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Abstract

Supercooled liquids and the glass transition are not satisfactorily understood to date. The temperature
dependence of dynamical properties eludes theoretical prediction. No model can be successfully
applied to all liquids. One liquid is particularly complex in its supercooled regime – water. This seem-
ingly simple liquid exhibits the most anomalies of any neat liquid, and most of these are thought to be
related to the existence of two distinguishable liquid phases with different density in the supercooled
regime, i.e., water exhibits polyamorphism. However, most of the relevant temperature range lies in
the so-called no-man’s land, a region of the phase diagram in which bulk water rapidly crystallizes
and which is therefore experimentally inaccessible to the bulk liquid. Therefore, experimental studies
often exploit the fact that crystallization of water is suppressed in nanoscopic confinements or water
mixtures. The present work deals with both areas of research, water’s polyamorphism and dynamics
of supercooled liquids, confined and mixed, with the use of molecular dynamics simulations. They
allow for detailed analysis and systematic variation of the liquid and enable easy supercooling.

Partial charges of the TIP4P/2005 and SPC/E water models were scaled which led to strong shifts
of dynamics in temperature. These were reconciled by using the high-temperature activation energy
as the relevant energy scale as long as structural properties were the same. For the TIP4P/2005
model and a set of reduced charges, isochore crossing in the phase diagram confirmed the existence
of a liquid-liquid critical point (LLCP) in the supercooled regime at positive or negative pressures,
depending on the molecular polarity. The two-structure equation of state (TSEOS) formalism was
used to describe the data and determine the location of the LLCP. In addition, reduction of the
partial charges accelerated dynamics at the LLCP and simulations with elongated boxes in the double
metastable regime allowed for the coexistence of high-density (HDL) and low-density (LDL) liquid
phases and the determination of their dynamics as a function of temperature. The results are in
agreement with observations from isochoric and isobaric simulations and translational motion was
observed for all state points. It was found that the temperature dependence of the dynamics at a
constant fraction of the low-density state (LDS) is Arrhenius-like. Thus, the presumed fragile-to-
strong transition (FST) of water is not caused by a transition from fragile HDL to strong LDL but by
the fast transition between these liquid states when the system is cooled through the Widom line
at constant pressure. This is consistent with experimental observations slightly above water’s glass
transition temperature Tg and reinforces the question of whether HDL or LDL on their own exhibit
an FST. Models for the temperature dependence of reactive mixtures were tested but were unable to
describe simulation results at the lowest studied temperatures.

A family of functional forms for the temperature dependence of dynamical properties of supercooled
liquids was derived. These functions allow their description over the entire temperature range from
the boiling point to the glass transition and with or without an FST. The second-order functions
predict a high and low-temperature Arrhenius regime connected by an intermediate fragile regime.
Knowledge of the path in the phase diagram of charge-scaled water-like systems, whether they cross
the Widom line at increased charges or not, allowed for more rigorous testing of these functional
forms. They are sensitive to deviations from Vogel-Fulcher-Tammann (VFT) behavior and apply well
to data from charge-scaled water and silica simulations, which have a pronounced FST, as well as to
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real liquids. The possibility that supercooled liquids in general have a low-temperature Arrhenius
regime and the characteristics of such FSTs were discussed.

Simulations of charge-scaled water models in chemically neutral pores were performed and static
and dynamic length scales associated with changes of water’s structure and dynamics near the pore
wall were extracted. These correlation lengths were used to test theories of the glass transition
and discussed in the context of water’s two phases. Signs of crossing the Widom line could not be
found in the temperature dependence of the correlation lengths within the moderately supercooled
temperature range. The slowdown at the pore wall relative to the pore center was characterized
using two empirical functions for additional activation energies caused by the liquid-confinement
interface. Furthermore, the potential energy landscape (PEL) imprinted on the liquid was quantified
using a novel approach based on Boltzmann statistics and predicted and measured mobility gradients
are in agreement.

Lastly, the origin of slow solvent processes observed in dielectric spectroscopy studies of dynamically
asymmetric binary mixtures was determined in simulations. For mixtures of picoline and poly-
methylmethacrylate and of water and polylysine, fractions of slow solvent molecules were not found.
Instead, the PEL imprinted by the slow polymer molecules causes preferred locations and orientations
for the solvent molecules. A mechanism was proposed in which the solvent molecules exchange fast
compared to the relaxation of the polymer molecules but have correlated orientations. This causes
long-lived cross correlations that can be misinterpreted as slow solvent contributions in coherent
measurements. Other sources of cross correlations were quantified and the dependency on measured
molecular property and correlation function were discussed. The dynamical heterogeneity of solvent
dynamics was traced back to the variation of the local solvent concentration and it is broad but
unimodal. The same observations, slowly decaying cross correlations and absence of self correlation
on these time scales, were made for other binary mixtures, suggesting that these effects are relevant
to a wide range of systems.
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Zusammenfassung

Unterkühlte Flüssigkeiten und der Glasübergang sind bis heute nicht zufriedenstellend verstanden.
Die Temperaturabhängigkeit der dynamischen Eigenschaften entzieht sich einer theoretischen Vor-
hersage. Kein Modell lässt sich erfolgreich auf alle Flüssigkeiten anwenden. Eine Flüssigkeit ist in
ihrem unterkühlten Zustand besonders komplex – Wasser. Diese scheinbar einfache Flüssigkeit weist
die meisten Anomalien aller reinen Flüssigkeiten auf, und man nimmt an, dass die meisten dieser
Anomalien mit dem Vorhandensein von zwei unterscheidbaren flüssigen Phasen mit unterschiedlicher
Dichte im unterkühlten Bereich zusammenhängen, d. h. Wasser weist Polyamorphismus auf. Der
größte Teil des relevanten Temperaturbereichs liegt jedoch im so genannten no-man’s land, einem Be-
reich des Phasendiagramms, in dem Wasser im Bulk rapide kristallisiert und der daher experimentell
im Bulk unzugänglich ist. Daher wird in experimentellen Studien häufig die Tatsache ausgenutzt, dass
die Kristallisation von Wasser in nanoskopischen Confinements oder Wassermischungen unterdrückt
wird. Die vorliegende Arbeit befasst sich mit beiden Forschungsbereichen, der Polyamorphie des
Wassers und der Dynamik unterkühlter Flüssigkeiten, sowohl im Confinement als auch in Mischungen.
Hierfür kommen Molekulardynamik-Simulationen zum Einsatz. Sie ermöglichen eine detaillierte
Analyse und systematische Variation der Flüssigkeit und leichtere Unterkühlung.

Die Partialladungen der Wassermodelle TIP4P/2005 und SPC/E wurden skaliert, was zu starken
Verschiebungen der Dynamik in der Temperatur führte. Diese konnten durch die Verwendung der
Hochtemperatur-Aktivierungsenergie als relevante Energieskala reskaliert werden, solange die struk-
turellen Eigenschaften gleich blieben. Für das TIP4P/2005-Modell und eine Reihe von reduzierten
Ladungen bestätigte das Kreuzen von Isochoren im Phasendiagram die Existenz eines flüssig-flüssig
kritischen Punktes (LLCP) im unterkühlten Bereich bei positivem und negativem Drücken. Der
two-structure equation of state (TSEOS) Formalismus wurde zur Beschreibung der Daten und zur
Bestimmung der Lage des LLCP verwendet. Darüber hinaus ermöglichte die Reduzierung der Teilla-
dungen eine beschleunigte Dynamik am LLCP und Simulationen mit länglichen Boxen im doppelt
metastabilen Regime mit Koexistenz von flüssigen Phasen mit hoher Dichte (HDL) und niedriger
Dichte (LDL) und die Bestimmung ihrer Dynamik als Funktion der Temperatur. Die Ergebnisse
stimmen mit Beobachtungen aus isochoren und isobaren Simulationen überein und für alle ther-
modynamischen Zustände wurde auch Translationsbewegung beobachtet. Es wurde festgestellt,
dass die Temperaturabhängigkeit der Dynamik bei einem konstanten Anteil des Zustands niedriger
Dichte (LDS) Arrhenius-artig ist. Der vermutete fragil-zu-stark Übergang (FST) von Wasser wird
also nicht durch einen Übergang von fragilem HDL zu starkem LDL verursacht, sondern durch den
schnellen Übergang zwischen diesen Flüssigkeitszuständen, wenn die Widom-Linie bei konstantem
Druck überschritten wird. Dies stimmt mit experimentellen Beobachtungen etwas oberhalb der
Glasübergangstemperatur Tg von Wasser überein und unterstreicht die Frage, ob HDL oder LDL
für sich genommen einen FST aufweisen. Es wurden Modelle für die Temperaturabhängigkeit reak-
tiver Mischungen getestet, die jedoch nicht in der Lage waren die Simulationsergebnisse bei den
niedrigsten untersuchten Temperaturen zu beschreiben.

Für die Temperaturabhängigkeit der Dynamik in unterkühlten Flüssigkeiten wurde eine Familie
von Funktionen hergeleitet. Diese Funktionen ermöglichen die Charakterisierung der Dynamik über
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den gesamten Temperaturbereich, vom Siedepunkt bis zum Glasübergang und mit oder ohne FST.
Die Funktionen zweiter Ordnung sagen ein Hoch- und ein Tieftemperatur-Arrhenius-Regime voraus,
welche durch einen dazwischen liegenden fragilen Temperaturbereich verbunden sind. Die Kenntnis
über den Pfad im Phasendiagramm von ladungsskalierten wasserähnlichen Systemen, ob sie die
Widom-Linie bei erhöhten Ladungen überqueren oder nicht, ermöglichte eine genauere Prüfung
dieser Funktionen. Sie sind sensibel für Abweichungen von Vogel-Fulcher-Tammann (VFT) Verhalten
und lassen sich gut auf Daten aus Simulationen mit Ladungsskalierung vonWasser und Siliziumdioxid,
welche einen ausgeprägten FST zeigen, sowie auf reale Flüssigkeiten anwenden. Die Möglichkeit,
dass unterkühlte Flüssigkeiten im Allgemeinen ein Tieftemperatur-Arrhenius-Regime haben, und die
Eigenschaften solcher FSTs wurden diskutiert.

Es wurden Simulationen von ladungsskalierten Wassermodellen in chemisch neutralen Poren
durchgeführt und statische und dynamische Längenskalen extrahiert, die mit Änderungen der Was-
serstruktur und -dynamik in der Nähe der Porenwand verbunden sind. Diese Korrelationslängen
wurden verwendet, um Theorien des Glasübergangs zu testen, und im Zusammenhang mit den zwei
Phasen des Wassers diskutiert. Anzeichen für ein Überschreiten der Widom-Linie konnten in der
Temperaturabhängigkeit der Korrelationslängen innerhalb des mäßig unterkühlten Temperaturbe-
reichs nicht gefunden werden. Die Verlangsamung an der Porenwand relativ zur Porenmitte konnte
durch zwei empirische Funktionen für zusätzliche Aktivierungsenergien, die durch die Flüssigkeits-
Confinement-Grenzfläche verursacht werden, charakterisiert werden. Außerdem wurde die der
Flüssigkeit aufgeprägte potentielle Energielandschaft (PEL) mit Hilfe eines neuartigen, auf der
Boltzmann-Statistik basierenden Ansatzes quantifiziert, und die vorhergesagten und gemessenen
Mobilitätsgradienten stimmen überein.

Und schließlich konnte der Ursprung langsamer Lösungsmittelprozesse, die in dielektrischen
Spektroskopiestudien an asymmetrischen binären Mischungen beobachtet wurden, in Simulationen
ermittelt werden. Für Mischungen aus Picolin und Poly-Methylmethacrylat sowie aus Wasser und
Polylysin wurden keine langsamen Lösungsmittelmoleküle gefunden. Stattdessen verursacht das von
den langsamen Polymermolekülen aufgeprägte PEL bevorzugte Orte und Orientierungen für die Lö-
sungsmittelmoleküle. Es wurde ein Mechanismus vorgeschlagen, bei dem die Lösungsmittelmoleküle
im Vergleich zur Relaxation der Polymermoleküle schnell austauschen aber korrelierte Orientierungen
aufweisen. Dies verursacht langlebige Kreuzkorrelationen, die bei kohärenten Messungen als langsa-
me Lösungsmittelbeiträge fehlinterpretiert werden können. Andere Quellen von Kreuzkorrelationen
wurden quantifiziert und die Abhängigkeit von der gemessenen molekularen Eigenschaft und der
Korrelationsfunktion wurde diskutiert. Die dynamische Heterogenität der Lösungsmitteldynamik
wurde auf die Variation der lokalen Lösungsmittelkonzentration zurückgeführt und ist zwar breit,
aber unimodal. Die gleichen Beobachtungen, nämlich langsam zerfallende Kreuzkorrelationen und
das Fehlen von Selbstkorrelation auf dieser Zeitskala, wurden auch bei anderen binären Mischungen
gemacht, was darauf hindeutet, dass diese Effekte für ein breites Spektrum von Systemen relevant
sind.
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1. Introduction

Matter exists in many states, most commonly known are the solid, liquid, and gaseous phases of
molecules. While for example plasmas can also occur naturally on earth, most other more exotic
states of matter, such as Bose-Einstein condensates, require extreme conditions. However, there
are other liquid and solid states of matter which have less severe requirements. One of them is the
amorphous solid, also called glass. This state of matter, unlike a crystal, has no long-range order of
the atoms comprising the solid and can in theory occur for any atoms or molecules, although it may
be difficult to produce. A liquid system may become an amorphous solid upon cooling but this often
depends on the cooling process itself and whether crystallization can be avoided. Furthermore, the
properties of the thus obtained glass depend on its history which is usually not the case for other
states of matter and is related to its metastable nature. The glass transition temperature Tg marks
the crossover from the liquid to the solid state. The liquid becomes so viscous upon cooling that it
behaves as a solid on typical experimental time scales, and so both states of matter have much in
common. Hence, the study of glasses is often preceded by studying the liquid state and the transition
to the glass. And because most liquids at these temperatures are below the melting temperature and
in a metastable state, they will all be referred to as supercooled liquids within this work.

The study of supercooled liquids is a broad field with far-reaching consequences. Despite the
supposed simplicity and wide accessibility of various supercooled liquids and glasses, their theo-
retical description is still incomplete. Predicting the properties of supercooled liquids and glasses
fundamentally requires solving a many-body problem, a notoriously difficult class of tasks. Never-
theless, a very generally applicable predictive model would not only solve this by now 100-year-old
problem, but would also help in the development of new materials and support research in areas
with transferable concepts. While silica based glasses are widely known and used since thousands of
years, their improvement is often an empirical process. In addition, amorphous metals have unique
properties such as higher elasticity or even higher critical temperature for superconductivity. The
conditions under which liquids are studied are not limited to the actual supercooled regime and are
therefore insightful for liquids under a lot of other conditions. Water for example often participates in
mixtures, may be confined between larger molecules within cells or exist under extreme conditions
in astronomical bodies.

The majority of the results in this work are on pure water and water-like systems. Water exhibits
many anomalies compared to other liquids:1 a density maximum and a crystalline phase with lower
density than the liquid, an anomalous pressure dependence of dynamics, and many crystalline
structures to name a few. Its ability to form hydrogen bonds is thought to be responsible for many
of them. Furthermore, its anomalous behavior becomes more severe in the supercooled regime
where thermophysical properties appear to diverge.2 However, water’s strong tendency to crystallize
prevents bulk measurements in the so-called no-man’s land, the temperature range of ∼150–230K
where homogeneous crystallization is unavoidable without possibly altering the observations too
significantly. Simulations are on short enough time scales that nucleation can be avoided allowing one
to enter the no-man’s land.3,4 They showed evidence of the existence of two liquid phases that are
possibly separated by a liquid-liquid phase transition (LLPT) line which terminates in a critical point
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1. Introduction

(LLCP).5 In the proposed two-phase regime in its phase diagram, water is in the low density liquid
(LDL) phase with tetrahedral local structure at sufficiently low pressure while at elevated pressures it
is in a high density liquid (HDL) phase with compressed local structure.6 This phenomenon is known
as liquid polyamorphism and quite rare7 with evidence for, e.g., carbon, phosphorus and sulfur as
well as theoretical models.8–12

The existence of two liquid phases of water is supported by the finding of at least two amorphous
phases at temperatures below the no-man’s land.13 Furthermore, the glass transition temperatures
associated with both amorphous states differ suggesting that both phases have different dynamics.
However, the inability to further investigate water in the no-man’s land with most experimental
methods leaves the details of water’s liquid-liquid phase transition highly controversial.14,15 Even the
details of the measured molecular dynamics near the glass transition temperatures, whether it is
translational or only rotational motion or only a secondary relaxation is observed, are unclear.16–18
Experimental evidence of translational motion is still rare19–21 and polyamorphism is generally not
sufficiently understood. The two phases are each mixtures of two constituents that are comprised of
the same molecules or atoms that can interchange, i.e., they are reactive binary mixtures with only on
average constant concentration. How this affects molecular dynamics, in particular around the phase
transition, is not fully understood. While simulations have already proven useful in demonstrating
the existence of an LLPT in water for a number of water models, they have had trouble with the slow
dynamics at the temperatures in the two-phase regime. The liquid-liquid critical point lies deep in
the supercooled regime and at negative pressures where water anomalously slows down. An example
is the SPC/E model for which the critical point was predicted to be located in a computationally
inaccessible temperature and pressure range of the phase diagram.22 This is where charge scaling
comes in.

Simulations offer the advantage that variable model systems can be prepared under well-controlled
thermodynamic conditions. Classical molecular dynamics (MD) simulations can nowadays be used to
simulate systems with up to millions of particles and in extreme cases on millisecond time scales.23
While it is not yet possible to traverse the experimental glass transition, they are sufficient for an
exploration of the moderately supercooled regime. And whenever a system is too difficult to simulate
or analyze it may be advantageous to simplify or modify it and, hence, to refrain from the attempt of
a chemically fully realistic description. This allows the research field to advance into experimentally
inaccessible regimes. In MD simulations of water and its LLPT, systematically modified water-like
systems may be helpful. The relatively strong Coulomb interactions of this small molecule are the most
influential parameter, and hence scaling the partial charges has strong influence on the Hamiltonian
of the system. Previous work on water and other systems has already shown strong effects on the
local structure, density and the location of the glass transition.24 For silica, Lascaris et al. showed
with simulations of a model with polyamorphism that the location of the LLCP can be shifted or even
removed entirely.25 Therefore, the idea of the present work is to use charge scaling for a systematic
study of the existence and location of the LLCP in water-like liquids and more importantly for the
investigation of molecular dynamics in the two-phase regime. In particular, the capabilities of MD
simulations will allow the separate analysis of both phases in coexistence.

The enormous slowdown of liquid dynamics when cooling down to the glass transition temperature
Tg is an intriguing phenomenon on its own. Many models attempt to describe the temperature
dependence of dynamical properties, such as viscosity, diffusivity, or the decorrelation of molecular
orientation with time. There should exist some underlying mechanism that if understood allows
the prediction of these properties in general. And in particular for water and its many anomalies,
it is of interest to understand how the supercooled phase gives rise to general dynamical behavior
that even water largely complies with. However, such a theory remains elusive despite decades of

2



work.26,27 Several promising ideas have emerged over time, for example entropy theory,28–30 elastic
models,31 mode-coupling theory32 or a Langevin equation approach.33 One of their shortcomings
is the inability to make predictions for the dynamics in broad temperature and pressure ranges,
from the boiling point to the glass transition, for all liquids. Hydrogen-bonded liquids have proven
particularly difficult to include.

One of the open questions is the functional form of the temperature dependence of the struc-
tural relaxation, for which most theories make different predictions.34,35 In an Arrhenius plot of
the structural relaxation time, one can distinguish strong liquids, which obey the Arrhenius law,
from fragile liquids, which do not. For fragile liquids, the slope steadily increases with decreasing
temperature and can be quite high at Tg. The most common empirical description of this temperature
dependence is the Vogel-Fulcher-Tammann (VFT) equation. Liquids are thus often compared in terms
of their fragility, a measure of the slope at Tg, with strong and fragile liquids having low and high
slopes, respectively. However, there is increasing evidence of the existence of a crossover from VFT
behavior to Arrhenius behavior at strong supercooling.36 There exists no non-empirical functional
form that satisfactorily characterizes the dynamics of the liquid from the boiling point to the glass
transition when such a fragile-to-strong transition (FST) occurs. However, functional forms with these
characteristic regimes can be derived naturally from a simple ansatz and assumptions, as shown in
this work. It even reveals a common mathematical origin of two functional forms that have been
proposed and successfully used in the last two decades – one approach by Schmidtke et al.37 for
regular liquids and one by Tanaka et al.38 specifically derived for the dynamics of water. But there
may be something more general to dynamics having a strong, fragile, and again strong regime. In
fact, entropy models predict a second Arrhenius regime for a non-vanishing and nearly constant
configurational entropy.39

Here again, simulations of water-like systems are useful. Experimental studies of dynamics below
the no-man’s land and just above Tg revealed a strong temperature dependence, which will only be
consistent with observations above the no-man’s land if water has an FST.40 Aside from the above
question of the nature of the relaxation observed near Tg, it has been suggested that HDL and LDL
are fragile and strong liquids, respectively. The transition from the former to the latter then explains
the observed temperature dependence above and below the no-man’s land. While it is impossible
to study this with experimental methods in true bulk systems, simulations of charge-scaled models
allow for a systematic variation of the location of the LLCP and the prominence of the FST. Using
these simulations, theoretical models for the structural relaxation of supercooled liquids and its
temperature dependence can be tested and the dynamics in previously inaccessible regions of the
phase diagram, in particular, in the two-phase regime below the LLCP can be analyzed.

Another topic of this work is the glass transition of confined liquids. It is quite common for liquids
to be confined on nanoscopic length scales. Water in particular can be confined in micelles, between
lipid layers or proteins in biological cells, in clays, zeolites, or mesoporous silica. These confinements
vary in geometry and interaction between the liquid and the confining matrix. Hence, there have been
extensive studies to understand the properties of liquids under such conditions.41,42 Applications
range from modifications of the interface to affect the liquid behavior43 to suppression of crystalliza-
tion.44 However, in addition to the geometrical restriction, liquid-matrix interactions can introduce
deviations from bulk behavior, e.g., microphase separation,45–47 which reduces transferability of
observations.41,42 In particular, it was found that mobility at the interface can be orders of magnitude
slower depending on the confinement.46,48 MD simulations allow for the construction of so-called
neutral confinements where the matrix consists of the same molecules and has the same structure
as the confined liquid.48,49 This allows better disentangling of geometric and surface effects from
intrinsic behavior of the liquid. Additionally, the full microscopic information available in simulation
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studies allows for the analysis of observables that are position resolved with respect to the confine-
ment. These have shown steep gradients in the properties of confined liquids48 that are caused by
the static potential energy landscape (PEL) imposed on the liquid by the matrix.46 Such gradients
exist for many properties, e.g., structural or dynamical, of the liquid and correlation lengths, which
describe the range of the confinement effects, can be extracted.50 These length scales are thought to
also be relevant to bulk systems where dynamical and structural heterogeneity increase in the super-
cooled regime. There exist several theories of the glass transition which explain the super-Arrhenius
temperature dependence of dynamical properties with activation energies for molecular mobility that
depend on length scales growing upon supercooling the liquid. By calculating various correlation
lengths from simulations of neutral confinements, these theories can be tested and it can in general be
investigated which length scales are relevant and related to the slowdown in supercooled bulk liquids,
if any. Additionally, the analysis of temperature- and spatially-resolved mobility and structure of the
liquid in neutral confinements enables new approaches to characterize the temperature dependence
of the slowdown at the liquid-matrix interface or its distance dependence.

The last part of this work deals with the glass transition of dynamically asymmetric liquid mixtures,
which consist of smaller and more mobile molecules and larger less mobile molecules. Examples of
such systems are binary mixtures of a solute and solvent with vastly different Tg in their neat systems.
This is typical of polymer-plasticizer systems or protein solutions, and thus occurs in a variety of
technical applications and biological systems.51,52 But also mixtures of non-polymeric molecules with
strongly different dynamics exhibit similar phenomena suggesting commonalities between various
dynamically asymmetric binary mixtures and the discussion and interpretation of the observed
relaxation scenarios is ongoing.53–55 The common observation is an acceleration of solute dynamics
and a slowdown of solvent dynamics in the mixtures. While the shapes of the correlation functions of
molecular dynamics appear to be unaffected for the former, they broaden significantly for the latter
implying that the solvent molecules experience a higher dynamical heterogeneity compared to neat
systems. These effects are studied based on the fluctuating energy landscapes imposed by the slow
solute molecules onto neighboring solvent molecules.

Observations in broadband dielectric spectroscopy (BDS) studies were taken as evidence that a
small fraction of solvent molecules is severely hindered by the solute and that this causes a bimodal
distribution of solvent mobility.56 Moreover, it was concluded that the slow fraction grows with
respect to the fast one with decreasing temperature. However, nuclear magnetic resonance (NMR)
experiments do not confirm the existence of the fraction of slow solvent molecules or at least disagree
on their amount in several systems.53,57–59 A key difference between these experimental methods
is the actual correlation function measured. While BDS measures coherent dynamics, NMR can be
used to make incoherent measurements. MD simulations allow the calculation of either type and
their direct comparison. Therefore, this work presents simulations of the asymmetric binary mixture
of 2-methylpyridine and poly-methylmethacrylate, for which a slow solvent fraction was found in
very recent coherent measurements. The results reveal that the slow solvent fraction does not exist
and a mechanism is proposed, which is based on cross correlations together with the fluctuating
energy landscape imposed by the slow solute molecules onto the solvent molecules.

This document is organized in the following way. Chapters 2-5 cover fundamentals of relevant
topics and details of MD simulations and their analysis. Chapters 6 through 10 present the results
and each chapter contains its own review of the literature and motivation and summary of the
results. The results begin with the charge-scaled water systems and the discussion of deviations from
ordinary water. Chapter 7 investigates the polyamorphism of water under charge scaling. The results
for dynamical properties of water and other systems are then used to discuss general functional
forms of the temperature dependence of the activation energy of relaxation processes and their
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implications for strong-fragile-strong transitions in Ch. 8. Then, results of charge-scaled water in
neutral nanoscopic confinements are discussed in Ch. 9 in relation to water’s polyamorphism but also
generally in the context of the dynamical behavior of supercooled liquids. Finally, Ch. 10 discusses the
differences between coherent and incoherent measurements and difficulties of their interpretation
using the example of dynamically asymmetric binary mixtures. The main results of the thesis are
summarized in Ch. 11.
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2. Theories and the state of research

This chapter gives a short overview of the concept of supercooled liquids and glasses. It introduces
the most common phenomena and some theories that attempt to characterize them. Furthermore, it
discusses findings for supercooled water and open questions.

2.1. Supercooled liquids and the glass transition
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Figure 2.1.: Simplified sketch of the specific en-
tropy of the liquid, crystal and glass as
a function of temperature.

Supercooled liquids and glasses (also called
amorphous solids) are both forms of condensed
matter and belong to the group of liquids and
solids, respectively. An initial distinction from
the regular liquid and crystalline phase comes
from thermodynamic observations. In general,
cooling a liquid below its melting temperature
Tm results in a first order phase transition to a
crystal. The kinetics of crystallization are rele-
vant for understanding liquid phases below Tm.
This phase transition is accompanied by a drop
in entropy, indicated in Fig. 2.1. The previously
amorphous arrangement of molecules is replaced
by order and, with exceptions such as water,
denser packing. The molecules lose most of their
mobility and are only able to perform local vi-
brations. The solid responds only elastically to
stress while the liquid flows. The cause of the
phase transition is the difference in Gibbs free
energy between the liquid and the crystalline
solid, ∆G = Gcrystal − Gliquid < 0. The ordered
arrangement of the crystal is favored by enthalpy and crystallization releases heat to the environment.
This fulfills the second law of thermodynamics. However, the process of crystallization is hindered by
an activation energy barrier, and thus requires nucleation. The interface between amorphous liquid
and crystal is energetically unfavorable. Considering a spherical crystallization nucleus, the gain ∆G
scales with its radius cubed while the interfacial energy scales only with the radius squared. The
consequence is a critical nucleus size: smaller nuclei shrink while larger ones continue to grow. The
free energy for this radius is the energy barrier to overcome. The probability of a critical nucleus
occurring through thermal fluctuations is given by the Boltzmann factor. With the degree of super-
cooling, T − Tm < 0, both the energy barrier and the thermodynamic fluctuations decrease, leading
to a nucleation rate that is non-monotonic in T and has a maximum below Tm. In addition to the rate
at which critical nuclei occur, the growth of the crystal depends on the mobility of the molecules, i.e.,
how fast they can arrange into the crystalline structure, and on the thermal conductivity. Altogether,
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the rate at which a liquid sample crystallizes has its maximum at supercooled temperatures. The
mechanism described above is called homogeneous nucleation. Heterogeneous nucleation occurs in
the presence of impurities. Foreign particles in the liquid can allow nuclei to form on their surface and
effectively reduce the critical size and energy barrier. Impurities thus facilitate faster crystallization.
Because of crystallization kinetics, it is possible to study liquids below their melting point, i.e., in
the supercooled regime. Such a supercooled liquid is in a metastable state – the crystal is the true
thermodynamic equilibrium. Besides a pure sample, two time scales are relevant to allow observations
at supercooled temperatures: the experiment happens on shorter time scales than crystallization and
the cooling rate is fast enough to avoid nucleation.

Not only is the supercooled liquid still liquid it also exhibits different thermodynamic properties
than the crystal. In particular, its specific heat is higher, since not only phonons, as in a solid, but also
configurational changes determine the internal energy. The consequence is a steeper temperature
dependence of the entropy, sketched in Fig. 2.1. The extrapolation to lower temperatures suggests
a crossing at the so-called Kauzmann temperature, the so-called Kauzmann paradox.60 Very few
systems that exhibit the phenomenon of inverse melting,61,62 crystallization upon heating, appear
to exhibit this behavior. However, this is only a theoretical scenario for the vast majority of liquids
and experimentally not observed. Instead, the liquid becomes increasingly viscous upon further
supercooling, a fact discussed in more detail in Sec. 2.2 and Fig. 2.4. Importantly, at some point the
viscosity becomes so large that the sample no longer flows on experimental time scales and begins
to behave like a solid. Despite this, the molecules do not have long-range order. Instead, the liquid
vitrifies; it has become a glass. The specific heat is reduced and the Kauzmann paradox is avoided.

This vitrification phenomenon is called glass transition. The supercooled liquid is still in equilibrium,
albeit metastable. However, the dynamics slow down: the viscosity increases rapidly with decreasing
temperature and the time to reach equilibrium increases strongly.63 The molecules need time to
adjust structurally to external influences, e.g., shear stress or temperature changes. This structural
relaxation time is indicated in Fig. 2.1 and increases by many orders of magnitude. Below Tg, the
structural relaxation time exceeds the experimental time scale and the system falls out of equilibrium.
It can no longer explore the entire phase space. The glass transition is therefore kinetic rather than
thermodynamic in nature and does not involve discontinuities in thermodynamic properties. What
further distinguishes the glass transition from typical first-order phase transitions is its dependence
on the history of the system. The system responds differently to temperature changes depending
on the time it spent at previous temperatures and the rate of cooling or heating. In particular, Tg
depends on the cooling rate. Faster cooling causes the system to fall out of equilibrium at higher
temperatures, while staying just below Tg for longer times anneals the sample, see Fig. 2.1.

The official definition of Tg incorporates a constant cooling rate (ISO 11357-2:2020). Tg is deter-
mined by analysis of the step in specific heat in a differential scanning calorimetry (DSC)measurement.
Since a DSC measurement is not always available, especially for simulations because of the com-
putational cost, other practical definitions exist. The acceptable time for an experiment to wait for
equilibrium defines an upper end for the dynamics of the system of about τ(Tg) ∼ 100 − 1000 s.
Measurements of the viscosity near the glass transition give about η(Tg) ∼ 1012 Pa·s. For comparison,
the viscosity of water at 20 °C is about 1mPa·s. However, all of these definitions are arbitrary. It
remains an open question whether or not a true thermodynamic transition exists below Tg.

Some systems are more easily supercooled and transformed into a glass than others. Silicate glasses
or polymers are good glass formers. Sterically hindered crystalline phases as in mixtures of ions
of different sizes are often suppressed. Even many molecular liquids can be stored at supercooled
temperatures down to Tg for days. However, when the structural relaxation time exceeds the crys-
tallization rate the liquid can no longer be equilibrated and the supercooled liquid does effectively
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not exist. Rapid cooling can be used to skip the supercooled regime of poor glass formers and avoid
crystallization. Methods for this include vapor deposition or melt spinning, which achieves cooling
rates on the order of 106 K/s. Melt spinning is also used to produce amorphous metal alloys with
unique properties that cannot be achieved with their crystalline counterparts. Once the system is
below Tg, the high viscosity prevents subsequent crystallization. Finally, Tg is material specific and
any liquid can be as fluid as water or as viscous as molten glass at the right temperature, unless crys-
tallization cannot be avoided or the system undergoes chemical changes. Since several properties of
supercooled liquids are general, e.g., the rapid increase in viscosity, the designation as a supercooled
liquid is used more freely in this work, i.e., even when Tm is unknown. Whenever the liquid is to be
distinguished specifically from its supercooled state, it is referred to as a simple liquid.

Thus, supercooled liquids and glasses are widely relevant phenomena. Amorphous materials are
the subject of current research and have many applications.64 However, a general theory explaining
all the properties of supercooled liquids and glasses is still missing. The experimental and theoretical
study of the glass transition is challenging. Experiments not only require that crystallization is
avoided, but are also limited by Tg and often cover only a fraction of the many orders of magnitude
of dynamics, ranging from picoseconds to thousands of seconds. Theoretical models for many-body
problems are notoriously difficult. A brief overview of some models for the dynamical properties is
given in Sec. 2.2, after discussing the structural and dynamical observations in more detail.

2.1.1. On the structure of supercooled liquids and glasses

r

1

g(
r)

crystal
supercooled liquid
liquid
superheated liquid

Figure 2.2.: Radial pair-distribution functions for
oxygen atoms of simulated water in
the crystal phase, the supercooled
regime, the liquid phase, and close to
the boiling point.

The structure of supercooled liquids and glasses
on microscopic scales is one of their major com-
mon features. The arrangement of molecules
is not periodic and there is no long-range or-
der. Hence, they are homogeneous and isotropic
on mesoscopic length scales, which gives them
properties not found for single-crystal solids,
such as an isotropic refractive index. However,
molecules are not randomly arranged on mi-
croscopic length scales. There, preferred local
configurations of neighboring molecules occur
according to their interaction energy and statis-
tical mechanics. Energetically favorable config-
urations are more likely to occur than others.
However, they are generally incompatible to fill
space with a repeating pattern. The local struc-
ture decorrelates on nanometer length scales.

Figure. 2.2 presents these observations using
the radial pair-distribution function (RDF), see
Sec. 5.1.1. Deviations from one indicate an in-
creased or decreased probability of finding par-
ticles at distance r from each other as compared to a random particle arrangement. For amorphous
systems, the RDF quickly decays to one, implying fast decorrelation of the local structure. At tem-
peratures close to the boiling point, only next neighbor positions are correlated. With decreasing
temperature, correlations are enhanced even beyond the next neighbors. The range to which devia-
tions from one are significant increases until the system undergoes structural arrest at Tg. Long-range
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correlations are only found in crystals or otherwise inhomogeneous systems. The continuous transi-
tion from supercooled liquid to the glass makes both states structurally indistinguishable. Therefore,
studying either system can be helpful in understanding both.

2.1.2. Correlations in time

Besides the structural characterization, the quantification of the dynamics in the system is also of
significant interest. Correlation functions are a major aspect in this respect and are frequently used
in this work. Therefore, they are discussed in more detail here – their mathematical basis and how
to interpret them. The thermodynamic aspect of liquids inherently involves the existence of many
properties that can be considered random variables. Unlike white noise, they are not necessarily
uncorrelated with themselves or even with each other at all times. Correlations of random variables
and how long they persist are of great interest. In general, the correlation of two random variables, x
and y, can be calculated by their normalized covariance:

Cx,y =
⟨xy⟩ − ⟨x⟩⟨y⟩

σxσy
, (2.1)

with ⟨. . . ⟩ denoting averages and the standard deviation σ.
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Figure 2.3.: Typical decays of correlation func-
tions in simple liquids (blue) and liq-
uids at various degrees of supercool-
ing.

In physical cases, a non-normalized calculation
may be more appropriate. Furthermore, x and
y are usually time dependent. If the system is in
(metastable) equilibrium and ergodic, all times
are equivalent time origins and only the time
differences t are relevant. Averages ⟨. . . ⟩ over
several time origins t0 are then performed:

Cx,y(t) =
⟨x(t0)y(t+ t0)⟩ − ⟨x⟩⟨y⟩

σxσy
. (2.2)

If ergodicity is not satisfied, the expectation val-
ues and standard deviations also depend on
the time origin. If x and y are different quan-
tities, cross correlations are measured, while for
x = y the correlation function simplifies to a so-
called autocorrelation function, more precisely
the auto-covariance function:

C(t) =
⟨x(t0)x(t+ t0)⟩ − ⟨x⟩2

σ2
x

. (2.3)

Again, depending on the physical property the
normalization can be omitted. This function can be used to autocorrelate any scalar property in time.
These can be single-particle, multi-particle, or macroscopic properties such as internal energy or
pressure. The use of transformations f : Rn → R allows for more complex correlation functions, e.g.,
rotational correlation functions in Sec. 5.2.3. They are qualitatively identical and are treated and
analyzed in the same way in this work. In equilibrium, the Wiener-Khinchin theorem65 relates the
autocorrelation of a time series to its spectral density:

C(t) = F−1
(︁
|F(x(t))|2

)︁
, (2.4)
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2.1. Supercooled liquids and the glass transition

where F stands for the Fourier transform.
In simple situations, autocorrelation functions feature an approximately exponential decay char-

acterized by the correlation time, a measure of how long the property is correlated with itself. An
example is shown in Fig. 2.3. Properties subjected to thermal fluctuations or vibrations of particles
within their local potential share a rapid decay on sub-picosecond time scales. This partial decorrela-
tion is followed by one or more (stretched) exponential decays. To quantify the time scale of the
main terminal decay, it is often fitted with a scaled Kohlrausch-Williams-Watts (KWW) function:66,67

A exp

[︄
−
(︃

t

τkww

)︃βkww
]︄
. (2.5)

The prefactor A quantifies the correlation loss of this decay, which can be less than one due to
vibrational motion. The correlation time is determined by τkww and βkww, the time constant and
the stretching parameter of the KWW function. The mean correlation time ⟨τ⟩ = 1

A

∫︁∞
0 C(t)dt is

calculated with ⟨τ⟩ = (τkww/βkww)Γ(1/βkww), where Γ(x) denotes the gamma function. However, at
high temperatures, the vibrational and terminal decay are often not sufficiently separated. In such
cases, the definition C(τe) = 1/e is used for consistent results.

Because many different microscopic processes contribute the shape of correlation functions is the
subject of countless studies in the literature.68,69 The underlying processes are usually designated by
their order. The α-process is the slowest and leads to the terminal decay, with the notable exception of
polymer melts. Its correlation time τα is usually on the order of 100 s at Tg and is therefore considered
as an indicator of the structural relaxation time and viscosity. In detail, this is not an exact definition
because the α-process of different correlation functions or different molecular degrees of freedom
varies, see Sec. 2.1.3 and 5.2.3. In general, the α-process is identified with significant displacements
or reorientations of individual molecules. In contrast, faster processes such as the Johari-Goldstein
β-process are caused by internal or local degrees of freedom. Their amplitude is not sufficient to
cause complete decorrelation, and they are only readily observable when the α-process is sufficiently
slower than the vibrational motion. Hence, they appear in the supercooled regime and are more
clearly observed below Tg, when the α-process has arrested. Processes between the β-process and
vibrational motion are rare but possible and not of interest in this work. Finally, it should be noted
that certain correlation functions that characterize multi-particle motion may even in non-polymeric
systems show a terminal decay slower than the α-process. An example is the Debye process caused
by cross correlations of hydrogen-bonded monohydroxy alcohols.70 Chapter 10 addresses a recent
identification of cross correlations in mixtures and their interpretation.

In addition to the correlation times of these processes, their shape is also of significant interest. For
example, the function necessary to model a decay and its shape parameters, e.g., the KWW function
and βkww, provide information about the heterogeneity of the system. Deviations from an exponential
decay indicate that the motions of the molecules are stochastic processes which are not independent
of each other and that the correlation times have a broad distribution.

This is only a brief overview of what can be expected from correlation functions and neglects
numerous special cases. Their importance is emphasized by the fact that many experimental methods
probe a correlation function directly or indirectly. Its Fourier transform yields the spectral density J(ω)
and susceptibility χ(ω), properties measured in frequency space by, for example, nuclear magnetic
resonance (NMR) and broadband dielectric spectroscopy (BDS).68 On the other hand, depolarized
dynamic light scattering (DDLS) provides access to an autocorrelation function. Moreover, frequency-
dependent viscoelastic measurements complement this way of characterizing the dynamics of the
system under study.
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2. Theories and the state of research

2.1.3. Relations between different dynamical properties

Using different experimental methods to characterize the dynamics may seem counterintuitive.
An optimal method would be desirable. The shear viscosity η and the self-diffusion coefficient
D are promising candidates along with a selection of τ . However, not all of these quantities are
experimentally available over the entire temperature range, especially in more complex systems.
Their temperature dependence is theoretically linked by the Stokes-Einstein (SE) relation,71

DT =
kBT

6πηRH
, (2.6)

where kB, T , andDT are the Boltzmann constant, the temperature, and the translational self-diffusion
coefficient of a spherical particle in a liquid of viscosity η. It was derived using hydrodynamics and
Brownian motion and RH denotes the effective hydrodynamic radius. The Stokes-Debye (SD) relation
analogously gives for rotational diffusion DR:72

DR =
kBT

8πηR3
H
. (2.7)

From the above equations η can be eliminated, leading to the Stokes-Einstein-Debye (SED) relation.
They can be linked to rotational correlation times τ . For rotational diffusion holds DR = 1

τℓℓ(ℓ+1) ,
where ℓ is the rank of the Legendre polynomial used in the correlation function, see Sec. 5.2.3.
Together with Eqs. (2.6) and (2.7), a constant product DT · τl is predicted:

DT · τl =
4

3l(l + 1)
R2

H . (2.8)

However, deviations are often observed for supercooled liquids. The most common case, an increase
in RH upon cooling, is attributed to the different weighting of the dynamical heterogeneity in D and
τ .73–75 While diffusion determines a rate average and, thus, weights fast dynamics more strongly,
correlation times are a time average. Different temperature dependencies are obtained when the
distribution of correlation times changes shape with temperature. In particular, as heterogeneity
increases, as may occur with severe supercooling, τ is expected to slow down more relative to D,
increasing RH. However, the actual cause, dependence, and strength of the decoupling depends on
the system and may also exhibit the opposite temperature dependence.76 Hence, supercooled liquids
are not so simple and measuring multiple dynamical properties actually increases the understanding
of a given system.

2.2. Models of dynamics in the supercooled regime

So far, the dynamical aspects of the supercooled liquid and glass transition have been discussed only
qualitatively. However, they are far more complex and exhibit a temperature dependence that eludes
a satisfactory model. In this section, general observations are discussed and various models of the
glass transition are used to introduce concepts relevant to the rest of this work.27,64,77

The steep temperature dependence of, for example, τα in the supercooled regime is best studied
in an Arrhenius plot, log10(τα) versus 1/T . Alternatively, the temperature can be rescaled by Tg to
obtain what is known as an Angell plot, which allows comparison of different glass formers, see
Fig. 2.4. In general, a super-Arrhenius behavior, i.e., an increasing slope with decreasing temperature,
is observed. While some liquids cross from perfectly fluid to the glass in a narrow temperature range
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2.2. Models of dynamics in the supercooled regime

with a strong curvature that can be characterized reasonably well by the Vogel-Fulcher-Tammann
(VFT) equation,63,78,79 Eq. (2.10), others show almost Arrhenius behavior, Eq. (2.9):

Arrhenius: τα = τ∞e
E
T (2.9)

VFT: τα = τ∞e
B

T−T0 (2.10)

Here, τ∞ is a prefactor, E is the activation energy of the Arrhenius law, and T0 is the temperature of di-
vergence.
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Figure 2.4.: Angell plot of artificial viscosities of
strong and fragile glass formers.

The slope at Tg in the Angell plot is called the
fragility and has been useful in characterizing
various systems. It is defined as

m =

(︃
δ log10 η
δ(Tg/T )

)︃
T=Tg

. (2.11)

Liquids with high fragility are called fragile and
follow a VFT-like behavior, while liquids with low
fragility are called strong and approximate an
Arrhenius behavior. Although the terms fragile
and strong are defined in conjunction with Tg,
in this work they are also applied to regimes far
from the glass transition, i.e., whether the liquid
follows an Arrhenius or a VFT behavior in a given
temperature range.

Observing Arrhenius and super-Arrhenius be-
haviors requires rejecting a simple picture of an activated process with a constant activation energy for
all liquids. Instead, each molecule experiences an inhomogeneous energetic potential with different
energy barriers that changes with time and temperature as the system as a whole traverses the
macroscopic potential energy landscape. These changes extend beyond the vibrational degrees of
freedom of a solid. The local configuration of molecules becomes more efficiently packed and the
energy barriers increase significantly upon further cooling. In particular, there is no longer sufficient
free volume for relaxation processes of individual molecules. Instead, many neighboring molecules
have to rearrange. Hence, relaxation in the supercooled regime is often called cooperative. This
inherent multi-particle problem makes the formulation of a successful model difficult. Nevertheless,
the following models and theories had some success and have helped to deepen the understanding
of supercooled liquids.27,80

2.2.1. Entropy theories – Adam-Gibbs

One of the earlier theoretical successes was based on the work of Flory, who calculated the number of
disordered configurations available to a polymer on a lattice.81 He found that this number becomes
less than one at some finite temperature, a problem comparable to the Kauzmann temperature. This
similarity did not go unnoticed and Gibbs and Di Marzio associated it with the glass transition and
a second-order phase transition.28 Adam and Gibbs developed what is known as Adam-Gibbs (AG)
theory.29 Following the cooperative picture of relaxation in supercooled liquids, they assume the
existence of cooperatively rearranging regions (CRR) consisting of many particles. Their size grows
upon cooling as the particles become increasingly correlated. Subsets of a CRR cannot rearrange

13



2. Theories and the state of research

independently and, thus, do not contribute to the actual available number of states Ω that a CRR can
assume. However, CRRs interact weakly with each other and can rearrange independently.

Since each CRR consists of n particles, the total number of states N of a system of N particles is
N = ΩN/n.27 Therefore, the configurational entropy Sc of the system is

Sc =
1

N
logN =

logΩ
n

. (2.12)

As suggested, the entropy decreases as the number of correlated particles n increases. Moreover,
the size of the CRRs can be estimated as ξd ∼ n(T ) = logΩ

Sc(T ) for d dimensions. ξ is also known as
the correlation length, a reoccurring concept in other theories. AG theory states that the activation
energy for relaxation events scales with the number n ∼ 1/Sc of cooperatively rearranging particles.
Assuming an Arrhenius ansatz, the structural relaxation time can then be written as

τ = τ0e
A

TSc , (2.13)

with a system-dependent prefactor τ0 and energy scale A. Finally, Sc(T ) near Tk can be approxi-
mated by the difference in specific heat ∆cp of liquid and crystal as Sc ∼ ∆cp

T−Tk
Tk

.27 The resulting
temperature dependence of τ ,

τα = τ0e
ATk

∆cpT (T−Tk) , (2.14)

is approximately equal to the VFT equation when T is close to Tk.
AG theory has several interesting results. It links configurational entropy and dynamics, makes

estimates for the correlation length, produces fragile behavior, and approximately justifies the VFT
equation. However, it assumes a constant Ω and proposes a second-order phase transition. The latter
can be avoided by modifications made after the original theory was proposed.82–84 Furthermore,
recent theoretical calculations predict a residual entropy for the liquid at all temperatures.39,85 For
further insight into entropy theories, see Dudowicz et al. (2008).30

2.2.2. Mode-coupling theory

A different theoretical approach to dynamics in supercooled liquids is given by mode-coupling
theory (MCT).86–88 In the supercooled regime, processes occur on different time scales, see Fig. 2.3.
Accordingly, the phase space variables of the system contain fast fluctuations caused by vibrational
motion and slower changes, for example the α-process. The Mori-Zwanzig formalism is then used to
project from the full phase space to a set of slowly varying variables. The time dependence of the set
A of slowly varying variables can then be expressed by

dA(t)
dt

= iΩ · A(t)−
∫︂ t

0
dτM(τ) · A(t− τ) + f(t) , (2.15)

where M(t) is the so-called memory function, f(t) is a fluctuating force, and iΩ is a frequency
matrix. M(t) couples the slowly varying variables, also called modes, which gives the theory its name.
For supercooled liquids, the variable of choice is the particle density in momentum space ρ(k⃗, t).
The corresponding correlation function is then the coherent intermediate scattering function, see
Sec. 5.2.1, and measures the dynamics of particles at different length scales. The memory function
then couples the modes of density corresponding to the different wave vectors. The only input MCT
requires is static information about the structure factor and the bulk density of the system. It correctly
predicts the two-step behavior of correlation functions and the shape of the regime of the β-process.88
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2.2. Models of dynamics in the supercooled regime

The enhancement of local structure with decreasing temperature, see Fig. 2.2, leads to a slowdown
of dynamics. MCT predicts a power law for the correlation time,

τ = τ0
Tc

(T − Tc)γ
, (2.16)

with a divergence at the finite mode-coupling critical temperature Tc. However, the significance of
denser packing in the local structure is overestimated and Tc is above Tg, i.e., the correlation function
does not decay between Tg and Tc. MCT lacks activated dynamics, which become the dominant
mechanism of relaxation below Tc. Many attempts have been made to remedy this premature
dynamical divergence. For example, hierarchically stacked memory functions in the generalized MCT
avoid the approximation of the standard MCT.89 As the order of the memory functions increases, the
agreement between prediction and measurement improves at deeper supercooling and the divergence
can be avoided altogether with infinite order.90 Nevertheless, MCT does not predict thermodynamic
variables and requires prior knowledge, the structure factor, about the system at each temperature.

2.2.3. Random first-order transition theory

α
β

 

∝ξδ

ε φ

δ

β α

Figure 2.5.: Mosaic
of CRRs with
different states.

The mosaic or random first-order transition (RFOT) theory has similarities
with the AG theory.27,91–93 The system again consists of CRRs in different
states – a mosaic, see Fig. 2.5. However, their interaction is not neglected.
In particular, the interface between CRRs is not ideal and causes surface
tension. This increases the free energy barrier that must be overcome to
move from one state to another. This additional cost is offset by the num-
ber of states available to a CRR. A region of size R has an exponentially
large number of possible states. While the overall free energy is in equilib-
rium, visiting other states by rearrangement increases the configurational
entropy. Remaining in one of many equally likely states is not favored by
statistical mechanics. In the end, thermal fluctuations and entropy drive
the dynamics of the system.

The RFOT theory acknowledges that the surface of amorphous regions
does not necessarily have dimension d− 1, where d is the dimension of
the system. In particular, it may be reduced and fractal during a rearrangement event. Hence, the
free energy barrier is described as

∆F = γ(T )Rθ⏞ ⏟⏟ ⏞
cost

−TscR
d⏞ ⏟⏟ ⏞

driving

. (2.17)

Here, γ is the surface tension, θ the unknown dimensionality of the interface, and sc is the configura-
tional entropy per unit volume. Analogous to the nucleation theory of crystals, the barrier decreases
above a certain size and even vanishes for sizes larger than

ξ =

(︃
γ(T )

Tsc(T )

)︃ 1
d−θ

. (2.18)

Regions larger than ξ are unstable against rearrangement. However, the probability of such an event
decreases with the number of particles involved and, thus, RFOT suggests that CRRs are typically of
size ξ. Furthermore, the liquid cannot rearrange when confined to volumes smaller than ∼ ξd and
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consequently is in a glassy state. Note that this correlation length ξ increases more with decreasing
temperature and configurational entropy in RFOT than in AG.

Finally, the structural relaxation time can be estimated by calculating the barrier height from the
maximum of Eq. (2.17). Following several assumptions near Tk, θ = d/2 can be proposed, in which
case structural relaxation times follow the same VFT, Eq. (2.14), as in AG theory.91 More generally,
the structural relaxation time follows

τ = τ0e
B ξφ

T , (2.19)
where φ is an unknown exponent likely to be less than d.92 The RFOT theory does not assume validity
for all temperatures. In particular, the surface tension is assumed to vanish in the simple-liquid
regime. The upper limit of validity is Tc and RFOT adopts MCT for higher temperatures.

2.2.4. Free-volume and elastic models

Two directions of models are summarized here because they have some ideas in common. The
observation that many supercooled liquids have higher thermal expansion than their respective
crystal suggests that the increasingly denser packing of molecules with cooling is significant. This
reduces the ”free volume” available to individual molecules for rearrangement. Early on, it was found
that the viscosity of a liquid can indeed be related to the expansion of the liquid as

η = η0e
B

v0
vf , (2.20)

where η0 and B are constants, v is the specific volume, v0 is the specific volume at absolute zero,
and vf = v − v0 is the temperature-dependent free volume.94 Free-volume models have been further
refined, leading for example to Eq. (8.22).95–97 However, free-volume models are not applicable to
associated liquids, i.e., liquids with hydrogen-bond networks. The density anomaly of water, for
example, is incompatible with the monotonic slowdown of dynamics in free-volume models. Further-
more, the definition and determination of the free-volume in the different models is inconsistent.
For example, Voronoi tessellation can be used in simulations to calculate the volume of individual
molecules.98 In the same study, v2/3f was found to be more accurate and there is a linear relation be-
tween it and the Debye-Waller factor ⟨u2⟩, the vibrational displacement at short times, see Sec. 5.2.2.
In other words, ⟨u2⟩ is a measure of the expansion of the free volume.

This Debye-Waller factor is also a parameter in many elastic models.31 Their main feature is the
connection of fast vibrational dynamics and slow structural relaxation despite the separation by
orders of magnitude. The dense packing in the supercooled regime leads to the so-called caging of
molecules. The translational motion of the particles changes from ballistic on very short time scales to
diffusive on long time scales. In the supercooled liquid, this transition is hindered by the neighboring
molecules, which form a cage and cause a significant energy barrier for translation. As a result, the
respective decays of correlation functions due to vibrational motion and structural relaxation separate
in time, see Fig. 2.3. It was originally proposed that the molecules probe and, thus, quantify the
surrounding potential energy landscape of the cage via local vibrations.99 The amorphous structure
leads to complicated potentials that are approximated by harmonic functions for small displacements.
The resulting spring constants determine ⟨u2⟩, which in turn acts as a probe for the local potentials
and defines the elastic behavior of the system. This leads to the prediction known as the harmonic
approximation,99

η = η0e
a2

⟨u2⟩ , (2.21)
with a as the constant inter-molecular distance. Despite their differences, the free-volume models
and the elastic models have similar results.
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Another example of elastic models is the shoving model, which assumes that relaxation events in
the supercooled regime require the nucleation of a free volume into which a molecule can move.100,101
The cost associated with such a rearrangement is caused by shearing of neighboring molecules and,
since the shoving model views viscous liquids as solids which flow, is given by the instantaneous
elastic shear modulus G∞:

τ ∼ e
VcG∞(T )

kBT , (2.22)

where Vc is a temperature-independent microscopic volume. The increase of G∞ upon cooling causes
the super-Arrhenius temperature dependence of τ . Recent studies have argued that instead Gp, the
height of the post-vibrational plateau in the transient elastic modulus, is a better choice.102,103 In
fact, they propose a non-linear relation between the activation energy and Gp.

The localization model generalizes Eq. (2.21) by assuming non-isotropic and possibly fractal shapes
of the free volume.104 Including the finding of a possible onset temperature TA, which qualitatively
separates the simple-liquid and viscous regimes by their dynamical behavior,105 leads to a simple
relation:

ln
τ(T )

τ(TA)
=

(︃
⟨u2(TA)⟩
⟨u2(T )⟩

)︃γ/2

− 1 , (2.23)

with the generalized exponent γ. The exact functional form is still unsettled, as for example Puosi et
al. propose a generalization using higher moments of ⟨u2⟩.106

Finally, a more analytical model is the elastically collective nonlinear Langevin equation (ECNLE)
theory.107,108 It attempts to overcome the limitations of MCT by calculating energy barriers for
collective rearrangements below Tc. Each particle i is caged by its neighbors and is thus subject to a
potential modeled by the so-called dynamic free energy Fdyn,i(ri(t)), where ri(t) is its displacement
|r⃗i(t)− r⃗i(0)|. Fdyn incorporates a barrier ∆F that must be overcome and a minimum inside the cage
that characterizes the localization of the particle on short time scales. In addition, a free volume
beyond the energy barrier must be created. ECNLE theory proposes small but collective displacements
which decay in amplitude with r−2. Hence, all other particles pay a dynamic free energy cost in their
respective potentials Fdyn,i(ri(t)). This displacement is small and elastic and can be approximated by
harmonic potentials. The total barrier for rearrangement consists of the initial barrier ∆F and the
integral over the elastic displacement field Felastic. The ECNLE theory adopts Kramers’ theory and
predicts:109,110

τ

τs
=

2π√
K0KB

exp
(︃
∆F + Felastic

kBT

)︃
. (2.24)

τs is a short-time process and K0 and KB are curvatures of Fdyn. At higher temperatures, ∆F
dominates, while Felastic grows faster upon cooling or increasing packing fractions. While the model
does not explicitly derive one, it raises the question of the existence of an elastic correlation length
that characterizes the extent of collective participation of particles in rearrangement events.111

This brief overview shows the relevance and success of theories based on concepts of elastic or
free volume, but also that they are still the subject of active research and that there are further but
divergent developments.

2.2.5. Empirical model by Schmidtke et al.

Finally, there are empirical models, or rather functions, that characterize the temperature dependence
of viscous liquids without being derived from physical arguments, for example the model by Schmidtke
et al.37 As shown in the previous sections, several models are often applicable only to a certain
temperature range. For example, MCT works above Tc, while the VFT equation in the AG model
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is derived near Tg. Instead, this empirical model characterizes the entire temperature range from
the ”boiling point to the glass transition”.112 The authors criticize the lack of attention to the high-
temperature regime, which can be well described by an Arrhenius law. Hence, deviations in the
temperature dependence in the supercooled regime are attributed to the cooperative nature of
relaxation events, which are represented as a temperature-dependent activation energy Ec(T ) that
vanishes at high temperatures. The ansatz is

τ = τ∞e
E∞+Ec(T )

T , (2.25)

where τ∞ and E∞ are the parametrizations of the high-temperature Arrhenius regime. Splitting the
total activation energy in this way has been used successfully in other models before, for example to
separate the influence of pressure and temperature.113 Ec can be obtained from the available data
by rewriting the formula,

Ec(T ) = T · ln
(︃

τ

τ∞

)︃
− E∞ . (2.26)

Combining dielectric spectroscopy and dynamic light scattering data revealed an exponential tem-
perature dependence for Ec(T ) for a large number of molecular glass formers and even poly-
mers:37,112,114,115

Ec(T ) = E∞ · e−µ(T/Tx−1) . (2.27)

Here, µ can be interpreted as a generalized fragility parameter and Tx is a reference temperature.
In the above case, this temperature is the isoenergetic point at which Ec is as large as the high-
temperature activation energy E∞.

The ratios E∞/Tg were found to be about 11 for a variety of molecular glass formers and 16
for polymers.37,115 This suggests a deeper connection of the interaction strength of particles in the
simple-liquid and in the supercooled regime, and even allows rough estimates of the glass transition
temperature from measurements in the simple-liquid regime alone. However, this ratio depends on
the dynamical property probed and the thermodynamic ensemble.116 Subsequent studies found an
exponential temperature dependence of Ec also for associated liquids, water and silica.117,118 This
is only true for the moderately supercooled regime because both liquids appear to transition from
fragile to strong behavior upon further supercooling, see Sec. 2.3.4.118–121 In this case, Ec becomes
more complex than Eq. (2.27) and requires an additional parameter.38,120 These observations are
the subject of Ch. 8, where this family of empirical models is studied.

2.3. Supercooled water and polyamorphism

Since water makes up the majority of the studied liquids, this section introduces its anomalous
properties relevant to this work.

2.3.1. Supercooled water

Water is a truly special liquid.1* It has the lowest molecular weight of all molecules that form a
liquid phase under atmospheric conditions. It has a very high dielectric constant and defies melting
and boiling point expectations1 for its weight. In fact, it occurs on Earth in the crystalline, liquid
and gaseous phase. Its most famous anomalies are the density maximum at 277K and a crystalline

*An extensive collection of information on water and references can be found on https://water.lsbu.ac.uk/
water/
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phase with lower density than the liquid.122 This allows bodies of water to freeze over while liquid
water with a temperature of 4 °C exists at their bottom. Water exhibits extreme polymorphism with
currently 20 different known crystalline phases.123,124 Water has a very high heat capacity, heat of
vaporization, and surface tension.1 When water is compressed, dynamical properties speed up in
contrast to the slowdown common to other liquids, i.e., water has an anomalous pressure dependence
of dynamics. And this list of anomalies is not exhaustive. It is believed that the ability of water
to form a hydrogen-bond network is responsible for most of these anomalies.1,125 And all these
phenomena arise from the many-particle physics of the small and simple H2O molecule. This does
not even include the overwhelming numerous phenomena that occur when water is mixed with other
molecules, such as in the hydration of proteins in living cells. In fact, several of water’s anomalies,
such as the high polarity and density anomaly, are thought to be responsible for the possibility of the
existence of life.1

Initially, it appears that water can be supercooled like most other glass formers. However, its
anomalous behavior becomes more pronounced in the supercooled regime.2 In fact, it is currently
believed that the origin of many of the anomalies of water lies deep within its supercooled regime.
Extensive research is being conducted, and a wide range of phenomena and findings has been re-
ported.2,126 However, the study of water’s supercooled regime is far from straightforward and to date
defies comprehensive description. Water can be moderately supercooled by reducing the probability
of heterogeneous nucleation with distilled water in clean containers. Interestingly, measurements of
thermodynamic response functions found temperature dependencies for density, viscosity, isother-
mal compressibility, and other observables that are consistent with their divergence upon further
cooling.127 However, the lowest temperature that can be reached is about 235K, even with careful
experimentation. At this point, the homogeneous nucleation rate becomes so high that measure-
ments cannot be performed before the sample freezes. This is about the same temperature at which
supercooled water occurs in nature, at ∼236K in micrometer-sized droplets in convective clouds.128
Similar experiments with evaporative cooling of droplets in a vacuum chamber reduced the homo-
geneous nucleation temperature TH to 228K.129,130 Also, TH is reduced at elevated pressures and
has a minimum of 181K at 2 kbar,131 but experiments performed by cooling pure water below this
homogeneous nucleation line in the phase diagram are impossible.

Therefore, water’s supercooled regime was also approached from below. Glassy water was initially
produced via vapor deposition and hyperquenching.132,133 Upon heating, a glass transition was
found at Tg ≈ 136K. Supercooled water is achieved with further heating until it inevitably freezes
again at about Tx ∼ 150K. Nevertheless, measurements can be performed within this narrow
temperature range. The region in-between, ∼150–230K, has been termed no-man’s land, see Fig. 2.6.
Attempts have been made to enter the no-man’s land, e.g., with nanoporous confinements,134,135
laser heating,20 or eutectic solutions.136,137 All of these have in common that they potentially alter
the behavior of water and the observations may not be representative of the bulk phase. Findings
within the no-man’s land are discussed in the following sections.

Subsequent experiments with glassy water and its glass transition at different pressures and with
different preparations surprisingly revealed multiple amorphous phases with different Tg.138,139 If
water has multiple amorphous glassy phases, it may as well have distinguishable liquid phases. In
fact, scientists such as Harold Whiting and Wilhelm Röntgen attempted to explain anomalies of
water over 135 years ago by describing it as a mixture of liquid and ice-like molecules.140,141 And 30
years ago, it was proposed based on simulations that water might have not only two liquid phases,
but even a liquid-liquid phase transition (LLPT) that terminates in a second critical point (CP) at
elevated pressures in the no-man’s land, see Fig. 2.6.5
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2.3.2. Water’s two liquid phases
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Figure 2.6.: A sketch of the phase diagram of amorphous water, inspired by Stanley et al. (2000)142

and extended along the lines of Tanaka et al. (2020).7

Water has the potential for up to four energetically favorable hydrogen bonds with neighboring
molecules. This favors tetrahedral local structures and a hydrogen-bond network that spans the
entire liquid, see Fig. 2.7. Such tetrahedral local structures have large voids, resulting in lower
density compared to sphere packing. The repulsive forces between the oxygen atoms due to the
Pauli exclusion principle and their electrons would allow even denser packing if the Coulomb
interaction and hydrogen bonds did not interfere. Hence, pressurizing the liquid distorts these
tetrahedral structures and eventually increases the coordination number above four.143 In addition,
ambient temperatures are sufficient for defects in the hydrogen-bond network and tetrahedral
structures, resulting in some of the water molecules not participating in four H-bonds. Based on this
already existing observation of different local structures in water and their pressure dependence, the
proposition of the existence of two amorphous states may seem reasonable. Water molecules can
participate in a low-density structure (LDS) or a high-density structure (HDS), see Fig. 2.7. Water can
then be a low-density liquid (LDL) or a high-density liquid (HDL) for a high or low concentration of
LDS, respectively.6,125,139,142,144 This phenomenon is known as liquid polyamorphism,7 see Sec. 2.3.3,
and not to be confused with the polymorphism of the ice phases of water.

