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Zusammenfassung

Diese Dissertation umfasst fünf Artikel, die zwischen 2019 und 2022 in wissenschaftlichen

Fachzeitschriften veröffentlicht wurden. Die Artikel befassen sich mit logistischen Optimie-

rungsproblemen aus drei verschiedenen Themenfeldern mit dem Schwerpunkt Intralogistik. Al-

le betrachteten Optimierungsprobleme weisen starke kombinatorische Aspekte auf. Zur Lösung

der betrachteten Probleme werden verschiedene Lösungsansätze einschließlich unterschiedli-

cher Dekompositionstechniken verwendet.

Artikel 1 beschäftigt sich mit der Optimierung des Layouts und der Lagerplatzvergabe in La-

gern mit U-förmigen Kommissionierzonen. Dabei werden zwei Optimierungsziele betrachtet,

die Minimierung der zurückgelegten Wegstrecke und der körperlichen Belastung des Kommis-

sionierers während der Kommissionierung. Zur Lösung des Problems wird ein semantischer

Dekompositionsansatz vorgestellt, der das Problem in polynomialer Zeit löst. In einer Rechen-

studie zeigt sich, dass beide betrachteten Ziele weitgehend komplementär sind. Darüber hinaus

werden Empfehlungen für eine vorteilhafte Layoutgestaltung und Lagerplatzvergabe abgeleitet.

Artikel 2 betrachtet die Fragestellung, wie Routenzüge mit Transportbehältern beladen werden

sollten, um die physische Belastung des eingesetzten Personals beim Be- und Entladen zu mi-

nimieren. Es wird gezeigt, dass das Problem NP-schwer ist und semantisch dekompositioniert

werden kann. Unter Ausnutzung der Dekomposition wird das Problem exakt mittels dynami-

scher Programmierung und heuristisch mittels einer Greedy Randomized Adaptive Search Pro-

cedure gelöst. Eine anschließende Rechenstudie zeigt, dass beide Verfahren leistungsfähig sind.

Ferner untersucht sie den Einfluss des Designs der Routenzugwagen auf das Optimierungsziel.

Artikel 3 befasst sich mit dem Problem der Belegungsplanung unabhängiger paralleler Aggrega-

te bei Aufträgen mit Zeitfenstern, einem NP-schweren Optimierungsproblem, das unter anderem

bei der Zuweisung von Schiffen zu Liegeplätzen und der Abfertigungsplanung an Lkw-Docks

Anwendung findet. Der Artikel stellt ein exaktes logikbasiertes Benders Dekompositionsverfah-

ren und einen heuristischen Lösungsansatz vor, der auf einer Mengenpartitionierungsformulie-

rung des Problems beruht. Darüber hinaus werden drei verschiedene Ziele, nämlich die Mini-
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mierung der maximal benötigten Zeitspanne, der maximalen Durchlaufzeit und der maximalen

Verspätung, berücksichtigt. Beide Verfahren weisen in der abschließenden Rechenstudie gute

Leistungen auf.

Artikel 4 befasst sich mit dem Problem der Routenplanung bei der Kommissionierung in einer U-

förmigen Kommissionierzone mit dem Ziel, die zurückgelegte Wegstrecke zu minimieren. Das

Problem wird als NP-schwer klassifiziert. Es werden ein exaktes logikbasiertes Benders Dekom-

positionsverfahren sowie ein heuristischer Ansatz basierend auf dynamischer Programmierung

entwickelt, deren Leistungsfähigkeiten mittels Rechenstudie demonstriert werden. Darüber hin-

aus werden verschiedene Lagerplatzvergabestrategien erörtert und in einer numerischen Studie

miteinander verglichen.

Artikel 5 untersucht die Einsatzplanung von elektrisch betriebenen Routenzügen in der inner-

betrieblichen Produktionslogistik. Das Problem wird als Electric Vehicle Scheduling Problem

aufgefasst, bei dem die Routenzüge vorterminierten Fahrten zugewiesen werden müssen. Da die

Reichweite der Routenzüge begrenzt ist, müssen zwischen den Fahrten Ladepausen eingeplant

werden, die zusätzliche Fahrstrecke und Zeit erfordern. Das Ziel besteht darin, die erforderliche

Anzahl an Routenzügen zu minimieren. Das Problem wird als NP-schwer klassifiziert. Zur Lö-

sung wird ein Branch-and-Check-Ansatz vorgeschlagen, der für verschiedene Ladetechnologien

anwendbar ist, einschließlich Batterietausch und kabelgebundenem Laden mit nichtlinearem La-

dungsanstieg. In einer Rechenstudie wird die Eignung des Lösungsansatzes für den praktischen

Einsatz demonstriert. Außerdem wird untersucht, welche Einflüsse die maximale Kapazität der

Batterien und die verwendete Ladetechnologie haben.
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Abstract

This dissertation comprises five papers, which have been published in scientific journals between

2019 and 2022. The papers consider logistic optimization problems from three different subjects

with a focus on intra-logistics. All considered optimization problems have strong combinato-

rial aspects. To solve the considered problems, various solution approaches including different

decomposition techniques are employed.

Paper 1 investigates the optimization of the layout and storage assignment in warehouses with

U-shaped order picking zones. The paper considers two objectives, namely minimizing the

order picker’s walking distance and physical strain during order picking. To solve the problem,

a semantic decomposition approach is proposed, which solves the problem in polynomial time.

In a computational study, both considered objectives are found to be mostly complementary.

Moreover, suggestions for advantageous layout designs and storage assignments are derived.

Paper 2 considers the problem of how to stow bins on tow trains in order to minimize the han-

dling personnel’s physical strain for loading and unloading. The problem is shown to be NP-hard

and decomposed semantically. Utilising the decomposition, the problem is solved exactly with

dynamic programming and heuristically with a greedy randomized adaptive search procedure.

A consecutive computational study shows that both procedures perform well. Beyond that, it

investigates the influence of the tow train wagons’ design on the considered objective.

Paper 3 is concerned with the problem of scheduling jobs with time windows on unrelated paral-

lel machines, which is a NP-hard optimization problem that has applications, i.a., in berth alloca-

tion and truck dock scheduling. The paper presents an exact logic-based Benders decomposition

procedure and a heuristic solution approach based on a set partitioning formulation of the prob-

lem. Moreover, three distinct objectives, namely minimizing the makespan, the maximum flow

time, and the maximum lateness are considered. Both procedures exhibit good performances in

the concluding computational study.

Paper 4 addresses the problem of order picker routing in a U-shaped order picking zone with the

objective of minimizing the covered walking distance. The problem is proven to be NP-hard. An
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exact logic-based Benders decomposition procedure as well as a heuristic dynamic programming

approach are developed and shown to perform well in computational tests. Beyond that, the

paper discusses different storage assignment policies and compares them in a numeric study.

Paper 5 studies scheduling electrically powered tow trains in in-plant production logistics. The

problem is regarded as an Electric Vehicle Scheduling Problem, where tow trains must be as-

signed to timetabled service trips. Since the tow trains’ range is limited, charging breaks need to

be scheduled in-between trips, which require detours and time. The objective consists in mini-

mizing the required fleet size. The problem is shown to be NP-hard. To solve the problem, Paper

5 proposes a branch-and-check approach that is applicable for various charging technologies,

including battery swapping and plug-in charging with nonlinear charge increase. In a computa-

tional study, the approach’s practical applicability is demonstrated. Moreover, influences of the

batteries’ maximum capacity and employed charging technology are investigated.
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I. Introduction

The Council of Supply Chain Management Professionals defines logistics management as the

“part of supply chain management that plans, implements, and controls the efficient, effective

forward and reverses flow and storage of goods, services and related information between the

point of origin and the point of consumption in order to meet customers’ requirements” (CSCMP,

2018). The management of logistic processes plays a crucial role in the success of businesses.

It enables the production of goods and provision of services by coordinating inputs, produc-

tion factors, outputs, supply, and demand in a spacial and timely manner (Yalaoui et al., 2012,

Murphy Jr and Knemeyer, 2018, Blanchard, 2021). Without logistics, almost no business could

operate.

The importance of logistics becomes further eminent on an economic scale. Globally, logistic

operations are estimated to account for 13.7% of the world’s GDP (Bowersox et al., 2003).

In the European Union, the logistic sector (which does not include logistic operations within

companies) has a share of close to 14% on the total GDP (Satta et al., 2011). The European

Commission estimates that in the European Union, on average, logistic expenses contribute to

roughly one eighths of products’ final values; about half of these expenses can potentially be

saved by better logistics management (European Commission, 2022).

Logistics can be divided into external logistics and internal logistics with the latter often being

referred to as intra-logistics (Gudehus and Kotzab, 2012). The former is concerned with logistic

operations in-between geographically separated locations, e.g., the shipments of goods between

different facilities or different agents in a supply chain. The latter considers logistic operations

within a single facility, e.g., a production plant or a logistics center. Important intra-logistic

operations include warehousing and in-plant transport of goods and materials.

Recent trends such as the mass customization of products (Da Silveira et al., 2001, Boysen et al.,

2015), the shortening of product life cycles (Tyulin et al., 2020), or the demand for highly re-

sponsive supply chains (Negri et al., 2017) present various challenges for companies, especially

in a competitive global market. To face these, many manufacturing companies have been re-
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designing their production systems, e.g., by employing flexible production methods (Da Silveira

et al., 2001) or by adopting lean production concepts (Jasti and Kodali, 2015). While this offers

a lot of potential, it also increases the systems’ complexity and requires expanded management

effort (Da Silveira et al., 2001). It is therefore imminent to plan logistics efficiently. This is

especially important for intra-logistics, as is presents an integral part of any production system

(Gudehus and Kotzab, 2012, Boysen et al., 2015).

Various planning aspects that occur in (intra-)logistics management can be translated into math-

ematical optimization problems, where the aim is to select a solution out of a domain of possibil-

ities (i.e., the solution space) to minimize or maximize a certain objective function (Griffis et al.,

2012, Deroussi, 2016). A lot of optimization problems in (intra-)logistics are combinatorial

(or exhibit strong combinatorial characteristics), which means that the solution space presents

a (mostly) discrete set of possibilities (Papadimitriou and Steiglitz, 1998). Classical examples

include the Traveling Salesman Problem (cf., Applegate et al., 2011), Bin Packing (cf., Yao,

1980), or Matching Problems (cf., Lovász and Plummer, 2009).

Many combinatorial optimization problems – especially those classified as NP-hard (for a for-

mal definition, see Garey and Johnson, 1979) – are notorious for being computationally chal-

lenging to solve (Korte et al., 2011). This has sparked intensive research in the development and

refinement of algorithms and procedures that are capable of finding good or, ideally, optimal so-

lutions to combinatorial optimization problems. Some successful approaches include methods

of (mixed-)integer programming (cf., e.g., Wolsey, 2007), problem decomposition techniques,

e.g., Benders decomposition (BD, cf., Rahmaniani et al., 2017), dynamic programming (DP,

Bellman, 1954), and the development of heuristics (cf., Zanakis and Evans, 1981). The suitabil-

ity and performance of different approaches depend on the specific problem, however. Moreover,

the approaches need to be deliberately adapted to a problem’s characteristics.

Motivated by the importance of logistics management, this cumulative dissertation comprises

five papers considering different logistic planning aspects with a focus on intra-logistics. The

papers discuss the respective planning problems, present formal optimization models, and pro-

vide suitable solution procedures. All considered problems have strong combinatorial aspects.

The developed solution procedures utilize various optimization methods with an emphasis on

problem decomposition. Numerical studies are used in all five papers to test and validate the per-

formance of the proposed solution procedures and to attain general insights into the considered

logistic problems. The contribution of this dissertation is therefore threefold: First, it provides

algorithms and procedures to better manage important logistic planning problems. Second, it

contributes to the theory, development, and expansion of solution approaches for (combinato-
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rial) optimization problems. Third, it provides helpful insights for practitioners and researchers

alike.

All papers included in this cumulative dissertation have been published in peer-reviewed scien-

tific journals as shown in Table I.1. Although the papers consider different planning problems

and varying solution approaches, they are linked by multiple aspects: the subjects, the objectives,

and the employed optimization methodology. Table I.2 provides an overview. In the following,

these aspects are discussed. Afterwards, each paper is presented in a separate section.

no. year authors title journal

1 2019 H. Diefenbach, C. H. Glock Ergonomic and economic optimization of layout and item assign-
ment of a U-shaped order picking zone

Computers & Industrial
Engineering

2 2019 H. Diefenbach, S. Emde, C.
H. Glock

Loading tow trains ergonomically for just-in-time part supply European Journal of
Operational Research

3 2020 G. Tadumadze, S. Emde, H.
Diefenbach

Exact and heuristic algorithms for scheduling jobs with time win-
dows on unrelated parallel machines

OR Spectrum

4 2021 H. Diefenbach, S. Emde, C.
H. Glock, E. H. Grosse

New solution procedures for the order picker routing problem in U-
shaped pick areas with a movable depot

OR Spectrum

5 2022 H. Diefenbach, S. Emde, C.
H. Glock

Multi-depot electric vehicle scheduling in in-plant production logis-
tics considering non-linear charging models

European Journal of Op-
erational Research

Table I.1.: Overview of papers included in this dissertation.

paper subject objective optimization methodology

no. titel ware-
housing:
U-shaped
order
picking
zones

intra-
logistic
transport:
tow trains

parallel
machine
schedul-
ing

efficiency ergo-
nomics

(mixed-)
integer
program-
ming

problem
decompo-
sition

logic-
based
BD/
branch-
and-
check

dynamic
program-
ming

heuristics

1 Ergonomic and economic optimization of
layout and item assignment of a U-shaped
order picking zone

✓ ✓ ✓ ✓ ✓

2 Loading tow trains ergonomically for
just-in-time part supply

✓ ✓ ✓ ✓ ✓ ✓

3 Exact and heuristic algorithms for
scheduling jobs with time windows on
unrelated parallel machines

✓ ✓ ✓ ✓ ✓ ✓ ✓

4 New solution procedures for the order
picker routing problem in U-shaped pick
areas with a movable depot

✓ ✓ ✓ ✓ ✓ ✓ ✓

5 Multi-depot electric vehicle scheduling in
in-plant production logistics considering
non-linear charging models

✓ ✓ ✓ ✓ ✓

abbreviations: no. = number; BD = Benders decomposition

Table I.2.: Overview of the contents and methodology of papers included in this dissertation.

I.1. Subjects considered in this dissertation

The papers that make up this cumulative dissertation consider three different subjects: the design

and operation of U-shaped order picking zones, the operation of tow train systems, and parallel

machine scheduling, which, i.a., has applications in truck scheduling and berth allocation.
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Papers 1 and 4 are concerned with the design and operation of U-shaped order picking zones.

Order picking is the process of retrieving items from storage based on (customer) orders. It

is estimated that more than half of a warehouse’s operational costs can be attributed to order

picking (Coyle et al., 1996, De Koster et al., 2007, Tompkins et al., 2010, Richards, 2017),

where, on average, operational warehousing costs account for roughly one fifth of a company’s

total logistics costs (De Koster et al., 2007). Hence, there is a strong incentive to plan and

operate order picking systems efficiently. The majority of order picking systems are so-called

picker-to-parts systems, where human order pickers move through the storage area to collect

required items from stationary storage locations, e.g., racks (De Koster et al., 2007). The main

advantages of these systems are the flexibility of human workers and the lower investment costs

compared to automated parts-to-picker systems (Grosse et al., 2015, Tompkins et al., 2010).

Traditional layout designs for picker-to-parts warehouses consist of racks arranged in parallel

aisles that might be separated by one or multiple perpendicular cross aisles. More recently

proposed layouts, such as the flying-V, fishbone or chevron layouts, extend this concept by

rotating areas of parallel aisles by some angle and/or employing diagonal cross aisles (cf., e.g.,

Pohl et al., 2009, Öztürkoğlu et al., 2012). An alternative to parallel aisle layouts are warehouses

with multiple U-shaped picking zones, which were first described by Glock and Grosse (2012).

Here, the warehouse is separated into multiple zones each containing racks or stacked stillages

(also called pallet cages) arranged in a U-shape with a depot (also called base) in the middle,

where picked items are dropped off. Compared to parallel aisle warehouses, warehouses with

U-shaped order picking zones better facilitate storing items in groups, as each group can be

stored in a separate U-shaped zone. Following this idea, a prominent application for warehouses

with U-shaped order picking zones is part kitting, where parts for different assembly stations are

pre-packed at the warehouse close to the assembly line. Here, the portfolio of parts required at

each assembly station presents a group that is stored in a separate U-shaped zone (Glock and

Grosse, 2012).

Glock and Grosse (2012) identified certain planning problems that need to be solved for ware-

houses with U-shaped order picking zones, which includes determining the layout (i.e., width,

length, and depot location) of a zone’s U-shape, the assignment of items to storage locations (i.e,

stillages) within a zone, and the routing of the picker during order picking. Glock and Grosse

(2012) address the first problem by simply comparing a few layout alternatives. For the sec-

ond problem, they suggest and compare five different storage assignment policies, i.e., simple

rules that assign items to stillages based on their demand rate. The third problem is solved via
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a simple sweep algorithm. Exact solution procedures are not presented, resulting in a lack of

insight into the solution quality of the proposed approaches. Papers 1 and 4 aim to address these

shortcomings.

Deviating from Glock and Grosse (2012) where order pickers pick multiple items per tour, Pa-

per 1 considers a situation where only one items is picked at a time, which eliminates complex

picker routing. Otherwise, the assumptions are in line with Glock and Grosse (2012). For the

remaining problems of finding an optimal layout and storage location assignment, the paper pro-

poses a mixed-integer program (MIP) and an exact polynomial-time solution procedure based

on a decomposition of the problem. The paper considers two different objectives, namely min-

imizing the order picker’s expected walking distance and expected physical strain to process an

order. In a subsequent computational study, it provides insights into the procedure’s runtime,

properties of good layouts and storage assignments, and the trade-off between both considered

objectives.

Paper 4 considers the same situation as Glock and Grosse (2012). It addresses the problem of

simultaneously finding optimal locations for the depot and optimal routes for the order picker

with the objective of minimizing the walking distance during order picking. The problem is

proven to be NP-hard. To solve the problem, the paper develops an exact procedure based on

logic-based BD. Since this procedure struggles to solve problems of practically relevant size in

subsequently conducted computational experiments, the paper also presents a heuristic DP ap-

proach that extends the concept of the sweep algorithm of Glock and Grosse (2012). The newly

developed heuristic is theoretically guaranteed and numerically demonstrated to outperform the

sweep algorithm in a computational study. Besides comparing the performance of the proposed

algorithms, the computational study draws some insights on the position and properties of the

depot, and investigates the influence of differently skewed demand distributions of the stored

items. Beyond that, a new storage assignment policy is proposed and shown to compare favor-

able to the ones considered by Glock and Grosse (2012).

The second subject considered in this cumulative dissertation is intra-logistic transport using tow

train systems; Papers 2 and 5 are concerned with this topic. As mentioned earlier, companies

have been diversifying their product portfolios and adopting lean production strategies to face

current trends and stay competitive in a global market. One principle of lean production is to

minimize stock at the assembly line to reduce search effort and increase productivity (Jasti and

Kodali, 2015). Combined with the need for a vast variety of parts to produce enlarged product

portfolios, this has led to the practice of part kitting (cf., Limère et al., 2012), where required
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parts are pre-sorted and pre-packed in bins at warehouses and delivered to assembly stations in

a cyclic just-in-time manner (Emde et al., 2012). To facilitate the resulting frequent, small-lot

deliveries, tow train systems are often employed.

A tow train (also called tugger train) consists of an electrically powered towing vehicle with a

handful of wagons attached. The wagons are usually equipped with shelves to store and transport

the kitted parts. Typical tow train systems comprise a couple to multiple dozen tow trains, where

each tow train supplies multiple stations with parts. In the majority of tow train systems, human

drivers are responsible for operating the tow trains, which does not only include driving but also

loading and unloading the tow trains (Lieb et al., 2017).

The management of tow train systems requires careful planning in various respects. On the

long-term end, this includes the planning of in-plant warehouse locations; on the operational

level, it includes the routing, scheduling, and loading of tow trains (Emde et al., 2012). Most

of these aspects have been considered by previous research either as individual problems or

in holistic approaches. However, previous planning approaches had only focused on technical

aspects while human factors were mostly ignored. Loading and unloading tow trains manually

requires repeated lifting, lowering and carrying of bins weighing up to multiple kilogram. High

physical strains for tow train drivers are the result. Not only does this entail discomfort for the

drivers, but it also increases their likelihood to develop muscular-skeletal disorders (MSD).

Paper 2 addresses this issue by determining how bins with different parts and therefore different

weights should be assigned to the different wagons, shelves and shelf levels of a tow train to

minimize the driver’s physical strain for loading and unloading the bins. The paper acknowl-

edges the usual planning hierarchy of tow train systems and assumes loads, tours and routes

are already fixed when the tow train is loaded. Furthermore, constraints are applied to ensure

the tow train is loaded in a way that makes unloading at the assembly stations time-efficient

to facilitate the just-in-time delivery concept. The paper presents a MIP model for the consid-

ered problem and proves NP-hardness. It proposes an exact and a heuristic solution procedure

both based on a hierarchical decomposition of the problem. While the exact procedure uses DP

to handle the hierarchically superordinate problem, the heuristic applies a greedy randomized

adaptive search procedure (GRASP). In a computational study, both procedures are shown to

perform well. Moreover, the computational study investigates influences of the relative filling of

the tow train as well as various design aspects of the wagons and shelves.

Tow trains are electrically powered vehicles, as combustion engines are generally not legal on a

shop floor. With current battery technology, they are usually unable to operate for a whole shift

without recharging. Hence, charging breaks need to be scheduled in-between service trips (i.e.,
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trips, where a tow train supplies assembly stations). Previous planning approaches have mostly

ignored this aspect, which results in incomplete or infeasible plans, where trips are timetabled

but not assigned to tow trains in a manner that acknowledges the need for charging breaks. Paper

5 aims to resolve this issue by modeling the problem as an Electric Vehicle Scheduling Problem

with the objective of minimizing the number of required tow trains, which presents the main

cost driver. The paper assumes that tow trains must visit distinct charging stations to recharge

their batteries. It considers different practically relevant charging technologies, including battery

swapping and plug-in charging with realistic non-linear increase of battery charge. An integer

program is formulated and the problem is shown to be NP-hard. To solve the problem, the paper

proposes an exact branch-and-check solution procedure. It is shown to perform well in a com-

putational study, which also draws some insights on the influence of the tow trains’ maximum

battery capacity and the used charging technology.

Paper 3 considers the problem of scheduling jobs with time windows on unrelated parallel ma-

chines. Unlike the previous two subjects that focus on specific intra-logistic aspects, this sub-

ject presents a more generalized optimization problem that has various applications in logistics.

Among them are berth allocation and truck scheduling at truck docks, which are discussed briefly

in the following and in more detail in Paper 3.

In machine scheduling, a job denotes a task that should be processed, which requires a certain

processing time. If jobs have time windows, processing each job should start and finish within a

pre-specified time frame. A machine presents an entity – not necessarily a machine in the narrow

sense – that is used to process jobs. The notion that machines are unrelated means that jobs can

have different processing times on different machines. Parallel machines mean that all machines

are on the same hierarchical level and that there is no requirement for jobs to be processed on a

sequence of machines (Graham et al., 1979).

Berth allocation is a problem from maritime logistics, which deals with the question of how

to assign arriving vessels to quays at a harbor to load and unload cargo (Bierwirth and Meisel,

2010, 2015). In the notion of machine scheduling, quays (which might have different equipment,

e.g., cranes, and therefore different processing speeds) can be considered as parallel unrelated

machines. The jobs are given by the vessels that need to be (un-)loaded. As vessels do not

necessarily need to be processed immediately upon arrival but still have certain due dates, the

jobs have time windows.

Truck scheduling is concerned with the question of how to assign arriving trucks to truck docks

to (un-)load them at a facility, e.g., a distribution center or production plant (Boysen and Flied-
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ner, 2010). Hence, it presents a logistics problem that connects external with internal logistics.

From a machine scheduling perspective, truck docks can be considered as parallel machines.

As the equipment, personnel, and hence processing speed can vary between truck docks, they

present unrelated machines (Tadumadze et al., 2019). Similar to the vessels that need to be

(un-)loaded in berth allocation, the jobs consist in (un-)loading the arriving trucks. It is very

common that trucks have certain time windows, in which they must be processed upon arrival

(Tadumadze et al., 2019).

Paper 3 considers three distinct objectives for the problem of scheduling jobs with time windows

on unrelated parallel machines. The first is to minimize the makespan, i.e., the time when the

last job is completed. The second is to minimize the maximum flow time, i.e., the time between

a job becoming available and being completed. The third is to minimize the maximum lateness,

i.e., the time by which a job’s time window is exceeded if timely completion is not possible.

Depending on the application of the problem, all three objectives can be relevant. Paper 3

presents two novel solution approaches for the problem – an exact logic-based BD procedure

and a heuristic approach based on a generalized set partitioning formulation of the problem. In

a computational study, both approaches are shown to perform well.

I.2. Objectives considered in this dissertation

As described in Section I.1, the papers in this dissertation consider different logistic optimiza-

tion problems with differing objectives. Nevertheless, the objectives can be grouped into two

general categories: (economic) efficiency and ergonomics.

Efficiency is often regarded as the ability to attain a desired outcome with a minimum of invested

input, e.g., time, resources, or cost (Coelli et al., 2005). Following the Council of Supply Chain

Management Professionals’ definition, the strive for efficient plans is an integral part of logistics

management (CSCMP, 2018). Efficiency is therefore the primary objective for the majority of

logistic optimization problems. However, efficiency presents an abstract concept. To serve as the

objective of an optimization problem, it needs to be quantifiable. A usual approach is therefore

to quantify efficiency as time needed to execute a considered logistic task – the lower the time,

the higher the efficiency. Papers 1, 3 and 4 follow that idea.

Paper 1 considers two objectives, where one presents minimizing the order pickers’ walking

distance to process orders. Paper 4 takes an identical approach. Hence, strictly speaking, both
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papers do not consider order processing times directly. However, assuming the pickers’ walking

speed to be constant, the objectives of minimizing walking distances and processing times relate

by a constant factor and can be used interchangeably. Paper 3 considers three different measures

of time, namely the makespan, the flow time, and the lateness. Depending on the situation and

application, either can be used to quantify efficiency. Beyond that, Paper 3 allows to weight the

flow time or lateness of different jobs to account for priority differences.

Paper 5 assumes a divergent notion of efficiency as it aims to minimize the number of required

tow trains. The rational behind this is that tow trains and especially their drivers’ labor costs are

the main cost factors in the operation of tow train systems. Hence, by minimizing the number

of required tow trains, the costs are minimized. Considering the objectives of Papers 1, 3, and

4 in a more abstract way, minimizing the processing time can also be interpreted as minimizing

costs, as the reduced processing times can be translated into a reduction in labor time and hence

labor costs. The relation is less strict, however.

While efficiency is considered frequently in logistic optimization problems, other objectives

have been paid less attention. Especially in intra-logistics, many processes require a large

proportion of human labor and manual materials handling (MMH), which has repeatedly been

shown to increase the workers’ likelihood to develop MSD (cf., e.g., Punnett and Wegman, 2004,

Larsson et al., 2007), such as lower back pain. Not only do these put workers at discomfort, they

also increase error rates, reduce work capacities, and cause lost-time injuries, which result in di-

rect and indirect costs for companies and the public. For example, MSD are assumed to make up

56% of work-related illnesses in the European Union causing costs of 2% of the GDP (Schnei-

der and Irastorza, 2010). Researchers have therefore advocated to incorporate ergonomic factors

in intra-logistic planning and optimization models and identified the lack thereof as a major

research gap (Grosse et al., 2015, Boysen et al., 2015).

Motivated by this assessment, Papers 1 and 2 aim to minimize physical strains during MMH in

two intra-logistic applications, i.e., order picking and (un-)loading tow trains. In both applica-

tions, materials (items, parts or bins) need to be manually loaded and/or unloaded from racks,

which physically strains workers. The amount of physical strain depends on various factors,

including the weight and access frequency of handled materials as well as the height of the

shelves they are stored in. As materials have different weights and demand rates, the total strain

for handling the materials can be reduced by assigning them cleverly to different shelves and

shelf levels.

Other than, e.g., processing times, physical strains are less easily quantified. Researchers have
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therefore defined different quantification methods, focusing, i.a., on biomechanical, physiolo-

giocal, and/or psychophysical aspects (Dempsey, 1998). One physiological approach that has

been used repeatedly to quantify ergonomic strains in intra-logistic optimization models (cf.,

e.g., Battini et al., 2016, Calzavara et al., 2018, Otto et al., 2017) is the energy expenditure pre-

diction model by Garg et al. (1982). Its rational is to quantify the physical strain of a task as the

physiological energy expenditure during task execution. Based on a regression of experimental

data, Garg et al. (1982) provide equations to calculate the energy expenditure for a given task,

e.g., extracting materials from a shelf, depending on its characteristics, e.g., the handled weight

and shelf height. Due to its widespread use, suitability and usability, the model is also applied

in Papers 1 and 2.

I.3. Optimization methodology applied in this dissertation

The papers in this dissertation consider optimization problems with strong combinatorial char-

acteristics, which means that large parts of their solution spaces are discrete. Paper 2 considers

a purely combinatorial problem, while the remaining papers also include real-valued decision

variables. All papers present novel solution procedures for their respective optimization prob-

lem. Even though all solution procedures are individually tailored to the respective optimization

problem, they share common concepts and methods, which are discussed in the following.

(Mixed-)integer programming is a frequently applied method to formalize optimization prob-

lems (Wolsey, 2007). Besides providing exact formal definitions for problems, it enables the

use of generalized solution procedures such as branch-and-bound (Lawler and Wood, 1966)

or branch-and-cut (Mitchell, 2002). These procedures have been refined continuously and are

readily available through sophisticated off-the-shelf software (Anand et al., 2017). Especially

for problems with a small number of variables and constraints, off-the-shelf software performs

well.

Given the benefits of (mixed-)integer programming, all five papers in this dissertation apply

this methodology. Paper 1 presents a MIP for the purpose of defining the considered problem

formally; it is however not used in the solution process. Papers 2, 3, and 5 develop MIPs to

compare the performance of off-the-shelf software to the performance of individually developed

algorithms, whereat the latter compare favorably. Beyond that, Papers 2, 3, 4, and 5 present

(mixed-)integer programs that are used to solve certain parts of the considered problems with

off-the-shelf software.
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Even though modeling optimization problems as (mixed-)integer programs and solving them

with off-the-shelf software presents a versatile solution approach, it has limitations. First, due

to its general nature, the approach often falls short in using special problem characteristics to

its advantage. Second, some problems cannot be formulated as (mixed-)integer programs in a

compact way, especially if non-linear elements are present. Third, for problems containing a

large number of constraints and/or variables, the performance of off-the-shelf software drops

significantly.

