
Measuring the Latency of Graphics Frameworks on X11-Based
Systems

Andreas Schmid
University of Regensburg
Regensburg, Germany
andreas.schmid@ur.de

Raphael Wimmer
University of Regensburg
Regensburg, Germany
raphael.wimmer@ur.de

ABSTRACT
Latency is an intrinsic property of all human-computer systems. As
it can affect user experience and performance, it should be kept as
low as possible for real-time applications. To identify the source of
latency, measuring partial latencies is necessary. We present a new
method for measuring the latency of graphics frameworks on X11-
based systems. Our tool measures the time between an input event
arriving at the kernel until a pixel is updated in graphics memory.
In a systematic evaluation with 36 test applications, we found that
our method delivers consistent results for most tested frameworks,
and does not add a significant amount of additional end-to-end
latency. Even though further investigation is required to explain
inconsistencies with Qt-based frameworks, our method measures
the latency of graphics frameworks reliably and accurately in all
other cases.

CCS CONCEPTS
• Computing methodologies→ Graphics systems and inter-
faces; • Human-centered computing → User interface toolk-
its; • Software and its engineering → Empirical software valida-
tion.
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1 INTRODUCTION
Latency, the delay between a user’s action and the system’s re-
sponse, is an intrinsic property of all interactions between human
and computer. As it affects task difficulty and overall user expe-
rience, it is important to minimize it as much as possible, partic-
ularly in real-time applications, such as video games [5, 12, 18].
Furthermore, latency can confound the outcome of psychological
experiments, as well as replication studies [13, 16].
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All software and hardware components contribute to a system’s
end-to-end latency, including input devices, operating system, ap-
plications, network connection, and output devices. There are many
different ways to measure end-to-end latency, such as using high-
speed cameras. However, to identify bottlenecks and reduce latency,
it is necessary to measure the partial latencies of individual compo-
nents.

Measuring the latency of software components, such as graphics
frameworks, may seem straightforward at first glance – one could
just log timestamps before and after an operation. However, access
to an application’s source code is required for this approach. Addi-
tionally, this method does not work if the used graphics framework
handles rendering asynchronously.

In this paper, we present a method for measuring the latency of
graphics frameworks on X11-based Linux distributions. Latency
is determined by measuring the time between an input event ar-
riving at the operating system’s kernel and a pixel being updated
in graphics memory. We use XShm to retrieve the pixel’s color
because of its direct access to graphics memory. This approach is
independent of the application under test, as long as it reacts to an
input event by updating the displayed content. As no modifications
of the application’s source code are required, our method can also
be used with proprietary software, such as video games. We mea-
sured the latency of 18 graphics and UI frameworks and validated
our measurements by comparing measured framework latencies to
simultaneously measured end-to-end latency.

Our measuring method can help select an appropriate graphics
framework for the development of real-time applications, as well
as measure and validate the latency of finished applications before
deployment. Furthermore, even though the measured absolute la-
tencies we report in this paper are only valid for our test computer,
relative differences can be generalized to other systems.

2 RELATEDWORK
The most common approach to measuring latency is to use a high
speed camera [9, 10, 14, 15, 20–22]. Most current mobile phones
can record slow-motion video with up to 240 frames per second.
However, this method has several disadvantages. First of all, this
method’s accuracy is limited by the camera’s frame rate. Accuracy
is further reduced as it is oftentimes hard to determine at which
exact video frame a button press or a change in display color hap-
pens. Additionally, for camera-based latency measurement, manual
annotation of video material is necessary [8]. However, as latency
is rarely constant, measurement series are necessary to determine
its distribution [2], which makes this method very time consuming.