There are several additional indications of the existence of the two phases of water. One is the
finding of the amorphous phases.6,13,145 They are called low-density amorphous ice (LDA) and high-
density amorphous ice (HDA). In fact, experiments showed a pressure induced first-order like phase
transition between LDA and HDA.145 Depending on pressure and preparation, there exist several
other amorphous states: hyperquenched glassy water (HGW) from splat cooling, amorphous solid
water from vapor deposition, very high-density amorphous ice (vHDA), transformation of hexagonal
ice to unannealed HDA (uHDA), and the expanded HDA (eHDA) by relaxation of uHDA.139 Depending
on the preparation of HDA, it was also questioned whether it truly represents HDA or just a collapsed
form of ice.123 In general, the categories LDA, HDA, and vHDA are states distinguishable by their
pair-distribution functions with zero, one, and two interstitial neighbors.139 Moreover, unlike the
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2.3. Supercooled water and polyamorphism

transformation between LDA andHDA, the transformation betweenHDA and vHDA is continuous, and
thus vHDA is unlikely to be associated with a third liquid phase separated by a phase transition.139,146
Evidence of a first-order phase transition between LDL and HDL, and, thus, an LLPT, is scarce. For
example, when HDA is heated above its Tg and the pressure is reduced, it can also transform into
hexagonal ice. Nevertheless, X-ray scattering revealed two values for water dynamics during this
transition.21 Furthermore, X-ray scattering on HDA samples heated with femtosecond infrared laser
pulses detected the transformation to LDL within the no-man’s land before crystallization sets in.129

The existence of two phases in the supercooled regime of water would be a reasonable explanation
of water’s anomalies and the apparent divergence of thermophysical properties. The length scales
of the fluctuations between LDL and HDL would grow close to the LLCP and LLPT line where they
diverge. The continuation of the LLPT line, called the Widom line, into the one-phase region of
the phase diagram is probably much closer to TH.40,147–150 One would observe a maximum in the
correlation length on the Widom line, which often coincides with maxima in thermodynamic response
functions which can be observed.151 The magnitude of this effect depends on the distance from the
LLCP. However, fluctuations in LDS and HDS concentrations without an LLPT can lead to similar
observations.

Figure 2.7.: Open tetrahedral con-
figuration (top) and dense con-
figuration with five next neigh-
bors (bottom) from MD simula-
tions.

Several scenarios for the apparent critical behavior of water in
its supercooled regime have been proposed in the past.125 The
first is a retracing liquid-vapor spinodal or stability limit conjec-
ture of Speedy152 causing the divergent behavior. This has been
refuted since it does not agree with newer experimental obser-
vations.2 The second-critical-point scenario was proposed by
Poole et al. about 30 years ago.5 An alternative was the critical-
point free scenario, which proposes that the LLPT line enters
negative pressures where it meets the liquid-vapor spinodal
(LVS) without terminating in a second CP.153,154 And finally, the
singularity-free scenario of Sastry et al., in which the existence
of a density maximum and other anomalies are explained with-
out the need for a singularity in the supercooled regime.2,155
The most favored scenario today is the second-critical-point sce-
nario which remains consistent with experimental observations.
However, the truth is unfortunately hidden in the no-man’s land
and the existence of the LLPT of water remains controversial,
in particular, because it is often difficult to fully exclude effects
from an onset of crystallization.14

Besides experimental evidence, numerous observations from
simulations also support the second-critical-point scenario.
While it is possible to freeze water in MD simulations,156 the
small volume, purity, and short time scales allow supercooling
well below the experimental TH, i.e., into the no-man’s land.3,4,157 There is no single water model
that matches all experimental observations perfectly and can be relied upon to extrapolate to ex-
perimentally inaccessible regimes. However, an LLPT or even LLCP has been found for a number
of water models: TIP4P/2005,158–162 TIP4P/Ice,162 TIP5P,161 WAIL,163 E3B3,164 and ST2.5,165–168
An LLCP was also found in simulations for atomistic liquid silica, which also forms tetrahedral local
structures of silicon atoms linked by oxygen atoms.4,25,169 The observations are often unambiguous,
e.g., phase flipping between LDL and HDL, crossing of isochores and discontinuities in the density
of isobars, or two minima in the free energy landscape. Of course, the simulation results have also
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been challenged with the discussion of crystal-like clusters,170–172 and the coarse-grained mW water
model has no LLCP because the entropy of mixing of LDS and HDS is too high.173 And in the case
of the SPC/E model, the existence of an LLCP was deemed likely but predicted at computationally
inaccessible temperatures.22

Some further insights could be gained from the study of water at negative pressure. This state of
stretched liquids can be achieved for example by the so-called Berthelot tube method.174,175 The
LVS can then be found as the line of lowest pressures at which the liquid remains stable against
cavitation.174 Tracing the LVS and water’s anomalies to negative pressures completes the phase
diagram of water at least above TH.175,176 For example, the line of density maxima exists even at
negative pressures down to -140MPa,177 Considering the additional data also refines thermodynamic
models of water.176 Of course, experimental observations are again particularly difficult because it is
double metastable at negative temperatures and pressures, when it is simultaneously supercooled
and stretched.

2.3.3. Polyamorphism

In contrast to polyamorphism, the polymorphism of crystals is more commonly known, the best
example of which is water.123,124 Rather special transitions are, for example, superfluidity of H2 or the
superconductivity of amorphous metals. Polyamorphism and transitions between simple amorphous
states without such special properties have not been studied as much and as long. Early ideas invoked
the existence of local crystal structures and defects in the liquid phase.178 Most commonly, transitions
between amorphous states induced by pressure are observed.179 Hence, density is often used like an
order parameter. It would be more accurate to quantify a microscopic state as an order parameter.
However, local crystal structures should not be used because crystal structures are not required in
some of the following examples.

More specifically, these amorphous transitions are observed in single-component liquids extending
to liquids that cannot phase separate, e.g., ionic liquids.180 In some regions of the phase diagram
they appear to be first-order like. But even without a discrete transition, polyamorphism can lead to
phenomena similar to those observed in water.181 One difference between polyamorphic transitions
in glasses and liquids is that the former are far from equilibrium. A second glassy phase could also
be only dynamically stable with respect to a crystalline phase. Transitions in the liquid phase must be
reversible and require at least metastability.

How polyamorphism is thermodynamically allowed in equilibrium and can have a first-order phase
transition is shown in the following theoretical description. In a mean-field approximation, the Gibbs
energy per molecule can generally be written as follows:182

G(P, T, φ) = G0(P, T ) + kBTf(φ)− hφ , (2.28)

where P , T , and kB are pressure, temperature, and the Boltzmann constant, respectively. The order
parameter φ of the transition enters in combination with a thermodynamic ordering field h and a
function f(φ) which converts the order parameter into thermodynamic quantities. Since liquids are
amorphous and isotropic, φ can be assumed to be scalar, although it may be a vector in the case of
symmetry breaking, e.g., with magnetization. In the case of polyamorphic liquids, the ordering field
is probably a function of temperature and pressure.

In the case of liquids and with the observation of different microscopic structures in mind, the
order parameter can be defined as a quantitative measure of different local states A and B, e.g.,
the fraction x = φ of state B. These states may be different arrangements of next neighbors or
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2.3. Supercooled water and polyamorphism

types of inter-molecular bonding. This leads to the so-called two-structure equation of state (TSEOS)
formalism, which has been successfully applied to water in the past.161,168,173,182–188

In chemical reactions, the conversion A ⇌ B would involve the breaking of covalent bonds.
This is not necessary in polyamorphism. Given the equal stoichiometry, the Gibbs energy can then
alternatively be written as

G(P, T, x) = GA(P, T ) + xGBA(P, T ) +Gmix(P, T ) . (2.29)

GBA = GB − GA is the difference of the Gibbs energies of the pure states and equivalent to −h in
Eq. (2.28) while the Gibbs energy of mixing Gmix represents kBTf(φ)− hφ. Replacing Gmix with a
form containing the symmetric entropy of mixing yields a form typically used to describe binary
mixtures,

G(P, T, x) = GA(P, T ) + xGBA(P, T )

+ kBT [x lnx+ (1− x) ln(1− x) + ωx(1− x)] . (2.30)

The nonideality of mixing ω can be enthalpic168 or entropic185 in nature or both depending on its
temperature dependence. In the above definition, a purely entropic nonideality would be found
for a temperature-independent ω. The determination of GA, GBA and ω remains and an empirical
modeling for the polyamorphism of water can be found in Sec. 7.2.2. For liquids in equilibrium, the
concentration x takes on its equilibrium value, which is given by the condition 1

kBT

(︁
∂G
∂x

)︁
P,T

= 0. This
leads to the condition

−GBA(P, T )

kBT
= lnK(P, T ) = ln

x

1− x
+ ω(1− 2x) , (2.31)

where K(P, T ) is the reaction equilibrium constant. A phase transition can occur on the line of
lnK(P, T ) = 0, i.e., where GBA vanishes, when two solutions for x exist, which requires ω > 2. For
ω ≤ 2, the two liquid phases cannot separate and a continuous transition is observed upon crossing
lnK(P, T ) = 0. These conditions define the LLPT line and the Widom line, respectively. Polyamorphic
transitions in the above model are simply paths in the phase diagram where the concentration of
states A and B changes rapidly. In such cases, anomalies such as maxima in density or heat capacity
can occur.

The phenomenological similarities with chemical reactions, the interconversion A ⇌ B, mean that
single-component liquids with polyamorphism can be thought of as reactive mixtures. Conversions
occur and the macroscopic concentration of A and B is not constant with temperature or pressure.
At the same time, A and B may mix or phase separate. Another approach by Tanaka and coworkers
focusing on bond ordering as the order parameter is also insightful but will not be discussed further
as it goes beyond what is required for the present work.7

The picture derived above can be applied to water. In this scenario, two local structures, one spacious
and with low energy the other compressed and with higher energy, compete. Their difference in
Gibbs energy leads to phenomena of polyamorphism and, if large enough, a true phase transition.
This could be demonstrated even with a very minimal model.181 The two states are LDS and HDS,
i.e., local structures consisting of several molecules, and the two liquids are LDL and HDL with some
equilibrium concentration of LDS and HDS depending on the thermodynamic state (P ,T ). Of course,
water is not the only liquid for which polyamorphism has been found.7 Silicon and Al2O3-Y2O3 glasses
exhibit polyamorphism.189 Evidence of a first-order phase transition has been found for carbon at
5.6GPa and for gallium.8,190 Liquid phosphorus also has a transition to a dense liquid at about 1GPa
and 1000 °C where it reversibly polymerizes.9,10 The same phenomenon is found for sulfur.11 Even
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the comparatively large molecule D-mannitol has two amorphous phases with a density difference of
only 2.1%.191,192

Recent advances in the study of LLPTs are also due to the increase in computing power.193 Simula-
tions can reproduce findings for many systems, such as water, silicon, germanium, and silica and
can often enter regions in the phase diagram that are difficult to access for experiments.3,4,169,194,195
Polyamorphism is also found in simple theoretical models12,196 and in model systems such as tetrahe-
drally functionalized particles or the spherically symmetric Jagla model.197,198 And polyamorphism
in simulations of confined water monolayers leads to a whole new phase diagram.199

In addition, simulations allow systematic manipulations. The LLPT of silicon, simulated with the
Stillinger-Weber potential, vanishes when the three-particle repulsion parameter is reduced.200–202
And charge scaling of the Woodcock-Angell-Cheeseman model for silica led to the existence of an
LLPT in the accessible phase space.4,25,169 And for water, tuning of the HOH bond angle can make
the LLPT more or less pronounced.203 Hence, simulations together with a systematic variation of the
model parameters can be useful in studying liquid-liquid polyamorphism.

Despite the growing evidence in the last decades, there remain many challenges, experimentally
and theoretically.7,204 And constantly new observations of polyamorphism in different systems may
mean that it is less rare than previously thought.

2.3.4. Water dynamics in the supercooled regime
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Figure 2.8.: Relaxation map of water under different thermodynamic conditions and in various
nanoscopic environments. The data was taken from the following literature: bulk water
from Qvist et al. (2012),205 ice Ic, HDA and LDA from Amann-Winkel et al. (2013),13 vHDA
from Andersson et al. (2006),206 self-diffusion coefficients from crystal growth from Xu
et al. (2016).20 MCM-C10 denotes confinement in silica pores with a diameter of 2.1 nm
from Steinrücken et al.207 The solid black line is a fit with the VFT equation to the bulk
data.

Not only are the thermodynamic and structural properties of water complex, as discussed above,
but measurements of dynamics also reveal anomalous behavior. The first problem arises when one
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attempts to reconcile the glass transition at 136K with measurements of the α-relaxation time τα
above the no-man’s land. Above 235K, the temperature dependence of τα can be described by the
VFT equation, but extrapolation to 100 s gives a much higher glass transition temperature than
136K, see Fig. 2.8. It follows from this extrapolation that water is a very fragile glass former, in
fact one of the most fragile liquids.40 The discrepancy in Tg could be resolved if the temperature
dependence of dynamics in water changes in the no-man’s land. For example, a transition from super-
Arrhenius to Arrhenius behavior above Tg was proposed.40,208 This type of crossover in dynamical
behavior is also called a fragile-to-strong transition (FST). In support of such an interpretation is
an Arrhenius behavior of relaxation times measured with BDS for HDA and LDA just above their
Tg.13 In addition, the step at Tg indicative of the glass transition was found to be small and to extend
over a broad temperature range. Small differences in specific heat capacity are commonly found in
strong liquids.138,209 Indeed, observations of dynamic crossovers in LiCl solutions could be made136
in simulations of water models.210 On the other hand, these findings may also argue against a
connection between the dynamics of water above the no-man’s land and its glassy counterpart. Such
controversies are discussed in more detail below.

Conveniently, silica, SiO2, and water have many similarities.211 Both are tetrahedral network
formers and silica shares polyamorphism,4,212 it shows signs of an FST in simulations,149,213,214 and
it is a super-strong liquid near its Tg.215 A simultaneous explanation of both therefore argues for a
connection to the LLPT.154,213

Liquid-liquid polyamorphism can indeed lead to unusual dynamical behavior. It was argued that
the LDL phase has high tetrahedral order and lower and less temperature dependent entropy while
the more disordered HDL phase has higher entropy.208 Adam-Gibbs theory predicts that these liquids
are strong and fragile, respectively. While this idea was proposed by Austen Angell to explain water
in particular,154,208 a second low temperature Arrhenius regime is generally expected for any liquid
with non-vanishing and nearly constant configurational entropy.39 If water is in an HDL-like phase
around its melting temperature above the Widom line while it is LDL and LDA near Tg at atmospheric
pressure, a liquid-liquid transition would automatically produce an FST. This would introduce a
so-called dynamical Schottky line,7,120,121 a line in the phase diagram where dynamical fluctuations
have a maximum and the slope of τα is highest in the Arrhenius plot. At temperatures below this
line, the slope decreases and the dynamical behavior becomes strong.

Experimental evidence of different dynamics of LDL and HDL exists. Primarily, the glass transition
temperatures of LDA and HDA are different.13,216 Tg of HDL is lower than for LDL, 122K vs 136K,209
implying that molecular mobility in HDL is higher in the temperature range above Tg. There is a
temperature range near Tg where the transformation kinetics to ice are slow enough that relaxation
processes can be studied.18 BDS measurements on LDA and HDA heated above their Tg showed
Arrhenius behavior for both with similar activation energy but separated by two orders of magnitude,
see Fig. 2.8.13 Thus, both LDL and HDL are strong liquids, which is not consistent with the explanation
of the FST above. The τα of heated vHDA at 1GPA has a similar temperature dependence but lies
in-between HDA and LDA at this pressure,206,217 possibly because at such high pressures water
returns to the pressure dependence of dynamics of regular liquids.

Empirical functional forms have been derived to characterize the temperature dependence of water.
Caupin and coworkers successfully described the temperature dependence of the dynamical properties
of water in the moderately supercooled regime by treating water with a two-state model.218,219
Similar to the thermodynamical treatment above, a temperature-dependent concentration models
the transition from HDL to LDL across the Widom line. In their model, LDL and HDL are described
by an Arrhenius and VFT equation, respectively. They argue that the very fragile behavior above the
no-man’s land cannot be attributed to either phase and is a consequence of the liquid-liquid transition.
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Tanaka and coworkers treat HDL with an Arrhenius equation instead of a VFT equation but arrive
at the same conclusion for the FST.119–121,220 Both models are capable of describing the dynamics
of water over a wide range of temperatures but are not consistent with the finding of Arrhenius
behavior for HDL with similar activation energy as LDL above Tg. A more detailed discussion of these
models can be found in Sec. 7.6.

Overall, progress has been made in understanding the dynamics of water in its supercooled regime.
However, the FST remains hidden in the no-man’s land and the true temperature dependence of
the dynamics in HDL and LDL in the entire supercooled regime cannot yet be determined. The
determination of diffusion coefficients from recrystallization after laser heating of ice has partially
closed the gap and results are compatible with other measurements of dynamics.20 However, it is
questionable whether they represent the bulk dynamics of liquid water under these conditions. In
fact, many of the above claims have been questioned. In particular, it has been argued that above
136K only rotational mobility remains and passes experimental time scales upon cooling, and thus
this is not the true glass transition where structural relaxation arrests. The true Tg is thought by
some to be at much higher temperatures. Unfortunately, experiments, e.g., 17O field-gradient NMR,
that directly determine the self-diffusion coefficients of oxygen atoms are difficult or impossible at
temperatures where dynamics are so slow or before the onset of homogeneous crystallization. Slow
diffusion of protons can also occur by other mechanisms, e.g., the Grotthuss mechanism.221

Assuming that translational motion associated with structural relaxation does not occur, the
scenario of a shadow glass transition was proposed.208,222 The step in DSC upscans at 136K is weak
and broad compared to other glass formers and it appears that the enthalpy of the hyperquenched
glassy water is not fully relaxed before crystallization sets in at ∼150K. Thus, it was suggested
that Tg is higher, at about 165K, and hidden by crystallization. A higher Tg is also supported by
the simplification of the explanation of the dynamics of water since an FST and polyamorphism
would no longer be necessary to explain the observations. However, the same broad and small step of
∆cp ≈ 1 JK−1mol−1 can be used to argue for the strong behavior of water above its Tg.138,209 Later
measurements with water mixtures argue against a Tg above 160K.223 A small ∆cp is also found at
the rotational glass transition, the freezing of rotational mobility, in some ice phases of water and
is close to that for LDA. However, lower estimates for ∆cp of HDA are 3.6 to 4.8 JK−1mol−1, about
five times larger than the values for ices.13,138 An onset of translational motion in the HDA-HDL
glass transition is therefore likely. Note that typical values for ∆cp of fragile glass formers are about
100 JK−1mol−1.13

Further controversy was caused by DSC measurements of isotope effects. Deuterated water should
have a higher moment of inertia than protonated water while H18

2 O has higher inertia only with
respect to translation. For example, the expected isotope effect on the dynamics of water is

√︁
20/18

for rotation vs
√
2 for translation in H18

2 O and D2O, respectively.224 Accordingly, the rotational glass
transition of hydrogen-disordered ice VI is shifted to higher temperatures with respect to H2O for D2O
but not for H18

2 O. The same observation was made in DSC measurements above the glass transition
of LDA and eHDA and a rotational glass transition was concluded.16 The same shifts, or the lack
thereof, were also observed for tripropylene glycol and pentaethylene glycol water solutions.224
These findings are contradicted by the absence of proton/deuteron isotope effects in the HDA/LDA
transformation.18 This was interpreted as a rearrangement of the oxygen structure. Furthermore,
quantum effects are thought to be responsible for the large isotope shifts in water above its Tg.225
Finally, hydrogen bonds dominate the inter-molecular interactions and isotope effects for transport
properties are larger for D2O compared to H18

2 O above the no-man’s land.1,226

Direct experimental evidence of translational dynamics is still rare. Diffusion between H16
2 O

and H17
2 O doped layers above Tg was observed.19 The growth rate of ice after laser heating in
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the no-man’s land was taken as evidence of diffusion and the calculated self-diffusion coefficients
are consistent with expectations for an FST.20 Moreover, X-ray photon-correlation spectroscopy
revealed diffusive characteristics on nanometer length scales during the HDL-LDL transition.21 A lot
of questions are still open the study of dynamics of supercooled water. Given the difficulties in the
bulk, experiments have turned to water in more complex systems to avoid crystallization.

2.3.5. Water in confinement

Besides salty solutions or other aqueous mixtures, nanoscopic confinements are another method to
supercool water and enter the no-man’s land. Examples of such confinements are micelles, proteins,
clays, zeolites, or mesoporous silica. Numerous studies have been performed with various liquids
in confinement in the recent past.41,42,44 While this improves the general understanding of liquids
in confinement, which are actually common in nature, the relevant purpose for this work is the
suppression of the melting point for many liquids in severe confinement.

In particular, water has been studied extensively in mesoporous silica. The surface of these
cylindrical silica pores features silanol groups and is hydrophilic. Typical pore diameters range from
about 2.1 nm to 6nm or even larger sizes.134,135 Calorimetric studies revealed a suppression of the
melting point with decreasing pore size which can be described with a modified Gibbs-Thomson
relation.135,227 No calorimetric signature of freezing was found for pore diameters below 2.2 nm, i.e.,
liquid water can be studied within the no-man’s land.134

Experimental measurements of dynamics with quasielastic neutron scattering found a clear
crossover of dynamics at 220-230K,228 which was reproduced several times.134,229 It was concluded
that this crossover is caused by a high to low density transition of the confined water.134 Interest-
ingly, this temperature roughly corresponds to the temperature of divergence of thermodynamical
properties above the no-man’s land. However, the analysis of the experimental data was criticized
and no crossover was found in other systems such as hydrated proteins.230–232

On the other hand, a second dynamic crossover around 180K was observed by BDS and NMR
in confinement within graphite oxide, silica nanopores, clays, molecular sieves, gels, and hydrated
proteins.233–235 Proposed explanations range from a glass transition of the macromolecule to a
transition specific to the surface layer of water in contact with the confinement. Moreover, this second
crossover temperature was found to be dependent on the size of the confinement.234 Besides the
discussion of potential glass transition temperatures as cause of the apparent FST, partial freezing
in the confinements has also been considered as a possible reason. A freezing of the inner core of
the water in silica pores would cause a transition to surface water dominated dynamics even for
confinements with length scales larger than 2nm.236,237

More importantly, the nature of the measured relaxation processes was questioned similarly to
the rotational glass transition scenario at 136K above. From BDS data of water in silica pores, clays,
and molecular sieves, and from BDS and 2H NMR measurements of protein hydration water, it was
concluded that the α-relaxation arrests well above 136K and that the measured molecular mobility
results from a localized β-process.230–232,238–240 The BDS data are consistent with the characteristics
of an α-process at higher temperatures, while the lower temperatures are consistent with observations
for β-processes.230 The temperature dependence of τβ is an Arrhenius behavior that separates from
the α-process only at sufficient supercooling. An additional argument for a β-process may be the
sometimes reported crossover at ∼180K. When the α-process arrests at Tg, τβ commonly exhibits a
change in slope. Furthermore, 2H NMR results showed that the reorientation below 200K becomes
mildly anisotropic and consists of jumps about the tetrahedral angle, i.e., rotations in the tetrahedral
network.232 Recent NMR results for water in silica pores of 2.1 nm size at 155-160K suggest that
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any anisotropy, if existent, is very weak.207 Therefore, the following scenarios have been proposed to
explain the temperature dependence of measured relaxation times.17,241 It could be caused by the
polyamorphism of water and be a true FST. Another explanation is that translational and rotational
motion in water decouple anomalously somewhere in its no-man’s land. A third scenario is the arrest
of the α-relaxation at higher temperatures and the transition to measuring a β-process. All these
observations in confined water make the nature of the relaxation in heated LDA and HDA above Tg
even more disputable.

There is no question that confinements increase the complexity of liquid system and introduce
new phenomena.241 The above conclusions have not even taken into account the complex freezing
of water in confinement. It was argued that it freezes into stacking disordered layers of hexagonal
and cubic ice and there is ongoing conversion of molecules between ice and liquid.242,243 All of this
makes the finding of an apparently universal activation energy of the low temperature Arrhenius law
even more intriguing. Water dynamics measured in a large variety of aqueous systems have a value
of about 0.46 to 0.54 eV.17,229,234,238,240,241,244–247 Furthermore, the activation energy agrees quite
well with that of the process measured with BDS in HDA and LDA above their Tg, see Fig. 2.8, and
the relaxation times are in-between those of HDA and LDA.13 Understanding the relaxation process
of water and its nature within the no-man’s land, a local rotational β-process or an actual α-process,
in either bulk or in confinement may reveal much about its characteristics in the other.
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In physics, advances are usually achieved by the interplay of theory and experiment. Theoretical
models are accepted once predictions have been confirmed experimentally. Likewise, experiments
may observe phenomena that require modifications of existing theories or entirely new models. Each
approach is often complemented by simulations, a long existing method that has only grown in
importance over the last decades. Simulations can only show phenomena that can emerge from their
underlying theoretical models. At the same time, they produce data comparable to experimental
measurements. However, they are usually simplified or incomplete and many reproduce the true
observations from nature only qualitatively. Nevertheless, they offer many advantages over pure
theory and experiment. Simulations can provide data for systems that have no analytical solution,
such as most many-body problems. Their simplifications and well-defined nature allow for easier
disentanglement of cause and effect compared to experiments. Furthermore, model systems inac-
cessible to experiments are available and theoretical models can be scrutinized in an effective way.
Although they are limited by their computational cost, their potential will grow with computational
power over time.

In this work, classical molecular dynamics simulations,23,150,248 MD simulations in short, were
employed. As the name suggests, they generate the time evolution of a many-body system on the
microscopic scale. Several levels of detailedness exist: In principle, ab initio simulations are the most
accurate and require only the theoretical models relevant for the system. At the level of MD and
Monte-Carlo (MC) simulations, electrons and nuclei are merged into atoms.23,150 Merging atoms into
single particles is what is commonly referred to as ”coarse graining” and is also performed with MD
simulations. In each of these steps, degrees of freedom and details are lost in favor of a significant
decrease of the computational cost. Phenomena associated with the glass transition and studied in
this work occur for all kinds of molecules and, thus, detailed ab initio simulations are not necessary.
Still, interesting processes like chemical reactions or exchange of protons are also missing and would
require more sophisticated but time consuming simulations. The most significant limitation is that it
will remain impossible to cover 15 orders of magnitude in time, as is the case for dynamics in the
supercooled regime, and to investigate processes in the range of seconds for probably several more
decades into the future.

The simulations in this work are performed with the free open-source software package GRO-
MACS,150,249–254 developed and maintained by researchers worldwide. It provides an optimized
implementation for numerically solving Newton’s equation of motion, features many tools for manip-
ulation of data or analysis and is compatible with most force fields. The next sections will deal with
the relevant basics and applied algorithms of classical MD simulations. In-depth details and proofs
can be found in the cited literature.23,150,248,255
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3.1. Newton’s equations of motion

In principle, solving the time-dependent Schrödinger equation

ih̄
d
dt

|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ (3.1)

for the Hamiltonian Ĥ of the system with ab initio simulations would be most accurate. This is
computationally too expensive and unnecessary for the purposes of most studies. Instead, it is
assumed that velocities are non-relativistic and that atoms are always in their ground state. The Born-
Oppenheimer approximation allows for the separate treatment of electrons and atomic nuclei.256 It
states that the large difference in the masses between nuclei and electrons leads to separated time
scales of their motion and, thus, that the electrons immediately adjust to the motion of the nuclei.
By calculating the potential energy landscape for the electron wave function and then the effective
energy landscape of the nucleus, the Schrödinger equation can be simplified numerically. For MD
simulations, the electrons are finally dropped entirely and their negative charges are included into
the nuclei of the molecule according to the electron density, which leads to partial charges. With the
potential energy landscape,

Φ(r⃗1, r⃗2, . . . , r⃗N ), (3.2)

the force acting on an atom i can be derived,

F⃗ i = −∇⃗r⃗iΦ(r⃗1, r⃗2, . . . , r⃗N ). (3.3)

Finally, Newton’s equations of motion,

mi
δ2r⃗i
δt2

= F⃗ i , (3.4)

replace the Schrödinger equation. Alternatively, Langevin dynamics can be obtained by adding a
noise and friction term or Brownian dynamics can be applied to over-damped systems. An analytical
solution to this many-body problem is impossible and numerical integration is necessary. Even then,
system sizes range only from hundreds to several hundreds of thousands of particles, depending on
the purpose of the study. The spatial extend of the system is on the order of nanometers in each
dimension and simulations longer than microseconds are rare.

Integrators The leapfrog integrator is the algorithm applied in this work to solve Eq. (3.4),248 though
other algorithms, e.g., the velocity Verlet integrator,257 exist. It iteratively updates the velocities and
positions of all particles according to:

v⃗i(t+∆t/2) = v⃗i(t−∆t/2) +
∆t

mi
· F⃗ i(t) (3.5)

and r⃗i(t+∆t) = r⃗i(t) + ∆t · v⃗i(t+∆t/2) . (3.6)

Unlike Euler integration, the leapfrog integrator is of second order and can be stable for oscillations
in local potentials. The effective speed of the simulation, the achieved simulation time per real time,
is proportional to the step size ∆t. However, the largest possible step size is limited by the fastest
dynamical processes, e.g., harmonic oscillations of bonds on time scales t ∼ 2

√︁
m/k with k as the

spring constant. The details of the force field, the potential energy landscape of single molecules and
pair interactions of atoms, and the degree of coarse graining are therefore a compromise between
accuracy and speed.
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3.2. Thermodynamics

Energy minimization is an important additional application of Eq. (3.4) but does not produce
trajectories. Steepest descent iteratively updates positions according to

r⃗i,n+1 = r⃗i,n +
Fi,n

max(|F⃗n|)
dn , (3.7)

where dn is the maximum allowed displacement. Steepest descent or conjugate gradient can be used
to find a local minimum in the potential energy landscape and prepare the configuration for runs
with one of the integrators above.

MC simulations are not applied in this work, because they do not generate true dynamics.23,150
Rather than solving Newton’s equation of motion, the configuration is modified with small stochasti-
cally sampled displacements of particles. The energy difference before and after the displacement
determines whether the new configuration is accepted or discarded. Negative energy differences
are always accepted while positive differences may be accepted with the probability given by the
Boltzmann factor. Therefore, MC simulations still sample the microstates correctly and give correct
ensemble averages.

3.2. Thermodynamics

The following sections introduce basics about thermodynamic ensembles and methods to control
them in simulations.

3.2.1. Ensembles

The above definitions and algorithms simulate the system in the microcanonical ensemble, that is with
constant particle number, volume and total energy (NVE). This requires that only conservative forces
are applied. The temperature is free to change. The NVE ensemble rarely applies to experimental
conditions. Of interest in this work are instead the isothermal-isobaric (NPT) and canonical (NVT)
ensemble. The former corresponds to most common experimental conditions. Temperature and
number of particles are constant while the density relaxes to its equilibrium value for a given
pressure, in most cases atmospheric pressure. In contrast, the NVT ensemble has a fixed density
and the average pressure approaches the corresponding equilibrium value. The grand-canonical
ensemble, which would require insertion and deletion of particles, is not applied in this work. In
order to keep temperature or pressure constant, the system has to interact with a heat or pressure
reservoir. This is achieved with algorithms for a thermostat and barostat, see Sec. 3.2.2 and 3.2.3.

Each ensemble and finite energy or temperature allow for an infinite number of microstates in
phase space the system may visit. Their probability depends on the Hamiltonian of the system.
Observables are correct only if the simulation properly samples the microstates. Improper algorithms
may lead to correct average thermodynamic properties but incorrect fluctuations and, thus, wrong
thermodynamic derivatives of higher order. The following sections deal with ways to adequately
satisfy statistical mechanics.

Ergodicity In contrast to purely quantum mechanical systems, it takes infinite time to visit all
available microstates. Since this is not feasible in practice, it is assumed that sampling a large enough
number of microstates will eventually give the correct result within acceptable errors. This can
be achieved by multiple independent simulations or long simulation times. The latter have to be
significantly longer than correlation and relaxation times present in the system. For single-particle
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properties, a larger system can be equivalent to several independent simulations of a smaller system
as long as correlation lengths are small. Both give a statistical ensemble to be averaged over. An
important concept here is ergodicity. It states that given enough time a dynamical system will visit
all available microstates with their respective probabilities. For ergodic systems, the average over
independent particles is equivalent to an average over one particle in time. Therefore, long simulations
suffice for accurate measurements of observables in most cases.

System geometry The above equations of motion are in theory sufficient. However, N is usually
small and it is useful to have a limited phase space available, i.e., limited volume. The latter is
important, for example, for a liquid in a vacuum. Evaporation leads to a loss of particles making
this a non-equilibrium simulation. Walls may be introduced with artificial potentials creating a box
that confines the particles. Both, a vacuum and artificial walls introduce significant surface effects in
small systems. Surface effects as well as small system sizes can be avoided by application of periodic
boundary conditions (PBC). Particles leaving the box are replaced by a periodic image entering from
the opposite side. Interactions for each particle are calculated as if it was surrounded by infinitely
many periodic images of the same box. Triclinic unit cells fulfill the condition of tiling space. In
most cases, cubes or rectangular cuboids suffice. Unit cells leading to rhombic dodecahedra have
properties useful in special cases.

3.2.2. Thermostat

With time, the system explores the phase space and potential and kinetic energy are rapidly intercon-
verted by all particles. This leads to a correct average and huge fast fluctuations of temperature that
only decrease with increasing system size. However, drifts of the average temperature occur when
for example a simulation does not start in thermal equilibrium. Additionally, the numerical nature of
Eq. (3.5) allows for inaccuracies in velocities that add up over time in either direction, increasing
or decreasing the total energy. Furthermore, details of the interactions described in Sec. 3.3 are
relevant: potentials are not harmonic, constraints lead to small errors, and the buffer of the next
neighbor list is not perfect. Hence, an NVE simulation over very long times is practically impossible.

The temperature is defined by the kinetic energy and the equipartition theorem,

Ekin =
1

2

N∑︂
i=1

miv⃗
2
i =

1

2
NfkBT . (3.8)

Here, mi is the mass of each particle, Nf the number of degrees of freedom in the system and kB
the Boltzmann constant. Often, Nf is equal to 3N but it can be reduced, e.g., by constraining bonds
(Sec. 3.3.2). Following this definition, temperature coupling can be achieved by adjusting velocities.
The simplest algorithm is the Berendsen thermostat,258

dT
dt

=
T0 − T

τ
, (3.9)

with time constant τ and reference temperature T0, which introduces a weak coupling to a heat
bath. A corresponding scaling factor is applied to the velocities vi. This suppresses fluctuations in an
exponential manner but does not properly sample the thermodynamic ensemble. A better algorithm
is the Nosé-Hoover thermostat.259–261 It modifies Eq. (3.4) by an additional time dependent friction
parameter,

mi
δ2r⃗i
δt2

= F⃗ i −mi
pξ
Q

δr⃗i
δt

. (3.10)
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Here, the coupling to the heat bath is time dependent as dpξ/dt = (T − T0) and Q is an adjustable
parameter scaling the oscillatory behavior of the temperature. This modification becomes more
accurate when several heat baths are coupled in succession,262 a feature not implemented in the
used version of GROMACS. A newer alternative is the velocity-rescaling thermostat.263 It extends the
Berendsen thermostat, Eq. (3.9), by a stochastic process:

dEkin = (Ekin,0 − Ekin) ·
dt
τ

+ 2 ·

√︄
EkinEkin,0

Nf
· dW√

τ
. (3.11)

Here, Ekin,0 is the target kinetic energy related to the desired temperature and dW represents
Wiener noise. This thermostat gives the proper canonical ensemble. In contrast to the Nosé-Hoover
thermostat, it does not enable oscillations making it a more robust thermostat applicable to all systems.
Which thermostat was applied is given in the details of the simulations in Ch. 4. Lastly, velocities of
the particles can be randomized according to a Maxwell-Boltzmann distribution at the start of the
simulation when for example the initial conditions do not specify them.

3.2.3. Barostat

The pressure of the system is a tensor P and calculated as the difference between the kinetic energy
tensor Ekin and virial tensor Ξ,

P =
2

V
(Ekin −Ξ) (3.12)

=
1

V

N∑︂
i=1

⎡⎣−mi

(︁
vαi − ⟨vα⟩

)︁(︁
vβi − ⟨vβ⟩

)︁
+

1

2

N∑︂
j=1

(︁
rαi − rαj

)︁
F β
ij

⎤⎦ . (3.13)

V is the volume of the system, α and β denote the components of the vectors in Cartesian coordinates,
and F⃗ ij is the force between particles i and j. Hence, the pressure tensor quantifies whether particles
tend to push inwards or outwards and the pressure is negative or positive, respectively. The barostat
algorithm adjusts the box size accordingly. Weak coupling with a Berendsen barostat similar to
Eq. (3.9) is a robust solution but suffers from the same limitation when more accurate statistical
mechanics are desired. Instead, the Parrinello-Rahman barostat allows for fluctuations and oscillations
and produces proper sampling in the NPT ensemble.264,265 Similar to the Nosé-Hoover thermostat,
the equations of motion are modified by a virtual friction term caused by the rescaling of the unit cell
vectors,

mi
δ2r⃗i
δt2

= F⃗ i −mi
pξ
Q

δr⃗i
δt

−M
δr⃗i
δt

. (3.14)

M is a time dependent scaling factor derived from the equations of motion for the unit cell vectors.

3.3. Force fields

The force field defines the potential Φ and other interactions of particles that determine forces
and energies in the system. It contains functional forms, e.g., harmonic, of the potentials and
parametrizations that lead to an approximation of the true Hamiltonian. It may be derived by
matching reference data: forces from quantum mechanical calculations or experimental observations;
like structure via the pair-distribution function (Sec. 5.1.1), dynamics, enthalpy etc. Combinations of
this non-exhaustive list are advantageous. Several refinement steps with comparison to reference
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data are required to obtain the final force field. Because of these degrees of freedom, force fields
for MD simulations are only empirical. The force field also defines the degree of coarse graining,
e.g., united-atom force fields merge aliphatic hydrogen atoms with their carbon atoms, and whether
or not atoms are polarizable. Ideally, the force field is created in a way that allows the transfer to
chemically different systems and a wide range of thermodynamic conditions not contained in the
reference data.

The potential commonly consists of bonded and non-bonded interactions,

Φtotal = Φbond +Φangle +Φdihedral⏞ ⏟⏟ ⏞
Φbonded

+ΦCoulomb +ΦLJ⏞ ⏟⏟ ⏞
Φnonbonded

. (3.15)

These interactions and their potential forms will be defined in the following sections.

3.3.1. Non-bonded interactions

The implementation of MD simulations used in this work only supports pairwise-additive interac-
tions that are isotropic, Φ(rij). Higher functions with asymmetric forces will thus not be discussed.
Because the calculation of all pair contributions grows with ∼ N2, non-bonded interactions are the
computationally most expensive step. Therefore, they are only calculated up to a cutoff radius rc
beyond which corrections with more efficient algorithms are applied. One fast algorithm is the Ewald
summation: The periodicity of the actual system and its copies related by the PBC is used for a
spatial Fourier transform that allows for the separation of the sum of interactions with rij > rc into a
constant and two quickly converging terms. The particle-mesh Ewald (PME) summation speeds up
the Fourier transform by placing the particles on a discrete grid beforehand.266 For small system sizes,
the cutoff serves a second purpose: A cutoff smaller than half the shortest box dimension ensures that
a particle directly interacts only with the closest image of other particles, also known as the minimum
image convention. This reduces artifacts introduced by the PBC. For increased performance, the list
of next neighbors within the cutoff radius rc includes an additional buffer ∆r and is updated less
frequently.

Coulomb potential Ions and covalently bonded atoms with different electronegativity have whole
or partial charges, respectively. Partial charges of the atoms in covalent bonds are usually determined
using quantum chemical simulations. The potential contains all pairwise interactions between atoms
i and j,

φCoulomb(rij) =
1

4πϵ0

qiqj
rij

, (3.16)

where ϵ0 is the vacuum permittivity. Convergence for long distances is slow, because forces scale
with ∼ r−2 while particle count grows as ∼ r2. Still, Coulomb interactions converge for systems
without long-range order, e.g., liquids and glasses. Long-range interactions beyond the cut-off can be
calculated with the PME method, when the system is neutral, or with reaction-field methods and
permittivity ϵr.

Lennard-Jones potential The van der Waals force, more specifically the London dispersion force, is
the attractive force between polarizable atoms. Fluctuations of the electron cloud of an atom induces
correlated fluctuations in its neighbors that lead to a reduction of potential energy. This potential has
a very short range and scales with r−6. Note, that the dispersion force has to be considered especially
when the force field does not include polarizability. Furthermore, the Pauli principle causes strong
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repulsive forces when the electron clouds of two atoms overlap. Its treatment with an exponential
function would be more appropriate than a power function. However, squaring r−6 is computationally
faster and suffices qualitatively. This allows for the combination of both, van der Waals forces and
Pauli principle, into the Lennard-Jones (LJ) potential,267

φLJ(rij) =
C

(12)
ij

r12ij
−

C
(6)
ij

r6ij
. (3.17)

The coefficientsC(12)
ij andC

(6)
ij depend on the electron cloud of both atoms. The chemical environment

and covalent bonds may change these. Hence, several atom types of each element exist in the force
field, each with its own parametrization to account for different bonding partners. Coefficients for
interactions between different atom types can be specified but are for the most part calculated using
mixing rules. An alternative form is

φLJ(rij) = 4ϵij

(︄(︃
σij
rij

)︃12

−
(︃
σij
rij

)︃6
)︄

(3.18)

with σ and ϵ giving the position and depth of the minimum.
The short range of the LJ potential allows for treatment with a cutoff alone. However, long-range

dispersion forces are always attractive. They can be treated with PME or added analytically as

Elr. disp. = −2

3
πNnC(6)r−3

c , (3.19)

where n is the particle density. This applies only to homogeneous systems with no correlation beyond
the cutoff rc.

3.3.2. Bonded interactions

Intramolecular interactions are very strong and are a many-body problem in itself. They are not
pairwise-additive since quantum mechanical effects are relevant on this scale. The potential energy
landscape is better approximated by using an individual potential for each degree of freedom
between particles separated by up to three bonds. Non-bonded interactions are applied when atoms
are separated further. The degrees of freedom are bond lengths, bond angles, and dihedral angles and
depend on two, three, and four particle positions, respectively. For each of these, several functional
forms exist. Most common for bond lengths and bond angles are harmonic potentials,

φbond(rij) =
kij
2

(rij − rij,0)
2 (3.20)

φangle(ϑijk) =
κijk
2

(ϑijk − ϑijk,0)
2 . (3.21)

ϑijk is the angle spanned between the bonds ij and jk, rij,0 and ϑijk,0 are the equilibrium values of
the bond length and bond angle, respectively, and kij and κijk are the corresponding spring constants.
Potentials for dihedrals may also be harmonic to prevent torsions of the plane. However, cases with
multiple potential minima, for example for torsions of the C–C bond in ethane, exist. Such potentials
have the form

φdihedral(ϕijkl) = κijkl (1 + cos[nϕijkl − ϕijkl,0]) . (3.22)

ϕijkl is the dihedral angle between the two planes spanned by ijk and jkl, κijkl is a constant, and n
is the multiplicity of the potential.
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Constraints Vibrations of bonds have the highest frequency in the system, in particular when
hydrogen atoms are involved. Therefore, it can be useful to constrain such internal degrees of
freedom to their equilibrium position. This reduces the detail of the simulation but allows for larger
time steps ∆t of the integrator and, thus, increased performance. Algorithms for this purpose are
LINCS and SHAKE which are applied in between integration steps.268,269 For the special case of
water, the SETTLE algorithm analytically solves for constraints of both, the OH bond length and the
HOH angle, giving significantly increased performance.270

3.4. Simulation protocol

The typical simulation protocol is outlined here. Several steps can be taken to improve the quality of
the results and ensure reproducibility.271,272 For a new system, a starting configuration is randomly
initialized followed by a simulation in the NPT ensemble with the Berendsen thermostat and a
temperature corresponding to the liquid regime. In some cases, energy minimization is required
prior to the propagation of the system because of large forces from the randomized configuration.
For bulk systems, the number of particles is chosen such that the system size is at least 4× 4× 4nm3

or a thousand molecules. This ensures that finite-size effects are small but does not substitute for a
study of finite-size effects, which is necessary in some cases.

The simulation that generates the trajectory to be analyzed is called the production run. It is often
preceded by an equilibration run that allows the system to relax to the thermodynamic state point
(T ,P ). In particular, for isobaric simulation series the equilibration run applies the Parrinello-Rahman
barostat while the production run is in the NVT ensemble. Both ensembles are equivalent in the
thermodynamic limit and even for small but ergodic systems observables can be the same. However,
constant box dimensions allow for simplifications of the analysis code and the sampling of microstates
does not require fluctuations in density, which can become very slow in the supercooled regime.
This improves the data quality even if the average pressure in the NVT simulation deviates slightly.
Different state points are simulated in succession, starting each equilibration run with a configuration
from the closest state point. In this way, the local structure of the starting configuration does deviate
as little as possible from the new equilibrium.

The starting configuration for the production run is a frame from the NPT equilibration run with a
density close to the average value and at later times in the equilibration trajectory. It is found by
iteratively skipping parts from the start of the trajectory until the relative slope of the density is
below some small threshold. Because trajectories without velocities are saved, the NVT simulation is
initialized with randomized velocities. A fraction of the trajectory, approximately 10%, is skipped in
the analysis.

Simulation lengths are adjusted to the dynamics at each state point. To ensure that the equilibra-
tion is sufficient and that the production runs are representative, e.g., can be considered ergodic,
simulations are as long as 100 times the α-relaxation time. Alternatively, a minimum mean-squared
displacement, Sec. 5.2.2, of 5 nm2 or larger can be required.

The most used GROMACS versions in this work were 2016.3 and 2018.3. The newer version fixes
a bug concerning multiple time stepping with the Parrinello-Rahman barostat and Nosé-Hoover
thermostat. Specifically, the choice of parameters for both has different effects in older and newer
versions of GROMACS and thermodynamic sampling was not perfectly reproducible with the newer
version. Consequently, the simulation series are performed entirely with one of the two version and
Ch. 4 contains the corresponding information.
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This chapter presents the details of the simulations. The information necessary to reproduce the
data includes the force field, system composition and GROMACS input parameters (thermostat etc.).
Modifications made to the original force fields are presented. If not mentioned otherwise, simulations
followed the protocol detailed in Sec. 3.4.

4.1. Water models

Water’s anomalous behavior and extreme properties make it notoriously hard to model in MD
simulations. For example, water molecules form hydrogen bonds, which in various systems have
covalent character to some degree,273 and protons can hop between molecules via the Grotthuss
mechanism.221 Such effects are not taken into account in classical MD simulations. A 3-site model
with one particle for each atom in the water molecule has a small number of parameters that can
be adjusted. With this limitation not all experimental observations can be matched. 4- or 5-site
models with dummy particles introduce additional degrees of freedom to better match experimental
data. Dummy particles can be used for example for the two lone electron pairs of the oxygen atom.
Additionally, models may be rigid or flexible and can include polarizability. However, this increases
the computational cost at little increase of accuracy. On the other hand, coarse grained models of
water, e.g., the mW model,274 speed up simulations significantly but lose microscopic information. In
this work, the SPC/E (single point charge extended) and TIP4P/2005 water model were used.275,276

Figure 4.1.: 4-site model as used in the
TIP4P/2005 water model.

Created by Car McBride and published on
www.sklogwiki.org under license Creative Commons
Attribution Non-Commercial Share Alike (08.06.2009)

Table 4.1.: Parametrization of the SPC/E and
TIP4P/2005 water models.

SPC/E TIP4P/2005
σ in Å 3.166 3.1589
ϵ in kJ/mol 0.650 0.7749
rOH in Å 1.0 0.9572
rOM in Å 0.1546
∠HOH 109.47◦ 104.52◦
qO in e -0.8476 0
qH in e 0.4238 0.5564
qM in e -1.1128

A comprehensive comparison of water models was performed by Vega et al.277 In this comparison
of phase behavior, thermodynamic and dynamical properties, both, SPC/E and TIP4P/2005, perform
as well as other 3- to 5-site models. In particular, SPC/E outperforms some of the more complex
models in several properties, e.g., diffusivity, relevant to the present study. Both models are widely
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used in the literature and TIP4P/2005 may unofficially be regarded as the most reliable model. To
date, simulation results and experimental bulk data in the supercooled regime below 230K, the
no-man’s land, cannot be compared and it is unknown how well these models perform outside of
the thermodynamic regimes for which they were optimized. However, a perfect water model is not
required for the general study of the glass transition and behavior under charge scaling, detailed
below.

Table 4.2.: Parameters and simulations details with the SPC/E and TIP4P/2005 water models.
Parameter SPC/E TIP4P/2005 TIP4P/2005 (Ch. 7)
GROMACS 2016 2018
∆t in fs 2
rc in nm 1.2 1.0
PME grid in nm−1 0.12 0.16
Long-range LJ – PME
Ensemble NPT→NVT NPT|NVT
Thermostat Nosé-Hoover
τt in ps 0.4
Barostat Parrinello-Rahman
p in bar 1 -1000 …1500
τp, κ 5ps, 4.5e-5 bar−1

Natoms 12000 · 3 2000 · 4
Size ≈ 7.3× 7.3× 7.3nm3 ≈ 4× 4× 4nm3

q-range 0.7 …1.25 0.7 …1.5 0.86 …0.91

Both models are rigid with LJ interactions only between oxygen atoms. Intramolecular interactions
are, thus, non-existent. SPC/E is based on the SPC model with modified partial charges to account for
the missing polarizability. The opening angle between the OH bonds is perfectly tetrahedral, 109.47°,
instead of the experimentally observed 104.52°. It matches dynamical properties quite well but its
density maximum is at 240-250K.277–280 Also, its melting temperature of 215K is among the lowest
of all water models.277 Still, its low computational cost and widespread acceptance make this a useful
model. In particular, it has been used in previous studies of water in neutral confinements.50,281

The TIP4P/2005 water model is a reparametrization of the TIP4P water model. It is also rigid but
introduces a dummy atom that carries the negative charge. The opening angle is adjusted to the
experimental value of 104.52°. It reproduces dynamical quantities well and in contrast to SPC/E
matches the experimental temperature of the density maximum.277 Its melting temperature is at
252K. Another reparametrization, TIP4P/Ice,282 matches the melting temperature of real water but
performs worse overall.

Both models were mostly simulated without treatment of long-range LJ interactions beyond the
cutoff distance. However, simulations for the thermodynamic study of the two-phase behavior in
Ch. 7 require their calculation in order to be comparable to the literature. The simulation parameters
are presented in Tab. 4.2. These two simulation series with and without long-range LJ interactions
have little overlap and are analyzed separately.

Charge scaling A major topic of this work is the behavior of the water models under charge
scaling. As the name suggests, the partial charges on the atoms were scaled linearly with a charge-
scaling factor q. An alternative modification of water models would be adjustments to the geometry,
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e.g., changing the opening angle in a study of the ST2 water model.203 However, charge scaling
is more common and very effective in changing the system’s behavior.25,118,283 The single particle
structure remains unaltered for atomistic systems, rigid molecules, or dominating bonded interactions.
Structural changes are then solely caused by multi-particle effects from the modified inter-molecular
interactions. At the same time, the energy scale is strongly affected even if the structural differences
are minor. Hence, these systems provide insight into the dynamics of similar molecules with the same
mass but at different thermal energy when q is small and into structural changes when q is varied
over a wider range. The energy scale can also be changed with geometric modifications to a molecule,
but the effects are usually weaker and this cannot be done with atomistic systems. Charge scaling has
been successfully applied for example in studies of water,46,117 silica,25,118 an ionic liquid,283 and a
Kob-Andersen mixture.116

4.2. Other bulk systems

The following molecular glass formers complement the charge-scaled systems.

4.2.1. Glycerol

Table 4.3.: Simulation parameters and
simulation details for glycerol.

Parameter
GROMACS 2018
∆t 2 fs
rc 1.2 nm
PME grid 0.12 nm−1

Thermostat v-rescale
τt 0.5 ps
Ensemble NPT→NVT
Barostat Parrinello-Rahman
p 1 bar
τp, κ 5ps, 4.5e-5 bar−1

nst(p/t)couple 1
Temperature range 290-610K
Longest simulation 2.24 µs
Natoms 39200
Size ≈ 7.1× 7.1× 7.1nm3

Glycerol C3H8O3 is a polyol and because of its three
hydroxyl groups miscible with water. It has a weak ten-
dency to crystallize which makes glycerol a good glass
former, i.e., a liquid that can be easily supercooled and
studied. This and the fact that it can be studied with
manymethods, e.g., NMR, BDS, and DDLS,make it an of-
ten measured liquid since the early times of experiments
on supercooled liquids. However, its relaxation mecha-
nisms show uncommon behavior. Correlation times for
rotational dynamics are significantly shorter than ex-
pected with the Stokes-Einstein-Debye relation.284,285
This is attributed to the hydrogen-bond network present
in the liquid. Hence, while this molecule provides a solid
base for many different experiments it also exhibits un-
expected behavior in the supercooled regime which can
be used to more rigorously test models of the glass tran-
sition.

The parametrization of glycerol is based on the all-
atom description by Chelli et al.286,287 which was repa-
rameterized by Blieck et al.288 and later made charge-neutral by Egorov et al.289 This last one is the
version used in this study. Parameters of the simulation series with GROMACS are given in Tab. 4.3.
While all bond lengths have been constrained, the molecules were flexible with respect to bond angles
and torsions.

4.2.2. LJ (model) systems

The following three liquids were simulated in bulk and use the LJ potential exclusively. All molecules
are stiff by setting constraints for the bonds. While two of the three are based on real liquids, their
abstraction lets them only barely resemble their real counterpart and quantitative agreement is
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4. Systems

therefore poor. However, their simplicity and comparatively short-range interactions make them a
good complement to the water-like systems. Furthermore, simulations without Coulomb interactions
are significantly faster which makes these systems computationally more efficient. Simulation details
for all LJ systems are given in Tab. 4.5, and sketches of them are in Fig. 4.2.

Kob-Andersen 
mixture

LW-OTPDumbbell-
Molecules

A
B

A

A
A A B

C D

Figure 4.2.: Sketches of the three LJ systems. The relative size of the particles approximately
represents their LJ radius σ.

Kob-Andersen mixture The first LJ liquid was introduced by W. Kob and H.C. Andersen and is
based on the metallic system Ni80P20.290,291 It is thus atomistic and consists of an 80:20 mixture of A
and B particles. It is defined in reduced units with

length r̃ =
r

σAA
,

time t̃ = t

√︃
ϵAA

mσ2
AA

,

temperature T̃ =
kBT

ϵAA
,

energy Ẽ =
E

ϵAA
,

and pressure P̃ =
Pσ3

AA
ϵAA

.

Here, σAA and ϵAA are the LJ parameters of the A particle. In these units, the rest of the parameters
are σBB = 0.88, σAB = 0.8, ϵBB = 0.5, and ϵAB = 1.5, i.e., the parameters for particles A and C in
Tab. 4.4. Their masses are m = 1u and σAA = 1nm in the GROMACS simulations. If desired, the
results can be transferred to real systems, e.g., helium or Ni80P20.292,293 However, the absolute values
for these systems are not relevant for the present work. Instead, they were scaled to T = 500K · T̃
and D = 1

5
nm2

ps · D̃, where D̃ are self-diffusion coefficients in reduced units. This places them among
typical molecular glass formers and the charge-scaled water-like systems. More precisely, the Kob-
Andersen mixture has the same high-temperature regime as the original TIP4P/2005 water model at
atmospheric pressure with this scaling.

This system’s simplicity and very low computational cost compared to real molecules with partial
charges have earned it a spot among the most often simulated systems to date. It can be easily
supercooled and crystallizes only at very long simulation times.294 More importantly, it has shown
crossovers in the temperature dependence of several thermodynamic and dynamical properties
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4.2. Other bulk systems

at strong supercooling.294,295 In particular, the dependence of the activation energy of dynamic
observables on the reciprocal temperature appears to decrease at the lowest temperatures.

Roland’s Dumbbell-Mixture The next step are the smallest possible molecules, two bonded atoms.
These dumbbell-like shapes can either be symmetric or asymmetric with two different atom types.
Unfortunately, their tendency to crystallize is high, since they easily arrange on a cubic lattice. This
can be overcome in model systems where the size-to-distance ratio and the parametrization of both
atom types can be varied. Even then unimolecular systems crystallize easily, which is the reason
why Fradiagakis et al. created a mixture of two different asymmetric dumbbell molecules.296,297
They based the parametrization on the Kob-Andersen mixture, details are given in Tab. 4.4. One
small difference to the parametrization in the literature is that instead of the factor 0.4255 the not
rounded value 0.8/(1 + 0.88) was used for the mixing term of σ for AC, AD, BC and BD and σ was
then rounded to six decimal places. A 80:20 mixture as well as a pure system consisting of the larger
dumbbell molecule were simulated. Two different size-to-distance ratios, 0.45 and 0.6, were tested.
Of the two ratios, 0.6 was easier to supercool.

Table 4.4.: Lennard-Jones potential parameters
for the four atom types in the dumb-
bell mixtures.297 Reduced units as de-
fined for the Kob-Andersen mixture
are used.

σij A B C D
A 1.0
B 0.65 0.5
C 0.8 0.587234 0.88
D 0.612766 0.4 0.66 0.44
ϵij A B C D
A 1.0
B 1.0 1.0
C 1.5 1.5 0.5
D 1.5 1.5 0.5 0.5

Despite their apparent simplicity, dumbbell
molecules can show widely varying behavior de-
pending on their parametrization. They can show
isomorph scaling, i.e., invariance of static and dy-
namic observables in a phase diagram with re-
duced units.298 On the other hand, they can be
tuned to show a very pronounced three-step decay,
i.e., a β-process between the vibrational and ter-
minal decay, which was interpreted as the Johari-
Goldstein relaxation.297,299 In this case, dynamical
heterogeneity is further pronounced and above
the glass transition temperature only a fraction of
the molecules perform this secondary process.

Lewis-Wahnströhm – Ortho-terphenyl Ortho-
terphenyl (OTP) is a well-studied fragile glass for-
mer. It consists of three connected benzene rings
and has a for most purposes negligible polarity. It
has a melting temperature of 329K and glass transition temperature of 245K300 and can be easily
supercooled, which promoted its use in experimental studies. From a simulation perspective, the
molecule consists of more atoms and consequently pair interactions than necessary to understand
the emergence of its basic structural and dynamic behavior. Hence, Lewis and Wahnström derived a
simplified representation in which the molecule consists of three beads with rigid geometry and open-
ing angle of 75°.301 A single atom type with 76.768u, σ = 0.483Å, and ϵ = 4.98868 kJ/mol is used
for all three beads. These simplifications allow for significant reduction in computational cost while
retaining the basic behavior of the liquid. Like the dumbbell molecules above, the Lewis-Wahnström
OTP (LW-OTP) exhibits isomorph scaling.298

While the real OTP can be easily supercooled, the simplified LW-OTP is known to be able to
crystallize at low temperatures and for long simulation times.302 The temperature regime is therefore
limited to temperatures at which the system remained in the liquid state. The original parametrization
was developed with a fixed cutoff radius for pair interactions and neglects long-range LJ interactions.
To assure a more natural contraction with temperature, long-range LJ interactions were taken into
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account in the present simulation series. Hence, the results may be even further from experimental
results in the literature.

Table 4.5.: Parameters and details of bulk simulations with LJ liquids. The lowest temperatures for
the Kob-Andersen mixture and the LW-OTP were limited by crystallization.

Parameter KA mixture Dumbbell systems LW-OTP
GROMACS 2019.4
∆t in fs 5
rc 4σ 1.932nm
PME grid in nm−1 1σ/nm2 0.483

Long-range LJ PME
Ensemble NPT→NVT
Thermostat v-rescale
τt in ps 0.5 1.0
Barostat Parrinello-Rahman
p in bar 1
τp, κ 1.0 ps, 1.0e-4 bar−1 10.0 ps, 1.0e-3 bar−1

Temperature range 0.394-1.333 ϵAA 0.357-2.0 ϵAA 300-1020K
Natoms 4000 2000 · 2 6000 · 3
Size ≈ 15.5× 15.5× 15.5σ3 13× 13× 13σ3 13× 13× 13nm3

4.3. Neutral confinements

In this work, neutral confinement refers to nanoscopic geometries restricting the available space
of guest molecules without introduction of spurious interactions. In order to achieve this, neutral
confinements consist of the same molecules and composition as the confined liquid. These molecules
have restricted mobility such that they form a solid matrix with the desired geometry. The interactions
with the matrix are thus the same as those within the liquid. Or in the special case of water, the
matrix is, in theory, neither more nor less hydrophilic.

Such neutral confinements allow for the study of confinement and finite-size effects on liquids
with less interference from matrix-liquid interaction.303 Moreover, liquid properties themselves, such
as correlation lengths used in the RFOT and ECNLE theory of the glass transition, may be extracted.
For example, the mobility of liquid molecules are altered when in contact with an immobile interface.
Furthermore, the confinement imposes a partially static energy landscape onto the liquid. Thus, the
structure of the liquid does not average over independent configurations in time. How these effects
are propagated into the liquid reveals information about supercooled liquids themselves.

Within this work, two geometries will be applied – cylindrical pores and solid spheres. Other
geometries like slit, spherical or randomly pinned pores49 have been studied in the literature but will
not be part of this work. In both cases, the procedure follows the equilibrated mixture protocol.49
First, the liquid is equilibrated at the desired thermodynamic state. Then, the molecules that will
compose the matrix are identified and their mobility is reduced using artificial potentials. More
specifically, all neutral confinements within this work are for the charge-scaled SPC/E water models
and use the equilibrated bulk simulations of Sec. 4.1 as basis. Thus, their parametrization and size
is the same as detailed in Tab. 4.1 and 4.2 and the results are directly comparable to those from
the respective bulk simulations. The solid fraction of water-like molecules is position restrained by
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4.3. Neutral confinements

Figure 4.3.: The cylindrical (left) and inverted (right) neutral confinement with SPC/E water
molecules. Oxygen atoms are red, hydrogen atoms are white and the matrix is rep-
resented with a surface mesh.

applying harmonic potentials with spring constant κ = 106 kJ
mol nm2 to the oxygen atoms only. This

value is quite high, covalent bonds usually have spring constants from 5 to 20 · 106 kJ
mol nm2 , and with

thermal energy at 300K corresponds to displacements on picometer length scale. Nevertheless, it
assures that liquid molecules cannot penetrate the matrix.

The cylindrical pore is parallel to the z-axis of the simulation box and has a radius of 2.5 nm.
Oxygen atoms outside of this radius are identified with the solid fraction. Because of PBC, the pore
has infinite length. The size of the initial bulk system has to be large enough such that the interaction
of liquid molecules of different pore images in x and y direction is negligible, i.e., that the thickness of
the pore wall is large compared to the range of interactions. The pore radius of 2.5 nm is comparable
to silica pores MCM41-C12 to 14 and SBA-15 pores in size and allows for the recovery of bulk-like
behavior in the pore center. Silica pores however consist of an SiO2 matrix with hydroxyl groups
(-OH) on the surface. They are thus hydrophilic instead of neutral.