One option to alleviate the shortcomings of (mixed-)integer programming is through problem

decomposition. Problem decomposition denotes the general concept of splitting an optimization

problem into smaller problems that can be solved individually (Boyd et al., 2007, Chaieb et al.,

2015) – and, ideally, much more computationally efficient. Various decomposition methods ex-

ist. An often encountered approach is hierarchical decomposition. Here, the original problem

is split into a superordinate master problem and subordinate sub-problems. The master problem

presents a relaxed version of the original problem. It contains the objective of the original prob-

lem (possibly in a relaxed formulation) and its final solution corresponds to the optimal solution

to the original problem. However, as the master problem does not contain all information of

the original problem, sub-problems need to be solved repeatedly during the master problem’s

solution process to re-integrate required information.

All papers in this dissertation use problem decomposition in their exact solution approaches.

Papers 1 and 2 employ a hierarchical decomposition approach that has been labeled semantic

decomposition by Chaieb et al. (2015). The idea is to split the original problem into semanti-

cally linked problems that are well-studied and/or easy to solve on their own. Both papers utilize

the fact that parts of their considered problems present Linear Assignment Problems, which are

solvable in polynomial time (e.g., using the Hungarian method of Kuhn, 1955). Each paper

separates all decisions that are not part of the Linear Assignment Problems into an overarching

master problem. The master problem is then solved repeatedly calling upon emerging linear as-

signment sub-problems during the solution process. In the case of Paper 1, the master problem

is solved by complete enumeration; in the case of Paper 2, DP is used.

Papers 3 and 4 employ logic-based (also called combinatorial) BD (cf., Hooker and Ottosson,

2003, Codato and Fischetti, 2006), while Paper 5 develops a branch-and-check procedure (cf.,

Thorsteinsson, 2001, Beck, 2010). Both procedures are closely related and build upon the orig-

inal ideas of BD. Classical BD presents a formalized approach to decompose and solve MIPs
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with a special block structure (for a detailed explanation, see Rahmaniani et al., 2017). It is

based on the notion that by fixing a problem’s integer variables, the remaining problem only

contains continuous variables and becomes efficiently solvable. Therefore, the discrete vari-

ables are separated from the original problem into a master problem, which is solved using com-

mon mixed-integer programming solution approaches, e.g., branch-and-bound. While solving

the master problem, the solution procedure repeatedly fixes the discrete variables temporarily.

Whenever the discrete variables are temporarily fixed, they are used to formulate and solve a

purely continuous sub-problem. The master problem is then updated with the information from

a sub-problem’s solution through the separation of cuts from the solution space, i.e., the addition

of constraints. Afterwards the solution process continues solving the updated master problem.

Logic-based BD and branch-and-check procedures extend the idea of classical BD by deviat-

ing form the latter’s formalism. Instead of strictly separating a problem based on its types of

variables, problems are split where it seems computationally appropriate – following a similar

idea as semantic decomposition. The general concept of temporarily fixing (some of) the integer

variables in a mixed-integer master problem, solving the emerging sub-problems and adding the

attained information back to the master model via cuts remains, however. One major benefit

of logic-based BD and branch-and-check procedures is that they are not limited by a strict for-

malism. Moreover, they offer greater flexibility for formulating the sub-problems, which do not

need to be in the form of linear programs.

The differences between logic-based BD and branch-and-check procedures are subtle and not

consistently defined in the literature. According to Beck (2010), in the former, the master prob-

lem only forwards an integer solution to a sub-problem when they are considered optimal by

the current master problem (which does generally not imply optimality for the original problem,

as the master problem might lack critical information that has not yet been added). The latter

forwards solutions at every encountered integer solution. Moreover, in the former, the solution

process of the master problem is restarted after every added cut, while in the latter the search is

continued without a restart (Beck, 2010). Contrarily, Hooker (2011) considers both alternatives

to be logic-based BD approaches referring to the latter as dynamic implementation. In applica-

tion, researchers have also proposed approaches that fall in-between the two options and used

the terminology interchangeably to some degree (cf., Beck, 2010, Hooker, 2007, Thorsteinsson,

2001). This is also the case for the papers in this dissertation.

In Papers 3, 4, and 5, the respective master models are solved by of-the-shelf software, namely

CPLEX. Sub-problems are solved and, consequently, cuts are separated from the master problem

at every integer solution the software considers viable (IBM CPLEX, 2021), which is neither at
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every encountered integer solution nor only at optimal solutions. After cuts are separated, the

procedure continues to solve the master problem without restarting. In Paper 3, the sub-problem

is solved using a DP approach. Paper 4 proposes a novel solution approach employing a gra-

dient descent method to solve the respective non-linear sub-problem. Finally, Paper 5 divides

the sub-problem further into two hierarchical connected problems. One is solved through an

iterative procedure, while the other is formulated as a (small) integer program that is solved by

of-the-shelf software.

Another optimization approach, which is employed by Papers 2, 3, and 4 in this dissertation,

is DP. DP describes a general algorithmic concept originally proposed by Bellman (1954). It

is suitable to solve optimization problems, where the solution depends on a sequence of linked

decisions. DP can be considered as a sequential decomposition approach (Sniedovich, 1991),

which decomposes a problem into sub-problems along the linked decisions. Sub-problems are

then solved one after the other, where the solutions of preceding sub-problems are built upon to

determine the solutions of succeeding ones. As sub-problems only need to be solved once and

existing solutions are reused, DP alleviates the computational effort for repeated computations.

Paper 2 uses DP to assign sets of bins to two train wagons, which is related to Bin Packing.

The sub-problems consist in finding combinations of sets of bins that are stored on the same

wagon. Even though the problem is NP-hard and the DP procedure has an exponential worst-

case runtime, it performs well in computational tests on practically relevant instances.

Paper 3 employs DP to solve the sub-problem within the proposed logic-based BD. It consists

in the NP-hard problem of scheduling a set of given jobs with time windows on a single ma-

chine. Its worst-case runtime is exponential. Nevertheless, it shows a good performance in the

conducted computational tests.

While Papers 2 and 3 use DP as exact procedures, Paper 4 proposes a heuristic DP approach.

The procedure assumes that the order picker’s walking path never crosses itself while processing

an order. Though this holds true in many optimal solutions, it is not guaranteed to be optimal.

Based on this assumption, the heuristic DP consists in constructing the order picker’s route from

non-intersecting sub-tours. The procedure has a polynomial runtime and finds close-to-optimal

solutions in computational tests.

While all papers in this dissertation develop exact solution approaches, Papers 2, 3, and 4 pro-

pose heuristics in addition. Heuristics present rule-based algorithms that aim to find good but not
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necessarily optimal solutions to optimization problems. Compared to exact procedures, which

guarantee optimal solutions, they usually have much shorter runtimes and/or lower memory re-

quirements (Zanakis and Evans, 1981). There can be many motivations to prefer heuristics to

exact procedures (cf., Zanakis and Evans, 1981). One of the primary reasons in logistics is that

the runtime of exact procedures exceeds available planning lead times in practical application

(Griffis et al., 2012). This is also the rational employed in Papers 2, 3, and 4, which consider

NP-hard problems in an operational short-term setting.

Paper 2 proposes a semantic decomposition approach, where the problem is separated into Lin-

ear Assignment Problems (which are solvable in polynomial time) and an NP-hard problem

related to Bin Packing. In the exact solution approach, the latter is solved through DP. The pro-

posed heuristic replaces the DP procedure by a GRASP. In the computational study, the heuristic

is shown to have low runtimes and small optimality gaps.

Paper 3 employs a heuristic column selection procedure based on a set partitioning formula-

tion of the considered parallel machine scheduling problem. The set partitioning formulation

assumes all parameters to be integer and generates columns of a generalized set partitioning

problem by considering all possibilities to assign jobs to machines at all feasible points in time.

The problem is then formulated as a MIP and solved by off-the-shelf software. By restricting the

considered columns to a subset of all possibilities, the problem is transformed into a heuristic

formulation, which is easier to solve due to a reduced problem size.

As mentioned above, Paper 4 employs a heuristic DP approach based on an assumed property

of the optimal solution that does not always hold. Other than the heuristics in Papers 2 and 4,

this directly forecloses the possibility to find the optimal solution in some problem instances.

Nevertheless, the computational tests demonstrate that this is only rarely the case and optimality

gaps are generally small.
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Paper 1: Ergonomic and economic
optimization of layout and item
assignment of a U-shaped order picking
zone1

Abstract: Order picking is considered one of the most labor- and cost-intensive warehouse operating pro-
cesses. Regularly, order pickers are exposed to severe physical demands, which increase the likelihood
for developing muscular-skeletal disorders, such as lower back pain. Muscular-skeletal disorders cause
significant compensation, recovery and deficiency costs and are expected to gain further importance due
to an aging workforce. Both companies and workers may therefore benefit from decision support models
that explicitly take ergonomics aspects into account. The work at hand investigates a warehouses where
the storage area is divided into zones with shelves in each zone arranged in the shape of a U. For this ware-
house, we determine an optimal configuration of the U-zone’s layout as well as an optimal assignment
of products to storage locations. We depart from prior research by considering both the minimization of
the total travel distance as well as the minimization of the total ergonomic strain workers are exposed
to. Both optimization problems are formalized as mixed-integer programs. An exact polynomial-runtime
solution procedure, suitable for both objectives, is developed. Using this solution procedure, we illustrate
how the relevant ergonomic strains can be quantified to apply them to our optimization model. Compu-
tational studies illustrate the efficacy of our proposed solution procedure. Optimal layouts and storage
assignments significantly reduce the walking distance and ergonomic strain during order picking. Addi-
tionally, both objectives are only marginally conflicting, such that, mutually, an optimal solution for one
objective is also a close-to-optimal solution for the other. We finally derive insights on the optimal layout
and storage assignment for future research and practical application.

Keywords: Ergonomics; Human factors; Order picking; Storage assignment; Warehouse layout design;

Warehouse optimization

1This chapter has been published as: Diefenbach, H., and Glock, C. H. (2019). Ergonomic and economic optimiza-
tion of layout and item assignment of a U-shaped order picking zone. Computers & Industrial Engineering, 138,
106094. DOI: https://doi.org/10.1016/j.cie.2019.106094
Compared to the original publication, minor correctional changes have been made; they are marked with foot-
notes.
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1.1. Introduction

Order picking, i.e. the process of retrieving items from storage, is one of the most labor-, time-

and, hence, cost-intensive warehouse operating processes. It is estimated that order picking

accounts for up to 50%−75% of warehouse operating costs (Coyle et al., 1996, De Koster et al.,

2007, Tompkins et al., 2010, Richards, 2017).

Even though in many areas of logistics, human work is increasingly substituted by fully or

partially automated processes, order picking is still performed manually for the biggest part.

De Koster et al. (2007), for example, estimate that about 80% of order picking systems are

operated by human workers employing the picker-to-parts principle. In such systems, pickers

travel through the storage area – either walking or driving small vehicles – to collect items

from shelves, pallets or boxes. The main advantage of employing human pickers is their high

flexibility, especially their ability to pick arbitrary shaped items, which will most likely not be

achieved by automated machines in the foreseeable future (De Koster, 2018).

Due to the cost-intensity of order picking, a lot of research has focused on increasing its effi-

ciency – mainly by means of reducing the pickers’ average and total traveling time/distances to

retrieve items. Most of this research, which we will discuss in more detail in Section 1.2, focuses

on traditional storage area layouts, i.e. straight, parallel shelves, which may be intersected by

one or multiple cross aisles. In their literature review on picker routing, Masae et al. (2020)∗

found, for example, that 83% (45 of 54) of the papers included in their core sample consider

these kinds of layouts. Besides picker routing, commonly regarded decision problems faced

in the context of order picking include item storage assignment and layout design (De Koster

et al., 2007), where the latter is primarily concerned with determining the number, length, width,

orientation etc. of shelves and aisles.

Even though the warehouse layout mentioned earlier has attracted the most attention in the

literature so far, in practice, other layouts can be beneficial as well. Motivated from a practical

case described by Glock and Grosse (2012), we consider a storage area that is used to store parts

for small-lot delivery to nearby production stations. Stations only demand items from certain

mutually exclusive sets of parts. The storage area is therefore separated into zones, where each

zone contains the complete set of items demanded by one or (if the sets are small) multiple

stations. Within each zone, items are stored in shelves arranged in the shape of a U. Shelves

themselves are built from pallet cages (PCs), i.e. boxes generally based on the ground area of

∗In the original version, this referred to an unpublished result by Masae et. al (2019). The reference has been
updated in this version, as it is now publicly available.
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a europallet with a height of about one meter, which can be stacked on top of each other and

accessed via a frontal opening. Each type of item is stored in a separate PC. Once all items

stowed in a PC have been picked, it is interchanged with a fresh PC by a forklift truck. Lastly,

the peculiarity that PCs can be stacked without the need for shelves offers the possibility to place

item-containing PCs on top of empty PCs (if the latter are available). This elevates the former

to an easier accessible height, reducing the time and physical effort required for extracting items

(cf., Petersen et al., 2005). While picker routing is only of minor concern in U-shaped storage

areas (cf. Section 1.3, Glock et al., 2019), picking efficiency is strongly dependent on storage

assignment and layout design. The latter is, in contrast to a traditional layout design problem,

concerned with the length and width of a U-zone restricted by the spacial limits of the available

area.

In practice, PCs are often used in industrial settings to store heavy, bulky items. As order picking

is a highly manual and labor-intensive task, pickers are frequently exposed to significant physical

demands, especially if items are heavy. Physical demands in the course of manual materials

handling (MMH) – such as the lifting, carrying and lowering of items encountered in order

picking – have been linked to an increase of workers’ risks of developing muscular-skeletal

disorders (MSD) (cf. Section 1.2). Despite their severity, the scientific warehousing literature

started to consider ergonomic aspects only in very recent years (cf. Section 1.2). Furthermore,

those concerns are expected to further gain in importance in the future due to an aging workforce

(e.g., Otto and Scholl, 2011, Aiyar et al., 2017, European Commission, 2017).

Among environmental and worker-specific factors, physical strains during MMH activities are

strongly dependent on task characteristics (cf. Mital, 2017). For example, the strain for ex-

tracting an item from storage is, i.a., influenced by the height at which the item is stored. The

strain for carrying a certain item is, i.a., influenced by the carrying distance (cf. Section 1.3.4).

Both, carrying distances and storage heights are themselves dependent on the layout design of

the storage area and the items’ storage assignment. The scope of this paper is therefore three-

fold. First, we model and solve an optimization problem regarding the layout (i.e., the width

and length) of a U-shaped storage zone with the (traditional) objective of minimizing total walk-

ing distances for picking items stowed in the zone. Secondly, we solve the same optimization

problem by minimizing the total ergonomic strain for picking. Thirdly, we compare the results

of both optimization objectives and derive some recommendations for practical application and

further research.
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1.2. Literature review

The planning and operation of warehouses, especially in the context of order picking, has been

intensely studied in the scientific literature. Ranging from strategic to operational, five planing

and decision problems are commonly distinguished: layout design, storage assignment, zoning

(i.e., the division of the warehouse or storage area into distinctive zones), batching (i.e., the

accumulation of small orders into larger batches), and, finally, routing of the picker through

the storage area. With regard to the problem studied in this paper, we focus on research on

layout design and storage assignment in the following. For further readings on zoning, batching

and routing problems, we refer to the comprehensive reviews of Rouwenhorst et al. (2000),

De Koster et al. (2007) and Gu et al. (2007, 2010).

Layout design problems can focus on varying levels of aggregation. The perspective can range

from planning warehouse locations in facility layouts (cf., Kusiak and Heragu, 1987), through

deciding on the layout of departments within warehouses (e.g., Heragu et al., 2005), to the deter-

mination of the number, arrangement, spacial orientation etc. of shelves within the storage area.

The latter type of problems are obviously strongly interdependent with tactical and operational

order picking problems, and here in particular storage assignment, zoning and order picker rout-

ing. Most research on layout design focuses on automated warehouses (De Koster et al., 2007).

Fewer authors are concerned with the layout optimization in manually operated systems. Caron

et al. (2000), for example, analyze the pickers’ expected traveling distances depending on the

number, length and spacial arrangement of shelves for different common routing policies. The

authors further assume items to be randomly assigned to storage positions. Roodbergen et al.

(2008) consider a similar problem, for which they develop an optimization approach that also

includes the determination of the optimal position of a base, where items are dropped off. Shelf

heights, i.e. the layout in the vertical direction, are rarely considered. An exception is the paper

of Calzavara et al. (2017) that evaluates different shelf heights for the storage of pallets from an

economic as well as an ergonomic perspective.

Most research on the layout design of warehouses assumes a conventional aisle arrangement

consisting of parallel picking aisles that are possibly intersected by perpendicular cross aisles.

A few exceptions are discussed in the following. Dukic and Opetuk (2008), Pohl et al. (2009)

and Cardona et al. (2012), for example, studied the optimization of traveling distances in a

warehouse with a so-called fishbone layout, where aisles intersect parallel or perpendicularly

arranged shelves in a straight or bend V-shape, resulting in the aisles resembling a fishbone-like
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shape. Henn et al. (2013)2 analyze traveling distances in a warehouse consisting of shelves ar-

ranged in narrow aisles that are intersected by broad aisles forming an H that spans the whole

length of the warehouse. While these layouts are still based on zones of mostly parallel aisles,

Glock and Grosse (2012) consider warehouse layouts consisting of multiple zones, each con-

taining shelves arranged in the shape of a U. To the best knowledge of the authors, Glock and

Grosse (2012) are the first to study this kind of layout. Their objective was to analyze total

picking times for different U-layouts (width and length) in combination with different storage

assignment policies via numerical simulations. However, the layout of the U-zones was not opti-

mized in their work. Similar U-shaped layouts are considered by Grosse and Glock (2013), who

investigate performance improvements due to picker learning, and Glock et al. (2019), who stud-

ied the option of rotating half-empty pallets to ease item extraction. The latter work is described

in more detail later in this section.

Storage assignment is concerned with assigning items to storage locations within the storage

area. In the literature, different policies – i.e., general concepts – for storage assignment are

considered. Among the most common are: random storage, dedicated storage and class-based

storage (De Koster et al., 2007, Gu et al., 2007, 2010). If a random storage policy is used, items

are assigned randomly to (empty) storage locations in the warehouse without taking their char-

acteristics, such as pick frequencies, weight or pick correlations with other items, into account.

Furthermore, locations are subject to change over time when items are replenished. While, gen-

erally, random storage policies lead to higher average travel times and distances (Hausman et al.,

1976), their major advantage is a better spacial utilization compared to other policies (De Koster

et al., 2007). Closely related to random assignment is the policy of closest open location assign-

ment, where items are not assigned to random positions, but instead to an empty one closest to

the depot (e.g., Hausman et al., 1976). From a human factors point of view, random and closest

open location assignment policies have a disadvantage as they can confuse workers and hinder

learning effects (cf., Grosse et al., 2013, Grosse and Glock, 2015).

Dedicated assignment policies assign items to fixed positions in the storage area, usually based

on item characteristics. Most commonly, item pick frequencies are used to determine storage

locations; the higher the pick frequency, the closer the items should be placed to the depot to

minimize travel distances (e.g. Rao and Adil, 2013). Alternatively, the cube-per-order index

(i.e., an item’s pick frequency divided by its spacial requirement) is often used to determine

its storage location (e.g., Kallina and Lynn, 1976). Other approaches additionally account for

pick correlations of items and emphasize placing those items frequently picked together in close

2The authors denote the layout considered in their paper as a “U-shaped layout”. However, to avoid confusion, we
point out that their definition of a U-shaped layout differs from the one made in this paper.
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proximity (e.g., Chuang et al., 2012, Glock and Grosse, 2012). While research traditionally

focused on assigning items in the planar dimension with the objective of minimizing traveling

distances or times, recent works also consider the assignment of items to different shelf levels

as a decision variable. Petersen et al. (2005), for example, study the influence of assigning

items to shelves of different height on item retrieval (pick) times. They find that picking is most

efficient – and presumably less physically exhausting – if items are stored in a “golden zone”

between the picker’s hip and shoulder height. Despite the abundance of research on dedicated

item assignment policies, the objective is almost exclusively the minimization of travel distances

and item retrieval times; ergonomic aspects have only very infrequently been discussed. A few

notable exceptions are discussed in more detail in the following (cf., Grosse et al., 2015, Reyes

et al., 2019).

Battini et al. (2016b) analyze the optimal allocation of items to storage locations in a single

elongated shelf with the objective to minimize both total picking times and ergonomic strains.

The latter are quantified via an energy expenditure prediction model proposed by Garg et al.

(1978) (cf. Section 1.3.4). A similar bi-objective problem is considered by Larco et al. (2017),

who optimize storage assignments by minimizing pick cycle times and picker discomfort in a

real-word case study. For the evaluation of (ergonomic) discomfort, the authors utilize the CR-

10 scale of Borg (1982). Pickers’ ergonomic strains when extracting items from pallets assigned

to racks of different height are analyzed by Calzavara et al. (2018) using the approach proposed

by Garg et al. (1978). Otto et al. (2017) consider a combined storage assignment and zoning

problem in a fast pick area with the objective of minimizing the pickers’ ergonomic strains,

which they solve via a tabu search heuristic. The authors quantify ergonomic strain using two

different approaches, namely the NIOSH lifting equation (Waters et al., 1993) as well as a prede-

termined motion energy system (cf. Battini et al., 2016a) that is based on the energy expenditure

prediction model by Garg et al. (1978). Pan et al. (2015) consider and heuristically solve a

storage assignment problem in a pick-and-pass system with the objective of balancing the work-

load between pickers. For their model, the authors only consider pick frequencies, but neglect

item weights. Hence, they do not quantify ergonomic strains explicitly. Fontana and Nepo-

muceno (2017) develop a multi-criteria methodology for storage assignment that, among other

objectives, also considers ergonomics aspects in a rudimentary manner. Their methodology thus

assigns items closer to the ground the heavier they are. Finally, Glock et al. (2019) consider the

problem of picking items stored on pallets in a U-shaped storage zone with the option to rotate

pallets by 180◦ once the items on the frontal half of the pallet have been picked. Rotating pallets

then avoids that items have to be picked from the pallet’s back side, which reduces load on the

order picker during item retrievals. The authors optimize the regular pick and the pallet rota-
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tion process of this system with respect to both economic and ergonomic indicators and analyze

the influence of different storage assignment strategies via computational studies. Ergonomic

strains are quantified by calculating the compressive forces acting on the L4/L5 intervertebral

joint during the lifting activity, which are computed by modelling the workers’ body postures in

the biomechanical modelling software 4DWATBAK (Neumann et al., 1999).

Lastly, class-based storage policies aim to combine the advantage of random and dedicated

storage assignment policies by grouping items into classes – for example, according to pick

frequency or by article similarity – and by assigning each group to a dedicated zone in the ware-

house. Within each zone dedicated to a certain class, items of the respective class are assigned

randomly to the available locations. Class-based storage policies are, for example, recently con-

sidered by Qin et al. (2015), Sharma and Shah (2015) and Ene et al. (2016). For further readings

on storage assignment, we refer to the recent survey of Reyes et al. (2019).

While this brief review shows that in recent years, researchers have started to integrate er-

gonomic aspects into decision support models for order picking activities, there are still various

research gaps in this area (cf., Grosse et al., 2015, 2017, Neumann and Medbo, 2010). In par-

ticular, optimization approaches that take account of (different types of) ergonomic objectives

are still missing for different warehouse layouts and order picking decision problems. This is

in sharp contrast to the literature on the impact of MMH activities on worker health and safety

that have frequently been studied in the human factors engineering literature. MMH activities,

such as the lifting, lowering and carrying of items encountered in most order picking systems

(cf., De Koster et al., 2007), have repeatedly been shown to be one of the worker’s primary

risk factors for developing MSD (Larsson et al., 2007, Punnett and Wegman, 2004, Roquelaure

et al., 2009). Lower back pain, for example, which has one of the highest MSD incident rates, is

estimated to be caused by MMH activities in 50%− 75% of all cases (Bigos et al., 1986, Snook,

1989, Spengler et al., 1986).

Besides the apparent disadvantages for workers affected by MSD, MSD cause immense direct

and indirect costs for the private as well as for the public sector. It is estimated that in the

USA, for example, the annual direct cost resulting from MSD amount to $14.2 billion, while

the total annual compensatory costs are estimated at $58.5 billion (LMRIS, 2018, NRC, 2011).

Schneider and Irastorza (2010) estimate that in the EU, MSD account for 58% of work-related

illnesses, causing costs that reach 2% of the European Union’s gross national product. Addi-

tionally, various studies confirm the general health risks associated with MMH activities to be

also particularly relevant in the order picking context (Braam et al., 1996, Gardner et al., 1999,
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Garg, 2000, Marras et al., 2010, Lavender et al., 2012). This further amplifies the importance of

integrating ergonomic aspects into order picking decision support models, which is the purpose

of this paper.

In this context, this paper makes the following two contributions. Firstly, we extend the previous

research of Glock and Grosse (2012) on the layout design and storage assignment of U-zones.

While Glock and Grosse (2012) only consider different heuristic policies, this paper provides an

exact solution procedure that yields guaranteed optimal solutions in polynomial runtime. As a

numerical experiment in Section 1.5.2 shows, optimal solutions can yield significant improve-

ments over heuristic solutions. Secondly, besides the classical objective of increasing efficiency,

this paper also addresses the objective of minimizing the picker’s total ergonomic strain. Our

literature review emphasizes the importance of considering ergonomic aspects in the design and

operation of order picking systems. Nevertheless, research on this topic is still scarce in the gen-

eral context of order picking, and there is no research at all so far that investigates the ergonomic

design of U-shaped order picking zones. This paper intends to contribute to closing this research

gap.

1.3. Problem description

Storage areas employing U-shaped layouts usually consist of multiple zones, each with shelves

arranged in the shape of a U (cf., Glock and Grosse, 2012). In such systems, planners have to

decide on the number and sizes of zones, the set of items that should be stowed in each zone,

the layout of each zone, and, finally, the assignment of items to the storage locations available

in each zone. Clearly, these decisions are interdependent. A holistic model that considers all

decision problems simultaneously, however, is prone to not being optimally solvable due to its

complexity. (Meta-)heuristics are a commonly used alternative in such situations. They do,

however, not guarantee good quality solutions, especially if the properties of the problem and

its optimal solutions are not well understood. We, therefore, employ a different approach in this

paper by assuming that the sets of items that should be stored in a certain zone have already been

determined, which is reasonable for many practical cases, such as the one that motivated this

paper. We further allow for the zone size (i.e., its planar dimension) to be either predetermined,

restricting the width and length of possible U-layouts, or to be subject to optimization. We are

then able to optimize both the U-layout and the assignment of items to storage locations for each

zone. In future research, the results on optimal U-layouts and storage assignments obtained in
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this paper could then be used to develop well-suited heuristics.

The problem considered in this paper can be described as follows: The U-shaped storage layout

planning problem (USLPP) consists of determining the layout of a U-shaped storage zone, i.e.,

its length and width, and the assignment of a given set of items to stowage locations (i.e., PCs).

Further, we also determine the position of the depot (or base; depicted in medium grey in Figure

1.1), which, for example, may represent a picker cart where retrieved items are dropped off. In

the scenario considered in this paper, the picker is assumed to travel between the stationary base

and the items’ stowage locations to complete orders, while picking only one item at a time due

to the items’ weights or dimensions. Therefore, routing the order picker to the storage locations

is independent of the pick sequence, and consequently it is not necessary to solve a routing

problem. Further, we acknowledge that between orders, the base is replaced by a new (empty)

base and consequently moved to ship retrieved items to their destination, e.g. using a forklift

truck. However, while processing an order, we assume that the base is kept stationary.

The storage area is built from equal-sized PCs labeled with indices i ∈ I , each containing

exactly one kind of item of equal index. Each PC can either be placed on the floor or on top

of another PC, where the maximum stack height is limited to two PCs due to the maximum

height a human picker is able to reach and to respect safety regulations. From a top-down view,

the PCs must be arranged in the shape of a U of arbitrary dimension (i.e., length and width)

but minimal sufficient size, such that all PCs i ∈ I still fit in. We define a U-zone to be of

minimal sufficient size if it contains the maximum amount of stacks (i.e., the minimal amount

of non-stacked PCs, which is 0 if |I| is even and 1 if |I| is odd), and if it does not contain

any gaps within its U-structure where an additional stack of PCs would fit in. However, we do

allow for unsymmetrical U-layouts with a gap of a single PC’s size at the U-shape’s opening (cf.

example (b) in Figure 1.1). We further allow empty PCs (depicted in dark grey in Figure 1.1) –

which are abundantly available in a lot of practical cases – to be placed on the ground to support

item-containing PCs on their top, as long as this does not necessitate an increase in the area of

the rectangular shape spanned by a U-zone of minimal sufficient size (depicted in light grey in

Figure 1.1). The underlying idea is that it can be more efficient and less stressful to pick items

from an upper than from a lower PC (cf., Petersen et al., 2005). Additionally, spacial restrictions

may be added (but do not necessarily have to), limiting the maximal length and/or width of a

zone. In-between two adjacent PCs, we assume that a small gap ds exists to facilitate handling

the PCs by a forklift truck. The replenishment of empty PCs is not explicitly considered in the

proposed model, as this is usually done using a forklift truck and does not significantly interfere

with the order picking process. The base has to be placed on the floor within the U-zone. We

assume that it is always placed centered on the vertical symmetry line of the U, but that it may
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be placed closer to or further away from to the U-shape’s opening. In addition, we demand that

the base is at least a distance dp away from the nearest PC, such that the picker is always able

to circumvent the base to reach items from PCs close to the base. Three exemplary arrangement

for |I| = n = 18 PCs, which are feasible according to the requirements formulated above, are

schematically depicted in Figure 1.1.

(a) (b) (c)

Figure 1.1.: Exemplary (feasible) arrangements of PCs in a U-zone for n = 18.

We investigate the described problem on an aggregated level, not considering individual orders,

but accumulated demands over the course of a longer period. We assume that every type of item

i ∈ I has a known pick frequency fi that describes how often an item of type i is picked on

average. Such assumptions have frequently been made in the literature on storage assignment

problems (e.g, Hausman et al., 1976, Jarvis and McDowell, 1991, Petersen et al., 2005). We

acknowledge that in practice, pick frequencies may not be known in advance. However, often

they can be calculated with sufficient precision from past data or using prediction models (cf.,

Kallina and Lynn, 1976, Kovács, 2011, Sadiq et al., 1996). Apart from this, we assume that the

weight wi of each type of item i ∈ I is known.

Picking an item results in an ergonomic strain for the picker. For each item i ∈ I that is picked,

we differentiate between four distinct tasks causing ergonomic strains, which accumulate to the

total strain to retrieve the respective item: Firstly, the picker walks from the base to the PC that

contains the requested item. Secondly, the picker extracts the item from the PC and brings it

into an easy to carry position. Thirdly, the picker carries the item back to the base. Fourthly, the

picker deposits the item at the base. For additional clarification, the picking task is schematically

illustrated in Figure 1.4 in the Appendix. The ergonomic strains resulting from the tasks depend

on the distance between the base and the item’s storage location (first and third task), the weight

of the item (second, third and fourth task) as well as the storage of the item on the upper or lower

PC (second task). Further, the strain has to be accounted for each time an item i is picked, and,

therefore, further depends on the item’s pick frequency fi. Any other strains that may occur,
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such as, for example, strains that result from moving the base with a forklift truck, are neglected

due to their low relative impact on the total ergonomic strain. The calculation of ergonomic

strains is described in more detail in Section 1.3.4.

