
(1)
1 (N)− σ(1)

N + 1
2γ

(1)
N S1(N + 1)

= 8CF
{
S2

1(N)− S1(N)
N(N + 1) + 5

8
1

N(N + 1) + 1
4

1
N2(N + 1)2 −

9
8

}
= 2CF

{(
γ̄

(1)
N + 3

2

)2
+ 5

2
1

N(N + 1) −
9
2

}
, (3.70)

where γ̄(1)
N in the last line is the one-loop anomalous dimension Eq. (3.66) stripped of the color factor,

γ
(1)
N = 4CF γ̄(1)

N . Note that the asymptotic expansion of the anomalous dimension γ̄(1)
N and therefore

also Y (1)(N) at large jN is symmetric under the substitution jN → 1 − jN , alias N → −N − 1
(reciprocity relation). We will find that this relation holds to two-loops as well, in agreement with
the general argumentation [109–111].

As already mentioned, a SL(2,R)-invariant operator is completely determined by its spectrum.
This is easy to do in the case under consideration, because an invariant operator with eigenvalues
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γ̄
(1)
N is the one-loop evolution kernel, and 1

N(N+1) is nothing else but the inverse Casimir operator.
The corresponding explicit expressions in position space are well known:

K̄(1) ∗ zN−1
12 =

[
K̂ − K+ −

3
2

]
∗ zN−1

12 = γ̄
(1)
N zN−1

12 ,

K+ ∗ zN−1
12 = 1

N(N + 1)z
N−1
12 , (3.71)

where

(K+ ∗ f)(z1, z2) =
∫

∆2

d(α, β) f(zα12, z
β
21) ,

(K̂ ∗ f)(z1, z2) =
∫ 1

0

dα

α

[
2f(z1, z2)− ᾱ

(
f(zα12, z2) + f(z1, z

α
21)
)]
. (3.72)

These kernels commute with the canonical generators S(0)
±,0.

Let Y denote the light-ray position space representation of Y . We obtain

Y(1) = 2CF
[(
K̄(1) + 3

2

)2
+ 5

2K+ −
9
2

]
. (3.73)

The same expression holds in momentum fraction space.
For the one-loop example considered here, the transformation from position to momentum

fraction space is not difficult to do and the results are available from Ref. [112]:

K+(ω′, ω) = θ(ω − ω′)ω
′

ω
+ θ(ω′ − ω)1− ω′

1− ω , (3.74)

K̂(ω′, ω) = −θ(ω − ω′)ω
′

ω

[
1

ω − ω′

]
+

+ θ(ω′ − ω)1− ω′
1− ω

[
1

ω − ω′

]
+
− δ(ω − ω′)

(
logω + log ω̄

)
,

where ω, ω′ are rescaled momentum fractions, ω = (1− x)/2, and the plus distribution is defined as[
1

ω − ω′

]
+
f(ω) = f(ω)− f(ω′)

ω − ω′
.

It remains to calculate the convolution of Y (1)(x, x′) with the leading-order CF Eq. (3.61) and
“rotate” the result to the MS scheme:

C(1)(x) = C(1)(x) + (C(0) ∗X(1))(x). (3.75)

The one-loop rotation kernel in momentum fraction space X(1)(x, x′) can also be found explicitly,

(X(1) ∗ f)(ω′) =
∫ 1

0
dωX(1)(ω′, ω)f(ω) = 2CF

[∫ 1

ω′

dω

ω
log
(

1− ω′

ω

)ω′f(ω′)− ωf(ω)
ω − ω′

+
∫ ω′

0

dω

ω̄
log
(

1− ω̄′

ω̄

) ω̄′f(ω′)− ω̄f(ω)
ω̄ − ω̄′

− 1
2(log2 ω′ + log2 ω̄′)f(ω′)

]
. (3.76)
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Here, as above, ω = 1
2 (1 − x), ω′ = 1

2 (1 − x′) are rescaled momentum fractions. Collecting all
terms, one reproduces after some algebra the well-known expression for the one-loop quark CF in
Eq. (2.86).

Beyond one-loop, the last part of this strategy – restoration of momentum fraction kernels
from the known position space results and taking the remaining convolution integrals – becomes
impractical because of very complicated expressions. It can be avoided, however, using the formulas
derived in the following.

Let f̃(x) be a function of the momentum fraction x so that its light-ray position space analogue
is

f(z1, z2) =
∫ 1

−1
dx e−iz1(1−x)−iz2(1+x)f̃(x) . (3.77)

The convolution of f̃(x) with the leading order CF C(0)(x) can be rewritten as a position space
integral

C(0) ∗ f =
∫ 1

−1
dxC(0)(x) f̃(x) =

∫ ∞
0

dz
[
f(−iz, 0)− f(0,−iz)

]
. (3.78)

As usual, the operator Y can be written in the following form

(Y ∗ f)(z1, z2) =
∫

∆2

d(α, β)Y(α, β)f(zα12, z
β
21) . (3.79)

Then

C(0) ∗ Y ∗ f̃ =
∫ 1

−1
dx f̃(x)

∫
∆2

d(α, β)
(

Y(α, β)
ᾱ(1− x) + β(1 + x) − (x↔ −x)

)
. (3.80)

Since this has to hold for arbitrary function f̃ we conclude that

(C(0) ∗ Y )(x) =
∫

∆2

d(α, β)
(

Y(α, β)
ᾱ(1− x) + β(1 + x) − (x↔ −x)

)
. (3.81)

If Y is given by a product of operators of the type in Eq. (3.79), then the r.h.s. of Eq. (3.81) can
be written as a manyfold integral of the same type, e.g., for Y1 ∗ Y2 one gets

(C(0) ∗ Y1 ∗ Y2)(x)

=
∫

∆2

d(α, β)
∫

∆2

d(α′, β′)
(

Y1(α′, β′)Y2(α, β)
(ᾱᾱ′ + αβ′)(1− x) + (βᾱ′ + β̄β′)(1 + x)

− (x↔ −x)
)
. (3.82)

Integrals of this kind can be evaluated with the help of HyperInt [75] in terms of harmonic
polylogarithms, which are discussed in Sec. 3.4. In this way a very time consuming transformation
of beyond-one-loop kernels to the momentum fraction representation can be avoided.

For instance, instead of using the momentum fraction expression for X(1) in Eq. (3.76), its
convolution with C(0)(x) can be calculated using eq. (3.81) directly from the position space
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representation in Eq. (3.67). This leads to simple integrals

(C(0) ∗X(1))(x) = CF

∫ 1

0
dα

logα
α

(
1
ω
− 1
ᾱω

+ 1
ω
− 1
ω + ω̄α

)
− (ω → ω̄)

= CF
1
ω

∫ 1

0
dα

(
− logα

ᾱ
+ ω̄

ω

logα
1 + αω̄/ω

)
− (ω → ω̄) (3.83)

= 1
ω

(
Li2(1) + Li2(−ω̄/ω)

)
− (ω → ω̄),

where ω = (1− x)/2. Beyond one loop, this simplification proves to be crucial.

3.3.5 Two-loop
The spectrum of the invariant operator Y (N) to two-loop accuracy is obtained by expanding
Eq. (3.64) to second order in as. Since ε∗ = O(as), one needs the two-loop CF in DIS in
d = 4 and moreover, terms of O(ε) in the one-loop DIS CF as ingredients. The corresponding
expressions are available from [105]. In addition we need to calculate the spectrum of eigenvalues
σN = 1 + asσ

(1)
N + a2

sσ
(2)
N + . . . of the rotation operator in Eq. (3.38) to the two-loop accuracy.

Explicit expressions for the corresponding kernels X are collected in Appendix B in Ref. [83]2. The
necessary integrals can be done analytically in terms of harmonic sums up to fourth order using
computer algebra packages [113–115]. The resulting expressions are rather cumbersome and we do
not present them here. Final expressions for the CFs turn out to be considerably shorter thanks to
many cancellations.

The next step is to restore the invariant operator Y from its spectrum. This is not as simple as
at one-loop because the invariant kernel has to commute with the deformed SL(2,R) generators in
Eq. (3.39) (including O(as) terms) rather than the canonical generators Eq. (3.40). In other words,
we are now looking for the integral operator (with the given spectrum) with eigenfunctions P (λN )

N−1 (x)
where λN = 3

2 +as(β0 + 1
2γ

(1)
N )+ . . . rather than λN = 3/2. All expressions can of course be truncated

at order a2
s so that for the second-order contributions to the spectrum, Y (N) = . . .+ a2

sY
(2)(N), it

is sufficient to require canonical conformal invariance. However, we need to modify the first-order
operator Y (1) → Ŷ (1) = Y (1) + δY (1) in such a way that Ŷ (1) has eigenfunctions P (λN )

N−1 (x), i.e. it
commutes with deformed generators Sα in Eq. (3.39) (up to terms O(a2

s)). This can be achieved by
replacing

Y(1) = 2CF
[(
K̄(1) + 3

2

)2
+ 5

2K+ −
9
2

]
→ Ŷ(1) = 2CF

((
K̃ + 3

2

)2
+ 5

2 K̃+ −
9
2

)
, (3.84)

where K̃ = K̄(1) +O(as) is the complete two-loop evolution kernel (up to normalization and some
terms discussed below) and K̃+ = K+ + O(as) is the inverse to the deformed Casimir operator,
K̃+ ∼ [J ∗ (J− 1)]−1 (to the required one-loop accuracy). The spectrum of eigenvalues of Ŷ (1) will
of course differ from the spectrum of Y (1), Ŷ (1)(N) = Y (1)(N) +O(as) and this difference will have
to be compensated by the corresponding change in Y (2) → Ŷ (2), which is, however, straightforward.

2In [83, Eq. (B.9)] there is a typo, the second term in the first equation, ∼ T(1), has to be omitted.
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The non-singlet two-loop evolution kernel in light-ray position space can be written as [83],

K(2) = K(2,inv) + T(1) ∗
(
β0 + 1

2K
(1)
)
, (3.85)

where T(1) is an integral operator defined in [83, Eq. (C.2)], and K(2,inv) is a certain canonically
SL(2)-invariant operator, i.e. [K(2,inv), S

(0)
±,0] =0. It is easy to see that[

K(as),K(1) + asT(1) ∗
(
β0 + 1

2K
(1)
)]

= O(a2
s) (3.86)

so that they have the same eigenfunctions up to O(a2
s). In other words, by dropping the canonically

invariant part K(2,inv) of the two-loop evolution kernel, the eigenfunctions remain the same up to
terms of O(a2

s) that are not relevant to our accuracy. Thus we can replace the full evolution kernel
in the expression for Ŷ (1) in Eq. (3.84) by its (canonically) non-invariant part

K̃ = K̄(1) + asT̄(1) ∗
(
β0 + 1

2K
(1)
)
, K̃ ∗ P (λN )

N−1 = K̃(N)P (λN )
N−1 +O(a2

s) , (3.87)

where T(1) = 4CF T̄(1) and

K̃(N) = K̄(1)(N) + asT̄(1)(N)
(
β0 + 1

2K
(1)(N)

)
= γ̄

(1)
N + as

(
β0 + 2CF γ̄(1)

N

) d

dN
γ̄

(1)
N . (3.88)

In addition we need to find the inverse of the Casimir operator

J ∗ (J− 1) = S+ ∗ S− + S0 ∗ (S0 − 1)

= J0 ∗ (J0 − 1) +
(
∂1z12 + ∂2z21 + 1

)
∗
(
− ε∗ + 1

2K
)

+
(
− ε∗ + 1

2K
)2
, (3.89)

where

J0 ∗ (J0 − 1) = S
(0)
+ ∗ S(0)

− + S
(0)
0 ∗ (S(0)

0 − 1) = ∂1z12 ∗ (∂2z21 + 1) = ∂2z21 ∗ (∂1z12 + 1) . (3.90)

One can show that to the required accuracy

[J ∗ (J− 1)]−1 =
[
1− as

(
R1 +R2 +K+

)
∗
(
β0 + 1

2K
(1)
)

+O(a2
s)
]
∗ K+ , (3.91)

where K+ is defined in eq. (3.72) and

(R1 ∗ f)(z1, z2) = ((∂1z12 + 1)−1 ∗ f)(z1, z2) =
∫ 1

0
dα ᾱf(zα12, z2),

(R2 ∗ f)(z1, z2) = ((∂2z21 + 1)−1 ∗ f)(z1, z2) =
∫ 1

0
dα ᾱf(z1, z

α
21). (3.92)