The second set of neutral confinements, the solid spheres, have a convex interface in contrast to
the concave interface of cylindrical pores. Because of this and because a single sphere does not lead
to a confinement between surfaces, they are also denoted as inverted confinement within this work.
With PBC, the liquid moves within a matrix of solid spheres of arbitrary volume fraction. Several
radii, 0.5, 1, 1.5, 2, and 2.5 nm, were simulated. Because of the fixed box size, the volume fraction
and distance between spheres decreases with increasing radius. Because only one sphere is created
per simulation and ensemble averages over multiple simulations are computationally expensive,
the procedure for finding the solid fraction of molecules was extended. 253 different centers of the
sphere were evaluated and the number of oxygens within the sphere, the number of hydrogens of
the solid fraction reaching outside of the sphere as well as its absolute dipole moment were recorded.
Then, a sphere with the lowest total relative deviation from the average value of each of these three
properties is selected. Thus, the final system is not an outlier and represents the average sphere. This
does not truly replace sampling from all possible spheres and averaging the results but is a good
solution when computational costs are taken into account.
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4.4. Asymmetric binary mixtures

0.069

0.070

-0.021

0.305

-0.358-0.275

0.210

O O

n

NH

H

H

H

Figure 4.4.: Chemical formulas of the repeat unit of the polymer PMMAwithmodified partial charges
(left) and the solvent 2-methylpyridine (right). Hydrogen atoms not explicitly shown are
merged with their respective carbon atoms in the united atom force field. Created with
BKchem by Beda Kosata.

Table 4.6.: Simulation parameters and simula-
tion details. Coupling to only one heat bath
causes temperature gradients between solute
and solvent of about 1 K and is not recom-
mended in the future. However, these gradients
are far smaller than in many cases in the litera-
ture.304,305

Parameter
GROMACS 2018
∆t 1 fs
rc 1.2 nm
PME grid 0.12 nm−1

Thermostat v-rescale
τt 0.5 ps
Ensemble NPT
Barostat Parrinello-Rahman
p 1 bar
τp, κ 2ps, 4.5e-5 bar−1

nst(p/t)couple 1
Temperature range 250-500K
Longest simulation 17.5 µs
Natoms 9020
Size ≈ 5.4× 5.4× 5.4nm3

The binary mixture investigated in Ch. 10 con-
sists of picoline, specifically 2-methylpyridine, as
the solvent and poly-methylmethacrylate (PMMA)
as the macromolecule or solute, see Fig. 4.4. The
pyridine ring is a basic organic compound and
occurs in many agrochemicals and pharmaceuti-
cals and 2-methylpyridine is an intermediate com-
pound in the synthesis of pharmaceutical drugs.
The polymer PMMA is more widely known as
perspex. With a Tg ≈ 138K for picoline and
Tg ≈ 320− 400K for PMMA, depending on tactic-
ity and molecular weight, the difference is high
with about 200K.306–308 Hence, this is an excellent
example of so-called dynamically asymmetric mix-
tures, systems comprising two constituents with
strongly separated individual Tg.51,309,310

The web service ”automated topology builder”
was used to obtain united atom topologies* for
bothmolecules.311,312 They are used together with
the updated GROMOS 54A7 force field provided
by the web service. The parametrization of bonds
and LJ interactions are defined by the force field
while the partial charges are determined by the
methods in Malde et al.311 The partial charges of
picoline are based on quantum mechanical calcu-

lations at the B3LYP/6-31G* level of theory while the PMMA molecule is based on semi-empirical
calculations because of its size. From this topology, a version of a single charge-neutral repeat unit
was derived. The parameters for bonded interactions were adopted while the partial charges were
adjusted by a few percent, given in Fig. 4.4. The polymer chain is terminated by uncharged united
atom methyl groups at both ends. The chirality of segments along the chain was randomized to

*See molid 367617 and hash 572dd for PMMA, and molid 990 and hash 32862 for picoline.
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4.4. Asymmetric binary mixtures

obtain an atactic polymer. The cubic system is comprised of 500 2-Methylpyridine molecules and 10
PMMA chains with a length of 50 repeat units.

Because of the slow PMMA and weak amplitude of the effects discussed in Ch. 10 long simulation
times at low temperatures have higher priority than accuracy of the quantities. In contrast to the
simulation protocol in Sec. 3.4, production runs in the NVT ensemble were omitted and instead long
NPT simulations were evaluated. 10% of the trajectories were discarded before data acquisition.
Because GROMACS produces a slow artificial drift that is not compensated by removal of center-of-
mass motion when using a barostat the trajectories were corrected after the simulation. The drift at
lower temperatures is about 0.2nm/µs and therefore higher than the average displacement of PMMA
during the simulation time.

Additionally, several other binary mixtures are briefly analyzed in Ch. 10. Information on these
simulations is given in the appendix, App. A.5.2.
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This chapter presents the applied definitions of common observables that are evaluated from MD
trajectories. They are sorted by structural, or resp. static, and dynamical properties followed by
general definitions. Observables like thermodynamic variables have already been introduced in Sec. 3.
The list of observables is by no means exhaustive and only covers those used in this work. Observables
or analysis routines specific and limited to a certain chapter are defined there.

The already mentioned advantage of MD simulations is the access to all N atom positions and their
trajectories in time, r⃗i(t) with i ∈ {1, N}. Additionally, meta information like the mass and partial
charge is available. Furthermore, it is assumed in most cases that the simulations are in thermal
(metastable) equilibrium and ergodic, i.e., the ensemble and time average coincide. Averages are
therefore performed over all particles and various times. Statistical errors are not derived since
unknown systematic errors, e.g., the difference between simulation and experiment or non-ergodicity
of the simulation, are usually larger. The analysis performed in this work was implemented with the
Python package mdevaluate,† originally created by Matthias Bartelmeß and extended together with
Niels Müller.313,314

5.1. Structure

Underlying the calculation of several of the following quantities is the particle density n(r⃗) which
consists of delta functions for the position of each particle i:

n(r⃗) =
∑︂
i

δ(r⃗ − r⃗i). (5.1)

5.1.1. Radial pair-distribution function

The short-range order of condensed matter, correlations of particle positions, can be studied using
the radial pair-distribution function (RDF), see Fig. 2.2. It quantifies the particle density, normalized
by the average density n0, in infinitesimally thin spherical shells around a reference particle at the
center. The RDF sums over pairs ij with rij = |r⃗i − r⃗j |,

g(r) =
1

n0

⟨︄∑︂
j ̸=i

δ(rij − r)

4πr2

⟩︄
. (5.2)

The angular brackets ⟨·⟩ denote the ensemble average using 1
N

∑︁
i and averaging over multiple

configurations in time. In practice, a histogram with finite bin width is calculated. Additionally, the
RDF can be calculated between two subsets by letting each sum run over two different subsets and

†github.com/mdevaluate/mdevaluate
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adjusting n0, e.g., for subsets A and B

gAB(r) =
1

n0,BNA

⟨︄∑︂
i∈A

∑︂
j∈B
j ̸=i

δ(rij − r)

4πr2

⟩︄
. (5.3)

The most relevant RDF for the study of water is that between oxygen atoms, gOO.
The RDF quantifies the probability relative to the average of finding particles at distance r to a

reference particle. Note, that the absolute number of particles at r scales with 4πr2. The number of
neighbors up to a distance r is given by

N (r) = 4πn0

∫︂ r

0
g(r)r2dr. (5.4)

5.1.2. Structure factor

Related to the RDF via Fourier transform (FT) is the structure factor S
k⃗
, a quantity typically measured

in neutron scattering experiments:

S(k⃗) =

⟨︄∑︂
j

e−ik⃗·[r⃗i−r⃗j ]

⟩︄
. (5.5)

The wave vector k⃗ defines the length scale on which the structure is probed. The structure factor is
related to the particle density via its FT,

F(n(r⃗))(k⃗) =
∑︂
i

eik⃗·r⃗i . (5.6)

and its absolute square, S(k⃗) = F(n(r⃗)) · F(n(r⃗))∗. That is, it measures the amplitude and phase of
waves scattered from the atoms.

For isotropic systems, the structure factor only depends on the wavenumber k = |k⃗|. A useful
simplification is the average over all angular orientations of k⃗,

S(k) =

⟨︄∑︂
j

1

4π

∫︂ 2π

0

∫︂ 1

−1
cos (krij)d cos θ dϕ

⟩︄
(5.7)

=

⟨︄∑︂
j

sin (krij)
krij

⟩︄
. (5.8)

Even if the system is not isotropic, the sample may be present as a powder and this so called powder
average is still performed. In the simple case of an isotropic system, the structure factor and RDF can
be calculated from each other using

S(k) = 4πn0

∫︂ ∞

0
r2

sin(kr)
kr

(g(r)− 1)dr. (5.9)

The RDF is computationally less time consuming and Eq. (5.9) is the preferred method to calculate
S(k) instead of via Eq. (5.8), which requires calculations for each wavenumber k. However, small k
require large pair distances and only those within a sphere with radius R of half the box length are
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complete and free of artifacts. The assumption that no long-range structure beyond R exists, i.e.,
g(r > R) = 1, is often reasonable for liquids. In that case, a good approximation for length scales
2π/k < R is given by

S(k) = 1− 4πn0

k2

(︃
sin (kR)

k
−R · cos (kR)

)︃
+

⟨︄ ∑︂
j

rij<R

sin (krij)
krij

⟩︄
. (5.10)

5.1.3. Tetrahedral order parameter

How tetrahedrally five particles, e.g., oxygen atoms in case of water, are arranged can be quantified
with the tetrahedral order parameter,315

Qi = 1− 3

8

3∑︂
j=1

4∑︂
k=j+1

[︃
cos(Φjik) +

1

3

]︃2
. (5.11)

The sums run over the four neighbors closest to the reference particle i. The angle Φjik is between
the vectors connecting i with two of its neighbors. Thus, Qi sums the squared differences to the
perfect tetrahedral angle of cos(θtetra) = −1/3. A value of one means perfect agreement while random
configurations lead to a vanishing ensemble average. This definition has two shortcomings. First, the
distance to particle i is irrelevant and, thus, the four neighbors can be anywhere on the centroid-edge
connection vectors. And secondly, the fifth and further neighbors are not taken into account despite
them being quite relevant to the local structure and behavior of the system.

5.1.4. Local structure identifiers

To distinguish the high and low density local structures, HDS and LDS respectively, of water in Ch. 7,
three local structure identifiers are defined here. They are based on the fact that more than four
neighbors exist in HDS in contrast to the tetrahedral LDS. The tetrahedral order parameter cannot
properly represent this difference. For the calculations, the distances rij of neighbors j to molecule i
are determined for the respective oxygen atoms and ordered by increasing distance. The number of
neighbors within a cutoff radius rij < 0.37nm is denoted as ni.

The first identifier, the local structure index (LSI),316 is defined as

I(i) =
1

ni

ni∑︂
j=1

[︁
∆ij −∆i

]︁2
. (5.12)

Here, ∆ij = ri,j+1 − ri,j and ∆i is the average of these differences over all ni neighbors. The second
structural identifier N4 is much more primitive in that it is based on the number ni of next neighbors
alone,

N4(i) =

{︄
1 ni ≤ 4

0 else
. (5.13)

The third structural identifier is d5.160 Here, the distance to the fifth closest neighbor is compared to
a cutoff of rij < 0.35nm:

d5(i) =

{︄
1 ri5 ≥ 0.35nm
0 else

. (5.14)
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For the case of LDS, the first four closest neighbors are tetrahedrally arranged and have similar
distances rij . The fifth closest neighbor, however, is clearly separated into the second coordination
shell and the density is low. Hence, ∆ij has a broad distribution and the LSI is large for LDS.
Analogously, N4 and d5 are on average closer to one for predominantly tetrahedral or low density
regions. In contrast, next neighbors in HDS have more continuously increasing distances rij and,
thus, a narrower distribution of ∆ij and small LSI. Corresponding regions with higher density and
more HDS than LDS will have a small average N4 and d5. Despite the simplicity of N4 and d5, they
well quantify the structural tendency as was also found in previous studies.210 Removing vibrational
displacements by using an energy minimized trajectory accentuates separation of the first and second
next neighbor shell and, thus, increases the accuracy of all three identifiers significantly.

5.1.5. Local concentration

In mixtures, the concentration of its constituents may be heterogeneous and fluctuate in space. These
fluctuations of the local concentration φ are measured with spheres of radius rc, where rc is large
enough to encompass several molecules. They are quantified as

φi =
∑︂
j

H(rc − rij) = φ̄+ δφi , (5.15)

where i denotes either a particle or an arbitrary position r⃗i, H is the Heaviside step function, and φ̄
is the system averaged concentration.317 For small cutoffs, fluctuations of the local concentration
caused by vibrations can be large. To reduce such noise, the positions of the heavy atoms rather than
the center of mass of molecules were used in Ch. 10. The local concentration can be correlated in
time or space.

5.2. Dynamics

Temporal analysis leads to a time dependent particle density, Eq. (5.1), n(r⃗, t). Density-density
correlations are quantified by the van Hove correlation function

G(r⃗, t) =

⟨︃
1

N

∫︂
n(r⃗, 0) · n(r⃗ + r⃗′, t)d3r⃗′

⟩︃
(5.16)

=

⟨︄∑︂
j

δ (r⃗ − [r⃗i(t)− r⃗j(0)])

⟩︄
(5.17)

= ⟨δ (r⃗ − [r⃗i(t)− r⃗i(0)])⟩⏞ ⏟⏟ ⏞
Gself(r⃗,t)

+

⟨︄∑︂
j

j ̸=i

δ (r⃗ − [r⃗i(t)− r⃗j(0)])

⟩︄
⏞ ⏟⏟ ⏞

Gdistinct(r⃗,t)

(5.18)

Isotropic systems allow the simplification to G(r, t). The van Hove correlation function is essentially
a probability distribution of displacements and is related to the propagator, the probability of finding
particles at another location after a given time. It can be separated into a so called self and distinct part
which contain information about the correlations of particles with themselves and cross correlations,
respectively. This distinction will be relevant in further observables. In most cases however, the Fourier
transform of G(r⃗, t), the intermediate scattering function, is calculated instead.
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5.2.1. Intermediate scattering function

The intermediate scattering function is the FT of the van Hove correlation function and corresponds
to the structure factor in the limit t = 0. The scattering function is analogous to Eq. (5.5) defined as

Scoh
k⃗

(t) =

⟨︄∑︂
j

e−ik⃗·[r⃗j(t)−r⃗i(0)]

⟩︄
, (5.19)

where the scattering vector k⃗ is a subscript to emphasize the time dependence. The superscript coh
indicates that this is the coherent intermediate scattering function (CSF), i.e., cross correlations
between different atoms are taken into account. In contrast to crystals, coherent scattering is weak
in liquids and glasses and often the dynamics of individual particles is of interest. Then, the FT of
the self part Gself(r⃗, t), the incoherent intermediate scattering function (ISF), can be determined.
Analogous to Eq. (5.8), the expression can be simplified for isotropic systems to

Sk(t) =

⟨︃
sin (kri(t))

kri(t)

⟩︃
, (5.20)

where ri(t) = |r⃗i(t) − r⃗i(0)| and, throughout this work, the subscript k denotes the wavenumber
in [k] =nm−1. For a liquid, this function decays from one to zero in a roughly exponential fashion
comparable to other correlation functions. This decay quantifies translational motion on length scales
given by the wavenumber. Smaller k correspond to longer length scales and a slower decay. In studies
of the structural (α) relaxation, k corresponds to the first peak in the structure factor, i.e., the next
neighbor peak in the RDF. For water, the ordering of extensive voids between oxygen atoms in
the tetrahedral network causes a pre-peak at smaller k in the oxygen structure factor.318,319 The
minimum between the first two peaks at k = 22.7nm−1 corresponds to the next neighbor peak in
g(r) and, thus, is used to quantify the structural relaxation instead. For the sake of consistency, this
wavenumber is also used for all charge-scaled variants of the water models despite shifts in the next
neighbor position. Fitting the terminal decay with the KWW function, Eq. (2.5), gives a measure
of the structural relaxation time. At high temperatures, it merges with the vibrational decay and,
therefore, τe is preferred.

The length scale of displacement measured for a given k is usually given as 2π/k. However, the
average distance traveled at time τe differs and depends on the distribution of displacements. For a
random-walk, the chi distribution, and in the special case of three dimensions the Maxwell-Boltzmann
distribution, describes the probability of finding particles with displacement r(t) = |r⃗(0)− r⃗(t)|. For
time difference τe, the parameter a of the probability distribution function has to solve

Sk(τe) =

∫︂ ∞

0

sin(kr)
kr

(︃
2

π

)︃ 1
2 r2

a3
exp

[︃
−r2

2a2

]︃
⏞ ⏟⏟ ⏞
Maxwell-Boltzmann dist.

dr =
1

e
, (5.21)

which gives a =
√
2/k. The average displacement is then ⟨r(τe)⟩ = 2a(2/π)1/2 = 4/

√
π/k. Using

2π/k overestimates the average displacement by a factor of π3/2/2 ≈ 2.78. The above mentioned
value k = 22.7nm−1 then corresponds to average displacements of about 0.1nm. The chi distribution
is actually incorrect for length scales on the order of the step size of the random-walk, i.e., the hopping
motion of molecules in the supercooled regime. Still, the actual value of ⟨r(τe)⟩ from simulations
matches quite well.
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5. Observables

5.2.2. Mean-squared displacement

Alternatively, the translational motion can be quantified with the mean-squared displacement (MSD)
defined as

r2(t) =
⟨︁
|r⃗i(t)− r⃗i(0)|2

⟩︁
. (5.22)

It quantifies the distance of particles after time t with respect to their original location. For small
molecules, the MSD exhibits in general three different regimes. The time dependence of these regimes
follows a power law r2 ∼ tθ, where the exponent θ can be calculated as θ = d ln(r2)/d ln(t). For very
short time scales, the particles have ballistic motion. The length scale is shorter than the size of the
cage imposed by neighboring molecules. In this ballistic regime, the approximate relation r2(t) ∼ t2

holds. The proportionality constant scales with 3kBT/m, where kB is the Boltzmann constant, T is
the temperature, and m is the mass of the particle.

Once the particle collides with its neighbors, it ”slows down”, i.e., θ becomes less than two. In
particular, in supercooled liquids the particles are trapped in their local cage for some time, giving
rise to a plateau in the MSD. The vibrational motion within these cages is measured in scattering
experiments as a loss of intensity by the Debye-Waller factor. Assuming harmonic potentials it
is described by exp[−k2⟨u2⟩/3], where ⟨u2⟩ is the MSD at short times in the plateau and k the
wavenumber.320 Hence, the Debye-Waller factor and the MSD at short times contain information
about the local potential explored by the particles. For brevity, Debye-Waller factor will refer to ⟨u2⟩
instead of the actual attenuation of the intensity within this work.98

In a supercooled liquid, particles are subject to diffusive motion which on a microscopic scale
consists of caging followed by jumps after some waiting time. In the long-time limit, they perform a
random-walk and the propagator, the probability of displacements in x, y and z, becomes Gaussian
and, as noted above, follows a Maxwell-Boltzmann distribution,

p(r, t) =
1

(4πDt)3/2
exp

[︃
− r2

4Dt

]︃
. (5.23)

The expectation value for mean-squared displacements is given by the Einstein relation,

r2(t) = 6Dt , (5.24)

where D is the self-diffusion coefficient. Hence, the diffusive regime may be identified by θ = 1. The
proportionality factor is two times the number of dimensions available for free diffusion, e.g., six,
four, and two in the case of three, two, and one dimensions, respectively. When the ISF is calculated
for length scales large enough that the assumption of a random-walk becomes acceptable, then
both, D from the MSD and τ from the ISF, are inversely proportional to each other. The solution to
Eq. (5.21) determines the width parameter of Eq. (5.23) to be a =

√
2Dτe =

√
2k and leads to the

relation Dτe = k−2.
The self-diffusion is subject to finite size effects caused by hydrodynamic interaction. The true

value is,321

D = DL + 2.837297
kBT

6πηL
, (5.25)

where L is the length of the cubic box and η the viscosity of the liquids. A simulation series with
several system sizes allows for the calculation of D.
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5.2. Dynamics

5.2.3. Rotational correlation functions

Several experimental techniques for studying dynamics over a broad dynamical range, e.g., NMR,
BDS, or DDLS, probe microscopic reorientation of a molecular vector v⃗i with respect to a reference
axis R⃗. In general, the rotational correlation function (RCF) contains terms of the form,

⟨Pℓ(cos θi(0)) · Pℓ(cos θi(t))⟩ , (5.26)

where Pℓ is the Legendre polynomial of rank ℓ, u⃗i = v⃗i
|v⃗i| the unit vector of the considered molecular

vector, and θi the angle between u⃗i and the reference axis R⃗. Furthermore, the result is proportional
to that for the deflection of u⃗i itself in case of isotropic systems or powder averages over R⃗, i.e., the
integral over a sphere

∫︁∫︁
S Pℓ(R⃗(ϑ, φ) · u⃗(0)) · Pℓ(R⃗(ϑ, φ) · u⃗(t)) sinϑdϑdϕ,

C(t)
isotropic∼ ⟨Pℓ(u⃗i(0) · u⃗i(t))⟩ . (5.27)

Depending on the experimental technique different molecular vectors are correlated and also cross
terms, for example, between molecules i and j may be relevant. The correlation function is written as

F coh
ℓ,v⃗ (t) =

⟨︄∑︂
j

Pℓ(u⃗i(0) · u⃗j(t))

⟩︄
. (5.28)

This definition gives a system size independent correlation function. In analogy to scattering functions,
one can denote this as the coherent correlation function and distinguish the incoherent correlation
function,

F inc
ℓ,v⃗ (t) = ⟨Pℓ(u⃗i(0) · u⃗i(t))⟩ , (5.29)

and the cross correlations,

F cross
ℓ,v⃗ (t) =

⟨︄∑︂
j

i ̸=j

Pℓ(u⃗i(0) · u⃗j(t))

⟩︄
. (5.30)

This way, the relation F coh
ℓ,v⃗ = F cross

ℓ,v⃗ +F inc
ℓ,v⃗ is fulfilled. In this work, sub- and superscripts are dropped

whenever they are unchanged within a larger context.
These distinctions become relevant when simulation results are compared with experiments. Both,

BDS and DDLS, are coherent measurements and, thus, include collective molecular orientations.
However, they differ in the correlated property, dipole moment and polarisability tensor, and rank
of the Legendre polynomial, ℓ = 1 and ℓ = 2, respectively. In contrast, 2H NMR experiments are
dominated by the 2H bond-vector reorientation and can be regarded as an incoherent measurement
with ℓ = 2. In the case of water, BDS and 2H NMR experiments can be mimicked by using the
dipole moment F coh

1,µ⃗ and the OH-bond vector F inc
2,OH. Note, that the above definitions are normalized.

However, the measured correlation may include some proportionality factor, e.g., the strength of the
dipole moment |µ⃗|. Therefore, it may be necessary to weight the ij terms to match the experimental
situation. In the simple case of F1,µ⃗, they can be written as µ⃗i(0) · µ⃗j(t).

Because the incoherent correlation function measures reorientation of vectors independently, it is
also often called the self correlation function. Additionally, F inc

1 is in many cases referred to as an
auto-correlation function because of its mathematical similarity. Further analysis is performed for
example by fitting with a KWW function, Eq. (2.5), and determining a correlation time τ . In case
of rotational diffusion, correlation times for different ranks ℓ follow the relation τℓ1

τℓ2
= ℓ2(ℓ2+1)

ℓ1(ℓ1+1) , see
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Sec. 2.1.3. For example, τ for ℓ = 1 is three times longer than for ℓ = 2. However, rotational motion
usually changes from diffusion to large angle jump motion in the supercooled regime.

Instead of probing the correlation function in the time domain, many experiments measure the
dynamic susceptibility χ(ω) = χ′(ω)− iχ′′(ω). It follows from the fluctuation-dissipation theorem,
that the imaginary part is connected to the correlation function via Fourier transform:

χ′′(ω) ∼ ω

kB T

∞∫︂
0

cos(ω t) C(t)dt. (5.31)

Configuration overlap correlation function The configuration overlap correlation function (OCF)
quantifies the similarity of particle configurations.322,323 Specifically, small spheres with radius rc are
defined at several positions. The occupancy ni(t) of a sphere is one if any particle is within the cutoff
radius and zero otherwise. While their positions can be chosen arbitrarily, of particular use is placing
them at the positions r⃗i of the particles at a given time and comparing configurations at different
times. Then, the occupancy is defined as

ni(t) =

{︄
1 |r⃗i(0)− r⃗j(t)| ≤ rc for any j

0 else
. (5.32)

Furthermore, a decomposition into self and distinct part, with conditions i = j and i ̸= j respectively,
is possible analogous to the van Hove correlation function and RCFs. The correlation function itself
is then the autocorrelation of the occupancy

Q(t) =

∑︁N
i ⟨ni(t)ni(0)⟩∑︁N

i ⟨ni(0)⟩
. (5.33)

In the case of water, only the oxygen atoms are used and the cutoff radius is chosen as rc = 0.11nm.
This ensures that a sphere can never be occupied by more than one molecule while vibrational motion
leads only to minor correlation decay. A difference to several other correlation functions is that the
distinct part of Q(t) does not decay to zero for systems with finite particle density at all times, i.e.,
the volume covered by the spheres is not empty. This leads to a finite plateau Q∞ at long times and
the correlation function is in most cases fitted by a sum with a KWW function

Q(t) = (1−Q∞) · exp

[︄
−
(︃

t

τkww

)︃βkww
]︄
+Q∞ . (5.34)

The analytical value for a system without static density correlations is Q∞ = 4/3πr3cn0, for cutoff
radii rc of half the distance at which the RDF becomes larger than zero.

5.3. Spatially resolved analysis

In inhomogeneous or anisotropic systems the observables as calculated above perform ensemble
averages at the loss of information. Instead, the spatial variation of properties can be resolved by
averaging the observables accordingly:

C(x, t) =
⟨︃∑︁

i fi(t)δ(x− σ(r⃗i(0)))∑︁
i δ(x− σ(r⃗i(0)))

⟩︃
. (5.35)
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5.3. Spatially resolved analysis

Here, the sum is performed over N particles i with positions r⃗i(0) at the time origin. The correlation
function fi can be any observable that can be ascribed to the particle i. The spatial assignment x can
be positions r⃗ in space or any arbitrary spatial requirement, reflected by the mapping σ(r⃗) : Rn → Rm.
Of interest in this work are mostly the distance to reference particles or the radius in cylindrical or
spherical coordinates. In practice, the delta function is replaced by bins of small but finite width.
For example, with the set Sd of Nd particles that fall into the bin at distance d to the interface of a
confinement at the time origin, the correlation function simplifies to:

C(d, t) =

⟨︄
1

Nd

∑︂
i∈Sd

fi(t)

⟩︄
. (5.36)

The number of particles ⟨Nd⟩ of the spatially resolved correlation functions may be required when
further analysis is performed, e.g., the relative occurrence of spatially resolved correlation times is
not equal.

The spatially resolved correlation functions in Ch. 9 are calculated in this way. More specifically,
d is the distance of the oxygen atoms of liquid molecules to any atom, oxygen or hydrogen, of the
position restrained matrix molecules. Alternatively, a radially resolved analysis is performed. The
cylindrical coordinate system is aligned to the symmetry axis of the cylindrical confinement and
Eq. (5.36) uses the radial coordinate ri of the oxygen atoms instead. A third variation, denoted as
the constrained distance resolved analysis, is a stricter distance resolved analysis with the constraint
ri < 2.4nm.
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6. Charge-scaled water models

This chapter presents basic observations made for the charge-scaled water models, see Sec. 4.1. It
serves two purposes: as an introduction to common observables of simulations and to present the
main effects that charge scaling can have. First, structural and static properties are investigated.
In particular, observables that characterize the local structure of water are compared for different
degrees of charge scaling. It is found that reducing the partial charges below q = 0.9 causes major
changes in the first two next neighbor shells. The tetrahedral local structure can no longer be
developed and its density reducing effect is missing. Hence, these systems lack the density anomaly.
For increased charges, the local structure is qualitatively preserved.

Furthermore, it is found that charge scaling has, at first glance, the same effect on dynamics as
temperature. Reducing q speeds up the system while increasing q strongly slows down molecular
mobility. In particular, the temperature range covered by differently scaled water models easily shifts
by more than a factor of five. The reason for this is the energy scale of interactions that strongly
depends on the Coulomb potential. Qualitative differences between the charge-scaled variants with
q < 0.9 and q ≥ 0.9 occur when the Stokes-Einstein-Debye relations are tested. Most of the data
shown for the SPC/E model was generated in a previous study.24 Comparison with new charge-
scaling data for the TIP4P/2005 water model reveals that the results are consistent and qualitatively
independent of the choice between the two models.

6.1. Structural changes

The local structure and associated anomalies distinguish water from most other liquids. Therefore,
static and structural properties are investigated first for their dependence on the charge-scaling factor
q.

6.1.1. Density at atmospheric pressure

In particular the density anomaly, a maximum at 4 °C, is a feature associated with water’s abnormal
behavior. Figure 6.1(a) and (b) present the temperature-dependent density of the charge-scaled
SPC/E and TIP4P/2005 water models, respectively, at atmospheric pressure. The accessible temper-
ature range is limited by slow dynamics and long equilibration times at the lowest temperatures
and by evaporation at the highest temperatures. For the original parametrization, density maxima
are found at 249K and 279K for the SPC/E and TIP4P/2005 water model, respectively. This is in
agreement with previous studies considering the different treatment of long-range interactions.277–280
Besides the original models, most of the charge-scaled variants exhibit a density maximum as well.
In particular, increasing the partial charges preserves this feature. Only for the highest charge-scaling
factors the maximum vanishes. However, as will become more evident in the following, these systems
are still structurally equivalent to water.

By decreasing the partial charges below q = 0.9, the density maximum also vanishes or at least
leaves the accessible temperature range. Hence, these systems do not behave similar to water at
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Figure 6.1.: Isobaric density for the charge-scaled variants of the (a) SPC/E and (b) TIP4P/2005
watermodels at atmospheric pressure. The charge-scaling factor q is given in the legend.

atmospheric pressure and can be expected to deviate in other structural properties as well.

6.1.2. Radial pair-distribution function (RDF)

For insights into the local structure and in consideration of experimentally accessible structure factors
from neutron scattering, the radial pair-distribution function g(r), see Sec. 5.1.1, can be investigated.
The oxygen-oxygen g(r) is presented in Fig. 6.2(a). It quantifies the occurrence of finding an oxygen
atom at distance r of another relative to the probability for an uncorrelated homogeneous particle
distribution. The typical situation for liquids is found: a prominent next-neighbor peak at short
distances, followed by decaying oscillations to longer distances. For tetrahedral structures, the
position of the second peak is expected to be at

√︁
8/3 ≈ 1.63 times that of the first peak, which is in

good agreement with the data. Increasing the partial charges preserves g(r) qualitatively but shifts
the features to shorter distances r. This matches the observation in Fig. 6.1 of increasing density,
i.e., stronger Coulomb interactions further compensate the repulsive part of the LJ potential and the
molecules pack more densely. This also means that intermolecular distances are not the same among
charge-scaled variants which may be relevant in studies using fixed length scales. Note, that g(r) is
qualitatively the same for all q ≥ 1, even when no density maximum exists.

For reduced partial charges, the positions of the peaks shift to longer distances down to q < 0.9,
where the second peak expected at the position for tetrahedral structure disappears. Instead, a small
peak close to the next-neighbor shell appears. Hence, the local structure of the charge-scaled variants
with q < 0.9 does not represent water at atmospheric pressure anymore. These observations also
apply to the charge-scaled variants of the SPC/E water model, see Fig. A.1 in the appendix.

To ensure that the differences between the charge-scaled variants are not the result of different
degrees of supercooling, the evolution of g(r) with temperature is presented in Fig. 6.2(b) and (c)
for the lowest and highest presented charge-scaled variants, respectively. For the water-like variant
with q = 1.5, cooling amplifies the formation of the first and second next-neighbor shells at 0.25 nm
and 0.42nm, respectively. Distances in-between, at around 0.3 nm, are energetically unfavorable
and are barely occupied at sufficient supercooling. In contrast, the system with q = 0.7 does not
share this local structure at any temperature. The next-neighbor shell is not well separated from the
second one and the latter is significantly broadened and ill-defined. These distinct local structures
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Figure 6.2.: (a) Oxygen-oxygen radial pair-distribution functions g(r), see Sec. 5.1.1, for the charge-
scaled variants of the TIP4P/2005 water model at atmospheric pressure and the lowest
simulated temperatures. The respective graph for the SPC/E water model can be found
in Fig. A.1(a) of the appendix. The charge-scaling factor q is given in the legend. (b) and
(c) show the temperature dependence of the radial pair-distribution function for the
lowest and highest partial charges. The temperatures are indicated with color gradients
from cold in purple to hot in orange and range from 73K to 280K and from 695K to
1530K for q = 0.7 and q = 1.5, respectively. The black arrows in the graphs indicate the
trend with increasing q and T , respectively.

are of further relevance in the context of water’s two liquid phases.

6.1.3. Tetrahedral order

The tetrahedral order can be quantified using the tetrahedral order parameter Q, see Sec. 5.1.3. It
measures the angular deviation from tetrahedral arrangement of the four next neighbors of each
oxygen atom where a value of one denotes perfect agreement. The ensemble average ⟨Q⟩ is presented
in Fig. 6.3(a) for charge-scaled variants of the TIP4P/2005 water model. With decreasing temperature,
this parameter of local order increases for all systems, even for those with q < 0.9 that do not exhibit
a density maximum. However, the value at the lowest temperature of these systems is increasingly
lower with decreasing polarity. For larger q, the value at the lowest temperature is approximately
⟨Q⟩ ≈ 0.9. Again, the analysis of the charge-scaled variants of the SPC/E water model produces
qualitatively consistent results, see Fig. A.1 in the appendix.

As for the RDF, the temperature dependence of two charge-scaled variants can be compared.
Figure 6.3(b) and (c) presents results for TIP4P/2005 variants with q = 0.7 and q = 1.5, respectively.
Both systems have broad distributions around Q = 0.5 at the highest temperature. However, systems
with q ≥ 0.9 develop a narrow distribution with a peak near Q = 1, indicating high tetrahedral
order, while the distributions of systems with q < 0.9 remain broad and bimodal down to the lowest
temperature. A comparable bimodal distribution can also be found for q ≥ 0.9 at intermediate
temperatures. However, the RDFs in Fig. 6.2(b) and (c) reveal that they do not actually share the
same local structure and that the second peak of a tetrahedral structure is missing. Hence, systems
with reduced partial charges are not expected to reach a similar tetrahedral order as the rest even for
stronger supercooling. Comparing the RDFs and tetrahedral order parameters, it becomes obvious
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Figure 6.3.: (a) The average tetrahedral order parameter ⟨Q⟩, see Sec. 5.1.3, for the charge-scaled
variants of the TIP4P/2005 water model at atmospheric pressure. The respective graph
for the SPC/Ewatermodel can be found in Fig. A.1(b) in the appendix. The charge-scaling
factor q is given in the legend. (b) and (c) show the temperature dependence of the
probability distribution ofQ for the lowest and highest partial charges. The temperatures
are indicated as color gradients from cold in purple to hot in orange and range from 73K
to 280K and from 695K to 1530K for q = 0.7 and q = 1.5, respectively. The black arrows
indicate the trend upon cooling.

that the local structure of water-like molecules is not easily projected to a one-dimensional parameter.
Therefore, several other identifiers of the local structure of water are employed in Ch. 7. There, the
combined effects of charge scaling, temperature, and pressure will be investigated in the context of
water’s proposed two liquid phases.

6.1.4. Next-neighbor distances

The distribution of the distances to the oxygen atoms of next neighbors is assumed to have high
relevance for water’s anomalies.324–326 They are useful for a simple understanding of the existence
and absence of a density maximum for q ≥ 0.9 and q < 0.9, respectively. Assuming a tetrahedral
arrangement, the coordination number should be four. Figure 6.4(a) presents the average distance
of the first four and fifth to eighth next neighbors, respectively. These supposedly represent the
first coordination shell, the first peak in the RDF in Fig. 6.2, and the left flank of the second peak.
The distance of the first four neighbors monotonically decreases upon cooling as in regular bulk
liquids with no evidence of the density anomaly. However, distances to molecules in the second
coordination shell show a minimum except for charge-scaled variants without a density anomaly. The
local tetrahedral structure becomes more pronounced and the fifth and further neighbors are pushed
away below the minimum to allow for an optimal arrangement. The temperature dependence of this
effect becomes weaker with increasing q, in agreement with the finding that these systems do not
show a density maximum. But to be accurate, the SPC/E variant with q = 0.85 does have a second
next-neighbor shell that weakly increases in distance upon cooling, see Fig. A.1(c), but the effect is
too weak to cause a negative thermal expansion coefficient.

The distance to the n-th next neighbor can be investigated in detail: Figure 6.4(b) and (c) compare
the variants with the lowest and highest charge scaling, respectively. While the neighbors behave
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Figure 6.4.: (a) The average oxygen-oxygen distance ⟨rij⟩ for the charge-scaled variants of the
TIP4P/2005 water model at atmospheric pressure. The index j runs over the first four
(solid lines) and fifth to eighth (dashed lines) next neighbors of oxygen i. The respective
graph for the SPC/E water model can be found in Fig. A.1(c) in the appendix. The charge-
scaling factor q is given in the legend. (b) and (c) present the temperature dependence
of the average distance to each of the next 15 neighbors for the lowest and highest
partial charges. The ordering from 1 to 15 is indicated as color gradients from purple to
green.

alike for the former, the latter shows a growing gap between the fourth and fifth next neighbor upon
cooling. This occurs for all charge-scaled variants but strongly diminishes in strength below q = 0.9.
This gap allows for the definition of several simple identifiers of the local structure, see Sec. 5.1.4.
The difference of the distance of the fourth and fifth neighbors or lack thereof is the characterizing
quantity. However, as can be seen from the different intermolecular distances in Fig. 6.4(a) the
cutoffs have to be adjusted for significant charge scaling q.

The anomalies in these structural properties at atmospheric pressure can be understood in detail
with the investigations of the following chapter. Finally, it is reassuring that the above observations
are qualitatively equivalent for both water models, SPC/E and TIP4P/2005.

6.2. Dynamics

The study of structural properties of the charge-scaled variants revealed a significant temperature
dependence for many features, e.g., the position of the density maximum. Furthermore, the available
temperature range varied strongly as a consequence of the strong dependence of the dynamics of
the system on the charge scaling q. Long-range translational dynamics at 300K slows down with
increasing q, see Fig. 6.5(a). More so, the shifts on a logarithmic scale increase by constant changes
in q and, thus, the slowdown is super-exponential.

Reduction of q speeds up the system and it enters the diffusive regime with r2(t) ∼ t immediately
after the ballistic regime with r2(t) ∼ t2 at subpicosecond times. For higher q, the system exhibits a
glassy plateau before it becomes diffusive.

Local dynamics are studied based on the rotational correlation function of the OH-bond vector
F1,OH in Fig. 6.5(b). Consistent with the result for translational diffusion, the correlation decay shifts
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Figure 6.5.: Measures of dynamics at 300K for several charge-scaled variants of SPC/E: (a) transla-
tion probed with the MSD of the oxygen atoms and (b) rotation probed by F1,OH, see
Sec. 5.2.2 and 5.2.3, respectively. The charge-scaling factor q is given in the legend. In
(a), solid yellow lines indicate fits to Eq. (5.24), yielding the self-diffusion coefficientsD.
In (b), solid yellow lines are fits to a KWW function, Eq. (2.5), and to a sum of two KWW
functions for q ≤ 1. The gray dashed line indicates the criterion for the determination
of the correlation time τe. Results are presented here for the SPC/E variants because
of the finer resolution in time and charge-scaling factor. The respective results for the
TIP4P/2005 variants are shown in Fig. A.2 in the appendix.

to longer times with increasing q and a plateau of about 0.95 exists for intermediate times. Thus, long
range and local dynamics are affected by charge scaling at least qualitatively in the same way. These
changes of dynamics by orders of magnitude despite constant kinetic energy and mass underline the
importance of intermolecular interactions such as hydrogen bonding and their strength.

The dynamical properties, self-diffusion coefficient D and correlation time τe, can be determined
with fits of the data. However, in order to reduce the size of the trajectories, the time difference
between stored frames was adjusted to the dynamics. Hence, the data of systems with increased
charges is missing short times, i.e., the ballistic regime in the MSD and the vibrational decay of
the correlation function. While the determination of D is unaffected, the fit of F1,OH or any other
correlation function of local dynamics can only include the vibrational decay if it is resolved. In this
work, this is irrelevant in most cases because correlation functions are, as discussed in Sec. 2.1.2,
mostly quantified by τe, the time at which they decay to e−1. The reason for this is the merging of the
vibrational and terminal decay and the therefore ill-defined fit of the latter at higher temperatures or
reduced partial charges.

6.2.1. Temperature dependence

Of great relevance in this work is the temperature dependence of dynamical quantities. As for simple
glass formers, dynamics slow down in a non-Arrhenius fashion upon cooling for all charge-scaled
variants of the SPC/E and TIP4P/2005 water models when measured by any of the observables
introduced in Sec. 5.2. As an example, the ISF for a wavenumber of k = 22.7nm−1 is shown in
Fig. 6.6. Only one merged decay is observable at high temperatures while a plateau exists at lower
temperatures and the long-time decay associated with the structural relaxation shifts to longer times.
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Figure 6.6.: (a) The incoherent intermediate scattering function S22.7(t) for the original TIP4P/2005
water model. The presented temperatures range from 200K (purple) to 550K (orange)
and most temperatures are omitted to improve visibility. Dynamical quantities for all
charge-scaled variants of the TIP4P/2005 water model: (b) Translational correlation
times τe of S22.7 and (c) reciprocal self-diffusion coefficient D. The charge scaling q is
given in the legend. The equivalent graphs to (b) and (c) for the SPC/E water model can
be found in Fig. A.3 in the appendix. (d) High temperature activation energy E∞ for D.
The black and gray solid lines are fits with a polynomial of second order.
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6. Charge-scaled water models

Hence, charge scaling under isothermal conditions is qualitatively similar to a variation of temper-
ature. In a first approximation, the energy scale of dynamics shifts with q.

The strong dependence of the dynamics on the charge scaling factor q can be observed in particular
in the Arrhenius plot of dynamical quantities, see Fig. 6.6(b) and (c) for translational observables and
Fig. A.3(c) for rotational correlation times. The steepness of the high-temperature Arrhenius regime,
E∞, and its location in temperature increase by an order of magnitude from q = 0.7 to q = 1.5 for
the charge-scaled variants of TIP4P/2005. Extrapolating the fragile regime to the glass transition by
eye suggests similar shifts for Tg.

Both, E∞ and Tg will be investigated in more detail in Ch. 8. Here, only the charge dependence of
E∞ is investigated in Fig. 6.6(d). It is comparable for the SPC/E and TIP4P/2005 variants for minor
charge scaling around q = 1.0, but increases slightly stronger for the TIP4P/2005 variants. For both
data sets, the charge dependence can be characterized by a second order polynomial, consistent with
Coulomb’s law. Note however, that its minimum does not lie at q = 0. Instead, the low-q limit is that of
a simple LJ liquid with finite E∞. In general, the q dependence of E∞ is different for various liquids.
A parabolic function with minimum at q = 0 was found for a charged Kob-Andersen mixture while
charge-scaled variants of the BKS model of silica follow linear behavior over a wide range of q.116,118
Nevertheless, the relation between interaction strength and activation energy in the simple-liquid
regime follow simple expectations independent of the structural differences at lower temperatures.

6.2.2. Stokes-Einstein-Debye relation and the hydrodynamic radius
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Figure 6.7.: (a) The hydrodynamic radius, Eq. (2.8), for the charge-scaled variants of the TIP4P/2005
water model as a function of the correlation time τe from the RCF F1,OH. For the SED
analysis, τ = τe was used. The charge-scaling factor q is given in the legend. (b) Relation
between self-diffusion coefficient D and correlation time τe with power law fits (black
solid lines), see main text. The fit is limited to 2 · 10−4 nm2

ps > D > 5 · 10−7 nm2

ps to ensure
supercooled dynamics and avoid data of poor statistics. The left and right inset present
the exponent β of the power law fits and their extrapolation to Tg as a function of q,
respectively.

How charge scaling affects translational and rotational dynamics can be investigated in more detail
with the Stokes-Einstein-Debye (SED) relation, see Sec. 2.1.3. D and τ are inversely proportional to
each other if the systems comply. Figure. 6.7(a) presents the hydrodynamic radius RH as a function
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of rotational correlation times τe, see Fig. A.3(c), of the charge-scaled variants of TIP4P/2005. This
representation avoids the large shifts in temperature and allows for a comparison at isokinetic points.
For most systems,RH is about 0.13nm. Strong deviations are found in particular for the two least polar
systems which also differ the most in structural properties. In these cases, RH starts to decrease upon
cooling, i.e., towards longer correlation times. RH grows slightly for intermediate values of q around
the original model while it is essentially constant for larger q. Furthermore, the high-temperature
regime is not flat in most cases. This implies that the high-temperature activation energy does not
perfectly agree between both quantities, D and rotational τe. However, these deviations are small.

The data for D and τe can be characterized by a power law, D ∝ τβe , at supercooled temperatures,
see Fig. 6.7(b). The exponent β is expected to be −1 if the SED relations hold. However, it holds only
for q ≥ 1.2 and exhibits a peculiar q dependence for q < 1.2. This SED breakdown was also found in
other experimental and simulation studies of water.74,327,328 Detailed investigations in Sec. 7.4 reveal
that the origin lies in two liquid phases and the proposed second critical point (LLCP) of water. The
SED breakdown depends on the distance to the LLCP and on which side of the phase transition line
the system is. The power law can be extrapolated to τe(Tg) = 1000 s to find D(Tg). The right inset of
Fig. 6.7 shows that over so many orders of magnitude small differences in β can lead to deviations of
several orders of magnitude. Differences of RH of the charge-scaled variants at high temperatures
become negligible in comparison. However, whether or not the power law is valid down to Tg cannot
be confirmed with MD simulations.

It is important to note, that the observations in Fig. 6.7 depend on the choice of the correlation
function. For the ISF, the SE breakdown becomes severe for all values of q if the wavenumber is large
and it does not share the charge dependence found with F1,OH. Results for rotational correlation
functions of different rank ℓ = 1, 2 or for different vectors have qualitatively the same charge
dependence but the exponent β is shifted to higher values, see Fig. A.4(a) in the appendix.

6.2.3. On the limits of water model charge scaling

The partial charge of the water models cannot be scaled arbitrarily without encountering problems.
The reduction of q has strict limits. For SPC/E and q = 0.6, the system spontaneously crystallizes at
51K with a cubic lattice structure. Correlation times are shorter than ns at this temperature and,
thus, the liquid cannot be sufficiently supercooled. This happens because the Coulomb interactions
become too weak compared to the unaltered LJ interactions. At q = 0 only a soft-sphere liquid
which easily crystallizes remains. Negative pressures may allow for stronger supercooling but this
is beyond the goals of the present work. For TIP4P/2005 and q = 0.6, the liquid also underwent a
rapid transformation at T = 58K with dynamics on the order of 100ps. While the system did not
crystallize, dynamics slowed down by orders of magnitude and the density increased discontinuously.
Further equilibration proved computationally too expensive. While this system is also not helpful to
this work, it might be of interest in future studies. For both water models and q < 0.6, the systems
crystallized more easily and, thus, charge scaling has a lower boundary beyond which equilibration
of the metastable liquid becomes impossible.

So far, a similar restriction was not found for increased partial charges. In particular, test simulations
at much higher q ≥ 2 have been no problem for both water models. Because the relevant energy
scale increases, thermal energy and vibrations increase accordingly. This requires a reduced time
step ∆t of the integrator and adjustment of thermodynamic parameters to prevent nonphysical
interactions. However, the density maximum disappeared already at the highest q presented in this
chapter, Fig. 6.1. This suggests that the origin of water’s anomalies is located at a greater distance in
the phase diagram or that the range or strength of the anomalies decreased. Either way, such systems

65



6. Charge-scaled water models

are not of interest to this work.

6.3. Summary

In this chapter, simple structural and dynamical properties were investigated for charge-scaled
variants of the SPC/E and TIP4P/2005 water model. While real water exhibits a vast number of
anomalies, investigating all of them is beyond the scope of this work and may even be impossible with
MD simulations. However, many of them are assumed to have a similar origin, e.g., the tetrahedral
local structure caused by hydrogen bonding. Here, the density maximum was used as a simple
indicator of anomalous behavior. For both decrease and increase of q, it disappears. However, the RDF
showed qualitatively the same local structure for all systems with the original and increased partial
charges. The same is found for the tetrahedral order parameter and the next-neighbor resolved
distances. The temperature dependence of the latter shows that the next-neighbor shell contracts as
for regular liquids, whereas the second next-neighbor shell expands, leading to a negative thermal
expansion and the density maximum. However, the temperature dependence of these two effects
changes with q. The expansion can no longer compensate the contraction at the highest studied
partial charges and, thus, the density maximum does not occur despite equivalent local structure.

For q < 0.9, the local structure was not preserved. The RDF does not resemble that of the original
water models at any temperature except close to the boiling point. This discrepancy is not as evident
with the tetrahedral order parameter, which suggests that further supercooling could lead to the
same local structure. The next-neighbor distances also reveal that the water-specific coordination
number of four and spatially separated first and second neighbor shells are not found in the acces-
sible temperature regime. While it might be true that the water structure is restored at sufficient
supercooling of these systems, this regime in the phase diagram could be beyond the glass transition
temperature. Furthermore, reducing q too far leads to rapid crystallization into a cubic phase and,
thus, makes a tetrahedral network unreachable. Hence, a simple distinction can be made: The liquids
behave water-like for q ≥ 0.9 and not water-like for q < 0.9. This will be investigated further in
the context of water’s proposed two liquid phases, low-density and high-density liquid, in the next
chapter. In particular, observations of this chapter were made at atmospheric pressure and neglect
the complexity of water’s phase diagram.

Translational and rotational dynamics were strongly affected by charge scaling. At 300K, increasing
the partial charges by 15% caused a decrease of the mobility by three orders of magnitude with respect
to the original TIP4P/2005 water model. Reduction of q speeds up the system. These observations are
weakly dependent on the observable, long-range translation, or local rotation. The high-temperature
activation energy approximately increases as a function of q2 and varies from the lowest to highest
studied charge scaling by a factor of more than 6 and 14 for SPC/E and TIP4P/2005, respectively.
The dynamically accessible temperature range and glass transition temperature shift accordingly
and, thus, charge scaling and temperature have qualitatively a similar effect on dynamics in first
approximation.

Detailed comparison of dynamical quantities reveals a dependence of the hydrodynamic radius
and degree of the SED breakdown on the charge scaling. In particular, systems with q < 0.9 have a
reduced RH that decreases upon further supercooling, in contrast to the more common finding of a
growing RH. Long-range translation slows down less than rotational motion with temperature for
these systems. On the other hand, systems with q ≥ 1.1 show consistent and unremarkable behaviors.
Hence, dynamics and structure are indeed connected in some way. What role water’s proposed second
critical point plays will be investigated in the next chapter.
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7. Polyamorphism in charge-scaled TIP4P/2005

This chapter deals with polyamorphism of supercooled water-like models. It presents a study on
the relation of thermodynamics, structure and dynamics of the TIP4P/2005 water model with
systematically reduced partial charges, and thus weakened hydrogen bonding. The observation of
isochore crossing in the P-T diagram shows that these water-like models exhibit an easily accessible
liquid-liquid critical point (LLCP), followed by a liquid-liquid phase transition (LLPT) line between
a high-density liquid (HDL) and low-density liquid (LDL) phase. A two-structure equation of state
(TSEOS) is used to determine the critical parameters, temperature Tc, pressure Pc, and density ρc, and
their dependence on charge scaling. With simulations of elongated rectangular geometries the phase
separation into stable HDL and LDL regions is facilitated and the study of their respective structure
and dynamics made possible. For the dynamics, it is found that the fragility of isochores varies only
slightly while their composition differs greatly but changes only moderately with temperature. On
the contrary, strong variations of fragility and significant temperature dependence of the composition
are found for isobars. Thus, the origin of the dynamical transition from fragile to strong behavior
for cooling along isobars is not the existence of two phases with significantly different temperature
dependencies of their respective dynamics. Instead, the results show that rapid conversion from
HDL-like water with fast dynamics to LDL-like water with slow dynamics is the origin of the apparent
highly fragile behavior. Furthermore, the dynamics are studied by employing two models based on
the two-structure model. Their validity in the phase diagram is limited. In conclusion, theoretical
challenges for the description of dynamics in a reactive binary mixture are discussed.

7.1. Motivation

Many-particle physics are a rich field leading to many phenomena of which the anomalies of water
are a well-known example. At the origin of these anomalies is the competition of hydrogen bonding
and other intermolecular interactions which are most prominent in the supercooled regime.2 There,
the thermodynamic response functions have been predicted to diverge.127 In particular, simulations
indicated that the anomalies of water are caused by a liquid-liquid phase transition (LLPT) line at
low temperatures and above atmospheric pressures and that a second critical point (CP) marking the
end of the LLPT line exists.5 The two phases differ in density and are, thus, denoted as high-density
liquid (HDL) and low-density liquid (LDL).6,125,139,142,144 As a consequence, the short-range structure
differs between both phases, with LDL arguably having higher tetrahedral order. Additionally, they
are expected to have different dynamics.18

A significant problem is the very rapid crystallization of water below the homogeneous nucleation
temperature TH. Raman scattering of evaporating micrometer-sized droplets determined this to
be TH ≈ 231K.329 Hence, in the temperature range of ∼150–230K crystallization prevents the
experimental study of structure and dynamics of bulk water, and thus, the two liquid phases. This
so-called no-man’s land still hinders experimental evidence of the LLPT line despite some progress
in exploring it.129,330–332 While multiple amorphous ice phases, i.e., glasses, that are separated
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by first-order like phase transitions and have different glass transition temperatures Tg have been
found,6,13,125,139,142,144 the LLPT line and LLCP are still inaccessible and controversial.14,15

Such polyamorphism in liquids is not limited to water. Simple theoretical approaches and simula-
tions with model systems,12,196 e.g., tetrahedrally functionalized particles or the spherically symmetric
Jagla model, have shown that polyamorphism can be introduced with certain inter-molecular inter-
actions.197,198 Furthermore, experimental evidence of polyamorphism has been found for carbon,
phosphorus and sulfur, among others.8–11 A broad overview can be found in a recent review.7 The
literature implies that an LLCP can occur when spacious and ordered local structures of low energy,
such as tetrahedral arrangements, exist. In such systems, cooling favors the low-density structure
(LDS) while increasing the pressure leads to an increase in high-density structures (HDS) with denser
packing. These local structures are generated by a small group of molecules and attributed to this
group or to the central molecule, as is done within this work. They should not be confused with LDL
and HDL, which are regions consisting of a larger number of molecules in many local structures.
In particular, LDL and HDL are rarely pure phases, but mixtures of predominantly LDS and HDS,
respectively, whose concentrations depend on the thermodynamic state.

As has been exploited in the previous chapter, the crystallization is suppressed in simulations
because of the high cooling rates and small system size. This makes MD simulations very suitable for
studying the polyamorphism of water.3,4,169,194,195 The literature on evidence of LLPTs in simulations
of several water models is already quite extensive.157 Among those that show indications of an LLPT
are the TIP4P/2005,158–162 TIP4P/Ice,162 TIP5P,161 WAIL,163 E3B3,164 and ST2 model.5,166–168 In
contrast, the mW model does not have an LLPT because the entropy of mixing is too high for phase
separation.173 Not in all cases is the LLCP computationally accessible, i.e., equilibration at the LLCP
can be performed within reasonable time.158–161 So deep in the supercooled regime and at negative
pressures, at which water anomalously slows down, the structural relaxation can be quite slow.
One such example is the SPC/E model, for which the LLCP was predicted at currently inaccessible
temperatures.22 Additionally, the influence of crystal-like clusters, in particular in systems of finite
size, is still debated.170,171

The systems and corresponding literature mentioned above show that liquid polyamorphism may
be more common than one might think. A fundamental understanding of the LLCP, how its existence
and location depend on the particle interactions, is still lacking and would help in the search for
further systems with this phenomenon. MD simulations offer two major advantages in this respect.
First, the thermodynamic conditions, temperature, pressure, and density, can be controlled and
easily adjusted. Experimentally, negative pressure is achievable, e.g., with the so-called Berthelot
tube method.175 Detailed experimental measurements in this region of the phase diagram, where
water is double metastable, are still rare. Simulations with the TIP4P/2005 water model agree with
experimental data at these conditions, but are much more stable and can be analyzed as usual.175

Second, MD simulations allow for continuous variation of particle interactions and exploration of
model systems. For example, decreasing the three-particle repulsion parameter of the Stillinger-Weber
potential for silicon led to a disappearance of the LLPT.200–202 A more pronounced LLPT was found for
variations of the bond angle in the ST2 model of water.203 An approach possible with most chemically
realistic models is the scaling of partial charges. While for the WAC model for silica no LLCP was
found in the accessible phase space,4 it was shown by the crossing of isochores in the P-T phase
diagram and by extensive free energy calculations that an LLPT exists when the partial charges
of the model are reduced.25,169 As with silica, no unique accepted model exists for water and an
exploration of the parameter space helps in assessing the implications for real water. Charge scaling
has also been helpful in studying the glass transition in water,46,117 silica,118 an ionic liquid283 and a
charged Kob-Andersen mixture116,290,291 and has been investigated in the previous chapter. It already
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changed the liquid behavior significantly, e.g., removing the density anomaly at atmospheric pressure
and reduced charges. Thus, charge scaling is applied again in favor of other options for variation of
the strength of hydrogen bonds and the degree of tetrahedral order.46,117

To complement the standard analysis of simulations a theoretical description for polyamorphism is
needed. The two-structure equation of state (TSEOS) formalism has been successfully applied in
several studies.161,168,173,182–188 Within it, the liquid is represented as a mixture of HDS and LDS
in all regions of the phase diagram. A mean-field approximation allows for the calculation of the
Gibbs energy analogous to binary mixtures. It consists of a concentration-dependent weighted sum
of the pure phases and an non-ideal mixing term of entropic173,185,333 or enthalpic160,168,176,334
origin. This approach has been successfully applied in the literature for interpolation and moderate
extrapolation,182 and the built-in parametrization of the LLCP allows for a robust determination.

Moreover, liquid polyamorphism could lead to unusual dynamic behavior. The dynamical anomaly
of water, that viscosity decreases with increasing pressure,2 is thought to originate in its proposed
polyamorphism. If structural relaxation is sufficiently different between HDS and LDS, the dynamics
of the mixture will vary with their concentration, which in turn varies with pressure. Given that the
HDS concentration grows with pressure, its mobility is higher than that of LDS. This is consistent
with the experimental finding that Tg of HDL is lower than for LDL.13 However, it is still controversial
whether this glass transition is related to translational or just rotational motion,16 as the nature of
the dynamics in the no-man’s land is difficult to study. Also with extensive simulations using the
TIP4P/2005 water model, two different glass transition temperatures were found of which LDL/LDA
exhibits anomalous pressure dependence of Tg while HDL/HDA shows normal behavior.216

Furthermore, water exhibits a very fragile temperature dependence of dynamics in the mildly
supercooled regime while a strong temperature dependence is required at even lower temperatures
to match the experimentally found Tg. Thus, it may belong to the class of liquids that exhibit a
fragile-to-strong transition (FST).40 More specifically, HDL and LDL are assumed to be fragile and
strong liquids, respectively, and an FST is expected when the Widom line is crossed in temperature.
The Widom line is the continuation of the LLPT line into the single-phase region above the LLCP
where the thermodynamic response functions of the liquid exhibit a maximum and the change in
HDS/LDS concentration with temperature is high.147–150 Nevertheless, there exist other explanations
for the observed dynamic crossover, e.g., that only a β-process remains.17 MD simulations have
already been used to investigate the dynamical behavior near the LLPT with the ST2 water model
and the WAC model for silica among others.210,213

Therefore, this chapter deals with MD simulations specifically performed to investigate thermody-
namic, structural, and dynamical properties of the TIP4P/2005 water model over a large region of the
phase diagram. Charge-scaling is used to reach regimes that are not as accessible with the original
model and to systematically study the resulting phase diagram. Crossing of isochoric data in the P-T
phase diagram is observed. Hence, the systems possess an LLCP and the TSEOS can be employed
to analyze its position. Furthermore, the dependence of its parametrization on charge scaling can
be investigated and used to test the accuracy of this method and to compare with literature data.
Because the mobility at the critical point accelerates with reduced charges, dynamical properties can
be studied across the LLCP and the systems can be equilibrated below the critical point. Furthermore,
simulations which promote phase separation into HDL and LDL regions in the metastable regime are
performed allowing for the study of both phases directly. Finally, the FST of water can be rationalized
with the rapid transition from HDL to LDL in a narrow temperature range. Models that characterize
water’s dynamics in this way are then thoroughly tested.
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7.2. Methods

The following sections contain information on simulations and analyses specific to this chapter.

7.2.1. Simulation details

Listed here are the studied systems and important details only. For further details about the water
model and simulation parameters see Sec. 4.1. As described in Sec. 4.1, the partial charges of the
original TIP4P/2005 water model276 are scaled by a factor q, in this case from q = 0.86 to q = 0.91,
while all other parameters of the model remain unchanged. Thus, the polarity and strength of the
hydrogen bonds is reduced. The model was parameterized with long range LJ interactions taken
into account. The contributions of the LJ potential at large distances are always attractive and give a
negative contribution to pressure and energy. Hence, PME is employed for the LJ potential as well to
determine pressure correctly and comparable to the literature. Results are therefore slightly different
from simulations in Chap. 6 and 8.

The majority of the simulations in this chapter, as in the majority of the water simulations in
this thesis, were performed with cubic boxes and N = 2000 molecules, resulting in an edge length
of ∼ 4nm. Comparable studies were often performed with less molecules.25,219 While this is not
relevant in the one phase region, it should become crucial in the two-phase region where the volume
fraction of a proposed liquid-liquid interface would scale with N2/3 instead of N . For simulations in
the isothermal-isobaric (NPT) ensemble of this chapter, the density equilibration was not followed by
production runs in the NVT ensemble. Instead, data for isobars was obtained from trajectories in
the NPT ensemble and it was assured that a fraction of the trajectory sufficient for equilibration was
omitted in the data acquisition for isochores and isobars. Isochores end at temperatures where the
simulation lengths necessary for equilibration exceed 2µs.

To promote phase separation, simulations were performed with elongated rectangular boxes.
These allow for a smaller ratio of surface area to volume in the case of phase separation than
their cubic counterparts at the same computational cost.169,335 These coexistence simulations were
also performed in the NVT ensemble for q = 0.86 and q = 0.88. The edge lengths had a ratio of
Lx : Ly : Lz ≡ 1 : 1 : 3 for systems with N = 2000 molecules and 1 : 1 : 6 for further simulations
with N = 12000 molecules. With these parameters, the size of the box of the small system is
Lx = Ly ≥ 2.7nm and Lx = Ly ≥ 4.0nm for the large system. For the large system, the influence of
a biased starting configuration was investigated. Flat bottomed potentials were applied to artificially
promote separation into one high-density and one low-density region and the system was equilibrated
at a temperature close to Tc. The simulation protocol of cooling down in succession was applied once
low enough temperatures for stable phases were reached.

7.2.2. Two-structure equation of state

The TSEOS, two-structure equation of state, formalism has been very successful in describing and
analyzing data from simulations and real water in many previous studies.160,161,168,188 Therefore, it
is used to determine the location of the LLCP for the isochoric data set. This approach considers the
liquid to consist of two mutually convertible high-density and low-density local structures A and B
with fractions 1− x and x, respectively. Thus, contrary to common binary mixtures it is a reactive
mixture with a concentration, which is constant only on average. Still, the thermodynamic description
features many similarities. As a starting point, the molar Gibbs energy is written as160,161,168,182,188

G = GA + xGBA +RT [x lnx+ (1− x) ln(1− x) + ωx(1− x)] . (7.1)

70



7.2. Methods

Here, GA, GB, R and ω are the Gibbs energies of the pure A and B phases, the molar gas constant
and the non-ideal mixing parameter, see Eq. (7.4). By using the concentration x and the difference
of the Gibbs energies, GBA = GB −GA, one avoids explicit parametrization of the low density phase.
The more easily accessible high density phase is modeled in more detail while the difference GBA

will be approximated. Similarly to binary mixtures, a contribution by the entropy of mixing of A and
B structures is included. It consists of two terms describing ideal mixing and a term for non-ideal
contributions. Because the determination of the LLCP is of interest, it is convenient to represent the
temperature and pressure as dimensionless quantities, ∆T̂ = T−Tc

Tc
and ∆P̂ = P−Pc

ρcRTc
. GA is effectively

modeled as a Taylor series with terms up to third order,

GA = RTc
∑︂
m,n

ĉmn∆T̂
m
∆P̂

n
, (7.2)

with ĉmn as adjustable coefficients. Some of these can be interpreted, e.g., at the LLCP ĉ10 is the zero
point entropy and ĉ01 characterizes the volume. The coefficient ĉ10 is set to zero in the literature and
in this study. For a reactive mixture model, the equilibrium of the reaction A ⇌ B is determined by
the equilibrium constant K(T, P ) = exp(−GBA/RT ). In this case − lnK is approximated by a first
order expansion:

GBA

RT
= λ(∆T̂ + a∆P̂ + b∆T̂∆P̂ ). (7.3)

The free parameters λ, a, and b describe the entropy difference of A and B at the LLCP, the slope
of the LLPT line or the Widom line in the P-T diagram and their curvature.160 The LLCP and LLPT
are defined by the condition lnK(T, P ) = 0 where its continuation for temperatures above the LLCP
is the Widom line. More specifically, the LLPT line is the region with ω > 2 while the Widom line
applies to ω < 2.