Lastly, we assume that the picker travels from the base to the storage locations and back on a path

that resembles a sigmoid curve, which is in-between a rectangular and an euclidean path. This

has been observed to closely resemble actual human walking paths in warehouses (Goetschalckx

and Ratliff, 1988). A detailed explanation of how traveling distances are calculated is given in

Section 1.3.2.

A feasible arrangement of PCs into a U-shaped zone of minimal sufficient size already ensures

an efficient utilization of space. However, it does not guarantee that items are picked either

efficiently or ergonomically. Therefore, among all feasible arrangements, we seek the one that

either minimizes the picker’s total walking distance, or the one that minimizes the picker’s total

ergonomic strain for picking all stowed items with their respective pick frequencies. In the

following, we refer to the former problem as the economic USLPP (ec-USLPP) and to the latter

problem as the ergonomic USLPP (er-USLPP)

1.3.1. Notation for modeling USLPP

In formulating mathematical models and the solution procedure in Section 1.4, for both versions

of USLPP, we use the notation introduced in Table 1.1.

We model USLPP in a discrete (p, q)-coordinate system, as illustrated in Figure 1.2 for case

(a) of the exemplary arrangement in Figure 1.1. The (p, q)-plane represents a top-down view

of the U-shaped zone, where PCs can be placed at each discrete (p, q)-position. To define the

boundaries of the U-layout, we introduce two “dummy” PCs j ∈ {1, 2}. Both “dummy” PCs

do not represent physical PCs, but are used for mathematical modelling only. We allow actual

PCs only to be in the same p- or q-row as the “dummy” PCs – either on the ground or on top

of another PC. Hence, it is only necessary to decide on the placement of the “dummy” PCs to

determine the U’s layout.
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I set of PCs/ types of items (index i); |I| = n

P set of discrete horizontal positions (index p); P ′ = P \ {1, 2}
Q set of discrete vertical positions (index q); Q′ = Q \ {1}
D set of all possible walking distances for a given U-shaped storage layout and base position
K index set (index k) of all (p, q)-positions of a given U-shaped storage layout
S solution to USLPP
yp,q,j binary variable: 1, if “dummy” PC j ∈ {1, 2} is placed at location (p, q); 0 otherwise
xb
p,q,i binary variable: 1, if box i is placed at location (p, q) at the bottom; 0 otherwise

xt
p,q,i binary variable: 1, if box i is placed at location (p, q) at the top; 0 otherwise

r† continuous variable denoting the base’s position in q-direction
dp,q continuous variable: traveling distance from the base to location (p,q)
dpp,q continuous variable: distance from the base to location (p,q) in p-direction
dqp,q continuous variable: distance from the base to location (p,q) in q-direction
∆q discrete length of a given U-zone in q-direction (i.e., the number of q-positions)
∆p discrete length of a given U-zone in p-direction (i.e., the number of p-positions)
ww,c

i weighting factor (i.e., ergonomic strain) for walking without load per distance walked and,
additionally, for carrying an item of type i per distance walked

wt
i weighting factor (i.e., ergonomic strain) for picking an item from PC i, if PC i is located in

the top row
wb

i weighting factor (i.e., ergonomic strain) for picking an item from PC i, if PC i is located in
the bottom row

wd
i weighting factor (i.e., ergonomic strain) for dropping off an item of type i at the base

fi item picking frequency of items of type i

lf frontal length of a PC
ld depth of a PC
lh height of a PC
bp length of the base in p-direction
bq length of the base in q-direction
bh height of the base
s safety distance/ gap between two adjacent PCs
ds minimal allowed distance between the base and the nearest PC
ap maximal length of the U in p-direction
aq maximal length of the U in q-direction
δr small increment of the base position

Table 1.1.: Notation.

†In the originally published version of this paper, occasionally, the continuous variable denoting the base’s position
in q-direction is mistakenly labeled n, which is however already used to denote the number of items. Hence, in
this version, the variable is continuously labeled r for clearance.
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The size of the index sets P and Q (and therefore the maximal extension of the U-zone) can

be bounded by either the number of discrete positions a feasible U-shape (that is of minimal

sufficient size) can at most occupy in the respective direction, or by the maximum available

space in the respective direction; whichever is more restrictive. Since, per definition, U-shaped

zones of minimal sufficient size are not allowed to contain any gaps, a feasible layout is max-

imally extended in q-direction if it is as narrow as possible in p-direction (and vice versa). In

p-direction, any layout must at least occupy three discrete positions; otherwise, the zone would

not be U-shaped. In such a layout, in total two PCs can be placed at the p-row (one at the bottom

and one at the top position at (p, q) = (2, |Q|)). All other n − 2 PCs must be contained in one

of the two q-rows, which, together, can contain four PCs per discrete q-position, except for the

position at q = |Q|, which is occupied by the “dummy” bins. Hence, the maximal necessary

extension of the U-layout in q-direction is
⌈
n−2
4

⌉
+ 1 discrete positions. The extension of the

U-zone may further be limited by the available space. In q-direction, each regular PC contained

in a q-row takes up a distance of lf + s (i.e., the PC’s frontal length and the safety distance

between two PCs) and the PCs contained in the p-row take up a distance of ld. Hence, if the

space in q-direction is limited by aq, the term (|Q| − 1) (lf + s) + ld ≤ ld gives an upper bound

for |Q|. A similar reasoning can be applied to attain upper bounds for |P |. In conclusion, |P |
and |Q| are bounded by

|P | = min

{⌈
1

2
n

⌉
+ 1,

⌊
aq − 2ld − s

lf + s

⌋
+ 2

}
and

|Q| = min

{⌈
n− 2

4

⌉
+ 1,

⌊
ap − ld

lf + s

⌋
+ 1

}
.

Figure 1.2.: Discrete (p, q)-coordinate system the mathematical model is based on.
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1.3.2. Calculating traveling distances

Figure 1.2 shows an example of a human walking path between the base and a PC located at

(p, q) = (1, 3) as well as its euclidean and rectangular approximation. In accordance with

Goetschalckx and Ratliff (1988), we assume that the picker’s walking path is in-between the

euclidean and the rectangular distance. We assume every path starts at the center of the base and

ends centered in front of the targeted PC. We acknowledge that this is an approximation, since

the actual path does not start at the center of the base, but in front of one of its sides. However,

the approximation error is acceptably small and about equal for every targeted PC location, and

should thus not significantly distort the fundamental results of our optimization. To calculate the

traveling distance, we calculate the distance between the start and end points of the path in p-

and in q-direction (dpp,q and dqp,q). The traveling distance then follows as

dp,q = α

√
(dpp,q)

2
+ (dqp,q)

2
+ (1− α)

(
dpp,q + dpp,q

)
, (1.1)

where 0 ≤ α ≤ 1 is an adjustable parameter, with the left term representing the euclidean

and the right term in brackets representing the rectangular distance. For the remainder of this

paper, we set α = 0.5. However, our model and solution procedure work for arbitrary values

0 ≤ α ≤ 1. Further, the term dpp,q depends on the layout of the U-zone (defined by yp,q,j ,

j ∈ {1, 2} and r†), and it is given as

dpp,q =

∣∣∣∣∣
(
p (lf + s)− 1

2
lf y1,q,1 −

∑
q′∈Q

lf yp,q′,2

)

− 1

2

(
(lf + s)

∑
p′∈P

∑
q′∈Q

p′ yp′,q′,2 + s

)∣∣∣∣∣, (1.2)

with the first term denoting the position of the path’s end and the second term denoting the base’s

center in p-direction. Obeying the same principle, the term dqp,q is given as

dqp,q =

∣∣∣∣((lf + s) (q − 1) +
1

2
lf (1− y1,q,1)

)
− r

∣∣∣∣ . (1.3)
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1.3.3. MIP model for layout planning in a U-shaped warehouse zone

With the notation summarized in Table 1.1, we formalize both variants of the problem as the

following MIP models:

[ec-USLPP] Minimize
∑
p∈P

∑
q∈Q

∑
i∈I

fi dp,q

(
xbp,q,i + xtp,q,i

)
(1.4)

or

[er-USLPP] Minimize
∑
p∈P

∑
q∈Q

∑
i∈I

fi

(
dp,q w

w,c
i

(
xbp,q,i + xtp,q,i

)
+
(
wt
i x

t
p,q,i + wb

i xp,q,i

)
+

wd
i

|P | |Q|

) ‡
(1.5)

subject to

dpp,q ≥

p (lf + s)− 1

2
lf y1,q,1 −

∑
q′∈Q

lf yp,q′,2


− 1

2

(lf + s)
∑
p′∈P

∑
q′∈Q

p′ yp′,q′,2 + s

 ∀p ∈ P ; q ∈ Q (1.6)

dpp,q ≥ −

p (lf + s)− 1

2
lf y1,q,1 −

∑
q′∈Q

lf yp,q′,2


+

1

2

(lf + s)
∑
p′∈P

∑
q′∈Q

p′ yp′,q′,2 + s

 ∀p ∈ P ; q ∈ Q (1.7)

dqp,q ≥
(
(lf + s) (q − 1) +

1

2
lf (1− y1,q,1)

)
− r ∀p ∈ P ; q ∈ Q (1.8)

dqp,q ≥ −
(
(lf + s) (q − 1) +

1

2
lf (1− y1,q,1)

)
+ r ∀p ∈ P ; q ∈ Q (1.9)∑

p∈P

∑
q∈Q

yp,q,j = 1 ∀j ∈ {1, 2} (1.10)

∑
q∈Q′

y1,q,1 = 1 (1.11)

‡In the originally published version of this paper, the final term of Equation 1.5 is incorrectly stated as wd
i . It has

been corrected to wd
i

|P | |Q| in this version.
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∑
p∈P ′

yp,q,2 = y1,q,1 ∀q ∈ Q (1.12)

n+ 3 ≥
∑
p∈P

∑
q∈Q

(4(q − 1) + 2(p− 2)) yp,q,2 (1.13)

n ≤
∑
p∈P

∑
q∈Q

(4(q − 1) + 2(p− 2)) yp,q,2 (1.14)

∑
p′∈P

∑
q′∈Q

p′ yp′,q′,2 ≥
∑
i∈I

p xbp,q,i ∀p ∈ P ; q ∈ Q (1.15)

∑
p′∈P

∑
q′∈Q

p′ yp′,q′,2 ≥
∑
i∈I

p xtp,q,i ∀p ∈ P ; q ∈ Q (1.16)

∑
p′∈P

∑
q′∈Q

q′ yp′,q′,2 ≥
∑
i∈I

q xbp,q,i ∀p ∈ P ; q ∈ Q (1.17)

∑
p′∈P

∑
q′∈Q

q′ yp′,q′,2 ≥
∑
i∈I

q xtp,q,i ∀p ∈ P ; q ∈ Q (1.18)

∑
i∈I

(
xbp,q,i + xtp,q,i

)
≤ 2

 ∑
p′∈P\{p}

yp′,q,2 +
∑

q′∈Q\{q}

yp,q′,2

 ∀p ∈ P \ {1}; q ∈ Q (1.19)

∑
j∈{1,2}

yp,q,j +
∑
i∈I

xbp,q,i ≤ 1 ∀p ∈ P, q ∈ Q (1.20)

∑
j∈{1,2}

yp,q,j +
∑
i∈I

xtp,q,i ≤ 1 ∀p ∈ P, q ∈ Q (1.21)

∑
p∈P

∑
q∈Q

xbp,q,i + xtp,q,i = 1 ∀i ∈ I (1.22)

r +
1

2
bq + ds ≤

∑
q∈Q

(lf + s)(q − 1) y1,q,1 (1.23)

bp + 2ds ≤
∑
p∈P

∑
q∈Q

(lf + s)(p− 2) yp,q,2 + s (1.24)

xbp,q,i, x
t
p,q,i ∈ {0, 1} ∀p ∈ P ; q ∈ Q; i ∈ I (1.25)

yp,q,j ∈ {0, 1} ∀p ∈ P ; q ∈ Q; j ∈ {1, 2} (1.26)

r ∈ R : r ≥ 1

2
dq (1.27)

dp,q, d
p
p,q, d

q
p,q ∈ R+ ∀p ∈ P, q ∈ Q (1.28)

as well as Equation (1.1), ∀p ∈ P ; q ∈ Q.

Objective function (1.4) minimizes the sum of the total walking distances, whereas (1.5) mini-

mizes the sum of the total ergonomic strain that results from picking all items i ∈ I with their

respective frequencies fi. The total ergonomic strain to pick an item of type i is the sum of the
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strain for walking to the item’s stowage location and carrying it back to the base (dp,q w
w,c
i ),

the strain for extracting the item from a PC placed at the top (wt
i) or bottom (wb

i ) position and

for dropping the item off at the base (wb
i ). From a mathematical viewpoint, ec-USLPP is a spe-

cial case version of er-USLPP, where the ergonomic weighting factors are set ww,c
i = 1 and

wt
i = wb

i = wd
i = 0, ∀i ∈ I .

Constraints (1.6) and (1.7) as well as (1.8) and (1.9) are linearized versions of Equations (1.2)

and (1.3). In conjunction with Equation (1.1), ∀p ∈ P ; q ∈ Q, they define the walking distance

dp,q, ∀p ∈ P ; q ∈ Q. Constraints (1.10) enforce each “dummy” PC to be placed at exactly one

position. Constraint (1.11) ensures that the first “dummy” PC is always placed in the first p-row,

while Constraints (1.12) force both “dummy” PCs to be placed in the same q-row, such that they

define a valid U-shape. Constraints (1.13) and (1.14) define the realm of allowed U-layouts,

such that the U is big enough to contain all PCs (Constraint (1.14)), while still being of minimal

sufficient size (Constraint (1.13)). The right side of Constraint (1.13) describes the number of

discrete positions available in the U-layout. If “dummy” PC j = 2 is placed at the position

(p′, q′), it defines a U-layout with two q-rows of length q′ − 1, where at each position of each

row, two PCs can be placed; one at the bottom and one on top. This allows for the placement of

in total 4(q′−1) PCs. Similarly, we can derive that in the p-row, 2(p′−2) PCs can be placed. The

total number of PCs we want to place is n. If n is uneven, one (p, q)-position of the U will only

have one PC; either at the bottom position or on top supported by an empty PC on the ground.

This means that the minimal sufficient layout capacity is one PC larger than n. Further, since

we allow unsymmetrical layouts with a gap of one PC right at the U’s opening (see Figure 1.1

(b)), minimal sufficient layouts may provide an additional capacity for two PCs, which explains

the left side of Constraint (1.13). Constraint (1.14) is derived in the same way.

Constraints (1.15) to (1.18) prohibit that PCs are placed at p- or q-positions larger than the

position of “dummy” PC j = 2. Combined with Constraints (1.19) that enforce PCs to be

placed in the same p- or q-row as either of the “dummy” PCs, this ensures that each PC is placed

according to the U-layout as defined by the “dummy” PCs.

Further, Constraints (1.20) and (1.21) ensure that every (p, q)-position is occupied by no more

than one PC at the bottom as well as one PC at the top position; if a “dummy” PC is present,

this prohibits the use of the position completely. Constraints (1.22) assures that every PC i ∈ I

is placed exactly once into the storage area. Constraints (1.23) and (1.24) take care that the base

and the nearest PC in both, p- and q-direction, are at least a distance of ds apart. Hence, both

constraints also limit the allowed narrowness of the U in p- and q-direction. Finally, Constraints

(1.25) to (1.28) define the domains of the decision variables.
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Due to Equation (1.1), USLPP is not linear.

1.3.4. Calculating ergonomic strains

In the problem description, in the MIP model as well as in the solution procedure (which we

present in Section 1.4), ergonomic strains are treated in a generalized manner that allows for

different ergonomic assessment methods to be used. However, for the remainder of this paper,

we use a particular assessment method to attain consistent results in our computational study

(see Section 1.5).

In general, there are four different approaches to assess workers’ physical strains – and hence, to

assess increases in risk for the development of MSDs – during MMH activities: expert evalua-

tions, the study of epidemiological data (e.g., MSD incident rates of workers performing specific

tasks or jobs), the determination of critical threshold values, and combinations of the aforemen-

tioned methods (Moore and Garg, 1995). Although expert evaluations are a valuable approach in

practice, they are not suitable for the purpose of this paper due to their lack of objectiveness and

reproducibility (Moore and Garg, 1995). In contrast, the study of epidemiological data – while

being an objective assessment method –, is more concerned about finding and verifying general

links between certain variables, tasks or jobs and the risk of developing MSDs (Dempsey, 1998).

Furthermore, the collection and evaluation of epidemiological data is very time-consuming and,

therefore, beyond the scope of this paper.

The determination of critical threshold values is based on the observation – e.g., the study of

epidemiological data – that workers exceeding certain measurable or calculable threshold values

while performing MMH activities are exposed to a higher risk of developing MSDs. Usually,

three different approaches, each emphasizing different critical thresholds, are distinguished: the

physiological, the biomechanical, and the psychophysical approach (Dempsey, 1998). Combi-

nations of the aforementioned approaches have also been proposed.

The biomechanical approach focuses on the forces and torques certain joints, muscles or other

body structures are exposed to during MMH activities; high forces on the lower back joints

L4/L5 or L5/S1 have, for example, been linked to the development of lower back pain (Dempsey,

1998). The emphasis of the physiological approach is on a worker’s cardiovascular effort while

performing certain MMH tasks. The associated threshold value is most commonly expressed

in oxygen consumption or energy consumption rates, which are directly correlated (Dempsey,

1998). Finally, psychophysical approaches consider a worker’s perceived strain during MMH

tasks to quantify how hazardous the task is to the worker (Dempsey, 1998).
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While direct measurements of certain threshold values are possible – oxygen consumption rates,

for example, can be measured via special masks (Levine, 2005) and intervertebrate pressures

can be measured via surgically implanted sensors (Wilke et al., 1999) – most commonly models

that have been developed to calculate respective values are used in practice (Dempsey, 1998).

One such model, which has frequently been applied in recent years to quantify the ergonomic

strain of MMH tasks in order picking (cf. Section 1.2), is the energy expenditure prediction

model developed by Garg et al. (1978). This physiological model is based on the assumption

that the energy expenditure for performing a complex task is the sum of the energy expendi-

tures of its comprising basic tasks. An advantage of the model of Garg et al. (1978) is that it

provides equations for calculating energy expenditure rates for a broad spectrum of basic tasks,

depending on the task’s properties and the performing worker’s anthropometric characteristics.

For example, the energy expenditure for lifting an item depends on the item’s weight, the body

posture adopted by the worker at the beginning and at the end of the movement, as well as the

worker’s sex and body weight. All equations were derived by the authors by applying regression

analyses to data collected in laboratory experiments.

The evaluation of the relevant tasks, for which we need to quantify ergonomic strains in USLPP

– i.e., walking without load, carrying items, extracting items from PCs, and dropping off items

at the base –, necessitates a flexible ergonomic assessment method. Therefore, and because of

its widespread use in practice, we employ the energy expenditure prediction model of Garg et al.

(1978) to assess ergonomic strains in this paper.

We calculate the ergonomic strain of each considered task (i.e., ww,c
i dp,q, wb

i , wt
i and wd

i , ∀i ∈ I)

as a value in the physical dimension of absolute energy expenditure. This enables us to sum up

these values to calculate the total energy needed for picking all items, as we did in the objective

function of USLPP. The total energy needed can then be divided by the total time required to

derive the (mean) energy expenditure rate the worker has to apply during picking. This approach

is equal to considering the whole picking process as a single, complex task. For additional

clarification, the Appendix demonstrates how energy expenditures are derived in this paper for

an exemplary picking task.

We now take account of the fact that the picker has to walk the distance from the base to a

PC containing a requested item twice, once empty and once carrying the item back to the base.

To simplify calculations, we summarize the energy expenditures for both activities in a single

parameter, ww,c
i . Further, we calculate this parameter, ww,c

i , in the physical dimension of energy
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expenditure per distance walked3, so that we can multiply it with the walking distance (which

depends on the position of the base and the PC that contains the requested item) to attain the

total energy expenditure for this basic task. We further assume that items are always carried at

hip height.

For calculating energy expenditures for extracting items (wb
i for extracting from a bottom PC;

wt
i for extracting from a top PC) and for dropping off items (wd

i ), we only consider movements

in the sagittal body plane, since those account for the majority of the tasks’ energy expenditures.

Beyond that, we assume items are (on average) extracted from the center of a PC and dropped

off at the center of the base.

Finally, we use the anthropometric measurements of the same, representative worker through-

out all calculations to ease comparisons in our computational study (cf. Section 1.5), which

is an approach that has frequently been used in earlier works in this area (cf., Battini et al.,

2016, Diefenbach et al., 2020∗∗, Glock et al., 2019). Diefenbach et al. (2020)∗∗ showed that

implications derived from assuming a representative worker’s anthropometrics are valid for a

broad spectrum of workers with differing anthropometric measurements. Based on observations

in practice, we assume the average worker to be male, weighing 75 kg, measuring 178 cm in

height and having a walking speed of 1.4 m
s (cf., Glock et al., 2019, Garg et al., 1978). However,

these measurements can be freely adjusted to account for different individuals if desired.

Given a set of items I with their respective weights wi, ∀i ∈ I , we are now able to derive all

ergonomic strains needed for USLPP (ww,c
i , wb

i , wt
i and wd

i ). We calculate all ergonomic strains

in advance and forward them as fixed parameters to attain a respective instance of er-USLPP,

which we can then solve utilizing the solution procedure proposed in Section 1.4.

1.4. Solution procedure

We solve both versions of USLPP optimally4 by disaggregating the problem into two consec-

utive problems and solving them in hierarchical order. First, we determine a feasible U-layout

and a base position. Secondly, as a sub-problem, we assign PCs to (p, q)-positions within the

3Garg et al. (1978) formulate the equation for calculating energy expenditures for walking and carrying depending
on the duration of the respective activity. To derive energy expenditures per distance walked, we divide these
equations by the worker’s walking speed.

∗∗In the original version, this referred to an unpublished result by Diefenbach et. al (2019). The reference has been
updated in this version, as it is now publicly available.

4within numerical precision of δr for r†, the position of the base.
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determined layout, minimizing the respective objective value for that layout. To obtain the op-

timal solution for USLPP, we repeat both steps for all possible layouts and save the solution

yielding the minimal objective value. In the following, we explain the solution procedure in de-

tail for er-USLPP. However, since ec-USLPP is a special case of er-USLPP (cf. Section 1.3.3),

the procedure is also valid for the former.

1.4.1. Assigning PCs to feasible (p, q)-positions

This section examines the sub-problem that consists of assigning PCs to feasible (p, q)-positions,

such that the total ergonomic strain for picking the items stowed in the respective PCs is min-

imized. We assume that both the U-layout (as defined by yp,q,1 and yp,q,2) and the position of

the base r† have already been determined (in a feasible manner) and that, consequently, the set

D of distance dp,q to all feasible (p, q)-positions – which only depend on those variables (cf.

Equation (1.1) - (1.3)) – have already been derived.

Additionally, we introduce a relabeling of indices by replacing the pair (p, q) by a single index

k ∈ K for all (p, q)-positions where PCs are allowed to be placed. We replace (p, q) = (1, 1)

with k = 1 and proceed in a clockwise manner, while incrementing k. For the example depicted

in Figure 1.2, this results in (1, 1) → 1, (1, 2) → 2, (1, 3) → 3, (2, 4) → 4, ..., (1, 5) → 9

and |K| = |{1, 2, ..., 9}| = 9. In addition, we define new decision variables by replacing the

previous ones according to the mapping xbk,i → x̄k,i; xtk,i → x̄k+|K|,i, ∀k ∈ K; i ∈ I . If

|I| < 2|K|, i.e., if the number of PCs is smaller than the number of available top and bottom

positions, we further add “ghost” PCs x̄k,i, ∀k ∈ K ′; i ∈ K ′\I , with K ′ = K
⋃

k∈K
{k+|K|} that

do not contain any items and therefore do not contribute to the walking distance or ergonomic

strain; i.e., they do not influence the objective function. Hence, “ghost” PCs correspond to

empty PCs that we can use to support regular PCs on their top. This allows us to formulate the

following MIP, which we call U-shaped layout assignment problem (USLAP):

[USLAP] Minimize
∑
k∈K′

∑
i∈I′

ck,i x̄k,i (1.29)

subject to∑
k∈K′

x̄k,i = 1 ∀i ∈ I ′ (1.30)∑
i∈I′

x̄k,i = 1 ∀k ∈ K ′ (1.31)
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x̄k,i ∈ {0, 1} ∀k ∈ K ′; i ∈ I ′ (1.32)

with

ck,i =


fi
(
dk w

w,c
i + wb

i + wd
i

)
∀k ∈ K; i ∈ I

fi
(
dk w

w,c
i + wt

i + wd
i

)
∀k ∈ K ′ \K; i ∈ I

0 ∀k ∈ K ′; i ∈ I ′ \ I
. (1.33)

In comparison to USLPP, in USLAP, most of the constraints become obsolete, since either

the corresponding variables have already been determined (Constraints (1.1), to (1.5) - (1.14),

(1.23), (1.24) and (1.26)), or the relevant variable space has been reduced by discarding (p, q)-

positions not part of the U (Equations (1.15) - (1.19)). Constraints (1.30) corresponds to the

former Constraints (1.22), while (1.31) corresponds to the Constraints (1.20) and (1.21). The re-

sulting problem is in the form of a linear assignment problem. It can be solved in a polynomial

runtime of O(|K ′|3) using, for example, the formulation of Munkres (1957) of the Hungarian

algorithm.

1.4.2. Determining feasible U-layouts and base positions

To simplify notation, we define ∆p and ∆q as discrete lengths (i.e., the number of p- and q-

positions) of the U-zone in p- and q-direction, respectively. For example, for the case illustrated

in Figure 1.2, it follows that ∆p = 5 and ∆q = 4. We define the following procedure. Step (1):

Our procedure starts by setting the U’s dimensions, beginning by setting ∆p = 3 ⇔ y3,1,1 = 1,

which is the minimal feasible value for ∆p. Step (2): We then – in accordance with Constraints

(1.13) and (1.14) – derive the feasible value for ∆q as

∆q =

⌈
n− 2(∆p − 2))

4

⌉
+ 1 ⇔ y∆p,∆q ,2 = 1, (1.34)

which results in a minimal sufficient U-layout. Step (3): In the next step, we check if the U-zone

is sufficiently wide in the p-direction to contain the base; i.e., if Constraint (1.23) is not violated.

This may, for example, be the case if ∆p = 3, i.e., if the U’s opening measures only one discrete

p-position in width. If the current U-zone is feasible, we proceed by choosing a feasible position

r† for the base. Due to Theorem 1.1, we begin with setting r = 1
2

(
(lf + s)(∆q − 1)− s

)
,

which is in the middle of the q-direction of PCs contained in the q-rows. Otherwise, if Constraint

(1.23) is violated, we increment ∆p by one and go to Step (2). Step (4): After setting r†, we

proceed with checking if the base position is feasible in q-direction; i.e., if Equation (1.22) is
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not violated. If this is true, we calculate the set D of distances dp,q between the base and every

(p, q)-position where PCs are allowed to be placed. Otherwise, we increment ∆p by one and go

to Step (2). Step (5): We forward set D to solve the emerging instance of USLAP utilizing the

Hungarian method. Afterwards, we increase r† by a small amount δr and go to Step (4). This

procedure is continued until ∆p ≥ 1
2n + 2 ⇔ ∆q < 2 (cf. Equation (1.34)) is reached, after

which no further feasible layouts can be found.

The number of feasible values for ∆q (and, hence, the number of feasible U-layouts) grows

according to O
(
1
4n
)

(cf. Equation (1.34)). For a given value of ∆q, there exists an order

of O
(
1
2
∆q (lf+s)

δr

)
possible base positions r†. Using the gaussian sum formula, this yields

a number of possible combinations of U-layouts and base positions that grows according to

O
(

1
16

lf+s
δr

n2
)

. Hence, the asymptotic runtime of the entire solution procedure (that also solves

USLAP with the Hungarian method) is polynomially bounded by O
(
( 1
16

lf+s
δr

n2)(n3)
)

= .

O
(

1
16

lf+s
δr

n5
)

.

Theorem 1.1. In the optimal solution S∗ of USLPP, the base is always placed at r∗ ≥ 1
2

(
(lf+s)

(∆q − 1)− s
)
.

Proof. We prove Theorem 1.1 by contradiction in a mostly visual way. Assume there ex-

ists an optimal solution S∗, where the base is placed at r∗ < 1
2

(
(lf + s)(∆q − 1)− s

)
, i.e.,

below the middle in q-direction of the PCs contained in the q-rows, like the one exemplar-

ily depicted in Figure 1.2. We can create an alternative feasible solution S′ by flipping the

base as well as the PCs contained in the q-rows at an axis parallel to the p-direction at r =
1
2

(
(lf + s)(∆q − 1)− s

)
and keeping the PCs contained in the p-row in place. The distance

between the PCs contained in the q-rows and the base has obviously not changed. However,

the distance between the base and each PC contained in the p-row was reduced (since the base

moved closer to the p-row in q-direction by a distance of 1
2

(
(lf + s)(∆q − 1)− s

)
− r∗). This,

in turn, means that there exists a mapping of all PCs of solution S∗ to solution S′, such that no

PC’s distance to the base increases, but at least one PC’s distance decreases (since the p-row

must at least contain one PC). Hence, the objective value of S′ is smaller than the one of S∗,

which contradicts that S∗ is the optimal solution and that r∗ < 1
2

(
(lf + s)(∆q − 1)− s

)
holds

true in the optimal solution.
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1.5. Computational study

This section presents the results of a computational study to demonstrate the efficiency of our

proposed solution procedure. Beyond that, we compare non-optimized U-shaped layouts to

layouts optimized with respect to either the total walking distance or the total ergonomic strain

for picking all stowed items with their respective pick frequencies.

1.5.1. Generating instances

To examine our solution procedure, we randomly generate test instances for USLPP with differ-

ent zone sizes n = {30, 60, 100}, to which we refer as small, large and very large, respectively.

While the small and large instance are comparable to real-world problem sizes (cf. Glock and

Grosse (2012)), the purpose of the very large instances is to demonstrate the solution proce-

dure’s efficiency, since problems of comparable size are unlikely to occur in practice. For each

instance, the items’ pick frequencies and weights are randomly drawn from intervals according

to a uniform distribution. We define one broad and one narrow interval for each problem param-

eter in question. For pick frequencies, we assume that the picker performs about 200 picks per

hour (cf., Marras et al., 2010), from which we derive intervals of 20
n [8, 12] and 20

n [2, 18] picks

per item type and per hour. For the weights, we use the intervals {[12, 18], [5, 25]} kg, which are

representative distributions in industry (e.g., Drury et al., 1982), and calculate the resulting er-

gonomic strains according to the approach described in Section 1.3.4. Note that the mean of the

broad and narrow intervals are equal for both, pick frequencies and weights, respectively, which

allows us to derive insights into the respective distribution’s influence in our analysis in Section

1.5.2. For the large and small instances, we generate ten instances for each possible combination

of broad and narrow intervals of pick frequencies and weights. For the very large instance, we

only generate ten instances with frequencies and weights drawn from the broad intervals, since

this is sufficient to examine the solution procedure’s performance.