The term ∝ K2
+ is a canonically invariant operator and can be dropped for the same reasons as

K(2,inv) in the evolution kernel. Thus we can choose

K̃+ = K+ − as
(
R1 +R2

)
∗
(
β0 + 1

2K
(1)
)
∗ K+ ,

K+ ∗ P (λN )
N−1 = K̃+(N)P (λN )

N−1 +O(a2
s) , (3.93)
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where

K̃+(N) = 1
N(N + 1)as

[
1− 2

N + 1

(
β0 + 2CF γ̄(1)

N

)]
. (3.94)

The terms of O(as) in (3.88) and (3.94) modify the spectrum of eigenvalues of Ŷ (1) as compared to
Y (1) and have to be subtracted from Y (2)(N). The two-loop kernel has three color structures

Ŷ (2)(N) = β0CF Ŷ
(2)
β (N) + C2

F Ŷ
(2)
P (N) + CF

Nc
Ŷ

(2)
A (N). (3.95)

and only the ∝ C2
F term is affected by this subtraction. We obtain

Ŷ
(2)
β (N) = 2ζ2γ̄(1)

N + 10
3

(
γ̄

(1)
N + 3

2

)2
−
(

2
9 + 7ζ2 + 8

N(N + 1) + 2
N2(N + 1)2

)(
γ̄

(1)
N + 3

2

)
+ 2ζ3 −

29
6 ζ2 + 45

8 −
2

N2(N + 1)2 + 31
6

1
N(N + 1) ,

Ŷ
(2)
P (N) = 1

2(Y (1)(N))2 + 4ζ2(γ̄(1)
N )2 + 4ζ3

(
11 + 12

N(N + 1)

)
− 64ζ3S1 + 2

9π
4 − 28

3 π
2S2

1

+ 2π2
(

3 + 14
3N(N + 1)

)
S1 − 2π2

(
4
9 + 2

N(N + 1) + 1
N2(N + 1)2

)
+ 6
N(N + 1)S−2+

(
64
3 −

14
N(N + 1) −

8
N2(N + 1)2

)
S2

1

+
(

86
9 −

64
3N(N + 1) + 2

N2(N + 1)2 + 8
N3(N + 1)3

)
S1

+
(

11
8 −

137
18N(N + 1) −

25
6N2(N + 1)2 −

2
N4(N + 1)4

)
,

Ŷ
(2)
A (N) = 16S1

(
2S1,−2 − S−3

)
− 12S2

−2 − 8S−4 + 16S1S3 + 4
(

2S1,3 − S4

)
− 20S3

N(N + 1)

+ 32 (S−3 − 2S1,−2)
N(N + 1) +

(
44

N2(N + 1)2 + 24
(N − 2)(N + 3) + 52

N(N + 1) + 8
)
S−2

+ 32
3 S

2
1 +

(
− 8
N3(N + 1)3 −

8
N2(N + 1)2 −

86
3N(N + 1) + 52

9

)
S1

+ 20
3N2(N + 1)2 −

59
9N(N + 1) + 18

(N − 2)(N + 3) −
35
4 +

(
50

N(N + 1) + 54
)
ζ3

− π4

9 − 36ζ3S1 −
2π2S1

N(N + 1) + π2
(

4
3N2(N + 1)2 + 2

3N(N + 1) −
10
9

)
, (3.96)

where S~m = S~m(N). It can be checked that these expressions satisfy the reciprocity relation [109–
111]: their asymptotic expansion at N →∞ is symmetric under the substitution N → −N − 1.

It remains to find an invariant operator Ŷ (2) with the spectrum Ŷ (2)(N). This is not very
hard to do since we only need canonical SL(2)-invariance, i.e. the operators in question have to
be diagonal in the basis of P (3/2)

N−1 (x). The SL(2)-invariant kernels with eigenvalues given by the
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required harmonic sums are collected in Appendix A of [103]. Note that in contrast to anomalous
dimensions which grow logarithmically at large N to all orders in perturbation theory, γ(k)

N ∼ logN ,
the spectrum Y (N) contains higher powers on the logarithm, up to log2`N ∼ S2`

1 (N), where ` is
the number of loops.

With the invariant operators at hand, the DVCS coefficient function in the rotated scheme is
obtained by the convolution with the leading-order CF

C(x) =
∫ 1

−1
dx′ C(0)(x′)

[
δ(x− x′) + asY

(1)(x′, x) + a2
sY

(2)(x′, x) +O(a3
s)
]

(3.97)

and the CF in the MS scheme (so far still in conformal QCD at the critical point) recovered as

C(x) =
∫ 1

−1
dx′C(x′)

[
δ(x− x′) + asX

(1)(x′, x) + a2
s

(1
2(X(1))2 +X(2)

)
(x′, x) +O(a3

s)
)]
. (3.98)

In both cases one can use the formulas in Eqs. (3.81) and (3.82) to avoid Fourier transformation
of the kernels to the momentum fraction space. All necessary integrals can be computed using
HyperInt in terms of the harmonic polylogarithms.

3.4 Harmonic polylogarithms
For multiloop scattering amplitudes one needs to simplify huge expressions, which typically are
written in terms of complicated integrals of Feynman parameters.

In many cases, including the present case of the DVCS CF, the integrals can be expressed in
terms of classical polylogarithms defined by recursively in n ∈ N by

Lin(z) =
∫ z

0

dt

t
Lin−1(t), (3.99)

where the recursion begins with Li1(z) = − log(1 − z). A more general class of functions, which
covers a wider class of Feynman integrals is given by Goncharov polylogarithms (GPLs) [49], defined
in terms of iterated integrals

G(a1, ..., an; z) =
∫ z

0

dt

t− a1
G(a2, ..., an; t), (3.100)

where aj , z ∈ C and the recursion begins with G(z) = 1. The GPLs are related to the classical
polylogarithms by

G( 0, ..., 0︸ ︷︷ ︸
n−1 times

, a; z) = −Lin(z/a). (3.101)

A subclass of GPLs are the so-called Harmonic polylogarithms (HPLs) [50].

Ha1,...,an(z) = G(a1, ..., an; z) (3.102)

for aj ∈ {1, 0,−1}. The amplitude in Eq. (3.1) can be entirely expressed in terms of HPLs. It is
customary to use the notation that for Ha1,...,an with an 6= 0, we drop all indices that are 0, adding
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1 to the absolute value of the next right non-zero index for each dropped 0. This notation is used in
the results presented in App. B and C.

A great simplification that arises from being able to express amplitudes in terms of GPLs and
HPLs is due to the shuffle algebra property [116]

G(a1, ..., an; z)G(an1+1, ..., an1+n2 ; z) =
∑

σ∈Σ(n1,n2)

G(aσ(1), ..., aσ(n1+n2); z), (3.103)

where

Σ(n1, n2) =
{
σ ∈ Sn1+n2 | σ−1(1) < ... < σ−1(n1)

and σ−1(n1 + 1) < ... < σ−1(n1 + n2)
}

(3.104)

and Sn is the symmetric group of n elements.
It turns out that the ` loop contribution to the DVCS CF can be written in all generality as

C(`)(z, L) = 1
zz̄

∑̀
j=0

Lj
∑
~a

fj,~a(z)H~a(z), (3.105)

where we sum over all ~a = (a1, ..., an) ∈ {0, 1}n with n ≤ 2` and the coefficients fj,~a are polynomials
in z. This relatively simple behavior is mostly due to the fact that all Feynman integrals depend
only on a single parameter, namely z = 1

2 (1 − x/ξ). In related processes, such as double deeply
virtual Compton scattering or deeply virtual meson production one has a second scale in q′2 6= 0,
which significantly complicates the calculation, in particular the evaluation of the MIs.

There are many publicly available codes that handle GPLs and HPLs. For the evaluation of the
integrals involved in the IR subtractions in App. B we have used the Maple package HyperInt [75].
This program is also very well-suited for the integral in Eq. (3.81), necessary for the computation
using conformal algebra and it was used in Ref. [88, 103]. For the numerical evaluation in Sec. 4 we
have used the Mathematica package HPL.m [117].
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4 Numerical estimates

4.1 DVCS phenomenology
A detailed review of DVCS phenomenology is beyond the scope of this thesis. In the following we
give a very rough overview in order to put the results of this thesis into context.

The differential cross section for leptoproduction of a photon from a nucleon target is given by

dσ = α3
emxB

16π2Q4
√

1 + ε2

∣∣∣M
e3

∣∣∣2 dxBdQ2d|t|dφdφS , (4.1)

where ε = 2xBm/Q and the azimuthal angles φ, φS are defined in Fig. 4.1. The scattering amplitude
M was defined in Eq. (2.4). It is determined by the elastic nucleon form factors and, at leading
twist, by the CFFs H, E , H̃, Ẽ ,HT , ET , H̃T , ẼT . Deriving the corresponding relations for the various
observables is tedious, but straightforward.

The kinematic coverage of existing and planned measurements of DVCS is shown in Fig. 4.2
for various observables. The existing data from JLAB and HERA covers the region of moderately
large ξ & 0.01 and low Q2 . 10GeV2. This region is also covered by recent measurements at CERN
and JLAB. On the other hand, the EIC will give the complementary information about the very
low ξ . 0.01 with Q2 from about 2GeV2 up to about 100GeV2. Note that the small ξ region is
particularly interesting, since the IPDs are obtained from extrapolating the GPDs to ξ = 0.

Although recently there have been efforts to determine GPDs from lattice QCD [10] using the
framework of large momentum effective theory [118, 119], the standard method to determine GPDs
is to invent models or parametrizations and fit them to experimental data. Numerous ways have
been suggested to model GPDs, see Ref. [120] for a comprehensive review. Later we will consider
the classic model by Goloskokov and Kroll [51] explicitly. This will enable us to give an estimate of
the impact of the αs corrections to observables and hence to the final extraction of the GPD from
experimental data.

As example for an observable, consider the following parametrization of the differential cross
section on an unpolarized target [121]

dσhl,el(φ) = dσUU(φ)[1 + hlALU,DVCS(φ) + elhlALU,I(φ) + elAC(φ)], (4.2)

where dσUU is the differential cross section for an unpolarized beam and target, el is the lepton
charge in units of the positron charge and hl/2 is the lepton helicity. The so-called beam spin
asymmetry is defined as

AelLU(φ) = dσel,+(φ)− dσel,−(φ)
dσel,+(φ) + dσel,−(φ) = elALU,I(φ) +ALU,DVCS(φ)

1 + elAC(φ) . (4.3)

It can be shown that the first sine harmonic of A−LU(φ) is approximately proportional to the imaginary
part of H [120]

1
π

∫ π

−π
dφ sinφA−LU (φ) ∝∼ ImH. (4.4)
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Figure 4.1: Momenta and azimuthal angles for leptoproduction of a photon from a nucleon target.
φ is the angle between the lepton plane and the plane spanned by ~q and ~q′. φS is the angle between
the lepton plane and ~S⊥, the component of the target polarization vector that is orthogonal to ~q.
Figure taken from [31].

The statistical accuracy of the data is usually around the few percent level. As we will observe
later, see Fig. 4.5, the ratio ImHNLO/ImHLO is about 0.7, i.e. a correction of about 30%, around
ξ = 0.1 and Q2 = 4GeV2. Furthermore ImHNNLO/ImHNLO is about 0.9, implying roughly a 10%
correction from including the NNLO result. We will discuss these statements in more detail in Sec.
4.4. Suffice it to say that the NNLO corrections are generally well above the few percent level and
hence well above the experimental accuracy. So far, no phenomenological analysis exists that even
considers the NLO.