It is assumed here that the non-ideal contribution to the entropy of mixing, ωx(1−x), is symmetric
in x. The parameter ω determines the strength of this effect. While a temperature-independent ω
describes entropic causes, one finds ω ∝ 1

T when the nonideality has enthalpic origin. Previous work
with the TIP4P/2005 water model has shown that the data can be well described with160,188

ω =
2 + ω0∆P̂

T̂
, (7.4)

with T̂ = T/Tc and ω0 as a free parameter. Therefore, this form was also used in this study for all
charge-scaled systems.

The concentration at equilibrium xe is defined by the condition

1

RT

(︃
∂G

∂x

)︃
P,T

=
GBA

RT
+ ln

(︃
x

1− x

)︃
+ ω(1− 2x) = 0 . (7.5)

Solutions to this equation must be found numerically. To describe isochoric data, the reduced volume
V̂ = ρc/ρ can be determined by partial derivation of the dimensionless Gibbs energy Ĝ = G

RTc
with

respect to P̂ = P
ρcRTc

:

V̂ =
∂Ĝ

∂P̂
=
∑︂

m,n>0

n · ĉmn∆T̂
m
∆P̂

n−1 (7.6)

+ xλ(a+ b∆T̂ ) · T̂
+ x(1− x)ω0.
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7. Polyamorphism in charge-scaled TIP4P/2005

The pressure that satisfies the given density, and thus the given volume, must be determined. At
the same time x must correspond to the equilibrium concentration xe, and thus satisfy Eq. (7.5).
Therefore, the solution is a (P, x) vector that simultaneously satisfies Eq. (7.5) and ρ = ρc/V̂ via
Eq. (7.6). A constraint is that V̂ c = 0.25ω0 + ĉ01 + 0.5λa = 1 has to be fulfilled at the LLCP.

This optimization problem is solved for each measured state point (T, P, ρ) independently but
with the same set of parameters. The parameters of the TSEOS are then determined by a global fit
using the calculated and measured pressures. The constraint is not taken into account during the
fit. Instead, ρ∗c is fixed and the real value is calculated as ρc = ρ∗c/V

∗
c afterwards. All parameters are

scaled accordingly. Below Tc, two solutions with different x are possible. To account for this and to
assure convergence, the optimization step is performed twice with a small and large initial guess for
x. In case of two solutions, the one closest to the measured pressure is chosen. This is problematic
close to the LLCP where the spinodals are close in pressure but not an issue once they are separated
by more than the statistical uncertainty of P . Including other thermodynamic variables, e.g., the
specific heat capacity cV , could improve the fit and extend what the fitted model can predict. Because
the present study uses only derivatives of Ĝ with respect to pressure but not to temperature, only
parameters occurring in Eq. (7.6) and Eq. (7.5) are determined.

Isochores at low density or isobars at strongly negative pressure can enter the vicinity of the
liquid-vapor spinodal where the derivative ∂P/∂V |T vanishes. This introduces additional terms into
the TSEOS description and has been done recently.176,188 It increases the accuracy and region of
the phase diagram that can be described. In this study, the data is restricted to temperatures and
pressures within the vicinity of the LLCP. Explicitly, only temperatures T < 1.25Tc are used. Higher
temperatures can be included, however, their interpretation in terms of HDS and LDS is questionable
as perhaps neither is dominating in the disordered simple-liquid regime. Therefore, such additional
terms are not used in the present approach.

7.2.3. Observables

Structure Three local structure identifiers, LSI, N4, and d5, from Sec. 5.1.4 are used to distinguish
between HDS and LDS. For the calculation of all three of them only the distances of neighboring
oxygens are relevant. The local structure index (LSI),316 Eq. (5.12), is a widely proven and accepted
measurement to distinguish between separated or joined first and second next-neighbor shells. Small
values indicate a narrower distribution of distance differences of next neighbors, and thus identifies
HDS. Larger values indicate separated shells and therefore spacious LDS. One may extract the LDS
fractions from the probability distribution p(I) as the fraction of values with I ≥ 0.0006nm2, denoted
in the following with xLSI. The simple structural identifier N4 distinguishes HDS from LDS with
the number of neighboring molecules within the cutoff alone. Four or less next neighbors indicate
a spacious LDS environment while five or more are found for HDS. Values of N4 of zero and one
represent HDS and LDS, respectively. A similar approach was taken previously for water to investigate
the LLCP.210 Additionally, the distance to the fifth neighbor is analyzed and d5 indicates whether the
fifth neighbor is inside or outside the cutoff as zero and one, again representing HDS and LDS.160
The cutoff distances are rij < 0.37nm and rij < 0.35nm for N4 and I and for d5, respectively. As
found for charge scaling of the SPC/E water model the next-neighbor distances change slightly with
strong charge scaling.117 Here, only a small range of scaling parameters is investigated and, thus, it is
assumed that these differences in distances are small enough to not require charge scaling dependent
cutoffs. More parameters have been investigated with MD simulations of water in detail, for example
ζ by Shi et al.,336 but their advantages appear when single molecules and temperatures further from
the presumed LLCP are investigated. Here, averages over subsets are calculated and temperatures
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probe deep into the supercooled regime and, thus, the simplest structural identifiers with the least
assumptions suffice. For higher temperatures, N4 and d5 will falsely identify local structures with 3
next neighbors as LDS while they naturally appear in the disordered liquid state. The tetrahedral
order parameter is not employed because of its broad distribution of values and, thus, inaccuracy in
distinguishing structure, as is shown in Sec. 6.1.

Dynamics One expects for the water-like molecules growing fluctuations of local structure with
decreasing distance to the LLCP and, hence, possibly significant dynamical heterogeneity. The mean-
square displacement (MSD), see Sec. 5.2.2, is analyzed to characterize the long-range translational
motion. The self-diffusion coefficient D is thus averaged over all dynamical heterogeneities.
Local dynamics is probed with the reorientation of the O–H bond vectors of the water-like molecules
by computing the rotational correlation function (RCF), see Sec. 5.2.3, with the Legendre polynomial
of rank 1, F1,OH(t). Because the vibrational decay and the dynamical heterogeneity vary between
different thermodynamic paths, fits of the RCF beyond the vibrational regime to a scaled Kohlrausch-
Williams-Watts (KWW) function are used to calculate the mean correlation time, see Sec. 2.1.2. This
allows for comparable dynamics between the different thermodynamic paths but limits the analysis
to temperatures where vibrational and terminal relaxation are well separated.

Spatially-resolved analysis In the vicinity and below the LLCP in the metastable region one
observes spatial structuring of HDS-rich and LDS-rich regions into layers in the xy plane. In this study,
these spatial and temporal structural fluctuations are analyzed with layers of thickness ∆z = 1nm,
aligned with the xy plane. Determining the layer-averaged density and structural identifiers along
the trajectory one can investigate their evolution in time. Here, it is distinguished between following
a reference molecule or a position fixed in space. The former measures the change of the environment
as experienced by the particles in time and takes into account a change of the environment by
translation. The latter corresponds to the macroscopic observation in the laboratory system.

To analyze the structural fluctuations in time, the layer-averaged quantities ξL(t), where ξ is the
density ρ or a structural identifier, i.e., ρL, xLSI,L, IL, N4,L, and d5,L are defined. One averages over all
molecules or reference positions z to obtain z- and t-dependent values of the layer-averaged structural
properties. For N = 2000, layer averages contain about 250 molecules. While this is comparable to
ensemble averages of some simulation studies, it is still small enough to cause artifacts because of
discretization. To analyze the temporal aspect of the fluctuations as a whole, the autocorrelation
functions of the layer-averaged quantities are calculated,

Cξ(t) =
⟨ξL(t+ t0)ξL(t0)⟩ − ⟨ξL⟩2

σ2
ξ

, (7.7)

where ξL is the respective random variable, σξ is its standard deviation, and averages are over
molecules or reference positions. Consistent with the rotational correlation function F1,OH, fits of
KWW functions to the terminal decay are used to determine the average correlation time τξ of
these fluctuations. Vibrations and the numerical precision and small number of particles lead to
rapid changes of the structural properties within these layers. For example, particles leaving and
entering the layer volume because of vibrations already leads to broadening of the local density on the
vibrational time scale. Higher volume to surface ratios would suppress this effect. Here, the structural
properties are averaged over the time scale of molecular vibration. As these artificial fluctuations
should be irrelevant for local dynamics more accurate results are expected. To investigate the relation
between local structure and dynamics, F1,OH(t) is averaged over subsets of molecules with different
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7. Polyamorphism in charge-scaled TIP4P/2005

local environments. For example, molecules are distinguished by different layer-averaged properties
at the time origin t0 and during the time scale of vibration with the layer centered around the
molecule as defined above.

7.3. TSEOS analysis

The investigation begins with the P-T diagram of isochoric data of the charge-scaled TIP4P/2005
system, with the pressure calculated from the virial stress tensor. Typically, liquids show a monotonic
decrease in pressure P when the temperature T is reduced at constant density. For all charges,
one observes that the pressure decreases with temperature for all isochores as long as density or
temperature is sufficiently high, see Fig. 7.1 and Fig. A.5. However, it increases at lower temperatures
for isochores with sufficiently small densities. This phenomenon can be found in systems of two
competing liquid phases with different densities. In particular, a crossing of isochores in the P-
T diagram indicates an LLPT.4,25,169,337 Indeed, such isochore crossing is found for appropriate
intermediate densities and the lowest temperatures. The metastable region, where isochores cross,
can be studied to some extent. The highest temperature for which isochore crossing is observed and
the corresponding pressure and density mark the LLCP. The same qualitative behavior is observed
for all studied charge scalings.

With the crossing of isochores as evidence of the existence of two competing liquid states, one
may now use the TSEOS approach to examine the simulation data in more detail. The TSEOS is fit
to pressures close to the LLCP and the results are shown as solid lines in Fig. 7.1. One observes for
all charges that the TSEOS describes the simulation data very well near the LLCP, consistent with
previous studies for various tetrahedral liquids.160,161,168,188 The parameters from fitting the TSEOS
to the data and the respective locations of the LLCPs are summarized in Tab. 7.1. Parameters of
smaller order in T̂ and P̂ , i.e., ω0, λ, a, b, and ĉ01, have similar values for different charge scaling
factors q but scatter without a notable trend. On the other hand, the location of the LLCP shifts
significantly and monotonically. Hence, the properties at the LLCP and the shape of the LLPT in the
immediate vicinity are not influenced significantly by this approach. However, they do not quite
agree within their scattering with results for the original TIP4P/2005 model.160 Parameters relevant
in higher order terms vary strongly. This is unsurprising, since the temperatures and densities studied
are close to the LLCP and no higher thermodynamic derivatives are included and the TSEOS is
slightly overparameterized. The high uncertainty of these parameters is not of concern here, because
only the accurate determination of the LLCP and description within its vicinity are relevant to this
study.

Next, the dependence of the location of the LLCP, as identified by the critical temperature Tc,
pressure Pc, and density ρc, is studied as a function of the charge-scaling factor q, see Fig. 7.2.
The results for all three properties show monotonous reduction with reduced polarity. A similar
observation was made for the WAC model of silica for which the partial charges of the ions were
reduced.25 Hence, these findings are explained with the dependence of the critical parameters on the
strength of the Coulomb interactions. For water and these water-like models, a significant fraction
of the potential energy is caused by hydrogen bonding. Reducing the partial charges reduces the
binding energy and the scale of relevant thermal energies and, hence, Tc. With the hydrogen bonds
and, thus, the tetrahedral local configurations weakened, less energy or force is required to disturb
the local order with a fifth molecule within the next-neighbor shell. This means that Pc is expected
to decrease with the partial charges and, in particular, it moves to negative pressure when the partial
charges are reduced by more than 10%. For the density it is important to note that the LJ potential
for two oxygen atoms has its minimum at larger distances than found for the next-neighbor distance
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Figure 7.1.: Isochore data of the charge-scaled TIP4P/2005 water model in the P-T diagram in
ascending order from q = 0.86 (a) to q = 0.91 (f). The respective densities are given in
the legend. The colored solid lines are the result of the TSEOS analysis and indicate the
data points that were included in the fit routine. The red crosses on black circles mark
the position of the LLCP, the black solid lines are the LLPT, and the black dashed lines
the Widom line. Note, that the axis range varies between the graphs. For a wider range
of temperatures and pressures, see Fig. A.5 in the appendix.
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7. Polyamorphism in charge-scaled TIP4P/2005

Table 7.1.: Parameters of the TSEOS and locations of the LLCPs for charge-scaled TIP4P/2005 with
scaling factors q = 0.86–0.91. Only parameters ĉmn that occur in fitting the pressure are
shown.

Parameter 0.86 0.87 0.88 0.89 0.90 0.91
Tc in K 124.1 127.4 131.1 133.2 137.1 140.2
Pc in MPa -54.54 -42.94 -30.6 -14.75 -1.86 13.78
ρc in kg/m3 923.2 928.2 935.9 947.2 948.3 955.8
ω0 0.09164 0.1106 0.1056 0.06734 0.1025 0.1072
λ 1.478 1.551 1.538 1.434 1.563 1.602
a 0.211 0.1994 0.1996 0.2107 0.1984 0.1977
b -0.161 -0.1551 -0.1518 -0.163 -0.1647 -0.1925
ĉ01 0.8211 0.8177 0.8201 0.8321 0.8193 0.8148
ĉ02 0.00321 0.005705 0.009058 0.002807 0.008431 0.01531
ĉ11 0.1339 0.1536 0.1594 0.1029 0.1579 0.2198
ĉ12 -0.06196 -0.07647 -0.08927 -0.05013 -0.06727 -0.1654
ĉ21 -0.2146 -0.2262 -0.2965 0.001027 -0.2012 -0.4412
ĉ22 0.2848 0.2742 0.2343 0.1773 0.0872 0.5909
ĉ31 0.6568 0.5172 0.6825 0.09845 0.4062 0.8121
ĉ23 -0.008097 -0.01679 0.004091 -0.01736 -0.05696 0.006732
ĉ32 -0.6706 -0.5275 -0.3187 -0.3932 -0.01522 -0.927
ĉ33 0.06347 0.1267 0.01144 0.07191 0.2536 0.008787
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Figure 7.2.: Critical parameters from the TSEOS analysis as a function of the charge-scaling factor
q: (a) critical temperature Tc, (b) critical pressure Pc, and (c) critical density ρc. The solid
lines are linear fits. (d) Rotational correlation times τ and jump times a2/6D at the LLCP.
A jump length of a = 0.325 nm, which is between the first and second neighboring shells,
is used to calculate the jump time from the self-diffusion coefficient. D and τ at the
LLCP were determined by interpolation, see text for further details.
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7.3. TSEOS analysis

in water. The attractive Coulomb interactions pull the molecules closer than they would be without
them. Thus, the local tetrahedral order stretches and the density ρc decreases with decreasing q.

To verify the TSEOS result, the density ρ during isobaric cooling at atmospheric pressure is
examined in Fig. 7.3. As expected, one finds that ρ decreases very rapidly for higher charges while
such jumps are not observed for lower q. For the lower charge scalings, q < 0.89, the critical pressure
Pc is far enough below the atmospheric pressure, see Tab.7.1, for the system to enter the HDL phase
and ρ to increase continuously in the studied temperature range. For q = 0.91, Pc is above 1 bar and,
thus, the system crosses the Widom line. Rapid increase of the fraction of LDS leads to a decrease
in ρ upon cooling. In particular, Pc is only just below 1bar for q = 0.9 and the metastable region is
entered upon cooling leading to a jump from HDL to LDL and a discontinuity in density. Because of its
proximity to Pc the jump occurs at T = 137K ≈ Tc, see Tab. 7.1. The results for ρ(T ) at atmospheric
pressure confirm the results of the TSEOS analysis.
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Figure 7.3.: Temperature-dependent density ρ of the charge-scaled TIP4P/2005 water models for
isobars at atmospheric pressure, P = 1 bar. The scaling factors q are given in the legend.
The gray line is the original TIP4P/2005 model but without long-range LJ interactions
and, thus, effectively at reduced pressure.

Table 7.2.: Location of the LLCP of the regular TIP4P/2005 model as found by different studies.
Study Tc in K Pc in MPa ρc in kg/m3

Abascal 2010158 193 135 1012
Sumi 2013159 182 158-162 1020
Yagasaki 2014338 185 – 1020
Singh 2016160 182 170 1017
Handle 2018339 175 175 997
Debenedetti 2020162 177 175 –
Extrapolation 169 136 1017

One may extrapolate the apparently linear dependence of the critical parameters on the scaling
factor to q = 1 to determine the respective values for the original TIP4P/2005 model. Tc = 169K,
Pc = 136MPa and ρc = 1017 kg/m3 are obtained this way. The values for Tc and Pc are smaller but
still close to those found in the literature for the TIP4P/2005 model, see Tab. 7.2.158–160,162,338,339
The critical density ρc lies within the range of the critical densities found. The deviations are most
probably a consequence of the extrapolation of q over twice the range studied and the assumption of
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7. Polyamorphism in charge-scaled TIP4P/2005

a linear dependence over a larger parameter range of q might not be adequate.

7.3.1. The specific heat anomaly

Before focusing on the microscopic structure and the effects on the dynamics of the system, it can be
shown that other expectations for thermodynamic properties are well observable in the simulations.
For example, the thermodynamic derivative cP , the specific heat, can be calculated from fluctuations
of the enthalpy H = U + PV ,

cP =
⟨H − ⟨H⟩⟩2

kBT 2
. (7.8)

Figure 7.4(a) presents the results at atmospheric pressure and for reduced partial charges. Consistent
with Fig. 7.3, systems with q < 0.89 do not cross the Widom line and, accordingly, a moderate increase
of cP upon cooling is observed. However, the Widom line is crossed for q ≥ 0.9 and a sharp peak
appears at low temperatures. There, fluctuations in enthalpy are larger when interconversion of HDL
and LDL is prominent. The peak is higher for the system with q = 0.9, for which the distance to the
LLCP is smaller at atmospheric pressure. For q = 0.89, a sharp increase to cP > 600 J/(mol·K) is found.
However, dynamics are slow and the system is difficult to equilibrate increasing the uncertainty. It is
possible that the system is close to its LLPT line. At high temperatures an increase in cP is observed
when the systems approach their boiling point.

Figure 7.4(b) presents the data for several isobars. Equivalently, a peak at low temperatures is
found when the pressure is below Pc = −55MPa and the Widom line is crossed. Again, the peak
height increases with decreasing distance to the LLCP. The isobars above the critical pressure never
cross the LLPT or Widom line in the simulated temperature range, see Fig. 7.1(a), and, thus, exhibit
monotonous growth of cP . Note, that increasing P and compressing the system even further increases
cP . These observations are consistent with water’s anomalies upon crossing the Widom line.
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Figure 7.4.: (a) The temperature-dependent isobaric specific heat cP per mole molecules of the
charge-scaled TIP4P/2005 model (a) for different charge-scaling factors and atmo-
spheric pressure and (b) q = 0.86 and several pressures.

78



7.4. Structure and dynamics

0 1 2 3

I in 10
-3

nm
2

0

2

4

p
(I

)
116 K
120 K
124 K
128 K
134 K
142 K
150 K
158 K
167 K
179 K
193 K
209 K
229 K
252 K
280 K
315 K
361 K
422 K
566 K

120 140 160 180 200
T in K

0

0.25

0.5

0.75

1

x
L
D

TSEOS
LSI
N

4

d
5

(a) (b)

Figure 7.5.: Temperature dependence of the local structure identifiers for the charge-scaled
TIP4P/2005model with q = 0.86 along the isochore with the density ρ = 925 kg/m3 ≈ ρc.
The critical temperature is Tc = 124K. (a) Probability distribution of the LSI p(I) at the
indicated temperatures. The dashed line separates I values typical of HDS and LDS.
(b) Temperature dependence of fractions of LDS xLD. In particular, the equilibrium con-
centration from the TSEOS analysis and LDS fractions determined with the criteria
N4 = 1, I ≥ 0.0006nm2 and d5 > 0.35nm are shown. The results obtained for the
isochores with ρ = 925 kg/m3 (solid lines) are compared to the data from the isobars
with P = −65MPa (dashed lines), which is close to the critical density Pc = −55MPa.

7.4. Structure and dynamics

After determining the LLCP of the charge-scaled TIP4P/2005 water models, their structure is studied.
Shown are the results for structural identifiers using the example of q = 0.86 and the density closest
to the critical density, ρ = 925 kg/m3 ≈ ρc, in Fig. 7.5.

The distribution of the structural identifier LSI is weakly bimodal, see Fig. 7.5(a). A second peak at
larger values I ≈ 0.0011nm2, corresponding to the more spacious LDS appears for lower temperatures
and grows at the cost of the HDS peak at I ≈ 0.0002nm2. Both have broad distributions due to
the fact that trajectories of real dynamics were analyzed instead of inherent structures, i.e., energy-
minimized configurations. For these, the separation of the two peaks is more prominent and they
shift to larger values.326 Still, these results show that at high temperatures only structures with
continuously increasing next-neighbor distances are preferred and that upon cooling down to the
LLCP and into the metastable regime LDS becomes relevant and its fraction increases. However,
phase separation into extended HDL and LDL phases is not observed in the case of cubic systems at
any of the temperatures studied.

In order to analyze the conversion from an HDL-like to an LDL-like liquid in more detail, the
temperature dependence of the LDS fraction is determined. To do so, one distinguishes HDS and LDS
with the criteriaN4 = 1, I ≥ 0.0006nm2, and d5 > 0.35nm, where I = 0.0006nm2 lies approximately
between the peaks in p(I). Figure 7.5(b) shows that the fraction of LDS xLD obtained from the different
structural identifiers and from the TSEOS analysis slowly increases as the temperature is decreased
along the shown isochores with ρ ≈ ρc. That xLD grows with cooling also holds for all studied
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Figure 7.6.: Pressure dependence of the fraction of LDS,xLD, for the charge-scaledTIP4P/2005water
model with q = 0.86 at the indicated temperatures. The critical pressure isPc = −55MPa
and the critical temperature is Tc = 124K, see Tab. 7.1. The fractions are determined
with the criteria N4 = 1 (blue circles), d5 > 0.35 nm (green squares) and I ≥ 0.0006 nm2

(red diamonds) and are shown together with the fraction as determined from the TSEOS
analysis (black pluses).

densities but may be violated for more extreme cases. In contrast, a rapid increase of xLD near Tc
occurs when a system with P ≈ Pc is cooled under isobaric conditions. The pressure dependence of
xLD at characteristic temperatures is presented in Fig. 7.6. The various properties differ quantitatively
but show qualitatively consistent behavior. For most studied state points, the values of xLD obtained
with I and N4 are smaller than those of the TSEOS analysis while the values for d5 are larger.
However, it should be noted here that the absolute values depend on the chosen limits. The pressure
dependence changes qualitatively with temperature. Significantly above Tc, xLD gradually decreases
with increasing pressure and near Tc one observes a sharp step as the pressure is increased above Pc.
Significantly below Tc, a re-entrant behavior of xLD is found for all structural quantities as a function
of pressure because of the existence of two possible compositions, HDL and LDL, with minima in the
Gibbs energy. This means that the pressure as a function of xLD or ρ is no longer injective, unlike
in a normal liquid. Exploring states below the LLCP for the original TIP4P/2005 water model is
computationally more expensive and, thus, these results have not been found for previous studies on
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it. This is a further argument for the presented charge scaling approach which allows the study of
the LLPT in more detail.160
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Figure 7.7.: The (a) MSD r2(t) and (b) RCF F1,OH(t) exemplary for the charge scaled TIP4P/2005
water model with q = 0.86. Data for the isochore with density ρ = 925 kg/m3 ≈ ρc for
temperatures from 158K (red) to 116K (blue) are shown. The critical temperature of this
system is Tc = 124K.

One observes a significant slowdown of translational and rotational dynamics with decreasing
temperature, as measured by the MSD and RCF respectively, see Fig. 7.7. To quantify the dynamics,
the self-diffusion coefficient D and the mean correlation times τ , as described in Sec. 2.1.2, are
determined from r2(t) and F1,OH(t), respectively. The same analysis was performed for all isochores
and isobars. Evidence of bimodal dynamics, as expected for coexisting HDL and LDL regions with
differing mobility, is not found for any of the systems with cubic geometry. This is consistent with the
finding that no phase separation was observed. In detail, it was investigated in App. A.2.3 whether or
not F1,OH(t) must be described with one or two components, i.e., a biexponential behavior. A single
KWW function appropriately characterizes the correlation function while the same is not the case
for elongated systems, studied in Sec. 7.5.

The determined self-diffusion coefficients and correlation times of the charge-scaled TIP4P/2005
water model with q = 0.86 obtained for different isochores and isobars are presented in Fig. 7.8.
One finds that the translational and rotational dynamics slow down significantly when the density
is reduced near ρc. This is consistent with the dynamical anomaly as found for real water and
other tetrahedrally ordered systems such as silica.2,25 No evidence of changes in the temperature
behavior near the LLCP when cooling along isochores is found. In particular, no FST for the density
ρ = 925 kg/m3 ≈ ρc exists in the studied temperature range. In fact, all self-diffusion coefficients and
correlation times of the shown isochores can be described sufficiently by a Vogel-Fulcher-Tammann
(VFT) equation, where τ0, B, and T0 are second-order polynomial functions of the density. This is
contrasted by a high-temperature dependence for cooling under isobaric conditions with pressures
below but close to Pc = 55MPa.

In particular, the temperature dependence ofD(T ) for isochores and isobars is similar for sufficiently
high or low temperatures while it is significantly stronger under isobaric conditions and P <
Pc near the LLCP. A sigmoidal shape is observed, see Fig. 7.8(b). The same features were also
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Figure 7.8.: The temperature dependence of dynamics for charge-scaled TIP4P/2005 with q = 0.86
near the LLCP. The reciprocal self-diffusion coefficients 1/D are presented (a) along iso-
chores and (b) along isobars. The isochore closest to the critical density is 925 kg/m3 ≈
ρc. The solid lines in (a) and (c) are fits with VFTs, see text. In (b), the colored dashed
lines are 1/D at the indicated pressures P interpolated from the observed behavior
along the isochores and the information from the TSEOS analysis, see text. The colored
dotted lines are extrapolations of these behaviors. The black dotted line marks the
location of inflection points for isobars calculated from the TSEOS and the VFT fits.
(c) Mean rotational correlation times τ determined from KWW fits to F1,OH correla-
tion functions. For the stretched systems with phase separation, spatially resolved
correlation times τL (open symbols) were determined for layers with mean density
equal (±5 kg/m3) to the simulated isochores of the cubic systems (filled symbols).
The time scales τρ on which layer-averaged densities ρL fluctuate are calculated
with the autocorrelation functions Cρ(t). In this case, the centers of the layers follow
the reference molecules. The crosses show the results along isochores with density
ρ = 925 kg/m3 ≈ ρc.
(d) Stretching parameters βkww of the same KWW fits to F1,OH as in (c). In (a)–(c), 1/D
and τ at the LLCP are marked by a black cross on a red circle and the black dashed
lines show the interpolated values on the Widom line. The legends in (c) and (d) apply
to both graphs.

82



7.4. Structure and dynamics

found for rotational correlation times τ(T )340 and they have also been found for ST2 model of
water.341 Comparing the results for different pressures P , one observes that the onset of the enhanced
temperature dependence is within the vicinity of the Widom line. These observations are consistent
with findings of a stronger temperature dependence of the self-diffusion coefficients along isobars
compared to isochores near the LLCP.121,210,213,219 The moderate and rapid transition from an
HDL-like liquid to an LDL-like liquid upon isochoric and isobaric cooling, respectively, below Tc are
accompanied by corresponding changes in translational and rotational dynamics. This is a strong
indication of a structural origin of the FST.

The shape of the terminal decay F1,OH(t) contains information about how broadly distributed or
inhomogeneous the rotational dynamics of the molecules are. The stretching parameters βkww of
KWW fits to the data are shown in Fig. 7.8(d) for isochores of the charge-scaled TIP4P/2005 water
model with q = 0.86. This analysis is only possible in the supercooled regime where vibrational
and α-relaxation are well separated. Hence, βkww is shown only for τ > 50ps. By plotting βkww
as a function of the correlation time one can compare isokinetic points and is independent of the
strong slowdown with decreasing density. This better represents the degree of supercooling from
a dynamical point of view. For all isochores a decrease of the stretching parameter with cooling is
found. The non-exponentiality of the decays increases as the dynamics slows down. Close to the LLCP
the structural heterogeneity of mixed and fluctuating LDS and HDS and their respective dynamics
should enhance the signs of dynamical heterogeneity, e.g., a significant drop of βkww(τ) or even a
minimum.336 No strong indication of such behavior is found and βkww(τ) decreases monotonically.
The slight increase for the isochore with density ρ = 890 kg/m3 is within error and does not appear for
isochores with other scaling parameters q. However, it should be taken into account that for the cubic
systems the phase separation remains suppressed while it causes biexponentiality for the elongated
systems, see Fig. 7.12. Hence, the structural and dynamical heterogeneity may be suppressed to
some degree as well. One finds that for a given τ the stretching parameter decreases with density.
The density dependence of βkww(ρ) does not appear to be monotonic and shows a weak minimum
at ρ ≈ ρc. Thus, these results indicate that the dynamical heterogeneity increases with increasing
LDS fraction and maximizes for a 50:50 mixture, though the limited temperature range beyond the
LLCP prevents conclusive evidence. It is the concentration rather than fluctuations that determine
the dynamical heterogeneity.

Next, the knowledge of the VFT parameters as functions of density ρ, τ0(ρ), B(ρ), and T0(ρ), from
the previous analysis is exploited to interpolate the self-diffusion coefficient Dc and the correlation
time τc at the LLCP. Translational and rotational dynamics at the critical point become significantly
faster for smaller scaling parameters q and, hence, weaker hydrogen bonding, see Fig. 7.2. This means
that the charge scaling approach leads to a more easily accessible LLCP. This is taken advantage
of later on when phase separated elongated systems are studied. Additionally, one finds that the q
dependence of the self-diffusion coefficients at the LLCP can be translated into correlation times with
the relation a2 = 6Dcτc. Here, the jump length is a = 0.325nm, a distance between the first and
second neighboring shells. This means that short- and long-range dynamics at the critical point have
the same relation for all water-like models. Differences in length scale a arising from the reduction of
the critical density are about 3%, and are thus not significantly larger than the inaccuracy of the
dynamical quantities, see Fig. 7.9.

The Stokes-Einstein Debye relation, Sec. 2.1.3, can be used to compare the temperature dependence
of diffusion and correlation times. The hydrodynamic radius RH =

√︂
3
2Dτ is a measure that follows

directly from the equation. In Fig. 7.9(a), the jump lengths, proportional to the hydrodynamic radius,
are shown as an example for the TIP4P/2005 model with the smallest scaling factor studied q = 0.86.
Values in the literature for the jump length with rotational correlation times measured with F2,OH(t)
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Figure 7.9.: The jump length a =
√
6Dτ (a) and the alternative test of the SED relation with Dτ/T

(b), calculated from self-diffusion coefficients D and rotational correlation times τ
measured with F1,OH(t), as function of the dynamics 1/D for charge-scaled TIP4P/2005
with q = 0.86. For clarity, solid lines are connections of points for isochores with the
indicated densities. Symbols are results for isobars at the indicated pressures. The
value closest to the LLCP, with T = 124K≈ Tc and ρ = 925 kg/m3 ≈ ρc, is marked by a
black cross on a red circle.

are 0.289 nm, 0.253 nm, 0.219 nm and 0.257 nm for water in bulk solution, in silica pores, in mixture
with a polysaccharide and with an ionic liquid, respectively.342,343 Rotational correlation times with
Legendre polynomials of different rank are only comparable when large-angle jumps are performed
instead of rotational diffusion, which is the observed trend towards the lowest temperatures for
example in Fig. 9.22(b). Considering that atmospheric pressure is below the suspected critical point
and similar isobars for the charge scaled water have a ≈ 0.275nm in the one-phase regime,342 the
range of values covered by the different isochores and isobars is not unreasonable. Alternatively, in
some systems, viscosity and correlation time are found to have the same temperature dependence. For
completeness, the temperature dependence of Dτ/T , Fig. 7.9(b), is studied as well. For comparison
at isokinetic state points, both quantities are shown as a function of 1/D. A monotonic increase
of a and Dτ/T with decreasing density is found for similar dynamics. This means that the short-
range rotation slows down stronger than the long-range translation with decreasing density. For
isochores with densities much higher than ρc, one observes a slight decrease in the jump length
upon supercooling whereas for densities with ρ < ρc, a pronounced increase in a is found. Under
isobaric conditions, the corresponding behavior is found for P < Pc and P > Pc, respectively.
Towards very high temperatures, the jump length decreases for all densities. However, one observes
a plateau under isobaric conditions, possibly because the expansion during heating compensates for
the effect at constant density. Note the high similarity of Fig. 7.9(a) and Fig. 6.7(a) which shows the
qualitative equivalence of moving the location of the LLCP by charge-scaling or shifting the path in
the phase diagram with pressure or density. Dτ/T shows some qualitative differences. For example,
no plateau is seen at high temperatures even under isobaric conditions. Instead, the data for isobars
and isochores shows a plateau at low temperatures and sufficiently above Pc and ρc, respectively.
This observation has also been found previously for the ST2 water model.327

Commonly, in supercooled liquids, one finds that, as temperature decreases, the jump length and
Dτ/T increase, which is attributed to the growth of dynamical heterogeneity, see also Sec. 2.1.3.73–75
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For now, this is consistent with the observation that the violation of the SED relation at the same
dynamics is stronger for lower densities where the stretching parameter of the correlation functions is
also smaller at similar dynamics, see Fig. 7.8(d). But despite the higher densities having a decreasing
stretching parameter as well, the SED relation is not violated in the same way for isochores or isobars
above the LLCP in density or pressure, respectively. In fact, the jump length further decreases with
temperature. This case, unusual for supercooled liquids, has also been found for binary mixtures
of soft spheres344 and ionic liquids.76 The possibility that for ρ > ρc an increase at even lower
temperatures occurs cannot be ruled out, similar to the study of soft spheres. These results also
show that for a suitable density or pressure of about 980 kg/m3 or −200MPa for q = 0.86 the SED
relation should be satisfied for a large dynamic range. Therefore, previous attempts to classify the
SED breakdown in water, e.g., by inserting the caging regime,74 with data on one side of the LLCP
in the phase diagram give an incomplete picture or even lead to incorrect conclusions. However,
qualitative agreement with the literature finding that the SED relation is strongly violated upon
crossing of the Widom line and, hence, growing LDS fraction exists.327,328 The interpretation of
increasing heterogeneity must be used with caution in the case of water because the jump length in
LDL and HDL differs quantitatively and the transition from HDL to LDL may be superimposed on the
violation of the SED relation, depending on the thermodynamic pathway.

Analogously to the interpolation of dynamics at the LLCP one may calculate data for isobars and
compare it with the findings for isochoric and isobaric cooling. ρ(T ) for isobars is found by calculating
the densities ρ needed to achieve a desired pressure from the TSEOS. Using the density dependence
of the VFT parameters dynamics in the supercooled regime are inter- and extrapolated. The self-
diffusion coefficients determined in this way agree very well with those from the NPT simulations, see
Fig. 7.8(b). These results and especially the predictions from extrapolations to lower temperatures
lead to a sigmoidal temperature dependence of log(1/D). This behavior is able to reconcile dynamics
with the low glass transition temperature and has been predicted for decades from the Adam-Gibbs
theory and entropy.29,147,208 Recent estimations of the diffusivity of water within the no-man’s land
from laser heating and the following crystal growth have supported this prediction.20,120 Here, bulk
dynamics are followed into the no-man’s land and supporting results are found. More importantly,
these results show that the fragile temperature regime is caused by a rapid transition from HDL with
fast dynamics to LDL with slow dynamics. HDL itself, as seen for isochores with densities ρ > ρc
or isobars with P > Pc, is in comparison only moderately fragile. In particular, all isochores show
comparable fragility in the supercooled regime. Thus, the FST is not truly a transition from a fragile
to a strong liquid but rather the consequence of a transition from the strong high-temperature regime
to a strong or moderately fragile supercooled regime of LDL.

The sigmoidal temperature dependence leads to a maximum in the derivative 1/D(1/T ) or τ(1/T )
with respect to 1/T , see also Sec. 8.2.3. This inflection point is shown in Fig. 7.8(a,b). For further
reduced pressure and, hence, increased distance to the LLCP the inflection point shifts to higher
temperatures and the sigmoidal shape as well as the apparent fragility are less pronounced. The
Widom line and the line of inflection points do not agree, which was also found in a recent study.121

This apparent FST can be explained as the result of a rapid transition from an HDL-like to an
LDL-like liquid, each with different mobilities. Such a transition has been modeled using a two-state
model for water in previous studies. Tanaka and coworkers119–121,220 suggested that it is not a true
FST between liquids with vastly different fragility but the simple-liquid regime and LDL both follow
an Arrhenius law with different activation energies. The rapid transition from one Arrhenius law to
the other is where fragile behavior occurs. Caupin and coworkers218,219 concluded as well that the
fragile behavior near the Widom line cannot be attributed to either phase and that it results from
a mixture of two liquid’s behaviors. Instead of an Arrhenius law, they used VFT behavior for the
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high-temperature and high-pressure regime, i.e., they modeled it as a fragile liquid. Both models are
examined and compared in more detail in Sec. 7.6.

7.5. Spatially resolved analysis
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Figure 7.10.: Spatially resolved structural properties of the charge-scaled TIP4P/2005 water model
with q = 0.88 simulated at ρ = 940 kg/m3, T = 125K and in elongated geometry with
Lx : Ly : Lz ≡ 1 : 1 : 3 and N = 2000 molecules: (a) ρL/ρ, (b) IL and xLSI,L, (c) N4,L, and
d5,L. Presented is data at the beginning, middle and end of the trajectory. The structural
identifiers were averaged over δz = 1nm thick layers centered on each oxygen and
perpendicular to the z-axis. To reduce noise the properties were averaged over short
periods of time and a low-pass filter was applied to further reduce artifacts caused
by the discretization of the number of particles in a layer. Figure A.7 in the appendix
presents data for the larger system with N = 12000.

This section switches from the cubic system, which showed no stable phase separation despite
entering the metastable regime, to the elongated systems to further verify the existence of the two
liquid phases and to study their properties. There, one exploits that the energetically unfavorable
interface of actual HDL and LDL phases and its volume ratio to phase separated regions is reduced
when it is aligned parallel to the smallest surface of the simulation box. Phase separation below the
LLCP is thus enhanced. These simulations are performed for charge scaling of q = 0.86 and q = 0.88
for two reasons: Dynamics speed up with lower scaling factors, see Fig. 7.2(d), but thermodynamic
drive to phase separate might be weakened. It was assured in Fig. A.6 in the appendix that the
pressure P at a given state point is the same within the error margins in the simulations for the cubic
and elongated boxes.

Next, the fluctuations of density and structural identifiers in space are investigated for a 4µs
simulation with q = 0.88, ρ = 940 kg/m3, and T = 125K < Tc at the beginning, midway, and end of
the simulation, Fig. 7.10. Consistent with the construction of the elongated systems, layers parallel to
the xy plane and of thickness δz = 1 nm centered around the respective position z of each oxygen are
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analyzed. With this layer thickness it is assured that the normalized density ρL/ρ and the structural
identifiers xLSI,L, N4,L, and d5,L are averaged over several layers of molecules. Visual inspection of
the results shows that the system separates into two regions with distinct structural properties. The
relative difference of the layer-averaged density between the center and the edges of the simulation
box is about 10%, which is comparable to values found for studies with the ST2 and TIP4P/2005
models.338,341,345 The structural identifiers are anticorrelated to the density. Since these supposedly
measure the LDS fraction the combined result confirms the separation into a low-density phase in
the center and a high density phase on the edges, consisting of LDS and HDS respectively, and that
the structural identifiers measure structures of the respective phases. The interface layer between the
two regions changes only slightly during the simulation time. This temporal stability on the order of
µs will be important for the analysis of dynamics within these regions. These observations suggest
that the system separates into extended and stable LDL and HDL phases.

In the appendix, see Fig. A.7, the analogous analysis at T = 132K > Tc is shown, which shows that
the corresponding fluctuations in the structural quantities exist in the one-phase region above the
LLCP as well. This is expected for critical phenomena where fluctuations and their respective length
scales grow with decreasing distance to the critical point where they diverge. Figure A.7 also shows
weaker spatial distinction and shorter time scales for the HDL and LDL regions. These properties
and their temperature dependence are investigated in more detail in the following. Note here, that
without an external field, e.g., gravity, there is no driving force for having only two regions of each
phase other than the energetic gain of minimizing the energetically unfavorable interface. If the long
time limit consists of two phases then barriers have to be overcome by fluctuations to achieve this
state. However, because of the periodic boundary conditions and the small box size, the system with
N = 2000 molecules immediately separates into one HDL and LDL region, meaning the size of the
regions is artificially influenced here. The same is not necessarily true for much larger systems.

Having investigated qualitatively the phase separation one can continue with quantifying its
significance. The probability distribution of these layer-averaged properties, as determined per
reference oxygen, is calculated and shown in Fig. 7.11 for the charge-scaled model with q = 0.88 for
several temperatures above and below the critical point. One finds for all properties uni- and bimodal
distributions depending on the temperature. In particular, shapes similar to normal distributions are
found for temperatures around the LLCP and at least bimodal distributions appear for temperatures
sufficiently below the LLCP. The unimodal distributions at higher temperatures are not trivial.
Inspection of e.g., the LSI in the one-phase regime shows bimodal behavior, see Fig. 7.5. The difference
is that in the presented data the local structural identifiers are averaged over larger volumes. The
length scale of fluctuations at higher temperatures is thus below the size of the layers and averaged
results are obtained. For even larger volumes the distributions are expected to be narrower. Note
here, that the histograms are biased. A layer containing mostly LDS contains fewer molecules because
of their more spacious configuration than a layer consisting mostly of HDS. For cooling below the
LLCP, the free energy difference gained by developing a planar interface and separation into two
phases becomes sufficient to produce more distinct regions. This means that the length scale of the
structural fluctuations grows to at least the nanometer scale, as seen in Fig. 7.10. The three peaks
observed for 124K may be a relaxation problem as the system may have continued development
of phase separation during the simulation or might be just on the edge of forming well separated
phases. Stronger separation of the bimodal behavior for the layer averaged structural identifiers is
expected in larger systems where the interface takes up a smaller fraction of the volume. Indeed,
the data for the larger system with N = 12000 molecules in Fig. A.8 exhibits bimodal distributions
at higher temperatures than the small system. Phase separation occurs already close to the LLCP.
However, the increase in computational cost makes ergodicity and acquiring good statistics equally
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Figure 7.11.: Probability distributions of the layer-averaged properties for the charge-scaled
TIP4P/2005 water model with q = 0.88 and ρ = 940 kg/m3 at the indicated tem-
peratures: (a) ρL/ρ, (b) IL, and (c)N4,L d5. The results were determined for the elongated
system with aspect ratio 1 : 1 : 3 and N = 2000 molecules. The critical temperature is
Tc ≈ 131K and dashed lines indicate results at and above this value in the one-phase
region. For N4,L, xI,L, and d5,L a moving average was applied to reduce artificial noise
due to their discretized values. Figure A.8 in the appendix presents data for the larger
system with N = 12000.

problematic at strong supercooling. That the small system can already show the same phenomena
decreases the still accessible temperatures.

Having investigated the structural properties, their dynamical properties and the relation of both
are studied next. For this purpose, the molecules are distributed into subsets according to their layer-
averaged structural identifiers. If the inspected dynamical property, e.g., the rotational correlation
function, is faster than the fluctuation in average local structure, the dynamics within LDL and HDL
regions can be determined. The small thickness of the layers of 1 nm allows for a higher resolution
than larger values, yet it is still larger than the jump length of a ≈ 0.33nm that connects the rotational
correlation time τ and translation D. In this way, it is assured that in case of stable HDL and LDL
phase separation the local environment does not change significantly on the time scale of the RCF.
For sufficient cooling below the LLCP, the results are expected to be representative of the dynamics in
phases with the respective average properties. Still, dynamical heterogeneity will broaden dynamics
in the respective phases as it does in bulk and the systems with cubic geometry.

The results are presented in Fig. 7.12 for the elongated system with q = 0.88, ρ = 940 kg/m3, and
N = 2000 molecules at a temperature below the critical point. Compared is the RCF F1,OH for subsets
of molecules distinguished by their layer averaged value N4,L. One finds that the terminal relaxation
shifts to longer times with increasing N4,L and, thus, increasing LDS fraction. The stretching as well
as the vibrational decay of the subsets is not identical. Their mean correlation times τL are presented
as a function of the structural identifier in Fig. 7.12(b). Note, that only results for values of the
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Figure 7.12.: Dynamics as a function of structure for the charge-scaled TIP4P/2005 water model
with q = 0.88 and ρ = 940 kg/m3 at T = 125K: (a) rotational correlation function
F1,OH(t) for molecules characterized by different layer-averaged valuesN4,L at the time
origin t0 and over the time scale of the plateau preceding the α relaxation. The legend
indicates the center of the bins with bin width 0.05 for N4,L. The colored solid lines are
fits to KWW functions. The black solid line is the RCF F1,OH(t) for the ensemble average.
The black dashed line is the correlation function CN4(t) of the layer-averaged quantity
N4,L, see Eq. (7.7), and the black dotted line is the corresponding result for layers static
in space. (b) Corresponding correlation times τL as a function of the layer-averaged
quantities ρL/ρ0 (red squares), xI,L (blue circles), N4,L (green diamonds) and d5,L (pink
triangles). Solid lines show mean correlation times with S10 for the oxygen atoms for
comparison at the same respective layer-averaged values.

structural properties for which a reasonable amount of statistics exists are shown. One finds that
LDL environments cause dynamics that are almost two orders of magnitude slower than for HDL
environments. Consistently, the same slowdown is found when molecules are discriminated by their
layer averaged density ρL or the structural identifiers xI,L and d5,L. A strong dependence on the
LDS fraction is found for intermediate values while asymptotic behavior appears for N4,L > 0.7 and
N4,L < 0.3. As a consequence of this strong dependence of dynamics on the structure of the local
environment and the bimodal distribution of the structural properties, the ensemble average shows a
stretched biexponential decay. Because the interfacial regions take up a significant fraction of the
box volume, the intermediate LDS fractions smear out this biexponentiality. The correlation function
of the elongated system is compared with the result for cubic systems in detail in App. A.2.3.

Furthermore, biexponential decays are only possible when the layer-averaged properties measured
with correlation functions, e.g., CN4,L , decay slower than F1,OH in the LDL region. This is in particular
true for the case of static layers. If the rearrangement of some molecules causes a structural relaxation
of their surrounding regarding LDS and HDS, then the slower component is suppressed. Here, CN4,L

decays later than correlation functions for all values of N4,L. This means that correlation times for low
and high values ofN4,L may be representative of stable HDL and LDL phases. The weaker dependence
of τL on the local environment in these regimes in Fig. 7.12(b) supports this conclusion.

Translational dynamics exhibits a consistent dependence on the local environment, as seen for the
ISF in Fig. 7.12(b). Correlation times with F1,OH and S10 are almost the same, implying that rotational

89



7. Polyamorphism in charge-scaled TIP4P/2005

decorrelation happens on the same length scales as defined by the wavenumber k = 10 nm−1, which
corresponds to displacements of 0.23 nm on average. The SED relation appears to be weakly and
systematically violated when the LDS fraction is varied, in agreement with Fig. 7.9. More importantly,
regular translational motion is found in HDL and LDL environments.
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Figure 7.13.: The temperature dependence of mean rotational correlation times τL measured with
F1,OH(t) for environments with the indicated layer-averaged structural identifier N4,L.
The data is for charge-scaled TIP4P/2005 systems with q = 0.88 and elongated ge-
ometry with with N = 2000 molecules and aspect ratio 1 : 1 : 3 (solid symbols) and
N = 12000 and 1 : 1 : 6 (open symbols). On the left (a), results are presented for
simulations with density ρ = 940 kg/m3. On the right side (b) results are averaged geo-
metrically over several simulations: densities of 935 kg/m3, 940 kg/m3, and 944 kg/m3

for the small system and simulations with randomized and biased, i.e., one LDL and
HDL phase, starting configurations for the large system. For comparison, the time
scale τN4 ofN4,L fluctuations from fits of CN4,L(t) to KWW functions is shown: (dashed)
N = 2000 and (dotted)N = 12000. The arrowmarks the critical temperature Tc ≈ 131K.
Solid lines are fits with Arrhenius laws to data of the small system. The inset presents
their activation energies relative to the high temperature activation energy of isobar
simulations at atmospheric pressure. Poor statistics for the rarer cases of N4,L = 0.1
and N4,L = 0.8 allow their investigation only far below the LLCP.

Before concluding this section, the temperature dependence of rotational dynamics in environments
characterized by their local LDS fraction is investigated in more detail. Mean correlation times τL are
shown as a function of the layer-averaged structural identifier N4,L in Fig. 7.13(a). Corresponding
data for charge scaling of q = 0.86 is shown in the appendix, Fig. A.9. This extracts what might
be called isomorphs, i.e., lines in the phase diagram with constant structure. The Arrhenius plot
reveals Arrhenius-like behavior for all local environments with only moderate differences in the
activation energy but relative differences of up to two orders of magnitude for the lowest temperatures.
While an Arrhenius law may always fit a small enough temperature range, this observation is still
noteworthy when compared with the temperature dependence of isobars in Fig. 7.8(b). There,
structural properties are not constant and slopes are vastly different depending on which side of the
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LLPT line the isobar lies. The isomorphs instead have similar activation energies E∞ of three to four
times the high-temperature activation energy of isobaric simulations at atmospheric pressure, see
the inset of Fig. 7.13(b). E∞ increases with N4,L. Note however, that the correlation time of N4,L,
which characterizes the subsets, is comparable to τL of subsets with N4,L > 0.7 at high temperatures.
This means that the determined correlation function for LDL environments decays prematurely for
temperatures above or close to the LLCP. Thus, dynamics in this case are not representative. The
increased temperature dependence across 127K, when the time scales of rotational dynamics and
fluctuations of the environment separate, is thus not to be trusted. In addition it is found that only
at sufficiently low temperatures, when the phase separation becomes more stable, the highest and
lowest values of N4,L, 0.8 and 0.1, appear.

To scrutinize these results simulations with N = 12000 molecules and increased elongation of
1 : 1 : 6 were performed. The phase separation should be stabilized even further and the relative
occupied volume of the two phases to the interfacial region should be increased. Presented in
Fig. 7.13(a), the fluctuation of the layer-averaged structural identifier N4,L shifts to longer times.
Thus, the temporal stability appears to improve with system size. Perfect agreement with the smaller
system is found for rotational correlation times at LDS fractions of N4,L = 0.4 and lower. For LDS-rich
environments, the rotational correlation times increase for the larger system. Hence, the correlation
time of the slower LDS-rich environments is indeed reduced in case the time scale of the structural
fluctuations is not sufficiently separated. Unfortunately, the increased computational cost for the
increased system size prevents the study of temperatures further below the LLCP. Ergodicity is
already lost since the HDL and LDL phases do not occupy each position in the box equally often for
periodic systems with finite size and zero momentum. A reliable determination of the temperature
dependence of the LDL phase is, thus, not easily feasible with either the large system because of
computational cost or the small system because of reduced stability and length scale of the phase
separation. Still, the combined results show that for HDL no significant changes in the temperature
dependence occur upon cooling below the critical temperature Tc.

These findings can be further supported by performing several simulations at temperatures for
which dynamics is still fast. The small system with N = 2000 molecules was simulated at ρ =
935 kg/m3, 940 kg/m3, and 944 kg/m3. Inspection of the results shows no systematic dependence on
the average density. The resulting τN4,L are geometrically averaged and shown in Fig. 7.13(b). For
the large system, averaging over randomized and biased systems introduced no notable differences.
Overall, the behavior as discussed above holds for the data but higher accuracy is achieved.

Finally, the correlation times from isochores in the cubic system are compared with the results
τρ,L obtained for environments with the respective layer-averaged densities ρL for the elongated
system. The results are presented in Fig. 7.8(c) and the correlation times of isochores with high
densities ρ ≥ ρc agree well with those determined for the respective layer-averaged densities. This
confirms that the correlation times of HDS-rich environments characterized by the average density
are representative. One finds disagreement for densities smaller than ρc. The results from elongated
systems underestimate the correlation time of the cubic systems above and close to Tc. Upon further
cooling the difference decreases and the apparent higher temperature dependence suggests that
agreement could exist at lower temperatures. These deviations are attributed to the comparably
fast fluctuations of the local environment and, thus, premature decorrelation of F1,OH in LDS-rich
environments. Note, that the density of the slowest isochore does barely occur in the probability
distributions, see Fig. 7.11, and is most likely beyond the minimum of LDL in the Gibbs energy.
Results calculated from the elongated systems for this density might never be correct. The same
discrepancies would occur for much higher densities.
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7.6. Two-structure models of dynamics

Since the TSEOS and similar approaches for water are very successful in describing thermodynamic
properties, models that use two states to describe the dynamics of water are now tested. In the
previous section, it was found that in a certain range of density and pressure the dynamics depends
monotonically on the density and, hence, on the fraction of HDS and LDS. Within this range, one
may assume that the dynamics can be described by a monotonous function of x. For mixtures, which
separate in phases with different self-diffusion coefficients Di, one expects that the self-diffusion
coefficient of a component, which occurs with the probability pi (

∑︁N
i=1 pi = 1) in the respective

phases, is the rate average D =
∑︁N

i=1 piDi over the different phases. Note however, that phase
boundaries may constitute diffusion barriers. The simplest extension for the one-phase regime would
be that the self-diffusion coefficient is a linear function of x. This approach was unsuccessful here
independent of the choice of x, from the TSEOS or one of the structural identifiers. The relation
of D and x is non-linear, see Fig. A.11 in the appendix. Of course, the reason for this may be that
no phase separation occurs in the cubic systems. In any case, even for the layer-averaged dynamics
in Fig. 7.12, it can be observed that the dynamics is not a simple function of the LDS fraction. In
particular, it already saturates for phases that do not consist only of HDS or LDS.

To account for the strong dependence on x, the energy barrier that must be overcome for relaxation
events can be considered instead. One approach is that when particles repeatedly switch between
HDS and LDS, they sense an energy barrier consisting of both structures on average. In general,
this can be written as E(T, P ) = (1 − x)EHDS(T, P ) + xELDS(T, P ). Tanaka and coworkers and
Caupin and coworkers have each taken this approach.119,120,218 Both assume an Arrhenius law for
LDS, consistent with many observations for strongly supercooled water in confinement or for LDL
above the glass transition.13,245 However, they differ in their description of HDS, or rather the high-
temperature regime. While Tanaka assumes another Arrhenius that fits well with the simple-liquid
regime, Caupin follows the phenomenological observation that water always exhibits fragile behavior
in the supercooled regime and, hence, uses a VFT behavior.218,219 Thus, Tanaka uses

1/D = 1/D∞ exp
(︃
[1− s(T, P )]

E∞
T

+ s(T, P )
E0

T

)︃
, (7.9)

s(T, P ) =

[︃
1 + exp

(︃
∆E − T∆σ + P∆v + P 2b

T

)︃]︃−1

(7.10)

while Caupin applies

1/D = 1/D∞

(︃
T

Tref

)︃−0.5

exp
(︃
[1− f(T, P )]

B + P∆vHDS
T − T0

+ f(T, P )
E0 + P∆vLDS

T

)︃
. (7.11)

Here, s and f are the fraction of LDS and not necessarily the same in both approaches. In Tanaka’s
case, s is given by fitting the data to Eq. (7.10), where ∆E, ∆σ, and ∆v are the energy, entropy,
and volume differences of pure HDL and LDL. It incorporates a second order term in pressure with
prefactor b. Caupin assumes a predetermined fraction f , e.g., from the TSEOS. Of course, any choice
for xLD, f or s, can be applied with either model. Furthermore, E∞, B, and E0 are parameters
for the high and low temperature activation energies, respectively, where in Caupin’s model a VFT
equation describes the high-temperature regime. Both models start with a prefactor (T/Tref)

ν with
arbitrary Tref, which is intended to preserve the SED relation when adjusted for diffusion, viscosity,
and rotational correlation time on the one hand and to account for the temperature dependence
of the velocity of the particles on the other. However, Tanaka and Caupin chose ν = 0 and ν = 0.5
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for D, respectively. As discussed in Sec. 8.2, these differences are often masked by the much more
influential parameters in the exponent. Equation (7.9) can be simplified to Eq. (8.9) for constant
pressure. With prior knowledge about the LDS fraction, one has three free fit parameters for Eq. (7.9)
and six (four for constant pressure) free fit parameters for Eq. (7.11). At the same time, Eq. (7.11)
does not describe the commonly found Arrhenius in the high-temperature regime, but should be
particularly good at describing data in the slightly supercooled region. However, the advantage of
Eq. (7.9) for the high-temperature regime is only valid as long as the Arrhenius behavior is the same
for all P or ρ. Without knowledge about the LDS fraction, Eq. (7.10) can be used in Eq. (7.11) which,
however, introduces four more fit parameters. It should be mentioned here that in older publications
the parameters b and ∆vLDS were missing and were added to characterize a wider range of the phase
diagram in more recent publications.

Both equations replicate the observation made in Fig. 7.13. For isomorphs, data along constant
xLD, the temperature dependence of the apparent activation energy is weak. Tanaka’s formula leads
to an Arrhenius for constant s while in Caupin’s case the sum of a constant to a VFT contribution
allows for some temperature dependence. At first glance, both seem to be suitable to characterize
the data.
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Figure 7.14.: (a) The temperature-dependent self-diffusion coefficients 1/D of the charge-scaled
TIP4P/2005 model with q = 0.86 at the indicated isobars (colored symbols and dotted
lines). Solid lines are global fits of Eq. (7.9) to data for pressures P < Pc while dashed
lines are fits to data for pressures P ≤ 0.1MPa with Eq. (7.11). The LDS fraction s or f
is given by the equilibrium concentration xLD of the TSEOS for the same charge-scaled
system. (b) Equilibrium concentration xLD of the LDS component calculated from the
TSEOS. Isobars with P ≥ 100MPa are not shown because they are too far from the
range of validity of the TSEOS. The colors in the legend apply to both graphs.

First, the knowledge about the concentration xLD from the TSEOS is used to test the two models.
For the fits with Eq. (7.9) and (7.11), the fraction of LDS was taken as given. Since the fraction is
constant or even decreasing for pressures above the LLCP, only data with P < Pc were considered for

93



7. Polyamorphism in charge-scaled TIP4P/2005

Eq. (7.9). The moderate fragility of pressures above the LLCP cannot be represented by a combination
of two Arrhenius laws and constant or even decreasing LDS fraction. Tanaka’s approach is thus more
restricted in the phase space near the LLCP than Caupin’s approach, but has the potential to describe
the high-temperature regime correctly. Since the dynamics slow down again at very high pressures
as in normal liquids, only pressures up to 1 bar are considered for fits to Eq. (7.11). In principle, the
contribution P∆vHDS can accommodate this slowdown but was found to be insufficient. Very high
temperatures are also not considered, as these require uncertain extrapolations of the TSEOS. Despite
these limitations, the present data set is more extensive than those used in the literature,119–121,218,219
i.e., the self-diffusion coefficients reach down to 3 · 10−7 nm2/ps and a wide range of pressures and
temperatures and, thus, densities is available.
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Figure 7.15.: (a) The temperature-dependent self-diffusion coefficients 1/D of the charge-scaled
TIP4P/2005 model with q = 0.86 at the indicated isobars (colored symbols and dotted
lines). Solid lines are global fits with Eq. (7.9) to data for pressures P < Pc while
dashed lines are fits with Eq. (7.11) to data for pressures P ≤ 0.1MPa. Here, the LDS
fraction s or f is described by Eq. (7.10) and is part of the fitting procedure. (b) LDS
fraction s of Eq. (7.10) determined by the fits in (a). Only pressures for which data was
included in the fit are shown. The colors in the legend apply to both plots.

Figure 7.14 shows the self-diffusion coefficient for isobars and the corresponding xLD as well as the
fits with Eq. (7.9) and (7.11) for the charge-scaled TIP4P/2005 with q = 0.86. One finds acceptable
descriptions for Tanaka’s approach for the temperature range around the Widom line. However, it
deviates strongly at high and low temperatures despite the limited high-temperature regime, which
leaves more freedom to the fit parameters. The slowdown to low temperatures is underestimated,
which is likely caused by the prematurely reduced slope of xLD and a sign that within this model xLD
does not equal s. In fact, Shi et al. have already found that the Widom line, the location for xLD = 0.5
and in their case called the static Schottky line, and the dynamical Schottky line, the location of the
largest slope in the Arrhenius plot and in their model the location of s ≈ 0.5, are not identical. The
same is observed same in Fig. 7.8(b). They argue that the local structure has to be coarse grained.
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An LDS molecule only shows LDL dynamics if neighboring molecules are LDS as well.
Caupin’s model is more successful because it better describes the high-temperature regime and at

the same time it is also fitted to data with P > Pc. However, the fit deviates from the data at slow
dynamics and low pressure. This remains the case even when pressures above the LLCP are neglected.
The most important finding here is that both models have problems following the temperature
dependence of the dynamics for low temperatures and low pressures or densities. That is, for high
LDS fractions, the dynamics are not successfully characterized. This is also particularly visible in the
appendix in Fig. A.12. There, the data for the same system but for isochores are fitted to Eq. (7.11).
Also in this case, deviations arise for low temperatures and high LDS fractions. The model works well
up to self-diffusion coefficients of 10−5 nm2/ps, which is also about the limit of the data on which
this model was tested in the literature.218,219 Even there, it has already been observed that deviations
occur when temperature and pressure are low.

To verify that the basic principle of the models, the linear combination of two temperature-
dependent activation energies, works, Eq. (7.10) is used instead of the LDS concentration from the
TSEOS. This formula, which resembles the Fermi distribution, was motivated via Boltzmann statistics
for two states with different energy and volume.220 A major difference to the LDS concentrations
from the TSEOS is that pure states are expected for high and low temperatures. The TSEOS does
not agree with this, see Fig. 7.14(b). Moreover, the transition is much more discrete and does not
incorporate the slow variation with temperature of xLD for low pressures. In Fig. 7.15(a), the fits
with this function to the same data as in Fig. 7.14 are shown. The only difference in the data is that
the independence from the range of validity of the TSEOS allows higher temperatures to be included.
It is found that low temperatures and low densities are also sufficiently described. The moderate
fragility at P > Pc is characterized by the VFT contribution in the case of Eq. (7.11). The fraction s,
Fig. 7.15(b), follows the expected behavior for both models. LDS vanishes for high temperatures
and increases rapidly upon cooling and for pressures below the LLCP. It is negligible for pressures
above the LLCP. This shows that, in principle, the temperature dependence of the dynamics can be
described by a sum of activation energies of two competing states. However, some weaknesses do
exist:

i Equation (7.10), although physically motivated, could not produce results comparable to any
of the structural identifiers for the LDS fraction. The introduction of coarse graining can in
principle solve this issue. Moreover, Eq. (7.10) cannot be applied to data from isochores. In the
metastable region, two liquids with different LDS fractions exist for each pressure. Thus, the
formula would have to be extended to include density or be modeled similarly to the TSEOS
with two solutions. For isobars, one expects a first order phase transition, which is not taken
into account.

ii Tanaka’s approach with two Arrhenius laws does not work significantly better than Caupin’s in
the supercooled regime. The latter has the advantage of being able to characterize pressures
and densities above the LLCP as well. A difference is that the high temperature Arrhenius regime
cannot be attributed to either phase in the supercooled regime. In contrast, the VFT equation
adequately describes HDL in the temperature range considered here. Thus, for a successful
model, it is necessary for the temperature dependence of HDL to be included adequately.

iii At very high pressures, water again behaves like a normal liquid and viscosity increases with
increasing pressure. In order to describe water in the full phase diagram, the above models
would have to be extended. Caupin’s model already allows an increase of the activation energy
in the VFT equation with pressure. However, this is still insufficient to include higher pressures
in the fit in Fig. 7.15.
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iv The VFT equation has a divergence at T0. Here and also in the literature, this is above Tg of LDL
and LDA.219 One conclusion is that HDL crosses the dynamics of LDL at low temperatures but
above Tg. However, this is incompatible with experimental findings of strong behavior above
Tg.13,206,217 In the context of an approach with additive activation energies, the VFT equation
dominates the Arrhenius for LDL already above the Tg of pure LDL. The question arises as to
what the temperature dependence of HDL really is.