For all instances, the measurements of the PCs is set to lf = 120 cm, ld = 80 cm and lh = 97

cm (cf., EPA, 2016). The measurements of the base are set to bp = bq = bh = 80 cm. Further,

we set s = 10 cm, ds = 50 cm and do not restrict the size of the zone (ap = aq = ∞).

Instances are labeled in the following way. From left to right, each instance label starts with

a capital “I” followed by four segments separated by hyphen. The number in the fist segment

denotes the size (i.e., the number n of PCs) of the instance. The letter in the brackets of the

second segment denotes if pick frequencies were drawn from the wide (“w”) or narrow (“n”)
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interval. Likewise, the letter in the third segment’s brackets denotes the respective interval from

which item weights were drawn. The last segment is a two-digit continuous counting number

to identify the instance. In total, we generate 90 instances, which are available from https:

//doi.org/10.5281/zenodo.3364271.

1.5.2. Computational results

We solve each instance with the solution procedure proposed in Section 1.4 twice; first, we

minimize total walking distance and, secondly, we minimize total ergonomic strain. Beyond

that, for every instance, we generate 1000 random solutions (i.e., all parameters are chosen

randomly) and calculate their mean total walking distance and ergonomic strain. The primary

purpose of the randomly generated solutions is to provide a reference value for every instance

that allows us to examine the influences of the instances’ sizes, pick frequencies and item weights

on the optimization. A comparison of the optimal solutions to heuristic solutions that emulate

U-zone configurations often employed in practice is provided later in this section.

The implementation was done in C#. Computational testing was performed on an Intel Core i7-

3631QM CPU @ 2.20 GHz and with 8 GB of RAM. The precision for the optimal base position

is set to δr = 1 cm for all instances, which we regard as sufficiently accurate for practical ap-

plications. The results for all instances are summarized in Table 1.2. The following evaluations,

however, focus primarily on the small and large instances, since their size is more representative

for practical cases. In contrast, the purpose of the very large instances is to demonstrate the

solution procedure’s efficiency even for huge problem sizes. Detailed reports of all results are

available from https://doi.org/10.5281/zenodo.3364271.

Our proposed solution procedure was able to solve every small instance in below two seconds

to optimality, while every large instance was solved in under 47 s. Even the very large instances

could be solved in below nine minutes. These results demonstrate that our solution procedure

is sufficient to solve problems of even exceptionally large sizes in acceptable time. As a side

note, we observe the runtimes are on average about 14% lower for optimizing walking distances

compared to optimizing ergonomic strains. This can most likely be attributed to the former’s

objective function being easier to compute, given that most parameters have been set to one in

this case.

The relative average reduction of total ergonomic strains achieved by the optimization ranges

from 17.56% to 34.33%, where the reduction seems to depend mainly on two factors; the in-
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instance objective: minimizing total walking distance objective: minimizing total ergonomic strain
labeling aver.
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I-n30-f[n]-w[n]-01 889.81 319.07 592.08 33.46 262.78 0.22 (4, 8, 5.80) 1.17 262.19 17.83 593.92 0.31 (4, 8, 5.80) 1.36
I-n30-f[n]-w[n]-02 932.93 339.81 623.46 33.17 280.95 0.11 (4, 8, 5.80) 1.25 280.65 17.41 624.89 0.23 (4, 8, 5.80) 1.44
I-n30-f[n]-w[n]-03 913.07 331.82 612.17 32.95 274.21 0.13 (4, 8, 5.80) 1.21 273.85 17.47 613.06 0.15 (4, 8, 5.80) 1.50
I-n30-f[n]-w[n]-04 923.85 333.59 619.11 32.99 275.71 0.09 (4, 8, 5.80) 1.20 275.45 17.43 620.29 0.19 (4, 8, 5.80) 1.44
I-n30-f[n]-w[n]-05 911.69 326.96 610.73 33.01 270.18 0.17 (4, 8, 5.80) 1.24 269.71 17.51 611.99 0.21 (4, 8, 5.80) 1.58
I-n30-f[n]-w[n]-06 911.66 331.92 609.15 33.18 274.03 0.14 (4, 8, 5.80) 1.18 273.64 17.56 609.82 0.11 (4, 8, 5.80) 1.47
I-n30-f[n]-w[n]-07 926.02 337.14 618.86 33.17 278.70 0.15 (4, 8, 5.80) 1.11 278.30 17.45 619.74 0.14 (4, 8, 5.80) 1.44
I-n30-f[n]-w[n]-08 848.92 305.28 567.63 33.14 252.08 0.16 (4, 8, 5.80) 1.15 251.69 17.55 568.14 0.09 (4, 8, 5.80) 1.39
I-n30-f[n]-w[n]-09 910.14 326.45 603.26 33.72 268.20 0.15 (4, 8, 5.80) 1.25 267.80 17.97 603.82 0.09 (4, 8, 5.80) 1.46
I-n30-f[n]-w[n]-10 903.19 323.87 605.05 33.01 267.65 0.12 (4, 8, 5.80) 1.22 267.33 17.46 606.97 0.32 (4, 8, 5.80) 1.42
mean 907.13 327.59 606.15 33.18 270.45 0.14 1.20 270.06 17.56 607.27 0.18 1.45
I-n30-f[b]-w[n]-01 992.12 361.12 577.79 41.76 282.06 0.29 (4, 8, 5.80) 1.31 281.24 22.12 578.93 0.20 (4, 8, 5.80) 1.57
I-n30-f[b]-w[n]-02 840.51 301.39 485.13 42.28 235.07 0.58 (4, 8, 5.80) 1.24 233.72 22.45 485.84 0.15 (4, 8, 5.80) 1.45
I-n30-f[b]-w[n]-03 845.69 307.77 489.52 42.12 240.13 0.24 (4, 8, 5.80) 1.23 239.54 22.17 489.81 0.06 (4, 8, 5.80) 1.44
I-n30-f[b]-w[n]-04 948.51 340.13 557.39 41.24 266.82 0.41 (4, 8, 5.80) 1.18 265.73 21.87 558.10 0.13 (4, 8, 5.80) 1.52
I-n30-f[b]-w[n]-05 807.40 291.83 452.17 44.00 224.92 0.56 (4, 8, 5.80) 1.32 223.66 23.36 452.52 0.08 (4, 8, 5.80) 1.54
I-n30-f[b]-w[n]-06 810.13 295.27 462.00 42.97 228.97 0.32 (4, 8, 5.80) 1.23 228.24 22.70 462.30 0.06 (4, 8, 5.80) 1.52
I-n30-f[b]-w[n]-07 866.95 312.97 491.03 43.36 242.23 0.50 (4, 8, 5.80) 1.13 241.03 22.99 492.08 0.21 (4, 8, 5.80) 1.42
I-n30-f[b]-w[n]-08 858.38 309.21 487.83 43.17 239.58 0.47 (4, 8, 5.80) 1.25 238.45 22.88 488.26 0.09 (4, 8, 5.80) 1.43
I-n30-f[b]-w[n]-09 970.70 350.99 564.35 41.86 274.02 0.37 (4, 8, 5.80) 1.21 273.01 22.22 565.01 0.12 (4, 8, 5.80) 1.46
I-n30-f[b]-w[n]-10 826.62 297.91 463.66 43.91 229.62 0.52 (4, 8, 5.80) 1.28 228.43 23.32 464.13 0.10 (4, 8, 5.80) 1.48
mean 876.70 316.86 503.09 42.67 246.34 0.43 1.24 241.31 22.61 503.70 0.12 1.48
I-n30-f[n]-w[b]-01 893.85 327.97 595.91 33.33 272.23 0.59 (4, 8, 5.80) 1.23 270.62 17.49 603.67 1.29 (4, 8, 5.80) 1.44
I-n30-f[n]-w[b]-02 950.37 355.49 639.04 32.76 294.78 0.40 (4, 8, 5.80) 1.25 293.60 17.41 645.06 0.93 (4, 8, 5.80) 1.41
I-n30-f[n]-w[b]-03 926.49 339.99 620.34 33.04 280.97 0.51 (4, 8, 5.80) 1.25 279.53 17.78 624.53 0.67 (4, 8, 5.80) 1.52
I-n30-f[n]-w[b]-04 907.50 339.45 602.15 33.65 280.30 0.42 (4, 8, 5.80) 1.18 279.14 17.77 606.94 0.79 (4, 8, 5.80) 1.43
I-n30-f[n]-w[b]-05 928.21 331.25 619.55 33.25 273.00 0.52 (4, 8, 5.80) 1.23 271.60 18.01 624.55 0.80 (4, 8, 5.80) 1.40
I-n30-f[n]-w[b]-06 976.55 349.11 648.05 33.64 286.90 0.63 (4, 8, 5.80) 1.29 285.10 18.34 655.27 1.10 (4, 8, 5.80) 1.42
I-n30-f[n]-w[b]-07 929.56 336.85 613.13 34.04 276.20 0.59 (4, 8, 5.80) 1.22 274.58 18.49 618.82 0.92 (4, 8, 5.80) 1.44
I-n30-f[n]-w[b]-08 907.54 322.35 610.81 32.70 266.79 0.51 (4, 8, 5.80) 1.28 265.44 17.66 616.15 0.87 (4, 8, 5.80) 1.47
I-n30-f[n]-w[b]-09 925.53 333.43 627.09 32.25 277.00 0.45 (4, 8, 5.80) 1.21 275.76 17.29 631.46 0.69 (4, 8, 5.80) 1.37
I-n30-f[n]-w[b]-10 902.59 323.43 596.71 33.89 264.22 0.30 (4, 8, 5.80) 1.21 263.43 18.55 599.98 0.54 (4, 8, 5.80) 1.41
mean 924.82 335.93 617.28 33.25 277.24 0.49 1.23 275.88 17.88 622.64 0.86 1.43
I-n30-f[b]-w[b]-01 894.04 318.93 514.04 42.50 248.02 0.61 (4, 8, 5.80) 1.28 246.50 22.71 520.99 1.33 (4, 8, 5.80) 1.37
I-n30-f[b]-w[b]-02 948.86 346.11 551.80 41.85 269.90 0.39 (4, 8, 5.80) 1.17 268.85 22.32 556.71 0.88 (4, 8, 5.80) 1.36
I-n30-f[b]-w[b]-03 800.17 300.09 450.61 43.69 232.27 0.32 (4, 8, 5.80) 1.23 231.53 22.85 452.55 0.43 (4, 8, 5.80) 1.45
I-n30-f[b]-w[b]-04 804.91 293.76 476.14 40.84 232.23 0.52 (4, 8, 5.80) 1.26 231.02 21.36 477.82 0.35 (4, 8, 5.80) 1.41
I-n30-f[b]-w[b]-05 909.16 325.47 522.69 42.51 251.44 0.37 (4, 8, 5.80) 1.27 250.51 23.03 525.35 0.51 (4, 8, 5.80) 1.42
I-n30-f[b]-w[b]-06 1103.63 415.32 692.70 37.23 334.54 0.33 (4, 8, 5.80) 1.21 333.45 19.71 694.53 0.26 (4, 8, 5.80) 1.36
I-n30-f[b]-w[b]-07 1017.32 362.68 584.52 42.54 281.39 0.43 (4, 8, 7.04) 1.28 280.19 22.74 590.67 1.04 (4, 8, 5.80) 1.39
I-n30-f[b]-w[b]-08 820.91 285.29 458.15 44.19 218.90 0.64 (4, 8, 7.14) 1.22 217.51 23.76 463.58 1.17 (4, 8, 7.10) 1.37
I-n30-f[b]-w[b]-09 930.60 338.91 543.96 41.55 265.04 0.41 (4, 8, 5.80) 1.36 263.95 22.12 549.14 0.94 (4, 8, 5.80) 1.48
I-n30-f[b]-w[b]-10 929.07 335.63 550.47 40.75 264.31 0.48 (4, 8, 5.80) 1.28 263.05 21.62 552.65 0.39 (4, 8, 5.80) 1.42
mean 915.87 332.22 534.51 41.77 259.80 0.45 1.26 258.66 22.22 538.40 0.73 1.40
I-n60-f[n]-w[n]-01 1807.59 501.30 1074.60 40.55 362.85 0.10 (4, 15, 9.70) 36.88 362.48 27.69 1076.63 0.19 (4, 15, 9.70) 40.48
I-n60-f[n]-w[n]-02 1774.13 491.92 1049.71 40.83 355.55 0.10 (4, 15, 9.70) 36.94 355.20 27.79 1051.51 0.17 (4, 15, 9.70) 42.96
I-n60-f[n]-w[n]-03 1806.39 499.86 1071.55 40.68 361.54 0.12 (4, 15, 9.70) 37.52 361.10 27.76 1073.80 0.21 (4, 15, 9.70) 43.00
I-n60-f[n]-w[n]-04 1816.73 501.70 1070.77 41.06 361.09 0.08 (4, 15, 9.70) 37.53 360.81 28.08 1072.27 0.14 (4, 15, 9.70) 41.21
I-n60-f[n]-w[n]-05 1809.76 500.85 1069.79 40.89 361.54 0.12 (4, 15, 9.70) 39.35 361.09 27.90 1071.90 0.20 (4, 15, 9.70) 42.04
I-n60-f[n]-w[n]-06 1785.00 495.32 1054.10 40.95 357.67 0.09 (4, 15, 9.70) 37.90 357.36 27.85 1055.23 0.11 (4, 15, 9.70) 41.10
I-n60-f[n]-w[n]-07 1746.82 485.97 1032.38 40.90 350.95 0.08 (4, 15, 9.70) 36.78 350.68 27.84 1034.20 0.18 (4, 15, 9.70) 41.53
I-n60-f[n]-w[n]-08 1808.82 499.98 1063.76 41.19 359.30 0.08 (4, 15, 9.70) 40.68 359.02 28.19 1065.09 0.12 (4, 15, 9.70) 41.92
I-n60-f[n]-w[n]-09 1805.85 494.62 1062.80 41.15 355.56 0.11 (4, 15, 9.70) 38.70 355.16 28.20 1065.05 0.21 (4, 15, 9.70) 43.64
I-n60-f[n]-w[n]-10 1827.60 507.38 1070.91 41.40 364.52 0.11 (4, 15, 9.70) 37.19 364.11 28.24 1072.42 0.14 (4, 15, 9.70) 41.54
mean 1798.87 497.89 1062.04 40.96 359.06 0.10 37.95 358.70 27.95 1063.81 0.17 41.94
I-n60-f[b]-w[n]-01 2066.28 576.49 1066.50 48.39 387.24 0.14 (4, 15, 9.70) 39.33 386.70 32.92 1067.37 0.08 (4, 15, 9.70) 45.66
I-n60-f[b]-w[n]-02 1802.86 497.47 881.29 51.12 324.15 0.18 (4, 15, 9.70) 39.33 323.58 34.95 882.36 0.12 (4, 15, 9.70) 45.53
I-n60-f[b]-w[n]-03 1584.90 436.00 767.13 51.60 282.48 0.21 (4, 15, 9.70) 38.91 281.88 35.35 768.07 0.12 (4, 15, 9.70) 44.79
I-n60-f[b]-w[n]-04 1866.70 522.13 960.95 48.52 350.73 0.16 (4, 15, 9.70) 38.29 350.17 32.93 961.83 0.09 (4, 15, 9.70) 44.54
I-n60-f[b]-w[n]-05 1859.15 512.88 946.86 49.07 341.51 0.17 (4, 15, 9.70) 38.67 340.93 33.53 947.56 0.07 (4, 15, 9.70) 43.98
I-n60-f[b]-w[n]-06 1968.55 541.35 986.94 49.86 357.43 0.17 (4, 15, 9.70) 37.82 356.81 34.09 988.14 0.12 (4, 15, 9.70) 43.45
I-n60-f[b]-w[n]-07 1764.90 492.67 868.09 50.81 322.30 0.18 (4, 15, 9.70) 37.84 321.74 34.70 869.17 0.12 (4, 15, 9.70) 43.55
I-n60-f[b]-w[n]-08 1863.70 513.19 950.83 48.98 341.87 0.14 (4, 15, 9.70) 39.39 341.39 33.48 952.20 0.14 (4, 15, 9.70) 44.33
I-n60-f[b]-w[n]-09 1699.05 465.28 846.27 50.19 305.61 0.15 (4, 15, 9.70) 38.53 305.15 34.42 847.00 0.09 (4, 15, 9.70) 43.86
I-n60-f[b]-w[n]-10 1809.49 505.15 869.80 51.93 326.55 0.12 (4, 15, 9.70) 40.12 326.15 35.43 870.11 0.04 (4, 15, 9.70) 46.03
mean 1828.56 506.26 914.47 50.05 333.99 0.16 38.82 333.45 34.18 915.38 0.10 44.57
I-n60-f[n]-w[b]-01 1808.96 499.92 1069.25 40.89 360.14 0.47 (4, 15, 9.70) 36.22 358.47 28.29 1076.09 0.64 (4, 15, 9.70) 39.73
I-n60-f[n]-w[b]-02 1783.90 473.63 1050.30 41.12 338.21 0.59 (4, 15, 9.70) 38.70 336.22 29.01 1060.04 0.92 (4, 15, 9.70) 42.94
I-n60-f[n]-w[b]-03 1834.48 504.47 1087.48 40.72 364.18 0.70 (4, 15, 9.70) 37.51 361.66 28.31 1097.08 0.88 (4, 15, 9.70) 42.07
I-n60-f[n]-w[b]-04 1783.20 501.42 1049.19 41.16 360.95 0.60 (4, 15, 9.70) 38.31 358.78 28.45 1059.36 0.96 (4, 15, 9.70) 42.87
I-n60-f[n]-w[b]-05 1779.07 505.43 1061.13 40.36 368.03 0.53 (4, 15, 9.70) 37.54 366.08 27.57 1070.92 0.91 (4, 15, 9.70) 41.96
I-n60-f[n]-w[b]-06 1823.76 494.02 1082.79 40.63 356.12 0.56 (4, 15, 9.70) 37.42 354.13 28.32 1091.28 0.78 (4, 15, 9.70) 42.31
I-n60-f[n]-w[b]-07 1793.08 494.01 1073.22 40.15 358.91 0.60 (4, 15, 9.70) 37.22 356.76 27.78 1083.02 0.90 (4, 15, 9.70) 41.60
I-n60-f[n]-w[b]-08 1765.68 474.55 1049.74 40.55 341.56 0.49 (4, 15, 9.70) 35.63 339.92 28.37 1056.82 0.67 (4, 15, 9.70) 43.22
I-n60-f[n]-w[b]-09 1821.09 493.52 1081.93 40.59 355.21 0.56 (4, 15, 9.70) 38.89 353.23 28.43 1091.97 0.92 (4, 15, 9.70) 41.89
I-n60-f[n]-w[b]-10 1804.46 498.50 1064.83 40.99 359.47 0.62 (4, 15, 9.70) 38.61 357.24 28.34 1075.44 0.99 (4, 15, 9.70) 41.90
mean 1799.77 493.95 1066.99 40.72 356.28 0.57 37.60 354.25 28.29 1076.20 0.86 42.05
explanations aver. = average value (of 1000 randomly generated solutions) ergo. = total ergonomic strain dist. = total walking distance

rel. impr. = relative improvement compared to the average value rel. gap = relative gap compared to the optimal value

Table 1.2.: Computational results.
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I-n60-f[b]-w[b]-01 1705.93 464.89 840.77 50.71 304.81 0.61 (4, 15, 9.70) 39.15 302.96 34.83 848.03 0.86 (4, 15, 9.70) 40.99
I-n60-f[b]-w[b]-02 1728.07 485.25 832.30 51.84 314.60 0.37 (4, 15, 9.70) 37.94 313.45 35.40 834.83 0.30 (4, 15, 9.70) 41.73
I-n60-f[b]-w[b]-03 1935.06 540.21 983.70 49.16 360.56 0.37 (4, 15, 11.00) 37.82 359.25 33.50 989.79 0.62 (4, 15, 11.00) 43.47
I-n60-f[b]-w[b]-04 1865.73 518.88 941.52 49.54 345.81 0.44 (4, 15, 9.70) 38.84 344.30 33.65 948.69 0.76 (4, 15, 9.70) 42.92
I-n60-f[b]-w[b]-05 1766.78 488.15 884.82 49.92 323.69 0.48 (4, 15, 9.70) 39.17 322.15 34.01 888.29 0.39 (4, 15, 9.70) 42.30
I-n60-f[b]-w[b]-06 1753.27 484.60 864.42 50.70 317.98 0.46 (4, 15, 9.70) 40.59 316.51 34.69 868.65 0.49 (4, 15, 9.70) 44.01
I-n60-f[b]-w[b]-07 1779.40 490.40 875.52 50.80 321.18 0.34 (4, 15, 9.70) 38.68 320.09 34.73 879.16 0.41 (4, 15, 9.70) 42.99
I-n60-f[b]-w[b]-08 1647.34 463.93 822.59 50.07 306.80 0.33 (4, 15, 9.70) 39.10 305.80 34.08 827.50 0.59 (4, 15, 9.70) 42.94
I-n60-f[b]-w[b]-09 2061.54 571.82 1048.45 49.14 379.60 0.43 (4, 15, 9.70) 39.39 377.96 33.90 1055.28 0.65 (4, 15, 9.70) 44.19
I-n60-f[b]-w[b]-10 1638.87 461.69 806.90 50.76 303.12 0.29 (4, 15, 9.70) 36.00 302.25 34.53 811.93 0.62 (4, 15, 9.70) 40.75
mean 1788.20 496.98 890.10 50.26 327.81 0.41 38.67 326.47 34.33 895.21 0.57 42.63
I-n100-f[b]-w[b]-01 2751.83 665.02 1214.68 55.86 373.48 0.28 (4, 25, 16.20) 472.20 372.44 44.00 1221.72 0.58 (4, 25, 16.20) 516.58
I-n100-f[b]-w[b]-02 3061.87 749.82 1373.58 55.14 428.63 0.36 (4, 25, 16.20) 459.99 427.08 43.04 1380.81 0.52 (4, 25, 16.20) 515.68
I-n100-f[b]-w[b]-03 2925.23 716.16 1354.53 53.70 417.67 0.36 (4, 25, 16.20) 479.46 416.15 41.89 1361.63 0.52 (4, 25, 16.20) 520.50
I-n100-f[b]-w[b]-04 2958.29 719.68 1375.69 53.50 419.61 0.38 (4, 25, 16.20) 464.43 418.03 41.92 1383.69 0.58 (4, 25, 16.20) 499.66
I-n100-f[b]-w[b]-05 2870.11 680.06 1319.08 54.04 392.40 0.45 (4, 25, 16.20) 470.53 390.66 42.55 1326.46 0.56 (4, 25, 16.20) 517.04
I-n100-f[b]-w[b]-06 2755.59 663.78 1253.51 54.51 382.98 0.39 (4, 25, 16.20) 450.73 381.50 42.53 1260.83 0.58 (4, 25, 16.20) 504.46
I-n100-f[b]-w[b]-07 2964.26 695.12 1364.22 53.98 402.12 0.35 (4, 25, 16.20) 476.24 400.71 42.35 1372.28 0.59 (4, 25, 16.20) 511.89
I-n100-f[b]-w[b]-08 2867.43 679.71 1299.45 54.68 389.06 0.46 (4, 25, 16.20) 483.77 387.29 43.02 1305.68 0.48 (4, 25, 16.20) 513.14
I-n100-f[b]-w[b]-09 3130.26 773.13 1445.61 53.82 450.34 0.35 (4, 25, 16.20) 481.48 448.78 41.95 1454.31 0.60 (4, 25, 16.20) 519.75
I-n100-f[b]-w[b]-10 3092.19 744.23 1448.30 53.16 435.22 0.38 (4, 25, 16.20) 480.28 433.59 41.74 1455.69 0.51 (4, 25, 16.20) 500.92
mean 2937.71 708.67 1344.87 54.24 409.15 0.38 471.91 407.62 42.50 1352.31 0.55 511.96
explanations aver. = average value (of 1000 randomly generated solutions) ergo. = total ergonomic strain dist. = total walking distance

rel. impr. = relative improvement compared to the average value rel. gap = relative gap compared to the optimal value

Table 1.2 (continued): Computational results.

stance size and the range of the pick frequencies. For all combinations of pick frequency and

item weight ranges, optimizing the large instances yields an about 10 - 12 percentage points

greater improvement as compared to the small ones. We attribute this to the large instance’s

greater flexibility, i.e., more possible layouts and assignments, which allows for greater im-

provement potential in the optimization. Consider, for example, the difference in the objective

value of assigning a very heavy item type to the worst possible position in the worst possible

layout compared to assigning it to the best position in the best possible layout. For larger in-

stances, i.e., larger n, the difference in the objective value is (on average) greater. Hence, the

difference between the optimal and an average randomly generated solution, which by chance

contains some bad assignments, is greater for larger instances.

The range of the pick frequencies influences the achieved improvement in a similar way. Broader

ranges result in an additional improvement of between 4 and 6 percentage points compared to

smaller ranges. This is due to the fact that a broader range of pick frequencies results directly

in a broader range of “costs” ci,k for assigning items to different positions (cf. Equation (1.33)),

which – in a similar way as described above – increases the improvement potential between an

average and the optimal solution.

In contrast to this, the influence of the item weight range is only marginal – even though one

might have expected similar influences as observed for the pick frequency range. However, the

range of “costs” ci,k is less influenced by item weights. This is due to two reasons. Firstly,

the energy expenditure for walking and carrying items, ww,c
i , is only weakly dependent on the
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carried items’ weights (cf., Garg et al., 1978). Instead, most of the worker’s energy is spent

simply on moving his/her body weight. We acknowledge that this weak dependence on the

carried item’s weight does not hold true for muscle fatigue of the arms, shoulders and back.

However, the ergonomic assessment method of Garg et al. (1978) does not account for those,

which is one of its shortcomings that consequently also extends to our evaluation. The second

reason for the weak influence of item weight ranges on ergonomic strain is that the energy

expenditures for picking an item either from a bottom (wb
i ) or top (wt

i) position – while being

stronger influenced by item weight – both increase by about the same amount with increasing

weight. This explains why the difference between ci,k, ∀k ∈ K and ci,k, ∀k ∈ K ′ \K (i.e., the

importance of the decision to store items in a top or bottom position) also only weakly depends

on item weights.

The optimization of walking distances yields average improvements between 33% and 50%

compared to an average solution. As for the optimization of ergonomic strains, the amount of

improvement strongly depends on instance size and the range of pick frequencies. The large

instances’ relative improvements are about 7 to 8 percentage points greater than the small in-

stances’ ones. Beyond that, improvements are about 8 to 10 percentage points greater for in-

stances with large ranges of pick frequencies. The reasons for both observations are the same

as for the optimization of ergonomic strains. Item weight ranges, since they do not influence

walking distances, have no impact on the magnitude of achieved improvements.

Another observation regarding the objective values is that minimizing either ergonomic strains

or walking distances also results in close-to-optimal values for the respective other objective

with relative optimization gaps below 1% on average. This result may seem counterintuitive at

first glance, but can be attributed to the small influence of item weights on the ergonomic strains

(calculated according to the model of Garg et al. (1978)). If the ergonomic strain to carry each

item is approximately equal (independent of the respective item’s weight), the total ergonomic

strain is minimized by minimizing the total amount of carrying, hence the total walking distance.

We note that using alternative ergonomic assessment methods could, therefore, yield more con-

flicting objectives.

Comparing optimal solutions to randomly generated ones, as done above, may yield a biased

estimate of improvements that can be realized in practice. Usually, when U-shaped zones are

employed in practice, layouts and assignments are not determined randomly, but according to

simple rules or heuristics. Glock and Grosse (2012) describe i.a. two such assignment heuristics,

to which they refer as horizontal and vertical assignment. In both heuristics, the items are ranked
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according to their pick frequency in decreasing order. Further, the storage locations are ranked

according to, either, their increasing horizontal distance (i.e., in p-direction), or their increasing

vertical distance (i.e., in q-direction) from the base. Each item is then assigned to the storage

location with an equal rank. Layouts are usually determined by a rule of thumb. According to

our observations in practice, the length of the p-row had often been chosen to be about half (for

smaller U-shaped zones) to a third (for bigger U-shaped zones) of the length of one q-row. The

base was usually placed in the middle of the q-rows.

To asses the improvement potential of optimal solutions over solutions resembling currently

employed U-zones in practice, we solved all small and large instances according to the heuristic

layout and storage assignment policies described above. We assumed ∆p = 3 and ∆q = 6 for

the small as well as ∆p = 4 and ∆q = 13 for the large instances, which corresponds to a relation

of one half as well as roughly one third between the lengths of the p- and q-row, respectively.

Table 1.3 presents a comparison of the heuristic and optimal solutions. Detailed reports of the

results are available from https://doi.org/10.5281/zenodo.3364271.

instance objective: minimizing total walking distance objective: minimizing total ergonomic strain
labeling opt.

[m]
hor.
assign.
[m]

rel. impr.
from hor.
assign. [%]

vert.
assign.
[m]

rel. impr.
from vert.
assign. [%]

opt.
[kcal]

hor.
assign.
[kcal]

rel. impr.
from hor.
assign. [%]

vert.
assign.
[kcal]

rel. impr.
from vert.
assign. [%]

I-n30-f[n]-w[n]-## 606.15 713.86 15.09 695.16 12.80 270.06 291.16 7.25 287.16 5.95
I-n30-f[b]-w[n]-## 503.09 689.11 27.00 611.02 17.66 241.31 281.45 14.26 265.48 9.10
I-n30-f[n]-w[b]-## 617.28 724.39 14.79 710.86 13.16 275.88 297.94 7.40 293.65 6.05
I-n30-f[b]-w[b]-## 534.51 723.29 26.10 646.66 17.34 258.66 296.32 12.71 279.39 7.42
I-n60-f[n]-w[n]-## 1062.04 1286.06 17.42 1236.10 14.08 358.70 401.34 10.62 391.21 8.31
I-n60-f[b]-w[n]-## 914.47 1300.99 29.71 1112.02 17.76 333.45 406.67 18.00 370.47 9.99
I-n60-f[n]-w[b]-## 1066.99 1299.43 17.89 1249.05 14.58 354.25 399.97 11.43 387.02 8.47
I-n60-f[b]-w[b]-## 890.10 1282.74 30.61 1089.20 18.28 326.47 401.07 18.60 362.99 10.06

Table 1.3.: Comparison of heuristic and optimal solutions.

Table 1.3 shows the mean objective values for every type of instance. Clearly, the vertical as-

signment outperforms the horizontal assignment. However, even the former yields results that

are significantly worse than the optimal solutions. Optimal total walking distances are on aver-

age between 12.80% and 18.28% lower than the ones found via the vertical assignment heuris-

tic. Energy expenditures are between 5.95% and 10.06% lower in the mean. This comparison

demonstrates that the optimization of U-shaped zones can also yield significant improvements

in practical situations, where U-zones are configured using heuristics.

Regarding the optimal layout, there are two main observations. Firstly, for every instance, the

U-zone that is as narrow as possible in p-direction (and that is, consequently, most elongated

in q-direction), is optimal. Secondly, the base is most of the time located in front of the center

of the fifth (r∗ = 5.80 m) or occasionally sixth (r∗ = 7.10 m) PC in q-direction for the small
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instances and in front of the center of the eighth (r∗ = 9.70 m) or seldom ninth (r∗ = 11.00

m) discrete position for the large instances. There are only a few exceptions, which have been

underlined in Table 1.2.