4.2 The Goloskokov-Kroll model
We consider the Goloskokov-Kroll (GK) model [51] for Hq and Hg, defined in Eqs. (2.37), (2.48),
(2.53) and (2.56), which is based on the double-distribution ansatz [122]

fi(β, α, t′) = gi(β, t′)hi(β) Γ(2ni + 2)
22ni+1Γ(ni + 1)2

[(1− |β|)2 − α2]ni
(1− |β|)2ni+1 ., (4.5)

where i ∈ {uval, dval, usea, dsea, ssea, g} and nqval = 1, ng = nqsea = 2 and t′ = t+ 4m2ξ2

1−ξ2 . The form of
the t-dependence is inspired by Regge theory [51, 121]

gi(β, t) = ebit|β|−α
′
it , (4.6)
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Figure 4.2: An overview of existing and planned measurements of DVCS in the x,Q2 plane. Taken
from [1]
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with α′i = 0.9, bi = 0 for valence quarks and α′i = 0.15,

bi = 2.58 + 1
4 log m2

µ2 +m2 (4.7)

for sea quarks and gluons. The functions Hi(β) are related to the corresponding PDFs through the
normalization condition

Hq(x, 0, 0) = q(x) , Hg(x, 0, 0) = xg(x) , (4.8)

where q(x) and g(x) are proton PDFs. Eq. (4.8) implies that

hg(β) = |β|g(|β|) ,
hsea(β) = qsea(|β|)sign(β) , (4.9)
hval(β) = qval(β)θ(β) ,

where qval(x) = q(x)− q(−x) and qsea(x) = q(−x). Correspondingly we define

Hqval(x, ξ, t) = Hq(x, ξ, t)−Hq(−x, ξ, t), Hqsea(x, ξ, t) = Hq(−x, ξ, t). (4.10)

The GPD is obtained from fi by the relation

Hi(x, ξ, t) =
∫
♦2

d(α, β) fi(β, α, t)δ(x− β − ξα) +Di(x/ξ, t)Θ(ξ2 − x2), (4.11)

where ♦2 = {|α|+ |β| ≤ 1}. The so-called D-term [123] contributes only to the real part of H. It is
very poorly known, so we neglect it in the following discussion.

Using the parametrization

hi(β) = β−δi β̄2ni+1
3∑
j=0

cijβ
j/2 (4.12)

for the PDFs, we can perform the integration over the section of ♦2 in Eq. (4.11). The GK model
can be written as

Hi(x, ξ, t) = χ(x ≥ ξ)H(DGLAP )
i (x, ξ, t) + χ(0 ≤ x < ξ)H(ERBL)

i (x, ξ, t) (4.13)

for i ∈ {usea, dsea, ssea, g} and 1 ≥ x ≥ 0, where χ(P ) = 1 if the proposition P is true and 0 if it is
false. For x < 0 the sea quark and gluon models are defined by

Hg(x, ξ, t) = Hg(−x, ξ, t), Hqsea(x, ξ, t) = −Hqsea(−x, ξ, t). (4.14)

For i = qval we have

Hi(x, ξ, t) = χ(x ≥ ξ)H(DGLAP )
i (x, ξ, t) + χ(−ξ ≤ x < ξ)H(ERBL)

i (x, ξ, t) (4.15)

and Hi(x, ξ, t) = 0 for x < −ξ. Explicit expressions for H(DGLAP )
i , H

(ERBL)
i are readily derived

and are given in Ref. [51].
The PDF parameters δi, cij in Eq. (4.12) should be fixed by fitting it to an up-to-date PDF

extraction. We use HERAPDF20 [124] and ABMP16 [125, 126] LO/NLO/NNLO PDFs for the
calculation of the CFF H including LO/NLO/NNLO CFs, respectively. We have used two PDF sets
to get a rough idea of the model dependence.

In Fig. 4.3 we have plotted the GPDs using fits to HERAPDF20 NNLO PDFs.
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Figure 4.3: Plots of the GK model with PDF parameters fitted to the HERAPDF20 NNLO set
[124].
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Figure 4.4: Sample contour for the evaluation of the integral in Eq. (4.20) for ξ = 0.5.

4.3 Evaluation of the convolution integral
The factorization integral for the CFF H becomes

H =
∑
q

∫ 1

−ξ

dx

ξ
Cq(x/ξ)Hqval(x, ξ, t) + 2

∑
q

∫ 1

0

dx

ξ
Cq(x/ξ)Hqsea(x, ξ, t)

+ 2
∫ 1

0

dx

ξ2 Cg(x/ξ)Hg(x, ξ, t). (4.16)

To evaluate this integral, as explained in Sec. 2.3, we define for i ∈ {usea, dsea, ssea, g}

H
{0<x<1}
i (x, ξ, t) = H

(ERBL)
i (x, ξ, t),

H
{ξ<x<1}
i (x, ξ, t) = H

(DGLAP )
i (x, ξ, t)−H(ERBL)

i (x, ξ, t), (4.17)

extended to negative x by Eq. (4.14). For i = qval we define

H
{−ξ<x<1}
i (x, ξ, t) = H

(ERBL)
i (x, ξ, t),

H
{ξ<x<1}
i (x, ξ, t) = H

(DGLAP )
i (x, ξ, t)−H(ERBL)

i (x, ξ, t). (4.18)

The functions HR
ij can now be analytically continued from R ⊆ [−1, 1] into the upper half complex

plane for Rex > 0 and into the lower half plane for Rex < 0. In particular, the pole of the CF at
x = ξ can be avoided for the H{0<x<1}

i , H
{−ξ<x<1}
i terms. On the other hand

H
{ξ<x<1}
i (x, ξ, t) x→ξ−→ const. (x− ξ)pi(ξ,t) (4.19)

for some pi(ξ, t) > 1, implying that the integrand in (4.16) goes to zero like (x− ξ)pi(ξ,t)−1.
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As an example we consider a possible integration contour for the gluon contribution as shown in
Fig. 4.4. The integral reads

1
2Hg =

∫
c1

dx

ξ2 Cg(x/ξ)H
{0<x<1}
g (x, ξ, t) +

∫
c2

dx

ξ2 Cg(x/ξ)H
{ξ<x<1}
g (x, ξ, t)

+
∫
c3

dx

ξ2 Cg(x/ξ)H
(DGLAP )
g (x, ξ, t), (4.20)

where we have recombined the integrals on the contour c3 for better numerical stability. This is
necessary, since H(ERBL)

i becomes very large for Rex > ξ and it is better to combine the large
cancelling contributions from H

{0<x<1}
i and H{ξ<x<1}

i on the level of the integrand.

4.4 Size of radiative corrections to H
The numerical integration in Eq. (4.16) can be readily performed. We have used Mathematica to
produce the results shown in Fig. 4.5 and 4.6.

Firstly, we can observe from those plots that the NLO corrections is substantial, in particular
in the phenomenologically relevant small ξ region. While this is already the case for the quark
contribution, with a negative correction of about 30%, it is exacerbated by the inclusion of the
gluon correction, which has opposite sign to the quark contribution. This applies to both real and
imaginary parts, with a particular large negative NLO correction, up to about 60%, to the imaginary
part.

Going over to NNLO, we observe that the NNLO/NLO correction is quite small, indicating a
decent convergence of the perturbative series. The NNLO/NLO correction to Hg is the leading
correction and it can be found to be up to 30%, as expected. For ReHg the NNLO/NLO correction
is smaller that for imaginary part, even getting positive for ξ . 10−3. As a consequence the
NNLO/NLO correction to ReHg is quite small. The imaginary part ImH however receives a
substantial NNLO/NLO correction, up to about 50% around ξ ≈ 0.01. This large ratio is however
not a good indicator of the actual size of the correction, since H gets close to zero. This is particularly
apparent for the real part, which even changes sign at ξ ≈ 0.2 and ξ ≈ 0.01.

We conclude that at Q of the order of a few GeV, due to the large NLO/LO correction, predictions
for observables using only the LO CF are poor. Hence DVCS should be investigated at least at
NLO. If one wants to achieve below 10% precision one should also include NNLO corrections, due
to its substantial correction to ImH.

In Fig. 4.6 we have also shown the Q2 dependence of H using only the fixed order L logarithms
in the CF. A more detailed study should involve the solution of the evolution equation as outlined
in Sec. 2.9, which resums such logarithms to all orders. However, in order to get an idea of the Q2

dependence it is sufficient to consider only the fixed order scale evolution. The situation is improved
by going to larger hard scales Q in two ways. Firstly, obviously the coupling constant decreases at
larger Q, hence reducing the overall size of radiative corrections. Secondly, the L dependent terms
in the CF are positive and are therefore give a positive correction to H. More precisely, while the
quark contribution varies relative little with Q2, the gluon contributions varies substantially. At
NNLO and NLO it even becomes positive at some value of Q2 between 10GeV2 and 50GeV2.
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Figure 4.5: Real and imaginary parts of the CFF H as a function of ξ at µ2 = Q2 = 4 GeV2 and
t = −0.1 GeV2 for the GPDs normalized to HERAPDF20 (thin lines) and ABMP16 (thick lines,
NLO and NNLO only) PDF sets at the appropriate order in perturbation theory: Solid lines: LO
(black), short dashes: NLO (blue), long dashes: NNLO (orange). Upper row: Quark contribution,
Middle row: Gluon contribution, Bottom row: Total contribution.
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Figure 4.6: The Q2 dependence from the fixed order L logarithms of the CFF H for ξ = 0.005
and t = −0.1 GeV2 for the GPDs at the input scale µ2

0 = 4 GeV2 normalized to HERAPDF20 (thin
lines) and ABMP16 (thick lines) PDF sets at the appropriate order in perturbation theory. The
quark and gluon contributions are shown by dashed and dotted curves, respectively. Their sum is
shown by the solid lines.
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5 Threshold resummation

5.1 Quark CF in the x→ ±ξ limit
The expression in Eq. (3.105) and the asymptotic behavior of Ha1,...,an(z) as z → 0 suggests the
following behavior of the CF as z → 0

C(`)
q (z) = 1

2z
∑̀
i=0

2`−i∑
j=0

ĉijL
i logj z + Ô(z0), (5.1)

where ĉij are constant coefficients and Ô(z0) means of the order of z0 logj z for some power j ∈ N.
By the ŝ↔ û crossing symmetry the exact same formula holds for the leading term at z̄ → 0. This
is the behavior of the CF near the ŝ = 0 and û = 0 thresholds in Fig. 2.3. Let us denote by

Ĉq(−ŝ, Q2, µ2) =
∞∑
`=0

a`s(µ)
∑̀
i=0

2`−i∑
j=0

ĉijL
i logj

(−ŝ
Q2

)
(5.2)

twice the coefficient of the z−1 of Cq. In Ref. [103] it was found that

Ĉq = 1 + asCF log2 z + 1
2(asCF log2 z)2 + . . . , (5.3)

where . . . denotes terms that do not have the highest power of the ŝ-threshold logarithms log z at
each order in as, which suggests that these leading logarithms exponentiate. This disagreed with an
earlier attempt [127] to resum the threshold logarithms, which predicted a different coefficient of the
a2
s term.
I have proven in Ref. [52] that indeed the leading logarithms exponentiate and I have further found

that subleading logarithms can be resummed, with the final result being Eq. (5.34). Remarkably
the exact same statements apply to the axial-vector quark CF C̃q, since the change in the projection
of Dirac indices does not influence the arguments and the finite subtractions discussed in Sec. 2.10
do not contribute to the leading z−1 power. In fact, from the results in Refs. [103] and [88] it can be
seen that the leading z−1 power terms agree for the vector and axial-vector case to NNLO accuracy,
which might be true to all orders.

The key observation is that Ĉq factorizes as

Ĉq(−ŝ, Q2, µ2) = h(Q2, µ2, ν2)f(−ŝ, ν2), (5.4)

where ν2 is a new factorization scale separating the small scale −ŝ from the large scale Q2 and h
and f are perturbatively calculable functions. For all purposes we can set ν = µ = Q, since the µ
dependence Cq can be handled by the running of the GPD. Eq. (5.4) allows for the resummation of
powers of log z = log −ŝQ2 to all orders. Although the small z or z̄ approximation is not valid through
the deformed integration region in Eq. (2.25), we still resum terms in the CF to all orders.

To summarize, there are two types of infinite series of terms that can be resummed in the CF.
On the one hand, we can resum all terms proportional to aisLi−j from evolution equations in the
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H B Ĥ B×

Figure 5.1: Graphical representation of the factorization theorem in Eq. (5.4). Left: Reduced
graph for the leading region in the z → 0 limit. Right: Graphical representation of the left-hand-side
of Eq. (5.4). Shown is the product of the hard function h, defined in Eq. (5.15), on the left and the
n-collinear function f , defined in Eq. (5.14), on the right. The double lines denotes the Wilson line
Wn. Note that there are also diagrams with crossed gluons connecting to the Wilson line and a sum
over hard subgraphs is implied.

factorization scale µ2, which was discussed in Sec. 2.9. Thereby j corresponds to the order aj+1
s

that K is expanded in. On the other hand, we can resum terms proportional to ais log2i−j z. In this
chapter we will discuss this resummation for the quark CF in detail.

For the rest of this chapter, we omit the q index, always implying that the quark CF is meant.