Points (i)-(iii) lead to an extension of the mathematical form of the models. However, this only results
in extensive quantitative description of the water dynamics without necessarily being a representation
of the underlying physics. It would be much more instructive to determine the dynamics on the basis
of the real LDS fraction or at least a quantity with a simple relation to it, e.g., N4. However, the
problem remains that dynamics slow down strongly for high LDS fractions. There may be several
reasons for this. First, as already found in the previous section, the dynamics of LDS is not conserved
in the mixture. In the notion of cooperatively relaxing regions on some length scale, the dynamics
of LDS can be obtained only for sufficiently high concentration in extensive regions. Relaxation
events of HDS change the local structure and lead to premature relaxation of the previously LDS
molecule. The mixture could even enable or prevent relaxation mechanisms for LDS and HDS which
may be non-existent in the respective pure phases. The energy barriers for relaxation events would
be affected by such effects. The approaches by Caupin and Tanaka are also not exempt from this.
Thus, higher order perturbations would have to be introduced in Eqs. (7.9) and (7.11). Here, the
challenge for the theory is to find a model that predicts the activation energy relevant for molecular
dynamics in reactive mixtures. The approach of Tanaka and coworkers to consider only a coarse
grained local structure for the LDS fraction is one possible solution.

For water in particular, it is still unclear how the temperature dependence of the dynamics of HDL
and LDL is from the high-temperature regime down to the glass transition, see point (iv). For the latter,
the high-temperature regime cannot be fully investigated because the liquid-vapor spinodal (LVS)
becomes relevant and cavitation is inevitable, even in simulations. The more important supercooled
temperature regime seems to be well characterized by an Arrhenius law. Although it would still be
intriguing to see whether or not LDL shows an FST even at constant high LDS fraction. This may not
be clarified or only with suitable model systems in which the LVS is avoided as much as possible. A
solution would be to use increased partial charges and shift the LLCP to elevated pressures. However,
this approach loses the accessibility of the LLCP at feasible relaxation times.

For HDL, current simulation results show no deviation from the super-Arrhenius behavior in the
supercooled regime. Temperatures at which the extrapolated dynamics of LDL and HDL are expected
to cross are still outside the range achievable within reasonable computational time. For both liquid
phases, the question remains which fractions of HDS and LDS are representative. For example it can
be seen in Fig. 7.12(b) that the dynamics saturate before pure HDS or LDS is reached. Figure. 7.8(a)-
(c) shows the same for HDL-like isochores. Below the LLCP, where the Gibbs energy has two minima,
they are commonly not at the extreme values of the order parameter. The fact that the distributions
of the structural identifiers in Fig. 7.11 do not assume both extreme values is possibly a consequence
of this. Very high pressures further reduce the LDS fraction but lead to the behavior common to
liquids – dynamics slow down with increasing pressure. Thus, the fastest dynamics are not found in
systems with the lowest LDS fraction.

Thermodynamic paths with instructive results for future studies could be with constant fraction x
to clarify the temperature dependence of dynamics for constant structure or along the two minima
of the free energy G for state points on the LLPT to scrutinize the temperature dependence of LDL
and HDL found for coexistence simulations.
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7.7. Summary

In this chapter, MD simulations were performed to determine the thermodynamic, structural and
dynamical properties of water-like models in the supercooled regime. In particular, the effects of
weakened Coulomb interaction and, hence, hydrogen bonding on the polyamorphism of water-like
systems were investigated based on the TIP4P/2005 water model. This charge-scaling approach
enabled the study of the relation of local structure and dynamics in the context of distinguishable
liquid phases in more detail. The presented results are relevant for all liquids in which compressed
high-energy and spacious low-energy local structures compete, in particular for water for which a
complete model is still missing.

The existence of an LLPT and the related LLCP have been proposed as possible explanations for
the anomalous behavior such liquids commonly show. But, it has been shown that the existence of
competing local orders with different density alone can lead to these anomalies, e.g., in the case
of the BKS and WAC model of silica or the mW model of water,4,173 and, thus, the existence of an
LLPT cannot be inferred from these phenomena. To investigate the existence of an LLPT, it was
exploited that charge scaling shifts these phenomena to computationally accessible dynamics. Similar
results for the WAC model have been found where charge scaling provided access to the LLCP.25
For all studied scaling factors crossing of isochores in the P-T diagram was found, which proves the
existence of an LLPT. The TSEOS formalism was applied successfully to characterize the data. Even
despite its mean field approach it proves very useful in determining the LLCP for a wide range of
systems. One finds that an LLCP exists in the given range of scaling parameters and that it shifts
by 16K. Including the LLCP of the overstructured water model ST2 at Tc = 237K and the modified
TIP4P/2005 model,166 the parameter range for which an LLCP can exist in water-like models is
significant and includes a temperature range of more than 100K. The phenomenon of LLPTs in
water-like systems is, thus, not limited to a narrow region in parameter space. Therefore, it is not
unlikely that an LLCP exists also in real water.

Having determined the location of the LLCP, the critical temperature Tc, pressure Pc, and density
ρc, it is found that these properties shift to lower values with decreasing scaling factor q. In particular,
they have a near linear dependence on q for the studied range of q = 0.86–0.91 but non-linear
behavior is expected in a wider parameter space. The linear extrapolation of Tc and Pc to the original
TIP4P/2005 water model underestimates results found by previous studies.158–160,162,338,339 The
extrapolation of the critical density is within the expected range. For charge scaling with q < 0.9,
the critical pressure assumes negative values. This means that studies at atmospheric pressure will
not cross the Widom line for these systems and, hence, might not notice the anomalies caused
by competing local structures as clearly as for normal water. For example in Ch. 6, the density
anomaly of water was missing for systems with significantly reduced partial charges. However, the
density anomaly and divergence of specific heat, Fig. 7.4, could be shown for q = 0.86 once pressure
is sufficiently reduced. In nature, more systems might exhibit liquid polyamorphism at negative
pressures and, thus, undetectable by common experiments. A more extended exploration of the
phase space would be necessary.

One also finds that a reduction of the scaling parameter and weakening of hydrogen bonding leads
to shallower isochores in the P-T diagram above the LLCP. This scenario is similar to results for the
WAC model where the LLCP disappears below the LVS,25 which also happened for simulations with
a model of silicon.195 These findings and that the critical pressure for q = 0.86 assumes strongly
negative values allow for the speculation that the LLCP disappears below the LVS as well not far
below the studied q.

Dynamics of the studied models are consistent with the dynamical anomaly of water and slow
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7. Polyamorphism in charge-scaled TIP4P/2005

down when the pressure or density are reduced in the vicinity of the LLCP. The presented results
for the rotational correlation functions F1,OH reveal an increased dynamical heterogeneity for state
points close to the LLPT. An apparent decreasing heterogeneity for densities below ρc suggests that
the dynamical heterogeneity is large for mixed systems while it could be smaller in the liquid phases
with high HDS or LDS fraction, respectively. Examination of the SED relation revealed that rotational
and translational dynamics are not related in the same way in HDL and LDL. For thermodynamic
paths crossing the Widom line, the Stokes-Einstein breakdown is superimposed by the transition from
low to high LDS fraction. Hence, extra care has to be taken in the case of water when self-diffusion
coefficients D and rotational correlation times τ are compared in different regimes of the phase
diagram.

When comparing self-diffusion coefficients and rotational correlation times for isochores and
isobars, prominent differences consistent with results for the ST2 water model are found.210 The
deviation from Arrhenius behavior along isochores is moderate and similar for all densities. No
significant deviation is found upon crossing the LLPT line for cubic systems. In contrast, cooling along
isobars with P < Pc leads to a strong temperature dependence in the vicinity of the LLCP. For larger
distance to the LLCP, T ≫ Tc and T ≪ Tc, the temperature dependence weakens and approaches
that of the closest isochores. For thermodynamic paths above the critical point that avoid entering
the metastable regime, dynamics of isobars with high pressure and isochores with high density
agree. These remarkable differences between isochoric and isobaric conditions are also present in
the temperature dependence of the LDS fractions and could be confirmed by calculating temperature
dependent dynamics for isobars using the data for isochores and the TSOES analysis.

To scrutinize this connection of structure and dynamics the dynamics of extended and stable HDL
and LDL regions were analyzed. Here, it was exploited that phase separation into such regions is
possible in elongated systems. The unfavorable interface of both phases can be minimized by parallel
alignment to the smallest surface of the simulation box (xy-plane). Significant changes were found
upon cooling below the LLCP. The density and structural properties show bimodal distributions
when measured on 1nm length scales. This implies phase separation into extended HDL and LDL
regions. These systems entered their metastable region with respect to their polyamorphism. In fact,
water in this region can even be triple metastable, i.e., it resists crystallization, phase separation, and
cavitation at negative pressures.

The phase separation was exploited to characterize the structural and dynamical properties of
layers perpendicular to the elongated axis and with thickness ∆z = 1nm centered about the z
position of reference molecules. One finds that structural properties of such layers are stable on a
microsecond and nanometer scale for sufficiently low temperatures. This way, it could be ensured that
structural distinctions are stable on the time and length scale on which dynamics are probed. Previous
studies in the literature have been performed above Tc and only used the local structure instead of
extended environments. Measures of the local structure have faster and short range fluctuations
which lead to partially averaged dynamics.336,346 Here, the same effect is found for environments
with high LDS fractions and temperatures close to the critical point. The temporal fluctuations of the
structural properties lead to premature decay of the correlation functions and, hence, dynamics not
representative of LDL. Upon further supercooling the time scales separate and determination of LDL
dynamics appears to become possible.

This spatially-resolved analysis was performed for charge-scaling factors of q = 0.86 and q = 0.88
to take advantage of the speedup of dynamics at the LLCP while still having a pronounced LLPT.
One observes a slowdown of rotational dynamics of approximately two orders of magnitude between
HDL and LDL environments. Experimental results for heating HDA and LDA above their respective
glass transitions show Arrhenius behavior separated by two orders of magnitude as well.13,206,217
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7.7. Summary

Agreement between τ from cubic systems with constant density and spatially-resolved analysis of
layers with corresponding densities in an elongated system proved that these results are representative
of environments with the respective structural properties. These results allow for an explanation
of the anomalous pressure dependence of D and τ – it can be understood as a transition from an
LDL-like liquid with slow dynamics to an HDL-like liquid with fast dynamics.

The dynamical transition found for water and other tetrahedral network formers under isobaric
conditions can be further clarified. This phenomenon was commonly interpreted as an FST resulting
from an LLPT. The argument states that HDL and LDL are fragile and strong liquids respectively and
that an FST appears as the composition changes from one to the other upon cooling. Instead, only
weakly fragile behavior was found for isochoric cooling and hardly any deviations from strong behavior
are observed for isomorphs calculated with spatially resolved analysis in a limited temperature regime.
Thus, the dynamic transition is not caused by liquids with significantly different fragilities. More
importantly, the dynamical properties of HDL and LDL can only be observed at sufficient distance to
the LLCP. The dynamical properties on the Widom line and in the vicinity of the LLCP cannot be
attributed to either liquid. Additionally, the structure of the high-temperature or simple-liquid regime
is a simple disordered phase that is not representative of HDL. As temperature is increased, the
average coordination number decreases again and a local structure that is neither HDS nor LDS takes
over. The high-temperature dependence upon crossing the Widom line can be understood as the
rapid passing over lines of constant LDS fraction and their respective D(T ) and τ(T ). The distance
to the LLCP in the one-phase region of the phase diagram determines how rapid this conversion
happens and, hence, how fragile the temperature dependence of dynamics appears. Approaching the
LLCP in pressure leads to a steeper increase in dynamics. In other words, the observed temperature
dependence in the crossover region should not be related to a fragility, neither of HDL nor of LDL.
Accordingly, no dynamical transition is found for isochores since they show no rapid change of the
HDS and LDS fractions with temperature.

This interpretation has similarities with two two-state models for water dynamics developed by
Tanaka and coworkers and Caupin and coworkers.119,120,218 They also proposed that the FST is
caused by a crossover between two phases of water that have dynamics on very different time scales.
However, strong deviations between the models and the data occur at low temperatures and low
pressures or densities, i.e., high LDS fractions. The slowdown of dynamics is underestimated, in part
because the slope of the LDS fraction flattens out earlier than the slowdown of the dynamics. Previous
tests of these models have not had equally high LDS fractions, and thus may not yet have been able
to observe this shortcoming. However, they have also recognized that the location of the maximum
slope in the Arrhenius plot and the Widom line are not identical, and thus the fraction x of the TSEOS
cannot be readily used.121 It was found that, in principle, a linear combination of the respective
activation energies can be successful. However, higher order terms would have to be introduced for
values of the LDS fraction as found from the TSEOS or local structure identifiers to be viable. Thus,
the fundamental understanding of how the average dynamics of a reactive mixture are determined
by the respective pure phases is still lacking. A solution to this problem would be relevant to all
polyamorphic systems. While the high-temperature regime cannot be assigned to either phase, HDL
or LDL, it helps to properly represent the supercooled region of HDL to cover as much of the phase
space as possible. The extrapolated intersection of the dynamics of HDL and LDL at low temperatures
but above Tg and the disagreement with experiments on HDL above Tg raises the question of what the
true temperature dependence of HDL is. It would be possible that HDL itself has an FST, a theory that
can neither be proven nor discarded here. The implication would be interesting, because then both
water phases would belong to the class of liquids with strong-fragile-strong behavior, see Sec. 8.5.
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8. Functional forms of E(T )

The following sections present and discuss the temperature dependence of dynamical properties in
the supercooled regime and possible parametrizations. Because of the shortcomings of most existing
functional descriptions, several functional forms are derived from a simple ansatz in this work. Some
of them have been used before, but their common mathematical origin, and thus possibly more
general applicability, is shown here. They are applied to data sets of systems with regular temperature
dependence or with an FST. For the regular case, common relations between the fit parameters are
discussed. In the case of an FST or a suspected FST, the functions appear to probe the deviation from
fragile behavior, consistent with the expectations for the charge-scaled water systems, Ch. 7, and
describe the data over the entire temperature range in the case of silica. In addition, experimental
data is investigated and the possibility of a general low-temperature Arrhenius regime is discussed.

8.1. Motivation

The enormous slowdown of liquid dynamics in the supercooled regime down to the glass transition
is an intriguing phenomenon. Despite substantial progress, its complicated origin in many-particle
physics denies a complete description to this day.26,27,80,93,150,347,348 There exist various approaches,
e.g., entropy theory,28–30 elastic models,31 mode-coupling theory32 or a Langevin equation ap-
proach,33 advancing the field, none of them satisfactorily describes all liquids or all regimes of the
glassy slowdown.80

Recent reviews still list a variety of open questions, from the shape of correlation functions and
susceptibilities to the very basic question of the functional form of the temperature dependence
itself.34,35 In particular, the widely used Vogel-Fulcher-Tammann (VFT) equation, Eq. (2.10), is
empirical at best. Although Adam and Gibbs were able to derive this functional form from entropy
theory, the result depends on the existence of Tk, the Kauzmann temperature.29 There the difference
in configurational entropy between the glass and the crystal vanishes. While it has been found in the
past that the temperature of divergence T0 of the VFT equation coincides with Tk,349 indicating an
ideal glass transition, deviations have been found in numerous cases as well.350 A study of 42 liquids
found little evidence of such a divergence.351

In particular, many liquids show deviations from VFT behavior under strong supercooling. The
very sensitive Stickel plot, a representation of the temperature-dependent dynamics linearizing the
VFT equation, raised the awareness of this finding.36,352,353 A study of 84 liquids found deviations
from VFT behavior and trends toward an Arrhenius regime at low temperature, suggesting a general
importance of this phenomenon.354 Aging experiments on a 20Ma old amber also showed a strong
deviation from VFT behavior.355

One challenge lies in the regimes of different temperature dependencies which can be observed
in the liquid regime. In general, the high-temperature regime (HTR), or upper range of the simple-
liquid regime (SLR), shows Arrhenius behavior, which will be referred to as the high-temperature
Arrhenius (HTA). Upon cooling, the temperature dependence increases becoming super-Arrhenius
often characterized by VFT behavior. At strong supercooling, the above-mentioned deviations occur.
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In particular, there exist strong liquids with an extensive low-temperature Arrhenius (LTA) regime,
e.g., liquids with strong directional bonds such as silica or water, as discussed in Ch. 7. A variety of
formulas, derived from physical models or empirical, have been tested and found to be inadequate,
for example the MCT, generalized VFT, an equation by Bässler, Avramov, and Milchev, parabolic
functions, or the approaches of Mauro et al. or Souletie et al.356–363 They are either limited by
their low parametrization in the number of phenomena or regimes they can characterize, or they
are empirical and have high parametrization. For example, the fragile-to-strong transition (FST)
in silica has been described by a combination of two Arrhenius and one VFT regime.118,214 Hence,
the question of real temperature dependence and its characterization are the subject of ongoing
studies.34,35,80

A recent empirical approach by Schmidtke et al., see Sec. 2.2.5, characterized the simple-liquid
and supercooled regime of regular liquids exceptionally well despite its simplicity.37,112,114,115,117,118
Another potential advantage is the absence of a divergence of dynamics. The super-Arrhenius
temperature dependence is described by an exponentially increasing activation energy for relaxation
events. A similar but more complex functional form was derived by Tanaka and coworkers for
the description of water dynamics in the entire temperature regime, see Sec. 7.6.38,120,121,220 This
equation, based on a two-state model, is able to describe the HTR and an FST at stronger supercooling.
Recently, the same functional form has been used to characterize dynamics across the glass transition
temperature, where liquids typically exhibit a weaker temperature dependence, and thus Arrhenius
behavior.364 These very specific applications of this functional form leave the question of its possible
application to other liquids in the liquid regime unanswered. A model qualitatively in-between
these two was derived from free-volume theories by Cohen and Grest (CG model).97 However, its
physical interpretation, the pressure and free-volume dependence, was found to be inadequate.365,366
Still, it is a very potent functional form, especially in cases where deviations from VFT behavior are
observable.356,367

With these different functional forms and behaviors, e.g., regular vs FST, the question of universality
or simplicity among all liquids remains. Some insights in this regard have been obtained for the
activation energy E∞ of the HTA. Experimental data for several molecular glass formers suggests
a common ratio of E∞/Tg ≈ 11.37,115 Such a common ratio is consistent with a common ratio
of 24 when the cooperative contribution to the activation energy is used.368,369 The SLR and the
supercooled regime may be more deeply linked by the typical interaction energies between the
particles. However, these ratios differ for polymers115 as well as for the used dynamical property
and the thermodynamic ensemble.116 Nevertheless, common ratios may exist for subsets of glass
formers and the relevance of the interactions in the simple-liquid regime and their influence on the
entire temperature range could be further investigated. Systematic studies such as those with the
charge-scaled variants of water models could help to scrutinize such relations.

Lastly, the divergence of dynamics in entropy models mentioned above can be avoided by modi-
fications82–84 or evidence of nonvanishing configurational entropy.39 The latter implies a constant
activation energy at low temperatures in the liquid, if it can be equilibrated. Simulations showed
no thermodynamic transition even in the non-ergodic regime.370 In particular, theoretical calcu-
lations of the topological landscape of a mixture of soft spheres showed ergodicity for all finite
temperatures.85 A true ground state at T = 0 can be achieved, although the entropy does not vanish
for T > 0. Simulations also found evidence of a deviation from VFT behavior for the very similar
Kob-Andersen mixture.294,295 Thus, the question arises whether a low-temperature limit for entropy
and an Arrhenius-like temperature dependence apply to liquids in general and are only masked by
the glass transition in most cases.356,367

With these open questions in mind, this chapter presents the formal derivation of several functional
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forms that can characterize regular and FST behavior. Two of these are the aforementioned models
by Schmidtke et al. and Tanaka and coworkers whose common mathematical origin is revealed.
These functional forms are tested on results from regular glass formers and then, in particular, on
simulation data from charge-scaled water models for which an FST can be related to configurational
changes in the liquid, see Sec. 7. Additionally, simulation data of silica with a pronounced FST118

and various experimental data sets are characterized.

8.2. Derivation of empirical models

In general, functions describing the temperature-dependent dynamics in the supercooled regime
are based on physical observations. The VFT equation can be derived from the Adam-Gibbs theory
and the vanishing configurational entropy at the Kauzmann temperature, while the power law of
mode-coupling theory is a prediction from the mathematical model.29,32 Here, functions are derived
from simple principles and investigated for their possible physical interpretation afterwards. The
general idea, that a temperature-dependent dynamical propertyX can be described by an exponential
function of the temperature-dependent activation energy E(T ), or E for short, leads to the common
ansatz

X = X∗
∞

(︃
Tr
T

)︃θ

exp
(︃
ν
E

T

)︃
, (8.1)

whereX∗
∞ and Tr are a system-dependent prefactor and an arbitrary reference temperature or energy,

respectively. The exponent θ corresponds to the effect of thermal energy on the particle velocity and
can be used to satisfy the SED relation (Sec. 2.1.3), i.e., |∆θ = 1| between the descriptions of the
viscosity η and the rotational correlation time τ or the self-diffusion coefficient D. This becomes
relevant when viscosity and self-diffusion or correlation time have the same activation energy. The
sign of the exponent is ν, e.g., +1 for τ and −1 for D. For simplicity, energy is defined in Kelvin,
[E] = K. In the supercooled regime, temperature generally changes by a factor of two down to the
glass transition temperature Tg. Thus, its effect on the dynamics is weak compared to the influence
of the exponent when dynamics slow down by more than ten orders of magnitude. Hence, the
factor (Tr/T )

θ can often be omitted and the description of E(T ) includes this contribution to the
temperature dependence. Moreover, one can omit the sign ν by inverting the dynamical property,
e.g., using 1/D, which allows for the simplified form

X = X∞ exp
(︃
E

T

)︃
(8.2)

in most cases. However, at temperatures up to the boiling point and above, the prefactor can become
relevant and the situation is not always that simple, as found for example for isobaric and isochoric
cooling of charged LJ particles.116 With the exception of these very high temperatures, it is of
particular importance in the following derivation that the functional form of E describes as much
of the available temperature range as possible. Any model that does not follow the common strong-
fragile crossover, i.e., HTA to supercooled super-Arrhenius, is not viable. As will be seen later, the
derived functions produce not only strong-fragile but also strong-fragile-strong behavior, as found for
tetrahedral network formers such as water, Ch. 7,.120,147,208

It has proven useful to split the activation energy into two parts, a constant contribution at high
temperatures E∞ and Ec, a contribution often attributed to cooperative effects.37,112,113

E(T ) = E∞ + Ec(T ) (8.3)
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E∞ is fixed as the temperature-independent contribution in the simple-liquid regime. It remains
to describe the cooperative contribution Ec. This restricts functions for Ec to those that (i) vanish
at high temperatures and (ii) increase monotonically with decreasing temperature. The existence
of an ideal phase transition and divergence at finite temperature, a feature exhibited by the very
popular VFT equation, would imply a divergence of Ec for finite temperatures. However, there is
no experimental evidence of a true divergence of glassy dynamics and instead there is evidence of
finite relaxation times at all finite temperatures.39,85,350,370 Thus, an optional condition (iii) is that
Ec should be continuous for all temperatures.

A simple approach to approximate Ec would be a series expansion in T up to a certain order.
However, polynomial functions can lead to nonphysical results if the data is extrapolated far from
the interpolation, e.g., growing Ec for T → ∞. Instead, series expansion in orders of Ec itself is
performed.* There are two options for the derivative: with respect to real or to reciprocal temperature.
While the latter follows the typical study of glass formers, e.g., with Arrhenius plots, neither will
be preferred for now. To introduce dimensionless parameters and functional forms, Ec and T are
expressed on the scale of E∞, Êc = Ec/E∞ and T̂ = T/E∞. The series expansions are

dÊc

dT̂
= αÊc + βÊ

2
c +O(Ê

3
c) and (8.4)

dÊc

d1/T̂
= αÊc + βÊ

2
c +O(Ê

3
c). (8.5)

Here α and β are the relevant parameters that determine the behavior of Êc. A constant term would
prevent the occurrence of an Arrhenius regime and contradicts the construction of Eq. (8.3). Orders
of power 3 or greater are neglected since they prevent an analytical solution of the differential
equations. Thus, it remains to study the combinations of α, β = 0 with dT̂ and d1/T̂ that satisfy
conditions (i) and (ii) for all temperatures. For relevant solutions of the differential equations, shown
in Tab. 8.1, the integration constant is introduced as C and the signs of α and β in Eq. (8.4) and
(8.5) are adjusted so that both parameters are positive. Other solutions are possible, but allow for
violations of (i) and (ii) in combination with C.

Trivially, two types of solutions can be found, hyperbolic and exponential. Solutions containing
only the first-order term, β = 0, are simple exponential functions. Note that exp(α(1/T̂ + C)) does
not vanish for T → ∞ and violates condition (i). However, for C ≪ 0 it becomes negligible in the
high-temperature regime. On the other hand, the solution exp(α(1/T̂ + C)) has a low-temperature
limit, i.e., the functional form leads to an LTA for sufficiently small temperatures T ≪ C. Using only
the second-order term in the differential equation, i.e., setting α = 0, leads to functions with possible
divergences, and thus to the violation of condition (iii).

The solutions for first and second-order terms of Êc lead to two exponential functions, one of
which resembles the Fermi distribution. With β > 0, they have a continuous temperature dependence.
Interestingly, they also have a low-temperature limit. The activation energy of this LTA, in addition
to E∞, is Êc = α/β for the derivative with respect to d1/T while this value is only approximately
assumed for dT when C ≪ 0. This complements the solution for only first-order terms and d1/T for
which Êc does not truly vanish in the HTR.

Including X∞ and E∞, the functions have four or five adjustable parameters. This makes them
more complex than most other functional forms in the literature. However, the freedom of these
parameters is limited by the above conditions for which the solutions were filtered. Accordingly, the

*One of the resulting functional forms of second order was found through empirical reasoning first and correspondence
with V. N. Novikov lead to the ansatz of series expansion in Ec, for which I am very grateful.
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Table 8.1.: Solutions to Eq. (8.4) and (8.5) for Êc. The signs of the terms in Eq. (8.4) and (8.5) are
adjusted such that α, β ≥ 0 and conditions (i) and (ii) are fulfilled.

dT̂ d1/T̂
order Êc

1st e−α(T̂+C) eα(1/T̂+C)

2nd
1

β(T̂+C)
T̂>−C

− 1
β(1/T̂+C)
1/T̂<−C

1st & 2nd α

β+eα(T̂+C)
α

β+e−α(1/T̂+C)

data sets should contain the HTA and supercooled super-Arrhenius regime to give the fit parameters
their respective meanings. For incomplete data sets, these functional forms are overparameterized.

8.2.1. Applicability of the solutions

The solutions to the differential equations listed in Tab. 8.1 are applied to test data to investigate their
ability to fit the data and their compliance with conditions (i)-(iii). Figure 8.1(a) shows the reciprocal
self-diffusion coefficients for the charge-scaled TIP4P/2005 water model with charge-scaling factor
q = 0.7 and isobaric cooling at P = 1 bar. A HTA is clearly visible and the VFT equation cannot
adequately describe this temperature regime. In contrast, all the functions from Tab. 8.1 describe
the data very well. The additional requirement to also describe the SLR is made possible by the
additional parameters.

Figure 8.1(b) shows the reduced cooperative contribution Êc to the activation energy as described
by the functions. For the exponential functions, Êc grows upon supercooling and diminishes rapidly
for higher temperatures, which is not the case for the hyperbolic functions. The consequence for
these functions is a reduced value for the fit parameter E∞ compared to an Arrhenius fit to the HTR
alone, see Fig. 8.1(c). Both hyperbolic functions have the same temperature of divergence, T = 67K,
which is surprisingly close to the temperature of divergence T0 = 65K of the VFT equation fitted
to the supercooled regime. While this is an intriguing finding, the hyperbolic functions lead to a
deviation of E∞ and the violation of (iii), a divergence of Êc. For these reasons, they will be omitted
from here on.

As for the functional forms with first and second-order terms, the parameter β is zero for the fits
to the present data set. Hence, the first-order approximation is sufficient to describe simple cases
ranging from a strong HTA to the fragile low-temperature super-Arrhenius regime. However, the
importance of the second-order term will become apparent in later sections and these functional
forms are not dropped.
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Figure 8.1.: Test of the solutions to the differential equations in Tab. 8.1. (a) The black dots are
self-diffusion coefficients D of the charge-scaled TIP4P/2005 water model with q = 0.7
and are repeated and shifted upwards by a factor of two for clarity. The solid purple
line is an Arrhenius fit to the SLR. The dashed and dotted gray lines are fits with the
VFT equation to the entire data set and the supercooled regime only, respectively. The
colored solid and dashed lines are fits of the different solutions for derivatives with
respect to dT and d1/T , respectively. The included orders of the terms in the differential
equations are given next to the HTR of the shifted data sets. (b) The reduced cooperative
contribution to the activation energy Êc as a function of temperature for the fits in (a).
Vertical lines mark a divergence of Eĉ. The lines for first-order terms are hidden beneath
the respective lines for first- and second-order terms. (c) The activation energy E∞ from
the fits. The color code of the legend applies to all panels.
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8.2.2. Final functional forms

The solutions in Tab. 8.1 are now rewritten into more convenient forms by subsuming terms into C
and redefining α and β with µ and λ ≥ 0.

Ec1 = E∞e−µ(T−Tx)/E∞ (8.6)
Ec1†

= E∞eµE∞(1/T−1/Tx) (8.7)

Ec2 =
E∞

λ+ eµ/E∞(T−Tx)
(8.8)

Ec2†
=

E∞

λ+ e−µE∞(1/T−1/Tx)
(8.9)

The subscripts denote these activation energies as the cooperative contribution in Eq. (8.3) as solutions
to series expansions up to order 1 and 2. The absence and addition of † to the subscript denotes the
derivative in the series expansion with respect to dT and d1/T , respectively.
C has the meaning of a temperature or energy and is renamed to Tx. This is the temperature

at which Ec = E∞ in Eqs. (8.6) and (8.7). However, its meaning can be arbitrarily changed by
changing the prefactor in Ec from E∞ to another value. µ can be interpreted as a generalized fragility
parameter that mostly governs the super-Arrhenius temperature dependence.37 Its value differs
strongly between Ec2 and Ec1 due to the inversion of T/E∞ to E∞/T . Comparable values can be
obtained by scaling with (Tx/E∞)2, which has not been done in the above equations for brevity. The
activation energy of the LTA is characterized by λ. Note that Ec2 and Ec2†

simplify to Ec1 and Ec1†
for

λ → 0, respectively.
Two of the above functional forms have been discovered earlier. Schmidtke et al. empirically found

Êc1 ,37 recently referred to as the constant two barrier (CTB) model,116 while Shi et al. modeled the
FST of water effectively using Êc2†

, see Eq. (7.9). The latter is physically motivated by a two-state
model and the transition from one Arrhenius to another, Sec. 7.6. However as shown here, the
functional form can be derived without prior knowledge of the system and its local structures or
states.

Substitution with Eq. (8.6)-(8.9) in Eq. (8.3) and (8.1) leads to the final functional forms, which
from here on will be abbreviated as first-order (FOF), reciprocal first-order (rFOF), second-order
(SOF) and reciprocal second-order function (rSOF).

8.2.3. Features and internal comparison

Before applying the functional forms to real data, they are compared with each other, see Fig. 8.2.
Since SOF and rSOF are extensions of their lower-order variants, only functions within the same
order need to be compared. A dummy data set is calculated using the FOF and SOF and the reciprocal
functions are fitted to the result. Figure 8.2(a) shows that both variants, expansion in dT and
expansion in d1/T , agree well for a significant dynamical range with barely noticeable deviations.
The SOFs with λ > 0 lead to a clearly visible FST. The cooperative contributions Ec are shown in
Fig. 8.2(b). They are zero for high temperatures as constructed and increase exponential-like for
λ = 0. However, for λ > 0, Ec is a smooth step function consistent with the FST of the dynamic
quantity. Differences between the dummy data and the fit are more apparent for Ec where the
rFOF and rSOF both overestimate it compared to the amount in the FOF and SOF. This difference is
compensated by differences in the fit parameters X∞ and E∞.

To further scrutinize the differences between the variants and investigate this FST, the first
and second derivative d lnX/X∞

d1/T and d2 lnX/X∞
d1/T 2 can be studied. The first derivative is the apparent
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Figure 8.2.: The derived functions, Eq. (8.6)-(8.9), are compared with each other in conjunction with
Eq. (8.2). (a) Arrhenius plot of the dynamical property X . The solid lines are calculated
using the FOF and SOF with µ = 20, Tx = 2/5E∞, and λ = 0.5. The dashed lines are fits
with the rFOF and rSOF to the respective calculated data. The data for the FOF is shifted
upwards by a factor of 5 for clarity. (b) The cooperative contribution to the activation
energy. Data for the FOF is shifted upward by 1. The black dashed line indicates the
low-temperature limit for the SOF. (c) The apparent activation energyEa of the data in (a)
as a function of temperature. The black dashed line indicates the low-temperature limit
for the SOF. The result for the FOF and rFOF are shifted upward by 1. (d) The curvature
K of the respective data. Data for the FOF is shifted upward by 5.
The results are scaled by the values ofX∞ andE∞ used in the calculation of the original
data with the FOF and SOF. The dotted and dash-dotted gray lines are the corresponding
result for fitting the FOF and rFOF to the calculated data from the SOF for temperatures
above the inflection point Ti. Black crosses and plus signs mark Ti for the SOF and rSOF,
respectively.
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8.2. Derivation of empirical models

activation energy Ea and the second derivative the curvature K.120 The derivatives for the FOF and
SOF are:

Ea,c1 = E∞ + e−Φ(µT + E∞) Kc1 = e−Φµ
2T 3

E∞
(8.10)

Ea,c2 = E∞ +
eΦ(µT + E∞) + λE∞

(λ+ eΦ)2
Kc2 =

µ2T 3eΦ
(︁
eΦ − λ)

)︁
E∞ (λ+ eΦ)3

(8.11)

The formulas are shortened using eΦ = E∞/Ec1 = eµ(T−Tx)/E∞ . The derivatives for the rFOF and
rSOF are:

Ea,c1†
= E∞ + e−ΘE∞(1 + µ

E∞
T

) Ka,c1†
= e−ΘµE2

∞(2 + µ
E∞
T

) (8.12)

Ea,c2†
= E∞ +

E∞eΘ(1 + µE∞
T ) + λE∞

(λ+ eΘ)2
Ka,c2†

=
µE2

∞eΘ(λ(2− µE∞
T ) + eΘ(2 + µE∞

T ))

(λ+ eΘ)3
(8.13)

Here eΘ = E∞/Ec1†
= e−µE∞(1/T−1/Tx) is used to shorten the formulas.

The corresponding results for the first-order cases follow for λ → 0. According to the construction
with condition (i), Ea is equal to E∞ for high temperatures and increases upon cooling. Only for
λ > 0, the second-order case, does K have a root and then asymptotically approaches zero. This
implies a maximum in Ea followed by an asymptotic value of lim

T→0
Ea = E∞(1 + 1/λ) at lower

temperatures. In contrast, the activation energy increases strictly monotonically in the first-order
case. As mentioned earlier, K also vanishes for the FOF and T → 0 and Ea is finite at T = 0, unlike
the rFOF for which these properties diverge.

Both Ea and K can be compared for the dummy data and the fitted functions, see Fig. 8.2(b) and
(c). The expected features of monotonic increase or maximum in Ea occur for the first- and second-
order functions, respectively. E∞ of the fitted functions does not perfectly match the calculated data.
Because the models are not completely identical, the fit of both, the high and supercooled temperature
regime, leads to compromises. For the application of these models, it may be advantageous to fix the
parameters corresponding to the HTA if they can be reliably determined.

The peak in Ea is narrower for the SOF than for the rSOF and shifted to higher temperatures.
Accordingly, the root of the curvature K is also shifted to higher temperatures, see Fig. 8.2(c). That
the models ”overshoot” in Ea compared to Ec as E(T ) approaches the LTA is a nontrivial consequence
of their construction. For example, a sigmoidal shape in Ea and the FOF would also lead to an FST,
but with the LTA as a direct continuation of the fragile regime. For which liquids this scenario is
relevant will be discussed in Sec. 8.5.

Both the peak of Ea and the root of K define the inflection point Ti in the Arrhenius plot. It can be
calculated analytically for the SOF and numerically for the rSOF:

SOF: Ti = Tx +
E∞
µ

lnλ, (8.14)

rSOF: 0 !
= 2λ+ 2eΘ + µ

E∞
Ti

(eΘ − 1). (8.15)

As long as temperatures above Ti are studied, an FST may not be visible and functions with fewer
parameters may describe the data.340 On the other hand, an FST of this kind is only observable when
Ti lies above Tg.213

To test this, the FOF and rFOF were fitted to the data generated with the SOF for temperatures
above Ti, Fig. 8.2. The dynamical property can be well described in this temperature range and
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8. Functional forms of E(T )

the deviations in Ec and Ea are minor. The curvature as a higher-order derivative is of course more
sensitive and deviations are more apparent. Lastly, note that the extrapolation for the fitted FOF to
the data shows its maximum in K within the presented temperature range. However, extrapolation
to X/X∞ = 1015 leads to E∞/Tg ≈ 4.35. At this temperature, K is close to its maximum value and
Ea is still strongly temperature dependent. It is unlikely that any parametrization of real liquids with
the FOF leads to this LTA at Tg or above.

The above discussion shows that the derived functional forms have a variety of features. In summary,
they exhibit a strong regime at high temperatures followed by a fragile regime upon cooling, they
can have an FST with (or without with the FOF) a maximum in Ea upon further cooling, they can
have asymptotes and extrema in Ea and K, and even a root in K. The derived family of functional
forms should therefore be useful in describing a variety of liquid dynamics.

8.3. Functional forms in the literature

Table 8.2.: Functional forms for the temperature depen-
dence of dynamics in the supercooled regime
from the literature.

ln (X(T )/X∞)

VFT63,78,79 B
T−T0

Mauro et al.359 K
T exp

(︁
C
T

)︁
Bässler, Avramov
Milchev360,361

C
Tα

Parabolic362
(︂

J
T0

)︂2
·
(︁
T0
T − 1

)︁2
Arrhenius + VFT E

T + B
T−T0

Cohen & Grest97 2B
T−T0+[(T−T0)2+αT ]1/2

MCT86,87 X = X∞

(︂
Tc

T−Tc

)︂γ
Souletie & Bertrand363 X = X∞

(︂
T

T−Tc

)︂γ

After comparing the derived functions
with each other, they are now com-
pared with other functional forms
from the literature. Table 8.2 shows
many possible functions and the cor-
responding literature. It is noticeable
that most functions in the literature
have only three fit parameters. Hence,
they provide more conservative fits
than the FOF and SOF with four and
five parameters, respectively, and are
less likely to overfit the data. The MCT
theory and Souletie & Betrand func-
tions have a possible divergence at
a low but finite temperature Tc and
therefore do not satisfy the optional
condition (iii). Most importantly, most
functions in the literature do not seem
to characterize an Arrhenius regime
for any temperature range.

To visually test the performance of
the fit, the functions are fitted to a data
set of self-diffusion coefficients from
the TIP4P/2005 water model with
charge scaling q = 1.1, see Fig. 8.3(a)
and (e). With the exception of the MCT and parabolic functions, all describe the data reasonably
well. The functions by Bässler, Avramov and Milchev and by Mauro et al. do not perform well in the
long HTA regime but perform better in the fragile regimes for which they were derived. The power
law from MCT theory, see Sec. 2.2.2, performs well only in a limited temperature range.

To better visualize the deviations, the ratio of fit and data is presented in Fig. 8.3(c) and (f). As
expected, the functions with four or more parameters have smaller errors than those with fewer.
The VFT equation and the equation by Mauro et al. are good contenders with three parameters.
However, all functions except the SOF and rSOF with five parameters systematically overestimate or
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Figure 8.3.: The functions in Tab. 8.2 and the derived functions are fitted to the self-diffusion coeffi-
cients of the charge-scaled TIP4P/2005 water model with q = 1.1 from Ch.6. Shown
are the Arrhenius plot (a,e), the prediction of the fit relative to the data (b,f), the ap-
parent activation energy Ea (c,g), and the curvature K (d,h). The plots are rescaled by
the parametrization of the high-temperature regime, E∞ and 1/D∞ determined by an
Arrhenius fit to the data. The black circles are the original data. The legends apply to
the respective columns.
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8. Functional forms of E(T )

underestimate the data in different temperature regimes. These functions cannot truly characterize
the temperature dependence of this data set and the fit is only a compromise. Of course, increasing
the number of fit parameters generally improves the quality of the fit. However, the features of the
derivatives Ea and K reveal whether a functional form is appropriate or not.

Figure 8.3(c) and (g) show the apparent activation energy of the data set and the functional
forms. The constant Ea in the high-temperature regime of the data is reproduced only by some
functions. In the case of this data set, the upward curvature of Ea appears to decrease towards lower
temperatures. This is likely due to the polyamorphism of water discussed in the previous chapter.
Most fit functions cannot reproduce this feature because their curvature K is always positive and
increases monotonically with decreasing temperature. Only the SOF, rSOF, and the CG model allow
K to vanish at stronger supercooling. While K does vanish for the FOF, it does so only in the limit
T → 0 and there is no indication of this behavior within the temperature range of the data set.

The second derivative is too noisy to draw meaningful conclusions from this data set alone.
Nevertheless, the functions from the literature are not able to produce a maximum in K and an
asymptotic approach to zero, which is necessary for an FST. Only the CG model has this feature as
well. In the following sections, the FOF and rFOF are studied for the regular case of strong-to-fragile
temperature dependence, and then the SOF and rSOF are applied to cases with an FST.

8.4. Strong-to-fragile behavior

It was shown by Schmidtke et al. that the FOF,

X = X∞e
E∞
T

(1+exp[−µ(T−Tx)/E∞]) , (8.16)

describes very successfully the most common temperature dependence of liquid dynamics, a transition
from strong-to-fragile behavior (SFB) upon cooling. The function describes rotational correlation
times for many molecular glass formers down to Tg.37,112,114,115 The complementary rFOF,

X = X∞e
E∞
T

(1+exp[µE∞(1/T−1/Tx)]) , (8.17)

has not yet been tested for similar data. Hence, this regular case of SFB is analyzed for several data
sets. However, most of the simulation data is for water and water-like models. As shown in Ch. 7,
these systems can exhibit an FST at lower temperatures. Nevertheless, a description with the FOF and
rFOF should be possible as long as the distance to the potential inflection point is large enough. In
particular, comparison of systems with only LJ or LJ and Coulomb interaction can provide insightful
results.

8.4.1. Determination of the high-temperature parametrization

The routine for analyzing the data is presented in Fig. 8.4 using four liquids as examples. The self-
diffusion coefficient D is studied because its temperature dependence is independent of processes on
the particular length scale defined by most other methods and it is available for all systems, molecular
or atomistic. For a definition of the glass transition temperature for these data sets, see Sec.A.3.1
in the appendix. For the purpose of clarity and comparison, the data in Fig. 8.4 is rescaled by the
parametrization of the HTA.

The usual behavior of a strong temperature dependence in the simple-liquid regime is observed
followed by a significant slowdown upon further cooling. Deviations from the Arrhenius law occur
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Figure 8.4.: (a) Scaled temperature dependence of the reciprocal self-diffusion coefficient for four
examples: charge-scaled SPC/E and TIP4P/2005 at 1 bar and q=0.75 and q=0.8, re-
spectively, LW-OTP, and the larger A particles of the Kob-Andersen mixture. The data
is scaled with the fit parameters D∞ and E∞ of the HTR and shifted by powers of two
for clarity. The solid black and dashed light blue lines are fits with the FOF and rFOF,
respectively. Gray symbols mark temperatures beyond the high-temperature Arrhenius
regime and are not included in the fit, see the main text. (b) The prefactor 1/D∞ and (c)
the activation energy E∞ of Arrhenius fits to subsets of the data on the left, scaled to
the minimum in E∞. Each subset includes 5 to 8 consecutive temperatures, depending
on the resolution of the data set. The reciprocal temperature ⟨1/T ⟩ is the average of
each subset. The legend applies to all panels.

also at the highest temperatures studied. This feature can appear in simulations for atomistic and
molecular systems alike,116,283 but is not usually observed in experimental measurements. Common
experimental techniques such as dielectric spectroscopy have difficulty measuring at such high
frequencies and in some cases the dynamics on ps time scales has to be supplemented with light
scattering measurements.112 In addition, temperatures may be high enough to cause chemical
reactions or decomposition. Correlation functions at these temperatures decay on sub-ps time scales
and are not separated from vibrational motion, see Sec. 2.1.2. In simulations of water and water-like
systems, superheating above the critical point is possible and leads to an increased temperature
dependence of the density. Evaporation can be rare enough for modest superheating and the system is
in a metastable equilibrium, similar to supercooling below the melting temperature. In experiments,
superheating is not possible to the same extent. Hence, experimental results for dynamics of this
extended high-temperature regime (eHTR) are lacking. In some cases, this temperature dependence
can be reconciled by using the temperature-dependent prefactor, Eq. (8.1).116 This is not the case
for the data presented here. The understanding of the eHTR is still insufficient and may be the
subject of future studies. Similarities or, more likely, differences to the relaxation mechanisms in the
supercooled regime could contribute to a better understanding of the latter.

Here, the simple-liquid and supercooled regime are of interest and the data is systematically
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8. Functional forms of E(T )

reduced, i.e., the eHTR is discarded. To this end, Ea is studied. Because real data is noisy, Arrhenius
laws are fitted to subsets of the data in the HTR. Their length in consecutive data points depends
on the resolution of the data set. The resulting fit parameters E∞(T ), a local Ea, and X∞(T ) are
then examined. Figure 8.4 shows the activation energy of the subsets as a function of their average
temperature. A minimum and parabolic shape are observed, consistent with the inspection of the
eHTR. Accordingly, the prefactor 1/D∞ shows a maximum and an inverted parabolic shape. To
characterize the SLR, the parametrization of the Arrhenius law with the lowest activation energy
is determined by interpolation. It is assumed that the contributions from cooperative effects, such
as those occurring in the supercooled region, and effects from the eHTR are minimized in this way.
The highest temperature of the subset with the lowest activation energy is the highest temperature
included in fits to the simple-liquid and supercooled regime. Higher temperatures are grayed out and
ignored in the following evaluation. Furthermore, this activation energy may be considered the ”true”
E∞ of the liquid. When fitting functions to data, the parametrization of E∞ and X∞ can be fixed,
which is the case here, reducing the free fit parameters of Eq. (8.16) and (8.17) by two. However,
this is only possible for data that exhibits an asymptotic or parabola like temperature dependence
of E∞, which is usually not the case for experimental data sets. Reasons are the above-mentioned
limitations in frequency or time scale and chemical instability. In addition, combination of different
experimental methods leads to discontinuous data sets which are problematic for detailed analysis.

The characterization of the HTA is then used in fitting the SLR and supercooled regime. Excellent
agreement between the data and the fits is found for both functions, FOF and rFOF, and all systems,
water-like and LJ particles. The dynamics can be described over five orders of magnitude. For
experimental data, good agreement was shown for up to 13 orders.37 Small deviations between the
two functions occur, consistent with theoretical observations in Sec. 8.2.3. However, fixing the HTA
parametrization may not always lead to satisfactory results, especially when the HTR is only partially
resolved and no minimum is found in E∞. Therefore, fits of the functions to data in the following
sections may have fixed or free HTA parametrization depending on the data set.

8.4.2. Typical glass formers - simulations

The investigation is extended to several LJ liquids and a typical glass former, glycerol. For details
on the systems see Sec. 4. Consistently, super-Arrhenius behavior in the eHTR, which was excluded
from fits to the data, followed by Arrhenius and super-Arrhenius temperature dependence upon
cooling is observed, Fig. 8.5(a). The data can be well described by the FOF and rescaling with
the parametrization of the HTA collapses the HTR onto a master curve. Deviations from Arrhenius
behavior are observed starting at approximately T = E∞/6 with some variation among the systems.
Thus, the energy scale for the onset of cooperative contributions to the activation energy of relaxation
appears to be related to the high-temperature activation energy. In particular, they do not play a role
at very high temperatures relative to E∞. This is hardly surprising because the interaction energies
that lead to intermolecular bonding and determine the energy scale at which the substance is in a
liquid state instead of the gaseous phase are likely also related to the activation energy. For charge-
scaled water-like models and LJ particles, a strong dependence of the activation energy on the partial
charges and, hence, Coulomb interactions was found, Fig. 8.9.116,117,283 However, entropy, a property
independent of simple geometry-preserving parameter scaling, has varying impact depending on the
energy scale and thermodynamic potential, e.g., Gibbs energy G = U + pV − TS. Hence, differences
are expected when the activation energy is not exclusively enthalpic in nature but has also entropic
character, which is at the origin of some models of the glass transition.

If the FOF is well suited to describe the supercooled regime, then it should be possible to collapse
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Figure 8.5.: (a) Temperature dependence of the reciprocal self-diffusion coefficient 1/D(T ) for
several model LJ liquids, the Lewis-Wahnströhm model for OTP, and glycerol. The
data is rescaled by the parametrization of the HTA and the raw data can be found
in Fig. A.14(a) in the appendix. (b) Master curve of the data on the left with the FOF,
Eq. (8.16). Ec is calculated from the data and shown as a function of the exponent in
Eq. (8.6). Solid purple lines are fits to Eq. (8.16) and the black dashed line is a guide to
the eye. Gray symbols mark the eHTR and data points with D ≥ 10−6 nm2/ps, and are
excluded from the fit to avoid data of poor quality. The legend applies to both plots. The
size-to-distance ratios of Roland’s dumbbell mixtures are given in the legend.

the data onto a single master curve. This is tested by calculating the cooperative contribution Ec from
the data using the parametrization of the HTA and plotting it against the exponent in Eq. (8.6), see
Fig. 8.5(b). The data nicely collapses onto a single curve up to temperatures at which Ec amounts
to 2% of E∞. The same master curve for the rFOF is shown in Fig. A.14 in the appendix. The data
also collapses but deviations at higher temperatures are systematic. The quality of master curves is
further investigated in Sec. 8.4.5.

Both functional forms are fitted to the data with free and fixed parametrization of the HTA. The fit
parameters and typical glass transition properties are shown in Fig. 8.6 for fits to the data in Fig. 8.5.
Four variations are distinguished, the FOF and rFOF each with free and fixed HTA parametrization,
and their relative differences to the result with the FOF and fixed parametrization are shown. Most
notable is the good agreement for all fit parameters and even the extrapolations to Tg for both fits
with the FOF. The relative differences are small and scatter around zero. Thus, its description for the
HTR, as a constructed with an HTA and vanishing Ec, works well even when the HTA parametrization
is determined independently.

However, for the rFOF large differences arise already in 1/D∞ and E∞. A larger value for the
prefactor and a smaller high-temperature activation energy are required to describe the data. As
a consequence, fixing the parametrization leads to a much larger generalized fragility µ. Another
discrepancy is the temperature TA at which E∞ and Ec are assumed to be equal. This temperature is
much higher for the rFOF than for the FOF. In addition, the extrapolated temperature dependence of
the self-diffusion coefficients is much more fragile for the rFOF. The fragility can be calculated for
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both functional forms according to the definition, Eq. (2.11), and Ea, Eq. (8.11) and (8.13):

mc1 =
1

ln 10

[︃
ln
(︃
X(Tg)

X∞

)︃
+ µ

Ec1(Tg)

E∞

]︃
(8.18)

mc1†
=

1

ln 10

[︄
ln
(︃
X(Tg)

X∞

)︃
+ µ

Ec1†
(Tg)E∞

T 2
g

]︄
. (8.19)

The higher fragility with the rFOF leads to 10 to 15% higher glass transition temperatures which is
certainly not trivial. Hence, extrapolation over many orders of magnitude leads to different description
of dynamics above the glass transition. For all properties and parameters investigated, results for
fitting with the FOF are less dependent on the fitting routine than with the rFOF. However, no general
claim can be made for data that does not require extrapolation.
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Figure 8.6.: The relative differences ∆p/p for several fit parameters and properties p determined
by fitting the FOF and rFOF, Eq. (8.16) and (8.17), to the same data as in Fig. 8.5 with
free and fixed parametrization of the HTA. The differences are always with respect to
the fit of the FOF with fixed HTA parametrization, which is therefore not shown, and
the parameters are (a) 1/D∞, (b) E∞, (c) µ, and (d) TA. For the rFOF, µ is rescaled with
(Tx/E∞)2. The fits are extrapolated to the glass transition temperature Tg (e) and the
fragility m (f) is determined. The legend applies to all graphs.
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8.4. Strong-to-fragile behavior

8.4.3. Typical glass formers - experimental data

The FOF has already been successfully used by Schmidtke et al. to describe experimental data from
the boiling point to the glass transition.37,112 To ascertain the viability of the rFOF, it is fitted to
experimental data from the same literature and the result and a master curve are shown in Fig. 8.7.
Visually, the rFOF performs well and the data can be described over 15 orders of magnitude by it.
A master curve that covers the supercooled regime can also be created. Deviations occur already
earlier in the supercooled regime than for the data from simulations in Fig. 8.5. Note, however, that
the experimental data sets are from different methods that are not necessarily perfectly compatible.
In particular, the high-temperature regime had to be supplemented with data from light scattering
experiments.

The stability of the fits and their extrapolation with increasing distance of the data points to the
glass transition was investigated. More specifically, the lowest temperatures were iteratively dropped
and the functional forms fitted to the remaining data. The observed trends match those for the
simulation data, i.e., underestimation of E∞ and overestimation of Tg and the fragility by the rFOF.
However, the inconsistencies and quality of the data sets prevent further conclusions. Lastly, the
master curves for the FOF and rFOF and fixed parametrization of the HTA can be compared in the
appendix, Fig. A.15. In this case, the FOF performs better and has less systematic deviations at high
temperatures, consistent with the findings in Fig. 8.6.
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Figure 8.7.: (a) Rotational correlation times for various molecular glass formers from dielectric
spectroscopy and light scattering experiments taken from the literature.112 The data is
rescaled by the parametrization of the HTA. Solid black lines are fits the rFOF, Eq. (8.17).
(b) Master curve of the data and fits on the left. Ec is calculated from the data and
shown as a function of the exponent in Eq. (8.7). The black dashed line is a guide to the
eye. The legends apply to both plots. Complementary plots with the FOF and with fixed
parametrization of the HTA can be found in Fig. A.15 in the appendix.
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8.4.4. Regular temperature dependence for water and water-like systems

Water in its supercooled regime above the no-man’s land exhibits super-Arrhenius behavior that
makes it one of the most fragile systems. Data sets from simulations can reach significantly into the
supercooled regime and also show super-Arrhenius behavior. Ch. 7 investigates in detail when and
how an FST appears for water-like systems. The FOF and rFOF are not able to characterize such a
temperature dependence. In order to investigate these functional forms with data from simulations
of water-like systems, the self-diffusion coefficients are limited to values greater than 10−6 nm2/ps.
As shown in Sec. 8.2.3, the first-order functional forms are capable of describing data sets with an
FST as long as the distance to the inflection point is large enough.
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Figure 8.8.: Temperature dependence of the reciprocal self-diffusion coefficient 1/D(T ) for the
charge-scaled TIP4P/2005 (a) and SPC/E (b) water models. The charge-scaling factor
q is given in the legend. The data is rescaled in temperature by the high-temperature
activation energy E∞. D is rescaled by the prefactor D∞ and then shifted by factors of
four for clarity. The unscaled data is presented in Fig. 6.6(c) and in Fig. A.3(b) in the
appendix. Solid black lines are fits with the FOF, Eq. (8.16), and fixed parametrization of
the HTA. Gray symbols mark data points excluded from the fit. On the low-temperature
end, data are limited to D > 10−6 nm2/ps to avoid data of poor quality and reduce the
influence of the possible FST in these water-like systems.

The self-diffusion coefficients for charge-scaled variants of the TIP4P/2005 and SPC/E water
models are shown in Fig. 8.8. Fits with the FOF can successfully describe the data. A complementary
study with rotational correlation times of the molecular dipole moment can be found in Horstmann
et al. J. Chem. Phys. (2017).117 A common super-Arrhenius behavior does not seem to be the case. In
particular, the curves for SPC/E with q = 0.92 and q = 0.9 cross despite being shifted. Furthermore,
the onset of deviations from the HTA shifts to lower temperatures with increasing charge-scaling
factor q. This effect is more pronounced for the charge-scaled TIP4P/2005 variants. However, the
highest reciprocal temperature E∞/T for deviations is just above 6, consistent with the observations
to Fig. 8.7.

The charge-scaled variants can be investigated in more detail using the fit parameters and extrapo-
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Figure 8.9.: Dependence of the fit parameters (a) 1/D∞, (b) E∞, (c) µ, and (d) Tx for the FOF and
rFOF, Eq. (8.16) and (8.17), on the charge-scaling factor q for two water models, SPC/E
and TIP4P/2005. The fits are extrapolated to the glass transition temperature Tg (e) and
the fragility m (f) is calculated. The fragility parameter µ from Eq. (8.17) is scaled by
(E∞/Tx)

2. 1/D∞ and E∞ are the same for the fits with both models and shown only
once. The dashed lines in (a) are exponential fits to the data and serve as guides to the
eye. The dotted lines in (b) indicate E∞ from the fit only of the HTA.

lations to Tg, shown in Fig. 8.9 as a function of the charge-scaling factor q. The FOF and rFOF are
both fitted with free HTA parametrization to allow them to describe the data as accurately as possible.
As a consequence, E∞ and 1/D∞ may deviate from the best description of the HTR. E∞ from fitting
the FOF does agree with the separate determination for q < 1.2 while deviations for the rFOF occur at
even lower charge-scaling factors. This difference in the stability of the HTA parametrization between
both functional forms is consistent with findings in Sec. 8.4.2.

All properties except the fragilities have a strong monotonic dependence on q. The prefactor 1/D∞
decreases almost exponentially with increasing partial charge. Theoretical derivations for the Enskog
or binary-collision regime at high temperatures predict D∞ ∼ T/σ, where σ is the diameter of
colloidal particles.371 For the charge-scaled variants, σ should vary only weakly compared to E∞.
Since the latter characterizes the energy scale of the SLR, one may assume the simplified relation
D∞ ∼ E∞. Figure A.16 in the appendix shows that this relation is weakly violated for parametrization
of the HTA from free fits with the FOF. Independent determination of the HTA leads to even larger
violations. Thus, the systems behave only close to the theoretical predictions.

The energy scale E∞ and the temperatures Tx and Tg all increase almost quadratically with q.
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8. Functional forms of E(T )

An actual parabolic shape as for charge-scaled LJ particles is not found.116 Furthermore, all three
properties show comparable dependence on q and approximate ratios of E∞/T ≈ 10, suggesting a
deeper connection, which is further explored in Sec. 8.4.6. E∞ is largely the same for both charge-
scaled models but increases more for TIP4P/2005, possibly because of its higher absolute partial
charges.

The generalized fragility scatters the most among all the properties. For the FOF, its charge
dependence is qualitatively similar to that of the fragility m. There is a minimum just below q = 0.9
for both systems and µ increases for reduced charges. While the same behavior is found for reduced
charges for the rFOF, it predicts charge-scaled variants with q > 1 as exceptionally strong. This strong
decrease in fragility is not found in the true extrapolation to Tg.

Instead, extrapolation of the two functional forms to the glass transition temperature leads to
qualitatively similar results. As with the previous systems, the rFOF predicts a higher Tg and fragility
m. The charge dependence of m is similar for both charge-scaled water models, showing the same
minimum and weakly decreasing fragility for charges q > 1. The location of the liquid-liquid critical
point for some systems of the charge-scaled TIP4P/2005 water model is known from Ch. 7. It shifts
to negative pressures for q ≤ 0.9. Therefore, the fragilities on the left are on the HDL side of the
LLPT in the phase diagram. Apparently, the fragility increases with the distance from the LLCP. This
phenomenon is accompanied by the disappearance of the density anomaly for both water models,
see Fig. 7.3 and 6.1. Although the existence of an LLPT is not known for the SPC/E variants, they
still most likely have a high HDS concentration and are more representative of HDL than LDL with
reduced charges.

The fragility of systems that are suspected to cross the Widom line in the phase diagram if a LLPT
exists, is also higher, consistent with the high apparent fragility of water-like systems caused by
a rapid transition from low to high HDS concentration with decreasing temperature in Sec. 7.6.
However, it is not representative of the fragility of LDL at Tg since the data was intentionally limited
to avoid the potential FST.

8.4.5. Master curves

An overview of the performance of the two functional forms, FOF and rFOF, and the fitting routines,
with and without fixing the HTA parametrization, is shown in Fig. 8.10. The master curves compare
the calculated Ec with the calculated exponent given the fit parameters µ, Tx, and E∞. The results
for the self-diffusion coefficients of the simulated systems in Fig. 8.5 and the charge-scaled variants
of SPC/E and TIP4P/2005 are shown. All fits collapse the data in the supercooled regime. Deviations
occur when Ec is only within a few percent of E∞. This depends on the uncertainty of the data and
the accuracy of determining E∞.

The FOF describes all data sets well with and without fixed parametrization and the systems scatter
nonsystematically, Fig. 8.10(a-c) and (g-i). Freely fitting the parametrization of the HTA leads to
improved results for the water-like systems and good agreement can be found for Ec down to 2%
of E∞. Such improvement is not found for the simple glass formers and it may be related to the
remaining presence of an FST in the data, which is discussed in more detail in the following sections.

The most noticeable errors are found for the rFOF and fixed parametrization. The prediction
underestimates the actual values of Ec in the high-temperature regime, Fig. 8.10(j-l). Moreover, the
master curve exhibits a slight curvature even in the moderately supercooled regime. Freely fitting of
the rFOF resulted in a different shallower description of the HTA in all previous analyses of data sets.
Hence, it is recommended to freely fit the rFOF. As a consequence, the value of E∞ is not determined
by the HTR alone.
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Figure 8.10.: Master curves for several model LJ liquids, the Lewis-Wahnströhm model for OTP,
and glycerol (left), the charge-scaled variants of the TIP4P/2005 water model (middle)
and the charge-scaled variants of the SPC/E water model (right). The FOF (a-c & g-i)
and rFOF (d-f & j-l) are fitted to the data and Ec is calculated and shown as a function
of the exponent in Eq. (8.6) and (8.7), respectively. Both functions are shown with
(g-l) and without (a-f) fixed independently determined parametrization of the HTA. The
black dashed lines mark perfect agreement and are guides to the eye. The colors and
symbols are the same as in Fig. 8.5 and 8.8.
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In contrast, the FOF is more robust and E∞ is close the independent determination using the HTR
alone, see Fig. A.17 in the appendix. It is the generally recommended functional form for the regular
SFB of liquid dynamics. Further investigations that discuss relations with E∞ will be performed only
with the FOF. However, both models are empirical and the overall quality of the description of the
data might be different if more extensive high quality data sets ranging from the high-temperature
regime down to Tg were available.

8.4.6. Relation of the HTR and Tg
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Figure 8.11.: The ratios (a) E∞/Tg, (b) E∞/Tx, and (c) Tx/Tg shown as functions of E∞. The values
are obtained by fitting the FOF with fixed independently determined parametrization of
the HTA to the data. Gray crosses are experimental results for molecular glass formers
from Schmidtke et al. (2013).112 The black dashed lines mark the average value of the
simulated systems. (d) The generalized fragility µ is shown as a function of fragility m
from extrapolation of the data to Tg. The gray dashed line is a guide to the eye. The
data for charge-scaled variants of the SPC/E and TIP4P/2005 water models are shown
with open circles and left-facing triangles, respectively, and the charge scaling factor is
indicated by colors from blue to red from low to high q.

Having investigated the description of the simple-liquid and supercooled liquid regime with
empirical models, possible relations between them are studied now. Figure 8.11 suggests common
ratios of E∞ and Tg, consistent with findings for molecular glass formers in the literature.37,114,115
An average value of E∞/Tg ≈ 10.9 is found for the simulation data in this chapter, see Fig. 8.11(a).
A very similar value was found for experimental of various molecular glass formers and data points
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8.4. Strong-to-fragile behavior

down to Tg.37,115 Note that self-diffusion coefficients were used here, while literature values represent
rotational correlation times, and that the actual value depends within a few percent on the definition
of Tg.