The reasons why the optimal U-zone tends to be narrow in p-direction are twofold. On the one

hand, narrow U-zones allow for better discrimination of item placement. To demonstrate this,

consider two possible U-zones with the same number of PCs, one narrow and one more quadratic

in shape, both with the base in a centered position. In the more quadratic layout, the distance

between the base and the closest PCs (at the middle of the sides) and the distance between the

base and the PCs farthest away from the base (at the corners) differ only by a comparatively small

amount. On the contrary, in the narrow layout, these distances differ by a much greater amount.

Here, the distance to the closest PCs are smaller and the distances to the more peripheral PCs

are greater than in the quadratic case. Therefore, placing frequently picked items at positions

closer to the base and less frequently picked ones farther away can be realized better for narrow

U-zones. On the other hand, each U-layout consists of two q-rows, but only one p-row, which

leads to advantages for U-zones elongated in the former direction and narrow in the latter. To

better illustrate this aspect, again consider a quadratic layout. Narrowing this quadratic shape

in p-direction by two discrete positions moves every PC contained in the q-rows one position

closer to the base and every PC contained in the p-row one position farther away. Since there are

twice the number of PCs in the q-rows than in the p-row, the average distance to a PC decreases.

We note, however, that the optimal solution is not guaranteed to be of minimal width in the

p-dimension. For example, an instance with n = 30, f1 = f2 = 30 and fi = 1 picks per hour,

∀i ∈ {3, ..., n} and wi = 15 kg, ∀i ∈ {1, ..., n} as well as every other parameter set to the values

proposed in Section 1.5.1 has the optimal layout of ∆∗
p = 5, ∆∗

q = 7 and r∗ = 7.29 m.

For both instance sizes, the base tends to be placed in front of the middle of the first (or rarely the

second) PC in the q-rows behind (i.e., in positive q-direction) the axis at r = 1
2

(
(lf + s)(∆∗

q −
1)− s

)
, which lies in the middle of the PCs contained in the respective rows (cf. Section 1.4.2).

If the U-zone was missing the p-row, we would expect the base to be placed at the exact position

of this axis, as this minimizes the total unweighted distances to all PCs. However, due to the

PCs contained in the p-row, the optimal base position tends to be slightly offset in positive p-

direction.

The fact that the optimal base position is, most of the time, positioned in front of the middle of

a PC can be explained by considering the determination of the optimal base position as a Weber

or facility location problem. In the basic formulation of the facility location problem, a set of

customers with attributed weights and respective positions in a plane are given. The objective is
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to decide on the location of a single facility, such that the sum of its weighted distances to the

customers is minimized (for a comprehensive review of facility location problem, see Owen and

Daskin (1998)). Assume that we already know the optimal U-shape and the optimal assignment

of PCs to discrete positions for a given instance of USLPP. The problem of finding the optimal

base position is then equivalent to a facility location problem, with PCs corresponding to cus-

tomers, the terms fiw
w,c
i corresponding to their respective weights and the base corresponding

to the facility. For rectangular distance measurements, it has been shown that the optimal posi-

tion of the facility is always on par with one of the customers in both directions; i.e., the p- and

q-direction in the case of USLPP (Francis, 1963). Further, the facility’s positions in both direc-

tions are mutually independent. For euclidean distance measurements, however, these properties

do not hold.

In USLPP, the base’s position in p-direction is already fixed by the symmetry line of the U-

zone. Its position in q-direction, r†, still needs to be determined. Since in USLPP, we measure

distances according to a weighted mean of rectangular and euclidean distances (and allow for

different weights α, cf. Equation (1.1)), the optimal base position does not necessarily obey the

property of facility location problems with rectangular distance measurements (as, for example,

the optimal solution for instance I-n30-f[b]-w[b]-07 shows). However, as the results in Table 1.2

indicate, for most cases, the property still holds.

All test instances were generated such that about 200 picks per hour need to be fulfilled, inde-

pendent of the instances’ sizes. Therefore, by comparing the optimization results of the small

and large instances, we can draw conclusions on the influence of the U’s size on pick efficiency.

The optimal total travel distances of the large instances are on average 74% higher than those

of the small ones. This increase can be attributed to the former’s size, which is about twice the

latter’s size and, therefore, increases average walking distances. Increased average walking dis-

tances for larger instances are, however, partially compensated by the improved possibilities to

assign less frequently picked item types to storage locations farther away from the depot (hence,

the travel distances are not doubled). Due to the same reason, larger instances yield, on average,

31% higher optimal total ergonomic strains. Based on these findings, it is recommended to store

items that are never picked in the same batch in multiple smaller U’s instead of a single bigger

one.

This result has further significance for the ergonomic evaluation of our test instances. While

recommendations often differ, most experts agree that exceeding an energy expenditure rate of

5kcal
min = 300 kcal

h over the course of an eight hour work day leads to significant health risks (Mi-
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tal, 2017). The energy expenditure of an average, randomly generated solution exceeds this

threshold for all instance sizes, which – since we generated instances with real-world oriented

properties – further points to the necessity of an ergonomic optimization. By optimizing the

small instances, we are able to reduce the total ergonomic strain to values below the critical

threshold. On the contrary, for the large instances, the optimized total ergonomic strains still

exceed the critical value and could only be further lowered by reducing total pick frequencies

or introducing intermediate rest periods, and therewith decreasing system efficiency. We note

that our analysis is based on quite restrictive assumptions on pick frequencies, item weights and

the anthropometric characteristics of the worker. Further, we did not consider the generation of

work plans that may schedule breaks or activities with low ergonomic strains in-between physi-

cally exhausting tasks, which could reduce average energy expenditures. The results, therefore,

deviate from a real-world situation. Nevertheless, the general implications are still valid.

Finally, we analyze the properties of the optimal assignment. Figure 1.3 depicts the optimal

solutions that minimize the total ergonomic strains for instance I-n30-f[b]-w[b]-01 and I-n60-

f[b]-w[b]-01 exemplarily for both instance sizes.

(a) Optimal solution of I-n30-f[b]-w[b]-01. (b) Optimal solution of I-n60-f[b]-w[b]-01.

Figure 1.3.: Exemplary optimal solutions for the minimization of total ergonomic strains.

In Figure 1.3, PCs are colored in a red-green color scheme according to the contained items’ pick

frequencies. Additionally, rectangular markings on the PCs’ surfaces indicate the respective item

weights on a grey scale. Empty PCs, which are only used to support regular PCs on their top,

are colored grey on their entire surface.

For both instance sizes, pick frequency is the dominant attribute that influences PC placement.

More frequently picked items strongly tend to be stowed in PCs located closer to the base.
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However, due to the fact that Figure 1.3 depicts optimal solutions for the minimization of total

ergonomic strains, the distances between PCs and the base are not solely dependent on item

pick frequencies, but also (weakly) on the items’ weights. Both observations, the high impact of

pick frequencies and the low importance of item weights, are in accordance with our previous

findings, for which we already discussed the underlying causes.

In addition, with respect to their pick frequencies, PCs are assigned approximately symmetri-

cally in p- and q-direction, with the symmetry lines crossing at the base. Since the base tends

to be located slightly above r = 1
2

(
(lf + s)(∆∗

q − 1)− s
)

in the optimal solution, the items

contained in PCs in the first q-row (that is farthest away from the base) are among the least

frequently picked.

1.6. Conclusion

This paper considered the problem of optimizing the layout and storage assignment of U-shaped

order picking zones built from pallet cages, with the objective of minimizing either total walking

distances or total ergonomic strains while picking. We further determined the optimal position

of a base where picked items are dropped off. We assumed that the set of items that should be

stored in the U-zone are given. Both versions of the problem were formalized as a MIP with dif-

ferent objective functions. Concerning the second objective, ergonomic strains were considered

in a generalized manner allowing for different methods to be employed for quantifying them.

This paper used the energy expenditure prediction model of Garg et al. (1978) for illustrative

purposes.

We proposed an exact solution procedure based on the disaggregation of the problem into two

consecutive problems that can be solved in hierarchical order. First, feasible U-zones and base

positions are determined, and secondly, as a sub-problem, a storage assignment problem (for-

malized as a linear assignment problem) is solved for every respective layout and base position

using the Hungarian algorithm. The resulting exact solution procedure has a polynomial asymp-

totic runtime of O
(

1
16

lf+s
δr

n5
)

, where lf + s is a constant term, independent of the problem

size, and δr is the numerical precision for determining the base position.

A computational study demonstrated the efficiency of our solution procedure and helped gaining

insights into the properties of optimal solutions. Beyond that, we compared solutions optimized

for both objectives considered in this paper, namely minimizing total walking distances or total

ergonomic strains. The central findings of the computational experiments can be summarized as
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follows.

• Our proposed solution procedure is sufficient to solve problems of realistic size in accept-

able runtime. Instances with a problem size of 30 pallet cages were solved in 1.3 s on

average. Instances with a problem size of 60 pallet cages took, in the mean, 40.5 s, and

instances with a problem size of 100 pallet cages required 491.9 s on average to be solved.

• Optimized total ergonomic strains (measured via the worker’s energy expenditure) can be

reduced by between 17% and 34% compared to average randomly generated solutions.

Likewise, total travel time can be reduced by between 33% and 50% compared to an

average solution.

• Compared to solutions derived by simple heuristics that are often used to configure U-

zones in practice, optimal solutions yield between 6% to 10% lower ergonomic strains

and between 13% and 18% shorter total walking distances.

• Optimizing either total ergonomic strain or total traveling times yields close-to-optimal

results for the respective other objective with optimality gaps below 1%. Hence, for the

situation considered in this paper, both objectives are only marginally conflicting.

• The contribution of a certain item type to the total ergonomic strain mainly depends on

the item’s pick frequency. The influence of item weights is only minor (which we attribute

to some extent to the ergonomic assessment method used in this paper). The contribution

of a certain item type to the total traveling distance solely depends on the item’s pick

frequency.

• The higher an item’s contribution to the respective objective, the closer it is assigned to the

base. Since an item’s contribution to either of the objectives is primarily/solely dependent

on its pick frequency, both objectives result in similar optimal solutions.

• The optimal layout of the U-zone for both of the objectives strongly tends to be as narrow

as possible in horizontal direction (i.e., such that the U’s opening is as narrow as possible).

Additionally, this optimizes the U’s spacial utilization, i.e. the planar space enclosed by

the U-shape.

• The optimal position of the base strongly tends to be aligned with the middle of pallet

cages in horizontal direction. Additionally, the base is most of the time located close to

the U-shape’s middle in vertical direction with a slight shift away from the U’s opening.
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Three main research opportunities follow from the research presented in the work at hand. First

and foremost, research should validate and possibly refine the evaluation of ergonomic strains

resulting from the order picking activities. In this paper, we restricted ourselves to evaluating

ergonomic strain via the energy expenditure prediction model of Garg et al. (1978). Although

this assessment method is well-established in various fields of application including the evalu-

ation of order picking activities (cf. Section 1.2), it also has several shortcomings. The most

severe deficit in the case of this paper is that it neglects muscle fatigue of the back and upper

extremities. Future research should, therefore, assess ergonomic strains during order picking

activities with more refined methods.

Another option for future research lies in the extension and adoption of USLPP. A minor exten-

sion could consider the ergonomic strain resulting from placing the base at different positions

(although we expect the influence to be marginal). Further adaptations could be made by consid-

ering alternative layouts, e.g. in the shape of a C. The model could also be adapted to consider

pallet cages of half the regular height (cf., for example, Blackwoods, 2019) or regular shelves

arranged in the shape of a U. However, for regular shelves with two distinct rack heights, the

current model is already suitable.

Finally, future research should consider the optimization of warehouses with U-shaped layouts

from a more holistic point of view, e.g. by including the optimization of the number and shape

of zones and the partitioning of items between zones, although, due to its complexity, we expect

a holistic problem to be hard to solve exactly. Heuristic procedures that utilize the findings of

this paper could be a viable approach to solving such holistic problems.
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1.A. Appendix

In the following, we exemplarily demonstrate how ergonomic strains, in the form of energy

expenditure rates, are calculated in this paper. A schematic representation of an exemplary

picking task, decomposed into its comprising tasks, is depicted in Figure 1.4.

Figure 1.4.: Pictogram of the picking task.

In the exemplary picking task, we assume that the picker picks an item i stored at (p, q) =

(5, 1) (i.e. xt5,1,i + xb5,1,i = 1). For the sake of completeness, we demonstrate how the energy

expenditure is calculated if i is stored either in a top or bottom PC. (We stress, however, that in

a feasible solution of USSLP, for every item type we can only chose one of these two options.)

The energy expenditure for picking item i in this exemplary case can then be derived as follows:

0. Initially, the picker stands in front of the base, ready to pick the next item. This marks the

beginning of the picking process, but does not contribute to the energy expenditure.

1. As a first task, the picker walks a distance of dp,q = d5,1 to the storage location (p, q) =

(5, 1) of item i. We assume the picker walks at constant speed without accelerating or

decelerating. Using the equations of Garg et al. (1978), we derive the worker’s energy

expenditure per distance walked as ww, which depends on the worker’s sex, body weight

and walking speed. Multiplying the walking distance with the energy expenditure per

distance walked yields the worker’s energy expenditure for the first task as dp,q ww.
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2. As soon as the picker arrives at the storage location, s/he begins extracting the item, which

marks the second task. Depending on the item being either stored in a top PC (xt5,1,i = 1)

or in a bottom PC (xb5,1,i = 1), the accumulated energy expenditure differs. However,

in both cases, the extraction task can be split into two consecutive sub-task. Firstly, the

picker brings his/her hands to the item to grab it. Secondly, s/he pulls/lifts the item out

of the PC bringing it into a comfortable carrying position in front of his/her hips/frontal

thighs. If the item is stowed in a bottom PC, the movement additionally includes squatting

and sagittal bending of the upper body to reach the item as well as returning to an upright

standing position when bringing the item to hip/thigh height. Using the equations of Garg

et al. (1978), we are able to calculate the energy expenditures for both cases, wt
i (top PC)

and wb
i (bottom PC), which further depend on the physical item weight and the picker’s

sex as well as body weight. Please note that both energy expenditures, wt
i and wb

i , are

independent of the storage location of i in the (p, q)-plane.

3. After item i has been extracted, it is carried back to the base as a third task. We neglect

any turning movements due to their minor contribution to the total energy expenditure.

Analogous to the first task, the distance between the item’s storage location and the base

is dp,q = d5,1. Again, we assume that the picker walks at a constant speed without (de-

)accelerating. Depending on the item’s weight, we derive the energy expenditure per

distance of carrying item i, wc
i , using the equations of Garg et al. (1978). The energy

expenditure to carry the item back to the base is then given by the term dp,q w
c
i .

4. As a fourth task, the picker drops off the item at the base, where we assume that the item

is (on average) deposited centered. Comparable to the second task, we split the fourth

task into two sub-tasks. At first, the picker moves the item to the center of the base and

releases his/her grip. Afterwards, s/he returns his/her upper extremities and upper body

to a neutral upright position and turns to assume the initial position (enumerated with

0.), ready to begin the next picking task. Again, the energy expenditure of turning is

neglected due to its minor contribution to the total energy expenditure. Depending on the

item weight, we use the equations of Garg et al. (1978) to derive the energy expenditure

for dropping off the item as wd
i . Note that wd

i is independent of both the item’s storage

location in the (p, q)-plane and of the item’s storage in a top or bottom PC, rendering it

irrelevant for both decisions. We nevertheless account for wd
i to encompass total energy

expenditure more accurately.
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The total energy expenditure to pick item i then amounts to{
dp,q w

w + wt
i + dp,q w

c
i + wd

i for xt5,1,i = 1

dp,q w
w + wb

i + dp,q w
c
i + wd

i for xb5,1,i = 1
=

{
dp,q w

w,c
i + wt

i + wd
i for xt5,1,i = 1

dp,q w
w,c
i + wb

i + wd
i for xb5,1,i = 1

with ww,c
i = ww + wc

i . Since in USSLP, each item type is stored either in a top or at a bottom

PC (i.e., xt5,1,i + xb5,1,i = 1), the resulting energy expenditure can be rewritten as

dp,q w
w,c
i

(
xbp,q,i + xtp,q,i

)
+
(
wt
i x

t
p,q,i + wb

i xp,q,i

)
+ wd

i

to equal the term in the objective function (1.5).
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Paper 2: Loading tow trains ergonomically
for just-in-time part supply5

Abstract: Faced with an aging workforce, many manufacturing companies consider alleviating the er-
gonomic strain of material handling on their workers increasingly important. This is one of the reasons
why frequent small-lot deliveries of parts to the assembly stations on the shop floor via small electric
delivery vehicles – so-called tow trains – have become widespread in many industries. Deploying tow
trains, however, does not automatically ease the ergonomic burden on logistics workers, but requires care-
ful stowage planning in addition. In this paper, we consider the following problem. Given a set of bins
of differing weight to be carried by tow train to a given set of stations on the shop floor, where should
each bin be stowed on the tow train such that it can be unloaded efficiently from an economic perspective
while also minimizing the ergonomic strain during loading and unloading? We investigate the physiolog-
ical stress of handling bins on different levels of a tow train wagon by applying an established ergonomic
evaluation method from the human factors engineering literature. We model the ensuing optimization
problem as a special type of assignment problem and propose suitable exact and heuristic solution meth-
ods. In a computational study, our approaches are shown to perform well, delivering optimal solutions
for instances of realistic size within fractions of a second in many cases. We show that optimal stowage
plans can significantly ease the physiological burden on the workforce without compromising economic
efficiency. We also derive some insights into the ideal layout of the tow train from an ergonomics per-
spective.

Keywords: Assignment; Tow trains; Ergonomics; Generalized assignment problem; Part feeding

5This chapter has been published as: Diefenbach, H., Emde, S., and Glock, C. H. (2020). Loading tow trains
ergonomically for just-in-time part supply. European Journal of Operational Research, 284(1), 325-344. DOI:
https://doi.org/10.1016/j.ejor.2019.12.009
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2.1. Introduction

In many industries, feeding parts from a warehouse to the assembly lines such that neither trans-

port frequencies nor line-side inventories are excessive has become a major problem. This is

due to, on the one hand, an extreme product variety (that results from the customization of mass

products), and, on the other hand, very limited space on the shopfloor, which prohibits large

inventories and intense shopfloor traffic. Taking parts in large lots (e.g., entire pallets) straight to

the assembly line via industrial trucks has therefore become highly unattractive for many com-

panies (e.g., Medbo, 2003, Boysen et al., 2015). Instead, tow train systems are often used. Tow

trains consist of a small electric towing vehicle attached to a handful of wagons, as depicted

in Figure 2.1. Some tow trains operate as automated guided vehicles with minimal human in-

tervention, although most tow trains are still operated by a driver (Golz et al., 2012, Emde and

Gendreau, 2017, Lieb et al., 2017). More often than not, in addition to driving the train, its

operator is also responsible for loading the tow train at a central warehouse or a just-in-time

“supermarket” and unloading it at the assembly line. An intersectoral study by Lieb et al. (2017)

found that the tow train driver is responsible for loading the tow train in 63% and for unloading

the tow train in 89% of the cases.

Figure 2.1.: Tow train without load6.

Tow trains have a higher transport capacity than forklifts, allowing frequent small-lot deliveries

of parts to multiple stations in one tour. Parts are typically pre-sorted and packed into small

standard-size bins and delivered just-in-time, such that workers at the assembly line need not

waste any time searching for or unpacking parts. One central advantage of this type of part feed-

ing system is that it is supposed to make it easier for workers to handle parts in an ergonomic

6The picture “Routenzuglösung” belongs to SSI Schäfer and was downloaded from http://www.
ssi-schaefer.ua/uploads/pics/071_routenzug_02.jpg. SSI Schäfer permitted the usage of
this content in the context of this paper.
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manner (e.g., Neumann and Medbo, 2010, Emde and Boysen, 2012b, Battini et al., 2013). It is

obviously less stressful from an ergonomics perspective to handle small bins than entire pallets

(Neumann and Medbo, 2010). This aspect is becoming increasingly important as many man-

ufacturers struggle with an aging workforce (e.g., Otto and Scholl, 2011, Aiyar et al., 2017,

European Commission, 2017).

Tow trains do not automatically make logistics processes more ergonomic, however. Specifi-

cally, the tow trains still need to be loaded at the depot and unloaded at the stations by human

workers. This requires lifting and setting down many individual bins of differing weight. Al-

though tow train wagons are often designed as gravity flow racks, such that bins inserted at one

end of the wagon slide to the front by themselves, not all tiers of a wagon can be accessed with

the same ease. Typically, from an ergonomics perspective, the middle level of a rack is the least

stressful to (un-)load (Petersen et al., 2005). Reaching overhead or bending down causes more

strain (see Section 2.6 for more details).

This study is motivated by a problem we encountered at the main production facility of a major

German machine manufacturer. This company supplies its assembly lines from a central ware-

house via a fleet of ten tow trains, attached to wagons equipped with gravity flow racks. Parts are

picked just-in-time in multiple order picking stations from pallets and crates into standardized

bins destined for specific workstations at the assembly line. The pickers place the finished bins

onto an automated sortation conveyor, which funnels them to the correct tow train to be loaded

by the operator. Once equipped, the tow train sets off on a milk run through the production

facility on one of multiple fixed routes. The whole system is computerized, meaning that the

pickers know which parts to pick when for which station, the sortation conveyor knows where

to send which bin, and the tow train operators know when the tow train visits which stations on

what route. All bin movements onto and from the tow train are logged via a barcode scanner.

Material, once requested, can be shipped to final assembly within two to four hours. While the

company is quite satisfied with the responsiveness and efficiency of the system, the ergonomic

stress caused by (un-)loading heavy bins has so far been taken into account only in a rudimentary

manner.

To the best of our knowledge, until now, optimization and planning models focusing on situa-

tions like the one described above have only considered time and cost as objectives (for a more

detailed review see Section 2.2). In this context, this paper makes the following contributions.

First, we investigate the physiological stress of handling bins on different levels of a tow train

wagon by applying an established ergonomic evaluation method from the human factors engi-

neering literature to the loading and unloading of tow trains we observed in practice. Second,
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we formulate, analyze, and solve the optimization problem of how to stow bins on a tow train

such that they are readily accessible in the right order during unloading and such that the to-

tal ergonomic strain on the workforce is minimized during both loading and unloading. Third,

in a series of computational experiments we show the efficacy of our solution approaches and

demonstrate that incorporating ergonomic objectives into tow train (un-)loading greatly eases

everyday part feeding. We also derive some recommendations as to how to operate tow trains

ergonomically.

2.2. Literature review

Although just-in-time in-house logistics is quite a new topic in scientific research, various is-

sues concerning the logistics of tow trains and, on a more general level, in-plant part feeding,

have received attention in recent years. Problems that companies operating tow trains usually

encounter range from planning the optimal location of in-plant logistics areas (“supermarkets”)

on a strategic level, to operational problems such as the routing, scheduling, and loading of tow

trains (Emde and Boysen, 2012a). Holistic approaches are developed by Choi and Lee (2002)

and Golz et al. (2012), who consider tour planning, scheduling and loading simultaneously and

provide heuristic solution procedures for these problems. An overview of in-house milk run

problems is provided by Alnahhal et al. (2014), while Battini et al. (2013) and Boysen et al.

(2015) give an overview of the supermarket concept specifically in the automotive industry,

where it is the most common.

The supermarket location problem is discussed by Battini et al. (2010), Emde and Boysen

(2012a) as well as Alnahhal and Noche (2015). These authors consider the objective of opti-

mally placing supermarkets on the shop floor, such that assembly line stations are supplied at

minimal total cost, where the costs consist of fixed expenditures for erecting additional super-

markets and distance-dependent tow train travel costs.

Vaidyanathan et al. (1999) and Emde and Schneider (2018) deal with the problem of routing

tow trains. The objective considered in these papers is to minimize the weighted sum of tow

trains in use as well as line-side stocks that need to be held at workstations to satisfy demands

in-between tow train re-visits, with the latter depending on the processing time of the planned

tow train routes.

Tow train scheduling is considered by Emde and Boysen (2012b), Fathi et al. (2016) as well as

Emde and Gendreau (2017). Following the concept of lean production, the problem, as regarded
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by these authors, consists of deciding when to execute which tow train tour such that line-side

demands are fulfilled and line-side stocks are minimized.

Finally, Emde et al. (2012) consider the problem of loading tow trains with the objective of

minimizing line-side stocks.

Our brief review of the literature shows that research on just-in-time in-house logistics, and

especially on tow train operations, has recently gained momentum. Ergonomic aspects have,

however, not yet been investigated in this context, despite the high amount of manual human

work that is still associated with the loading and unloading of tow trains in practice today (see

Lieb et al., 2017). The handling of heavy loads that may be associated with the (un-)loading of

tow trains exposes the tow train drivers to an increased injury risk that the company may mitigate

by taking account of ergonomic measures in planning tow train operations. We note that Boysen

et al. (2015) already highlighted a few years ago that taking account of ergonomic aspects in

decision support models for material handling is an important research gap that requires further

investigation.

While ergonomic aspects have not been considered in the planning of tow train operations, there

is a substantial amount of research in the human factors engineering literature that investigates

the manual handling of materials on worker health and safety. In this stream of research, manual

material handling (MMH) activities, such as the ones encountered in (un-)loading tow trains,

have been shown to increase the workers’ risk of developing muscular-skeletal disorders (MSD)

(see e.g., Punnett and Wegman, 2004, Larsson et al., 2007, Roquelaure et al., 2009). Some

researchers estimate that between 50% and 75% of all MSD cases are directly related to MMH

activities (Lavender et al., 2012). In the EU, MSD are assumed to account for up to 58% of

all work-related illnesses, amounting to an estimated annual cost of 2% of the gross national

product in the European Union (Schneider and Irastorza, 2010).

In the context of order picking, which shares some similarities with the (un-)loading of tow

trains with respect to the MMH activities involved (but not with respect to the managerial char-

acteristics of the decision problem), the increased risk of developing MSD has been confirmed

in various field studies (Braam et al., 1996, Gardner et al., 1999, Garg, 2000, Marras et al., 2010,

Lavender et al., 2012). Even though the increased risk of developing MSD from MMH activities

(and hence order picking) is undisputed in the literature, Neumann and Medbo (2010), Grosse

et al. (2015) as well as Grosse et al. (2017) point out that ergonomic aspects have scarcely been

considered in decision support models for such activities, and that much work remains to be

done. A few notable exceptions are discussed in the following.
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Petersen et al. (2005) mention that there is a “golden” zone for shelf heights (between hip and

shoulder height), where picking items is less exhausting for workers. The authors also state

that this aspect has not yet been accounted for in stowage location planning models. Only

recently, ergonomic considerations have been integrated into mathematical optimization and

decision support models.

Battini et al. (2016b) investigate the optimal storage location for items in a single aisle consisting

of a single (long) shelf. The authors consider a bi-criterial objective function, which minimizes

total picking time as well as total ergonomic strain, depending on the vertical as well as horizon-

tal placement of items. Ergonomic strain is quantified by calculating energy expenditure rates

based on the concept developed by Garg et al. (1978). Another recent example of an applica-

tion of the method by Garg et al. (1978) to quantify the ergonomic strain of picking items from

different shelf configurations is the paper of Calzavara et al. (2017).

Larco et al. (2017) consider the problem of optimally stowing items in a warehouse with the

objectives of minimizing travel time and ergonomic strain. They formulate this problem as an

assignment problem, where every assignment of an item to a stowage location leads to a specific

travel time and ergonomic strain. Besides the stowage location in the planar dimension, the

authors also take the location in the vertical dimension (i.e., shelf heights) into account. Both

travel times and ergonomic strains are determined in empirical experiments.

Otto et al. (2017) consider an item-to-storage assignment problem in a fast pick area using grav-

ity flow racks. The authors develop a tabu search heuristic in order to minimizing the pickers’

ergonomic strains, which they quantify using two different approaches; the NIOSH lifting equa-

tion (Waters et al., 1993) and a predetermined motion energy system (Battini et al., 2016a) based

on the model by Garg et al. (1978).

Some researchers have recently started to investigate ergonomics in line-side operations in an in-

house logistics and production context. Neumann and Medbo (2010), for example, compare the

use of EURO pallets to small containers in the Swedish automotive industry. The authors find

that using narrow containers for line-side operations offers economic advantages due to lower

item access times, and that this concept also substantially lowers ergonomic strain on workers

handling the materials. Ergonomic strains are evaluated with the help of a biomechanical model

that measures the load on the lumbar spine, shoulders and hands of the worker, implemented in

the software 4D WATBAK (Neumann et al., 1999).

Palmerud et al. (2012) conduct a case study at a Swedish car manufacturer, where the authors

compare the ergonomic strains of two alternative production strategies, namely long-cycle par-
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allelised flow assembly and serial flow assembly. The second strategy is shown to lead to lower

MMH stress. To assess ergonomic strains, the authors measure relevant values, such as step

frequency, cardiovascular load and body posture, by means of video recordings and direct tech-

nical measurements on the workers. The measurements are then statistically refined and directly

compared to assess differences in ergonomic strains between both production strategies.

Otto and Scholl (2011) integrate an ergonomic risk factor into an optimization model for assem-

bly line balancing. They show that their model is suited for various different ergonomic risk

evaluation approaches, namely the revised NIOSH equation (Waters et al., 1993), OCRA (Oc-

chipinti, 1998) and EAWS (Schaub et al., 2013), but settle for OCRA in their final computational

study.

To the best of our knowledge, such techniques have never been applied to stowage planning for

tow train operations.

2.3. Problem description

Regarding the planning hierarchy, we assume that the problem of optimizing the bin stowage of

a tow train with regard to ergonomic aspects follows last, after tours, schedules and loads have

been set. This is due to the observations we made in practice and those reported in the literature,

where operating the tow train economically is the primary goal. Therefore, optimizing tow train

operations from an ergonomics point of view may most likely only be approved within those

boundaries set by economically optimal plans and schedules.

The ergonomic tow train loading problem (ETTLP) consists of assigning a given set of bins to

storage slots on the tow train. Let B = {1, . . . , n} be the set of bins to be stowed on the tow

train. Each bin j ∈ B is assigned to a specific workstation s(j) ∈ N ̸=0 on the shopfloor. Note

that one station may of course receive multiple bins, i.e., s(j) may be identical for multiple j.

Further, multiple bins may contain the same type of items, for example because of the items’

high demand and/or size. Nevertheless, those bins can still be treated individually. If multiple

bins are destined for the same station, they must not be divided among multiple wagons because

this causes confusion and additional walking effort during unloading. We assume this constraint

is already considered when the tow trains’ routes, tours and schedules are planned according

to economic objectives, such that emerging problem instances of ETTLP are guaranteed to be

feasible. Nevertheless, if we face an economically optimized loading plan where it is impossible

to store bins destined for a certain station on the same wagon, we can split the station and the
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associated set of bins into two (or multiple) artificial stations and corresponding sets of bins to

make the respective instance of ETTLP feasible. However, we assume that such situations occur

rarely in practice due to tow trains mostly being filled only partially to capacity.