5.2 Factorization of Ĉ
In this Section we argue that in the z → 0 limit the CF can be written in the factorized form of Eq.
(5.4). We start by appealing to the well-known Libby-Sterman analysis [65], of which a review can
be found in Ref. [128]. In the same way as in Sec. 2.2, we first must identify the leading regions
and associated reduced graphs corresponding to pinch-singular-surfaces, which are determined by
the Landau criterion [66–68]. In such reduced graphs one may have subgraphs with its lines being
formally considered of the types hard, collinear to n or n̄, or soft. The major statement on which
our treatment relies is that the n̄-collinear and soft regions do not contribute. As is shown later,
they are eliminated by setting the external quark momenta on-shell (then the contribution from
those regions gives scaleless integrals), as is necessary for calculating hard coefficient functions. In
DVCS the separation of the hard scale Q2 from the small scales −t,m2 has been performed in the
factorization formula (2.25). Cq itself corresponds to the hard subgraph from this perspective, but
in the limit in region z → 0, which is a region of the convolution integral in (2.25), we find a further
hierarchy of scales, namely −ŝ� Q2.

The argument that we do not have to consider any n̄-collinear or soft subgraphs goes as follows.
Firstly, any n̄-collinear subgraph can depend only on the invariants k̂2, k̂′2, k̂ · k̂′, which are all zero.
To demonstrate this, consider the following loop integral with loop momentum in the n̄-collinear
region∫

l∼P̂

ddl

(l2)n1 [(l + P̂ )2]n2 [(l + q̂′)]n3
∼
∫

ddl

(l2)n1 [(l + P̂ )2]n1(2l · q̂′)n3
∝
∫ ∞

0

dα

αn1+n2+1−d/2 . (5.5)

The α integral gives zero in dimensional regularization. It is easy to see the same situation occurs
for any n̄-collinear loop momentum integration after all other integrations have been performed.
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Note that we do not have to consider a numerator since it can be written as a sum of the same
factors that appear in the denominator, so we get merely a sum of integrals of the same form.
Thus any such non-tree-level subgraph gives a scaleless integral and hence vanishes in dimensional
regularization. A possible soft subgraph might attach to the n-collinear subgraph B which must be
at the outgoing photon vertex (soft lines connecting the hard subgraph give a power-suppression).
However, by the same arguments as for example in DIS or DVCS [63] the soft subgraph is not
present. Correspondingly, the soft region for a generic loop integral gives scaleless integrals by a
similar argument as for the n̄-collinear region.

We proceed by using the standard Libby-Sterman power-counting formulas [128] to determine the
leading regions. In our case, where only a collinear and hard subgraph are present, the contribution
from a given region R is proportional to

(
Q2

−ŝ

)p(R)
, where

p(R) = 4−#(external lines)−#(lines B to H) + #(scalar pol. gluon lines B to H). (5.6)

This implies that the leading regions correspond to the reduced diagram shown on the left in
Fig. 5.1, where the arbitrary number of collinear gluons connecting the H and B subgraph are
scalar-polarized, i.e. the gµν in the gluon propagator is replaced by nµn̄ν .

Let us write the amplitude of the generic graph Γ on the left in Fig. 5.1 schematically as follows

Γ(H,B) = g⊥,µν

∫ N∏
j=1

ddlj
1
Nc

tr
[
/̂PBνν1...νN

a1...aN (k̂′, l, l1, ..., lN )
i(/l +

∑
j
/l j)

(l +
∑
j lj)2 + i0

×
(∏

j

gµjνj

)
Hµµ1...µN
a1...aN (k̂, l, l1, ..., lN )

]
, (5.7)

where l = k̂ + q̂ and we routed the N loop momenta lj of the gluon lines as entering the hard
subgraph and going back through the single fermion line connecting H to B. Conventional notation
would absorb the intermediate fermion line into the B subgraph, but we choose to make it explicit
here. To obtain the leading term we need to apply the region approximator TR(H,B), which, when
applied to a given graph, corresponds to making the following replacements:

• In the H subgraph, replace lj → l̂j = l−j n and z → 0, i.e. l→ q̂′, k̂ → P̂ ,

• On the fermion line between the H and B subgraph we insert the projector 1
2 /̄n/n,

• Replace gµjνj →
l̂j,µj n̄νj

l̂j ·n̄+i0 .

Note that the expression for Γ(H,B) in Eq. (5.7) has been written in such a way that it corresponds
to a region R(H,B) (of loop-momentum space) where the lines in the B subgraph are n-collinear
and the lines in the H subgraph are hard. We obtain

TR(H,B)Γ(H,B) = g⊥,µν

∫ N∏
j=1

ddlj
1
Nc

tr
[
/̂PBνν1...νN

a1...aN (k̂′, l, l1, ..., lN )
i(/l +

∑
j
/l j)

(l +
∑
j lj)2 + i0

× 1
2
/̄n/n
(∏

j

l̂j,µj n̄νj

l̂j · n̄+ i0

)
Hµµ1...µN
a1...aN (P̂ , q̂′, l̂1, ..., l̂N )

]
. (5.8)
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The next step is to use graphical Ward identities by taking into account the sum of diagrams with
all possible connections of the N gluons to H, in order to show that the collinear gluons decouple
from H. This is relatively simple in the case of QED and somewhat more involved in the case of
QCD. However, the arguments have become standard, so we do not repeat them here. Note that this
step requires to sum over all hard subgraphs of the same order in as. This results in the expression

∑
H

TR(H,B)Γ(H,B) = g⊥,µν

∫ N∏
j=1

ddlj
1
Nc

tr
{
/̄nBνν1...νN

a1...aN (k̂′, l, l1, ..., lN )/n
iQ2

2ŝ

×

[ ∑
permutations
of {1,...,N}

(−g)N n̄ν1ta1 ...n̄νN taN

(l−1 + i0)...(
∑N
j=1 l

−
j + i0)

]∑
Ĥ

Ĥµ(P̂ , q̂′)
]
, (5.9)

where the ta are color matrices. The remaining sum goes over all possible subgraphs Ĥµ(P̂ , q̂′), of
the given order in as, without collinear gluon insertions. The expression in the square brackets can
be identified to be a momentum-space Wilson line. In position space and in terms of gluon fields it
reads

Wn̄(x) = P exp
[
ig

∫ 0

−∞
ds A−(x+ sn̄)

]
. (5.10)

Note that Ĥ is a function of momenta which have zero transverse components. Thus

/nĤµ(P̂ , q̂′)/̄n = cĤ(Q2)/nγµ⊥ /̄n, (5.11)

where cĤ is the contribution to the hard function h. Finally we arrive at the factorized form of Γ
summed over all possible hard subgraphs. It reads∑

H

TR(H,B)Γ(H,B) = −Q
2

2ŝ
∑
Ĥ

cĤ(Q2)cB(−ŝ), (5.12)

where

cB(−ŝ) = −ig⊥,µν
∫ N∏

j=1
ddlj

1
Nc

tr
{
/nγµ /̄nBνν1...νN

a1...aN (p′, k, l1, ..., lN )[...]
]

(5.13)

is the contribution to the function, which is denoted by f in Eq. (5.4). The above discussion implies
that the bare f can be written as a correlation function

fbare(−ŝ) = 2ŝ
Q2

igµν⊥
4(d− 2)

∫
ddx1 e

iq̂′x1 lim
k̂′→−zP̂

∫
ddx2 e

ik̂′x2

× 1
Nc

tr
[
/̂Pγµ(−i /̂k′) 〈0|T{ψ(x2)jν(x1)ψ̄(0)Wn(0)} |0〉connected

]
. (5.14)

A diagrammatic representation of f is shown in Fig. 5.1. Since f describes momentum modes that
are collinear to the outgoing photon it is appropriate to call f the n-collinear function in this context.
For threshold resummation in the endpoint region of DIS the analogue of f is the jet function, which
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is a matrix element of a single quark field and a Wilson line ψ̄Wn. f differs markedly from the jet
function, since there appears an additional n-collinear electromagnetic current in the correlator.

The hard function h, on the other hand, can be identified as the Sudakov form factor with
on-shell massless external legs

〈q̂′| ψ̄(0)γµψ(0) |P̂ 〉connected, amputated = γµ⊥h
bare(Q2). (5.15)

or equivalently, the hard matching coefficient of the Sudakov form factor in momentum space,
denoted by C̃V in Ref. [129].

We have shown the factorization of the sum of a set of subgraphs, for a given region. When
summing over all graphs Γ and regions R one has to take into account the resulting double counting.
On the graphical level one can define a subtraction procedure defined recursively over from smaller
to larger regions in the sense of set inclusion. We refer to the standard literature on collinear
factorization proofs [128]. In the case presented here it is assumed that the double-counting
subtractions can alternatively be formulated by “renormalizing” the corresponding “bare” functions,
which is a standard procedure when using factorization theorems. In terms of bare quantities we
have the factorization formula

Ĉbare(Q2,−ŝ) = hbare(Q2)fbare(−ŝ), (5.16)

where Cbare = 1
2z Ĉ

bare + Ô(z0). Note that renormalization of the z−1 coefficient of the CF becomes
multiplicative, i.e.

C = Cbare ⊗ Z = 1
2z Ĉ

bareẐ +O(z0). (5.17)

Note that we can ignore mixing with the gluon CF, since the pure-singlet quark contribution that
generates this mixing is suppressed by an additional power of z. This is because such contributions
must correspond to reduced graphs that have an additional quark line connecting the hard and
collinear subgraph, leading to a suppression according to Eq. (5.6).

On the other hand, h and f can also be renormalized multiplicatively, i.e. hbare = hZ−1
h and

fbare = fZf . Note however that Zh 6= Zf . In fact

Ĉbare = ĈẐ−1 = hbarefbare = hZ−1
h Zff. (5.18)

The renormalized quantities are (by definition) finite, so we must have ẐZ−1
h Zf = 1 in minimal

subtraction schemes, i.e. the Z factors cancel, leading to the factorization theorem in terms of the
renormalized quantities Ĉ = hf , as stated in Eq. (5.4). The µ-independence of Ĉbare implies

0 = d

dµ
Ĉ(−ŝ, Q2, µ2)Ẑ−1(−ŝ, Q2, µ2)

= d

dµ
h(Q2, µ2)Ẑ−1(−ŝ, Q2, µ2)f(−ŝ, µ2). (5.19)

Thus we are free to set the scale µ = Q and obtain

Ĉ(−ŝ, Q2, Q2) = h(Q2, Q2)f(−ŝ, Q2). (5.20)

We remark that a different approach to proving Eq. (5.4) is to treat the complete DVCS amplitude
instead of just the CF itself. For this one must consider the virtuality −k2 as an intermediate scale
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Dq,1,n Dq,2,n Dq,3,n Dq,4,n

Figure 5.2: One-loop diagrams contributing to f .

between the hard scale Q2 and the small scales −t,m2, i.e. −t,m2 � −ŝ � Q2. A proof could
proceed in close analogy to [129] using soft-collinear effective theory (SCET), where, in addition
to usual hard, collinear and soft degrees of freedom, l would be classified as “semi-hard” and k̂′ as
“soft-collinear”. In the approach of this work, we essentially considered only the separation of the
semi-hard scale −ŝ from the hard scale Q2 and we have used that the regions corresponding to the
other momentum scalings give scaleless integrals for on-shell partons.

5.3 One-loop example
In this section we verify the general statements of Sec. 5.2 at one-loop accuracy. The unexpanded
(in powers of z) diagrams are shown in the upper row of Fig. 2.5. We have

Dq,1 = asCF
2z

[
− 1
ε

(
1 + 2 log −ŝ

µ2

)
− log2 Q

2

µ2 + 3 log Q
2

µ2

+ log2 −ŝ
µ2 − 2 log −ŝ

µ2 − 4
]

+ Ô(z0),

Dq,2 = asCF
2z

[
− 1
ε

+ log −ŝ
µ2 − 4

]
+ Ô(z0), (5.21)

Dq,3 = Ô(z0),

Dq,4 = asCF
2z

[
− 1
ε

+ log −ŝ
µ2 − 1

]
+ Ô(z0).