This common ratio suggests a link between the simple-liquid regime at high temperatures and
the glass transition at low temperatures. The activation energy that controls relaxation at high
temperatures is an intrinsic feature that sets the thermal energy scale even for strong supercooling
when cooperative effects dominate. Knowledge of one of the two quantities, E∞ or Tg, allows the
other to be estimated without further knowledge. However, considerable scattering is found among
the studied systems, with a standard deviation of σ ≈ 14% of the mean. At Tg, the total activation
energy is by definition given as lnX/X∞|Tg = E∞+Ec

Tg
≈ ln 1016 ≈ 37. Hence, inaccuracies on the

scale of σ lead to a deviation of the dynamical property by two orders of magnitude. From the
observation that E∞/Tg has an approximately common value and the value of the total barrier, it
follows that the ratio Ec(Tg)/Tg is about 27, in reality 28 for the given data and the applied definition
of Tg. A similar common ratio of 24 was found in the literature.368,369 Hence, the total activation
energy at Tg is less than four times the activation energy in the simple-liquid regime. In other words,
the contribution to the activation energy by cooperative effects accounts for the majority of the
activation energy but E∞ is still relevant.

The ratio E∞/Tx shows similar behavior, Fig. 8.11(b). On average, the cooperative contribution to
the activation energy takes over at temperatures corresponding to about 11% of the high-temperature
activation energy. Closer inspection reveals that the relative scattering is consistent with that for
E∞/Tg. The fact that the ratio to E∞ is the same in both cases also indicates a correlation between
the two temperatures. While the ratio Tx/Tg averages 1.19, see Fig. 8.11(c), the scatter of the data is
also quite significant.

Considering that the systems do not show the same relative slowdown from X∞ to Tg, one might
hope to reconcile some of the scatter by redefining Tg, e.g., as Ξ(Tg)/X∞ = 1016. However, the
steep slope near Tg requires adjustments of only a few percent to account for an order of magnitude
more or less in X. For the charge-scaled variants of TIP4P/2005 with q > 1, 1/D∞ decreases by
about an order of magnitude while the ratio E∞/Tg does increase by 20%. Hence, the trends are not
so easily compensated. Moreover, 1/D∞ is monotonic in q, while the same is not true for E∞/Tg.
Nevertheless, as the rescaling of the data by E∞ and X∞ has shown, such a definition might be more
appropriate for comparison of different models. It can be argued that the scatter of the data can
be reduced if temperatures down to Tg are available and extrapolations are avoided. However, the
experimental data of Schmidtke et al. shows comparable scatter.112 They also found different ratios
for polymers.115 Thus, the results depend on the class of systems studied.

In the literature, the fit parameter µ has been called generalized fragility because of its weak
correlation with the fragility m.112 There is also a weak correlation for the present systems, see
Fig. 8.11(d). However, the scatter is high and a systematic trend is found only for the charge-scaled
variants of SPC/E, where m and µ increase approximately monotonically but not linearly with partial
charge. Overall, no deeper relation between these parameters can be found in the present data.

Closer inspection of the data for the charge-scaled systems shows that both families of models
share a common charge dependence. There are two regimes below and above q ≈ 0.9 with the ratios
E∞/Tg and E∞/Tx increasing with E∞, or equivalently q, in both cases. They are separated by a
sudden jump consistent with the qualitative change of the path in the phase diagram with respect
to a possible LLTP. Hence, there appears to be an as of yet unexplained systematic trend in similar
systems, those on the HDL and LDL side in the phase diagram, respectively. Furthermore, the values
for reduced charges rapidly approach those found for charged LJ particles, which was about 7.5 for
self-diffusion coefficients and isobaric cooling.116 Note that in this study the fit to the HTR explicitly
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includes reciprocal temperature, as in Eq. (8.1), leading to reduced values for E∞. As the partial
charges are weakened, the water-like systems turn into spherical LJ particles, since only the oxygen
atoms interact with LJ potentials in these force fields. However, real molecular systems have very
different structures and interactions, e.g., glycerol forms a hydrogen bond network while OTP is a
Van der Waals liquid.

8.5. Strong-fragile-strong behavior

The above investigations referred to data with the regular SFB. Now, liquids with a strong-fragile-
strong behavior (SFSB) are investigated. For these, the solutions to the differential equations with
first- and second-order terms, the SOF and rSOF, are necessary. Consistent with Eq. (8.16) and
(8.17), the SOF and rSOF can be written as

X = X∞ exp
[︃
E∞
T

(︃
1 +

1

λ+ eµ/E∞(T−Tx)

)︃]︃
and (8.20)

X = X∞ exp
[︃
E∞
T

(︃
1 +

1

λ+ e−µE∞(1/T−1/Tx)

)︃]︃
, (8.21)

respectively. The former is an extended version of the empirical model by Schmidtke et al. while
the latter is an equivalent form to the two-state model of dynamics for water by Tanaka and
coworkers.37,120

8.5.1. Water’s polyamorphism

The first system to be studied is the charge-scaled TIP4P/2005 water model with q = 0.86 and
isobaric cooling from Ch. 7. The polyamorphism in this system is understood and the location of the
LLCP at Pc ≈ −54.5MPa is known. Hence, the temperature dependence of properties can be related
to paths in the phase diagram. The FST for isobars at lower pressures is caused by the rapid increase
in HDS concentration and the crossing of isomorphs. The raw self-diffusion coefficients are shown in
Fig. 8.12(c) and are fitted by the SOF and rSOF. The apparent activation energy Ea is then calculated
from the data and shown along with the prediction by the fits in Fig. 8.12(a).

For systems with P > Pc, Ea increases monotonically with decreasing temperature, i.e., the systems
exhibit regular SFB. However, a maximum in Ea occurs for P < Pc. This is consistent with the feature
of the SOF and rSOF for λ > 0 and causes an apparent SFSB. The data can be well described by the
functional forms. The maximum becomes higher and narrower the closer the pressure is to Pc, and
thus the higher the transition rate in temperature from HDS-rich to LDS-rich. Only the extremely
sharp maximum in Ea for P = −65MPa is not reproduced by the fits. They are either unable to
describe the data or the data quality is poor this close to the LLCP. The strong fluctuations in density
and LDS concentration, caused by the proximity to the LLCP, make the equilibration particularly
computationally expensive. The residues in the fit are instead dominated by the long HTR. It remains
to be seen whether data sets well beyond the inflection point will yield stable fits and can be well
described by the SOF and rSOF.

For isobars above the critical point, an FST is not necessarily expected. Nevertheless, as discussed
in the previous chapter, HDL may have its own FST. The SOF predicts no FST for P > Pc, i.e., λ = 0,
while the rSOF deviates from this, see Fig. 8.12(b). However, the quality of the fits is comparable
and the distance to the predicted inflection point is still large. It is still questionable whether these
systems have an FST and the SOF seems to be more conservative. On the other hand, the rSOF can
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Figure 8.12.: (a) Temperature dependence of the apparent activation energy Ea, calculated numeri-
cally as the local gradient, for isobars of the charge-scaled TIP4P/2005 water model
with q = 0.86 and at the indicated pressures. For clarity, the data is rescaled by the
parametrization of the high-temperature Arrhenius and shifted on the y-axis by two
for each system. The solid and dashed lines are results of free fits with Eq. (8.20)
and Eq. (8.21) to the self-diffusion coefficients, respectively. The dotted lines indicate
Ea/E∞ = 1 for each shift. The pressure of the isobars P is given in the legend. (b)
Pressure dependence of the second-order parameter λ from fits to the data. The fit-
ting routine is given in the legend. (c) Arrhenius plot of the self-diffusion coefficients
including the respective fits in (a). The legend in (a) also applies to (c).
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be considered more sensitive to deviations from SFB. In favor of the prediction by the rSOF is the
experimental finding of strong behavior of HDA and LDA above their respective Tg and no crossing of
the dynamics of HDL and LDL,13 which would be the case for extrapolations with the SOF. Increasing
the pressure to 100MPa and above results in a regular slowdown of dynamics with pressure. In these
cases, rSOF predicts lower values for λ than for isobars closer to the LLCP. This could mean that the
system is farther from an FST at these pressures.

In the following sections, several other systems for which the existence of an LLPT is unclear will
be studied. The above findings may help in interpreting the results.

8.5.2. Silica
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Figure 8.13.: (a) Temperature dependence of the correlation time τ of the ISF with k = 20 nm−1 for
the charge-scaled BKSmodel of silica, courtesy of Elvira Pafong and Julian Geske.118,214
For clarity, the data is rescaled by the parametrization of the HTA and shifted on the
y-axis by factors of four. The solid and dashed lines are fits to Eq. (8.20) and Eq. (8.21),
respectively. (b) The apparent activation energy Ea, calculated numerically as the local
gradient, as a function of reciprocal temperature.Ea is rescaled by the high-temperature
activation energy and shifted upwards by one for increasing charge-scaling factors
q. The dotted lines indicate Ea/E∞ = 1 for each q. Solid and dashed lines are Ea as
calculated by the respective fits in (a). Black crosses and plus signs mark the inflection
point Ti for the SOF and rSOF, respectively. The legend applies to both plots. Because
of an insufficient eHTR, the HTA parametrization from fitting the SOF freely was used
for q = 1.21, 0.97, and 0.95.

A system with a very pronounced FST is silica. The data are from simulations with the BKS
model.372 Figure 8.13(a) shows correlation times τ obtained from the incoherent intermediate
scattering function (ISF), Sec. 5.2.1. Diffusion data is also available but is of poorer quality.

All systems exhibit Arrhenius behavior at high temperatures followed by super-Arrhenius tempera-
ture dependence at intermediate temperatures. Similar to the water-like systems crossing the Widom
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8.5. Strong-fragile-strong behavior

line in Fig. 8.12, the dynamics deviate at more severe supercooling and the super-Arrhenius behavior
becomes weaker. More specifically, the curvature appears to change sign for some of the systems, e.g.,
for q = 1.21. Previously, the data was described by a combination of two Arrhenius functions joined
by a VFT equation at intermediate temperatures, or by a combination of Eq. (8.16) followed by an
Arrhenius function at lower temperatures. Both descriptions, including the transition temperatures,
have nine and seven parameters, respectively, and are differentiable only if constructed correctly. The
SOF and rSOF fit the data perfectly over the entire temperature regime with only five parameters
and are always differentiable. Thus, they provide a good alternative for describing the data.

The data and the fits can again be investigated in more detail by calculating the apparent activation
energy Ea directly for the data and for the functions, shown in Fig. 8.13(b). The features of Ea are in
qualitative agreement with those of the theoretical investigation in Fig. 8.2(c) and for the water-like
system crossing the Widom line. Ea is constant at high temperatures followed by an exponential-like
increase upon cooling. It then exhibits a maximum and either levels off upon further supercooling or
even decreases for some systems. The apparent activation energy is also described qualitatively and
quantitatively by the fits of both functional forms to the correlation times. Accordingly, the curvature
K should approach zero or even have a root. However, further numerical derivatives are not shown
because of the noise in the data. The rSOF appears to describe the temperatures below the inflection
point better than the SOF and the sum of residuals for Ea is lower for the rSOF. Note, however, that
insufficient equilibration at the lowest temperatures generally leads to faster dynamics, and thus
artificially reduced Ea. It is unclear overall how accurate the data is below Ti. However, all systems
certainly show a deviation from super-Arrhenius behavior and a need for higher-order functional
forms making it quite certain that an FST is occurring.

The temperature regime around Ti is approximately linear. Previous studies on water and silica
attributed the location of the FST to a temperature between the apparent fragile and Arrhenius
regimes.118,214 However, the true second low-temperature Arrhenius regime appears only for Ea =
const. at even lower temperatures. The transition is smooth and one can argue that it is simply a
strong-strong transition. Hence, one may consider the inflection point to be the relevant temperature.
It separates the liquid dynamics into two regimes. Above Ti a fragile behavior is observed. The second
Arrhenius can only be observed sufficiently below Ti. When Ti is not within the temperature range of
the data set, especially for Ti < Tg, the FOF and rFOF are sufficient to describe the data. In general,
the derivatives Ea and K need to be examined to characterize the dynamics in terms of a possible
FST.356,367

Finally, the FST of these silica-like systems can be discussed in the context of a possible polyamor-
phism in these systems. However, for the original BKS model, no LLCP could be found within the
computationally accessible regime and the data showed no indication of being close to one.4 Never-
theless, all charge-scaled BKS systems shown exhibit a density maximum.118 The tetrahedral order
increases with decreasing temperature and the fifth nearest Si-Si neighbor is pushed out of the first
nearest-neighbor shell. Exactly the same observations were made for the charge-scaled variants of
TIP4P/2005 in Sec. 6.1. Therefore, the picture of competing local structures of different density,
which described the water-like systems well in Ch. 7, may also apply here. The existence of an FST
within these systems may be associated with polyamorphism-like behavior, even in the absence of a
true LLPT. The existence of the density maximum may imply that also for BKS a rapid change in the
concentration of such local structures with temperature is at the origin of the FST.

127



8. Functional forms of E(T )

2 4 6 8
E /T

10 5

10 3

10 1

101

103

105

107

109

/
 sh

ift
ed

(a)

2 4 6 8 10
E /T

0

5

10

15

20

E a
/E

 sh
ift

ed

(b) 1.21
1.09
1.04
1.02
1.00
0.97
0.95
0.89
0.83
0.79
0.75

Figure 8.14.: Same plot as Fig. 8.13 but with fits of the CG model and the SOF, Eq. (8.22) and (8.20),
shown as solid and dashed lines, respectively. (a) Temperature dependence of the
correlation time τ of the ISF for the charge-scaled BKS model of silica, courtesy of
Elvira Pafong and Julian Geske.118,214 The charge-scaling factors q are given in the
legend. For clarity, the data is scaled by the parametrization of the HTA and shifted on
the y-axis by factors of four for each charge. (b) The apparent activation energy Ea,
calculated numerically as the local gradient, as a function of reciprocal temperature.
Ea is rescaled by the high-temperature activation energy and shifted upwards by one
for increasing charge-scaling factor q. The dotted lines indicate Ea/E∞ = 1 for each q.
Solid and dashed lines are Ea as calculated by the respective fits in (a). Black crosses
mark the inflection point Ti for the SOF. The legend applies to both graphs. Because of
an insufficient eHTR, the HTA parametrization from fitting the SOF freely was used for
q = 1.21, 0.97, and 0.95.

8.5.3. Cohen-Grest model

Another model has been used in the literature to describe data sets with deviations from a simple
VFT-like super-Arrhenius temperature dependence.356,367 Cohen and Grest modeled the slowdown
to the glass transition with a free-volume model and percolation leading to the functional form97

X = X∞ exp

[︄
2B

T − T0 +
√︁
(T − T0)2 + αT

]︄
. (8.22)

The parametrization with B and T0 is similar to the VFT equation. However, the divergence is shifted
in temperature and can even be avoided. The parameter α accounts for anharmonicities of the local
potentials experienced by the particles and the free volume can be extracted from it. However, the
results from such an analysis are at odds with the estimates of free volume obtained from pressure-
volume-temperature data.366 Nevertheless, its qualitative features make it a good additional function
to consider.356,367 At sufficiently low temperatures, the T − T0 terms become negligible compared to
αT and one approaches a low-temperature Arrhenius.
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8.5. Strong-fragile-strong behavior

The fits of the SOF and of the CG model to the silica-like systems data are shown in Fig. 8.14. While
it visually describes the correlation times well over a wide temperature range, it of course cannot
describe the maximum in Ea. Instead, Eq. (8.22) provides a smooth FST as a direct continuation of
the fragile regime with an Arrhenius regime. It describes the data almost as well as the previously
used combination of several Arrhenius and VFT regimes but with only four free fit parameters. Note,
however, that Ea is not constant at high temperatures for several of the fits. The SOF or rSOF seem
to be necessary to fully describe the data.

8.5.4. Water-like systems

The complementary analysis to the charge-scaled BKS systems is performed with self-diffusion
coefficients D from the charge-scaled SPC/E and TIP4P/2005 systems, Fig. 8.15 and 8.16. Two
phenomenological observations can be made for the charge-scaled systems. The apparent activation
energy appears to increase exponentially for reduced charges while its temperature dependence
appears to weaken for increased charges at the lowest temperatures. The crossover for TIP4P/2005 is
at approximately q = 0.9, which is consistent with the finding for the fragilities of the charge-scaled
systems and the shift of the LLCP to negative pressures.

The SOF and rSOF are fitted to the reciprocal self-diffusion coefficients 1/D and Ea is calculated.
At increased charges, extrapolation with both functional forms often predicts a maximum in Ea.
They disagree for intermediate charge scaling of q = 0.9 to q = 1 and the SOF predicts only SFB. For
q < 0.8, both functional forms predict either no maximum or one at significant extrapolation from
the data. The existence of the maximum depends on the second-order parameter λ. For vanishing
values, the system apparently shows regular temperature dependence. The larger λ, the lower the
slope of the low-temperature Arrhenius regime, i.e., the lower the plateau of Ea below the inflection
point. The dependence of λ on q is shown in Fig. 8.15(b) and 8.16(b) for both functional forms
and fitting routines with free and fixed HTA parametrization. Independent of the fitting routine and
functional form, λ becomes small or even zero for q ≤ 0.8 and q ≤ 0.9 for SPC/E and TIP4P/2005
variants, respectively. Thus, these systems exhibit a close to regular temperature dependence of the
dynamics.

In contrast, λ does not vanish for q ≥ 1.0 in almost all cases. Thus, the functional forms predict an
FST for these systems, although the data is inconclusive within the scatter at the lowest temperatures.
This result is in agreement with the expectation that the LLCP is at elevated pressure for these
systems, if it exists, and that they cross the Widom line at atmospheric pressure. This leads to a
rapid transition in LDS concentration and, correspondingly, to a superficially increased fragility at
intermediate temperatures. As discussed for the silica systems, such a transition may exist even if the
systems do not have a true LLPT.

Another general finding is that λ is larger for the rSOF than for the SOF. Hence, the rSOF predicts
a shallower slope E∞(1 + 1/λ) for the LTA. The SOF is more conservative and the maximum in Ea is
broader in temperature. A fit with unconstrained parameters for the HTA allows the rSOF to have
values for λ comparable to those with the SOF while the deviations in the description of the HTA are
acceptable.
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Figure 8.15.: (a) The apparent activation energy Ea calculated numerically as the local gradient as a
function of reciprocal temperature, for the charge-scaled variants of the SPC/E water
model. The charge-scaling factor q is given in the legend. For clarity, the data is rescaled
by the parametrization of the high-temperature Arrhenius and shifted on the y-axis
by two for each charge-scaling factor. Solid and dashed lines are results for fits with
the SOF and rSOF, Eq. (8.20) and (8.21), to the self-diffusion coefficients, respectively.
The dotted lines indicate Ea/E∞ = 1 for each shift. The charge-scaling factor q is
given in the legend. Black crosses and plus signs mark the inflection point Ti for the
SOF and rSOF, respectively. (b) Dependence of the second-order parameter λ on q for
both functional forms and two fitting routines, with free and fixed HTA parametrization,
denoted in the legend in (c). (c) Ratio of the inflection point Ti to the glass transition
temperature Tg as a function of λ.
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Figure 8.16.: Analogous results to Fig. 8.15 for the charge-scaled variants of the TIP4P/2005 water
model.

Lastly, the location of the inflection point Ti is studied with respect to the extrapolated Tg, i.e.,
whether Ti could be observed directly in experiments or not. Figures 8.15(c) and 8.16(c) show
good correlation between λ and the distance to Tg. The lower the activation energy of the LTA, i.e.,
the larger λ, the more readily the inflection point can be observed. For very small values of λ, the
extrapolations predict the inflection point below Tg. The quantitative connection of course depends
on all parameters, i.e., µ and Tx, but the result suggests that the most important parameter is the
difference in activation energies of the two Arrhenius regimes.

The λ > 0 results for different charge-scaled variants are consistent with the expectation based on
their path in the phase diagram, i.e., whether or not they cross the potential Widom line, from the
findings in Ch. 7 for the charge dependence of the LLCP. This argument and the good description of
the data suggest that the SOF and rSOF can serve as indicators for the existence of an FST. At the very
least, λ > 0 indicates the necessity of second-order terms in the series expansion of Ec to describe
the data, and thus a deviation from the simplest regular temperature dependence of dynamics.
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8.5.5. Second-order effects in experimental data

Finally, the SOF and rSOF are tested on experimental data sets down to Tg from the literature which
have been found to deviate from VFT behavior near Tg, shown in Fig. 8.17.353,366 For comparison,
the data is also fitted with the FOF and the CG model. Because not all data sets contain sufficient
data in the HTR, the determination of E∞ is inaccurate. Therefore, the parametrization of the HTA
is fitted freely in all cases and Tg, taken from the literature, is used to rescale T and Ea.

The dynamics of 1-propanol, ethanol, and propylene carbonate can be described with the FOF
within small errors. Deviations occur only at the lowest temperatures. Nevertheless, the CG model
and the functional forms of second order perform better. The more sensitive rSOF suggests a necessity
for second-order terms in all three cases. Salol, PDE, and PCB cannot be described by the FOF. The
maxima in Ea predicted by the SOF and rSOF are at Tg and in some cases slightly above it. The data
does not show a clear maximum in Ea for any of the data sets and so far agrees well with the CG
model. However, it should be noted, that the CG model does not describe the highest temperatures
as well as the SOF and rSOF.

Between the SOF and the rSOF, the narrower maximum in Ea of the rSOF seems to be less
appropriate for the given data and, hence, the SOF could be preferable. However, either functional
form can be used to describe the data or to probe for deviations from regular behavior with λ > 0.
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Figure 8.17.: Temperature dependence of the apparent activation energy Ea, calculated numerically
as the local gradient, for various glass formers and correlation times τ from dielectric
spectroscopy, DC conductivity σ, and viscosity η. The data was taken from publications
by Stickel et al. and Paluch et al.353,366 The glass transition temperatures Tg are also
taken from the literature. Ea is scaled by its value at Tg for fits with the SOF. The solid
and dashed lines in complementary colors to the data points are results for fits to
the raw data with the SOF and rSOF, Eq. (8.20) and (8.21), respectively. The solid and
dashed black lines are results for fits with the FOF and the CG model, respectively.
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8.6. Summary

In this chapter, the temperature dependence of dynamical properties of liquids in the entire available
temperature regime was investigated. The empirical finding of an exponential function with a
temperature-dependent activation energy E(T ) was used as a starting point for the systematic
construction of a family of functional forms. Following the observation of an Arrhenius behavior in
the simple-liquid regime, the proven splitting of E(T ) into a temperature-independent contribution
E∞ and Ec(T ) was employed. The latter is often attributed to the increasing cooperativity of motion
in the supercooled regime.

Derivatives of Ec(T ) can be expressed with a series expansion in orders of Ec itself, leading to
two sets of differential equations depending on the derivative in real or reciprocal temperature.
Considering only terms up to second order allows for analytical solutions, all of which can describe
the regular temperature dependence of dynamics. The set of solutions was reduced to physically more
meaningful functional forms by introducing three conditions forEc: It vanishes at high temperatures, it
increasesmonotonically upon cooling, and it is continuous. In particular, there is so far no experimental
evidence of a divergence of, e.g., correlation times at finite temperatures, quantum effects left aside.
Functional forms such as the VFT equation or the power law from the MCT have their applications
but do not conform to this relevant observation.

Two of the four functional forms have been used successfully in earlier work, e.g., by Schmidtke
et al. or Tanaka and coworkers. The derivation in this chapter reveals their common mathematical
origin and complements them with two related functional forms. While the first-order functional
forms, FOF and rFOF, can describe regular temperature dependence, the second-order parameter
λ > 0 introduces an inflection point in an Arrhenius plot, i.e., a maximum in the apparent activation
energy Ea, and a second Arrhenius regime at stronger supercooling. The former functional forms can
describe a strong-to-fragile behavior while the latter can describe a strong-fragile-strong behavior.
Both scenarios have often been described with combinations of Arrhenius laws and the VFT equations.
The functional forms presented here use significantly fewer parameters. Still, as the number of
features increases, e.g., strong or fragile regimes or roots in derivatives of the observed quantity with
respect to reciprocal temperature, the number of parameters necessarily also increases.

The FOF and rFOF were used to study LJ liquids and simple glass formers and describe the
self-diffusion coefficients very well. However, the solution for d1/T proved to be less robust in the
parametrization of the high-temperature Arrhenius. Hence, the FOF, the model by Schmidtke et
al., is recommended for the SFB of liquids. More extensive data sets of high quality and from a
single observable down to Tg are necessary for a more detailed comparison. Application to data
from charge-scaled water models gave good agreement for moderate supercooling or reduced partial
charges. The charge dependence of several properties, e.g., the fragility, are consistent with the
location of isobars in the phase diagram with respect to a possible LLPT. The charge dependence of
the pressure of the LLCP found in Ch. 7 consistently separates the systems into isobars that do and
do not undergo a transition from one preferred local molecular structure to another. Both functional
forms are also capable of describing experimental data down to Tg.

The ratios of the activation energy of the HTA, E∞, to the glass transition temperature, Tg, was
found to be on the order of 11, consistent with findings for experimental data on various molecular
glass formers.115 The scatter is significant and the ratio can be used for an approximate estimate
of either quantity when the other is unknown. The results for the charge scaling of the two water
models depend on the region in the phase diagram with respect to the LLPT. A study of charged
soft spheres also suggests largely common ratios.116 Hence, the interaction strength determines
E∞ among classes of interactions, i.e., of similar directionality and local structure, and rescaling of
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temperatures by this energy scale leads to common behavior.
The charge-scaling data of the two water models and the BKS model of silica was used to study

the SFSB of the SOF and rSOF. The silica systems showed a very pronounced FST in the accessible
dynamical range. Ea exhibits a maximum and the overall dynamics are well characterized by the
second-order functional forms. Hence, the Cohen-Grest equation, a four-parameter function without
a maximum in Ea, does not qualitatively reproduce the temperature dependence. The LTA is not the
continuation of the fragile regime, i.e., there is an inflection point separating two strong regimes. The
inflection point Ti seems to be a relevant temperature. In particular, it is only possible to determine
whether a liquid exhibits SFSB of this kind if Ti is above Tg. For the charge-scaled water models,
Ti could not be identified with certainty. Still, fitting the functional forms reveals whether or not
the characterization of the data requires the second-order parameter λ. The findings are again
consistent with the location in the phase diagram, i.e., λ > 0 when the isobar is below the suspected
critical point. Higher values of λ are related to higher Ti with respect to the glass transition. Hence,
a small difference between the activation energies of the HTA and LTA is most important for the
accessibility of the latter. It seems that for tetrahedral network formers with strong directional
bonding, e.g., silica or water with hydrogen bonds, the interaction strength is close in the high and
low-temperature regime. In the case of water, the average number of hydrogen bonds is less than four
at high temperatures but quickly approaches its optimum upon cooling. Hence, if the energy barriers
are dominated by hydrogen bonds compared to other sources of cooperativity in the relaxation
mechanism, then it is not unreasonable to expect both activation energies to be on the same order of
magnitude at high and low temperatures, as suggested by λ > 0.2. The SOF was more conservative
with λ, and thus could be used as a test for SFSB.

It is unclear whether all silica- and water-like systems exhibit true LLPT and polyamorphism.
However, they all share the competition of local structures with different density even if the two
local structures mix easily and no LLPT exists. It could be that the mere existence of such local
structures and an appropriate path in the phase diagram cause an SFSB in other systems as well.
For the tetrahedral network formers, the question of the temperature dependence in a region of the
phase diagram with high HDS concentration remains unresolved. Still, the less conservative rSOF
predicts an inflection point beyond the covered temperature range also for systems that should not
cross a Widom line.

For real molecular glass formers, deviations from VFT behavior at strong supercooling have been
discussed for some time. Such data sets from the literature were used to test the second-order
functional forms. Both are able to describe the entire available temperature range. Some of the
data sets appear to have an inflection point near Tg. The FOF and rFOF cannot adequately describe
these cases. However, the raw data does not show a clear maximum in Ea and the functional forms
appear to overestimate its sharpness. The more conservative CG model also fits the data well, at least
below the HTR. These systems may exhibit an FST but not with the same qualitative features as the
tetrahedral network formers. Instead, Ea seems have a smooth step-like temperature dependence.
Besides the CG model, the FOF also exhibits this feature. However, it cannot be parameterized to
match this step in the experimental data. The SOF can always be used to fit the data and includes
an indication of the relevance of second-order effects. Compared to the CG model, the former can
correctly describe the full data set.

As can be seen from the theoretical results in the literature, an Arrhenius regime may be more
common than expected at strong supercooling, perhaps even a general property of all liquids. Of
course, these considerations apply to classical physics, since quantum effects and the freezing in of
degrees of freedom become relevant at significant supercooling. Knowledge of whether or not the
activation energy has a low-temperature limit would be an important step in understanding the glass
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transition, since only theories that account for this phenomenon would be viable. Another question is
whether the origin for SFSBs with and without an inflection point is qualitatively different or whether
they are manifestations of the same underlying physics. A functional form of E(T ) that satisfies both
scenarios is nontrivial. While these questions may be difficult to address with experimental data and
the limitation by Tg, simulations of suitable model systems and increasing computational power may
tackle these challenges in the near future.
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9. Water in neutral confinements

The following sections investigate dynamical and structural properties of charge-scaled SPC/E water
models within neutral cylindrical pores. The matrix imposes a static potential energy landscape onto
the liquid causing persistent structuring and reduced mobility. Several theories of the glass transition
propose dynamically or structurally differing regions of growing length scale upon supercooling.
Confinements are well suited for their determination. Hence, correlation times and configurational
overlap were spatially resolved and characterized and the slowdown in the immediate vicinity of the
pore wall was quantified. Several properties can be generalized among the charge-scaled variants
using isokinetic representations or the energy scale E∞. Manifestations caused by the suspected
polyamorphism of the model are weak and appear only in some properties. Models of the glass
transition that correlate vibrational motion and correlation times fail in the confinement. Instead, it
was found that the energy barrier governing dynamics may be increased by a temperature independent
amount at the pore wall and that it can be explained using Boltzmann statistics.

9.1. Motivation

Confined liquids are a quite common phenomenon in many areas such as biology, chemistry and
physics. In particular, nanoscopic confinements have a strong influence on structure and dynamics
and require further understanding. These systems have been topic of a vast amount of studies
in the recent past,41,42 using for example micelles373 or proteins as soft confinement and clays,
zeolites or mesoporous silica as hard confinement. Besides the rigidity, the size, geometry and
dispersity is different among these confinements. Their diameter can range from a few to hundreds
of nanometers. In addition to such geometrical features, the interaction of the liquid with the matrix
can be particularly important. Chemically modifying the interface, e.g., varying the silanol-group
density in silica pores,374 can lead to structural and dynamical changes influencing the behavior of
the entire liquid volume.43 Especially in mixtures the liquid-liquid and liquid-matrix interactions can
lead to significant structural changes with respect to the bulk, e.g., microphase separation.44–47,375

This entanglement of geometric and interaction effects and dependence on the liquid itself has
hindered a precise understanding of confinement effects so far.41,42 To reduce the complexity of
this problem, neutral confinements can be employed in simulations.48,49,303,376 By giving the matrix
the same structure and composition as the bulk liquid, liquid-matrix interactions are simplified and
well defined for each system. In MD simulations, such systems are easily constructed by restraining
the movement of a fraction of particles, see Sec. 4.3. Ideally, the local structure of the confined
liquid is unaltered across the interface and only dynamics are affected. While this may often be
the case,48,49,376 density fluctuations may still occur.377 Previous studies found by several orders
of magnitude reduced mobility at the interface, followed by steep mobility gradients and recovery
of bulk behavior for sufficient distances to the matrix.48,323,378 Underlying these phenomena is the
potential energy landscape (PEL) that, in contrast to bulk, does not fully relax. The confinement
imprints a static contribution onto the landscape of the liquid that is propagated some distance by
the particle interaction.46,229,379
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9. Water in neutral confinements

Several theories of the glass transition seek to explain the deviations from strong Arrhenius to
fragile super-Arrhenius behavior by introducing length scales of dynamical or structural heterogeneity
that grow upon supercooling and determine the structural relaxation. This increases the importance of
cooperative motion for relaxation, and thus the energy barrier. Among these theories are for example
the Adam-Gibbs model,28,29 proposing growing length scales of cooperative motion, and the random-
first-order transition (RFOT)91 theory that introduces structurally distinguishable patches of increasing
size. MD simulations have proven useful in this regard. Not only can dynamical and structural length
scales be calculated from bulk but also from confinement simulations.27,48,323,376,379–385 The latter
enhance the heterogeneity and impose an upper limit to dynamical and structural length scales,
allowing for further studies under well defined conditions. In particular, neutral confinements
were employed in several cases, ranging from binary Lennard-Jones liquids,376,380,381,384,386 binary
mixtures of quasi-hard spheres,383 silica,379 to even water.48,323,385 The expectation of growing
dynamical and structural length scales was well met in these systems. However, the usually reduced
mobility at the interface reduces the accessible temperature range to the weakly supercooled regime.
Whether this method remains applicable for stronger supercooling or not remains to be seen. More
importantly, which of the extracted length scales proves relevant and how they are related to the
glassy slowdown of the bulk liquid is not fully understood.

This work focuses on the supercooled regime of the tetrahedral network former water and its
charge-scaled variants to distinguish features caused by interaction strength from those caused by
confinement properties. As discussed in the previous chapters, water models may have an LLPT that
shifts in the phase diagram depending on the partial charges. In particular, the associated LLCP can
be at positive or negative pressure and isobaric pathways in the phase diagram may enter the HDL
or LDL regime upon cooling. Both cases exhibit significant differences in dynamics and structure. For
another tetrahedral network former, silica, simulations have shown the existence of the corresponding
fragile-to-strong transition (FST) in the BKS model and charge-scaled variants.118,149,150,214,372,387–391
For SPC/E water, the FST could not be observed in the accessible temperature range.117,275 The
temperature dependence of length scales across the FST would be a good test of their relevance
in models of the glass transition.379 Nevertheless, the dependence of confinement effects on the
variation of the water model may reveal or disprove common behavior within these models.

Therefore, extensive simulation series of water-like models in neutral confinements are investigated
in this chapter. Specifically, the charge-scaled variants of SPC/E, used in bulk simulations in previous
chapters, are confined in cylindrical neutral pores. A similar study was performed for silica-like
systems based on the BKS potential.392 By quantifying the range and degree of temperature dependent
confinement effects for different interaction strengths and regions in the phase diagram, the relevance
of length scales determined in confinement to the glass transition in bulk can be studied.

9.2. Particle density

A prerequisite to analyzing dynamics spatially resolved is an understanding of the particle distribution
and structural inhomogeneities. The neutral pores by construction have a radius of R = 2.5nm which
is applied to the instantaneous oxygen position of the water molecules, see Sec. 4.3. The interface
is rough with hydrogen atoms reaching into the pore and small voids beyond the cutoff available
to the liquid fraction. Hence, resolving the molecular positions, defined here by the position of the
oxygen atom, by their distance r to the pore axis will average over the roughness of the interface.
Alternatively, the shortest distance to the surface can be calculated. This way, the tetrahedral local
structure of water is taken into account. Particle densities for both methods are shown in Fig. 9.1. The
distance resolved particle density resembles the pair-distribution function g(r). The first and second
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Figure 9.1.: Particle density of water oxygens within a neutral pore with radius R = 2.5nm: (a)
resolved over the shortest distance d to any wall atom and (b) radially resolved. The
count N of atoms is normalized by the average N0 for 1.1 nm < d < 1.5 nm and
r < 1.5 nm, respectively, and shifted upwards by 0.2 for each data set for clarity. The
bins for distance resolved counting are chosen such that they have equal volume for
a smooth cylindrical wall. The scaling factors of the partial charges are given in the
legend and the temperatures shown are chosen such that the correlation time τe in the
pore center amounts to roughly 100 ps.

peak are the H–O and O–O next neighbor distances. Their position shifts to shorter distances with
increasing charge scaling factor q, in accordance with the increasing density with stronger Coulomb
interaction in Sec. 8. Further oscillations are mixtures of distances to hydrogen or oxygen atoms
of the matrix, e.g., the third peak represents the H–O distance of the second next neighbor shell
and decreases significantly in height and shifts to longer distances when the charges are reduced
below q = 0.9. The local structure appears to be significantly altered by charge scaling, as found for
the bulk systems. The previous chapters suggest for the polyamorphism of this water model that
for charge scaling q < 0.9 and atmospheric pressure the Widom line is not crossed and the systems
enter the HDL phase. Hence, interpretations of the results in the following will take into account the
differences in local structure.

These details are absent in the radially resolved particle density, Fig. 9.1(b). Density is mostly flat
with moderate modulations close to the pore wall. The rough interface leads to a smooth step and
allows for minor penetration beyond R = 2.5nm. At low temperatures, no particles were found to
reside at larger distances within the pore wall. Previous radially resolved analysis of neutral pores
found no difference in structure and density across the interface.48,379 For the Kob-Andersen mixture
in neutral confinement however, a more pronounced modulation of density was found.377

The analysis in the following sections shows that the structural features in Fig. 9.1(a) are also
present in dynamical properties. Radially resolving the positions averages over these effects. Hence,
this chapter focuses more on distance resolved analysis. Results for particles beyond the next neighbor
distance are consistent between radial and distance resolved analysis.
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9.3. Slowdown in confinement – spatially resolved
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Figure 9.2.: Correlation functions of water dynamics in bulk andwithin a neutral pore with radiusR =
2.5 nm. (a) Comparison of translational and rotational correlation functions in bulk (solid
lines) and confinement (dashed lines) at 210K for the original SPC/E model of water.
Translation of the oxygen atoms is probed with the ISF, Sq(t), for two wavenumbers,
S22.7 and S10. Rotation is probed with the RCF of the OH-bond vector, F1,OH and F2,OH.
The black dotted line represents the autocorrelation of the distance to the pore wall,
Cd(t). (b) Sq(t) for subsets at different distances to the pore wall, given in the legend, at
400K and charge scaling q = 1.25. The black dashed line indicates the criterion used
for the determination of correlation times τe, C(τe) = 1/e.

For spatially resolved studies of dynamics in confinement it is necessary that displacements
on the time scale of the analysis are small compared to the confinement size and, as seen later,
dynamical gradients. Observables that measure dynamics on a local scale, i.e., on the next neighbor
distance, are preferred over self-diffusion coefficients. The incoherent intermediate scattering function
(ISF, Sec. 5.2.1), with two wavenumbers S10 and S22.7, and rotational correlation functions (RCF,
Sec. 5.2.3) will be calculated. Figure 9.2(a) compares several ensemble averaged correlation functions
for bulk and confinement obtained for the original SPC/E water model at 210K. The ordering of
the correlation decays, S22.7 < F2,OH < F1,OH ≤ S10, is mostly preserved in the confinement. S22.7

and F2,OH show the fastest dynamics and, thus, have the smallest translation and provide the most
accurate spatial resolution. Comparison of F1,OH with S10 shows that rotations measured this way
occur for translation over the next neighbor distance. Ensemble averaged correlation functions in
confinement show a prominent long time tail that is absent in bulk. They cannot be characterized
by a KWW function and determination of a correlation time τ is not trivial. The Mittag-Leffler
function roughly applies but is of no further use here. Instead, by binning particles according to
their distance to the pore wall and averaging the correlation functions respectively, see Sec. 5.3,
dynamics can be studied in a spatially resolved manner. These correlation functions can again, as
in bulk, be characterized by KWW functions and only their superposition for all positions within
the confinement leads to the broadly stretched decays in Fig. 9.2(a). For the ISF, the correlation
decay shifts by orders of magnitude to shorter times with increasing distance to the pore wall, see
Fig. 9.2(b). Hence, position and dynamics are correlated and their relation will be quantified in the
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9.3. Slowdown in confinement – spatially resolved

following by determining the distance dependent correlation times τe(d).
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Figure 9.3.: Arrhenius plot with correlation times τe of SPC/E water dynamics in a neutral pore with
radius R = 2.5nm. Shown are results for the variants with the lowest q = 0.75 (a)
and highest q = 1.25 (b) charge scaling. The correlation times are calculated from the
distance resolved S22.7 by averaging τe(d) over some distances d. The black solid line
presents τe,d of the autocorrelation Cd(t) of the distance to the pore wall, see Eq. (2.3),
and the gray dashed line is the result from bulk simulations. The colored symbols show
correlation times for distances d corresponding to the first, second and third peak in
Fig. 9.1(a) and the pore center. The black crosses are the stretching parameter kkww of
the KWW fit to Cd(t).
The distances to the pore wall are d/nm ∈ (0, 0.24), (0.24, 0.365), (0.365, 0.48) and
(1.7,∞) for q = 0.75 and d/nm ∈ (0, 0.225), (0.225, 0.295), (0.295, 0.45) and (1.7,∞)
for q = 1.25.

An Arrhenius plot of correlation times in confinement is presented in Fig. 9.3. S22.7 for the oxygen
atoms is averaged over distances to the matrix that correspond to the first to third peaks in the
distance resolved density, Fig. 9.1(a), and the pore center. All of them show a super-Arrhenius
temperature dependence and a slowdown of up to over two orders of magnitude at the pore wall
with respect to the pore center. The latter agrees well with results from bulk simulations with minor
deviations at stronger supercooling. Consistent with previous studies, the fragility, found by fitting
the data for lower temperatures to the VFT equation and extrapolating to Tg, at smaller distances d is
reduced.229,378 The reasons for this are discussed further below, Sec. 9.5. The autocorrelation Cd(t) of
the distance to the pore wall effectively quantifies the diffusion on the length scale of the confinement.
For example, a random-walk in 1D confined to a length L trivially leads to correlation times τ ∼ L2.
Here, the geometry is cylindrical and a dynamical gradient exists. For high temperatures, τe,d from
Cd(t) is two orders of magnitude longer than the translation in the pore center as measured with
the ISF. However, for stronger supercooling the dynamical heterogeneity increases and τe at the
pore wall becomes comparable to or, in some cases of charge scaling, larger than τe,d. Because of the
strong gradient, it is sufficient to leave the first layer at the pore surface and the increased mobility
at larger distances leads to fast decorrelation. In case of τe > τe,d, the autocorrelation Cd(t) becomes
non-exponential with βKWW < 0.9.

The meaning of τd is important in the context of ensemble averages. It characterizes the time
scale on which a randomly selected molecule explores the structural and dynamical heterogeneities
caused by the confinement and reproduces the ensemble average. Hence, ergodicity of observables
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9. Water in neutral confinements

is not achieved when the measurement is on shorter times than τd and this time scale corresponds
approximately to the slowest particles at the pore wall in the strongly supercooled regime. For
temperatures at that point and below, ergodicity can only be restored for times longer than the
correlation time at the pore wall.
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Figure 9.4.: Distance resolved correlation times τe(d) in neutral pores of the SPC/E water model
for two different charge scalings, q = 0.75 (a) and q = 1.25 (b). The correlation time
τe is from S22.7(t). Higher temperatures are shifted by factors of 0.5 for clarity. The
black lines are fits to Eq. (9.1). To demonstrate the double-exponential behavior, the
logarithm log10(τe(d)/τe,pc) is shown, where τe,pc is the correlation time in the pore center
determined by the fit.

In the following, the propagation of the confinement effect from the first layer towards the pore
center will be investigated. The roughness of the pore surface allows for pockets with particularly
slow molecules that are of little interest for the propagation. Hence, the following sections use the
constrained distance resolved analysis that ignores molecules with radial positions beyond 2.4 nm.
The measured properties, e.g., the correlation times, at larger distances to the pore wall are unaffected.
The dynamical profiles τe(d)/τe,pc are shown in Fig. 9.4 in a representation that emphasizes the
double-exponential decay found in previous studies on confined liquids.48,323,376,379,380,383 The same
behavior is found for the family of the charge-scaled SPC/E water model. Oscillations at short times
exist which correspond to the density fluctuations in Fig. 9.1(a). The PEL imposed by the wall
has more and less favorable positions. At preferred positions, the particles stay longer and have
reduced mobility in contrast to less favorable positions, at which mobility is increased. Note, that the
dynamical profile has to be weighted by the occurrence of the respective distances to reproduce the
ensemble average. The data can be fit with a double exponential decay

ln
(︃
τ(d)

τpc

)︃
= A exp

(︃
− d

ξdyn.

)︃
. (9.1)

Here, τpc denotes the correlation time in the pore center and was found to be close to the bulk
correlation time for all investigated temperatures and systems. The prefactor A captures the strength
of the slowdown at the wall. The range of the influence of the matrix on the liquid is quantified by
ξdyn., the dynamic correlation length. In this regard, all charge-scaled variants follow qualitatively
the behavior found for Lennard-Jones mixtures,380 binary mixtures of hard spheres,376,383 regular
SPC/E water,48,323 and regular BKS silica.379 This steep double exponential gradient may thus be a
universal property of liquids in neutral confinements.
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Figure 9.5.: Dynamic correlation lengths ξdyn. as a function of the correlation time τe,pc in the pore
center. The data is the result from fits with Eq. (9.1) to dynamical profiles τe(d) from the
ISF, as in Fig. 9.4, for the charge-scaled SPC/E water models in neutral confinements.
The charge scaling q is given in the legend.

The correlation lengths, resulting from weighted fits to data from two independent simulations, are
shown in Fig. 9.5. Because the investigated temperature range strongly depends on the dynamics and,
thus, on the charge scaling, ξdyn. is shown as a function of the τpc instead of the respective temperatures.
Hence, the systems are compared at isokinetic state points. The data shows two different regimes.
At subpicosecond correlation times the dynamical process is neither cooperative nor predominantly
activated, i.e., temperatures are above the Goldstein temperature. For temperatures with τpc > 2 ps,
a linear relation between ξdyn. and ln τe,pc is found. Within the scattering of the data, no dependence
of the slope on the charge scaling q can be found and the data collapses to a master curve. For charge
scaling of silica, however, prefactors differed with partial charge and deviations from the linear
relation at long correlation times appeared.392 The slope of ξdyn. decreased upon further supercooling.
Similar behavior for the SPC/E variants cannot be excluded. Nevertheless, linear extrapolation as
function of ln τe,pc to Tg, with τe,pc(Tg) = 100 s, leads to dynamic correlation lengths of 0.93nm.

9.3.1. Configurational overlap

Apart from the confinement effect on the dynamics, its structural influence can be quantified. The
PEL imposed by the matrix is static. Previous studies showed that favorable and unfavorable positions
of the liquid molecules in neutral pores exist.46,229,379 The resulting static density correlations can be
analyzed with configuration-overlap correlation functions Q(t), see Sec. 5.2.3. Figure 9.6(a) shows
the spatially resolved results Q(t, d). Consistent with the ISF, the decay shifts to longer time scales
with decreasing distance d to the matrix. The long-time plateau lim

t→∞
Q(t) = Q∞ ≈ 0.2 in bulk

corresponds to random distributions of particles and depends on the overlap criterion and particle
density. The bulk value is obtained in the pore center indicating a full structural decorrelation. With
decreasing distance to the pore wall, Q∞(d) increases. The favorable and unfavorable positions in
the static PEL imprinted by the confinement increase the probability of reoccurring configurations.
The same oscillations observed for τe(d) are found for very short distances, up to 0.6 nm in Q∞(d),
Fig. 9.6(b). To quantify the range of this effect, the static correlation length ξsta. can be obtained by
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Figure 9.6.: (a) The overlap correlation function Q(t) for subsets at different distances d to the pore
wall, given in the legend, at 400K and with charge scaling q = 1.25. (b) The configuration
overlap at infinite times Q∞ determined by fitting the data in (a) to Eq. (5.34) for the
charge-scaled SPC/E water model with q = 1.25 and several temperatures. The black
lines are fits with Eq. (9.2).

fitting with323,376,382,384

Q∞(d) = Qpc + (1−Qpc) exp

(︄
−
(︃

d

ξsta.

)︃β
)︄
. (9.2)

Here,Qpc is the plateau height in the pore center and β allows for stretched or compressed exponential
decays. Previous studies found β > 1, temperature independent in some cases.323,376,382,384 The
results for the fit parameters ξsta. and β are presented in Fig. 9.7(a). Again, isokinetic state points
are compared by showing ξsta. as a function of τe,pc. Similar to ξdyn., the slope in the subpicosecond
regime is different and this data is unlikely to be relevant for the glassy slowdown. However, not
all results for ξsta. collapse onto a master curve upon supercooling. Variants with q < 0.9 deviate,
consistent with the proposition that these are HDL-like systems, while LDL-like systems collapse. Not
only is the relation of ξdyn. and ξsta. regarding dynamics in the pore center different but the latter,
ξsta., appears to be significantly larger for lower q. Linear extrapolation of ξsta. as a function of ln τe,pc
to Tg leads to slightly smaller values of ξsta. than for ξdyn. with on average 0.8nm for charge scaling
larger than 0.9 and larger values for q < 0.9. While the dynamic correlation length appears to be
unaffected by the LLPT, when comparing isokinetic points, the static correlation length systematically
varies.

The stretching parameter β of the decay was not found to be temperature independent. In particular,
it increases with decreasing temperature indicating a compressed exponential decay. Just as ξsta.,
β collapses onto a master curve for LDL-like systems while it deviates to even higher values for
HDL-like systems. This means that the interfacial zone more narrowly transitions from affected to
unaffected by the matrix. In other words, the structurally affected region becomes better defined
with stronger supercooling. This is consistent with the idea of structurally distinguishable patches in
the RFOT theory of the glass transition. For silica, β reached values of 2, corresponding to Gaussian
shape, and larger.392 Considering the temperature dependence of β, the quantification of the static
correlation length from the fit parameter alone may be questionable. To take this into account, the
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Figure 9.7.: (a) Static correlation lengths ξsta. as a function of the correlation time τe,pc in the pore
center. The data is the result from fits with Eq. (9.2) to overlap plateau profiles Q∞(d),
as in Fig. 9.6(b), for the charge-scaled SPC/E water model in neutral confinements. The
charge scaling q is given in the legend. (b) The respective stretching parameter β of the
same fits to Q∞(d).

mean correlation length, ⟨ξsta.⟩ = ξsta./β · Γ(1/β), was calculated and is shown in Fig. A.18 in the
appendix. While ⟨ξsta.⟩ is slightly smaller than ξsta., the dependence on dynamics and charge scaling
is qualitatively the same.

9.3.2. Debye-Waller factor

Next, the vibrational motion and its position dependence is investigated. Specifically, the MSD of
the oxygen atoms at 1 ps, u2 = r2(t = 1 ps), is analyzed. At this time and for sufficient supercooling,
the particles are caged by their neighbors and the MSD exhibits a plateau, separating ballistic and
diffusive motion. These vibrations are experimentally accessible via the Debye-Waller factor, see
Sec. 5.2.2.320 Elastic models of the glass transition propose that the structural relaxation time depends
on the short-time MSD, see Sec.5.2.2.31 By substituting the prediction, ln τ ∼ 1/u2, into Eq. (9.1),
the expected behavior of u2(d) is

u2pc
u2(d)

− 1 ∝ exp
(︃
− d

ξvib.

)︃
. (9.3)

Here, u2pc is the short-time MSD in the pore center and ξvib. is the vibrational correlation length,
quantifying the range of the effect of the matrix on the liquid. Figure 9.8 shows data for u2 rescaled
to demonstrate the exponential distance dependence. Except for the oscillations at short d, found
at the same distances as for τe(d) and Q∞(d), 1/u2 decreases with increasing distance, i.e., the
amplitude of vibrational motion is larger in the pore center than at the wall. Exponential behavior
can only be found at sufficient distance to the wall, i.e., beyond a few next neighbor distances from
the wall. However, the temperature dependence of the relative reduction of vibrations between
pore wall and pore center, u2pc/u2, at the first and second peak, is weak and almost nonexistent for
q = 0.75. This effect will be investigated in Sec. 9.5 in terms of the PEL at the pore wall. It can be
noted here, that the weak temperature dependence of u2pc/u2 compared to that of ln(τe/τe,pc) at
the wall is incompatible with the predictions of elastic models. One cannot be constant while the
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Figure 9.8.: Distance resolved short-time MSD u2(d), in reduced representation u2pc/u
2(d) − 1, in

neutral pores of the SPC/E water model for two different charge scalings, q = 0.75 (a)
and q = 1.25 (b). u2 is the MSD at t = 1ps. To demonstrate the exponential behavior,
the data is rescaled by the value in the pore center upc and subtracted by one. The black
lines are fits to Eq. (9.3).

other is temperature dependent. The vibrational length scales ξvib. resulting from fits to the data at
distances d > 0.6nm are shown in Fig. 9.9 for all SPC/E variants and supercooled temperatures.
In contrast to ξdyn. and ξsta., ξvib. does not collapse onto a master curve when shown as a function
of vibrations in the pore center, 1/u2pc. No qualitative change is found when shown as a function
of τe,pc. Instead, the vibrational correlation length increases with increasing partial charge and the
temperature dependence is weak. This differs from the two other correlation lengths, which will be
compared in the next section. The stronger scattering of the data makes this a less reliable length
scale.
Because the local structure of water is highly directional, with hydrogen bonding and a tetrahedral
network, the vibrations of molecule vectors might be a meaningful alternative. However, the short-
time angular displacement 1/θ2, shown in the appendix in Fig. A.19, was proven to not be qualitatively
different from the vibrational displacement 1/u2. The temperature dependence is weak and the small
relative slowdown towards the pore wall leads to shorter ranges of reliable data.

Comparison of length scales

All three correlation lengths, ξdyn., ξsta., and ξvib., are presented in Fig. 9.10 for the lowest and
highest charge scaling and the original SPC/E model. Shown are only supercooled temperatures
with correlation times of τe,pc ≥ 1ps. For all investigated temperatures and charge-scaled variants,
the correlation lengths are on the order of the next neighbor distance of the tetrahedral network,
≈ 0.28nm. The temperature dependence of ξdyn. and ξsta. is similar. Their absolute values are the
same for variants with HDL structure but differ for those with LDL structure. When comparing ξdyn.
and ξvib., not only does their temperature dependence differ but also their absolute values. The latter
is reason enough to conclude that elastic models that rely on ln τ ∼ 1/u2 are incorrect in confinement.

Figure 9.11 presents the static correlation length as function of the dynamic correlation length.
Indeed, their temperature dependence is quite similar. The LDL-like systems, with charge scaling
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Figure 9.9.: Vibrational correlation lengths ξvib. as a function of the reciprocal short-time MSD 1/u2pc
in the pore center. The data is the result from fits with Eq. (9.3) to the long-distance tail,
specifically d > 0.6 nm, of the profiles u2pc/u

2(d)− 1, as in Fig. 9.8, for the charge-scaled
SPC/E water model in neutral confinements. The charge scaling q is given in the legend.
Only temperatures with trajectories that resolve t = 1ps are shown.
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Figure 9.10.: Several correlation lengths of the SPC/Ewatermodel in neutral confinement as function
of inverse temperature. Presented are the dynamic, static and vibrational correlation
length, ξdyn., ξsta., and ξvib., for the lowest, regular SPC/E and the highest charge-scaling
factors, (a) q = 0.75, (b) q = 1.0 and (c) q = 1.25. For ξvib., only temperatures with
trajectories that resolve t = 1ps are shown.

147



9. Water in neutral confinements

0.20 0.25 0.30 0.35
dyn.  in nm

0.15

0.20

0.25

0.30

0.35

st
a.

 in
 n

m

0.75
0.8
0.85
0.9
0.92
0.94
0.96

0.98
1.0
1.05
1.1
1.15
1.2
1.25

Figure 9.11.: The static correlation length ξsta. as function of the dynamic correlation length ξdyn. for
charge-scaled SPC/E in neutral pores. The charge scaling is given in the legend. Only
temperatures with τe,pc ≥ 1ps are shown. The black and gray solid lines are guides to
the eye. The latter follows ξsta. = ξdyn. while the former indicates ξsta.−0.065nm = ξdyn..

q ≥ 0.9, have a ξsta. shorter by about 0.065nm than ξdyn.. Only for the lowest partial charge, q = 0.75,
both correlation lengths are similar in size. In contrast, the static correlation length was found to be
larger for all charge-scaled BKS silica variants.392 Hence, various tetrahedral liquids do not show the
same ratio of static and dynamic correlation lengths. Still, all charge-scaled variants with similar
local structure have a common relation between ξsta. and ξdyn. regardless of interaction strength.

9.3.3. RFOT and charge scaling

The random first order transition (RFOT) theory of the glass transition,91 Sec. 2.2.3, makes predictions
about the relation of the structural relaxation and the size of structurally distinguishable regions with
locally optimized structure. Specifically, it predicts for the α-relaxation ln τ/τ0 ∝ ξφsta./T , where τ0
is a prefactor and φ a fractional exponent for the static correlation length ξsta.. This combines the
correlation time of the bulk system with the correlation length from confinement simulations. The
following formula was used to fit and rescale the data:

ln
τ

τ0
=

(︃
ξsta.
ξsta.,0

)︃φ E∞
T

(9.4)

Here, the proportionality factor is introduced as ξsta.,0 for dimensionality reasons and E∞ is the high
temperature bulk activation energy of the respective correlation time τ . When each charge-scaled
variant is fitted with Eq. (9.4) individually, the number of free fit parameters and few data points
lead to overfitting. Instead, the exponent φ is a global fit parameter and ξsta.,0 and τ0 are independent
with respect to charge scaling. Figure 9.12(a) presents the master curve for fits to correlation times
for S22.7 and F1,µ⃗. Hence, Equation (9.4) is sufficient to characterize the temperature dependence of
bulk dynamics in the mildly supercooled regime. Furthermore, the fit parameters ξsta.,0 and τ0 are
independent of q for the LDL like systems and only increase for reduced charge scaling, Fig. 9.12(b). A
global fit of all three parameters is possible for q ≥ 0.9 with acceptable quality. The fact that rescaling
the temperature with E∞ again allows for a collapse of data further supports its role as the relevant
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Figure 9.12.: A test of the prediction of the RFOT theory with data from the charge-scaled SPC/E
water model. The correlation time τe from bulk and the static correlation length ξsta.
from confinement simulations are fit with Eq. (9.4). The correlation times are from
S22.7 and F1,µ⃗ and are rescaled with the result from the fit to achieve master curves (a).
The data for F1,µ⃗ is shifted upwards by a factor of five for clarity. Only temperatures
with τS22.7

e ≥ 1ps are included and the charge scaling q is given in the legend. In each
case, the exponent φ is a global fit parameter while ξsta.,0 and τ0 are charge dependent.
The resulting fit parameters are shown in (b) as a function of q.

energy scale not only in the simple-liquid but also in the supercooled regime. Interestingly, the
reference length ξsta.,0 is comparable to the average displacement found for the respective correlation
time ⟨|r⃗(τ)− r⃗(0)|⟩. For S22.7, ⟨|r⃗(τ)− r⃗(0)|⟩ = 0.11nm would be correct while the slower decay of
F1,µ⃗ corresponds to average displacements similar to the next neighbor distance.

However, the exponent φ differs between both correlation functions. RFOT predicts a value of
φ = 1.5, which is close to the value found for τ from the ISF and but not from F1,µ⃗. In addition, τ0
does not match the values for fits to the high temperature Arrhenius regime, as in Fig. 8.8, where a
significant dependence on charge scaling is found. Fitting each charge-scaled variant independently
leads to strong scattering of the fit parameters and does not resolve such discrepancies. These results
should be interpreted qualitatively and show, that for LDL systems, which share a common local
structure and relaxation mechanism, the relation of τ and ξsta. is unaltered by charge scaling.

9.4. Influence of the confinement properties

So far, the dependence of the properties of the confined liquids on the charge scaling has been
investigated for pores constructed with the same structural properties, pore geometry and wall
rigidity. The following sections exploit that neutral pores allow also for systematic studies of the
dependence on properties of the confinement.

9.4.1. Pore rigidity

First, the same pore geometry is applied but the wall rigidity is varied. Specifically, the spring constant
κ defining the steepness of the harmonic potential, that traps the oxygen atoms of the matrix, is
reduced. Since the charge scaling leads to high temperature activation energies varying by a factor
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9. Water in neutral confinements

of 5, κ might require adjustment to prevent penetration of the pore wall at higher temperatures and
obtain comparable results for all charge-scaled variants.
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Figure 9.13.: (a) Particle density n of water oxygens as a function of distance to the pore axis r at
240K within a neutral SPC/E pore with radius R = 2.5 nm for several spring constants
κ. Their values given in the legend are in units of kJ/mol·nm−2. All neutral pores
are otherwise identical. (b) Constrained distance resolved correlation times τe(d) for
several values κ. The correlation time τe is from S22.7.

Figure 9.13(a) presents the oxygen particle density of the liquid species as a function of the radial
position for a neutral pore with radius R = 2.5nm and the original SPC/E water model. In all studies
presented up to here, κ was 106 kJ/(mol·nm2). For the sake of brevity, the units of κ will be omitted
in the following. Density profiles agree for reduced values of κ over several orders of magnitude. For
the lowest rigidities, κ ≤ 103, penetration of the pore wall occurs more often. This effect is more
severe at higher temperatures and leads to a reduction of the density in the rest of the pore. In these
cases, observables in the pore center deviate from previous results and bulk behavior.

The dynamical profile τe(d) for S22.7 is presented in Fig. 9.13(b) for several spring constants κ. The
extent of slowdown towards the pore surface is stronger for stiffer walls. Systematic differences exist
even for κ ≥ 104 where penetration of the matrix is negligible. Stiffer walls have smaller vibrational
displacement u2 and the PEL imprinted on the liquid is sharper, i.e., the potential minima are deeper
and energy barriers higher. Or, rationalized considering the findings for the Debye-Waller factor in
Sec. 9.3.2, the reduction of u2 caused by the matrix and propagated by the liquid simply starts off
stronger for higher spring constants κ.

The dynamic and static correlation lengths can be determined to study their dependence on the
pore rigidity. Figure 9.14(a) shows the plot corresponding to Fig. 9.4, but for a single temperature
and several spring constants κ. The data sets are shifted in distance d such that the curves coincide
in τe(0)/τe,pc = 1, i.e., they start with the same relative slowdown. The data sets with κ ≥ 104

collapse onto a master curve and their common slope indicates that they have the same dynamic
correlation length. The slope for κ = 103 deviates. The dependence of ξdyn. and ξsta. on κ exemplifies
this effect, see Fig. 9.14(b). For all investigated temperatures, ξdyn. appears to be the same for κ ≥ 104.
Determination of the static correlation length fails completely for soft walls. There, the profile Q∞(d)
of the static overlap does not follow an exponential decay. Properties of the liquid determined by
neutral confinement simulations as performed in this study are independent of pore rigidity for
κ ≥ 5 · 104. This supports the interpretation of these length scales as being properties of the bulk
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Figure 9.14.: (a) Constrained distance resolved correlation times τe(d) at 240K within a neutral
SPC/E pore with radius R = 2.5 nm for several spring constants κ, see Fig. 9.13(b). To
demonstrate the double-exponential behavior, the logarithm log10(τe(d)/τe,pc) is shown,
where τe,pc is the correlation time in the pore center determined by the fit. The data
is fitted with Eq. (9.1) and shifted along the x-axis to collapse on τe(0)/τe,pc = 1. The
black line is Eq. (9.1) for the average value ξdyn., excluding κ = 103. (b) The dynamic
and static correlation lengths, ξdyn. and ξsta., as determined with Eqs. (9.1) and (9.2),
as a function of spring constant κ. The temperatures are indicated in the legend. Filled
symbols connected by dashed lines present ξdyn. while open symbols connected by
dotted lines present ξsta..

liquid. Thus, κ = 106 being two orders of magnitude larger should be sufficiently high to prevent
penetration of the matrix for also the highest charge-scaled variants and temperatures. Depending
on the study, softer or stiffer walls may be preferable. Softer confinement allows for slightly faster
dynamics and stronger supercooling in equilibrium. Stiffer confinement enhances the slowdown at
the surface and improves the study of confinement effects at mild supercooling.

9.4.2. Inverted pores and dependence on the radius of curvature

Next, the pore geometry is varied while the rigidity remains unaltered at κ = 106. Previous studies
showed for cylindrical pores enhanced slowdown with decreasing pore diameter, while correlation
lengths were unaffected.48,323 For small convex confinements, the properties in the pore center do
not recover bulk behavior. Here, concave confinements are studied. Specifically, a sphere of position
restrained molecules with varying radius is used as ”inverted confinement”, see Sec 4.3. This allows
for much smaller radii of curvature while both, concave and convex confinements, are expected to
coincide when the radius approaches infinity. A patch of significantly slower molecules may affect
surrounding molecules similar to a restrained sphere. This is relevant in theories of the glass transition
in a dynamically heterogeneous bulk liquid or with larger and less mobile components of mixtures.
However, the systems studied here use the high spring constant of κ = 106 instead of a softer restraint,
which may be characteristic for the surface of less mobile regions. Simulations are limited to the
original SPC/E model of water and radii from 0.5 to 3.0nm.