Let W = {1, . . . ,w} be the set of wagons to be loaded. Each wagon w ∈ W carries a shelf

with racks at different heights. Each rack is divided into slots, each µ bins deep, meaning that

the total capacity of the tow train is
∑

w∈W mw ·µ bins. For additional clarification, a schematic

representation of such a wagon is provided in Figure 2.6 in the Appendix. Note that in many

practical applications, we can assume mw = mw′ , ∀w,w′ ∈ W , i.e., all wagons are identical.

Without loss of generality, we assume that n =
∑

w∈W mw · µ, i.e., there are exactly as many

bins as there is space. Note that this can always be imposed by adding “ghost” bins that do not

contribute to the objective and have to be delivered each to a different “ghost” station. Also

note that we assume that the total number of slots
∑

w∈W mw · µ is polynomially bounded

by the number n of (non-ghost) bins. We denote the set of slots as P = {1, . . . ,m}, where

m =
∑

w∈W mw. Each slot p ∈ P is located on one wagon w(p) ∈ W . Placing a bin j ∈ B in

a slot p ∈ P causes ergonomic strain on the logistics worker, denoted as e(j, p). We explain in

more detail in Section 2.6 how e(j, p) can be calculated in practice.

A solution is defined as a mapping ρ : B → P such that ρ(j) = p if bin j ∈ B is assigned to

slot p ∈ P . We call a solution feasible if and only if it satisfies the following conditions.

• No slot is loaded over capacity, i.e., since we use “ghost” bins to fill up empty spaces, for

all p ∈ P , it must hold that |{j ∈ B | ρ(j) = p}| = µ.

• Bins that are destined for the same station must be on the same wagon, i.e., for each pair

of bins j, j′ ∈ B, it must hold that if s(j) = s(j′), then w(ρ(j)) = w(ρ(j′)).

The latter condition enables us to stop the tow train at each station such that the wagon that stores

the bins destined for the respective station is located right in front of it. This implies that no

workstation receives more bins than can be stowed on a single wagon. Enforcing this condition

minimizes the walking distance of the worker unloading the tow train, which, firstly, minimizes

the ergonomic strain that results from carrying loads, and, secondly, minimizes unloading times.

Hence, we only consider stowage plans that do not worsen the tow train’s economic performance

(i.e., unloading time), so that they are likely to be accepted in practice.

We further assume that slots are operated on a first-in-first-out principle, meaning that the bin

that is put on a slot first is also the first one to be removed from it. This is the case, e.g., for

gravity flow racks as described in Section 2.1. At each station, bins destined for this station
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should be directly available, without the need for reshuffling bins at any given slot. Provided

that all bins are available at the beginning of the planning horizon, for any feasible solution of

ETTLP, we assume that the tow train is loaded in such a way that reshuffles are avoided. Any

feasible solution for ETTLP can be converted to a solution obeying the no-reshuffle condition

via a sorting algorithm (sorting the bins in each slot according to their destined stations) in

polynomial time (e.g., O(m·µ·log(µ)) using a comparison-based sorting algorithm). Therefore,

we need not explicitly enforce this condition in our model.

A feasible solution already ensures that bins are stacked such that they can be accessed quickly.

However, a feasible stowage plan does not guarantee that logistics workers can access bins in

an ergonomic manner. To account for this, we seek among all feasible solutions one which

minimizes ∑
j∈B

e(j, ρ(j)). (2.1)

Note that, to formulate ETTLP concisely, we make the assumption that the capacity of the

tow train is only limited by the number of bins it can carry, not by weight etc. This is usu-

ally a realistic assumption because tow trains are typically not used to carry bulky, heavy parts

(Medbo, 2003). Moreover, we assume that the exact number of bins and their destinations on

the shopfloor are known with certainty. This can be assumed to be given in many just-in-time

assembly systems (e.g., Emde and Gendreau, 2017, Emde, 2017) and is a requirement of the IT

control system at our industry partner.

2.3.1. Example of an ETTLP solution

Consider an example with n = 8 bins, which have to be loaded onto two wagons, each with

m1 = m2 = 2 slots, µ = 2 deep. Slots one and two are on wagon 1 (i.e., w(1) = w(2) = 1),

and slots three and four are on wagon 2 (i.e., w(3) = w(4) = 2). The remaining parameters are

given in Table 2.2a. A feasible and optimal solution is depicted in Figure 2.2b, corresponding to

ρ(1) = ρ(2) = 1, ρ(3) = ρ(5) = 2, ρ(4) = ρ(8) = 3, ρ(6) = ρ(7) = 4. This leads to a total

objective value of 1 + 2 + 2 + 3 + 7 + 2 + 9 + 11 = 37.
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j 1 2 3 4 5 6 7 8

s(j) 3 1 1 2 3 5 4 5
ej,1 1 2 1 3 5 1 7 11
ej,2 3 4 2 5 7 2 9 15
ej,3 1 2 1 3 5 1 7 11
ej,4 3 4 2 5 7 2 9 15

(a) Example problem data. (b) Optimal solution in the example.

Figure 2.2.: Example data and solution.

B set of bins (index j)
P set of slots (index p)
µ capacity of each slot j
s(j) station bin j is assigned to
w(p) wagon slot p belongs to
e(j, p) ergonomic strain if bin j is assigned to slot p
xp,j binary variable: 1, if bin j is placed in slot p; 0, otherwise

Table 2.1.: Notation.

2.3.2. MIP model for ETTLP

With the notation summarized in Table 2.1, we formalize ETTLP as a MIP model as follows.

[ETTLP] Minimize f(x) =
∑
p∈P

∑
j∈B

e(j, p) · xp,j (2.2)

subject to∑
p∈P

xp,j = 1 ∀j ∈ B (2.3)

∑
j∈B

xp,j = µ ∀p ∈ P (2.4)

∑
p∈P

w(p) · xp,j =
∑
p∈P

w(p) · xp,j′ ∀j, j′ ∈ B; j < j′ ∧ s(j) = s(j′) (2.5)

xp,j ∈ {0, 1} ∀p ∈ P ; j ∈ B (2.6)
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Objective function (2.2) minimizes the total ergonomic strain of the stowage plan. Constraints

(2.3) enforce that each bin is assigned to exactly one slot. Similarly, Constraints (2.4) ensure

that exactly µ bins (which can include “dummy” bins) are assigned to each slot, respectively.

Equations (2.5) make it impossible for two bins destined for the same station to be on different

wagons. Finally, (2.6) define the domain of the binary variables.

2.3.3. Time complexity

ETTLP is structurally similar to the generalized assignment problem (GAP, surveyed by Cat-

trysse and Van Wassenhove, 1992, Pentico, 2007, Burkard et al., 2012), which is well-known to

be NP-hard. GAP is defined by a set of jobs and a set of agents, where agents have a limited

capacity and assigning a job to an agent takes up capacity and incurs a certain cost. The goal is

to assign each job to exactly one agent such that no agent’s capacity is exceeded and the total

cost is minimal.

If we interpret slots as agents, bins as jobs, and ergonomic strain as cost, ETTLP comes fairly

close to this definition. However, there are a number of differences, which obfuscate the com-

plexity status of ETTLP. On the one hand, ETTLP is a special case in that all slots/agents have

the same capacity µ and every bin/job takes up the same space (1 unit). On the other hand,

ETTLP is a generalization of GAP, because the slots are not independent of each other: if a bin

bound for a specific station is assigned to a slot, then all other bins bound for the same station

must be assigned to slots on the same wagon. Two papers we are aware of that study somewhat

related constraints are those of Roy and Słowiński (2006) and Caramia and Guerriero (2010),

who propose a GAP model where there are mutually exclusive jobs that must not be assigned to

the same agent.

Constraints for the linear assignment problem that force disjoint pairs of assignment variables to

take the same value are considered by Aboudi and Nemhauser (1991) and Aboudi et al. (1991),

called the couple constrained assignment problem. This type of constraint is different from

ETTLP, however, because we do not care about specific pairs of assignments, only that slots be

on the same wagon. Felici and Mecoli (2007) consider the assignment problem with preference

conditions, which is similar to the couple constrained assignment problem, except that setting

pairs of assignment variables to different values does not make the solution infeasible but affects

the objective value. The constraints of ETTLP have, to the best of our knowledge, not yet been

considered.

Note that GAP is not NP-hard if the capacity of each agent is 1 and each job takes unit capacity;
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in this case GAP is equivalent to the classic linear assignment problem, which is solvable in

polynomial time (Burkard et al., 2012). However, this is not true for ETTLP, as we show in the

following.

Theorem 2.2. Finding a feasible solution to ETTLP is NP-complete in the strong sense, even if

the slot capacity is restricted to µ = 1.

Proof. First, membership in NP is easy to see: an assignment of bins to slots constitutes a cer-

tificate. Under the assumption that the number of slots is polynomially bounded by the number

of bins, such a certificate can obviously be verified in polynomial time.

We prove NP-hardness by pseudopolynomial reduction from 3-PARTITION, which is well

known to be NP-hard in the strong sense (Garey and Johnson, 1979).

3-PARTITION is defined as follows: Given 3q positive integers ai, i = 1, . . . , 3q, and a positive

integer Q with Q/4 < ai < Q/2 and
∑3q

i=1 ai = qQ, does there exist a partition of the set

{1, . . . , 3q} into q sets {A1, . . . , Aq}, each having exactly three elements, such that
∑

i∈Al
ai =

Q for each l = 1, . . . , q?

We transform an instance I of 3-PARTITION to an instance I ′ of ETTLP in pseudopolynomial

time as follows. We introduce a total of qQ bins, i.e., B = {1, . . . , qQ}, and q wagons, each

with Q slots, i.e., P = {1, . . . , qQ} and w(p) = l, ∀l = 1, . . . , q, p = (l− 1) ·Q+ 1, . . . , l ·Q.

Each slot has a capacity of µ = 1. The tow train supplies 3q stations, and each station’s demand

corresponds to one integer from the 3-PARTITION instance, i.e., s(j) = i, ∀i = 1, . . . , 3q,

j =
∑i−1

i′=1 ai′ + 1, . . . ,
∑i

i′=1 ai′ . We say that the bins j ∈ B destined for station i (i.e., where

s(j) = i) correspond with integer ai from the 3-PARTITION instance.

A solution to 3-PARTITION instance I can be transformed to an ETTLP solution by assigning

the bins corresponding to the integers in each set Al, l = 1, . . . , q, to one wagon each. The sum

of integers in set Al equals Q, which is also the number of slots on each wagon. Since the bins

corresponding to the same integer are destined for the same station, the solution is feasible.

Conversely, a solution to ETTLP instance I ′ can also be converted to a solution for I . Each

wagon holds exactly Q bins. Bins bound for the same station must not be split onto different

wagons. The total capacity of all wagons is qQ, which is also the total number of bins. Therefore,

the only feasible way of stowing the bins is to put exactly Q bins bound for exactly 3 destinations

on each wagon. The correspondence with 3-PARTITION is hence apparent. An example is
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depicted in Figure 2.3.

Figure 2.3.: Example ETTLP solution for a 3-PARTITION instance with q = 3, Q = 20 and
integers 6, 6, 6, 6, 6, 7, 7, 8, 8; bins of the same shade are destined for the same sta-
tion.

2.4. Algorithms for ETTLP

Given Theorem 2.2, even finding a feasible solution is bound to be computationally challenging

for instances of realistic size. Nevertheless, we propose an exact solution procedure based on

the observation that if an assignment of bins to wagons is given, the remaining subproblem of

placing the bins in individual slots can be modeled as a linear assignment problem. We explain

the decomposition in Section 2.4.1 and propose an exact solution procedure based on dynamic

programming in Section 2.4.2.

Even though our computational experiments (Section 2.5) bear out that our exact solution proce-

dure is faster than a default solver (CPLEX) and is able to solve many large instances of realistic

size in acceptable time, its runtime still grows exponentially. We therefore also propose a heuris-

tic procedure in Section 2.4.3, exploiting the decomposability of ETTLP, to still be able to find

solutions even for very large problem sizes.

2.4.1. Decomposition of ETTLP

To solve ETTLP, we decompose the problem into two stages: first, assigning bins to wagons and,

second, assigning bins to slots. In the following sections we look at each decision individually,

starting with the second problem.
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2.4.1.1. Assigning a given set of bins to slots of a given wagon

For this subproblem, we assume that we are given a set Bw′ ⊆ B of bins to be put on some

wagon w′. To ease notation, let S = {s(j) | j ∈ B} be the set of all stations. Furthermore,

let Pw′ = {p ∈ P | w(p) = w′} be the set of slots located on wagon w′. We assume that no

more bins are assigned to wagon w′ than it has space available, i.e., |Bw′ | ≤ mw′ ·µ; otherwise,

there is obviously no feasible assignment. If |Bw′ | < mw′ · µ, we add “ghost” bins (with an

ergonomic strain of zero) to Bw′ such that |Bw′ | = mw′ · µ becomes true. Finally, we define

P̃w′ = Pw′×{1, . . . , µ} as the set of tuples t = (p, k) of slots of set Pw′ and individual positions

in those slots, respectively. We can then formulate the problem, to which we refer as the bin to

position assignment problem (BTPAP), as a linear assignment problem, where the bins j ∈ Bw′

should be assigned to slot positions t ∈ P̃w′ (Munkres, 1957). For completeness’s sake, we

provide an integer programming formulation of the problem in Section 2.6 in the Appendix.

The problem can be solved in a polynomial runtime of O((mw′ · µ)3) using the formulation of

Munkres (1957) of the Hungarian algorithm.

2.4.1.2. Assigning bins to wagons

The superordinate problem consists of assigning all bins to the tow train’s wagons (but not to

individual slots). A partition of bins among wagons is feasible if no two bins destined for the

same station are in different sets, i.e., placed on different wagons, and no set contains more bins

than a wagon has slots, i.e., no wagon is overloaded.

Seeing that bins destined for the same station cannot be split up anyway, instead of considering

each bin individually, we can pool the bins according to their destined station. We define the

set of bins destined for station s′ as Js′ = {j ∈ B | s(j) = s′}, ∀s′ ∈ S. We further define

Λ = {λ1, . . . , λ|W |} as a |W |-partition of the set of stations S, with each λl, l ∈ {1, . . . , |W |},

being a disjunct subset of S and
⋃

l∈{1,...,|W |} λl = S. The problem then becomes to find a

|W |-partition Λ of the set of stations S, such that
∑

s∈λl
|Js| ≤ ml · µ, ∀l ∈ {1, . . . , |W |}.

Note that to evaluate a given partition Λ, we need to solve the subordinate linear assignment

problem from Section 2.4.1.1 for each of the wagonloads λl, ∀l ∈ {1, . . . , |W |}. However,

finding one feasible partition is adequate to obtain one feasible solution to the ETTLP, a fact

which we will later use in our heuristic procedure.

In the general case where wagons of a single tow train posses different capacities, this subprob-

lem is similar to variable-sized bin packing (Friesen and Langston, 1986), which is a general-
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ization of bin packing where bins may have different capacities. Unlike bin packing, however,

the exact number and capacity of bins (wagons) is given and not a variable. For the special

case that all wagons have equal capacities, the problem is equivalent to the (decision version of)

the regular bin packing problem with a given number of bins. The latter is in turn similar to

the multi-way number partitioning problem, which consists of finding a |W |-partition of a set

containing |S| integer elements, such that the largest sum of the integers assigned to any of the

partition’s subsets is minimal. All of the above mentioned problems are known to be NP hard

(or NP complete if referred to the decision versions) (Friesen and Langston, 1986, Korf, 2009).

2.4.2. An exact algorithm based on dynamic programming

To solve ETTLP exactly, we propose the following procedure. We use a dynamic programming

scheme, based on the general idea formulated by Bellman (1954), to find the optimal partition

of bins to wagons and assignment of bins to slots.

The dynamic program (DP) consists of |W |+ 1 stages (with index r = 0, . . . , |W |), each stage

containing states (Γ), where Γ ⊆ S denotes the set of stations whose bins have already been

assigned to wagons. Starting from the initial stage r = 0 with state Γ = ∅, each successor in

stage r + 1 is reached by adding a subset λ ⊆ S \ Γ to Γ, i.e., the bins destined for the stations

in set λ are assigned to wagon r. We only consider successors that still can lead to feasible

assignments, and, thus, do not violate the following two criteria.

1. The number of bins destined for the stations contained in λ must not be greater than the

wagon’s capacity, i.e.,
∑

s∈λ |Js| ≤ mr · µ must hold.

2. For the bins destined for the stations that are not yet assigned, there must still be enough

space left on the remaining wagons, i.e.,
∑

s∈S\(λ∪Γ) |Js| ≤
∑|W |

r′=r+1mr′ · µ must hold.

Furthermore, we can accelerate our DP by breaking symmetries that may occur in many real-

world instances, where all wagons of the tow train are identical. This implies that, first, every

wagon has the same capacity, and second, each wagon holds ergonomically identical sets of

slots, because the latter mostly depends on the vertical height of the respective slot; e.g., all slots

on the middle shelf of each wagon may be equally accessible. In such cases, we do not care

which of the identical wagons a given partition λl is assigned to. Therefore, if all wagons are

equal, we break symmetries by only considering successors according to the following rule.

3. We only add λ to Γ if min {s ∈ λ} < min {s ∈ S \ (Γ ∪ λ)} holds true.
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Using this rule, we enforce that the subsets in each generated partition are in a particular order.

To be specific, λ has to contain a station with a smaller index than the smallest one of any λ′

added at a later stage. By doing so, we avoid the need to evaluate every permutation of a given

partition, which (in the symmetric case) all yield the same objective value. Instead we only

evaluate one permutation; the one, whose subsets are ordered in the way we demand.

Let V (Γ) be the set of states from which a transition to state Γ exists. The optimal objective

value h(Γ, r) can then be calculated recursively as

h(Γ, r) = min
Γ′∈V (Γ)

h(Γ′, r − 1) + g∗

 ⋃
s∈Γ\Γ′

Js, r

 ,

with h(∅, 0) = 0 for the initial state and g∗ being the optimal objective value of the BTPAP from

Section 2.4.1.1 for the given set of bins
⋃

s∈Γ\Γ′ Js and the given wagon r. The objective value

of a complete solution in final state Γ = S equals h(S, |W |), which is also the optimal objective

value for ETTLP. We can obtain the corresponding optimal assignment by backward recovery

along the optimal path.

Concerning the time complexity, note that the total number of different possible partitions is in

O({ |S|
|W |}), where { |S|

|W |} denotes the Stirling number of the second kind. The number of nodes in

the DP graph is bounded by O(|W | ·2|S|), while the number of transitions cannot be greater than

O(|W | · 22|S|). For each transition, to calculate the contribution to the objective value, a linear

assignment problem must be solved, which can be done in O(n3) time. Hence, the worst-case

total number of steps required for DP is bounded by O(n3 · |W | · 22n). Note, however, that due

to the exclusion rules laid out above, the actual number of steps is usually much lower.

Example (cont.): The dynamic programming graph for the problem given in Section 2.3.1 is

depicted in Figure 2.4. One optimal solution (all three possible solutions are optimal in this

example) is bold, corresponding to the first wagon receiving the bins bound for stations 1 and

3, and the second wagon receiving the bins bound for the remaining stations 2, 4, and 5. This

corresponds to the solution depicted in Figure 2.2b.

2.4.3. A GRASP metaheuristic

Seeing that the asymptotic runtime of our DP scheme is exponential, we propose a heuristic

algorithm based on greedy randomized adaptive search (GRASP) to obtain good solutions for

large instances in acceptable time. GRASP, as originally proposed by Feo and Resende (1995),
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Figure 2.4.: Dynamic programming graph for the example given in Section 2.3.1.

consists of the following steps: first, an initial solution is obtained using a randomized construc-

tive heuristic. Second, this solution is improved by performing a local search on it. Steps one

and two are repeated several times until the stopping criterion is satisfied. Finally the best found

solution is returned.

Adapting this scheme to ETTLP is not entirely straightforward because, by Theorem 2.2, even

finding a feasible solution is already NP-hard. In Section 2.4.3.1, we describe how we generate

initial solutions that are at least close to feasible. We repair and improve these solutions via an

IP-based repair mechanism in Section 2.4.3.2, and put both components together in a GRASP

framework in Section 2.4.3.3.

2.4.3.1. Randomized constructive heuristic

What makes ETTLP difficult is finding the best |W |-partition of S. By Theorem 2.2, even

finding a single feasible partition is NP-hard. Therefore, we use the GRASP framework to

obtain feasible partitions, for which we then find the optimal assignment in a successive step.

To do this, we formulate a relaxed version of the partitioning problem from Section 2.4.1.2 by

allowing the number of bins assigned to the wagons to be greater than their capacity, i.e., we

accept partitions Λ for which the condition
∑

s∈λl
|Js| ≤ ml · µ, ∀l ∈ {1, . . . , |W |}, does not

hold.

To attain initial solutions that are at least close to feasible partitions for ETTLP, we propose the

constructive heuristic outlined in Algorithm 2.1. Our proposed procedure is similar to the greedy
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heuristic classically used in multi-way number partitioning. The greedy multi-way number par-

titioning heuristic first orders all integers according to non-increasing values. It then assigns

them one by one to the subset with the currently smallest sum of integers until all integers are

partitioned (Korf, 2009). This procedure is similar to the best fit decreasing heuristic commonly

used to solve the bin packing problem. It has been shown to perform very well on average hard

instances (Coffman et al., 1996) and, hence, appears suitable for our purpose. However, the

procedure does not contain any randomization, which is needed for GRASP in order to obtain

different initial solutions. We, therefore, alter the heuristic as follows.

First, we order all stations randomly, and thereby add the required randomness to the procedure.

We go through the stations one-by-one to assign the bins destined for it to a wagon. Let Sw ⊆ S

be the set of stations whose bins have already been assigned to wagon w (initially, Sw = ∅).

Furthermore, let s′ be the station we are currently looking at. We use the following decision

criteria to choose a wagon to assign station s′ to. If there is a wagon w′ that is filled exactly

to capacity if all bins bound for station s′ are added to the bins already assigned to that wagon,

we choose w′. I.e., if
∑

s∈Sw′∪{s′} |Js| = mw′ · µ, we choose w′. If no such wagon exists, we

choose the currently least filled one, i.e., we choose w′ = argminw∈W
{∑

s∈Sw
|Js|
}

. Ties are

broken randomly. These steps are repeated until all bins are assigned.

Algorithm 2.1: Randomized constructive heuristic for the relaxed version of ETTLP.
Input: instance of ETTLP

1 ζ(s) := −1, ∀s ∈ S ; // wagon to which bins bound for station s are
assigned

2 η(w) := 0, ∀w ∈ W ; // the number of bins currently assigned to wagon
w

3 foreach s ∈ S in random order do
4 Ω := ∅ ; // set of wagons for selection
5 for w = 1 to |W | do
6 if η(w) + |Js| = mw · µ then
7 Ω := Ω ∪ {w};

8 if Ω = ∅ then
9 ηmin := minw∈W {η(w)};

10 Ω := {w ∈ W | η(w) = ηmin};

11 ζ(s) := rand(w ∈ Ω) ; // random tie break
12 η(ζ(s)) := η(ζ(s)) + |Js|;

Output: Assignment of stations to wagons ζ
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2.4.3.2. Repairing infeasible solutions via integer programming

The solution constructed by Algorithm 2.1 may not be a feasible partition for ETTLP because

individual wagons may be loaded over capacity. Thus, we present a repair algorithm to improve

upon the initial solution and, thereby, hopefully make it a feasible partition for ETTLP. We

propose an IP-based heuristic improvement method that takes advantage of the sophistication

of modern off-the-shelf solvers, which are generally adept at quickly finding good solutions to

integer programs.

δw binary variable: 1, if the amount of bins assigned to wagon w exceeds its capacity; 0, other-
wise

zw,s binary variable: 1, if the set of bins destined for station s is assigned to wagon w; 0, otherwise

Table 2.2.: Additional notation for RBTWP.

Let ζ be a solution obtained from Algorithm 2.1, and let Sw be the corresponding set of stations

whose bins are assigned to wagon w, ∀w ∈ W . Assume that this solution is infeasible with

regard to the non-relaxed problem, where the capacity of the wagons is limited. Let W =
{
w ∈

W |
∑

s∈Sw
|Js|> mw ·µ

}
be the set of wagons whose capacity is exceeded. Using the notation

in Table 2.2, we formulate the IP given below. We refer to this subproblem as the relaxed bin to

wagon problem (RBTWP).

[RBTWP] Minimize h(z, δ) =
∑
w∈W

δw (2.7)

subject to∑
w∈W

zw,s = 1 ∀s ∈ S (2.8)∑
s∈S

|Js| · zw,s − n · δw ≤ mw · µ ∀w ∈ W (2.9)∑
s∈S

|Js| · zw,s ≤ mw · µ ∀w ∈ W \W (2.10)

zw,s ∈ {0, 1} ∀w ∈ W ; s ∈ S (2.11)

δw ∈ {0, 1} ∀w ∈ W (2.12)

The objective (2.7) is to minimize the number of wagons whose capacity is exceeded. Con-

straints (2.8) ensure that every set of bins destined for the same station is assigned to exactly one
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wagon. Constraints (2.9) force δw to assume value 1 if the capacity is exceeded at wagon w,

whereas Inequalities (2.10) enforce the capacity constraint for the non-critical stations. Finally,

Constraints (2.11) and (2.12) define the domain of the decision variables.

We solve RBTWP with a modern default solver “warm” started from the solution denoted by

ζ. To ensure short computation times, we set a narrow time limit for the solver, which restricts

it to only evaluate a few solutions. This allows us to use the full advantage of modern default

solvers, which generally perform well at finding good (or even optimal) solutions quickly and

take most of their time to prove optimality. Note that we do not restrict the solution space of

RBTWP via any cuts but only by setting a restrictive time limit on the solution procedure. Our

computational test shows this approach to work very well on all evaluated instances (see Section

2.5). However, if the problem size gets too large, additionally adding invalid cuts as proposed

in the local branching approach by Fischetti and Lodi (2008) might be a reasonable extension

of our algorithm. This turns out to not be necessary for even the largest instances we tested,

however.

2.4.3.3. GRASP framework

Algorithm 2.2: GRASP heuristic for ETTLP.
Input: instance of ETTLP

1 f∗ := ∞ ; // best found objective value for ETTLP
2 instance of RBTWP := create instance of RBTWP( instance of ETTLP ) ;
3 while stopping criterion not satisfied do
4 z := randomized constructive heuristic( instance of RBTWP );
5 z := local search(z);
6 if h(z) = 0 then // solution is feasible
7 f := 0;
8 for w ∈ W do
9 y := solve BTPAP for given partition z and wagon w ;

10 f := f + g(y);

11 if f < f∗ then
12 store new best solution;
13 f∗ := f ;

Output: ETTLP solution

We can now perform a classic GRASP to find solutions for RBTWP, such that each obtained

solution that yields an objective value of zero is a feasible partition for ETTLP. Therefore, each

time we find such a solution, we solve the emerging BTPAP linear assignment problem for each

wagon (see Section 2.4.1.1) to get a viable solution for ETTLP. Else, if no feasible partition can
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be found within the time limit of T , we scrap the current solution and perform the next iteration

of our GRASP. The framework of this heuristic is outlined in Algorithm 2.2.

2.5. Computational study

In this section, we test the computational performance of our exact and heuristic solution pro-

cedures. We compare both procedures to each other as well as to a default solver (CPLEX).

To do so, we randomly generate realistic test instances of various sizes, which we describe in

detail in the following subsection. We also derive some managerial insights, namely to what

extent pursuing ergonomic objectives can actually relieve the strain on the workforce compared

to classic purely economic objectives, and how the layout and the filling of the tow train affects

its ergonomic performance.

2.5.1. Benchmark instances and ergonomic assessment

Since, to the best of our knowledge, there has not yet been any research into stowing bins er-

gonomically on tow trains, there are no benchmark instances available to test our proposed

procedures. Therefore, we create new ones. In the following, we first explain the general proce-

dure of generating our instances. Afterwards, we explain how we obtained realistic ergonomic

values.

2.5.1.1. Generating instances

ETTLP is the last of a sequence of optimization problems concerning tow trains. At first, routing,

scheduling, and loading problems have to be solved (see Section 2.2). The results of those

problems then define the input for ETTLP. In practice, tow train routing, scheduling and loading

are solved in a way that leaves enough flexibility to properly stow the bins on the tow train. We

therefore create our instances by first randomly generating a tow train stowage plan, imitating

the way tow trains are typically loaded in practice, that is, without considering ergonomic stress.

We call this the “default” or “status-quo” stowage plan.

The size of an instance is defined by parameters n, the number of bins, m, the number of slots,

µ, the capacity per slot, |W |, the number of wagons and |S|, the number of stations. Note, that

n ≤ µ · m must hold, or else the tow train’s capacity is exceeded. Further, if n = µ · m, the
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tow train is filled completely. Else, if n < µ · m, the tow train is only partially filled. Beyond

that, m
|W | is the number of slots per wagon and must be commensurate with the wagons’ layout.

For example, if each wagon has three different shelf heights, with each shelf holding three slots,

giving a total of 9 slots per wagon, m
|W | = 9 must hold.

An instance is generated by assigning every bin j = 1, . . . , n to a random slot and a random

position within this slot that has not yet been filled. We then assign every station s = 1, . . . , |S|
randomly to a wagon, where we make sure that to every wagon at least one station is assigned.

Stations are attached to bins by randomly choosing one of the stations assigned to the respective

wagon, ensuring that every station is assigned to at least one bin, and every bin to exactly one

station.

Finally, we need to tackle the ergonomic strain. Since the ergonomic strain caused by placing a

certain bin in a certain slot is dependent on the weight of the bin and the vertical location of the

slot, we need to assign weights to every bin and heights to every slot. For every bin we randomly

draw a weight from a discrete set of weights Θ. Vertical heights are assigned to slots according

to the layout of the tow train’s wagons. In each wagon, the slot with the lowest index is located

on the bottom shelf on the left. With increasing indices, the slots are first located further to the

right until the shelf has no slots left. After that, slots are located on the next higher shelf until the

slot with the highest index is located at the right end of the top shelf of each wagon, respectively.

Note that bin weights and slot heights are only auxiliary parameters we use to calculate the

ergonomic strains e(j, p), ∀j ∈ J ; p ∈ P . We calculate ergonomic strains for two representative

workers, one male and one female, via the energy expenditure prediction model by Garg et al.

(1978). We choose this approach mainly due to its suitability to evaluate the tasks considered

in this paper and its widespread use for similar problems in the literature (see Section 2.2). A

more detailed explanation of the calculation of the ergonomic strains and possible alternative

approaches are presented in the Appendix in Section 2.6.