When sub-millisecond accuracy and longmeasurement series are
required, microcontrollers or SoC computers can be used to trigger
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or sense input events at a system and capture its output, for example
using photo sensors attached to a display. This method can for
example be used tomeasure the end-to-end latency of devices with a
capacitive touch screen. Deber et al. [6] use a brass contact placed on
the touch screen and connect it to electrical ground with a relay to
trigger a touch event. An application on the device under test reacts
to this event by changing the color of an area on the screen from
black to white. This change in brightness is detected with a photo
diode. Time between triggering the touch event and the screen
changing its color is measured with a microcontroller. Kämäräinen
et al. [11] use a similar approach to measure the latency of mobile
devices. They added several functions, such as simulating external
input devices, and measuring network latency. Casiez et al. [4] use a
vibration sensor attached to a user’s finger to sense touch or button
press events. Similar to Deber et al. and Kämäräinen et al., they
use an application changing the screen’s color, and a photo diode
to determine the end of the latency measurement. In addition to
end-to-end latency, they also measured partial latencies by logging
timestamps at several points in the tested device’s software, such
as when the input event is first detected by the operating system,
or when the test application finishes rendering.

Measuring such partial latencies is crucial to finding and im-
proving performance bottlenecks of a system. Wimmer et al. [23]
use a model of input device latency to show how slight differences
in polling rates can lead to vastly different distributions of overall
latency. With their LagBox, Wimmer et al. [1, 23] measured the
latency of different mice, keyboards, and gamepads. They used a
Raspberry Pi to electrically trigger the button of an input device
with an optocoupler, and then measured the time it takes for an
input event to arrive at the operating system. However, as this
method requires electric contacts attached to a button, the device
under test has to be disassembled before measurement.

Casiez et al. [3] propose a non-invasive approach for measur-
ing the end-to-end latency in graphical user interfaces. An optical
mouse is placed on the computer’s screen, which displays a special
texture. When the texture is moved, a movement event is trig-
gered by the mouse. The time between moving the image on the
screen and the mouse’s movement event arriving at the application
is considered as the computer’s end-to-end latency. Additionally,
partial latencies can be measured by logging timestamps on the
system under test. This way, Casiez et al. could find differences in
latency caused by factors such as operating system, system load,
and different graphics frameworks.

In an extensive blog article, Pavel Fatin [7] illustrates which
factors contribute to latency when typing text. They also measured
and systematically compared the latency of different text editors on
different operating systems. For their latency measurements, Fatin
implemented a Java application that simulates a virtual keyboard,
triggers a key event, and measures the time until a pixel at a pre-
defined position changes color due to a character appearing in the
text editor. They found that several factors, including the choice
of editor, operating system, and window manager, influence text
input latency.

The latency of computer displays, also known as display response
time, is standardized by the International Display Measurement

Standard1. Response time is defined as the time it takes from im-
age data being sent to the monitor until the display’s center point
reaches 50% brightness. A low-cost implementation of this mea-
suring method was published by Stadler et al. [19]. Additionally,
Leo Bodnar Electronics2 distributes dedicated devices for measuring
display response time.

As latency is an important aspect throughout the field of Human-
Computer Interaction, numerous methods for measuring and reduc-
ing latency have emerged. There are several accurate methods for
measuring a system’s end-to-end latency, as well as partial latencies
contributed by input devices and displays. However, to the best
of our knowledge, there are no scientific publications proposing a
precise method for measuring the latency of graphics frameworks.
Such a method could be an important step towards gaining a thor-
ough understanding of end-to-end latency and its building blocks.

3 IMPLEMENTATION AND VALIDATION
In this section, we describe the implementation and validation of a
method to measure the latency of graphics frameworks and other
applications that react to an input event by updating screen content.
We validated our method by simultaneously measuring framework
latency and end-to-end latency of different test applications on
a powerful computer with low latency input and output devices.
By subtracting the resulting framework latency from the corre-
sponding end-to-end latency, the remaining system latency should
be consistent as nothing except the test application was changed
between measurements (Eq. 1).

𝐿𝐸𝑡𝐸 = 𝐿𝑖𝑛𝑝𝑢𝑡 + 𝐿𝑓 𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘 + 𝐿𝑑𝑖𝑠𝑝𝑙𝑎𝑦 + 𝐿𝑢𝑛𝑘𝑛𝑜𝑤𝑛

⇒ 𝐿𝐸𝑡𝐸 − 𝐿𝑓 𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘 = 𝐿𝑖𝑛𝑝𝑢𝑡 + 𝐿𝑑𝑖𝑠𝑝𝑙𝑎𝑦 + 𝐿𝑢𝑛𝑘𝑛𝑜𝑤𝑛
(1)

Additionally, we measured our measuring program’s influence
on the system’s end-to-end latency by running each measurement
series twice, once with and once without the measuring program
running.