The two relevant regions are Rh and Rn, where the loop momentum is hard and n-collinear,
respectively. The corresponding region approximator was defined in Sec. 5.2. We define Dq,j,h =
TRhDq,j and Dq,j,n = TRnDq,j . As Dq,2,n and Dq,4,n do not couple to the Wilson line, they are the
same as Dq,2 and Dq,4, so the corresponding contribution from the hard region is zero. In particular
they only depend on −ŝ and not on Q2, as it should be. Diagram Dq,3 is suppressed by an additional
power of z and correspondingly Dq,3,n vanishes since the Wilson line connects to the external leg,
leading to a factor of n̄2 = 0. Graphical representation of the Dq,j,n are shown in Fig. 5.2.
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The only one-loop diagram with a non-trivial matching is therefore D1. We have

Dq,1,n = − igµν⊥
4(d− 2)(ig2CF )

(µ2eγE

4π

)ε ∫ ddl′

(2π)d
tr
[
/̂Pγν/l /̄n(/l + /l

′)γν
]

l′2l2(l + l′)2l′−

= −ig
2CF
2z

(µ2eγE

4π

)ε ∫ ddl′

(2π)d
2P̂ · (l + l′)

l′2(l + l′)2(2P̂ · l′)
(5.22)

= asCF
2z

[
2
ε2
− 1
ε

(
2 log −ŝ

µ2 − 2
)

+ log2 −ŝ
µ2 − 2 log −ŝ

µ2 + 4− π2

6

]
.

The contribution from the hard region, which is obtained by setting z = 0 in the integrand of Dq,1,
can be found to be

Dq,1,h = asCF
2z

[
− 2
ε2
− 3
ε

+ 2
ε

log Q
2

µ2 − log2 Q
2

µ2 + 3 log Q
2

µ2 − 8 + π2

6

]
. (5.23)

As expected, the sum Dq,1,n +Dq,1,h reproduces the original result in Eq. (5.21).
Eq. (5.20) allows us to resum the logarithms of z. As a simple illustration, I demonstrate how

Eq. (5.20) and the one-loop calculation can predict terms ans log2n−j z for j = 0, 1 in Ĉ to arbitrary
orders. We have shown that

fbare(−ŝ, µ2) = 1 + asCF

[
2
ε2
− 2
ε

log −ŝ
µ2 + log2 −ŝ

µ2 − 1− π2

6

]
+O(a2

s), (5.24)

which implies that

d

d logµf(−ŝ, µ2) =
[
− 4asCF log −ŝ

µ2 +O(a2
s)
]
f(−ŝ, µ2). (5.25)

Solving this differential equation gives

f(−ŝ, Q2) = exp
[
as(Q) log2 z + as(Q)2

(
− 1

3β0CF log3 z
)]
f(−ŝ,−ŝ) + . . . , (5.26)

where the ellipsis denote term that do not contribute to the two highest powers of logarithms.
Inserting this expression into Eq. (5.20) gives

Ĉ(z, µ = Q) = exp
[
as(Q) log2 z + as(Q)2

(
− 1

3β0CF log3 z
)]

+ . . . . (5.27)

This result predicts the a2
s log4 z and a2

s log3 z terms in the two-loop CF and the prediction indeed
agrees with the explicit two-loop calculation of Cq [103]. Of course we can resum more logarithms
than presented in Eq. (5.27). This is discussed in Sec. 5.4.
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5.4 Resummation at NNLL accuracy

By replacing log z = log −ŝµ2 − log Q2

µ2 in the two-loop result for Ĉ, which can be obtained from the
expressions in App. C, we can observe the separation of logarithms verifying Eq. (2.34) at two loops.
This also gives the two-loop expressions for f and h up to constants. The one-loop and two-loop
expressions are collected in App. D.

In order to carry out the resummation we need the anomalous dimensions.

df

d logµ = γff,
dh

d logµ = γhh,
dĈ

d logµ = γĈĈ. (5.28)

We have shown in Sec. 5.2 that h is the hard matching coefficient of the Sudakov form factor. It is
well-known that its anomalous dimension has the all-order structure

γh = Γcusp log Q
2

µ2 + γ̄h, (5.29)

where the coefficient of the logarithm is the cusp anomalous dimension [130]

Γcusp = 4asCF + a2
s

[4
3(4− π2)CFCA + 20

3 β0CF

]
+O(a3

s). (5.30)

Note that γh + γf = γĈ can not depend on µ, since the log Q2

µ2 logarithms in Ĉ are single logarithms.
Hence the dependence on µ has to cancel in γĈ , which implies the all-order structure

γf = −Γcusp log −ŝ
µ2 + γ̄f ,

γĈ = −Γcusp log z + γ̄Ĉ , (5.31)

where γ̄Ĉ = γ̄h + γ̄f . The one- and two-loop expressions for γ̄f , γ̄h are collected in App. D.
Let us turn to the evolution equation for the n-collinear function f , Eq. (5.28), whose solution

can be written as

f(−ŝ, Q2) = U(z)f(−ŝ,−ŝ), (5.32)

where

U(z) = exp
{

1
2

∫ logQ2

log−ŝ
d logµ2

[
− Γcusp(as(µ)) log −ŝ

µ2 + γ̄f (as(µ))
]]
. (5.33)

Inserting Eq. (5.32) into Eq. (5.20) gives

Ĉ(z, µ = Q) = h̄(as(Q))U(z)f̄(as(
√
zQ)), (5.34)

where h̄(as(µ)) = h(µ2, µ2), f̄(as(µ)) = f(µ2, µ2). This implies that the result for the two-loop
quark CF can be organized in the following way

Ĉ(2)(z, µ = Q) = 1
2!

(Γ(1)
cusp

4 log2 z
)2
− Γ(1)

cusp

12 β0 log3 z + 1
4

(
Γ(1)
cuspf̄

(1) + Γ(1)
cusph̄

(1) + Γ(2)
cusp

)
log2 z

−
( γ̄(2)

f

2 + β0f̄
(1)
)

log z + const. (5.35)
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RG-impr. PT Log. approx. ∼ ans logk z in log Ĉ Γcusp γ̄f h̄, f̄ β
- LL n+ 1 ≤ k ≤ 2n 1-loop - - 1-loop

LO NLL n ≤ k ≤ 2n 2-loop 1-loop - 2-loop
NLO NNLL n− 1 ≤ k ≤ 2n 3-loop 2-loop 1-loop 3-loop
NNLO NNNLL n− 2 ≤ k ≤ 2n 4-loop 3-loop 2-loop 4-loop

Table 5.1: Different approximation schemes. The logarithmic counting agrees with the one from
[129].

For applications it can be convenient to rewrite the exponent in Eq. (5.33) using∫ logµ

log ν
d logµ′ =

∫ as(µ)

as(ν)

da

β(a) . (5.36)

This gives

log Ĉ = 2S −Aγ̄f + log h̄+ log f̄

= 1
as(Q)gLL(z) + gNLL(z) + as(Q)gNNLL(z) +O(as(Q)2) (5.37)

where

S(z) =
∫ as(

√
zQ)

as(Q)
dα

Γcusp(a)
β(a)

∫ as(
√
zQ)

a

da′

β(a′) ,

Aγ̄f (z) =
∫ as(

√
zQ)

as(Q)
da

γ̄f (a)
β(a) . (5.38)

The subscripts of the g-functions correspond to the logarithms that are resummed in it. The
corresponding logarithmic counting scheme is defined in Table 5.1. Note that for the NNLL accuracy
Γ(3)
cusp is required. Though it can not be obtained by methods used in the section, it is readily

available in the literature. Hence, at this point in time, the highest accuracy that can be achieved
is NNLL. Since Γ(4)

cusp and h̄(2), f̄ (2), see Eq. (D.5), are also known, the only missing ingredient for
NNNLL is γ̄(3)

f .
Let us consider how the result can be used in practice. A naive way to implement the resummation

corrections is to make the substitution

C(fixed order)(z)→ C(fixed order)(z) + 1
2z

(
Ĉ(resummed)(z)− Ĉ(fixed order)(z)

)
− 1

2(1− z)

(
Ĉ(resummed)(1− z)− Ĉ(fixed order)(1− z)

)
, (5.39)

where C(fixed order) is the CF to fixed order in perturbation theory and

Ĉ(resummed)(z) = exp
[

1
as(Q)gLL(z) + gNLL(z) + as(Q)gNNLL(z)

]
. (5.40)
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Figure 5.3: Real and imaginary part of the quark CFF Hq, calculated using the model in eq.
(3.331) of [20] for n = 1/2. The solid lines correspond to the CF at fixed order, gray being LO (fixed
order LO and NLL resummation) and blue being NLO (fixed order NLO and NNLL resummation)
while the dashed lines include the resummation, with the CF modified according to Eq. (5.39). For
reference, the plot of Hq calculated with the fixed order NNLO non-singlet CF is shown in brown.
The resummed NNLO result would require NNNLL resummation and not all the ingredients are
known at this point. I have set µ = Q, nf = 3 and used as(Q) = 0.025.

The function Ĉ(fixed order) is defined in such a way to subtract the double-counting of the terms of
Ĉ(resummed) that are already contained in C(fixed order)

q . It can be obtained by expanding Ĉ(resummed)

in as to the desired accuracy.
The integration in Eq. (2.25), when using the resummed CF, can be performed naively by

deforming the contour into the complex plane, the same way as was done in Sec. 4.3. In Fig. 5.3 I
have used a simple model quark GPD given in Eq. (3.331) of [20] for n = 1/2.

For this I used for the analytic form of the running coupling

as(
√
zQ) = as(Q)

r

{
1− as(Q)

r

β1

β0
log r

+
(as(Q)

r

)2
[
β2

1
β2

0

(
log2 r − log r − 1 + r

)
+ β2

β0
(1− r)

]]
+O(as(Q)4) (5.41)

where r = 1 + as(Q)β0 log z.
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Using the formula Eq. (5.41) we obtain for the g-functions

gLL = Γ(1)
cusp

2β2
0

(1− r + r log r),

gNLL = Γ(1)
cusp

4β2
0

β1

β0

(
2− 2r + 2 log r + log2 r

)
− Γ(2)

cusp

2β2
0

(
1− r + log r

)
, (5.42)

gNNLL = 1
r

{
f̄1 + h̄1r +

γ̄
(2)
f

2β0
(1− r) + Γ(1)

cusp

4β2
0

[
β2

1
β2

0

(
1− r + log r

)2
+ β2

β0

(
1− r2 + 2r log r

)]

+ Γ(2)
cusp

4β2
0

β1

β0

(
3− 4r + r2 + 2 log r

)
+ Γ(3)

cusp

4β2
0

(1− r)2
]
.

The form in Eq. (5.41) of the running coupling organizes the perturbative expansion in terms of
the leading log solution a(LL)

s (
√
zQ) = as(Q)

r . Thus the Landau pole is fixed at the point r = 0, or
equivalently z = e

− 1
as(Q)β0 . It is clear that the points z = 0 and z = 1 never coincide with r = 0, so

the contour can be deformed away from the Landau pole, making the numerical evaluation stable.
Note that the ξ → ξ − i0 prescription implies a natural direction of the contour deformation that
should be performed in order to avoid the Landau pole.

As seen in Fig. 5.3 the correction due to the NNLL resummation appears to be small. This is
because, as was discussed in Sec. 2.3, the integration regions where the contour can not be deformed
away from z = 0 or z = 1, i.e. where threshold logarithms are large, are suppressed by powers of
z. This is coherent with the discussion in Ref. [63] which states that there is no leading power
contribution from the region where |x± ξ| . −tQ2 ,

m2

Q2 ,
|p2
⊥|
Q2 .
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6 Conclusion
This dissertation is devoted to the calculation of αs corrections to DVCS. In Cha. 2 we have reviewed
the factorization theorem Eq. (2.25) in detail, which describes the separation of the small scales
−t,m2 whose degrees of freedoms are formally described by the GPDs, and the hard scale Q2,
described by the CF. We have then decomposed the leading power contribution to the hadronic
tensor Tµν into the form factors H, E , H̃, Ẽ ,HT , ET , H̃T , ẼT , which encode essentially the complete
QCD content of the DVCS process at leading power. These CFFs are given by convolutions of
the GPDs with the CFs Cq, Cg, C̃q, C̃g, Cg,T . We have described how these CFs are related to bare
correlation functions, which required the use of dimensional regularization and subtractions of terms
corresponding to the renormalization of GPD. We have also taken a look at the NLO calculation
of the CFs in all three-sectors: vector, axial-vector and gluon transversity. Furthermore, we have
discussed evolution equations for GPDs, which can be used to resum potentially large logarithms
log µ2

Q2 in the CFs. Finally, we have discussed a subtlety regarding the use of Larin’s scheme for the
axial-vector sector, which required additional finite subtractions to C̃q.