In accordance with our observations in practice, we choose our default wagon to have three

different shelf heights, 30 Centimeter, 95 Centimeter and 160 Centimeter at the side from which

the shelf is unloaded, with additional 15 Centimeter of height at the opposite side since the shelf

is constructed as a gravity flow rack. Each shelf holds three slots next to each other, and each

slot has space for µ = 3 bins, such that a wagon can hold 3 · 3 · 3 = 27 bins in total. Bin weights

are drawn from Θ = {5, 10, 15, 20, 30} Kilogram, since those are quite representative weights

in industrial environments (e.g., Drury et al., 1982). Bin measurements are set to 30 Centimeter

in width, 40 Centimeter in length and 21.3 Centimeter height, which is in accordance with a

standardized recommendation of the German automotive industry (VDA, 2018).
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Once we are done with those assignments, we can derive all parameters needed for an instance

of ETTLP, namely B, P , µ, s(j), ∀j ∈ J , w(p), ∀p ∈ P , and e(j, p), ∀j ∈ J ; p ∈ P . To test

the performance of our proposed solution procedures we generate and solve instances of various

realistic sizes. According to Boysen et al. (2015), in practice, the number of wagons per tow

train rarely exceeds more than a handful. A production facility may hold up to several hundreds

of productions stations (Emde and Boysen, 2012a). However, typically, multiple tow trains are

employed, such that each tow train visits only a fraction of all stations and not every station a tow

train is assigned to is visited in every tour (Emde and Gendreau, 2017). For their computational

study, Emde and Gendreau (2017), for example, assume that a tow train visits between seven

and 14 station per tour, based on their observations in the German automotive industry. Emde

and Schneider (2018) report in their computational study that a tow train visits on average five to

nine stations per tour in an optimal route. Therefore, to represent different scenarios, we create

instances of four different sizes, small, medium, large and very large with |W | = 4 and |S| = 6,

|W | = 6 and |S| = 9, |W | = 7 and |S| = 16 as well as |W | = 9 and |S| = 24, respectively.

We note that for the large and very large instances, we choose the number of wagons |W | such

that the Stirling number becomes maximal for the selected value of |S| in order to especially

challenge our proposed DP (see Section 2.4.2).

The number of slots per instance is derived by multiplying |W | with a factor of 9, since this is

the amount of slots our default tow train wagon holds. With each slot having a capacity of µ = 3,

the maximum number of bins the tow train can load amounts to |W | · 9 · 3. Since tow trains

are commonly not loaded to their full capacity, for each instance size, we create two kinds of

instances: one, where every single slot of the tow train is occupied by bins, and a more realistic

one, where the tow train is loaded only to about 80% capacity. Note that instances of the latter

kind do in fact contain the full number of bins, where we fill the remaining 20% with “ghost”

bins, as described in Section 2.3. For each instance size and loading kind, we create ten random

instances.

The instances described above assume that all tow train wagons are identical and that (un-

)loading a certain bin from/onto each slot located on the same rack causes identical ergonomic

strains. Though both assumptions are reasonable for a lot of practical cases, they are not manda-

tory. It is possible to attach different kinds of wagons to the same tow train, and ergonomic

strains can vary between slots on the same rack (see Section 2.6). In order to evaluate the per-

formance of our solution procedures for such cases, we create ten additional instances to which

we refer as randomized instances in the following. The randomized instances are not meant to

emulate any real-world situation. Instead, they are designed to be as challenging as possible to

provide an upper estimate on the solution procedures’ performances for any practical situation
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that may be encountered. We assume a tow train with |W | = 6 wagons, set the tow train capacity

to n = 168 and assume an 80% filling (cf. the medium-sized instances). Each wagon’s individ-

ual capacity is randomized and each ergonomic strain for (un-)loading a certain bin from/onto a

certain slot is drawn randomly from a uniform distribution in the same realm as the previously

derived real-world ergonomic strains. The number of stations visited by the tow train is set to

random values between ten and 16.

Each instance is named in the following way. From left to right, first, a letter characterizes the

instance size, small (S), medium (M), large (L), very large (XL) and randomized (R). Then,

another letter denotes if a representative male (m) or female (f) worker is used for determining

ergonomic strains. (This is omitted in the randomized instances.) Afterwards, a set of numbers

characterizes the instance’s parameters in the following order: the number of bins n, followed

by the number of non-“ghost” bins in brackets, the number of slots m, the slots capacity µ, the

number of wagons |W | and finally the number of stations |S|. The two right-most digits are

continuous counting numbers to identify each instance.

In total, we generate 230 instances, which are available from http://doi.org/10.5281/

zenodo.3515732.

2.5.2. Computational results

2.5.2.1. Computational performance

We solve each instance with our proposed DP and GRASP, and the MIP model with CPLEX

(version 12.8) at default settings, all implemented in C#. Computational testing was performed

on an Intel Core i7-6700 CPU @ 3.40 Gigahertz and with 8 Gigabyte of RAM. For all solu-

tion procedures, we set a maximum runtime of 3600 seconds (i.e., 1 hour). For GRASP, we

set the number of iterations to 50 and the maximum runtime for the local search at each it-

eration to T = 1 second for all instances. Detailed reports of the results are available from

http://doi.org/10.5281/zenodo.3515732. In the following, however, we mainly

present the results of those instances that use the anthropometric measurements of a representa-

tive male worker for quantifying ergonomic strain. If not stated otherwise explicitly, we always

refer to those instances. The main purpose of the instances, where the anthropometric measure-

ments of an average female worker are used to quantify ergonomic strain, is to demonstrate,

by comparison with the former instances, that the achievable relative reduction in ergonomic

strains by (un-)loading a tow train ergonomically is virtually independent of the worker’s an-
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thropometrics; hence that our evaluation is generalizable. The results for the instances that use

the anthropometric measurements of the representative male worker are summarized in Tables

2.3, 2.4 and 2.6. A comparison between the relative reduction in ergonomic strains for anthro-

pometric measurements of either a representative male or female worker is given in Table 2.5.

Table 2.3 summarizes the results for instances whose sizes are comparable to problem sizes in

practical application. While CPLEX is able to prove optimality for all small instances within a

runtime of 3600 seconds, it fails to do so for most medium and all large instances, though the

optimality gaps reported by CPLEX at the point of termination are quite low. DP, on the other

hand, performs much faster. It can solve all small and medium instances to proven optimality in

not more than a tenth of a second; all large instances were solved in less then 35 seconds. GRASP

performs well, too, solving every instance in less then two seconds. The relative optimality gaps

are zero for all 100% filled instances and about half of the 80% filled instances. In total, only

one optimality gap exceeds 1%.

According to our tests, if the tow train is loaded to its maximum capacity, optimizing the bin

stowage yields an averaged ergonomic improvement of about 11%. In the more realistic case

of an 80% loaded tow train, optimizing the bin placement improves the average ergonomic

assessment by between about 14% to 15% on average. Taking into account that the economic

performance of the solutions is identical (both solutions are feasible) and that no investment in

any further equipment is needed, these results may be quite relevant for those practical cases

where workers have to handle high loads over the course of a workday and where they are hence

exposed to an increased risk of job-related injuries.

The instances designed to challenge our solution procedures, especially the proposed DP, are

summarized in Table 2.4. CPLEX fails to solve all 100% filled very large instances, but is able

to solve all 80% filled ones – some even to proven optimality. Contrarily, DP is able to solve the

former within at most two minutes, but fails to solve the latter. This is due to the fact that DP

needs to evaluate a much larger number of feasible partitions of bins to wagons in the 80% filled

instances than in the completely filled ones. GRASP is able to solve every very large instance in

below three seconds. The heuristic solutions are within at most 1.28% from the optimum.

All solution procedures were able to solve all randomized instances, except for DP, which fails

to solve instance R-162(130)x54x3-6x16-10 within one hour. While DP solves instances with

a lower amount of stations (as denoted by the next-to-last number in the instance names) more

efficiently than CPLEX, the latter performs better on instances with more stations. The optimal-

ity gaps of the solutions found by GRASP range from 0.99% to 6.29% and tend to grow with
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instances CPLEX DP GRASP
label primary

value
impr.
(in %)

value gap
(in %)

C. gap
(in %)

time
(in s)

value gap
(in %)

time
(in s)

value gap
(in %)

time
(in s)

S-m-108(108)x36x3-4x6-01 137.09 9.87 123.56 0.00 0.01 68.85 123.56 0.00 0.00 123.56 0.00 0.03
S-m-108(108)x36x3-4x6-02 142.10 12.96 123.69 0.00 0.01 20.04 123.69 0.00 0.00 123.69 0.00 0.12
S-m-108(108)x36x3-4x6-03 136.20 10.78 121.51 0.00 0.00 0.99 121.51 0.00 0.00 121.51 0.00 0.01
S-m-108(108)x36x3-4x6-04 138.33 12.64 120.85 0.00 0.00 7.12 120.85 0.00 0.00 120.85 0.00 0.01
S-m-108(108)x36x3-4x6-05 130.65 11.84 115.18 0.00 0.00 6.50 115.18 0.00 0.00 115.18 0.00 0.03
S-m-108(108)x36x3-4x6-06 136.15 9.18 123.65 0.00 0.01 140.06 123.65 0.00 0.00 123.65 0.00 0.01
S-m-108(108)x36x3-4x6-07 138.71 11.19 123.20 0.00 0.01 8.46 123.20 0.00 0.00 123.20 0.00 0.12
S-m-108(108)x36x3-4x6-08 142.20 13.11 123.55 0.00 0.00 0.67 123.55 0.00 0.00 123.55 0.00 0.06
S-m-108(108)x36x3-4x6-09 142.68 10.54 127.65 0.00 0.01 110.11 127.65 0.00 0.00 127.65 0.00 0.03
S-m-108(108)x36x3-4x6-10 142.50 13.26 123.61 0.00 0.01 26.14 123.61 0.00 0.00 123.61 0.00 0.14
mean 138.66 11.54 122.65 0.00 0.01 38.89 122.65 0.00 0.00 122.65 0.00 0.06
S-m-108(86)x36x3-4x6-01 109.88 15.12 93.26 0.00 0.01 73.56 93.26 0.00 0.00 93.26 0.00 0.34
S-m-108(86)x36x3-4x6-02 111.17 14.43 95.13 0.00 0.01 216.93 95.13 0.00 0.00 95.13 0.00 0.33
S-m-108(86)x36x3-4x6-03 107.63 14.32 92.22 0.00 0.01 104.06 92.22 0.00 0.00 92.40 0.19 0.33
S-m-108(86)x36x3-4x6-04 107.98 14.64 92.18 0.00 0.01 63.96 92.18 0.00 0.00 92.18 0.00 0.33
S-m-108(86)x36x3-4x6-05 110.77 16.58 92.40 0.00 0.01 31.09 92.40 0.00 0.00 92.40 0.00 0.25
S-m-108(86)x36x3-4x6-06 109.10 15.57 92.11 0.00 0.00 73.05 92.11 0.00 0.00 92.11 0.00 0.21
S-m-108(86)x36x3-4x6-07 109.15 13.73 94.16 0.00 0.01 247.78 94.16 0.00 0.00 94.16 0.00 0.36
S-m-108(86)x36x3-4x6-08 107.71 13.17 93.53 0.00 0.01 91.03 93.53 0.00 0.00 93.53 0.00 0.31
S-m-108(86)x36x3-4x6-09 103.65 12.02 91.19 0.00 0.01 55.50 91.19 0.00 0.00 91.19 0.00 0.24
S-m-108(86)x36x3-4x6-10 107.41 14.05 92.33 0.00 0.00 56.21 92.33 0.00 0.00 92.33 0.00 0.33
mean 108.44 14.36 92.85 0.00 0.01 101.32 92.85 0.00 0.00 92.87 0.02 0.30
M-m-162(162)x54x3-6x9-01 209.29 10.56 187.19 0.00 0.28 3600.00 187.19 0.00 0.00 187.19 0.00 0.23
M-m-162(162)x54x3-6x9-02 205.08 11.65 181.19 0.00 0.07 3600.00 181.19 0.00 0.00 181.19 0.00 0.23
M-m-162(162)x54x3-6x9-03 211.45 10.87 188.48 0.00 0.53 3600.00 188.48 0.00 0.00 188.48 0.00 0.24
M-m-162(162)x54x3-6x9-04 208.81 11.21 185.40 0.00 0.01 956.99 185.40 0.00 0.00 185.40 0.00 0.33
M-m-162(162)x54x3-6x9-05 212.71 11.45 188.36 0.00 0.07 3600.00 188.36 0.00 0.00 188.36 0.00 0.32
M-m-162(162)x54x3-6x9-06 207.68 11.44 183.93 0.00 0.15 3600.00 183.93 0.00 0.00 183.93 0.00 0.31
M-m-162(162)x54x3-6x9-07 206.83 11.60 182.84 0.00 0.00 20.36 182.84 0.00 0.00 182.84 0.00 0.22
M-m-162(162)x54x3-6x9-08 208.90 10.46 187.04 0.00 0.15 3600.00 187.04 0.00 0.00 187.04 0.00 0.27
M-m-162(162)x54x3-6x9-09 209.70 11.34 185.93 0.00 0.28 3600.00 185.93 0.00 0.00 185.93 0.00 0.18
M-m-162(162)x54x3-6x9-10 199.95 10.60 178.76 0.00 0.01 2669.92 178.76 0.00 0.00 178.76 0.00 0.23
mean 208.04 11.12 184.91 0.00 0.16 2884.73 184.91 0.00 0.00 184.91 0.00 0.26
M-m-162(130)x54x3-6x9-01 156.74 14.60 133.85 0.00 0.19 3600.00 133.85 0.00 0.04 134.07 0.16 0.55
M-m-162(130)x54x3-6x9-02 157.41 12.68 137.45 0.00 0.75 3600.00 137.45 0.00 0.03 137.45 0.00 0.47
M-m-162(130)x54x3-6x9-03 170.71 15.86 143.63 0.00 0.90 3600.00 143.63 0.00 0.05 143.63 0.00 0.53
M-m-162(130)x54x3-6x9-04 169.35 15.68 142.79 0.00 0.29 3600.00 142.79 0.00 0.08 143.04 0.18 0.49
M-m-162(130)x54x3-6x9-05 160.84 15.49 135.93 0.00 0.58 3600.00 135.93 0.00 0.04 136.23 0.22 0.50
M-m-162(130)x54x3-6x9-06 164.65 13.42 142.55 0.00 1.30 3600.00 142.55 0.00 0.03 142.55 0.00 0.66
M-m-162(130)x54x3-6x9-07 165.48 14.73 141.10 0.00 0.78 3600.00 141.10 0.00 0.04 141.81 0.50 0.61
M-m-162(130)x54x3-6x9-08 168.69 15.49 142.56 0.00 0.01 1111.37 142.56 0.00 0.03 143.10 0.38 0.49
M-m-162(130)x54x3-6x9-09 161.81 14.42 138.48 0.00 0.94 3600.00 138.48 0.00 0.04 138.48 0.00 0.51
M-m-162(130)x54x3-6x9-10 162.72 15.98 136.71 0.00 0.48 3600.00 136.71 0.00 0.06 136.76 0.04 0.52
mean 163.84 14.84 139.50 0.00 0.62 3351.14 139.50 0.00 0.04 139.71 0.15 0.53
L-m-189(189)x63x3-7x16-01 224.52 12.47 - - - 3600.00 196.53 0.00 0.04 196.53 0.00 0.48
L-m-189(189)x63x3-7x16-02 234.59 9.83 - - - 3600.00 211.52 0.00 0.03 211.52 0.00 0.43
L-m-189(189)x63x3-7x16-03 242.75 11.29 - - - 3600.00 215.35 0.00 0.05 215.35 0.00 0.52
L-m-189(189)x63x3-7x16-04 237.64 11.18 - - - 3600.00 211.07 0.00 0.08 211.07 0.00 0.44
L-m-189(189)x63x3-7x16-05 233.20 12.11 - - - 3600.00 204.96 0.00 0.04 204.96 0.00 0.56
L-m-189(189)x63x3-7x16-06 245.72 11.08 218.54 0.02 0.60 3600.00 218.49 0.00 0.03 218.49 0.00 0.49
L-m-189(189)x63x3-7x16-07 241.48 12.61 - - - 3600.00 211.04 0.00 0.04 211.04 0.00 0.50
L-m-189(189)x63x3-7x16-08 243.82 12.10 - - - 3600.00 214.33 0.00 0.03 214.33 0.00 0.43
L-m-189(189)x63x3-7x16-09 238.22 12.15 - - - 3600.00 209.27 0.00 0.04 209.27 0.00 0.34
L-m-189(189)x63x3-7x16-10 242.93 10.44 - - - 3600.00 217.57 0.00 0.06 217.57 0.00 0.48
mean 238.49 11.53 - - - 3600.00 211.01 0.00 0.04 211.01 0.00 0.47
L-m-189(151)x63x3-7x16-01 186.40 14.01 160.28 0.00 0.11 3600.00 160.28 0.00 27.21 161.86 0.99 1.09
L-m-189(151)x63x3-7x16-02 189.62 15.69 159.87 0.00 0.04 3600.00 159.87 0.00 26.85 160.80 0.59 1.23
L-m-189(151)x63x3-7x16-03 184.75 14.94 157.15 0.00 0.00 355.79 157.15 0.00 34.45 158.64 0.95 1.15
L-m-189(151)x63x3-7x16-04 192.09 15.44 162.44 0.00 0.08 3600.00 162.44 0.00 32.83 164.98 1.56 1.06
L-m-189(151)x63x3-7x16-05 185.27 12.50 162.11 0.00 0.04 3600.00 162.11 0.00 26.99 163.48 0.85 1.04
L-m-189(151)x63x3-7x16-06 183.86 13.92 158.26 0.00 0.00 518.19 158.26 0.00 23.89 159.43 0.74 1.19
L-m-189(151)x63x3-7x16-07 186.10 15.20 157.80 0.00 0.00 319.27 157.80 0.00 24.72 159.11 0.83 1.22
L-m-189(151)x63x3-7x16-08 190.32 14.92 161.93 0.00 0.04 3600.00 161.93 0.00 25.29 163.21 0.79 1.31
L-m-189(151)x63x3-7x16-09 190.18 14.99 161.68 0.00 0.04 3600.00 161.68 0.00 21.02 163.13 0.90 1.06
L-m-189(151)x63x3-7x16-10 186.92 14.70 159.45 0.00 0.00 1062.76 159.45 0.00 25.73 160.41 0.60 1.15
mean 187.55 14.63 160.10 0.00 0.03 2385.60 160.10 0.00 26.90 161.50 0.88 1.15
explanations: primary value = objective value of the status-quo solution; impr. = relative improvement of the optimal objective value

compared to the primary value; gap = relative gap to the optimal objective value; time = runtime until termination; C. gap = optimality
gap as reported by CPLEX at the point of termination

Table 2.3.: Computational test on realistic-sized instances for a representative male worker.
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an increasing amount of stations. While the randomized instances start to show the limits of our

solution procedures’ capabilities, the results suggest their suitability for even particular difficult

real-word cases.

instances CPLEX DP GRASP
label primary

value
impr.
(in %)

value gap
(in %)

C. gap
(in %)

time
(in s)

value gap
(in %)

time
(in s)

value gap
(in %)

time
(in s)

XL-m-243(243)x81x3-9x24-01 309.02 13.24 - - - 3600.00 268.12 0.00 49.23 268.24 0.05 0.64
XL-m-243(243)x81x3-9x24-02 321.50 12.66 - - - 3600.00 280.81 0.00 54.29 281.16 0.12 0.60
XL-m-243(243)x81x3-9x24-03 316.87 12.31 - - - 3600.00 277.88 0.00 93.24 278.41 0.19 0.56
XL-m-243(243)x81x3-9x24-04 305.41 11.01 - - - 3600.00 271.79 0.00 42.17 271.91 0.05 0.63
XL-m-243(243)x81x3-9x24-05 312.86 11.25 - - - 3600.00 277.65 0.00 56.84 277.78 0.05 0.61
XL-m-243(243)x81x3-9x24-06 311.72 12.32 - - - 3600.00 273.32 0.00 110.95 273.32 0.00 0.63
XL-m-243(243)x81x3-9x24-07 315.29 11.58 - - - 3600.00 278.78 0.00 65.24 278.85 0.02 0.65
XL-m-243(243)x81x3-9x24-08 306.73 10.08 - - - 3600.00 275.80 0.00 117.14 276.23 0.15 0.55
XL-m-243(243)x81x3-9x24-09 302.06 11.39 - - - 3600.00 267.66 0.00 21.11 267.77 0.04 0.64
XL-m-243(243)x81x3-9x24-10 314.17 11.43 - - - 3600.00 278.27 0.00 88.34 278.62 0.13 0.57
mean 311.56 11.73 - - - 3600.00 275.01 0.00 69.85 275.23 0.08 0.61
XL-m-243(194)x81x3-9x24-01 245.85 16.07* 206.35 n.k. 0.21 3600.00 - - 3600.00 207.55 0.58* 2.43
XL-m-243(194)x81x3-9x24-02 245.46 16.70 204.47 0.00 0.00 3089.96 - - 3600.00 205.57 0.54 2.35
XL-m-243(194)x81x3-9x24-03 246.55 15.95 207.21 0.00 0.00 3492.17 - - 3600.00 207.90 0.33 1.86
XL-m-243(194)x81x3-9x24-04 247.65 16.33 207.21 0.00 0.00 2912.64 - - 3600.00 208.67 0.70 2.24
XL-m-243(194)x81x3-9x24-05 245.40 15.74 206.77 0.00 0.00 403.41 - - 3600.00 209.21 1.18 2.26
XL-m-243(194)x81x3-9x24-06 248.84 17.87 204.37 0.00 0.00 1057.47 - - 3600.00 206.36 0.97 2.73
XL-m-243(194)x81x3-9x24-07 248.45 16.99 206.24 0.00 0.00 1966.14 - - 3600.00 208.46 1.07 2.12
XL-m-243(194)x81x3-9x24-08 238.68 15.06 202.74 0.00 0.00 413.07 - - 3600.00 204.44 0.84 2.03
XL-m-243(194)x81x3-9x24-09 249.78 16.08* 209.62 n.k. 0.03 3600.00 - - 3600.00 212.31 1.28* 2.49
XL-m-243(194)x81x3-9x24-10 250.95 16.71* 209.02 n.k. 0.06 3600.00 - - 3600.00 211.00 0.95* 2.39
mean 246.76 16.35 206.40 n.k 0.03 2413.49 - - 3600.00 208.15 0.71 2.29
R-162(130)x54x3-6x10-01 225.65 35.61 145.31 0.00 0.01 91.27 145.31 0.00 1.91 146.74 0.99 0.69
R-162(130)x54x3-6x11-02 229.34 37.21 144.01 0.00 0.01 162.80 146.27 0.00 25.97 148.09 2.84 0.64
R-162(130)x54x3-6x12-03 233.88 37.44 146.31 0.00 0.01 121.27 146.31 0.00 36.18 152.18 4.01 0.70
R-162(130)x54x3-6x12-04 219.03 34.16 144.21 0.00 0.01 21.45 144.86 0.00 14.75 150.38 4.28 0.45
R-162(130)x54x3-6x13-05 224.32 35.54 144.60 0.00 0.01 33.56 144.60 0.00 67.80 150.83 4.31 0.46
R-162(130)x54x3-6x14-06 226.30 36.10 144.61 0.00 0.01 41.93 144.61 0.00 125.04 152.23 5.27 0.41
R-162(130)x54x3-6x14-07 230.90 37.59 144.11 0.00 0.01 9.90 144.11 0.00 393.79 150.99 4.77 0.49
R-162(130)x54x3-6x15-08 228.01 37.58 142.32 0.00 0.00 30.51 142.60 0.00 581.64 150.34 5.63 0.42
R-162(130)x54x3-6x15-09 230.48 37.79 143.37 0.00 0.01 33.68 143.37 0.00 1068.08 152.39 6.29 0.41
R-162(130)x54x3-6x16-10 227.50 36.87 143.63 0.00 0.01 14.50 - - 3600.00 152.63 6.27 0.44
mean 227.54 36.59 144.25 0.00 0.01 56.09 144.67 0.00 591.52 150.68 4.47 0.51
explanations: primary value = objective value of the status-quo solution; impr. = relative improvement of the optimal objective value compared

to the primary value; gap = relative gap to the optimal objective value; time = runtime until termination; C. gap = optimality gap as
reported by CPLEX at the point of termination; n.k. = not known; * = in comparison to the best found objective value (instead of the
known optimum)

Table 2.4.: Computational test on very large and randomized
instances.

Finally, we compare the achieved relative improvement in total ergonomic strain for two types

of instances, one were the anthropometric measurements of a representative male worker and

another one where the anthropometric measurements of a representative female worker were

used for the ergonomic evaluation (see Section 2.6). The results are summarized in Table 2.5,

which depicts the mean relative improvement (between the primary and optimal objective) for

every class of instances for both, the representative male as well as female worker. Depending

on the assumed worker, relative improvements only vary by a few tenths of a percentage point (at

most by 0.62 percentage points) for each instance class, even though the anthropometrics of both

workers differ significantly. For most instance classes, the difference in relative improvements is

even below a tenth of a percentage point. The main purpose of this comparison is to demonstrate

that relative improvements in total ergonomic strains are roughly independent of the worker’s

assumed anthropometric measurements. Hence, this comparison suggests that the implications
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derived in our computational study – like, for example, the amount of improvement that can be

expected by (un-)loading tow trains ergonomically – are valid for a broad spectrum of practical

cases with varying workers.

instances mean rel.
impr. male
(in %)

mean rel.
impr. female
(in %)

instances mean rel.
impr. male
(in %)

mean rel.
impr. female
(in %)

S-X-54(54)x18x3-2x3-## 11.54 11.49 XL-X-189(151)x63x3-7x16-## 16.35 16.33
S-X-54(43)x18x3-2x3-## 14.36 14.27 M-X-108(86)x36x3-3x6-##
M-X-108(108)x36x3-4x6-## 11.12 11.07 (1 extra rack per wagon) 8.30 7.68
M-X-108(86)x36x3-4x6-## 14.84 14.70 M-X-108(86)x27x4-3x6-##
L-X-162(162)x54x3-6x9-## 11.53 11.47 (1 extra capacity per slot) 1.55 1.60
L-X-162(130)x54x3-6x9-## 14.63 14.58 M-X-108(86)x36x3-3x6-##
XL-X-189(189)x63x3-7x16-## 11.73 11.68 (1 extra slots per rack) 1.55 1.60

Table 2.5.: Comparison of achieved relative reductions in ergonomic strains for a representative
male and female worker.

2.5.2.2. Influence of different tow train designs, set-ups and managerial
decisions

This section takes a closer look at how the total ergonomic strain of a tow train is influenced by

its design and by managerial decisions. As a first experiment to attain some design insights, we

compare reference instances to instances we derive by varying different parameters that define

the tow train’s set-up. All other parameters, such as bin weights, for example, stay unchanged.

The results of our study are summarized in Table 2.6.

instances results

label short description value abs. impr. rel. impr. (in %)

S-m-108(86)x36x3-4x6-## reference 92.85 0.00 0.00
S-m-108(86)x36x3-3x6-## 1 extra rack per wagon 85.14 7.71 8.30
S-m-108(86)x27x4-3x6-## 1 extra capacity per slot 91.41 1.44 1.55
S-m-108(86)x36x3-3x6-## 1 extra slots per rack 91.41 1.44 1.55

Table 2.6.: Computational test on varying tow train set-ups.

Our reference instances are the S-m-108(86)x36x3-4x6-## instances we also use in our compu-

tational performance study. Since in practice, wagons with four shelves are quite common, we

first investigate how four-shelved wagons compare to the three-shelved ones of our reference

instances. To get comparable results, we set the shelf heights of our four-shelved instances to be

in the same realm as the shelf heights of our three-shelved ones, which results in shelf heights

of 30 Centimeter, 75 Centimeter, 120 Centimeter and 165 cm. Furthermore, since increasing the

number of shelves by one increases the capacity of each wagon by nine, we reduce the number

of wagons per tow train by one, so that the tow train has the same overall capacity.
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The results in Table 2.6 suggest that it is ergonomically advantageous to use wagons with four

shelves, since on average, they cause about 8.3% less ergonomic strain. This is most likely due

to the fact that there is more space on shelves of medium height, which enable the worker to

pick bins at lower energy expenditure levels. Beyond that, tow trains with four-shelved wagons

may offer an additional advantage in practice: since they are generally shorter, they are better

suited if space is scarce and paths are narrow.

Our next experiment regards the capacity µ of each slot. By broadening the wagon, and therefore

each shelf, it is possible to increase µ. While in our reference instances, we have set µ = 3, a slot

capacity of four is also reasonable. We therefore create instances, again based on our reference

instances, with an increased slot capacity of µ = 4. This increases each wagons’ capacity by

nine bins, which is why we again shorten the tow train by one wagon to maintain the same

overall capacity. All other parameters remain unchanged.

The results depicted in Table 2.6 show that increasing µ might be beneficial from an ergonomic

perspective, but only slightly, since the objective was only improved by about 1.6%. By increas-

ing µ and reducing |W | as described, the amount of space on shelves of a specific height stays

constant. This implies that only the altered way of partitioning bins to wagons can influence the

objective value. As our results show, this influence is quite low.

Next, we investigate how the total ergonomic strain is influenced by the number of slots on

each shelf. Again, starting from our reference instances, we create new instances by adding an

additional slot per shelf, i.e., making the wagons longer. As before, we again shorten the tow

train by one wagon to retain the same total capacity.

The results of this experiment are shown in Table 2.6. They mirror the results of the previous ex-

periment, which is not coincidental: Increasing the slot depth and lengthening the wagons both

add the same number of additional slots to each shelf level. Therefore, both kinds of altered

instances yield the same change of the optimal objective value, since we assume (un-)loading a

bin from/onto slots at the same shelf height results in equal ergonomic strains.

Finally, we investigate how the relative filling of the tow train influences total ergonomic strain.

Clearly, loading fewer bins on a tow train reduces the total ergonomic strain for (un-)loading.

However, assuming line-side demands stay unchanged, tow trains that are loaded to a lesser

degree have to execute delivery cycles more frequently to fulfill demands. Similar trade-offs
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have already been reported in the literature with the objective of minimizing line-side stocks

(see Section 2.2), where more frequent smaller lot deliveries prove to be advantageous (Emde

et al., 2012).

To assess the effects of this tradeoff on ergonomics, we conduct the following experiment. We

begin with an instance of a completely filled trow train and solve it to optimality. The result

is used as a reference in the subsequent evaluation. In the next step we reduce the tow train’s

filling by a relative amount Φ by deleting (1−Φ) ·n bins (i.e., we transform them into “dummy”

bins) from the respective instance, while we keep the bin distribution regarding destined stations

and weights as similar as possible. We solve the modified instance to optimality and calculate

an adjustment factor 1
Φ , which denotes how much more frequent the tow train of the modified

instance needs to execute delivery runs compared to the reference instance’s tow train. We then

multiply the optimal objective value of the modified instance by the adjustment factor and divide

the product by the objective value of the reference instance. This yields an index that compares

the ergonomic strain of the modified instance and the reference instance. We acknowledge that

this experiment is based on quite restrictive assumptions, for example, that the number of tow

trains, their capacity and their assigned drivers are fixed. We further do not account for the

fact that decreasing the filling of a tow train by a certain amount reduces the time to complete

a delivery cycle only by a sub-proportional time span, which leads to infeasible schedules for

low fillings. Nevertheless, our experiment can provide some valuable insight into how just-in-

time lean production strategies, which emphasize more frequent small lot deliveries, influence

ergonomics.

We evaluated all small-, medium- and large-sized instances with the described procedure for

different values of Φ = {1
9 ,

2
9 ...,

9
9}. The averaged results are depicted in Figure 2.5.