3.1 Latency Measuring Program
Our tool for measuring the latency of graphics frameworks is writ-
ten in C++ and uses the evdev3 library to capture input events,
and the XShm extension4 to access graphics memory. The evdev
library provides an interface for accessing input devices such as
keyboard, mouse, touch pad, and joystick. The library interfaces
directly with the device driver, bypassing the input subsystem of
the Linux kernel, and is therefore one of the fastest ways to capture
input events on Linux. The XShm extension provides shared mem-
ory transport between an X client and the X server and allows for
fast data transfer by eliminating the need for data to be serialized
and sent over a socket. Because of those requirements, our tool
only works on X11-based systems.

Our latencymeasuring tool is initialized with the path to an input
device in /dev/input/ which is then monitored for input events
using evdev. Once an input event occurs, the latency measurement
is started by recording a timestamp in microseconds from chrono’s
1https://www.sid.org/Standards/ICDM
2http://www.leobodnar.com/shop/index.php?products_id=212
3https://linux.die.net/man/4/evdev
4https://linux.die.net/man/3/xshm
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steady_clock. The program then enters a loop continuously query-
ing a specified pixel from graphics memory using XShmGetImage.
Once the pixel’s color changes, a second timestamp is recorded and
the measurement is stopped. The resulting difference between both
timestamps is sent to standard out so the measuring program can
be easily included into application pipelines.

3.2 Test Applications
Even though our tool can be used to measure the latency of any
application that reacts to an input event and then updates the dis-
played content, we implemented standardized test applications with
18 different graphics and UI frameworks in different programming
languages. To compare the lowest achievable latencies for each
framework, we implemented simple test applications. With each
framework, we wrote a program that displays a 1920 × 1080 pixel
full screen window with a black background. Once a mouse but-
ton is clicked, the entire window’s color is changed to white until
the button is released. Those clicks are handled by the individual
frameworks’ input libraries as the time it takes to capture input
events is part of a framework’s latency.

Additionally, we implemented similar applications that display a
more complex scene. For those applications, instead of changing the
entire window’s color to white, 1000 randomly sized rectangles with
random color are rendered. A white rectangle is rendered at the
top left corner as the additional end-to-end latency measurement
described in the next section needs maximum contrast to function
properly.

We implemented test applications for the following graphics and
UI frameworks: FLTK (C++), GTK3 (C, with Cairo backend), Java
2D, Java Swing, GLEW (C++, using SDL2 for input handling), GLUT
(C++), pygame, pyglet (Python), PyQt5, PyQt6, Qt5 (C++), SDL2
(C++, with software, OpenGL, and OpenGLES2 backend), tkinter
(Python), wxPython, Xlib (C), and XCB (C).

3.3 End-to-End Latency Measurement
As described earlier in Eq. 1, the accuracy of framework latencymea-
surements can be evaluated by comparing them with simultaneous
end-to-end latency measurements, given all system components
except the measured framework remain constant. For our end-to-
end latency measurements, we used a modified version of Schmid
andWimmer’s Yet Another Latency Measuring Device (YALMD) [17].
The measuring process works as follows: First, an Arduino Micro
microcontroller starts a timer and closes an optocoupler connected
to the button of a computer mouse. Then, a test application on the
PC under test reacts to this induced mouse click by changing its
background color from black to white. The microcontroller senses
this change in brightness with a photo sensor attached to the sys-
tem’s display. Once a brightness threshold is reached, the timer is
stopped and the difference between timestamps – the measured
end-to-end latency – is sent to the PC via USB. Before each mea-
surement, the microcontroller waits for a randomized time span
between 500 and 1500 milliseconds to prevent synchronization with
USB polling or display refresh rate.