In Cha. 3, we have discussed computational methods, which become necessary beyond the
one-loop order. Firstly we have reviewed the methods of IBP reduction and differential equations
for Feynman integrals, which were used in Ref. [48]. We have found that there are a total of 13 MIs
that appear in the two-loop calculation. We have explained how these integrals could be calculated
using the method of differential equations. Furthermore, we have outlined an entirely different
method of calculating the CFs, which is based on the conformal symmetry of QCD in non-integer
dimensions at the critical point. This enables one to compute the DVCS CF from the forward
case, DIS. Agreement was found when calculating the non-singlet vector CF using both methods,
giving further confirmation of the correctness of the computations in Refs. [103] and [48]. We have
also introduced the harmonic polylogarithms, in which the CFs can be conveniently expressed in,
enabling elegant handling of large expressions and numerical implementation.

In Cha. 4 we discussed how the convolution integral in Eq. (2.25) can be calculated. We have
further presented a study of phenomenological impact due to radiative corrections. These corrections
were already known to be substantial at NLO and we found that the NNLO correction to the
imaginary part of H is also significant. This can be traced to the cancellation between quark and
gluon contributions at moderate Q2 (that is already present at NLO).

Finally, in Cha. 5 we have reviewed the recent result of the resummation of threshold logarithms
in DVCS. This resummation is possible by considering the behaviour of the CF near the partonic
threshold poles (branch points). A relatively simple argument shows that the quark CF factorizes
near these points, which then enables the resummation by solving RGEs.

We conclude that in order to match the high precision of anticipated experimental data on DVCS
in a broad kinematic range from JLAB 12 and the EIC, one should include radiative αs corrections
to NNLO. This includes the three-loop evolution equations and possibly the NNNLL resummation
of threshold logarithms. This thesis summarizes essential theoretical foundations that are needed
to achieve a good control over perturbation theory. Of course, radiative corrections to DVCS are
only part of the theoretical efforts. Further issues that are relevant for GPD physics include power
corrections, GPD modeling, data analysis, input from lattice QCD calculations etc.

Furthermore, it will not be enough to consider just the process of electroproduction of a real
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photon from the nucleon target. There is a large number of further processes that involve GPDs,
see for example Ref. [20] p.226 for a comprehensive list. The set of processes includes, for example,
time-like Compton scattering [131, 132], double deeply virtual Compton scattering [133–135] and
deeply virtual meson production [136–142]. There are also new processes that are being considered
such as the recently proposed single diffractive hard exclusive processes [143]. For these reactions
αs corrections will also be important and they can be calculated using the techniques introduced
in Cha. 3. It is apparent that a great deal of theoretical and experimental efforts are needed to
deal with the complicated theory of QCD in order to obtain a detailed quantitative knowledge of
the most fundamental particles. This applies in particular to the here considered three-dimensional
spatial imaging of the nucleon.

To summarize, I state the main results:

1. Calculation of the NNLO (two-loop) flavor-nonsinglet vector CF in DVCS using conformal
symmetry [103]; verification of this result by a direct diagrammatic calculation.

2. The same as in 1. for the axial-vector CF starting from Larin’s scheme and implementing the
necessary additional finite renormalization [88].

3. Calculation of the flavor-singlet vector CF, both for quarks and gluons [48]. Done using a
diagrammatic approach and computer algebra methods.

4. Resummation of threshold logarithms in DVCS [52]; a general formalism and implementation
to the NNLL accuracy. Phenomenological applications of this result will be studied in future
work.
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A Integral operations on GPDs
In this Appendix we summarize a notation regarding integral operators that is used throughout this
text.

Consider an unspecified space of functions Ω that depend on the momentum fraction variable x.
Let K : Ω→ Ω be a linear operator, defined by

(K ∗ f)(x) =
∫ ∞
−∞

dx′ K(x, x′)f(x′), (A.1)

where K(x, x′) is a distribution-valued integration kernel and the action of K on f is denoted by
the symbol ∗. Clearly, the algebra of such operators is associative and distributive with respect to
the operations + and ∗. Some obvious notations are as follows.

• The unit operator

I(x, x′) = δ(x− x′) (A.2)

is always denoted by I = 1,

• for n ∈ N we denote

Kn = K ∗ ... ∗K︸ ︷︷ ︸
n times

, (A.3)

• the commutator of two operators is defined by

[K1,K2] = K1 ∗K2 −K2 ∗K1. (A.4)

A CF C can be viewed as in some sense dual to functions in Ω. I.e. formally C : Ω→ C such that

C ∗ f =
∫ ∞
−∞

dx C(x)f(x). (A.5)

For the case of the factorization theorem of DVCS, see e.g. Eqs. (2.47) and (2.55), the function f is
a GPD, which is supported from −1 to 1, so integration is over this region. Furthermore we can
identify C(x)→ 1

ξjC(x/ξ), where j = 1 for quarks and j = 2 for gluons. These details are usually
omitted, since they are clear from the context. Correspondingly we can define the left action of K
on CFs as

(C ∗K)(x) =
∫ ∞
−∞

dx′ C(x′)K(x′, x). (A.6)

At many times it is beneficial to go from the above momentum fraction space to the light-ray
position space, where we consider some space Ω̄ of functions of two positions z1, z2 ∈ R on the
light-ray spanned by n. We can relate elements of Ω to Ω̄ by the analogue of Eq. (2.93), i.e.

f(z1, z2) =
∫
dx ei[(1+x)z1+(1−x)z2]f̃(x), (A.7)
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where we have set the dimensionful scale P+ to 1 and we also have set ξ = 1. These factors can
always be reproduced from context.

In this sense, we can define the representation of K on Ω̄, denoted by K. The corresponding
action is also denoted by the symbol ∗. The action of K can be written as

(K ∗ f)(z1, z2) =
∫

∆2

d(α, β)K(α, β)f(ᾱz1 + αz2, β̄z2 + βz1), (A.8)

where ∆2 = {0 ≤ α ≤ β̄ ≤ 1} and K(α, β) is a distribution-valued integration kernel.
It is often useful to write the operator K in terms of K(α, β). In Sec. 2.9 we prove the relation

(K ∗ f)(x) =
∫
dy K(1 + x, 1− x|1 + y, 1− y)f(y), (A.9)

where

K(x1, x2|y1, y2) =
∫

∆2

d(α, β) K(α, β)δ(x1 − ᾱy1 − βy2), (A.10)

subject to the constraint x1 + x2 = y1 + y2.
Another useful formula is for convolutions with the tree-level quark CF

C(0)(x) = 1
1− x −

1
1 + x

, (A.11)

which is given in Eq. (3.81) and the generalization in Eq. (3.82). We repeat

(C(0) ∗K)(x) =
∫

∆2

d(α, β)
(

K(α, β)
ᾱ(1− x) + β(1 + x) − (x↔ −x)

)
. (A.12)
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B Two-loop matching
To perform the two-loop matching we need explicit expressions for the Z factors at two-loop accuracy.
They can be calculated directly, but are also widely available in the literature. Furthermore, they
are directly related to the evolution kernel of the GPDs, see Eq. (2.91).

We present the following NLO results, which hold up to terms of O(a2
s).

Zns(α, β) = Zss(α, β) = δ(α)δ(β)− as
2
ε
CF

{
1 +

[ ᾱ
α

]
+
δ(β) +

[ β̄
β

]
+
δ(α)− 1

2δ(α)δ(β)
}
,

Zsg(α, β) = −as
4
ε
nfTF (ᾱβ̄ + 3αβ),

Zgs(α, β) = −as
2
ε
CF

[
2 + δ(α)δ(β)

]
, (B.1)

Zgg(α, β) = δ(α)δ(β)− as
2
ε
CA

{
4(ᾱβ̄ + 2αβ)

+
[ ᾱ2

α

]
+
δ(β) +

[ β̄2

β

]
+
δ(α) + 1

2(β0 − 6CA)δ(α)δ(β)
}
,

where the delta functions are defined such that
∫ 1

0 dα δ(α) = 1 and the plus distribution is defined
by [f(α)]+ = f(α)− δ(α)

∫ 1
0 dβ f(β).

Consider the a2
s term in Eq. (2.79)

C(2)
q (y) = V̂

(2)
q (1/y)
y

−
∫
dx C(0)

q (xy)F̂ (2)
q/q(x, 1/y)−

∫
dx C(1)

q (xy)F (1)
q/q(x, 1/y)

− y
∫
dx C(1)

g (xy)F̂ (1)
g/q(x, 1/y).

C(2)
g (y) = V̂

(2)
g (1/y)

2(y2 − 1) −
y

2(y2 − 1)
∑
q

∫
dx C(0)

q (xy)F̂ (2)
q/g(x, 1/y) (B.2)

− y

2(y2 − 1)
∑
q

∫
dx C(1)

q (xy)F̂ (1)
q/g(x, 1/y)

− y2

2(y2 − 1)

∫
dx C(1)

g (xy)F̂ (1)
g/g(x, 1/y).

where y = x/ξ = 1− 2z. In Eqs. (2.76) and (2.78) we have given the expressions for F̂q/q and F̂q/g
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in terms of the Z-factors. The complete results read

F̂q/q′(x, ξ) =
∫

∆2

d(α, β)
[
δqq′Zns(α, β) + 1

nf
Zps(α, β)

]
δ
(
x− h(α, β, ξ)

)
,

F̂q/g(x, ξ) = − (1− ξ2)
2nf

∫
∆2

d(α, β) Zsg(α, β)
[
δ′
(
x− h(α, β, ξ)

)
+ δ′

(
x+ h(α, β, ξ)

)]
,

F̂g/q(x, ξ) =
∫

∆2

d(α, β)
∫ 1

−1
dλ Zgs(α, β)h(α, β, ξ)δ

(
x− λh(α, β, ξ)

)
, (B.3)

F̂g/g(x, ξ) = (1− ξ2)
∫

∆2

d(α, β) Zgg(α, β)
[
δ
(
x− h(α, β, ξ)

)
+ δ
(
x+ h(α, β, ξ)

)]
,

where

h(α, β, ξ) = (1/2− α)(1 + ξ) + (1/2− β)(1− ξ). (B.4)

All divergences on the right-hand-side of Eq. (B.2) must cancel, which is a great check of the
calculation. To verify the cancellation of the simple 1

ε poles, using the methods explained above,
one must know the two-loop kernels Z(2)

χχ′ in light-ray position space. These are trivially related
to the two-loop evolution kernel in light-ray position space, see Eq. (2.88), which was calculated
in Ref. [82]. Alternatively one can use the momentum fraction space representation for which the
two-loop kernel was calculated in Ref. [81]. However, as mentioned before, this is more difficult,
because momentum fraction space kernels are more complicated.