The radial density of the oxygen atoms shows a small peak at the pore surface absent in results
for cylindrical pores, see Fig. 9.15(a). Also, weak penetration beyond the cutoff radius of the solid
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Figure 9.15.: (a) Particle density n of oxygen atoms of the SPC/E model of water as a function of
the radial position r at 280K. Shown is the density of the liquid fraction surrounding a
sphere of a position restrained solid fraction with radii R given in the legend. (b) The
dynamic correlation length ξdyn. as a function of inverse temperature for several radii of
solid fractions in (a). The black dashed line indicates the result from cylindrical neutral
pores of radius R = 2.5 nm.

fraction exists. Likely, the roughness of the surface and corresponding pockets are energetically
more easily exploited for a concave geometry. Besides that, the density in these systems is mostly
unperturbed consistent with the cylindrical confinements. Again, the dynamical profile τe(d) for S22.7

is calculated and fitted with Eq. (9.1). The dynamic correlation lengths ξdyn. are shown in Fig. 9.15(b)
alongside the result for the cylindrical pore. The results for inverted pores are identical within the
accuracy of the method. For the smallest sphere with radius R = 0.5nm the quality of the data suffers
from poor statistics and would require a larger ensemble average over multiple configurations of the
sphere. Agreement between concave and convex confinements would be expected for large radii.
However, ξdyn. is mildly but systematically shorter for inverted pores. The difference appears to be
constant with temperature and, thus, the growth of ξdyn. with decreasing temperature is consistent.
It is possible, that the different steps during the construction, detailed in Sec. 4.3, or minor details
in the spatially resolved analysis are reasons for this discrepancy. Overall, both methods lead to
the same temperature dependence and the dependence on the confinement geometry is negligible
compared to the effect of temperature.

9.5. Rationalization of the relative slowdown at the pore wall

So far, the ranges of the dynamical slowdown and enhanced configurational overlap were investigated.
In other words, the consequence of the static PEL, imprinted by the matrix, and its propagation by
the unrestrained molecules, which is a property of the liquid, were studied. Here, the quantification
of the PEL is attempted. The short-time MSD u2 probes the local potential well experienced by caged
particles. In this static PEL, potential minima for oxygen atoms are always the same distance apart.
Then, the facts that u2 is reduced and τ longer at the pore wall imply that the potential wells are
steeper and the energy barriers between local minima higher than in the pore center, or in bulk,
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9.5. Rationalization of the relative slowdown at the pore wall

respectively. For harmonic potentials, the potential at the pore wall is higher by a factor of u2pc/u2pw
than in the pore center. The energy barrier between two local minima scales by this value and,
hence, is taken as a measure of the PEL at the pore wall. Here, upw is taken as the value at the
second maximum in the particle density, see Fig. 9.1(a). Figure 9.16(a) presents the results for all
charge-scaled variants as a function of inverse temperature.
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Figure 9.16.: (a) Relative short-time MSD u2pc/u
2
pw between the pore wall and center. Specifically,

u2pw is the value at the position of the second maximum of the distance dependent
oxygen particle density, see Fig. 9.1(a). (b) The relative slowdown between pore wall
and center ζ = τe,pw/τe,pc for τe from S22.7. To reduce noise, fits with Eq. (9.1) were
used to interpolate τe(d) at the same positions as in (a). The black and blue solid lines
are fits with Eq. (9.5) to the data for q = 1.0 and q = 0.75, respectively. The insert
shows the ratio of ∆Eζ/E∞ as determined by the fits and the Arrhenius regime with
E∞ of τe at high temperatures in bulk simulations. The charge scaling q is given in the
legend. Both panels show only temperatures with τe,pc ≥ 1ps.

For all charge-scaled variants, the potential at the wall and energy barriers are roughly 1.9 to 2
times steeper and higher, respectively, compared to the pore center. This ratio is weakly dependent on
temperature in the investigated regime with a minor tendency to decrease upon further supercooling.
HDL-like liquids appear to be shifted to lower temperatures. The comparison of vibrational motion
implies that the difference of energy barriers between wall and center does not increase further.
However, in the previous sections no straightforward agreement was found between dynamic/static
and vibrational observables. Instead of the short-time MSD, the correlation time at the pore wall and
in the pore center can also be compared. In the following, several models will be formulated and
tested concerning the relative dynamical slowdown in the presence of a confining matrix. They all
assume that the relative slowdown caused by the matrix can me modeled by an additional activation
energy, i.e., that it follows ∼ exp ∆E

T .

9.5.1. Constant additional activation energy

Figure 9.16(b) shows the relative slowdown at the wall ζ = τpw/τpc. Specifically, it uses interpolation
with fits of Eq. (9.1) at the position of the second maximum in the density in Fig. 9.1, considering
charge scaling and temperature. On a reduced temperature scale, E∞/T , the charge-scaled variants
with lower q, i.e., HDL-like systems, almost collapse onto a master curve showing a reduced slowdown.
ζ appears to follow an Arrhenius law for sufficient supercooling while it approaches unity at high
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9. Water in neutral confinements

temperatures. A simple empirical function that fulfills both constraints has only the two parameters
required for the Arrhenius law and shifts it to one for limT→∞,

ζ =
τpw
τpc

= 1− exp
(︃
−
∆Eζ

T0

)︃
+ exp

(︃
∆Eζ

(︃
1

T
− 1

T0

)︃)︃
. (9.5)

Here, ∆Eζ quantifies the increased activation energy at the wall and the slope in Fig. 9.16(b)
for sufficiently low temperatures. T0 shifts the onset of this Arrhenius temperature dependence.
Fits to Eq. (9.5) characterize the data well in the mildly supercooled regime and the resulting
activation energy is shown in the inset of the figure in units of the high temperature activation
energy E∞. Approximately the same ratio ∆Eζ/E∞ ≈ 3 is found for all charge-scaled variants. This
is comparable to the cooperative contribution to the total activation energy at Tg in bulk systems, see
Sec. 8.4.6,37,112,115 and suggests that also in neutral confinement E∞ is a relevant energy scale. Note
that, while a study of the Kob-Andersen mixture in neutral confinement also found ∆Eζ/E∞ ≈ 3,377
the ratio was found to be ≈ 1.7 for silica in neutral confinement.392 Hence, a value of 3 is only
universal for the water-like models studied here. Furthermore, using rotational correlation times and
their higher activation energies E∞ leads to a ratio close to unity, see appendix Fig. A.21. This finding
may have more important implications than the factor of 3 for the ISF, because E∞ for RCFs is close
to the value found for self-diffusion coefficients in bulk water and, thus, a more reliable measure of
the underlying dynamics of the liquid. But, weaker slowdown, discussed in Sec. 9.6 further below,
and spatial averaging make usage of RCFs less reliable in the present study.

The above analysis can be extended to any distance d to the pore wall and the real data with
distance dependent ∆Eζ(d) and T0(d), presented in Fig. 9.17(a) and (b). The fits are shown on the
example of q = 1.0 in the appendix, Fig. A.20. The data is noisy and superimposed by the oscillations
of the distance resolved spatial analysis. The dynamical gradient within the pores is for the most
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Figure 9.17.: The additional activation energy ∆Eζ(d) (a) of the Arrhenius law of the relative slow-
down ζ(d) = τe(d)/τe,pc and the related onset temperature T0 (b). The values are results
from fits of Eq. (9.5) to the dynamical profiles τe(d) for all charge-scaled variants of
SPC/E in neutral confinement. The correlation times τe(d) are calculated from S22.7.
The charge scaling q is given in the legend. Only distances with sufficient slowdown of
ζ(d) ≥ 2 are shown. The analogous analysis with F1,OH can be found in Fig. A.21 in the
appendix.

part characterized by the temperature offset T0(d). The activation energy ∆Eζ(d) appears to be only
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9.5. Rationalization of the relative slowdown at the pore wall

weakly dependent on distance to the pore wall in comparison. Both fit parameters are superimposed
by the density oscillations. The empirical assumption of limT→∞ ζ(d) = 1 seems appropriate for
greater distances to the pore wall. However, ζ is smaller and fewer data points are available. The
characterization of the data for larger distances and mild supercooling has to be performed with
caution.
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Figure 9.18.: The distance resolved fit parameters ∆Eζ (a) and T0 (b) in units of E∞ from fits with
Eq. (9.5) to the data for different pore rigidities in Sec. 9.4. The correlation times τe(d)
are calculated from S22.7. The pore rigidity is given in the legend by the spring constant
κ of the position restraints in units of kJ/mol·nm−2. The black points are the result
from averaging over two other simulations with κ = 106 with configurations differing
from the colored data.

The simulations with different pore rigidities, Sec. 9.4, showed systematically varying slowdown ζ
but consistent correlation lengths. In other words, the propagation of the wall effect by the liquid is
independent of the pore properties. Within the variance of the data, the increased potential barrier
Eζ(d) is consistent among all pore rigidities and distances with sufficient slowdown, Fig. 9.18(a).
The colored data is from identical pores, i.e., the same configurational snapshot and pinning of
wall molecules, but different spring constants κ. Additionally, the averaged result of two different
pores with κ = 106 is shown in black. The high variance of the data suggests that large ensemble
averages over configurationally different pores would be required for sufficient accuracy of ∆Eζ(d).
The reduced slowdown for softer confinement is also characterized by the temperature offset T0(d),
which varies systematically with pore rigidity, Fig. 9.18(b).

One may propose that a qualitatively similar behavior underlies dynamics for strong dynamical
heterogeneity in bulk. The slowdown of particles in contact with slow patches relative to the fastest
fraction might simply depend on the rigidity of the slow patch, which greatly increases with dynamical
heterogeneity and decreasing temperature.

9.5.2. Linearization of the slowdown

The assumption of a constant contribution ∆Eζ to the activation energy by the matrix in Eq. (9.5) is
only true in the low-temperature limit. This predicted temperature region, where ln ζ · T = const.
is approximately valid, is not reached and cannot be confirmed. Furthermore, other empirical
descriptions of the slowdown are possible. In particular, the contribution to the activation energy
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Figure 9.19.: The temperature dependent activation energy for the distance dependent relative slow-
down ζ(d) = τe(d)/τe,pc with respect to the pore center for charge-scaled SPC/E in
neutral confinement: (a) for the pore wall, d ≈ 0.28 nm, and all charge-scaled variants
and (b) for several distances d to the pore wall for the original SPC/E, given in the
respective legends. Correlation times τe are from S22.7 and the high temperature acti-
vation energy E∞ is from the respective bulk liquids. The x-axis is rescaled to produce
a master curve for a linear relation on reciprocal temperature. The parameters α and β,
shown in the insets as function of charge scaling q and d, respectively, are the results
of fits with Eq. (9.6) to the data. Only temperatures with τe,pc ≥ 1ps are shown.

could be a linear function of reciprocal temperature,

ln ζ · T

E∞
= α

E∞
T

− β , (9.6)

where α and β are constants. A master curve, presented in Fig. 9.19(a), is possible for all charge
scalings q and temperatures with τe,pc ≥ 1 ps. Evidently, ln ζ · T is far from the low-temperature limit
of 3E∞. Combining Eq. (9.6) with Eq. (8.2), assuming that τpc(T ) can be characterized this way,
leads to the empirical description of τpw(T ) as

τpw(T ) = τ∞ · exp
[︃
Epc(T )

T⏞ ⏟⏟ ⏞
τpc(T )

+α

(︃
E∞
T

)︃2

− β
E∞
T

]︄
, (9.7)

with τ∞ being the prefactor and Epc the temperature dependent activation energy in the pore center,
respectively. This master curve can also be created for larger distances to the matrix, see Fig. 9.19(b).
The free fit parameters α and β are shown in the inset of Fig. 9.19. If Epc(T ) can be separated
according to Eq. (8.3) into a temperature dependent contribution and E∞, then β ≈ 1 implies
that this constant activation energy contribution is negated and τpw(T ) shows exceptionally strong
temperature dependence. The additional term ∼ T−2 leads to increased fragility at the pore wall in
contrast to the common finding of reduced fragility.229,378 However, prediction of the fragility for
either statement requires correct modeling that allows for extrapolating to longer time scales. Rather
both, Eq. (9.5) and (9.7), characterize the available data satisfyingly in the supercooled regime
which necessitates further tests for an ultimate decision.
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9.5. Rationalization of the relative slowdown at the pore wall

9.5.3. Boltzmann factor energy landscape

The above attempts to find the difference in activation energy between pore center and pore wall
employed dynamical quantities alone. But first and foremost, the matrix imposes a static PEL on
the liquid that modulates the local density, as seen in Fig. 9.1(a). The latter can be interpreted as
the result of Boltzmann factors weighting positions in the pore. Hence, the PEL may be partially
reconstructed from the particle density. From it, preferred positions may be identified and the energy
barrier, that has to be overcome to escape such positions, may be calculated.

The accessible volume of the liquid molecule fraction is covered with uniformly distributed spheres
of radius rS = 0.05nm. In particular, their positions are on evenly distributed radii and z-positions in
cylindrical coordinates. Their distance is significantly smaller than rS in order to cover the entire
volume, leading to overlapping spherical volumes and over 2 · 106 spheres. For each sphere i the
probability pi of being occupied by oxygen atoms is calculated from the trajectories. This probability
is associated with a potential energy εi. Next, local minima in the potential energy are identified
by starting from each sphere and going to the closest neighboring sphere with larger probability
pi, i.e., following the steepest ascending path in probability or descending path in the potential
energy, respectively. The thus obtained spheres j define the local energy minima εj . Their occupation
probabilities are compared with those at distance δri,j , denoting the distance between the centers
of spheres i and j. Their ratio of probabilities, the Boltzmann factor, gives the energy difference
∆εi,j = εi − εj ,

pi
pj

= exp
−∆εi,j

T
. (9.8)

Averaging over all neighboring spheres at distance δr and all minima leads to the average local
potential energy profile ⟨∆ε(δr)⟩.

However, the finite sample size leads to artifacts. The probability in bulk, and in the pore center
of large pores, is expected to be homogeneous and the PEL flat when averaged over infinite times.
In practice, p approximately follows a normal distribution with the average ⟨p⟩ depending on rS
and the standard deviation σp, which itself depends on rS and the sample size, i.e., the number of
frames in the trajectory. The consequences are artificial local minima and energy barriers with this
method in the bulk and in the pore center that have no physical origin. Only at strong supercooling
or small confinement sizes might the pore center be truly affected. Larger sphere radii rS smooth out
fluctuations in density while smaller radii lead to worse statistics and stronger artifacts. Therefore,
rS was varied and ∆ε̄, see further below, exhibits a maximum for ≈ 0.05nm in the present study.
Furthermore, only sites with pr⃗ > ⟨p⟩ + σp were taken as starting points for the ascend into local
maxima. The number of frames also varies among the simulations, with higher temperatures having
less than half the number of frames as simulations at lower temperatures. This leads to a jump in the
artificial energy barriers in the pore center for these less relevant temperatures.

Again, ⟨∆ε(δr)⟩ is studied spatially resolved to preserve information, shown in Fig. 9.20(a) for
various radial positions within the confinement. The energy profile rises steeply within 0.1 nm and
reaches a local maximum at distances δr ≈ 0.155nm. This corresponds roughly to half the next
neighbor distance of ≈ 0.28nm where the maximum would be expected if only the direct path
between minima were considered. The height is strongly dependent on the radial position with the
highest values found at the pore surface, consistent with the finding that the density modulations
quickly tamper off towards the pore center. Beyond the maximum, the energy profile is modulated
by a minimum and second maximum at around the next neighbor distance and between the first
and second shell, respectively. The local minima are positioned relative to each other according to
the local structure of the liquid. Furthermore, the energy profile differs for directions towards the
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pore center or the pore wall, with larger values towards the matrix, not shown.
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Figure 9.20.: (a) The average Boltzmann factors ⟨∆ε(δr)/T ⟩ as function of distance δr to a local
minimum of the PEL for SPC/E in a neutral pore at 205K. The average is shown for
various radial positions r in a neutral pore with radius R = 2.5 nm. The dashed line at
0.25nm indicates the cutoff up to which the maximum value determines the energy
barrier ∆ε. The barrier ∆εpc in the pore center, shown in black, is subtracted to obtain
∆ε̄. (b) The barrier ∆ε̄ for different temperatures as a function of radial position in the
pore. Only values ∆ε̄ > T/100 are shown. Points of temperatures given in the legend
are connected with lines while temperatures in between are not.

It is assumed here, that the rate of leaving a minimum relative to the rate of translation in bulk is
given by this additional energy barrier caused by the matrix. Because the elementary translatory event
in the supercooled regime is hopping on the next neighbor distance, the maximum for δr < 0.25nm
is taken as the energy barrier ∆ε that has to be overcome in order to escape the local minimum.
Further translation depends on the barrier profile corresponding to the new position of the particle
after hopping. Because the dynamical quantity of interest is the relative slowdown ζ, the difference
∆ε̄ = ∆ε−∆εpc, with ∆εpc being the value in the pore center, is used.

Figure 9.20(b) presents the energy barrier ∆ε̄ logarithmically as function of the radial position
within the pore. Both, dependence on the radial position and temperature exist. With decreasing
temperature, the barrier grows consistent with the growth of the configurational overlap plateau
Q∞. The Boltzmann factor already contains a temperature dependence. Thus, the multi-particle
interactions in supercooled liquids or the reduced vibrations of the matrix apparently lead to an
even stronger increase of the energy barriers. At high temperatures, the matrix affects only the
first two layers. At these temperatures, dynamics are fast with τ < 1 ps and the dynamic and static
correlation lengths exhibit deviations from their low-temperature dependence or are not applicable.
For temperatures in the supercooled regime, T < 270K, an exponential decay of the energy barrier
with decreasing radius is found, consistent with the double logarithmic decay of the correlation times
in Fig. 9.4. In particular, the relation

ζ(r) =
τ(r)

τpc
∼ exp

(︃
−∆ε̄

T

)︃
(9.9)

may hold. Thus, Figure 9.21 presents the data for the lowest and highest charge-scaled and regular
SPC/E in the supercooled regime. The barrier profiles suggest translation over the next neighbor
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9.5. Rationalization of the relative slowdown at the pore wall

distance and, thus, ∆ε̄ is compared to τe from S10, which corresponds to hopping on this length
scale. The relative slowdown ζ and Boltzmann factor share a linear relation, confirming Eq. (9.9).
For high temperatures or small radii, only the slowdown increases and an offset in ∆ε̄ exists. It is
possible, that the subtraction of the statistical contribution in the pore center is incorrect for larger
radii. Simulations with increased sample size are necessary to reduce the influence of statistical
inaccuracies.
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Figure 9.21.: The radially resolved relative slowdown τe(r)/τe,pc versus the Boltzmann factor ∆ε̄/T
for escaping local minima in the PEL. Shown are the data for neutral pores of the lowest
(a) and highest (c) charge-scaled variants and the original SPC/E (b). The correlation
time is τe from S10. The radial positions r are indicated in the legend. For each value
of r, results for various sufficiently low temperatures are shown. Black solid lines are
linear fits for values larger than 0.5 in both quantities.

The linear relation applies considerably worse to the lower charge scaling. This deviation occurs
most prominently for charge-scaled variants q ≤ 0.9 that enter the HDL-like regime upon supercooling.
One reason might be that using the same cutoff parameters for all charge-scaled variants may not be
appropriate. Alternatively, the competition of local structures explains the systematic dependence
on charge scaling. For the higher charge-scaled variants, the liquid enters the LDL-like regime
immediately upon supercooling while HDL-like systems require significant supercooling for the local
structure to be fully developed. Reducing the data points to temperatures with stronger supercooling,
e.g., τ > 20ps, gives good agreement between all charge-scaled variants. In other words, the
linear relation holds once the local structure of the liquid is largely temperature independent or the
competition between LDS and HDS is at least weak. The slope is not unity and decreases monotonically
from 1 to 0.8 with increasing charge-scaling factor q, i.e., the energy barrier has a system dependent
prefactor. Narrower confinements or stronger supercooling without recovery of bulk behavior could
be investigated in the same way regarding the relative slowdown to bulk and extend the range of
validity.

Still, the PEL imprinted onto the liquid by the matrix, a highly non-trivial cooperative effect
propagated by the liquid, affects the particle density distribution and translational dynamics in a way
that is consistent with the application of Boltzmann statistics. For the small molecular glass former of
charge-scaled water molecules, either property can be used to predict the other.
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9. Water in neutral confinements

9.6. Translational and rotational decoupling

As stated in the beginning of this chapter, Sec. 9.3, dynamics were investigated using the ISF and a
short length scale on the order of the next neighbor distance. In some cases, e.g., atomistic liquids,
only translational properties can be studied. However, for molecular liquids it may be worthwhile
to be aware of potential differences between translational and rotational dynamics. Figure 9.22(a)
presents the dynamical profiles τe(d) of several translational and rotational correlation functions for
the original SPC/E water model and two temperatures. Calculated were the ISF for two wavenumbers,
S22.7 and S10, and the rotational correlation functions Fℓ,v⃗ for rank ℓ = 1 and ℓ = 2 with the OH bond
vector and the dipole moment µ⃗. Only ℓ = 1 is shown for the latter. The bulk-like behavior far from
the wall demonstrates the following ordering of the correlation time: S22.7 < F2,OH < S10, F1,OH, F1,µ⃗.
While all of them exhibit a slowdown towards the pore wall, this order is not preserved towards the
wall. In particular, translational correlation times increase more upon approaching the wall with S22.7

becoming as slow as F2,OH for the higher temperature and even slower for the lowest temperature.
Furthermore, among rotational correlation functions, the slowdown is stronger for F1,µ⃗ than for
F1,OH. In previous studies, an enhanced occurrence of rotations around the c2-symmetry axis of water,
which coincides with its dipole moment, was found.50 Hence, the mobility of the OH bond vector is
higher at the pore wall than that of the dipole moment.
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Figure 9.22.: (a) Dynamical profile τe(d) in SPC/E neutral pores for two temperatures. The correla-
tion times are from different correlation functions given in the legend. (b) A double
logarithmic plot of the correlation time τe,pw at the position of the second peak in
Fig. 9.1(a). The result for different correlation functions in (a) are shown as function of
τe,pw from S22.7. Only temperatures with τe,pc ≥ 1ps are shown. The inset shows the
exponent θ of fits with power laws to the data for all charge-scaled variants q.

The double logarithmic representation of correlation times at the pore wall as a function of those
for S22.7 presents power laws, see Fig. 9.22(b). In this case, the interpolation of the actual data at the
position of the second density maximum was used instead of an interpolation by fits with Eq. (9.1).
The exponent θ of the power laws is below unity for most correlation functions and ranges between
0.82 and 0.92, see the inset of Fig. 9.22(b). Rotational and translational dynamics decouple at the
pore surface. Hence, several rotational correlation times cross translation and become faster than
short-range translation within the investigated temperature regime. Note, that S10 is not expected
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9.7. Summary

to follow this trend indefinitely, as it cannot become faster than S22.7. The different temperature
dependence implies differences in the increased energy barriers at the pore wall. The part of the
PEL imposed by the neutral confinement responsible for reorientation may be weaker than that for
translation. This is confirmed by Fig. A.21 in the appendix, showing the respective results of ∆Eζ(d)
from Fig. 9.17 for F1,OH.

Lastly, a so far overlooked detail of measuring the translational dynamics with the ISF will be
discussed. As calculated with Eq. (5.20), the ISF is a powder average, i.e., averages over all possible
orientations of the pore with respect to the scattering vector k⃗. However, translation within the pores
is anisotropic. In particular, particles at the surface of the cylindrical confinement have geometrically
less than half the usual volume available for translation. Hence, Figures 9.22(a) and (b) include the
decomposition of the ISF onto the unit vectors e⃗z and e⃗r in cylindrical coordinates, with the pore
center as the origin. Specifically, k⃗ is parallel to e⃗r or e⃗z at the position of the particle at the time origin
of the correlation function. For translation parallel to the pore surface, along e⃗z and e⃗φ, the movement
is not geometrically restricted as it is for radial motion. Thus, τe,pw is shorter for the former than for
the latter and the powder average. Still, they share approximately the same temperature dependence,
i.e., the exponent from fitting a power law is very close to unity. Correlation times for surface-parallel
motion may also eventually become longer than those for several rotational correlation functions.
The overall slowdown towards the pore wall is however reduced. Future studies could investigate the
dynamic correlation length for rotational and surface parallel translational motion.

9.7. Summary

In this chapter, the effects of cylindrical confinement on a liquid were studied with variation of one
force field parameter, the strength of the Coulomb interaction, and under conditions that retained
bulk-like structure. The latter was achieved by the use of so called neutral pores, the confinement
consisting of the same molecules strongly restrained in their mobility. Furthermore, confinement
properties like the geometry and rigidity were varied. The charge scaling allows for the study of
confinement effects under variation of interaction strength and relevant energy scales. If the findings
for TIP4P/2005 and its LLPT dependence on charge scaling in Ch. 7 and 8 apply also qualitatively
to SPC/E, then charge scaling also allows for discerning discrepancies or commonalities between
water-like liquids entering the HDL-like or LDL-like region of the phase diagram. At least qualitatively,
a difference seems to occur between charge scaling with q < 0.9 or with q ≥ 0.9 but neither the LLPT
nor this threshold are confirmed.

Previous studies showed negligible effects of neutral confinement on the structure, density and
tetrahedral order parameter, of water.48,379 Consistently, the radially resolved density of oxygen
atoms is only weakly modulated by the confinement for all charge-scaled systems. However, radially
resolved properties average over the rough pore surface. Distance resolved spatial analysis proved to
include more detail at the liquid-matrix interface. The interaction leads to more and less preferable
positions relative to the pore surface corresponding to the local structure in bulk. In particular, the
first two peaks in the distance resolved density of oxygen atoms are the hydrogen bond acceptor
and donator distances, respectively. All charge-scaled variants as well as a similar study on the BKS
model of silica share this feature. Beyond that, the charge-scaled variants differ structurally in that
the third peak disappears for HDL-like systems.

As in previous studies,48,323,380 correlation functions probing dynamics were found to be severely
stretched and more long-lived than their counterparts in bulk systems but showed no sign of separable
terminal decays, i.e., dynamically distinguishable species or bimodality of dynamics. Dynamics,
spatially resolved by the distance to the pore wall and measured with the ISF for short length scales,
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9. Water in neutral confinements

slows down by 2-3 orders of magnitude towards the pore wall in the investigated temperature
range. The configurational overlap, the similarity of liquid oxygen positions in time, increases with
decreasing distance to the wall and temperature. The amplitude of the short-time MSD at the wall is
about half of that in the pore center. These phenomena are the result of the static PEL imposed by
the wall onto the liquid, which is not the same for all charge-scaled systems but similarly influences
all properties. For a molecule in contact with the pore wall, a part of its local potential is static,
caused by the position restrained wall molecules. In contrast to bulk, spatial broadening of this
potential in time, caused by vibrational motion, is greatly suppressed and the volume occupied by
wall atoms is inaccessible at all times. Hence, energy barriers are higher and more stable in time
making translational or rotational relaxation events less likely. The local cage becomes more stable
and is less broadened because of the lacking vibrational displacements of some of the neighboring
molecules. Hence, the short-time MSD is reduced in amplitude. Models of the glass transition, e.g.,
the facilitation model, which expects relaxation of neighboring particles, or the shoving model,
which connects structural relaxation and vibrational motion, predict qualitatively the influence of the
confinement on the liquid dynamics. The reverse is observed for unfavorable positions. Energy barriers
are reduced making relaxation events more and the occupation less likely. For larger distances to the
wall, these effects weaken and the short ranged local structure of liquids leads to averaged properties.
The confinement effect in distance resolved analysis is characterized by oscillations, consistent with
the density profiles, superimposed on structurally averaged simpler decays, consistent with findings
in previous studies.48,323,376,379,380 The latter are, for example, double exponential for correlation
times τ(d), compressed exponential for the configurational overlap Q∞(d) and exponential for the
short-time MSD 1/u2(d). These are representative for the collective response of the liquid to the
confinement and were quantified by their respective correlation lengths ξ.

Because the charge-scaled variants span a wide temperature range, the results were compared at
isokinetic points, specifically the correlation time in the pore center. The dynamic correlation length
ξdyn. behaved qualitatively and quantitatively indistinguishable for all charge-scaled variants. The
confinement effect on dynamics appears to be strongly connected to the temperature dependence of
the dynamics in the pore center and, for large enough pores, in bulk. Interestingly, results for another
tetrahedral network former, the BKS model of silica, show a more significant dependence on charge
scaling.392 There, ξdyn. decreased with increasing charge despite the higher expected cooperativity of
tetrahedral liquids and longer range of Coulomb interactions. It may be, that the independent motion
of oxygen and silicon atoms compared to the rigid H2O molecules causes qualitative differences
between water- and silica-like systems. Alternatively, this behavior is expected for more severe charge
scaling, as q for the BKS model was as low as 0.65 and the liquids will turn into soft-sphere systems.
The static correlation length ξsta. is independent of the charge-scaling factor q at q ≥ 0.9 but increases
upon reduction at lower values of q. The same is found for the stretching parameter β, indicating a
narrower decay of the confinement effect. The decay tends towards a Gaussian shape of the wall
effect with β = 2. For silica, the values were generally larger but were not found to increase further
with stronger supercooling.392 All systems might have a constant shape in the deeply supercooled
regime. A stronger dependence on charge scaling was found for the vibrational correlation length
ξvib.. Its absolute values and temperature dependence increased significantly with increasing partial
charges. Hence, the dynamical profiles τ(d) and 1/u2(d) are not reconcilable within several models of
the glass transition. The effect of confinement on the liquid does not follow bulk properties entirely.

Several models of the glass transition, e.g., the ECNLE and RFOT theory,91,107,108 employ length
scales to predict the liquid behavior in the supercooled regime. Here, the static correlation length
ξsta. was used within the prediction of the RFOT theory and it was found that the model works with
universal parameters for all structurally comparable systems, those with charge scaling q ≥ 0.9 in
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9.7. Summary

the LDL-like region of the phase diagram. However, the HDL-like systems with reduced charges
do not comply and the scattering and limited temperature range of the data do not allow further
conclusions.

The relative slowdown ζ at the matrix with respect to the pore center, and roughly to bulk,
was found to approximately increase with an Arrhenius law for sufficient supercooling. Hence, a
temperature independent activation energy ∆Eζ , in addition to the activation energy in bulk E(T ),
and the onset temperature T0 suffice to characterize the dynamics at the pore wall. The finding of less
fragile behavior at interfaces compared to the bulk can therefore be rationalized by the comparably
lower temperature dependence of the total activation energy. Still, for significant supercooling the
bulk behavior will dominate. ∆Eζ was found to be about three times or equal to E∞, for τ from
the ISF and F1 respectively. Hence, the high-temperature regime is also relevant for the interaction
within neutral pores. The cooperative contribution to the activation energy Ec(T ) reaches about 2.5
times E∞ at Tg, see Ch. 8. In comparison, ∆Eζ ≈ 3E∞ is of significant size in the entire dynamically
accessible regime. Unfortunately, these values are different for a comparable study of silica.392
Furthermore, the values for the first layer may depend on the matrix when non-neutral confinements
are used. Still, changing properties of neutral confinements mostly influenced the onset temperature
T0 but not the activation energy. When compared to the short-time MSD u2, a similar indicator
for the local potential, the results do not agree. The potential depth is changed by a factor of 1.9
with weak dependence on temperature and charge. With this, however, the relative reduction of u2
does not at all follow an Arrhenius law. Furthermore, the limited temperature range does allow for
other equally good functional forms. ∆Eζ is not yet perfectly constant in the studied temperature
regime and may as well be characterized by a linear dependence on reciprocal temperature. This
leads to a temperature dependence of τpw containing a term ∼ exp[(a/T )2] and leading to strongly
increasing differences in mobility between pore center and wall upon supercooling. A physical model
explaining this is missing and it does not allow for the prediction of spatially resolved dynamics
without determination of the parameters. It remains to be tested which, if any, of the two is applicable
in the entire supercooled regime.

Alternatively, the static density fluctuations within the confinement were used to reconstruct the
PEL assuming Boltzmann statistics. Energy minima and the energy barrier to overcome the average
neighborhood using Boltzmann factors were identified. This energy barrier was also temperature
dependent and characterizes the difference to the pore center, where a homogeneously flat PEL is
expected. It correlates well with ∆Eζ implying that both static and dynamical properties are affected
by the matrix in a similar way. More precisely, the mobility gradients within the confinement can be
rationalized entirely with Boltzmann statistic.

In the context of polyamorphism, investigated for charge-scaled TIP4P/2005 in Ch. 7, one may
expect similar behavior for the charge-scaled SPC/E variants. Because systems with charge scaling
q ≥ 0.9 exhibit a density maximum they could cross their respective Widom lines if an LLPT exists.117
But, even if no LLPT exists within these systems, the competition of LDS and HDS is apparent and
causes phenomena similar to those of the charge-scaled TIP4P/2005 systems with a true LLPT. Even
more so, the charge-scaled BKS models of silica show a pronounced dynamical transition within the
accessible temperature regime. However, neither system shows indications of the polyamorphism in
the temperature dependence of correlation lengths or slowdown. For a fragile-to-strong transition
(FST), the low temperature Arrhenius regime should be associated with a constant correlation length,
if the activation energy scales with any ξ as proposed. The extrapolation of ξdyn. and ξsta. to Tg
would then be wrong. Unfortunately, the simulated temperatures of the charge-scaled SPC/E variants
are not close to their respective FST, if the prediction in Ch. 8 holds. Still, quantitative differences
between the HDL-like and LDL-like liquids could be found, i.e., larger ξsta. and other parameters for
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the description of τ(T ) within the RFOT theory for lower partial charges.
Finally, many follow-up investigations of liquids in neutral confinement can be performed in the

future. The reliability and meaning of translational correlation functions at the pore surface could
be investigated. More specifically, the decoupling of rotational and translational motion at the pore
wall could have implications for the Stokes-Einstein breakdown of dynamics in bulk. The choice of
the correlation function influences the value of the additional activation energy ∆Eζ/E∞ found for
dynamics at the pore wall. This Arrhenius behavior Eq. (9.5) and its alternative Eq. (9.7) should
be tested for a wider range of systems and stronger supercooling to determine which if either is
true at all. With longer correlation lengths, the spatially resolved ∆Eζ(d) and T0(d) could be studied
for larger distances to the pore wall. In the present study, finding a constant or distance dependent
∆Eζ(d) depends on whether or not the data is reduced to sufficient slowdown or not. If ∆Eζ(d)
is constant and T0(d) is dependent on the rigidity of the wall, and in extension on the dynamical
gradient ∂τ(d,T )

∂d , a self-consistent set of equations characterizing τ(d, T ) could be constructed. Of
course, this could only quantify average dynamics ignoring the oscillations at short distances to
the pore wall. Alternatively, predicting the temperature dependence of the correlation lengths and
slowdown at the interface would characterize dynamics as well.
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10. Cross correlations in asymmetric binary
mixtures

Proceeding from idealized static pores, more natural systems are studied and matrix and solvent
dynamics in the mixture of PMMA and picoline are investigated. Binary asymmetric mixtures, i.e.,
mixtures with largely different glass transition temperatures for both components, exhibit a slow
matrix formed by the solute and a fast solvent. In general, molecules are slowed down at immobile
interfaces (with exceptions) and a mobility gradient appears. For mixtures however, broadband
spectroscopy, e.g., BDS, finds two processes, separated by several orders of magnitude, that can be
attributed to the solvent. Hence, an interpretation so far is the existence of a slow solvent fraction in
contact with the matrix and a fast bulk-like fraction. The findings presented in this chapter challenge
this interpretation for a wide variety of systems, from polymer-plasticizer mixtures to hydrated
proteins.

Results for coherent and incoherent measurements are compared and the slow solvent process
is identified as cross correlations that decay on the time scale of the matrix. Consistent results are
found for oligomerized styrene in benzene and poly-ϵ-lysine in water. A mechanism of replacements
of solvent molecules in locally preferred orientations caused by the energy landscape imprinted by
the matrix is discussed. Finally, the heterogeneity of dynamics is investigated. Solvent mobility is
broadly distributed but not bimodal.

10.1. Motivation

Dynamically asymmetric binary mixtures are characterized by their large difference in Tg of the neat
systems of the two components. The low-Tg component is typically a small molecule and is referred
to as the solvent while the high-Tg component is the solute and typically a macromolecule.307,393–395
Examples include polymer-plasticizer mixtures or hydrated proteins.51,52 Their complex behavior and
highly heterogeneous dynamics have been the ongoing subject of studies for decades.51,309,310 The
high customizability of the mixtures, e.g., by variation of solute and solvent and the concentration,
makes these types of systems important in technical applications and their relevancy in biological
systems leads to them frequently occurring in studies.

A consequence of the very different Tg is the observation of two structural relaxation processes
in the mixture that are separated in time by several orders of magnitude. The fast process is then
attributed to the solvent while the slow process is thought to be caused by the solute. A general
effect is that the dynamics of the solute and solvent are accelerated and slowed down, respectively,
compared to the bulk. An asymmetric effect on the distribution of relaxation times is observed. While
the shape of the distribution, or the measured susceptibility, remains unchanged for the solute,
the distribution of the solvent dynamics is strongly broadened indicating increased heterogeneity
experienced by the smaller molecules.309,396 In particular, the two relaxation processes each have
their own glass transition.307,394,395 Above Tg of the solute process the solvent molecules experience
a PEL caused by a slowly varying solute. This PEL is static below Tg and the heterogeneity of
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10. Cross correlations in asymmetric binary mixtures

the solvent process is even more pronounced. Because of these similarities with other nanoscopic
confinements, the macromolecule will be referred to as matrix in this work when general conclusions
are drawn. These properties of asymmetric mixtures are rather general which can be concluded from
the fact that such observations have also been made for solvent molecules mixed with polymers,51,56
oligomers394,395 and non-polymeric macromolecules,54,55,57,397 aqueous peptide solutions53,58 and
hydrated proteins.52 Thus, these phenomena are not limited to specific molecular sizes, structures,
concentrations of the mixture, or particular solvent-solute interactions.

Given the broad time and temperature range covered by asymmetric binary mixtures the most
commonly used experimental methods are broadband dielectric spectroscopy (BDS), nuclear magnetic
resonance (NMR) spectroscopy, or depolarized dynamic light scattering (DDLS), which are usually
employed to measure molecular reorientation. These methods can be used to selectively analyze
one of the components, depending on the system. BDS can be applied to mixtures of polar and
nonpolar components, NMR allows isotopic labeling of the molecules, and DDLS is sensitive to the
anisotropy of the molecular polarizability tensor. However, ongoing research on these mixtures and
the application of these methods has led to controversial results.

A BDS study of the mixture of the polar solvent 2-methyl tetrahydrofuran (MTHF) and the nonpolar
solute polystyrene (PS) revealed contributions from MTHF to the fast and slow processes despite
them being separated by nine orders of magnitude at the high-temperature Tg.56 This contribution
to the relaxation strength observed with BDS grew upon cooling and contributed up to 10% of the
total relaxation strength. The data was interpreted as a fraction of solvent molecules being severely
restrained by the matrix and that the distribution of solvent dynamics is bimodal. Similar slow
solvent dynamics were also found for other polymer solutions.398,399 However, solvent-selective NMR
experiments could not confirm this fraction of slow MTHF molecules. From 2H NMR spectra the
fraction of molecules relaxing faster than the inverse coupling constant was determined as a function
of temperature.400 The resulting fraction is much lower than that calculated from BDS measurements.
However, agreement can be achieved if the slow solvent process in BDS is ignored and the fraction of
molecules slower than the inverse coupling constant of 2H NMR is calculated using the fast structural
relaxation process alone. Similar discrepancies have been found for mixtures with non-polymeric
solute molecules,57 aqueous peptide solutions,53,58,59 and even hydrated proteins.52 In particular,
the slow water process in aqueous poly-ϵ-lysine and its absence in 1H and 2H NMR were extensively
discussed.53,58,59

A hint to the origin of the discrepancies between observations by different experimental methods
is their sensitivity to exchange of identical particles. BDS and DDLS are insensitive to instantaneous
exchange of molecules with respect to their position and orientation. The correlation function does
not decay under such an operation because both methods make coherent measurements and the
cross correlation of the exchanged particles compensates for the loss of self correlation. Similar
insensitivity of fluorescence Stokes shift (FSS) experiments to exchange of water molecules in the
protein hydration shell has been discussed by Nilsson et al.401 The same is not true for 1H and
2H NMR. In particular 2H NMR performs incoherent measurements and correlation is lost upon
particle exchange. Cross correlations are nonexistent in this case. Hence, a contribution to relaxation
processes that is visible in coherent measurements but invisible in incoherent methods is likely due
to cross correlations. Proper quantification of molecular dynamics requires disentanglement of cross
and self correlations, otherwise false or conflicting interpretations could be made. Given the amount
of research being performed with these experimental methods, a better understanding would have
significant impact. MD simulations can support the investigation of cross correlations quite easily.
The direct calculation of coherent and incoherent correlation functions makes the determination
of the origin of slow solvent processes and the fraction of slow solvent molecules straightforward.
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Even the origin of possible cross correlations can be investigated. Also, rotational and translational
dynamics can be measured and correlations can be spatially resolved.

In this chapter, MD simulations of a mixture of picoline, specifically 2-methylpyridine, as solvent
and poly-methylmethacrylate (PMMA), see Sec.4.4, are analyzed. They complement experimental
measurements with BDS and DDLS on the same system. Results from simulations and experiments
were discussed collectively in the collaboration with Böhmer et al.400 Here, the focus is on the
simulations which are analyzed in more detail. First, incoherent and coherent rotational correlation
functions as well as incoherent and coherent scattering are discussed in the context of slow solvent
processes. Then, simultaneous cross correlations of location and orientation of solvent molecules are
quantified. Contributions to cross correlations are discussed, in particular with respect to the measured
property of the molecule and the correlation function used. Then, the broadened distribution of
correlation times as a function of local concentration and time scales of ergodicity are determined.
The final relaxation map shows the enormous complexity that asymmetric binary mixtures can exhibit.
Finally, preliminary results for cross correlations in other mixtures are discussed.

10.2. Coherent vs incoherent measurements

First, coherent and incoherent correlation functions of the binary mixture of PMMA and picoline,
details in Sec. 4.4, are investigated. More specifically, the rotational correlation function F1,µ⃗(t),
Eq. (5.28), of the dipole moment µ⃗ of picoline molecules and PMMA segments with the Legendre
polynomial of rank 1, see Sec. 5.2.3, is studied. In particular, the scalar product µ⃗i · µ⃗j is taken to
account for the strength of the dipole moments. Figure 10.1(a) shows the coherent result for the
dipole moment of picoline. Note, that the dipole moments of both components can be analyzed
selectively. The vibrational decay, which is not resolved, is followed by a fast decay of most of the
correlation and a stretched slow decay at longer times. The amplitude of the latter grows with
decreasing temperature. Figure 10.1(d) displays a Fourier transform of a fit with a sum of two KWW
functions, Eq. (2.5). The simulations qualitatively reproduce the experimental results found for light
scattering, a fast and slow process in the susceptibility.400 To study the dynamics as experienced by
individual molecules, Fig. 10.1(b) shows the self part of the correlation function for picoline. The same
fast process is found suggesting that this is the α-relaxation for the majority of the picoline. However,
it is followed by a long time tail for lower temperatures. In depth investigations in the appendix,
App. A.5.1, reveal a more complex relaxation including anisotropic reorientation. In the context of this
chapter, this anisotropic reorientation is neither problematic nor of interest. The inset also shows the
Fourier transform of the self part. While the peaks at higher frequencies coincide for the coherent and
incoherent measurement, the intensity at lower frequencies, or longer times, is underestimated in the
self part which shows a ω1 power law at low frequencies. The incoherent susceptibility is lower than
the coherent one for all frequencies indicating significant contributions from cross correlations. The
cross correlations are determined by subtraction, Eq. (5.28) and (5.28), and shown in Fig. 10.1(c).
Again, two decays are found: a fast decay on the time scale of the α-relaxation followed by a plateau
and a decay at longer times. This reveals that the coherent correlation function contains a stretched
exponential decay at long times which is not simply the long-time tail of a broadly stretched α-process
but a separate relaxation of a different kind.

Asymmetric binary mixtures are, according to the MCT results, likely to show a slow process in
coherent scattering, Sec. 5.2.1, of the center of mass of the fast species, analogous to the above
result for rotation.86,402–404 The susceptibility of coherent translational motion becomes bimodal
for the smaller particles, i.e., the correlation function decays in two steps. Figure 10.2 presents the
results for 270K for various wavenumbers. The decays in both, ISF and CSF, shift to longer times
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Figure 10.1.: Correlation functions F1 of the dipole moment of picoline at various temperatures: (a)
coherent, (b) incoherent and (c) cross contributions. The temperatures are the same in
all three panels. Panel (d) presents the imaginary part of the susceptibility at 270K, see
Eq. (5.31). To reduce the noise of the coherent correlation function the data was fitted
with a sum of two KWW functions, shown in (a) as dashed gray line, and then Fourier
transformed. The black dotted line is F inc

1,µ⃗ for polymer segments and the black solid
line is a guide to the eye with slope ∼ ω1. The inset shows the respective correlation
functions.

with increasing length scale. The CSF exhibits two decays while only one decay is found for the
ISF. The influence of anistropic reorientation found in F inc

1,µ⃗ is reduced. The slow decay is at longer
times than that of the incoherent measurement. No slow species is found in the incoherent studies of
translation while the coherent measurement agrees with the theoretical expectation. The finding of
cross contributions in both orientational and density-density correlations on the time scale of the
segmental relaxation of the polymer suggests a relation of position and orientation. This phenomenon
is investigated in detail in the following section.
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Figure 10.2.: Normalized scattering functions for the PMMA+picoline mixture at 270K for various
wavenumbers k: (a) ISF and (b) CSF. The scattering centers are the center of mass of
either the picolinemolecules or of the PMMAsegments. The length scales in the legend
are analytical average displacements ⟨r⟩ = 4/

√
π/k at τe for Gaussian propagation.

The black and green dashed lines are normalized F inc
1,µ⃗ for the dipole moment of picoline

and PMMA segments, respectively.

10.3. Mechanism - fast replacement in a slowly relaxing energy landscape

The fast α-process in rotational correlation functions and the ISF indicate mutual replacement of
solvent molecules on time scales faster than the segmental relaxation. The similarity of configurations
in time can be probed by the configuration overlap correlation function (OCF), see Sec. 5.2.3. The
distinct overlap Qdist, i.e., the fraction of centers of mass of picoline molecules that are at time t
within a cutoff radius of rc = 0.2nm of each other at time t = 0, is shown in Fig. 10.3(a).

The distinct overlap is by definition zero at the time origin and a finite value at infinite times,
given by the density and cutoff radius rc. For intermediate times, when translational motion sets in,
the overlap increases. Contrary to the common finding in bulk, the distinct overlap in dynamically
asymmetric mixtures overshoots the plateau value and decays afterwards. This enhanced distinct
overlap exists at longer times than the self overlap, see the inset of Fig. 10.3(a). Thus, the matrix
imprints a slowly changing energy landscape on the solvent and energetically preferred locations
exist for some time. This is qualitatively different from the results for neutral pores in Ch. 9. There,
the matrix is static for all times and the enhanced overlap does not decay.

Distinct replacements of particles are cross terms themselves and the rotational correlation function
of the respective dipole moments can be calculated specifically for such distinct pairs. The correlation
between the particle defining the sphere at t = 0 and the particle occupying this sphere at a later
time is determined according to

F dist
ℓ,v⃗ (t) =

⟨︄
1

N

∑︂
i,j
i ̸=j

nij(t) · Pℓ(u⃗i(0) · u⃗j(t))

⟩︄
(10.1)

nij(t) =

{︄
1 |r⃗i(0)− r⃗j(t)| ≤ rc and i ̸= j

0 else,
(10.2)
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Figure 10.3.: Analysis of preferred locations and orientations of solvent molecules in the PMMA+pi-
coline mixture. (a) Distinct part of the configuration overlap correlation function (OCF)
Qdist for various temperatures. A sphere of radius r = 0.2nm was used to mark the
initial center of mass positions of the picoline molecules. The inset shows the total
OCF (green), self part (blue), and distinct part (red) for 270K. (b) The total rotational
cross correlation for distinct particle displacements F dist

1,µ⃗ , Eq. (10.1), weighted by the
strength of the dipole moments. The data in (b) divided by the occurrence of distinct
replacement in (a) is shown in (c) for data points Qdist > 0.01. This quantifies the
average correlation per distinct replacement. The black solid line is F inc

1,µ⃗ for PMMA
segments, scaled for clarity. The temperatures are the same in all panels.
On the right side are two snapshots at 250K and separated by 670 ps. Atoms of solvent
molecules are shown as spheres and the matrix is represented by green tubes. The
blue molecule is replaced by the red molecule, assuming a similar orientation, at later
times (bottom). The displacements of the matrix are insignificant on this time scale.
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10.4. Spatially resolved contributions to BDS relaxation strength

Here, Pℓ is the Legendre polynomial of rank ℓ, u⃗i are unit vectors u⃗i = v⃗i
|v⃗i| ,N is the number of particles,

and r⃗i denotes their positions. The total amount of cross correlations by distinct replacement is shown
in Fig. 10.3(b). It is zero at short times, when no replacements have happened, and long times, when
correlation is lost. At intermediate times, this specific cross correlation exhibits a maximum. This
is the most important result regarding the origin of long-lived cross correlations in this mixture.
Not only do energetically preferred locations exist, but there are also preferred orientations at these
locations. Note, that cross correlations from distinct replacement are only a fraction of all cross
correlations. They may be much lower or even higher than the full cross correlations depending on
the correlation with all next neighbor shells, i.e., depending on the Kirkwood factor gK.405

By dividing the distinct correlations by the occurrence of distinct replacements, the average
correlation per replacement can be determined, Fig. 10.3(c). This distinct correlation is significant
and decays in a fashion similar to common correlation functions. Relaxation of the matrix and
decorrelation of the orientation for distinct replacements happens on approximately the same time
scale. For the lowest temperatures, the correlation per distinct replacement increases at intermediate
times. Preferred locations with fast replacement, giving rise to Qdist at shorter times, have lower
energy barriers compared to locations with longer residence times. It is reasonable to expect the
local energy potential for orientation to also be shallower and rotational cross correlations to be
weaker at these sites. Preferred locations with longer residence times have stronger correlations
and, thus, average distinct correlation increases on time scales shorter than the relaxation of the
matrix. Furthermore, distinct replacement can also happen in bulk phases but is likely to have weaker
cross correlations on shorter time scales. The amplitude of cross correlations caused by replacements
on the surface of the matrix relative to the self correlation of the solvent overall depends on the
concentration of the mixture and ratio of interface and bulk solvent molecules.

This mechanism is depicted on the right side of Fig. 10.3, and for a schematic diagram see Böhmer
et al.400 A necessary condition is that the translation of solvent molecules in contact with the matrix is
significantly faster than the relaxation of the latter. In particular, for solvent molecules with anisotropic
shapes and low enough temperatures, the solvent-matrix interaction leads to correlated orientation
at preferred locations relative to the matrix.

10.4. Spatially resolved contributions to BDS relaxation strength

The mechanism for cross correlations as found for distinct replacements in the previous section only
includes two particles, one defining the location and orientation and one replacing it. However, cross
correlations between neighboring molecules can be significant, even on longer length scales. The
intensity in Fig. 10.3(b) is highly dependent on the cutoff radius but remains less than half of the
respective cross correlations in Fig. 10.1 even for less restrictive cutoff of rc = 0.3. Hence, the spatial
distribution as well as the temporal evolution of cross correlations of the dipole moment of molecules
is investigated in Fig. 10.4. Presented is the cumulative integral for scalar products of the dipole
moment of solvent-molecule i, or segment i for PMMA, with solvent-molecule j at distance rij ,

F cross
1,v⃗ (r, t) =

⟨︄
1

N

∑︂
i,j
i ̸=j

r∫︂
0

v⃗i(0) · v⃗j(t) · δ(rij(t)− r)dr

⟩︄
, (10.3)

with rij(t) = |r⃗i(0) − r⃗j(t)|. The full integral at r → ∞ is the total cross correlation, as shown
in Fig. 10.1(c). At the time origin (red), total cross correlations are positive but correlations and
anti-correlations alternate, seen as oscillations. Note, that these results are system dependent. As no
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Figure 10.4.: Spatial and temporal resolved cross correlations in the PMMA+picoline mixture at
270K. Cross correlations are between solvent molecules (a) and solvent and matrix
molecules (b), see the main text for details. Curves are normalized by each total cross
correlation at time zero. Cross correlations at different logarithmically spaced times t
are represented by the coloring from red to green to blue, identical in (a) and (b). The
legend denotes the ratio of time t and τ from Fig. 10.9 for the slow process in F inc

1,µ⃗ of
the solvent in (a) and the fast process in F inc

1,µ⃗ of the PMMA segments in (b). The black
line indicates the cut-off radius used for the configuration overlap correlation function.

distinct replacements have happened, there are no cross correlations at distances shorter than the
next neighbor distance. Since correlation decreases with distance in amorphous liquids, one may
expect only significant contributions at short distances. However, the particle number increases with
N ∼ r2 and weak correlations at longer distances are weighted more strongly. In the case of PMMA,
the segments of the polymer have a dipole moment as well. The cross correlations between solvent
and matrix are qualitatively the same. Note, that the intensity of these effects as measured by for
example dielectric spectroscopy depends not only on dipole-dipole but all other interactions and the
strength of the dipole moments as well.

Including the temporal aspect, the decorrelation from short times to long times can be studied in
detail. At intermediate times (green) cross correlations within the cutoff radius appear, as found
in the previous section. These cross correlations do not account for the value of the integral at
longer distances. Especially at the next neighbor distance long lived cross correlations exist. Similarly,
cross correlations between solvent and matrix decay on comparable time scales. Hence, the total
cross correlations at long times giving signal to the slow process of the solvent stem not only from
distinct replacements but from neighboring preferred locations as well. Trivially, if preferred locations
exist and on average a positive or negative correlation between them is found, then the mechanism
from the previous section, correlated orientations for distinct replacements, will lead to long-lived
correlations between them irrespective of the identity of the occupying particles. Of course, as seen in
Fig. 10.4, the localization and orientation are smeared out with time by the relaxation of the matrix.

The exact details of the discussed observations are system dependent. Moreover, these cross
correlations can depend on the used reference vectors and Legendre polynomials. Hence, such
variations are investigated in the next section. Note that the mechanism as described above is the
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10.5. Legendre polynomial and choice of vector

relevant foundation of long-lived cross correlations but not the entire contribution by itself.

10.5. Legendre polynomial and choice of vector
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Figure 10.5.: (a) Normalized cross correlations at 250K of the Legendre polynomials of rank 1 and
2 for two vectors of the solvent molecule, dipole moment µ⃗ and plane normal n⃗. The
coherent and incoherent correlation functions are scaled to the latter at t = 0 and
then subtracted from each other. (b) The cross correlations for F2,n⃗ as in (a) for all
temperatures.

In case of experimental measurements of molecular motion, many methods probe only specific
parts or properties of the molecule. Broadband dielectric spectroscopy (BDS) is sensitive to charges
and dipole moments, photon correlation spectroscopy (PCS) is sensitive to the optical anisotropy
tensor and nuclear magnetic resonance (NMR) often measures one or several specific internuclear
vectors. Commonly, the vector within the molecule cannot be chosen freely and different methods
can be sensitive to different rotations of the molecule. For example for monohydroxy alcohols BDS is
dominated by the reorientation of the hydroxyl group while PCS can be dominated by the nonpolar
rest of the molecule. Because parts of a flexible molecule can behave differently, both methods
measure different correlation decays. Additionally, the methods vary in the rank of the Legendre
polynomial measured, ℓ = 1 for BDS and ℓ = 2 for PCS and NMR. For self correlation, this problem
is well known and studied. It is however less clear how cross correlations, especially in mixtures like
the one studied here, are probed by different methods.

Therefore, two distinct vectors within the picoline molecule, the dipole moment µ⃗ and the normal
on the plane produced by the ring n⃗, correlated with F1 and F2 are compared in Fig. 10.5(a).
F1,µ⃗ and F2,n⃗ are comparable to observations with BDS and PCS, respectively, while the other two
combinations are only accessible in the simulation. Note, that the cross correlation is shown for
normalized vectors but the experimentally measured intensity depends on more factors. For the
dipole moment, both Legendre polynomials produce qualitatively the same correlation function.
Because P2 is more sensitive to small angular displacements the cross correlations are weakened.
However, for P1 in combination with n⃗ cross correlations are negligible for all times.

Ring-like molecules have been found to perform π-stacking, t-stacking, and staggered π-stacking.406
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Figure 10.6.: Probability density f(cos θ) where θ is the angle between the plane normal n⃗ of two
picoline molecules at a center of mass distance of r. The probability is normalized for
each distance r. The top graph shows the RDF for the center of mass.

The ring planes of neighboring molecules are parallel in π-stacking and orthogonal in t-stacking.
Figure 10.6 presents the probability density of finding picoline molecules in different arrangements
with respect to n⃗ at distance r. While π-stacking dominates at r < 0.5nm and around 0.8 nm, it is
overshadowed by t-stacking at the peak in g(r). P1 is zero for t-stacking and since f(cos θ) is symmetric
around zero, it cancels out for π-stacking as well. The Coulomb interaction and the asymmetry of
dipole moment and steric interaction of the methyl group are too weak at this temperature to cause
asymmetric distributions. Hence, F1,n⃗ is negligible for the solvent molecules. For stronger supercooling
and distinct replacement stronger cross correlations may be possible.

In contrast, the Legendre polynomial of rank 2 has stronger cross correlations for n⃗ than for µ⃗.
One possible reason is the π-stacking and t-stacking. The symmetric Legendre polynomial P2 is one
in both cases and insensitive to π-flips, flips by 180°, of picoline around an axis within the ring plane.
Therefore, measurements with P1 and P2 can differ. Another possibility are the interactions leading
to similar orientations for distinct replacements. The steric interaction for tight packing at strong
supercooling may be more influential than the dipole-dipole interaction. The cross correlations F cross

2,n⃗

appear to increase on the time scale of distinct replacement. This is not an artifact and instead follows
from the decomposition of the coherent correlation function. When picoline molecules move and
there is a significant fraction of t-stacking, then the new orientation is likely to negatively contribute
and the average self correlation decays quickly. In contrast, rotational correlation of n⃗ is strong for
picoline molecules replacing each other at time scales shorter than the relaxation of the matrix and
cross correlations increase. The mechanism of distinct replacements transfers correlation from the
self part to the cross part while the total correlation decays monotonously. That F cross

2,n⃗ increases
at intermediate times is a sign that interactions of ring orientations is quite significant at lower
temperatures.

Finally, the temperature dependence of cross correlations in F2,n⃗ is investigated, see Fig. 10.5(b).
Compared to Fig. 10.1(c), the temperature dependence of the long time cross correlations appears
to be much higher. While the perceived intensity depends on the separation of correlation times of
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10.6. Fast and slow Picoline

the fast and slow process, it is evident that the slow process, that exists in F1,µ⃗ at all temperatures,
disappears for F2,n⃗ at the highest temperatures. The weak interaction energy for the orientation
compared to thermal fluctuations leads to significant vibrations. The higher sensitivity of P2 to
angular displacements leads to a stronger temperature dependence of the intensity. This may explain
the strong temperature dependence of the relaxation strength seen in DDLS for the same system.400

Thus, three factors are relevant for the relaxation strength of the slow process: the interaction
strength, property or part of the molecule probed and the correlation function (e.g., F1 or F2). In
particular, it depends on the combination of all three. For example a vector related to the interaction
will have a higher relaxation strength or while P2 is more sensitive it may give better results in case
of symmetries.

10.6. Fast and slow Picoline

−0.5 −0.3 −0.1 0.1 0.3 0.5
δϕ

0.0

0.5

1.0

1.5

2.0

2.5

p(
δϕ

)

solvent
  rich

matrix
  rich

(a)

102 104 106

t in p 

0.0

0.2

0.4

0.6

0.8

1.0

F 2
,n⃗
(t) PMMA

bottom
 0.2⃗

(b)

en emble
0-10 ⃗
30-40 ⃗
60-70 ⃗
90-100 ⃗

Figure 10.7.: (a) Probability distribution of the local concentration fluctuations δφ, i.e., of the devia-
tions of the local concentration φi from the average concentration at 250K. Hereby,
φi is the concentration of solvent molecules in a sphere of radius rc = 0.7 nm around
the center of mass position of solvent molecule i. (b) The correlation function F2,n⃗(t)
is averaged for subsets of molecules with different local concentrations φi at t = 0.
Specifically, each subset comprises 10% of solvent molecules with similar values of
δφ, e.g., the 10% fraction of solvent molecules with the lowest local concentration
are labeled 0-10%. The purple dotted line is the average correlation function for the
lowest 0.2%. The black solid and dashed line are the ensemble average and F1,PMMA,
respectively.

In dynamically asymmetric binary mixtures the slow component in general shows regular su-
percooled behavior. The fast component, however, has strongly stretched correlation functions as
a consequence of a broad distribution of dynamics. This can be observed, for example, as a wide
temperature range for the line shape transition in NMR, indicating a broad distribution of mobilities
that shifts through the experimental time scale.309,407 Furthermore, so called four-time correlation
functions can be employed in BDS and NMR to filter out fast molecules and obtain correlation
functions of a slower subset.408–410

The varying degree of contact of solvent molecules with the matrix leads to significant differences
in mobility that are not attenuated by relaxation of the neighboring particles, as in bulk. Thus, the
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10. Cross correlations in asymmetric binary mixtures

dynamical heterogeneity may be linked to the structural heterogeneity. Indeed, resolving correlation
functions by the local concentration leads to separation of mobilities in case of a binary mixture of
water-like molecules.317 Hence, the same concept and the definition of the local solvent concentration
φi in Sec. 5.1.5 are applied here. Reference positions are the center of mass of picoline molecules
and a cutoff of rc = 0.7nm was used for the calculation. Correlation functions are then separately
calculated for different local concentration around the respective solvent molecule, averaged over
short times to reduce vibrational noise. Figure 10.7(a) shows the distribution of solvent fluctuations
as deviation δφ from the average solvent concentration at 250K. It is unimodal for all temperatures,
suggesting no demixing at the investigated temperatures and concentration.

Figure. 10.7(b) shows correlation functions as obtained for various local concentrations, character-
ized by δφ, in ascending steps of 10% at 250K. The solvent mobility, as measured by F2,n⃗(t) to avoid
anisotropic reorientation, depends monotonically on the local concentration with the slowest solvent
molecules being the ones with the lowest local concentration. The correlation functions of the 10%
solvent molecules with the lowest local concentration decays more than three orders of magnitude
slower that that of the 10% solvent molecules with the highest local concentration. Hence, the local
concentration and mobility are correlated. The correlation functions are still stretched and each
subset in itself is dynamically heterogeneous. There is no significant gap between subsets and the
probability distribution of δφ itself is unimodal, suggesting that indeed no two dynamically separated
solvent species caused by different local environments exist. The slowest subset, the lowest 10%, is
still significantly faster than the matrix. Only for solvent molecules with the lowest 0.2% of local
concentration dynamics on the same time scale as the matrix can be found. These molecules are
essentially surrounded entirely by the polymer within the next neighbor shell. Thus, a very minor
fraction of self correlation on the time scale of the matrix exists. However, the fraction of molecules
is too low to cause two peaks in the susceptibility.

The fact that local concentration does not lead to bimodal mobility is even more evident from
distributions of mean correlation times obtained by fitting correlation functions of subsets with KWW
functions. In this analysis, the distribution of local concentrations p(δφ) is divided into 20 equidistant
bins and the mean correlation time ⟨τ⟩ is determined from the correlation function F inc

2,n⃗ resulting
for each of these bins. Then, a pseudo probability density function G(ln(⟨τ⟩)) can be determined
by weighting the respective ⟨τ⟩ values with the probability of the bins and normalizing over ln(⟨τ⟩),
shown in Fig. 10.8(a). Note that the actual distribution of correlation times may be different. For all
temperatures, G(⟨τ⟩) has a unimodal shape. With decreasing temperature the probability density
function shifts to longer times and strongly broadens, indicating that the dependence on the rotational
dynamics on the local concentration increases.