Our modified version of YALMD is controlled with serial signals
sent via USB. A calibration process to determine the brightness
threshold for stopping the measurement can be started by sending

Figure 1: Measurement apparatus and procedure. The mea-
surement controller starts the test application, the frame-
work latency tester, and the measurement process. YALMD
triggers the mouse button by closing an optocoupler and
starts the end-to-end latency measurement timer. The frame-
work latency tester receives the click event an starts the
framework latency timer. The test application reacts to the
click event by changing the screen’s color. Once pixels have
changed in GPUmemory, the framework latency tester stops
itsmeasurement. Once YALMDdetects a change in brightness
on the display, it stops the end-to-end latency measurement.

the character 'c' and a single measurement can be conducted
by sending 'm'. By triggering individual measurements from the
system under test, we can assign each measured framework latency
to its corresponding end-to-end latency.

3.4 Procedure
We conducted all measurements on a desktop computer5 running
Debian Buster 5.10. An Asus XG248Q monitor was used at a resolu-
tion of 1920 × 1080 pixels and a refresh rate of 240Hz. YALMD was
connected to a Logitech G15 gaming mouse with an input device
latency of 2.17ms (SD: 0.3ms) [23] to trigger mouse clicks. Its photo
sensor was attached to the monitor’s top left corner to minimize
delay added by display refresh.

A bash script starts the test application, triggers YALMD’s cali-
bration process, and starts the measurement controller – a Python
program – to start a measurement series with 500 individual mea-
surements. This Python program communicates with YALMD and
starts the framework latency test program as a subprocess. Fur-
thermore, it reads framework latency from the test program and
end-to-end latency from YALMD for each measurement and stores
them in a pandas data frame which is saved in CSV format after a
measurement series is completed. For each test application, we con-
ducted one measurement series with and without the framework
latency measurement program running. This way, we measured
whether the framework latency measurement program influences
the system’s end-to-end latency. The whole measuring process is
schematically depicted in Fig. 1.

We repeated the whole measuring process for all test applications
on different desktop environments: pure Xorg without a window
manager, KDE Plasma with enabled or disabled KWin compositor,
and on Xfce4 with and without compositing. Vertical synchroniza-
tion was turned on only in conditions with an active compositor.

5Intel i7-8700 @ 3.2 GHz, Nvidia GTX 1080 (Driver: Nvidia 470.103.01), 16 GB DDR4
RAM
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Table 1: Difference between median of measured end-to-end
latency for when the framework tester was running and
when it was not. Negative values mean a lower end-to-end
latency with an active framework latency tester. All values
are in milliseconds. For all frameworks excluded from this
table, the absolute error was below 1.5 milliseconds in all
conditions.

Desktop Xfce4 Plasma Xorg
Compositor on off on off off
GLUT -3.57 -0.79 -0.89 -0.89 -5.05
PyQt5 -3.01 -2.02 -2.02 -1.85 -2.24
PyQt6 -3.07 -2.62 -1.8 -1.91 -2.02
Qt5 -3.14 -1.79 -2.02 -1.84 -2.13
tkinter -1.69 -1.11 -1.12 -1.01 0.23
pyglet -2.24 -1.9 -0.67 -1.17 -0.73

4 VALIDATION AND MEASUREMENTS
In the following, we present the results of our framework latency
measurements and our validation by comparing those measure-
ments with the system’s end-to-end latency.

4.1 Influence on End-to-End Latency
First, we report the measuring program’s influence on the sys-
tem’s end-to-end latency. For accurate measurements of framework
latency, it is critical that the measuring program does not intro-
duce additional latency. By conducting each measurement series
twice, once with the latency measuring program running and once
without, we can find the measuring program’s influence on the
system’s end-to-end latency by calculating the difference between
both measurement series.

Results show that the absolute difference is below 1.5ms in most
cases. However, for some frameworks the difference is significantly
higher with up to five milliseconds in one case (Table 1). Surpris-
ingly, in many cases, measured end-to-end latency was lower when
the framework latency tester was running. One possible explana-
tion for this behavior could be that XShm forces rendering of the
content when reading the graphics memory.