From Eq. (B.2) we can observe the occurence of finite subtractions. We present the results for
the vector case. Denote y = x/ξ = 1− 2z and Hi,j,... = Hi,j,...(z) are the HPLs introduced in Sec.
3.4.
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The quark-in-quark finite IR subtraction

− 4z(1− z)/e2
q

∫
dx C(1,1)

q F̂
(1,−1)
q/q (x, 1/y)

= L2β0CF

[
H1z + H0(1− z)− 3z + 3

2

]
L2C2

F

[
4zH1,1 + 4(z − 1)H0,0 + 2(z − 1)H1,0 + 2H2z + H0(4z − 6) + H1(−4z − 2)

− 2ζ2z + 9z − 9
2

]
+ Lβ0CF

[
2zH1,1 + 2(z − 1)H0,0 + 3H0z + H1(3− 3z)− 18z + 9

]
+ LC2

F

[
4zH1,2 + 4zH2,1 + 12zH1,1,1 + (6− 8z)H0,0 + (2− 8z)H1,1 + (4− 4z)H2,0

− 12(z − 1)H0,0,0 + (4− 4z)H1,0,0 + H1(−4ζ2z − 11z − 7) + H0(11z − 18)

+ ζ3(8− 12z) + 54z − 27
]

+ β0CF

[
− 3zH0,0 + (3− 3z)H1,1 + (2− 2z)H0,0,0 + 2zH1,1,1 + H0(ζ2(z − 1) + 5z − 1)

+ H1(−ζ2z − 5z + 4) + 3
2(ζ2 − 12)(2z − 1)

]
+ C2

F

[
H0,0(−4ζ2(z − 1)− 5z + 4)− 2(ζ2 + 1)(z − 1)H1,0 + H1,1(−8ζ2z − 5z + 1)

+ (6− 6z)H1,2 + 6zH2,0 + 4(z − 1)H3,0 + (14z − 6)H0,0,0 + (8− 14z)H1,1,1 + 4zH1,1,2

+ 4zH1,2,1 + 4(z − 1)H2,0,0 + 4zH2,1,1 + 16(z − 1)H0,0,0,0 + 4(z − 1)H1,0,0,0

+ 16zH1,1,1,1 − 2(ζ2 + 1)H2z + H1(2ζ2(5z − 2)− (4ζ3 + 33)z)

+ H0(ζ2(6− 4z) + (8ζ3 + 33)(z − 1)) + 2ζ2
2z

5 + ζ2(9
2 − 7z) + 6(2ζ3z + 18z − 9)

]
. (B.5)

The gluon-in-quark finite IR subtraction

− yz(1− z)
4CFTF

∑
q′ e

2
q′

∫
dx C(1,1)

g (xy)F̂ (1,−1)
g/q (x, 1/y)

= L2
[
(z − 1)H1,0 + 1

2H0(3− 4z)z − 1
2H1(z − 1)(4z − 1) + H2z − ζ2z

]
+ L

[
z(4z − 3)H0,0 + 2(z − 1)(2z + 1)H1,0 + ((5− 4z)z − 1)H1,1 + 2zH2,1 + (2− 2z)H1,0,0

+ 2H0(3− 4z)z − 2H1(z − 1)(4z − 1) + 2H2(3− 2z)z + 2z(ζ2(2z − 3)− ζ3)
]

+ (−4z2 + 2z + 2)H1,0,0 + (z − 1)H1,0(−ζ2 + 8z + 6)
+ 2z(4z − 3)H0,0 − 2(z − 1)(4z − 1)H1,1

+ 2(3− 2z)zH2,1 + (3− 4z)zH0,0,0 + ((5− 4z)z − 1)H1,1,1 + 2zH2,1,1 + 2(z − 1)H1,0,0,0

+ 1
2(ζ2 − 10)H0z(4z − 3) + 1

2(ζ2 − 10)H1(z − 1)(4z − 1)−H2z(ζ2 + 8z − 14)

+ 1
5ζ2z(ζ2 + 40z − 70) + 2ζ3z(2z − 3). (B.6)
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The quark-in-gluon finite IR subtraction

yz(1− z)
4CFTF

∑
q′ e

2
q′

∑
q

∫
dx C(1,1)

q (xy)F̂ (1,−1)
q/g (x, 1/y)

= L2
[
z2H0,0 + (z − 1)2H1,1 −

1
2H1(z + 1)(z − 1) + 1

2H0(z − 2)z + z(z − 1)
]

L
[
− 2z2H0,0,0 + 3(z − 1)2H1,0 + 2(z − 1)2H1,1,1 + 2(z − 2)(z − 1)H1,1 + 2z(z + 1)H0,0

+ 3H2z
2 −H1(9z − 4)(z − 1) + H0z(9z − 5)− 3ζ2z2

]
+ 3z2H2,1 + 2z2H0,0,0,0 − (z − 1)H1,1(ζ2(z − 1) + z + 4)
− zH0,0(ζ2z + z − 5) + 4(z − 1)2H1,0

− 3(z − 1)2H1,0,0 + 2(z − 1)2H1,1,1,1 + 2(z − 2)(z − 1)H1,1,1 − 2z(z + 1)H0,0,0

+ 4H2z
2 + 1

2H1(z − 1)(ζ2(z + 1)− 48z + 32)− 1
2H0z(ζ2(z − 2)− 48z + 16)

+ z(−3ζ3z + ζ2(1− 5z)− 6z + 6). (B.7)

The gluon-in-gluon finite IR subtraction

y2z(1− z)
4TFCA

∑
q

∫
dx C(1,1)

g (xy)F̂ (1,−1)
g/g (x, 1/y)

= L2
[
z2H0,0 + 3(z − 1)2H1,0 + (z − 1)2H1,1 + 3H2z

2 + H0z((5− 4z)z − 4)

+ H1(z((7− 4z)z − 6) + 3)− z(3ζ2z + z − 1)
]

+ L
[
2(4z2 + z − 4)(z − 1)H1,0 − 2z2H2,0 + 6z2H2,1 − 4z2H0,0,0 + 2(z − 1)2H1,2

− 6(z − 1)2H1,0,0 + 4(z − 1)2H1,1,1 − 2(4(z − 1)z + 5)(z − 1)H1,1 + 2z(4(z − 1)z + 5)H0,0

−H1(z − 1)(2ζ2(z − 1) + z(16z − 11) + 15) + H0z((21− 16z)z − 20)

− 2H2z(z(4z − 9) + 1) + z(2ζ2(z(4z − 9) + 1)− 5(2ζ3z + z − 1))
]

− 2(4z2 + z − 4)(z − 1)H1,0,0 + 2z2H3,0 + 2z2H2,0,0 + 6z2H2,1,1 + 6z2H0,0,0,0

+ (z − 1)H1,0(−3ζ2(z − 1) + 2z(8z + 5)− 22)− (z − 1)H1,1(3ζ2(z − 1) + z(16z − 17) + 25)
+ zH0,0(−ζ2z + z(16z − 15) + 24) + 2(z − 1)2H1,1,2 + 2(z − 1)2H1,2,1 + 6(z − 1)2H1,0,0,0

+ 6(z − 1)2H1,1,1,1 + 2(z − 2)(z − 1)H1,2 − 2(z(4z − 5) + 7)(z − 1)H1,1,1 − 2z(z + 1)H2,0

− 2z(z(4z − 9) + 1)H2,1 − 2z(z(4z − 3) + 6)H0,0,0 + 1
2H1(z − 1)(−80z2 + 2ζ2(z(4z − 5) + 7)

− 4ζ3(z − 1) + 55z − 79)−H2z(3ζ2z + 2z(8z − 21) + 4) + 1
2H0z(8ζ3z + 2ζ2(z(4z − 5) + 4)

+ 5(21− 16z)z − 104) + 1
5ζ2z(3ζ2z + 5z(16z − 41) + 15)

+ 2ζ3z(z(4z − 11)− 1)− 25
2 z(z − 1). (B.8)
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C Explicit results for the two-loop vector
CF

In this Appendix we collect explicit expressions for the vector CF at NNLO. For completeness, we
repeat the expressions tree-level and one-loop expressions

C(0)
q =

e2
q(1− 2z)
2z(1− z) ,

C(1)
q =

e2
qCF

2z(1− z)

{
L
[
4(z log(1− z)− (1− z) log z)− 3(1− 2z)

]
+ (1− z) log2 z − z log2(1− z)

+ 3
[
(1− z) log(1− z)− z log z

]
− 9(1− 2z)

}
, (C.1)

C(1)
g =

(∑
q e

2
q

)
TF

4z2(1− z)2

{
2L
[
z2 log z + (1− z)2 log(1− z)

]
− z2 log2 z − (1− z)2 log2(1− z)

+ 2
[
z(1 + z) log z + (1− z)(2− z) log(1− z)

]}
.

We organize the two-loop result as follows

C(2)
q = 1

2z(1− z)

[
e2
qCF

(
CFC(F )

ns + CAC(A)
ns + β0C(β0)

ns

)
+
(∑

q′

e2
q′

)
TFCFCps

]
,

C(2)
g =

(∑
q e

2
q

)
4z2(1− z)2TF

(
CFC(F )

g + CAC(A)
g

)
. (C.2)
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In the following Hi,j,... = Hi,j,...(z) are the HPLs introduced in Sec. 3.4. The C2
F contribution to

the quark CF reads

C(F )
ns = L2

[
− 4zH1,1 − 4(z − 1)H0,0 − 2(z − 1)H1,0 − 2H2z

+ H0(6− 4z) + H1(4z + 2) + 2ζ2z − 9z + 9
2

]
+ L

[
− 8zH1,2 − 12zH1,1,1 + (8z − 6)H0,0 − 8(z − 1)H1,0 + (8z − 2)H1,1 + 8(z − 1)H2,0

+ 12(z − 1)H0,0,0 + 4(z + 1)H1,1,0 + H1

(
4ζ2(3z + 1) + 7z + 11

)
− 8H2z + H0(18− 7z)

− 4H3(z − 2) + ζ2(6− 4z) + 28ζ3(z − 1)− 51z + 51
2

]
− 12(z − 1)H0,0,0,0 + (36− 58z)H1,0,0,0 + (40− 70z)H1,1,0,0

− 6(7z − 6)H1,1,1,0 − 12zH1,1,1,1 − 24(z − 1)
(

2z2 − z + 1
)
H1,1,0

− 2zH0,0,0 + 4(3z − 2)H1,0,0 + 2(z − 1)H1,1,1

+ (42− 72z)H1,1,2 + (28− 38z)H1,2,0 + (38− 68z)H1,2,1

+ (46− 68z)H2,0,0 + (44− 70z)H2,1,0

+ (38− 58z)H2,1,1 + H1,0

(
48z2 + ζ2(28− 38z)− 44z + 10

)
+ 6(z − 1)

(
8z2 − 4z + 3

)
H1,2 − 6z

(
8z2 − 12z + 7

)
H2,0

+ H1,1

(
ζ2(26z − 2) + 25z − 7

)
+ H0,0

(
(60z − 38)H1,1 − 4ζ2z + 25z − 18

)
+ (42− 70z)H1,3 + (4− 12z)H2,1 + (26− 38z)H2,2 + (46− 72z)H3,0 + (46− 70z)H3,1

+ H2

(
− 48z2 + ζ2(44− 70z) + 52z − 14

)
+ 24H3z

(
2z2 − 3z + 2

)
+ H4(22− 42z)

+ H0

(
ζ2

(
H1(60z − 38)− 48z3 + 72z2 − 44z + 6

)
+ ζ3(8z + 4) + 1

2(121− 96z)z
)

+ H1

(
ζ2

(
− 48z3 + 72z2 − 46z + 28

)
+ 1

2

(
− 96z2 + ζ3(44z − 8) + 71z + 25

))
+ ζ2

(
48z2 − 76z + 26

)
+ ζ3

(
144z3 − 216z2 + 154z − 69

)
− 1

5ζ
2
2 (31z − 13)− 331

8 (2z − 1). (C.3)
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The CFCA contribution to the quark CF reads

C(A)
ns = L

[
4zH1,2 − 4zH1,1,0 − 4(z − 1)H2,0 −

4
3H0

(
3ζ2(z − 1)− 5z + 2

)
− 4

3H1

(
3ζ2z + 5z − 3

)
+ 4H3(z − 1)− 12ζ3(z − 1) + 2z − 1

]
+ (30z − 19)H1,0,0,0 + (36z − 21)H1,1,0,0 + (20z − 17)H1,1,1,0

+ 2(z − 1)
(

12z2 − 6z + 5
)
H1,1,0 + (36z − 21)H1,1,2 + 5(4z − 3)H1,2,0

+ (36z − 19)H1,2,1 + (36z − 25)H2,0,0 + (36z − 23)H2,1,0 + (30z − 19)H2,1,1

+ H1,0

(
− 24z2 + 5ζ2(4z − 3) + 64z

3 − 4
3

)
− 2(z − 1)

(
12z2 − 6z + 5

)
H1,2

+ 2z
(

12z2 − 18z + 11
)
H2,0 + H1,1

(
ζ2(2− 10z)− 38z

3 + 10
)

+ H0,0

(
(19− 30z)H1,1 + 2

3

(
ζ2(9z − 6)− 19z + 4

))
+ (36z − 21)H1,3

+ (20z − 13)H2,2 + (36z − 23)H3,0 + (36z − 23)H3,1

+ H2

(
24z2 + ζ2(36z − 23)− 80z

3 + 4
)

+ H0

(
2ζ2
(

12z2 − 18z + 11
)
z + 24z2 + ζ3(14− 20z)− 73z

9 − 32
9

)
+ H1

(
− ζ2H0(30z − 19) + 2ζ2

(
12z3 − 18z2 + 11z − 5

)
+ 24z2 + 4ζ3z −

359z
9 + 37

3

)
− 2H3z

(
12z2 − 18z + 11

)
+ H4(20z − 11)− 2

3ζ2
(

36z2 − 50z + 11
)

− 6ζ3
(

12z3 − 18z2 + 19z − 9
)

+ 1
5ζ

2
2 (13z + 1) + 73

12(2z − 1). (C.4)