Finally, the restoration of ergodicity concerning the local concentration and the solvent mobility can
be determined. The former is obtained by standard autocorrelation. For the latter, solvent molecules
are separated into 20 subsets according to their local concentration and tracked over time. F2,n⃗(t) is
calculated for each subset and several logarithmically shifted time origins∆t0. With time, if ergodicity
holds, all subsets will approach and eventually equal the ensemble average. Figure 10.8(b) shows this
evolution for the lowest temperature of 250K, which was not simulated long enough for full ergodicity.
However, it was assured that the ensemble average is fully recovered at higher temperatures. The
differences of the correlation functions for each bin to the ensemble average are multiplied by their
sign, summed up and then normalized to the value at ∆t0 = 0. This C∆F2,n⃗

characterizes the decay
of the dynamical heterogeneity as created by different local concentrations. Its decay is significantly
slower than the ensemble averaged dynamics and comparable to the dynamics of the slowest subset.
This effect is different than for bulk OTP just above Tg, where four-time correlation functions revealed
the so called ”rate memory” to last only about two τ .409,410 For hard confinement, e.g., neutral pores
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10.7. Relaxation map
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Figure 10.8.: (a) Pseudo probability density function of correlation times obtained by averaging
correlation functions F2,n⃗ over equidistantly binned values of δφ. The mean correlation
times are obtained by fits with KWW functions and their ”probability” results from the
sum of occurrences of the bin. (b) The temporal evolution of F2,n⃗(t) for following a fixed
subset of particles for ∆t, see main text for details. Shown is the correlation function
of particles with the 5% lowest local concentration, colored solid lines. The shift for
the time origin of the correlation function is indicated by colors from blue to red and
logarithmically distributed. The black solid and dashed line are the ensemble average
and F1,PMMA, respectively. The green and purple dashed lines are the autocorrelation
of δφ for reference positions following the solvent molecules and static in space,
respectively. The red dots are the time evolution of the quantitative difference of F2,n⃗(t)
for all subsets along the shift δt.

in Ch. 9, the ensemble average can only be recovered when the slowest particles at the pore surface
exchange with faster particles by translation. However, in the case of soft confinement the time scale
of ergodicity of the solvent could be limited by the relaxation of the matrix itself. C∆F2,n⃗

decays
comparable or faster than the segmental relaxation of the polymer.

Because the mobility was resolved with respect to the local concentration, it should be compared to
the autocorrelation of the latter. In case of reference positions following the center of mass of solvent
molecules, the autocorrelation Cδφ decays with the same time constant as C∆F2,n⃗

, Fig. 10.8(b). The
restoration of ergodicity should follow Cδφ and, thus, the simple definition of C∆F2,n⃗

is sufficient.
For static reference points, the density fluctuations δφ can only decay with the rearrangement of
the matrix. Indeed, the correlation function Cδφ,s decays significantly slower and comparable to the
segmental relaxation of PMMA.

10.7. Relaxation map

Finally, correlation times of the investigated processes can be compared in an Arrhenius plot. However,
the correlation functions are significantly stretched and are in most cases comprised of several decays
beyond the trivial vibrational regime. As discussed in App. A.5.1, several fast processes of the solvent
molecule are likely related to anisotropic reorientation. The slower isotropic reorientation process
causes loss of the entire correlation. In case of cross correlations, the slow step is associated with the
relaxation of the matrix. The latter should also cause a full decay of all solvent correlation. Hence, in
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10. Cross correlations in asymmetric binary mixtures
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Figure 10.9.: Mean correlation times of the PMMA+picoline binary mixture. Fast and slow refer to
the two processes in Eq. (10.4). The shaded areas are guides to the eye and depict
the following: fast anisotropic picoline reorientation (green shaded area), isotropic
picoline reorientation (red shaded area) and segmental relaxation of the matrix (gray
shaded area). C∆F denotes the average of correlation times from C∆F1,µ⃗

and C∆F2,n⃗
.

both cases a multiplicative combination of KWW functions is employed:

C(t) = A
(︂
fe−(t/τ1)β1 + 1− f

)︂
e−(t/τ2)β2 , (10.4)

where A is the total amplitude and f its fraction that only the fast process acts upon. The slower
decay characterized by τ2 and β2 and acts on both amplitudes. This approach is known as the
Williams–Watts ansatz and was usually applied to the isotropic α and anisotropic β relaxation.411
Note that fits with a sum of two KWW functions describe the data as well. The ambiguity of the
fitting model and the complex correlation functions as well as the weak separation of time scales
lead to only approximate correlation times. The results in Fig. 10.9 are rather a relaxation map to
qualitatively understand the system. To obtain effective mean correlation times for the fast process,
the integral ⟨τ1⟩ =

∫︁∞
0 e−(t/τ1)β1e−(t/τ2)β2 dt is calculated numerically.

The correlation times show three clusters: fast anisotropic picoline reorientation (green shaded
area), isotropic picoline reorientation (red shaded area) and segmental relaxation of the matrix
(gray shaded area). F1,µ⃗ is dominated in all variants, coherent, incoherent, and cross correlations, by
the fast anisotropic reorientation. Fast anisotropic reorientations of the plane normal n⃗ fall into the
same cluster at low temperatures. Note, that their anistropic process is not necessarily the same, i.e.,
discrepancies exist when resolved by local concentration (App. A.5.1), and the underlying dynamics
are broadly distributed. The terminal decay of self correlation of picoline is also the same for all
rotational correlation functions. Evidence of this being the α-process is provided by the agreement
with correlation times from incoherent scattering functions for k = 12nm−1, the position of the next
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10.8. Outlook – solvent cross correlations in other mixtures

neighbor peak in the structure factor at the lowest temperature. At low temperatures, translation
agrees well with the isotropic reorientation. This process cannot be fitted in the coherent variant of
F1,µ⃗ because of its weak amplitude, strong stretching, and higher noise. Finally, the slow process in
the coherent or cross correlations of F1,µ⃗ agrees well with the segmental relaxation of the polymer.
The correlation function of the latter was fitted including a small long-time contribution that is likely
caused by lower Rouse modes of polymer relaxation, e.g., end-to-end vector reorientation.

The correlation functions of the local concentration δφ can be compared as well. For static reference
points the concentration fluctuations decay slower than the segmental motion of the polymer. In
case of the reference points following the solvent molecule, the correlation time well agrees with
the decorrelation of dynamical heterogeneity, again confirming the correlation of both. The latter
correlation time is independent of the vector and Legendre polynomial used. Restoration of ergodicity
quantified in this way is comparable to the matrix relaxation time. A weak decoupling is observed for
the lowest temperatures. Because the translation of solvent molecules within the matrix causes decay
of Cδφ, it is dominated by the slowest solvent molecules but not slaved by the matrix. In mixtures
with trapped solvent a strong coupling may be expected. For static confinements, e.g., silica pores,
or below the glass transition of the matrix, ergodicity is also restored among the mobile solvent
molecules despite the infinite time scale of matrix relaxation.

10.8. Outlook – solvent cross correlations in other mixtures

To show that the phenomena found for the PMMA+picoline system are more common, several other
systems simulated by colleagues have been investigated to some extent. The simulation details are
given in the appendix, App. A.5.2. The first two systems are chosen in order to investigate the necessity
of molecular dipole moments. To derive a system close to the one studied so far, the partial charges
of picoline have been redistributed such that the dipole moment is negligible. Still, long-lived cross
correlations in F2,n⃗ that decay on a time scale comparable to the segmental relaxation of the polymer
exist while the self correlation decays orders of magnitude earlier, Fig. 10.10(a). Cross correlations
in case of distinct overlap also agree with the previous findings. Hence, a long-ranged Coulomb
interaction of permanent dipole moments is not necessary. A similar system is benzene mixed with
oligo-styrene. All dipole moments are weak, in particular for the highly symmetric benzene ring.
Also in this system long-lived solvent cross correlations exist, Fig. 10.10(b). The discrepancy for
distinct overlap will be discussed further below. The increase of cross correlations at intermediate
times agrees with observations in Sec. 10.5. Static cross correlations in F2,n⃗ are slightly negative.
Distinct overlap with time causes a shift from self correlation to cross correlations. The coherent and
incoherent correlation functions decay as expected.

Hydrogen bonded systems have strong Coulomb interaction. Two examples shown here are aqueous
mixtures of poly-ϵ-lysine (pϵL), a polymerized amino acid, and of the protein myoglobin, Fig. 10.10(c)
and (d). Both have donor and acceptor groups for hydrogen bonds with water molecules. Here, the
investigated correlation function is again F1,µ⃗ for the water dipole moment µ⃗. Consistent with the
results found for all mixtures studied in this chapter, the self correlation of the solvent decays orders
of magnitude faster than the segmental relaxation of the solute. Solvent cross correlations that decay
on the time scale of the matrix rearrangement exist.

Note, that the cross correlations per distinct overlap, F dist(t)/Qdist(t), have a decay comparable
to that of the self correlation. Non-surface water, of which both system have a lot, has a short lived
hydrogen bonded network that promotes strong cross correlation before it is rearranged by structural
relaxation. Intensity beyond this time scale may be related to the mechanism of fast replacement in
a slowly changing energy landscape. Indeed, water in pϵL shows long-lived cross correlations for

179



10. Cross correlations in asymmetric binary mixtures

102 104 106
0.0

0.5

1.0

F 2
,n⃗
⃗in
⃗a
. 
.

(a)depolarized⃗picoline⃗+⃗PMMA

101 102 103 104 105

(b)benzene⃗+⃗polystyrene

10−1 101 103 105
t⃗in⃗ps

0.0

0.5

1.0

F 1
,μ⃗
⃗in
⃗a
. 
.

(c)water⃗+⃗poly-ε-lysine

inc.
cross
distinct
matrix

100 102 104

t in ps

(d)water + myoglobin

Figure 10.10.: Long-lived cross correlations in other asymmetric binary mixtures: (a) nonpolar picol-
ine and PMMA, (b) benzene and polystyrene, (c) water and poly-ϵ-lysine, andmyoglobin
in water. The correlation functions are arbitrarily scaled to increase visibility of rele-
vant features. Each plot shows the same functions: solvent self correlation (blue),
solvent cross correlations (red), cross correlations per distinct replacement (green),
and segmental relaxation of the solute (black). Nonpolar picoline and benzene have
negligible dipole moment and instead F2 and the ring plane normal n⃗ are analyzed.

distinct overlap. Similarly to benzene, they decay faster than the matrix process. No long-lived distinct
cross correlations are found for myoglobin. Since myoglobin has a tertiary structure the orientation
of segments is correlated with the overall orientation of the protein and, thus, decorrelates on the
time scale of reorientation of the entire protein.

One might therefore conclude that the mechanism is not general and instead the electric field
imposed by the dipole moment of the solute causes the cross correlations in the case of myoglobin.
The LJ mixture of benzene and polystyrene showed however that such effects are not necessary. The
simple approach to measure cross correlations of molecules occupying favorable sites within the
matrix is likely insufficient. Only minor translation of the matrix on time scales before its reorientation
leads to shifts in the laboratory frame that causes the correlation of space and orientation to decay. In
particular, the protein can easily perform minor drifts because of the high hydration level of 8.45 g/g
water per protein. The cutoff for water molecules is only 0.1-0.2 nm, a distance the surface atoms of
such a large molecule cover far ahead of isotropic reorientation. A more sophisticated analysis could
for example follow preferred locations in the coordinate frame of the macromolecule, in particular
donor and acceptor groups for hydrogen bonds, to determine distinct overlap and cross correlations.
In this case, the distinct overlap would be expected to be higher than the random value for all times
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while the cross correlations decay with the reorientation of the macromolecule.

10.9. Summary

Broadband spectroscopy experiments on the mixture of picoline and PMMA revealed a solvent process
much slower than its α-relaxation.400 The perfect selectivity in simulations performed here confirm
this observation. The option to calculate coherent and incoherent correlation functions reveals
that in this dynamically asymmetric binary mixture the solvent contribution at low frequencies in
coherent measurements is almost entirely traced back to cross correlations. This agrees well with the
discrepancies between 2H NMR and BDS measuring incoherent and coherent correlation functions,
respectively. In particular, the self correlation of the solvent does not consist of two dynamically
separate species. Translation measured with the ISF also shows only one stretched exponential decay.
Coherent scattering contains solvent density fluctuations and their decay on the time scale of the
matrix. This observation for density–density fluctuations is consistent with theoretical calculations
based on the MCT.402

This long-lived preferred localization in coherent scattering and the significantly faster decay of
the ISF imply that solvent molecules exchange locations multiple times before the matrix relaxes.
Point-to-set correlations show an increased likelihood of distinct overlap above the long-time random
value, a feature nonexistent in pure bulk. A combination of distinct overlap and coherent rotational
correlation functions reveals the relevant mechanism, fast replacement of solvent molecules within
a slowly changing energy landscape. Cross correlations in case of distinct overlap are significant
and decay only with the structural relaxation of the matrix. Solvent–solvent and solvent–matrix
interactions not only cause energetically favorable locations but also orientations. The interaction is
weak enough to allow translation and exchange of solvent molecules. The energy landscape imprinted
on the solvent by the matrix causes these favorable locations to be long-lived.

The total intensity of long-lived cross correlations consists of not only distinct overlap but also
solvent–matrix cross correlations, if applicable for the system and experiment, and cross correlations
among favorable locations. Latter appear trivially since cross correlations between favorable locations
will exist independent of the identity of the occupying molecules because of the above mechanism.
Furthermore, three factors are relevant to whether or not and how strongly a coherent measurement
will observe cross correlations: the interaction and the energy difference for correlated orientation,
the vector of the molecule that is probed, and the correlation function on said vector. In particular,
the combination of all three is important and determines the sensitivity to cross correlations.

As expected, the solvent mobility correlates strongly with the local environment, e.g., the local
concentration. This allowed the resolution of a broad distribution of mobilities that is nevertheless
unimodal. The time scale on which ergodicity in terms of solvent mobility is recovered could be
identified and agrees with the autocorrelation of local concentration. This happens on significantly
longer times than the solvent α-relaxation, on the edge of the broad distribution, and appears to
decouple from the matrix relaxation. In general, it should not be longer than the structural relaxation
of the matrix. While this process is most likely not spectrally active, i.e., is not detectable by most
experiments, it is relevant in NMR. The relaxation of magnetization caused by spin-lattice interaction
becomes non-exponential at low temperatures, when dynamical exchange becomes slower than T1,
the spin-lattice relaxation time. How this plays a role in the interpretation of data, e.g., for 2H NMR
of hydrated proteins,52 remains to be studied.

Finally, these two phenomena, solvent cross correlations but absent self correlation on long time
scales and the mechanism, have been superficially investigated for several other mixtures. The former
occurs in nonpolar polymer-plasticizer mixtures and hydrogen bonding biological systems. The latter
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10. Cross correlations in asymmetric binary mixtures

is not always observable with the simple algorithms applied here but cannot be ruled out. It may
be worthwhile to develop a more general approach that tracks positions relative to the matrix. In
any case, the findings presented here can be relevant in a wide variety of systems and revisiting
them is important.52,53,58,59,412,413 It may be that truly bimodal solvent self-dynamics are rarer than
expected, more specifically when the slow subset is on the time scale of the solute. However, they
may exist in more complex systems for example for structurally integrated solvent molecules like
hydrogen bonded water stabilizing the tertiary structure of proteins or larger solvent molecules like
trimethyl phosphate.414 Even then, interpretation of the relaxation strength of slow processes in
coherent measurements has to be done with great care as to not overestimate the fraction of slow
particles. The mechanism itself could be general, since minor details in local configurations and the
related energy differences take over at sufficiently low temperatures, where entropy becomes less
relevant. However, it may be ill defined or absent for larger solvent molecules with internal degrees of
freedom. In that case investigation of molecule fragments might be necessary. A better understanding
of these phenomena is necessary for correct interpretations of coherent measurements. Clever series
of experiments or complementary incoherent measurements, e.g., with NMR, are crucial.
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11. Summary

In this work, extensive MD simulations were performed to investigate the properties of supercooled
liquids. A main focus was the polyamorphism of water in its supercooled regime. Furthermore, the
effects of nanoscopic confinements on the structure and dynamics of liquids was studied and corre-
sponding length scales were determined. Finally, liquid mixtures composed of molecules with strongly
different dynamics were investigated and the interpretation of results from various experimental
methods was critically discussed. In several of these analyses, it was exploited that charge scaling
allows for a systematic variation of the liquids’ structure and dynamics.

It was possible to confirm the polyamorphism of water-like systems, which is supposed to exist
in real water but be hidden in the no-man’s land. The temperature dependence of the structural
relaxation was investigated across a large temperature range and with constant or evolving structural
properties. In particular, the relation between fragile-to-strong transitions in the supercooled regime
and the existence of two water phases was explored.

The mobility of charge-scaled water was found to decrease significantly with increasing charge-
scaling factor q. The high-temperature activation energy E∞ and the glass transition temperature Tg
show a similar q dependence so that E∞/Tg ∼ 11 is constant. Hence, E∞ appears to be a relevant
energy scale for the entire temperature range of supercooled liquids. The evolution of local structure
with temperature remained qualitatively similar in a significant range of q values. However, the
density maximum disappeared for the highest values of q because the expanding second next-neighbor
shell can no longer compensate the common contraction upon cooling.

Furthermore, charge scaling enabled a thorough exploration of the polyamorphism of water-like
systems. Isochore crossing showed that a liquid-liquid phase transition (LLPT) line ending in a
liquid-liquid critical point (LLCP) exists for the TIP4P/2005 water model at charge scaling factors
from q = 0.86 to q = 0.91. The data was characterized with the two-structure equation of state
(TSEOS) formalism which not only allows for a reliable determination of the location of the LLCP
but also for extra- and interpolations in the phase diagram. The critical temperature Tc, pressure
Pc, and density ρc were all found to shift to lower values with decreasing q and it was confirmed
that for models of water-like systems an LLCP at negative pressure can exist. Charge scaling and
an extrapolation may be taken into consideration for estimation of the LLCP location in systems
that are otherwise too viscous for current simulation studies. Given the abundance of simulations of
water-like models that have an LLCP, it is likely that the same is true for real water.

Because reducing q led to faster dynamics at the LLCP, it was possible to observe high-density
(HDL) and low-density liquid (LDL) phases in coexistence. Dynamics within each phase could be
determined since the phases below the LLCP are stable on time and length scales greater than the
structural relaxation. The results revealed that the high fragility of water at pressures below the
LLCP is caused by rapid transition across isomorphs with constant fractions of high-density and
low-density local structures. Along isomorphs the water-like systems behave like very strong liquids.
The explanation of the suspected fragile-to-strong transition (FST) of real water as the transition from
a fragile to a strong liquid could not be confirmed. However, two-state models for water dynamics by
Tanaka and coworkers and by Caupin and coworkers120,218 also failed to describe all observations.
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11. Summary

Hence, a good description of dynamics within reactive binary mixtures is still missing.
The temperature dependence in the high-temperature regime and close to the LLCP cannot be

attributed to either the HDL or the LDL phase. However, their stable coexistence in elongated systems
allowed the analysis of short-range dynamics. The translational and rotational mobility was found to
decrease by about two orders of magnitude from HDL to LDL and follow Arrhenius behavior for both
phases in the temperature range studied, consistent with experimental observations for HDA and
LDA above their glass transitions.13 The results support the notion that translational and rotational
motion do not decouple within the no-man’s land.

A family of functional forms for the temperature dependence of structural relaxation of liquids
was derived from a suitable series expansion and basic requirements for the temperature dependent
activation energy E(T ). The resulting functions are capable of describing the dynamics in the full
temperature regime from the boiling point to the glass transition for a large number of model
and real liquids. In particular, the approach allows one to capture the existence of an FST. When
deviations from a Vogel-Fulcher-Tammann (VFT) behavior do not occur, first-order solutions suffice.
The second-order parameter becomes necessary if deviations from VFT behavior or even an FST
exist. The Cohen-Grest model also adequately describes the low-temperature regime for systems
with moderate deviations from VFT behavior and without, but it fails at higher temperatures. The
derived functional forms of second order feature an inflection point in the Arrhenius plot, a maximum
in Ea = d ln(τ/τ∞)/dT−1, and a second Arrhenius regime at stronger supercooling, i.e., they
describe strong-fragile-strong behavior (SFSB). The difference in activation energies of the high- and
low-temperature Arrhenius laws determines whether the inflection point and the low-temperature
Arrhenius regime are observable above Tg. The inflection point is missing from the Cohen-Grest
model, which has no maximum in Ea but in its derivative, and thus a qualitatively different FST.
Knowing whether the existence of a low-temperature limit of the activation energy is universal to
all liquids and, subsequently, unraveling its microscopic origin is an important step towards a full
understanding of the dynamics of supercooled liquids.

In addition, the effects of nanoscopic confinements on charge-scaled water models were analyzed.
For this purpose, neutral confinements were used to avoid spurious liquid-matrix interactions and
significant alterations of the structure of the liquid at the interface. The generally observed strong
gradients of structural and dynamical properties at the liquid-matrix interface were found and the
related static and dynamic correlation lengths were determined. Their relation to bulk-like behavior in
the pore center was investigated. For all studied charge-scaled water models the dynamic correlation
length at isokinetic points was the same. It was analyzed to which extent the growing length scales
in neutral confinement can be used to explain the increasing activation energy of the bulk liquids in
their supercooled regimes. For example, the RFOT theory91 was be applied and the data collapsed
with the static correlation lengths and universal parameters for q ≥ 0.9, whereas deviations occurred
for smaller charge-scaling factors. Also, the ratio of E∞ to the onset temperature below which the
slowdown at the interface becomes increasingly relevant differs between these two sets of charge-
scaled variants. The results for the vibrational correlation length and the dynamical gradient are not
reconcilable with the shoving model. Thus, a universal understanding in these models is still missing.

The relative slowdown ζ of the structural relaxation at the pore wall with respect to the pore center
was analyzed in more detail. Firstly, ζ appears to follow an Arrhenius law for sufficient supercooling
and its temperature dependence can be characterized using a constant activation energy ∆Eζ and an
onset temperature T0. This constant activation energy can explain the reduced fragility of dynamics
at interfaces. Additionally, ∆Eζ/E∞ was found to be approximately the same for all charge-scaled
systems suggesting that the high temperature activation energy in the bulk is also relevant in neutral
confinements. Future work could investigate whether ∆Eζ(d) is independent of the distance to the
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pore wall and a self-consistent set of equations for τ(d, T ) can be derived. However, due to the limited
temperature range and moderate supercooling of simulation studies, it is also possible that ∆Eζ has
a weak temperature dependence.

Moreover, the static energy landscape imposed by the atoms of the confinement on the neighboring
liquid was investigated. For this purpose, the persistent fluctuations of the local particle density
in the interfacial region were determined and Boltzmann statistics was used to obtain the energy
landscape from the spatially resolved density distribution. Good agreement with the mobility gradient
across the pore was observed when assuming that translation of molecules requires overcoming the
energy barriers within this PEL in addition to those in bulk. Thus, the slowdown at the pore wall
can quantitatively be rationalized based on the additional static energy landscape resulting from the
liquid-matrix interaction.

Lastly, dynamically asymmetric binary mixtures were simulated to determine the origin of a slow
solvent process observed, e.g., with broadband dielectric spectroscopy BDS.400 Using the capabilities
of MD simulations, it was shown that the slow process cannot be attributed to a fraction of slow
solvent molecules but is caused by their long-lived cross correlations, which explains the discrepancies
between incoherent measurement methods, e.g., 2H NMR, and coherent measurement methods,
e.g., BDS. The slow relaxation of the solute molecules causes long-lived density fluctuations for the
solvent molecules, which are probed via cross correlations in coherent measurements. The energy
landscape imposed by the solute on the solvent creates preferred locations and orientations, as
was confirmed using point-to-set correlation functions in combination with rotational correlation
functions. Hence, cross correlations result because several solvent molecules occupy the same location
and show the same orientation before a renewal of the preferred configurations is brought about
by solute relaxation. This mechanism was confirmed by further analyses, which revealed that the
distribution of correlation times of solvent dynamics is unimodal but very broad due to a significant
spatial variation of the local concentration. Because of all of this complexity, identification of a slow
solvent process from coherent measurements has to be done with great care and should be scrutinized
by performing incoherent measurements.

Both the neutral confinements as hard confinements and the solute molecules in mixtures as soft
confinements imprint a PEL on the liquid. Future studies could extend the analysis of the PEL based on
Boltzmann statistics not only to hard confinements of other geometries, but also to macromolecules.
An analysis that includes orientations in such systems could help rationalizing the amplitudes of
cross correlations in rotational correlation functions. In addition, further studies could attempt to
calculate the temporary PEL contribution of dynamic heterogeneities in supercooled liquids, with
suitable artificial interactions or even in bulk directly. Moreover, short-lived structures in bulk that
may cause cross correlations at intermediate times and their relation to self correlation could be
studied in more detail with simulations.

Furthermore, the charge-scaled silica and water models share many features, e.g., their density
anomalies and their pronounced or at least indicated FSTs. Hence, it is likely that the findings for the
charge-scaled TIP4P/2005 systems with confirmed LLPT are also important to the other silica- and
water-like and systems and, in general, to all liquids with competing compressed high-energy and
spacious low-energy local structures. Moreover, a true liquid polyamorphism with an LLPT may not
be required for SFSB. In fact, it could be that an FST generally occurs in liquids with a rapid change
in local structures with temperature followed by a weaker temperature dependence upon further
supercooling but still above Tg. Such behavior should leave traces in the temperature dependence
of the configurational specific heat and entropy, as is the case for the charge-scaled TIP4P/2005
water models. In particular, it is important to know whether HDL also exhibits SFSB and if this is due
to saturation of a high-density local structure, as opposed to the low-density tetrahedral structure
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11. Summary

of LDL. This would mean that differences in local structure do not have to be large in density. In
addition, the functional forms of second order could be used to identify other promising molecular
glass formers from the literature. Expanding the analyses within this work to a broader variation of
liquids could reveal if the SFSBs with and without inflection point share a common origin. To this
end, systematic modifications such as charge scaling of existing molecules as well as their adaption
as model systems could make the relevant temperature regimes more accessible and advance the
understanding of supercooled liquids.
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[400] T. Böhmer, R. Horstmann, J. P. Gabriel, F. Pabst,
M. Vogel, and T. Blochowicz. “Origin of Ap-
parent Slow Solvent Dynamics in Concentrated
Polymer Solutions”. In: Macromolecules 54.22
(2021), pp. 10340–10349. doi: 10.1021/acs.
macromol.1c01414 (cit. on pp. 166, 167, 171,
175, 181, 185).

206

https://doi.org/10.1038/nphys1050
https://doi.org/10.1038/nphys2133
https://doi.org/10.1038/nphys2133
https://doi.org/10.1103/physrevlett.108.225506
https://doi.org/10.1103/physrevlett.108.225506
https://doi.org/10.1021/acs.jpclett.5b02010
https://doi.org/10.1021/acs.jpclett.5b02010
https://doi.org/10.1209/epl/i2000-00435-1
https://doi.org/10.1209/epl/i2000-00435-1
https://doi.org/10.1103/physrevlett.92.255901
https://doi.org/10.1103/physrevlett.92.255901
https://doi.org/10.1103/physreve.70.061504
https://doi.org/10.1103/physreve.70.061504
https://doi.org/10.1103/physrevb.60.3169
https://doi.org/10.1103/physrevb.60.3169
https://doi.org/10.1103/physreve.69.041503
https://doi.org/10.1103/physreve.69.041503
https://doi.org/10.1103/physrevlett.93.235701
https://doi.org/10.1063/1.5095198
https://doi.org/10.1063/1.465742
https://doi.org/10.1063/1.465742
https://doi.org/10.1063/1.3431537
https://doi.org/10.1063/1.3431537
https://doi.org/10.1021/jp110506z
https://doi.org/10.1103/physrevb.74.014201
https://doi.org/10.1103/physrevb.74.014201
https://doi.org/10.1140/epje/i2019-11909-5
https://doi.org/10.1140/epje/i2019-11909-5
https://doi.org/10.1016/0032-3861(75)90188-3
https://doi.org/10.1016/0032-3861(75)90188-3
https://doi.org/10.1063/1.4861428
https://doi.org/10.1021/acs.macromol.1c01414
https://doi.org/10.1021/acs.macromol.1c01414


Bibliography

[401] L. Nilsson and B. Halle. “Molecular origin of time-
dependent fluorescence shifts in proteins”. In: Proc.
Natl. Acad. Sci. U.S.A. 102.39 (2005), pp. 13867–
13872. doi: 10.1073/pnas.0504181102 (cit.
on p. 166).

[402] Y. Kaneko and J. Bosse. “Dynamics of binary liquids
near the glass transition: a mode-coupling theory”.
In: J. Non-Cryst. Solids 205-207 (1996), pp. 472–
475. doi: 10.1016/s0022-3093(96)00262-
1 (cit. on pp. 167, 181).

[403] J. Bosse and Y. Kaneko. “Motion of Interacting Par-
ticles in a Disordered Medium”. In: Prog. Theor.
Phys. Supp. 126.0 (1997), pp. 13–20. doi: 10.
1143/ptp.126.13 (cit. on p. 167).

[404] T. Voigtmann. “Multiple glasses in asymmetric bi-
nary hard spheres”. In: EPL 96.3 (2011), p. 36006.
doi: 10.1209/0295-5075/96/36006 (cit. on
p. 167).

[405] J. G. Kirkwood. “The Dielectric Polarization of
Polar Liquids”. In: J. Chem. Phys. 7.10 (1939),
pp. 911–919. doi: 10.1063/1.1750343 (cit.
on p. 171).

[406] T. Sato, T. Tsuneda, and K. Hirao. “A density-
functional study on π-aromatic interaction: Ben-
zene dimer and naphthalene dimer”. In: J. Chem.
Phys. 123.10 (2005), p. 104307. doi: 10.1063/
1.2011396 (cit. on p. 173).

[407] R. P. Kambour, J. M. Kelly, B. J. McKinley, B. J.
Cauley, P. T. Inglefield, and A. A. Jones. “Spectro-
scopic studies of diluent motion in glassy plasti-
cized blends”. In: Macromolecules 21.10 (1988),
pp. 2937–2940. doi: 10.1021/ma00188a008
(cit. on p. 175).

[408] R. Böhmer, B. Schiener, J. Hemberger, and R. V.
Chamberlin. “Pulsed dielectric spectroscopy of su-
percooled liquids”. In: Z. Phys. B Condens. Matter
99.1 (1995). doi: 10.1007/s002570050015
(cit. on p. 175).

[409] K. Schmidt-Rohr and H. W. Spiess. Multidimen-
sional Solid-State NMR and Polymers. Elsevier,
1994. isbn: 978-0-08-092562-2. doi: 10.1016/
c2009-0-21335-3 (cit. on pp. 175, 176).

[410] A. Heuer, M. Wilhelm, H. Zimmermann, and H. W.
Spiess. “Rate Memory of Structural Relaxation in
Glasses and Its Detection by Multidimensional
NMR”. In: Phys. Rev. Lett. 75.15 (1995), pp. 2851–
2854. doi: 10.1103/physrevlett.75.2851
(cit. on pp. 175, 176).

[411] G. Williams and D. C. Watts. “Molecular mo-
tion in the glassy state. The effect of tempera-
ture and pressure on the dielectric βrelaxation
of polyvinyl chloride”. In: Trans. Faraday Soc. 67
(1971), p. 1971. doi: 10.1039/tf9716701971
(cit. on pp. 178, 238).

[412] S. Cerveny and J. Swenson. “Dynamics of super-
cooled water in a biological model system of the
amino acid l-lysine”. In: Phys. Chem. Chem. Phys.
16.40 (2014), pp. 22382–22390. doi: 10.1039/
c4cp02487g (cit. on p. 182).

[413] A. Nasedkin, S. Cerveny, and J. Swenson. “Molecu-
lar Insights into Dipole Relaxation Processes in Wa-
ter–Lysine Mixtures”. In: J. Chem. Phys. B 123.28
(2019), pp. 6056–6064. doi: 10.1021/acs.
jpcb.9b01928 (cit. on p. 182).

[414] T. Körber, B. Pötzschner, F. Krohn, and E. A. Rössler.
“Reorientational dynamics in highly asymmetric
binary low-molecular mixtures—A quantitative
comparison of dielectric and NMR spectroscopy re-
sults”. In: J. Chem. Phys. 155.2 (2021), p. 024504.
doi: 10.1063/5.0056838 (cit. on p. 182).

[415] J. Rieger. “The glass transition temperature of
polystyrene”. In: J. Therm. Anal. 46.3-4 (1996),
pp. 965–972. doi: 10.1007/bf01983614 (cit.
on p. 241).

[416] L. Heyer. “Investigation of L-lysine oligomer water
solution properties using molecular dynamics sim-
ulations”. MA thesis. TU Darmstadt, 2019 (cit. on
p. 241).

[417] R. B. Best, W. Zheng, and J. Mittal. “Balanced Pro-
tein–Water Interactions Improve Properties of Dis-
ordered Proteins and Non-Specific Protein Associ-
ation”. In: J. Chem. Theory Comput. 10.11 (2014),
pp. 5113–5124. doi: 10.1021/ct500569b (cit.
on p. 241).

[418] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman,
and D. A. Case. “Development and testing of a
general amber force field”. In: J. Comput. Chem.
25.9 (2004), pp. 1157–1174. doi: 10.1002/jcc.
20035 (cit. on p. 241).

[419] C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Koll-
man. “A well-behaved electrostatic potential based
method using charge restraints for deriving atomic
charges: the RESP model”. In: J. Chem. Phys.
97.40 (1993), pp. 10269–10280. doi: 10.1021/
j100142a004 (cit. on p. 241).

[420] J. Reusing. “MD Simulationen zur Untersuchung
der positionsaufgelösten Dynamik Myoglobins in
topographischen Nanoporen MD simulations of
position resolved dynamics for myoglobin in to-
pographic nano pores”. BA thesis. TU Darmstadt,
2019 (cit. on p. 242).

[421] G. Kachalova, A. Popov, and H. Bartunik. ATOMIC
RESOLUTION CRYSTAL STRUCTURE ANALYSIS
OF NATIVE DEOXY AND CO MYOGLOBIN FROM
SPERM WHALE AT ROOM TEMPERATURE. 1999.
doi: 10.2210/pdb1bzr/pdb (cit. on p. 242).

207

https://doi.org/10.1073/pnas.0504181102
https://doi.org/10.1016/s0022-3093(96)00262-1
https://doi.org/10.1016/s0022-3093(96)00262-1
https://doi.org/10.1143/ptp.126.13
https://doi.org/10.1143/ptp.126.13
https://doi.org/10.1209/0295-5075/96/36006
https://doi.org/10.1063/1.1750343
https://doi.org/10.1063/1.2011396
https://doi.org/10.1063/1.2011396
https://doi.org/10.1021/ma00188a008
https://doi.org/10.1007/s002570050015
https://doi.org/10.1016/c2009-0-21335-3
https://doi.org/10.1016/c2009-0-21335-3
https://doi.org/10.1103/physrevlett.75.2851
https://doi.org/10.1039/tf9716701971
https://doi.org/10.1039/c4cp02487g
https://doi.org/10.1039/c4cp02487g
https://doi.org/10.1021/acs.jpcb.9b01928
https://doi.org/10.1021/acs.jpcb.9b01928
https://doi.org/10.1063/5.0056838
https://doi.org/10.1007/bf01983614
https://doi.org/10.1021/ct500569b
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1021/j100142a004
https://doi.org/10.1021/j100142a004
https://doi.org/10.2210/pdb1bzr/pdb


Acronyms

Acronyms

MD molecular dynamics

SPC/E simple point charge extended
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BDS broadband dielectric spectroscopy

DSC differential scanning calorimetry

NMR nuclear magnetic resonance

DDLS depolarized dynamic light
scattering

AG Adam-Gibbs
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ECNLE elastically collective nonlinear
Langevin equation

MCT mode-coupling theory
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HDL high-density liquid
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LLCP liquid-liquid critical point

LLPT liquid-liquid phase transition
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LSI local structure index

KWW Kohlrausch-Williams-Watts

ISF incoherent intermediate scattering
function
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FT Fourier transform
LJ Lennard-Jones
MC Monte-Carlo
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PBC periodic boundary conditions
PEL potential energy landscape
PMMA poly-methylmethacrylate
RDF radial pair-distribution function
SD Stokes-Debye
SE Stokes-Einstein
SED Stokes-Einstein-Debye
TSEOS two-structure equation of state
SLR simple-liquid regime
HTR high-temperature regime
LTA low-temperature Arrhenius
HTA high-temperature Arrhenius
eHTR extended high-temperature regime
FST fragile-to-strong transition
FOF first-order function
rFOF reciprocal first-order function
SOF second-order function
rSOF reciprocal second-order function
CG Cohen & Grest
SFB strong-to-fragile behavior
SFSB strong-fragile-strong behavior
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A. Appendix

A.1. Charge scaled water models
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Figure A.1.: (a) Oxygen-oxygen radial pair-distribution functions g(r), see Sec. 5.1.1, for several of
the charge-scaled variants of the SPC/E water model at atmospheric pressure and
the lowest simulated temperatures. (b) The average tetrahedral order parameter ⟨Q⟩,
see Sec. 5.1.3, for the charge-scaled variants of SPC/E water model at atmospheric
pressure. The inset shows the probability distribution of Q at the lowest temperature
for q = 0.7, 1.0, and 1.25. (c) The average oxygen-oxygen distance to the first four (solid
lines) and fifth to eighth (dashed lines) next neighbors of the charge-scaled variants of
the SPC/E water model. The charge-scaling factor q is given in the legend. Figures 6.2(a),
6.3(a), and 6.4(a) of the main text present the data for the TIP4P/2005 water model,
respectively.
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Figure A.2.: Measures of dynamics at 300K for several charge-scaled variants of TIP4P/2005:
(a) translation probed with the MSD of the oxygen atoms and (b) rotation probed by
F1,OH, see Sec. 5.2.2 and 5.2.3, respectively. The charge-scaling factor q is given in the
legend. In (a), solid yellow lines indicate fits to Eq. (5.24), yielding the self-diffusion
coefficients D. In (b), solid yellow lines are fits to a KWW function, Eq. (2.5), and to
a sum of two KWW functions for q ≤ 1. The gray dashed line indicates the criterion
for the determination of the correlation time τe. Figure 6.5 of the main text shows the
respective results for the SPC/E variants.
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5 10 15
1000 K/T

10 1

100

101

102

103

104

e i
n 

ps

(a) S22, 7

0.70
0.75
0.80
0.85
0.90
0.92
0.94
0.96

0.98
1.00
1.05
1.10
1.15
1.20
1.25

5 10 15
1000 K/T

101

102

103

104

105

106

107

D
1  i

n 
ps

/n
m

2

(b) MSD

0.70
0.75
0.80
0.85
0.90
0.92
0.94
0.96

0.98
1.00
1.05
1.10
1.15
1.20
1.25

0 5 10
1000 K/T

100

101

102

103

104

105

e i
n 

ps

(c) F1, OH
TIP4P/2005

0.7
0.8
0.9
1.0
1.1

1.2
1.3
1.4
1.5

5 10 15
1000 K/T

100

101

102

103

104

105

e i
n 

ps

(d) F1, OH
SPC/E

0.70
0.75
0.80
0.85
0.90
0.92
0.94
0.96

0.98
1.00
1.05
1.10
1.15
1.20
1.25

Figure A.3.: Dynamical properties of the charge-scaled variants of the TIP4P/2005 and SPC/E
water models. (a) and (b) present respective SPC/E data to Fig. 6.6(b) and (c): (a) the
correlation time τe for the ISF with wavenumber 22.7nm−1 and (b) the self-diffusion
coefficient determined with the MSD. (c) and (d) present the correlation time τe as
determined with the rotational correlation function F1,OH for the TIP4P/2005 and SPC/E
variants, respectively. The charge-scaling factor q is given in the legends.
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Figure A.4.: The exponent β of a power law fit D = α · τβe with the self-diffusion coefficient D and
different correlation times τe for the charge-scaled variants of the TIP4P/2005 (a) and
SPC/E (b) water models. Solid and open symbols represent rotational autocorrelation
functions with Legendre polynomials of rank ℓ = 1 and ℓ = 2, respectively. The normal
on the HOH plane is denoted n⃗. The power-law fit was limited to 2 · 10−4 nm2

ps > D >

5 · 10−7 nm2

ps to ensure supercooled dynamics and avoid data of poor statistics.
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Polyamorphism in charge scaled TIP4P/2005

A.2. Polyamorphism in charge scaled TIP4P/2005

A.2.1. Pressure of isochores
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Figure A.5.: Isochore data of the charge-scaled TIP4P/2005 water model in the P-T diagram in
ascending order from q = 0.86 (a) to q = 0.91 (f). The respective densities are given in
the legend. The colored solid lines are the result of the TSEOS analysis and indicate the
data points that were included in the fit routine. The red crosses on black circles mark
the position of the LLCP, the black solid lines are the LLPT, and the black dashed lines
the Widom line. Note, that the axis range varies between the graphs.

221



Appendix

A.2.2. Pressure with phase separation

Knowing that phase separation occurs in the elongated systems, it may be questionable to compare
them with the cubic systems directly. Since both simulation series follow isochores, the resulting
pressure may be different. Figure A.6 presents the time averaged pressure P of elongated systems
alongside TSEOS interpolations of data from cubic systems, see Fig. 7.1(a). The data for both systems
at the same density agrees within small scattering of the data. The pressure of other isochores with
cubic geometry is significantly different.
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Figure A.6.: Time-averaged pressure P of simulations with the charge-scaled TIP4P/2005 water
model with q = 0.86. The open circles are data for the elongated system with ρ =
925 kg/m3 ≈ ρc, N = 2000 molecules and aspect ratio 1 : 1 : 3. All isochores are shown
to assess how well the data matches. For clarity, the data for cubic systems is shown
as interpolations with the TSEOS from Fig. 7.1. The LLCP is marked as a black cross on
a red circle and the LLPT line and Widom line are indicated by a solid black and dashed
black line, respectively.
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Spatially resolved density and structure
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Figure A.7.: Spatially resolved structural properties of the charge-scaled TIP4P/2005 water model
with q = 0.88 simulated at ρ = 940 kg/m3, T = 125K and in elongated geometry: (a)
ρL/ρ, (b) IL and xLSI,L, (c) N4,L, and d5,L. Presented is data at the beginning, middle and
end of the trajectory. The structural identifiers were averaged over δz = 1nm thick
layers centered on each oxygen and perpendicular to the z-axis. To reduce noise the
properties were averaged over short periods of time and a low-pass filter was applied
to further reduce artifacts caused by the discretization of the number of particles in a
layer. At the top, data is shown for Lx : Ly : Lz ≡ 1 : 1 : 3 and N = 2000 molecules at
T = 132K > Tc. At the bottom, data is shown for Lx : Ly : Lz ≡ 1 : 1 : 6 and N = 12000
molecules at T = 124K < Tc
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Figure A.8.: Probability distributions of the layer-averaged properties for the charge-scaled
TIP4P/2005watermodel with q = 0.88 and ρ = 940 kg/m3 at the indicated temperatures:
(a) ρL/ρ, (b) IL, and (c) N4,L d5. The results were determined for the larger elongated
system with aspect ratio 1 : 1 : 12 and N = 12000 molecules. The critical temperature
is Tc ≈ 131K and dashed lines indicate results at and above this value in the one-phase
region. For N4,L, xI,L, and d5,L a moving average was applied to reduce artificial noise
due to their discretized values. Figure A.8 in the appendix presents data for the larger
system with N = 12000.
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Polyamorphism in charge scaled TIP4P/2005

A.2.3. Spatially resolved correlation times for charge-scaling q=0.86

In Fig. 7.13 of the main text, data is shown for coexistence in elongated geometries and charge-scaled
TIP4P/2005 with q = 0.88. Figure A.9 presents the corresponding data for the lowest charge-scaling
factor studied, q = 0.86. Correlation functions F1,OH(t) were averaged over subsets with different
layer-averaged structural identifier N4,L, a measure of the LDS fraction. Consistent with q = 0.86,
the correlation times follow Arrhenius-like behavior for subsets with lower LDS fraction while the
temperature dependence appears to be higher for higher LDS fractions N4,L ≥ 0.7. Again, the
correlation time of CN4,L increases significantly below Tc. Only for sufficient cooling below the LLCP
do layers with higher N4,L ≥ 0.7 and lower N4,L ≤ 0.1 LDS fraction appear. As the time scale of
fluctuations of N4,L grows stronger upon cooling below the LLCP, the correlation time of LDL-like
environments can slow down further.
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Figure A.9.: The temperature dependence of mean rotational correlation times τL measured with
F1,OH(t) for environmentswith the indicated layer-averaged structural identifierN4,L. The
data is for charge-scaled TIP4P/2005 systems with q = 0.86 and elongated geometry
with N = 2000 molecules and aspect ratio 1 : 3 : 3 (solid symbols) and N = 12000
and 1 : 1 : 6 (open symbols). Presented are results for simulations with density ρ =
925 kg/m3. For comparison, the time scale τN4 ofN4,L fluctuations from fits ofCN4,L(t) to
KWW functions is shown: (dashed)N = 2000 and (dotted)N = 12000. The arrowmarks
the critical temperature Tc ≈ 124K. Poor statistics for the rarer cases of N4,L = 0.1 and
N4,L = 0.8 allow their investigation only far below the LLCP.
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Single and two-step decays in supercooled water

Rotational correlation times are presented in Sec. 7.4 for simulations into the metastable regime of
charge-scaled TIP4P/2005 water models. They are determined by fits of F1,OH(t) to KWW functions.
It was assured that this is an acceptable model for all simulations in cubic geometry. Figure A.10(a)
presents results on the example of q = 0.86 at T = 116K< Tc and ρ = 925 kg/m3 ≈ ρc, i.e., in the
metastable regime. A single KWW is able to characterize the stretched exponential decay. However,
for elongated systems a double exponential decay characterized by a weighted superposition of
two KWW functions becomes necessary at the same thermodynamic conditions. The reason is the
promoted phase separation.
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Figure A.10.: Rotational correlation functions F1,OH(t) for the charge-scaled TIP4P/2005 water
model with q = 0.86 at T = 116K< Tc and ρ = 925 kg/m3 ≈ ρc in (a) cubic and (b)
elongated geometry with aspect ratio 1 : 1 : 3 and N = 2000 molecules. The solid
black and red lines are fits with a single KWW function and a weighted superposition
of two KWW functions to the data, respectively. The dotted purple and dashed blue line
show the slow and fast contributions, respectively, of the superposition. Their mean
correlation times are ⟨τfast⟩ = 11.4 ns and ⟨τslow⟩ = 212 ns.

226



Polyamorphism in charge scaled TIP4P/2005

A.2.4. Relation between self-diffusion coefficient and LDS fraction
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Figure A.11.: The dependence of the self-diffusion coefficient D on LDS fraction xLD for isochores
of the charge-scaled TIP4P/2005 with q = 0.86. D(T, ρ) is normalized by the value at
ρ = 1030 kg/m3 and the same temperature for clarity. xLD at each T and ρ is calculated
from the TSEOS analysis. Solid lines only connect the points to increase the visibility
of the xLD dependence. Note, that the relation of D and xLD is neither linear and nor
monotonic at the lowest temperatures.
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A.2.5. Test of the Model of Caupin for Isochores
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Figure A.12.: (a) The temperature-dependent self-diffusion coefficients 1/D of the charge-scaled
TIP4P/2005 model with q = 0.86 at the indicated isochores (colored symbols and
dotted lines). Solid lines are global fits of the data to Eq. (7.11). The LDS fraction f is
given by the equilibrium concentration xLD of the TSEOS for the same charge-scaled
system. (b) Equilibrium concentration xLD of the LDS component calculated from the
TSEOS. Isochores with the highest densities were omitted because they are too far
from the range of validity of the TSEOS. The colors in the legend apply to both graphs.
The corresponding data for isobaric conditions is presented in Fig. 7.14.
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A.3. Functional forms of E(T )

A.3.1. Definition of Tg for the self-diffusion coefficient

In Ch. 8, the self-diffusion coefficients D are often extrapolated to the glass transition to determine
Tg. This is a non-standard investigation and a definition has to be defined. The official definition
of Tg is given as the step in differential scanning calorimetry and the analysis and cooling rate are
specified (ISO 11357-2:2020). In addition, the glass transition can be defined by threshold values for
viscosity or structural relaxation time. The latter is a common practice in experimental studies where
correlation times near Tg are available. Typical thresholds are η(Tg) = 1012 Pa·s and τ(Tg) = 1000 s,
although 100 s have also been used.
D at Tg can be estimated from the Stokes-Einstein relation, Eq. (2.6). Using approximations

for water of Tg = 140K, RH = 0.15nm, and the definition η(Tg) = 1012 Pas, D is on the order
of 10−19 nm2/ps. An alternative naive definition for Tg using the self-diffusion coefficient is the
requirement that Tg is reached when D has the same slowdown relative to the prefactor of the
high-temperature Arrhenius law. Typical values for τ∞ are 10−14 to 10−13 s resulting in a relative
slowdown of 16 to 17 orders of magnitude.112 D∞ is on the order of 1nm2/ps for the charge-scaled
variants of the TIP4P/2005 and SPC/E water models in Fig. 8.9. This yieldsD(Tg) ∼ 10−17±1 nm2/ps,
a more conservative threshold since it requires higher diffusivity at the glass transition.

However, the SED relations are often violated and the self-diffusion coefficients D and τ decouple.
Their relation can often be described by a power law in the moderately supercooled regime. Data
from simulations of various systems shown in Ch. 8 is fitted with power laws and extrapolated to
correlation times of 1000 s. The corresponding self-diffusion coefficients are shown in Fig. A.13.
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Figure A.13.: The self-diffusion coefficients D at the glass transition temperature Tg determined
by fitting power laws to the relation of D and τ and extrapolating τ to 1000 s. The
correlation times τ are either from the ISF or from rotational correlation functions
with F1. The wavenumber is k = 10nm−1 for all systems except silica, where it is
k = 20 nm−1. The x-axis marks the length scale of displacements as given by the MSD
at t = τ in the high-temperature regime. The data for the BKS model of silica and the
SPC/E and TIP4P/2005 water models include points for all charge-scaled variants.

The results for D(Tg) scatter around 10−17±1 nm2/ps. Some of the charge-scaled variants of the
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two water models have even lower values, but they are the exception. There is no clear correlation
with the length scale of the displacements at τ in the high-temperature regime. One would expect
that higher self-diffusion coefficients would be required at Tg for larger molecules to experience
significant displacements. The molecules studied in this work are small and deviations from the
finally used value of D, given in Eq. (A.1), are small as well. Hence, a general definition of Tg using
D should not cause significant issues. In particular, the steep temperature dependence near Tg leads
to large differences in D at very minor temperature variations. Conversely, the definition of D should
lead to errors for Tg of at most a few percent. This is sufficient for the analyses performed in this
work.

With the relative slowdown given SED holds and the extrapolations in Fig. A.13, Tg is defined as

D(Tg) = 10−17 nm2/ps = 10−19 cm2/s . (A.1)

Thus, the MSD at 1000 s is about 0.01 nm2 or 1Å2. The plateau value of the MSD at short times is,
for example, 0.007 nm2, 0.005 nm2, and 0.003 nm2 for LW-OTP, glycerol, and water, respectively, at
the lowest temperatures of the simulations in this work. Thus, the system is still barely mobile and
the definition satisfies the expectation that the liquid is indistinguishable from a solid upon further
supercooling.

230



Functional forms of E(T )

A.3.2. Additional figures
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Figure A.14.: Complementary plots to Fig. 8.5. (a) Temperature dependence of the reciprocal self-
diffusion coefficient 1/D(T ) for severalmodel LJ liquids, the Lewis-Wahnströhmmodel
for OTP, and glycerol. The data for the model systems with reduced unit systems has
been rescaled as detailed in Sec. 4.2.2. (b) Master curve of the data on the left with
the rFOF, Eq. (8.17). Ec is calculated from the data and shown as a function of the
exponent in Eq. (8.7). Solid purple lines are fits to Eq. (8.16) and the black dashed line is
a guide to the eye. Gray symbolsmark the eHTR and data points withD ≥ 10−6 nm2/ps,
and are excluded from the fit to avoid data of poor quality. The legend applies to both
plots. The size-to-distance ratios of Roland’s dumbbell mixtures are given in the legend.
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Figure A.15.: Complementary plots to Fig. 8.7(b). Shown are master curves for fits of the FOF (a)
and rFOF (b) to rotational correlation times for various molecular glass formers from
dielectric spectroscopy and light scattering experiments taken from the literature.112
Here, the parametrization of the HTA was fixed during the fits. Ec is calculated from
the data and shown as a function of the exponent in Eq. (8.6) and (8.8), respectively.
The black dashed lines are a guides to the eye. The legends apply to both plots.
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Figure A.16.: The dynamical prefactor 1/D∞ shown as a function of E∞ for the charge-scaled
variants of the SPC/E and TIP4P/2005 water models. Solid lines are fits with a power
law and the exponent θ is given in the legend. Fit parameters are shown for a fit with
the FOF and for separate determination of the HTA. The curves for the latter are shifted
downward by a factor of two.
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Figure A.17.: Comparison of E∞ from fitting the HTA independently and from fitting the FOF and
rFOF, Eq. (8.6) and (8.7), to the self-diffusion coefficients of several molecular glass
formers. The data for water-like systems is the same as in Fig. 8.8 while the non-water
systems are those in Fig. 8.5. The black dashed line is a guide to the eye.
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A.4. Water in neutral confinements

A.4.1. Average static correlation length
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Figure A.18.: (a) Average static correlation lengths ⟨ξs⟩ = ξsta./β · Γ(1/β) as a function of the
correlation time τe,pc in the pore center. The data is the result from fits with Eq. (9.2) to
configurational overlap plateau profiles Q∞(d), as in Fig. 9.6(b), for the charge-scaled
SPC/E water model in neutral confinements. The charge scaling q is given in the legend.
τe,pc is determined from S22.7, Eq. (5.20), for the oxygen atoms.
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A.4.2. Short-time angular displacement
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Figure A.19.: Distance resolved short-time angular displacement θ2(d) in neutral pores of the original
SPC/E water model for two different vectors, dipole moment µ⃗ (a) and OH–bond vector
(b). The angular displacement is taken at t = 1ps. To demonstrate the underlying
exponential behavior, the data is rescaled by the value in the pore center θpc and
diminished by one.
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A.4.3. The potential at the pore wall
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Figure A.20.: (a) The relative slowdown relative to the pore center at several distances to the
pore wall. Correlation times are from the ISF with k = 22.7 nm−1 and the system is a
cylindrical neutral pore with the original SPC/E model of water. The distances to the
pore wall are given in the legend and color-coded from red to green with increasing
distance. The solid lines are fits with Eq. (9.5) to the data. Only temperatures with
τe,pw/τe,pc > 2 are shown and distances with insufficient slowdown are omitted.

The fit of Eq. (9.5) to the temperature dependence of the relative slowdown ζ(d) = τ(d)/τpc
at different distances d to the pore surface can also be performed for rotational correlation times.
Figure A.21 presents the resulting fit parameters for F1,OH and all charge-scaled variants. ∆Eζ and
T0 are rescaled by the high-temperature activation energy E∞ of F1,OH. Despite the scatter of the
data, ∆Eζ/E∞ is close to unity. The ratio of E∞ for both correlation functions given in the inset in
Fig. A.21(a) can be used to rescale the data. In this case,∆Eζ/E∞ is smaller than for correlation times
measured with the ISF. The slowdown at the pore wall is further reduced by the lower T0, indicating
that stronger supercooling is required for the potential energy landscape to become relevant. In
particular, longer correlation times imply greater distances, and thus more averaging over different
dynamics.
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Figure A.21.: Analogous analysis to Fig 9.17. The distance resolved fit parameters (a) ∆Eτ and (b)
T0 in units of E∞ from fits with Eq. (9.5) to correlation times τe(d, T ) from F1,OH within
neutral pores. The charge scaling q is given in the legend. The inset in (a) displays the
ratio of activation energies E∞ of F1,OH and the ISF and can be used to calculate the
values for when the data is rescaled with E∞ from the ISF instead.
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A.5. Cross correlations in asymmetric binary mixtures

A.5.1. Anisotropic reorientation of picoline molecules mixed with PMMA

The incoherent correlation function F inc
1,µ⃗ of the picoline dipole moment, shown in Fig. 10.1(b), shows

two steps that could be interpreted as fast and slow solvent components. Here, the origin of the
two steps in the correlation decay will be discussed. Molecules with a flat structure, as caused by
aromatic rings or variants thereof, have a strong steric interaction. However, rotating the ring plane
by 180°, also called π-flip, does not increase the potential energy in the case of symmetries. The
activation energy for such a flip does not depend on cooperative processes as much as structural
relaxation. Therefore, its temperature dependence is weak and the π-flip may decouple from the
isotropic reorientation for strong supercooling.

The angular van Hove distribution function, the probability distribution of finding a vector at a
later times with an angular deflection α from its original orientation, can be used to study such
anistropic behavior. Usually, the angular van Hove evolves over time from a vibrationally broadened
distribution at θ = 0° to a sine function for isotropic reorientation. Fig. A.22(a) shows the angular van
Hove at intermediate times for three reference vectors, the dipole moment, the plane normal, and a
C–C axis, from the methyl group carbon to its counterpart in the ring. A significant amount of large
angular deflections at 140° and above appears for the latter two vectors indicating π-flips. The dipole
moment also lies within the ring plane but at an angle of about 67° with respect to the presented
C–C bond. In the case of π-flips of the plane normal around this C–C axis, the dipole moment flips by
2 · (90° − 67°) = 46° resulting in a moderate decay of F1 to 0.7. Indeed, the van Hove for the dipole
moment shows increased probability of angular displacements in the range from 30° to over 90°
compared to both other vectors.

The isotropic and π-flip contribution, denoted p(α) and p(β) respectively, to the angular van Hove
of the plane normal were quantified and are presented in Fig. A.22(d) alongside the F1,n⃗ and F2,n⃗.
The correlation function for the α-process is Cα(t) = 1− p(α) while p(β) decays again with isotropic
reorientation at longer times and the correlation function is Cβ(t) = 1− 2 p(β)

1−p(α) . Good agreement is
found between the α-process and F2,n⃗, consistent with the expectation that the Legendre polynomial
of rank 2 is insensitive to the π-flips. Correspondingly, the sensitive F1,n⃗ agrees with Cβ.

Because solvent mobility is broadly distributed and correlated with the local solvent concentration
δφ, see Sec. 10.6, the correlation function have to be investigated for smaller subsets identified by
δφ to avoid smearing out features. The correlation function F1,µ⃗ shifts with δφ as strongly as F2,n⃗

in Fig. 10.7. However, as the local concentration decreases, a slow decay becomes more prominent.
Both correlation times and possibly also both amplitudes do not have the same dependence on δφ.
The correlation functions are fitted by a sum of two KWW functions and a multiplicative sum:

C(t) = Afe−(t/τ1)β1 +A(1− f)e−(t/τ2)β2 (A.2)

C(t) = A
(︂
fe−(t/τ1)β1 + 1− f

)︂
e−(t/τ2)β2 (A.3)

The latter is also referred to as the Williams–Watts ansatz and may be more appropriate since the
slower isotropic reorientation causes a complete loss of correlation.411 However, the fits with both
functions show no discernible differences in quality. Both imply a dependence of the relative amplitude
of the two steps on δφ. A full quantitative analysis is not performed because of the ambiguity of the
fitting model. Nevertheless, the contributions to the ensemble average are obviously nontrivial.

To determine the identity of the two steps they can be compared with the correlation function
of the plane normal with the Legendre polynomials of rank 1 and 2. Figure. A.22(c) shows for one
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subset of local concentrations both KWW fit components to F1,µ⃗ according to Eq. (A.2) and the scaled
F1,n⃗ and F2,n⃗. The slow decay of F1,µ⃗ is comparable to F2,n⃗, which is insensitive to π-flips. Hence,
F2,n⃗ and the slow component of F1,µ⃗ probe the isotropic reorientation associated with the α-process.
The correlation function F1,n⃗ should decay for π-flips with half the correlation time. However, the
fast component of F1,µ⃗ decays on shorter time scales and could be related to different anisotropic
reorientation. For example, benzene was found to rotate rapidly about its symmetry axis.309 Further
analysis of the anisotropic reorientation is beyond the interest of this study, which attempts to identify
general features of asymmetric binary mixtures.

To emphasize the complexity of this system, the dependence of F1,n⃗ and F2,n⃗ on δφ is shown
in Fig. A.22(e). At high local concentrations, the decays of both correlation functions are faster.
However, the concentration dependence is different for both Legendre polynomials. This suggests
that π-flips have a weaker dependence on δφ than isotropic reorientation. That they depend on
the local concentration at all implies that either the energy barrier depends on φ or that the small
asymmetry of picoline leads to slightly different energies for the two flipped orientations in different
local configurations. Either case leads to a suppression of π-flips.

Note that only one picoline α-process is visible in BDS. The observations made here may be
exaggerated in the simulation and not consistent with the real system. However, the picoline spectra
are only visible at strong supercooling where the asymmetry and subsequent interactions could be
significant enough to suppress π-flips, or they are simply not yet in the measured frequency window.
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Figure A.22.: (a) Angular van Hove distribution function for three different vectors of the picoline
molecule at 250K. Only the subset of particles with 25 to 30% of values for the local
density δφ is shown. The time differences are indicated by colors from red to green to
blue and range from 4 to 140 ns. The resulting correlation functions are shown in (d) for
the plane normal. (b) Normalized correlation function F1,µ⃗ at 250K resolved by local
concentration and averaged over subsets each involving 10% of the ensemble. The
black dotted lines are fits with Eq. (A.2). The inset shows the relative amplitude of the
slow process determined by fits with Eq. (A.2) (red circles) and (A.3) (blue squares).
(c) The normalized correlation function F1,µ⃗ for 30 to 40% of local concentrations
(black solid line) is compared with its two KWW fit components (gray lines), as in
(b), F1,n⃗ (green dashed line) and F2,n⃗ (green dotted line) for the same subset. The
latter two are scaled to match the amplitude of the fast and slow KWW components,
respectively. (e) The correlation functions F1,n⃗ (solid lines) and F2,n⃗ (dashed lines) for
the same subsets as in (b).
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A.5.2. Simulation details on the additional binary mixtures

Nonpolar picoline The binary mixture of PMMA and picoline, Sec. 4.4, was simulated with a
nonpolar version of picoline. Removing the dipole moment from the solvent potentially reduces
long-range Coulomb interactions. In order not to change the short-range Coulomb interaction too
much, the sum of the absolute partial charges was kept the same. Thus, there are higher-order
interactions, e.g., quadrupolar interactions. There are infinitely many different solutions for such a
parametrization. Additional constraints were applied, e.g., grouping equivalent atoms and restricting
hydrogen atoms to positive charges. The new parametrization of the partial charges was found by
numerical minimization of the dipole moment and is shown in Fig. A.23. The simulation protocol
and parameters were the same as for the original parametrization.
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Figure A.23.: Chemical formula of picoline (left) and repeat unit of poly-styrol (right). The numbers
indicate the partial charges. In the case of picoline, the partial charges are shown for
the nonpolar version, i.e., without a permanent dipole moment. Created with BKchem
by Beda Kosata.

Oligomerized styrene in benzene As a weakly charged binary mixture, oligomerized styrene was
mixed with benzene. The former has a high Tg of about ∼363K,415 for high molecular weights, and
the latter acts as a plasticizer. Analogous to the PMMA+picoline mixture in Sec. 4.4, the simulation
consisted of 500 benzene molecules and 10 oligo-styrene chains with a length of 50 repeat units.
The simulation protocols and parameters are the same as for the mixture of PMMA and picoline. In
the same way, topologies from the ”automated topology builder” web service were obtained.311,312
The topology for benzene (molid: 804; hash: 536ff) was adopted as is while the parametrization of
oligomerized styrene was combined from topologies of a short (molid: 573883, hash: 068c7) and a
long chain (molid: 345971, hash: b893d). The former has more accurate partial charges while the
latter was used for parameters of bonded interactions. Again, a charge-neutral monomer topology
was derived to allow polymerization of arbitrary length, see Fig. A.23.

Poly-ϵ-lysine in water Simulations of a mixture of poly-ϵ-lysine and water were performed by
Lisa Heyer as part of her master’s thesis.416 In poly-ϵ-lysine, the amino acid lysine is linked via
its ϵ-amino group and α-carboxyl group. The force field is based on AMBER ff03ws.417 Missing
bonded parameters were taken from the general AMBER force field418 and partial charges had to be
recalculated using RESP.419 The force field for water is TIP4P/2005. The length of the polymer is 32
monomers and the degree of hydration is 200wt%. For more details, see the original work.
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Myoglobin in water Simulations of the hydrated protein myoglobin were performed by Jessica
Reusing as part of her bachelor’s thesis.420 Myoglobin is related to the protein hemoglobin and binds
oxygen and iron. It is found in muscle tissue of mammals. It is composed of 153 amino acids and
1608 atoms. The structure was taken from scattering experiments.421 It was simulated with the
GROMOS54a7 united atom force field and mixed with 8000 SPC/E water molecules, giving a degree
of hydration of about 10 wt%. For more details, see the original work.
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