4.2 Measurement Validation
To validate our method for measuring the latency of graphics frame-
works, we compare framework latency measurements to corre-
sponding end-to-end latency measurements. If our method mea-
sures framework latency accurately, the difference between mea-
sured end-to-end latency and measured framework latency should
be the same regardless of the test application. We calculated the
latency difference for each individual measurement. An example
can be seen in Fig. 2. Latency difference distributions for all per-
mutations of desktop environment, compositor, and type of test
application can be seen in Fig. 3.

In some conditions with Qt and Java-based frameworks, our
validation revealed unexpected behavior. For Qt-based frameworks,
the measured framework latency was oftentimes higher than the
system’s end-to-end latency. To this point, we have no reliable

Figure 2: Example of our validation process for the GLUT
framework onKDEPlasmawith compositing turned off. Blue
dots represent measurements in the simple condition with
the screen only changing color from black to white. Red dots
represent measurement in the complex condition displaying
1000 rectangles on click. The latency difference is calculated
by subtracting framework latency from end-to-end latency
for each individual measurement. In this case, the latency
difference is almost equal for both conditions.

explanation for this behavior. One possible reason would be that
Qt blocks the graphics memory longer than necessary, so XShm
can not access it to read pixels. However, this issue needs further
investigation in future work.

Of the 180 permutations of framework, desktop environment,
compositor, and type of test application, in 26 cases, at least one
negative latency difference could be found among the 500 measure-
ments (see Fig. 3). This was exclusively the case for measurements
of Java (5) and Qt-based (21) frameworks. Therefore, we exclude
those permutations for following observations regarding our en-
tire data set and assume our framework latency measurements are
incorrect in those cases. The aggregated mean latency difference
over all remaining permutations is 7.9ms with a standard deviation
of 3.7ms and a 95% confidence interval of 7.3ms – 8.5ms.

4.3 Framework Latency Measurements
Fig. 4 depicts measured framework latencies for the 15 remain-
ing graphics frameworks. Detailed measurement results for each
framework with each desktop environment can be found in the
paper’s appendix (Table 2 and 3). For some frameworks, an active
compositor adds a small amount of latency. This is probably due
to double buffering which delays rendering by one frame (≈ 4ms
with a 240Hz display). While active compositors can affect latency,
their influence does not increase at higher overall latency. Also, the
influence of the used desktop environment on framework latency
is low.

Many frameworks were very performant in the simple condi-
tion, contributing only around one millisecond to the system’s
end-to-end latency – especially with a disabled compositor. How-
ever, most Python-based frameworks performed clearly worse in
this condition.

Unsurprisingly, the more complex condition rendering 1000 rect-
angles leads to higher latency with all measured frameworks. Fur-
thermore, system-near and OpenGL-based frameworks – while
not always the fastest with the simple test application – handle
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Figure 3: Latency difference for all frameworks. The black horizontal line shows the aggregated mean of 7.9 milliseconds.
Ideally, all measurements would align. Even though the error is in an acceptable range inmost cases, there are still some outliers,
especially for both Java frameworks. The negative values for Qt-based frameworks are caused by the measured framework
latency being higher than the end-to-end latency.

Figure 4: All measured framework latencies at a glance. Note that extreme outliers for both Java frameworks are cut off by the
limited Y axis and Qt-based frameworks were excluded due to the measurement’s unrealistic results compared to end-to-end
measurements.

the complex condition better than other frameworks. For example,
Xlib, XCB, and GLUT, as well as SDL2 with an OpenGL backend,
could achieve latencies as low as five milliseconds with a disabled
compositor. This is an order of magnitude lower than the latencies
of the worst performing frameworks, such as FLTK or wxPython.

Those findings imply that when choosing a graphics framework
for a real-time application, it is important to consider the complexity
of the rendered scene.

5 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

In this paper, we presented a newmethod for measuring the latency
of graphics frameworks, including a thorough validation process.
Even though our method for measuring the latency of graphics

frameworks did not work with the rather popular Qt-framework,
it delivered consistent results in all remaining cases. The absolute
effect of our measuring program on the system’s end-to-end la-
tency was below 1.5 milliseconds with most tested frameworks.
We therefore regard the current state of our method as usable and
accurate in most cases, but recommend an additional end-to-end
latency measurement as a sanity check.