The β0CF contribution to the quark CF reads

C(β0)
ns = L2

[
−H1z + H0(z − 1) + 3z − 3

2

]
+ L

[
− 2zH1,1 − 2(z − 1)H0,0 + 2(z − 1)H1,0 + 2H2z + 1

3H0(7z − 10)− 1
3H1(7z + 3)

+ 2ζ2(z − 1) + 19z − 19
2

]
+ 2(z − 1)H0,0,0 + (2− 2z)H1,0,0 + (z − 1)H1,1,0

− 2zH1,1,1 + 1
3(10− 7z)H0,0 + 2

3(4z − 7)H1,0

+
(
− 7z

3 − 1
)
H1,1 + 2zH2,1 + H1

(
ζ2(z − 1) + 1

18(31z − 69)
)

+ 1
18H0(−31z − 38)

+ H2

(8z
3 + 2

)
−H3z + 2

3ζ2(4z − 7) + ζ3(z − 1) + 457
24 (2z − 1). (C.5)
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The pure singlet contribution to the quark CF reads

Cps = L2
[
− 8(z − 1)H1,0 + 4H1

(
4z2 − 5z + 1

)
+ 4H0z(4z − 3)− 8H2z + 8ζ2z

]
+ 8L

[
− z(4z − 3)H0,0 − (z − 1)(4z − 1)H1,0 + (z − 1)(4z − 1)H1,1

− 2zH2,1 + 2(z − 1)H1,0,0 − 2(z − 1)H1,1,0 −
(

2ζ2 − 3
)
H1(z − 1)

− 3H0z + H2z(4z − 3) + 2H3z − ζ2z(4z − 3)
]

− 16(z − 1)H1,0,0,0 + 16(z − 1)H1,1,0,0 + (8− 8z)H1,1,1,0 + 8z(4z − 3)H0,0,0

+ 8(z − 1)(4z − 1)H1,0,0 − 4(z − 1)(4z + 5)H1,1,0 + 8(z − 1)(4z − 1)H1,1,1 − 16zH2,1,1

− 16z2H2,0 − 8
(
ζ2 − 3

)
(z − 1)H1,1 − 16(z − 1)2H1,2 + 24zH0,0 + (4− 4z)H1,0

+ 8z(4z − 3)H2,1 + 16zH3,1 − 8H0z
(

2ζ2z + 5
)
− 4H1(z − 1)

(
2
(
ζ3 − 5

)
+ ζ2(4z + 5)

)
− 4H2z − 4H3z(4z − 9)− 8H4z + 4z

(
2ζ2

2 + ζ2 − 3ζ3(4z + 1)
)
. (C.6)
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The CFTF contribution to the gluon CF reads

C(F )
g = L2

[
− 2
(
z2H0,0 + (z − 1)

(
(z − 1)H1,1 + z

))
+ H1

(
z2 − 1

)
+ H0(−(z − 2))z

]
+ L

[
8z2H0,0,0 − 4(z − 1)2H1,0 − 8(z − 1)2H1,1,1 − 4(z − 3)(z − 1)H1,1 − 4z(z + 2)H0,0

− 4H2z
2 + 4H1(z − 1)

(
ζ2(z − 1)− 2z + 5

)
− 4H0z

(
ζ2z − 2z − 3

)
+ 4z

(
ζ2z − 4z + 4

)]
− 10z2H0,0,0,0 − 36z2H1,0,0,0 − 36z2H1,1,0,0

− 4
(

7z2 + 4z − 2
)
H1,1,1,0 − 10(z − 1)2H1,1,1,1

+
(
− 8z4 + 16z3 − 5z2 + 2z − 5

)
H1,1,0

− 2
(

23z2 − 10z + 5
)
H1,1,2 − 4

(
7z2 + 4z − 2

)
H1,2,0

+
(
− 34z2 − 4z + 2

)
H1,2,1 − 34z2H2,0,0 − 44z2H2,1,0 − 36z2H2,1,1 + 4(z − 1)2H1,0,0

− 10(z − 2)(z − 1)H1,1,1 + 10z(z + 1)H0,0,0

+ H1,0

(
− 4ζ2

(
7z2 + 4z − 2

)
+ 8z3 − 11z2 + 6z − 3

)
− 4z2H2,1 − 28z2H2,2 − 46z2H3,0

− 36z2H3,1 + 8
(
z4 − 2z3 + z

)
H1,2 − 4

(
11z2 − 4z + 2

)
H1,3 − 8

(
z4 − 2z3 + z

)
H2,0

− 2zH0,0

(
− 18zH1,1 + 3ζ2z + 3z + 10

)
+ 2(z − 1)H1,1

(
6ζ2(z − 1)− 3z + 13

)
−H2z

(
8z2 + 44ζ2z − 13z + 8

)
+ 2H0z

(
ζ2

(
18H1z − 4z3 + 8z2 − 3z − 5

)
− 4z2 − 4ζ3z + 23z + 9

)
−H1(z − 1)

(
ζ2

(
8z3 − 8z2 − 9z + 3

)
+ 8z2 − 2ζ3(z − 1) + 30z − 56

)
− 28H4z

2

+ H3

(
8z3 − 16z2 + 5z + 8

)
z + z

(
ζ2

(
8z2 − 13z + 8

)
+ ζ3

(
24z3 − 48z2 − z + 24

)
− 16ζ2

2z − 36(z − 1)
)
. (C.7)
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The CATF contribution to the gluon CF reads

C(A)
g = 2L2

[
− z2H0,0 − 3(z − 1)2H1,0 − (z − 1)2H1,1

+ H0z
(

4z2 − 5z + 4
)

+ H1

(
4z3 − 7z2 + 6z − 3

)
− 3H2z

2 + z
(

3ζ2z + z − 1
)]

+ L
[
16
(
z2 − z + 1

)
(z − 1)H1,1 − 16z

(
z2 − z + 1

)
H0,0

+ 4z2H2,0 +
(
− 8z2 − 8z + 4

)
H2,1 + 4z2H0,0,0 + 4

(
2z2 − 6z + 3

)
H1,0,0

− 8(2z + 1)(z − 1)2H1,0 − 4(z − 1)2H1,2 − 8(z − 1)2H1,1,0

− 4(z − 1)2H1,1,1 + 8H2z
2(2z − 3) + 8H3z

2 − 2H1(z − 1)
(

2ζ2(z − 1)− 7(z + 1)
)

− 14H0(z − 2)z − 2z
(

4ζ2(2z − 3)z − 8ζ3z − 9z + 9
)]

− 2z2H0,0,0,0 + 2
(

5z2 − 6z + 3
)
H1,1,0,0 + 2

(
z2 + 6z − 3

)
H1,1,1,0 − 2(z − 1)2H1,1,1,1

+ 14(2z − 1)H1,0,0,0 + 2z
(

8z2 − 8z + 7
)
H0,0,0 + 2

(
8z3 − 14z2 − z + 4

)
H1,0,0

− 2(z − 1)
(

4z2 + 5z − 7
)
H1,1,0 + 2(z − 1)

(
8z2 − 8z + 7

)
H1,1,1

+ 2
(

5z2 − 2z + 1
)
H1,1,2 + 2

(
5z2 + 2z − 1

)
H1,2,0

+ 2
(
z2 + 6z − 3

)
H1,2,1 + 2

(
z2 + 2z − 1

)
H2,0,0 + 2

(
5z2 + 2z − 1

)
H2,1,0

+ (4− 8z)H2,1,1 + H1,0

(
2ζ2
(

5z2 + 2z − 1
)
− 5
(

2z2 − 5z + 3
))

+ H0,0

((
− 6z2 − 4z + 2

)
H1,1 + 2z

(
4ζ2z + 3z − 13

))
+ 2
(

5z2 − 2z + 1
)
H1,3

− 4z2(2z − 1)H2,0 + 2
(

8z3 − 10z2 − 5z + 3
)
H2,1 + 2

(
5z2 − 2z + 1

)
H2,2

+ 2
(

5z2 + 2z − 1
)
H3,0 + 2

(
5z2 + 6z − 3

)
H3,1 − 4(2z − 1)(z − 1)2H1,2

+ 2(3z + 10)(z − 1)H1,1 + H2

(
2ζ2
(

5z2 + 2z − 1
)
− 5z(2z + 1)

)
+ H1

(
− 2ζ2

(
4z3 − z2 − 8z + 5

)
+ 4ζ3

(
5z2 − 4z + 2

)
+ 29z2 − 8z − 21

)
+ H0

(
− 2ζ2H1

(
3z2 + 2z − 1

)
− z
(

8ζ2z2 + 4ζ3z + 29z − 50
))

− 2H3z
(

4z2 − 13z + 2
)

+ 2H4

(
z2 + 2z − 1

)
+ 82

5 ζ
2
2z

2 − 2ζ3z
(

12z2 − 17z + 9
)

+ 5ζ2z(2z + 1) + 37(z − 1)z. (C.8)
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D Expressions for f and h functions

We collect the results for the functions f and h, defined in their bare form in Eqs. (5.14) and (5.15).
The one- and two-loop expressions are

f (1)(−ŝ, µ2) = CF log2 −ŝ
µ2 + f̄ (1),

f (2)(−ŝ, µ2) = 1
2C

2
F log4 −ŝ

µ2 −
1
3β0CF log3 −ŝ

µ2

+
[
−
(

1 + π2

6

)
C2
F +

(4
3 −

π2

3

)
CFCA + 5

3β0CF

]
log2 −ŝ

µ2

+
[
C2
F (π2 + 4ζ3)− CFCA

(32
9 − 14ζ3

)
− 19

9 β0CF

]
log −ŝ

µ2 + f̄ (2),

h(1)(Q2, µ2) = −CF log2 Q
2

µ2 + 3CF log Q
2

µ2 + h̄(1), (D.1)

h(2)(Q2, µ2) = 1
2C

2
F log4 Q

2

µ2 +
(
− 3C2

F + 1
3β0CF

)
log3 Q

2

µ2

+
[(25

2 −
π2

6

)
C2
F −

(4
3 −

π2

6

)
CFCA −

19
6 β0CF

]
log2 Q

2

µ2

+
[
−
(45

2 + 3π2

2 − 24ζ3
)
C2
F +

(41
9 − 26ζ3

)
CFCA

+
(209

18 + π2

3

)
β0CF

]
log Q

2

µ2 + h̄(2),

where f̄ (1) = −CF (1 + π2/6) and h̄(1) = −CF (8− π2/6). The on-shell massless Sudakov form factor
h is known, see e.g. eq. (50) and (51) in Ref. [129], and I checked that the coefficients of the
logarithms in h(2) obtained indirectly from C

(2)
q agrees with those expressions. This is an important

check of the formalism developed in Sec. 5.2.
Although h̄(2) and f̄ (2) do not contribute at NNLL, we give the results for completeness. Note

that they can not be determined by the methods in Sec. 5.4. However, f̄ (2) can be obtained from the
result for h̄(2), given in Ref. [129], and the constant term of Ĉ(2)

q , i.e. ¯̂
C

(2)
q = h̄(2) + f̄ (2) + h̄(1)f̄ (1),

which can be obtained from the result in Ref. [103] or App. C. I find that

f̄ (2) = C2
F

(3
2 −

π2

3 + 119π4

360 − 39ζ3
)

+ CFCA

(95
27 −

4π2

9 − 43π4

180 + 18ζ3
)

+ β0CF

(
− 7

54 −
5π2

36 −
2
3ζ3
)
, (D.2)

h̄(2) = C2
F

(255
8 + 7π2

2 − 83π4

360 − 30ζ3
)

+ CFCA

(
− 1037

108 −
7π2

9 + 11π4

45 + 36ζ3
)

+ β0CF

(
− 4085

216 −
23π2

36 − 1
3ζ3
)
. (D.3)
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We present the expressions for the anomalous dimensions defined in Eq. (5.28). As explained in Sec.
5.4 we have

γ
(j)
f = −Γ(j)

cusp log −ŝ
µ2 + γ̄

(j)
f , γ

(j)
h = Γ(j)

cusp log Q
2

µ2 + γ̄
(j)
h . (D.4)

The expressions for the constant terms are γ̄(1)
f = 0, γ̄(1)

h = −6CF and

γ̄
(2)
f = −2(π2 + 4ζ3)C2

F +
(64

9 − 28ζ3
)
CFCA +

(56
9 + 1

3π
2
)
β0CF ,

γ̄
(2)
h = −

(
3− 4π2 + 48ζ3

)
C2
F −

(82
9 − 52ζ3

)
CFCA −

(65
9 + π2

)
β0CF . (D.5)
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