For a fully reliable and accurate measuring process, further re-
search, development, and validation is required. Even though the
XShm library we used is designed for quick and direct access to
graphics memory, it is not available on all systems and, as our vali-
dation has shown, it seems to be incompatible with some graphics
frameworks. Therefore, future research should compare different
methods for accessing graphics memory in terms of speed and
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compatibility to find the best candidate for framework latency mea-
surements.

Despite the numerous permutations of test applications and desk-
top environments taken into consideration, our implementation
and validation of a framework latency measuring tool is still very
limited. All of our measurements were run on the same computer.
However, choice of graphics card, driver, and operating system
could influence results significantly.

Despite those limitations, our work is an important step towards
measuring – and therefore understanding – the different partial
latencies that make up a system’s end-to-end latency. Once we
can accurately measure all major factors contributing to end-to-
end latency, it becomes possible to create theoretical models and
simulate the latency of different systems.

Furthermore, even at the current state, our method can be used
to validate experimental setups for user studies without needing
to build or purchase additional hardware. The source code of our
measuring program, as well as data of our measurements, can be
found on GitHub6. Additional information can be found on our
project website https://hci.ur.de/projects/framework-latency.
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A MEASURED FRAMEWORK LATENCIES IN
TABULAR FORM

Table 2: Results of framework latency measurements for the
simple condition in tabular form. In the simple condition,
upon a mouse click, a white rectangle was drawn on top of a
black full screen window. Depicted results are medians of a
measurement series with 500 individual measurements. All
values are in milliseconds.

Desktop Xfce4 Plasma Xorg
Compositor on off on off off
GTK3 5.68 3.39 3.47 3.45 3.39
Java2D 4.01 1.32 1.48 1.43 1.18
Java Swing 3.97 1.35 1.38 1.43 1.14
GLEW 12.21 6.44 6.34 6.42 6.42
GLUT 8.12 1.12 1.19 1.15 3.11
pygame 12.63 10.43 6.89 6.79 6.49
SDL2 (OpenGL) 5.28 0.56 0.85 0.82 0.51
SDL2 (OpenGLES2) 5.32 0.54 0.89 0.84 0.51
SDL2 (Software) 12.2 6.58 6.8 6.79 6.42
tkinter 3.99 1.43 1.45 1.42 3.07
wxPython 13.51 10.66 10.75 10.74 6.21
FLTK 4.52 2.12 5.77 2.09 2.02
pyglet 15.73 8.38 9.44 9.11 9.21
XCB 1.07 0.94 5.47 1.08 0.89
Xlib 3.71 1.12 4.98 1.12 0.88

Table 3: Results of framework latency measurements for the
complex condition in tabular form. In the complex condition,
upon a mouse click, 1000 randomly colored rectangles were
drawn on top of a black full screen window. Depicted results
are medians of a measurement series with 500 individual
measurements. All values are in milliseconds.

Desktop Xfce4 Plasma Xorg
Compositor on off on off off
GTK3 38.18 35.86 39.33 35.66 35.58
Java2D 36.54 33.2 37.11 33.01 33.07
Java Swing 36.34 33.36 37.07 33.11 33.01
GLEW 30.39 22.87 22.83 22.78 22.93
GLUT 12.43 4.92 12.91 5.0 6.76
pygame 40.96 40.55 36.81 37.03 35.52
SDL2 (OpenGL) 9.73 5.79 4.75 6.31 5.24
SDL2 (OpenGLES2) 32.0 27.99 27.46 28.35 27.8
SDL2 (Software) 47.76 42.43 42.25 42.34 42.09
tkinter 34.36 31.8 36.0 31.95 31.66
wxPython 65.49 64.61 65.56 65.64 64.33
FLTK 52.35 50.04 53.6 49.94 49.76
pyglet 16.21 13.11 13.13 12.41 12.76
XCB 5.86 5.65 10.77 5.89 5.75
Xlib 9.21 6.39 9.74 6.37 6.19
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