Independent of the instance size, Figure 2.5 shows some clear trends. Between Φ = 1
9 and Φ =

3
9 , the index of the total ergonomic strain stays approximately constant. Afterwards, between

Φ = 3
9 and Φ = 1, the index of the adjusted total ergonomic strain increases approximately

linearly with increasing tow train filling. We explain this trend as follows. If the tow train

is filled to a high degree, all ergonomically advantageous places are occupied by bins, such

that the remaining bins are forced to be stored on ergonomically disadvantageous rack heights.

Reducing the filling of the tow train decreases the amount of bins that are forced to be stored

on the latter. Hence, even though the tow train needs to deliver more often, the total amount of

bins, which are transported (and, hence, (un-)loaded) on ergonomically disadvantageous racks,

decreases. Once the tow train is filled to a degree of Φ = 3
9 or less, storage space is sufficient

to store all bins on the ideal rack height (since there are only three different rack heights at
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Figure 2.5.: Influence of tow train filling on total ergonomic strain.

our instances’ tow trains), which explains why the decreasing trend becomes approximately

constant. Deviations from this trend, which are more pronounced the less the tow train is filled,

are due to our experimental design: the less the tow train is filled, the less accurate we are able

to mirror the primary distribution, which causes some disturbances. In conclusion, the results

suggest that lean production strategies – which are often implemented where tow trains are

deployed – can have positive effects on the reduction of ergonomic strains.

2.6. Conclusion

In this paper we consider the novel problem of improving the stowage of bins on tow trains from

an ergonomic point of view without worsening its economical performance. We formalize this

problem as a MIP model and prove that finding feasible solutions is NP-hard.

We decompose the problem into two sub-problems: first a partitioning problem, and, second, an

assignment problem. While the assignment problem can be efficiently solved, the partitioning

step is a bottleneck. We develop two solution procedures, an exact dynamic programming algo-

rithm as well as a heuristic solution procedure embedded in a GRASP framework, both using the

problem’s decomposability. Computational tests show that our dynamic programming procedure

is able to solve most instances of realistic size within a runtime of below a tenth of a second. The

GRASP-based heuristic procedure performs well, especially on very large instances. Optimality

gaps are below 1% in nearly all cases and the runtime never exceeds 3 seconds.

We further derive the following take-home conclusions from a managerial point of view.
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• Total ergonomic strain can be lessened, in our examples by up to about 14% to 15%, by

simply optimizing bin stowage.

• From a design perspective, tow train wagons with more racks seem to be advantageous,

as they offer more storage capacity at easy-to-access heights. By comparing two kinds of

tow trains, one with three racks per wagons and one with four racks, both having the same

overall loading capacity, the latter allowed for optimal stowage plans causing on average

8.3% less total ergonomic strain compared to the former.

• As a further design issue, we found that increasing each wagon’s capacity by broadening

or lengthening it allows for the reduction of the total amount of wagons per tow train

without worsening ergonomics. In fact, in our tests, optimal total ergonomic strains even

slightly decreased by about 1.6% on average.

• Decreasing a tow train’s relative filling while increasing its delivery frequency reduces

total ergonomic strain. Hence, high-frequency small-lot delivery strategies, which are

emphasized in lean production concepts, are also advantageous from an ergonomic per-

spective.

Future research may aim to refine or validate the ergonomic evaluation method we use to as-

sess (un-)loading tow trains. This can either be done by using alternative ergonomic assessment

methods – a biomechanical approach, for example – or via actual field measurements. In ad-

dition, research might try to quantify the health benefits of stowing bins on a tow train in an

ergonomic manner, possibly by means of a case study.

For additional managerial insights, assessing the weight distribution of bins may be of interest

to conclude if it is beneficial to fill bins in a way that ensures equal weights, or if an unequal

distribution offers ergonomic advantages.

Regarding the mathematical model, alternative objectives may be considered. One possibility is

to minimize the maximum sum of ergonomic strains per station if the tow train is unloaded by the

worker at the respective stations. Another option is to minimize the maximum ergonomic strain,

which aims on preventing overload injuries from (un-)loading especially heavy bins. Further, it

is possible to investigate additional conditions, like, for example, a given inbound sequence of

bins that has to be taken account of.
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2.A. Appendix

2.A.1. Additional figure

Figure 2.6.: Schematic representation of a typical tow train wagon’s design.

2.A.2. Integer program of BTPAP

Using the notation in Table 2.7, the BTPAP can be formulated as the following integer program.

Bw′ set of bins assigned to wagon w′ (index j)
P̃w′ set of positions on wagon w′ (index t)
yt,j binary variable: 1, if bin j is assigned to slot-position t; 0, otherwise

Table 2.7.: Additional notation.

[BTPAP] Minimize g(y) =
∑

t=(p,k)∈P̃w′

∑
j∈Bw′

e(j, p) · yt,j (2.13)

subject to∑
t∈P̃w′

yt,j = 1 ∀j ∈ Bw′ (2.14)

∑
j∈Bw′

yt,j = 1 ∀t ∈ P̃w′ (2.15)
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yt,j ∈ {0, 1} ∀t ∈ P̃w′ ; j ∈ Bw′ (2.16)

Objective function (2.13) minimizes the total ergonomic strain of the assignment. Constraints

(2.14) and (2.15) ensure that each bin is assigned to exactly one position and vice versa. Finally,

Constraints (2.16) restrict the domain of the variables to {0, 1}.

2.A.3. Measuring ergonomic strain

The manual unloading of racks – and, similarly, tow train wagons as in the case of this paper

–, consists of three main activities that may expose the worker to a significant physical load:

the pulling, lifting and lowering of objects. The manual handling of materials and its impact

on the human body has traditionally been studied in the human factors engineering literature,

see, for example, the basic textbooks of Helander (2005) and Winter (2009). To assess MMH

activities’ risks of increasing workers’ likelihood to develop MSD, the literature differentiates

between four major approaches (Moore and Garg, 1995):

• the observation and subjective evaluation of MMH activities by highly qualified profes-

sionals,

• the examination of biomechanical, physiological and/or psychophysical critical threshold

responses,

• the analysis of epidemiological data on the correlation of jobs, activities or other variables

with increased risk of MSD,

• and combinations of the methods mentioned above.

Although professional judgment of MMH activities by specialists is a valuable method in prac-

tice, this approach, due to its subjectiveness, is less suitable to determine quantitative ergonomic

strains (Moore and Garg, 1995). The evaluation of epidemiological data, on the other hand, is a

much more objective approach. However, epidemiological studies typically do not assess MMH

via exact, quantitative values. Rather, they are designed to determine or verify the link between

certain variables, activities or tasks to certain MSD (Dempsey, 1998). Therefore, and due to

the fact, that epidemiological studies are very costly in terms of time, this approach is also less

suited for our purposes.

The determination of different critical threshold responses is based on the observation that ex-
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ceeding certain thresholds fosters the development of various MSD; the higher the limit is ex-

ceeded, the higher the likelihood of developing MSD. The emphasis of the biomechanical ap-

proach is the force or torque applied to certain joints or muscles during various MMH tasks,

most commonly the lower back joints L4/L5 or L5/S1. The physiological approach focuses on

a worker’s energy expenditure during a MMH task, i.e., the cardiovascular effort associated with

performing the task. Lastly, psychophysical approaches consider a worker’s perceived strain for

evaluating the task (Dempsey, 1998).

While it is possible to assess various threshold responses of workers performing MMH activities

directly via measurements (e.g., via body-mounted sensors), this approach may interfere with

and hence disturb the very activity it tries to evaluate. Therefore, to ease evaluation and to

avoid intervening with task performance, models have been developed to calculate respective

responses for a variety of MMH activities (Dempsey, 1998).

A physiological model that has enjoyed some popularity in the past both in research and in prac-

tice is the energy expenditure prediction model developed by Garg et al. (1978). It is based on

the assumption that the energy expenditure rate of a composite task, such as (un-)loading a shelf,

for example, can be calculated by summing up its comprising basic tasks’ energy expenditure

rates. Energy expenditure rates of basic tasks depend on various task characteristics such as

distances, heights, weights, forces and body positions, as well as anthropological characteristics

of the person performing the task, like sex and body weight, and they can be calculated using

equations that were derived by the authors via regression analyses of data obtained in laboratory

experiments. The higher a composite task’s calculated energy expenditure rate, the greater its

ergonomic strain. Prior research assumed that the maximum average energy expenditure rate an

average person can tolerate over the course of an eight-hour workday is 5kcal
min , though this value

is debated (Dempsey, 1998).

One of the advantages of the model of Garg et al. (1978) is its suitability for the evaluation

of a multitude of MMH activities, making it very flexible in application (Dempsey, 1998). In

addition, it is easier to handle than many biomechanical models. It offers the possibility to

account for worker-individual data and has previously been used in various application areas

(e.g., Garg et al., 1978, Waters et al., 1998, Glock et al., 2018) as well as in recent managerial

approaches taking account of ergonomic aspects (see. Section 2.2). Due to this flexibility and

widespread use, we use the energy expenditure prediction model of Garg et al. (1978) to calculate

the ergonomic strain for our instances.

The first step is to analyze the task of (un-)loading a tow train wagon, which in our case, is

equipped with a gravity flow shelf, and to break this task down into basic tasks. To do this,
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we observed different workers (un-)loading shelves of different heights. We subdivided their

movements into a set of basic tasks and derived the following generalized sequence for loading:

1. At the beginning of the loading process, the worker adopts an upright standing posture

about 50 Centimeter in front of the shelf, facing it. His7 legs are positioned slightly

shifted. The worker grasps the bin with both hands at the centers of its sides, holding it at

hip height, so that it is in contact with his hip and thighs.

2. The worker moves the bin right to the front of the shelf on which he wants to place it.

This includes a movement of the hands, arms and shoulders in horizontal and in vertical

direction. If the destined shelf is located below hip height, the worker has to squat in

addition.

3. The worker places the bin’s adverted bottom side on the rear edge of the shelf.

4. The worker moves his hands, one after the other, to the front of the bin to change grip.

5. The worker pushes the bin about halfway over the edge of the shelf.

6. The worker releases the bin, so that it is pulled onto the rack by gravity.

7. The worker returns to an upright standing posture, while aligning his hands, arms and

shoulders with his torso, so that his hands come in contact with his outer thighs.

8. The loading movement ends.

For unloading, we observed the following sequence:

1. At the beginning of the unloading process, the worker adopts an upright standing posture

about 50 Centimeter in front of the shelf, facing it. His legs are positioned slightly shifted.

The worker’s arms, hands and shoulders are hanging sideways, aligned with his torso. His

hands are in contact with his outer thighs just below hip height.

2. The worker moves his hands to the front of the bin that he wants to unload. This includes

a movement of the hands, arms and shoulders in horizontal and vertical direction. If the

destined shelf is located below hip height, the worker has to squat in addition.

3. The worker lifts the bin’s front up slightly, so that its lower edge slips over the frontal edge

of the shelf.

7We use the male gender to refer to individuals of arbitrary gender.
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4. The worker pulls the bin about halfway over the edge of the shelf.

5. The worker moves his hands, one after the other, to the middle of the sides of the bin to

change grip.

6. The worker pulls the bin off the shelf’s frontal edge to its full length.

7. The worker brings the bin vertically to hip height and horizontally to contact with his hip

and thighs. Depending on the shelf height from which he gathered the bin, the vertical

movement consists of lowering or lifting. If the bin was located below hip height, the

latter also includes bringing the body to an upright posture again.

8. The unloading movement ends.

For additional clarification, both the loading and the unloading process are schematically de-

picted in Figures 2.7 and 2.8.

Figure 2.7.: Schematic sequence of tasks to load a tow train wagon.

In addition to the basic tasks described above, the worker has to carry bins to the tow train

during loading and carry bins to their destination during unloading. However, these activities

are not part of the basic (un-)loading movement and cannot be influenced by optimizing the bins’

stowage on the tow train. Therefore, we do not include them in our ergonomic evaluation. Note

that the general sequence of steps as listed above is independent of shelf height and bin weight.

Only in some steps, it is necessary to differentiate between the precise movements (for example

lifting versus lowering a bin in step 7 during unloading) that depend on the shelf height. Further,
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Figure 2.8.: Schematic sequence of tasks to unload a tow train wagon.

we assume the movement to (un-)load bins from slots at the same shelf height is identical, which

is reasonable in a lot of practical situations. We note, however, that this may not always be true.

Bars of the rack’s frame (as depicted in Figure 2.6) may, for example, hinder gripping bins at the

outer slots. Another possibility may be that the worker deposits/receives bins at a small depot

centrally in front of the wagon, such that to move from the wagon to the depot, he has to turn

his body by different angles, depending on the horizontal slot position where a bin is stored. In

both examples, the sequences of movements and, hence, the provoked ergonomic strains may

vary between slots at the same shelf height.

Applying the equations of Garg et al. (1978) to the sequence of movements described above

enables us to calculate the average ergonomic strain associated with loading and unloading an

arbitrary weighted bin to/from an arbitrary shelf height. Hence, we calculate the ergonomic

strain e(j, p) arising from placing bin j in slot p as a function of the bin’s weight and the shelf’s

height slot p is located at.

For the sake of generality, in the proceedings of the computational study, we primarily use the

anthropometric measurements of a representative worker, derived from the average worker’s an-

thropometrics we observed in practice. Our representative worker is male, weighs 75 Kilogram

and measures 178 Centimeter in height, with a hip height of 80 Centimeter (Glock et al., 2019).

A similar approach of defining a representative worker is taken by Battini et al. (2016b) and

Glock et al. (2019), for example. We acknowledge that individual workers (with different anthro-

pometric measurements) can experience different ergonomic strains and may be able to tolerate
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varying thresholds without an increased risk of developing MSD. However, in the course of our

computational study, we aim to provide a general estimate of the reduction in ergonomic strains

that can be achieved by loading tow trains ergonomically. This reduction, expressed in rela-

tive terms, is approximately equal independent of the worker’s anthropometric measurements.

We demonstrate the latter by additionally evaluating and optimizing the ergonomic strains for

an average female worker weighting 61.9 Kilogram and measuring 161.4 Centimeter in height

(Tehard et al., 2002), which results in almost identical relative reductions (see Section 2.5.2). We

further note that our model is not restricted to those anthropometric measurements; in practical

applications different anthropometrics could be used.

Despite the mentioned advantages of the energy expenditure prediction model of Garg et al.

(1978), this approach also has shortcomings. First of all, the assumption that a composite task’s

energy expenditure rate is the sum of its basic tasks’ energy expenditure rates turned out to

be questionable in various studies (Genaidy et al., 1985, Taboun and Dutta, 1989). This may

lead to a systematic over-prediction of energy expenditure rates (Ayoub, 1992). However, since

we compare very similar tasks to each other, i.e., (un-)loading from different rack heights, this

systematic bias should be roughly the same for every task, so that comparisons of differences in

the tasks’ energy expenditures should be still adequately accurate.

A second problem is that while we can compare the total energy expenditures resulting from

different bin stowages on the tow train, this does not tell us exactly how the risk of developing

MSD changes for the worker (un-)loading it (Ayoub, 1992, Dempsey, 1998). This is due to

multiple reasons. First, an activity harmful for one worker may not negatively influence the

health of another worker (Snook and Ciriello, 1991). Secondly, we do not know which activities

the worker performs between loading and unloading the tow train. Reducing the ergonomic

strain of (un-)loading tow trains is more beneficial, the higher the worker’s energy expenditure

during further activities. Thirdly, even if we knew a worker’s exact energy expenditure rates

over the course of his complete shift, there is a lack of statistics on how the risk of developing

MSD is precisely linked to certain levers of energy expenditure rates (Ayoub, 1992, Dempsey,

1998).

The limitations mentioned above are not unique to the energy expenditure concept, but apply

to ergonomic assessment methods in general (Ayoub, 1992, Dempsey, 1998); hence, selecting a

different evaluation method would not solve this problem. We note, however, that we formulate

the ETTLP in a way that ensures that improving the ergonomics assessment of the tow train does

not worsen economic performance. The reduction in energy expenditure induced by our method

improves the workplace quality for the tow train driver, even if we are unable to calculate an
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exact injury risk. Hence, the explanatory power of the energy expenditure concept is sufficient

for the scope of this paper.

A last minor problem concerns the physical dimension of energy expenditure rates. Energy ex-

penditure rates have the physical dimension of power (energy per unit of time). Summing up

values in the dimension of power, as we do in our objective function, to find the optimal bin

stowage results in an outcome value not representing any real-world physical property, which

is why we use absolute energy expenditures instead. The equations of Garg et al. (1978) actu-

ally calculate a complex task’s energy expenditure rate by accumulating the comprising tasks’

absolute energy expenditures, before dividing them through the task’s duration. The only ex-

ception to this is the energy expenditure to keep the body in an upright standing position, which

is directly dependent on the task’s duration. According to our observations in practice, there

was no clear correlation between bin weights or shelf heights and the (un-)loading task’s dura-

tion, which, in general, was somewhat fluctuating. Hence, to calculate the energy expenditure

to keep the body in a standing position, we assume that every basic (un-)loading task’s duration

is three seconds, which is the mean duration we observed. Due to the minor contribution of the

energy expenditure to keep the body in a standing position to the task’s total energy expenditure,

we regard this assumption to be acceptable. Using absolute energy expenditures allows us to

interpret the objective value as the total energy needed to (un-)load the tow train. We can then

re-transform the objective into a value in energy expenditure rates by dividing it through the total

duration of (un-)loading the tow train, which is n multiplied by three seconds.
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Paper 3: Exact and heuristic algorithms
for scheduling jobs with time windows on
unrelated parallel machines8

Abstract: This paper addresses scheduling a set of jobs with release dates and deadlines on a set of
unrelated parallel machines to minimize some minmax objective. This family of problems has a number
of applications, e.g., in discrete berth allocation and truck scheduling at cross docks. We present a novel
exact algorithm based on logic-based Benders decomposition as well as a heuristic based on a set parti-
tioning reformulation of the problem. We show how our approaches can be used to deal with additional
constraints and various minmax objectives common to the above-mentioned applications, solving a broad
class of parallel machine scheduling problems. In a series of computational tests both on instances from
the literature and on newly generated ones, our exact method is shown to solve most problems within a
few minutes to optimality, while our heuristic can solve particularly challenging instances with tight time
windows well in acceptable time.

Keywords: Scheduling; Unrelated parallel machines; Time windows; Benders decomposition; Berth

allocation; Truck scheduling

8This chapter has been published as: Tadumadze, G., Emde, S., Diefenbach, H. (2020): Exact and heuristic algo-
rithms for scheduling jobs with time windows on unrelated parallel machines. OR Spectrum 42, 461–497. DOI:
https://doi.org/10.1007/s00291-020-00586-w. Reproduced with permission from Springer Na-
ture.

112

https://doi.org/10.1007/s00291-020-00586-w


3.1. Introduction

Scheduling problems concern themselves with assigning tasks to limited resources (proces-

sors/machines) over time. As such, they play a central role in most logistics and production

processes. In this context, this paper deals with variations of the following basic problem.

Given are a set of jobs J = {1, . . . , n}, where each job is associated with a release date rj ∈ R+

and a deadline dj ∈ R+, and a set of processors (or machines) P = {1, . . . ,m}, where it takes

pij ∈ R+ time units to process job j on machine i. The machines are unrelated, meaning that

some jobs may be processed faster on some machines than on others, and preemption is not

allowed. On what processor and at what time should each job start processing such that no

two distinct jobs are processed at the same time on the same machine, the time windows are

observed, and some minmax objective is optimized? In classic machine scheduling literature,

using the notation introduced by Graham et al. (1979), this problem is denoted as [R|rj , dj |·].

A schedule S for [R|rj , dj |·] is defined as a set of triples (i, j, t) ∈ S, indicating that job j ∈ J

is assigned to processor i ∈ P starting at time t ∈ R+. We say that a schedule is feasible if it

meets the following conditions.

• Each job is assigned exactly once, i.e., for each job j ∈ J , there is exactly one triple

(i, j, t) ∈ S.

• No job is scheduled before its release date or finishes processing after its deadline, i.e.,

∀(i, j, t) ∈ S, it must hold that rj ≤ t ≤ dj − pij .

• No two jobs may occupy the same processor at the same time, i.e., for each pair of triples

(i, j, t), (i′, j′, t′) ∈ S, j ̸= j′, it must hold that i ̸= i′ or t+ pij ≤ t′ or t′ + pi′j′ ≤ t.

Scheduling with time windows on unrelated parallel machines has multiple practical applica-

tions. One prime example is berth allocation at maritime container terminals, where calling

vessels are assigned time and space at the quay wall. We can equate ships with jobs and berths

with processors. Another example is truck scheduling at distribution centers or manufacturing

plants, where incoming trucks have to be assigned to dock doors. In this context, incoming

trucks correspond to the jobs and dock doors to processors. In both of these applications, it is

very common to have given arrival and departure times (i.e., time windows) for each transport

device (i.e., vessel or truck). These applications are discussed in more detail in Section 3.2.

Inspired by these applications, we discuss the following generalizations of the base problem.
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• Processing set restrictions: Especially in the berth allocation context, it is possible that

certain ships are incompatible with certain berths due to draft limitations (e.g., Xu et al.,

2012). In machine scheduling parlance, this means that certain jobs are incompatible with

certain machines.

• Machine availability: Especially in a rolling horizon framework, some machines may not

be ready before a given time (e.g., Imai et al., 2001, in the berth scheduling context). In

this case, no job may be scheduled on a given machine before the machine is ready.

• Tails: Jobs may have tails (also called delivery times), where they do not block any ma-

chine but still remain active. This is especially relevant for truck scheduling applications,

where it may not be enough for a truck to finish processing at a door before the due date,

but the shipments need to actually arrive at their destinations (e.g., another door for trans-

shipment) to be considered on-time (e.g., Tadumadze et al., 2019).

We investigate three alternative minmax objectives that are relevant for both of the above-

mentioned applications.

• Makespan: It is typically desirable to quickly clear the terminal (i.e., have the last job

finish as soon as possible) for successive planning runs (e.g., Boysen and Fliedner, 2010).

Consequently, a schedule S is optimal with regard to makespan if it minimizes

C(S) = max
(i,j,t)∈S

{t+ pij}. (3.1)

• Maximum (weighted) flow time: It is important for terminals to serve every customer (i.e.,

transport device) in a timely manner. The flow time of a job corresponds to the total

service time of the transport device in the terminal (i.e., the time from its arrival until it

finishes processing) and is calculated as the difference between its completion time Cj

and its release date rj . In the literature, it is common to minimize the (weighted) sum of

flow times
∑

wjFj , where each job j ∈ J may additionally have a priority weight wj

(wj > 0), indicating its relative importance (e.g., Cordeau et al., 2005, Boysen, 2010).

While
∑

wjFj leads to low (weighted) service times for the average customer, it does

not preclude long service times for some individual customers. We therefore consider the

maximum (weighted) flow time wFmax which aims to minimize the service time of the

worst served customer, defined as:

wFmax(S) = max
(i,j,t)∈S

{wj · (t+ pij − rj)}.
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• Maximum (weighted) lateness: In real life, it is not always possible to achieve a feasible

solution without violating any time windows. In such cases, a more useful objective may

be to minimize the maximum violation of the due dates. In other words, deadlines dj

become due dates dj and the corresponding constraint becomes soft. The lateness of job j

is defined as the difference between its completion time Cj and its due date dj . For many

terminals, it may be reasonable to minimize the maximum (weighted) lateness wLmax,

defined for our problem as follows:

wLmax(S) = max
(i,j,t)∈S

{wj · (t+ pij − dj)}.

The main contribution of this paper is a novel logic-based branch and Benders cut scheme, which

is shown to solve many realistic problem instances to optimality in reasonable time, decisively

outperforming a commercial optimization solver. To the best of our knowledge, it is the first

such algorithm to be proposed for this family of unrelated parallel machine scheduling problems

with time windows. For even larger and/or harder instances, we propose a heuristic procedure

based on a generalized set partitioning formulation. Our exact and heuristic approaches are

very flexible and can be easily adapted to account for problem generalizations and special cases

as well as different minmax objectives, such that a broad class of parallel machine scheduling

problems with minmax objectives can be solved. Our computational tests show that hundreds

of realistically sized instances from both the literature and systematically generated ones can be

solved to optimality in acceptable time.

The remainder of this paper is organized as follows. In Section 3.2, we review the pertinent lit-

erature and discuss real-world applications of our scheduling problem in more detail. In Section

3.3, we introduce a novel branch & Benders cut scheme as well as a heuristic column selec-

tion algorithm for this problem, respectively. We extend our approaches to cope with additional

constraints and alternative minmax objectives in Section 3.4. In Section 3.5 performance of

our algorithms is tested on benchmark instances in a computational study. Finally, Section 3.6

concludes the paper.

3.2. Literature review and applications

In the literature, the problem of scheduling a set of jobs with given release dates and deadlines on

unrelated parallel machines to minimize the makespan is expressed by the triple [R|rj , dj |Cmax].

For an overview on machine scheduling in general, see Pinedo (2016).
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Concerning scheduling on unrelated parallel machines with a makespan objective in particular,

it is extensively studied by Lenstra et al. (1990), who show that the approximation ratio for

[R||Cmax] is at least 3/2 unless P = NP . The same authors also develop a polynomial time 2-

approximation scheme. An improved (2−1/m)-approximation scheme with computational time

O(m2) is developed by Shchepin and Vakhania (2005). Furthermore, for the special case where

each job can be assigned to at most two machines with the same processing time, Ebenlendr et al.

(2014) proposed a 1.75-approximation algorithm. More recently, Knop and Koutecky (2017)

introduced a method to solve the problem in ΘO(Θ2)·nO(1) time, where Θ = maxi∈P,j∈J{pij}K ,

and K is the number of different types of machines. Mokotoff and Chrétienne (2002) develop

an exact and a heuristic algorithm based on a cutting plane scheme to solve [R||Cmax]. Another

successful solution procedure to solve this problem based on a recovering beam search heuristic

is proposed by Ghirardi and Potts (2005). In contrast to traditional beam search, their algorithm

contains a recovering phase, which allows substitution of dominated solutions by alternative

more promising solutions from the previous stage. Moreover, Fanjul-Peyro and Ruiz (2010,

2011) develop heuristics for [R||Cmax] based on iterated greedy local search methods and size

reduction heuristics. Further metaheuristics for [R||Cmax] are presented by Lin et al. (2011) and

Sels et al. (2015).

Regarding the inclusion of release dates, Lancia (2000) proposes a branch and bound scheme

to schedule jobs with release dates and tails on two unrelated parallel machines, minimizing

the makespan [R2|rj , qj |Cmax]. A similar scheduling problem for identical parallel machines

subject to job release dates and tails minimizing the makespan is investigated by Gharbi and

Haouari (2002). They develop branch and bound algorithms and propose a new tight branching

scheme for [P |rj , qj |Cmax]. In Section 3.4, we discuss how our own algorithms can be extended

to account for nonzero delivery times.

Regarding logic-based Benders decomposition for parallel machine scheduling, Jain and Gross-

mann (2001) propose a decomposition approach which combines solving a mixed-integer linear

programming (MILP) model and a constraint programming (CP) model to solve an unrelated

parallel machine scheduling problem with time windows to minimize the total cost, which de-

pends on the job-machine assignment. Their approach, which is similar to logic-based Benders

decomposition, is tested on instances with up to n = 20 jobs and m = 5 machines. Tran et al.

(2016) study the unrelated parallel machine scheduling problem with sequence and machine-

dependent setup times and a makespan objective [R|sds|Cmax]. They develop a logic-based

Benders decomposition approach where the master problem (i.e., assignment of jobs to the ma-

chines) is solved via MILP techniques and the subproblems (i.e., sequencing jobs) via a spe-

cialized solver for the traveling salesman problem (TSP). In a computational study, instances
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with up to n = 60 jobs and m = 5 machines are solved to optimality, while instances with

up to n = 120 jobs and m = 8 machines are solved heuristically. Gedik et al. (2016) develop

two logic-based Benders decomposition algorithms for a parallel unrelated machine scheduling

problem with sequence dependent setup times. Their problem additionally considers availability

intervals, and as each job is associated with a given profit and cost, their objective is to maximize

the total profit. The authors compare their decomposition algorithms to extant ILP and CP mod-

els for instances with n ∈ {32, 57, 116} jobs and m ∈ {10, 15, 20, 25, 30} machines, where not

all instances can be solved to optimality within a 3-hour time limit. Hooker (2007) develops an-

other logic-based Benders decomposition algorithm for several versions of the unrelated parallel

machine scheduling problem with regard to three different objectives (makespan, total tardiness

and total costs). They additionally consider machine-job specific resource consumption rates

cij and allow more than one job to be processed concurrently on machine i as long as the total

resource consumption does not exceed the given resource limit Ci. They solve problems with

up to n = 50 jobs, where not all instances can be solved to optimality within 2 hours.

In summary, most papers employing logic-based Benders decomposition for parallel machine

scheduling use a constraint programming solver for the subproblems, the exception being Tran

et al. (2016), who use a TSP solver. In this paper, we develop a novel bounded dynamic

programming-based approach, which is shown to perform quite well and can easily be adapted

to a broad range of machine scheduling problems (see Section 3.4).

3.2.1. Berth allocation

Apart from a short dip during the financial crisis of 2008, international seaborne trade has been

steadily on the rise for the past decades (UNCTAD, 2016). While container vessels are growing

more numerous and larger, capacities (e.g., quay cranes and space at the quay) at container

terminals are hard to expand due to physical and geographical constraints. For this reason,

operations research methods have become very prominent in making the best use of limited

resources at many container terminals (e.g., Steenken et al., 2004, Vacca et al., 2007). One of

the most important problems in this context is the berth allocation problem, which aims to assign

a set of calling vessels to both a berthing time and space at the quay wall, which is surveyed in

Bierwirth and Meisel (2010, 2015). In this context, our problem is equivalent to the following

basic berth allocation problem: Given a set of calling vessels (jobs) and a discrete set of berths

(processors), which ship should moor at which berth at what time, such that no vessel berths

before its arrival time, every vessel can depart before its deadline, and the last vessel departs as

early as possible? In practice, berths may differ in term of the resources (e.g., quay cranes) and
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each vessel may have an “optimal berthing point” (e.g., depending on the storage location for

its containers in the terminal). As a result, the ships’ handling times at the quay wall may vary

depending on where they are berthed, which makes berths equivalent to unrelated machines. A

schematic representation of the discrete berth allocation problem is given in Figure 3.1(a).

In the berth allocation context, minmax objectives have so far only been tackled with regard to

very specific applications. The first application of a makespan objective in the berth allocation

context is provided by Li et al. (1998), who consider a continuous quay wall, where ships can

berth at any arbitrary position as long as they do not collide. Emde et al. (2014) investigate

the berth allocation problem at ports that have a so-called mobile quay wall, which can enclose

ships berthed at the normal, fixed quay wall. Similarly, the same performance criterion for a

combined berth allocation and quay crane scheduling (or assignment) problem is applied by Lee

and Qiu Wang (2010) and Blazewicz et al. (2011), respectively.

(a) Berth allocation. (b) Truck scheduling.

Figure 3.1.: Applications of [R|rj , dj |Cmax].

3.2.2. Truck scheduling

At many cargo handling facilities, like distribution centers, manufacturing plants or cross docks,

calling trucks need to be assigned to a given set of dock doors for (un-)loading. This prob-

lem is commonly referred to as truck scheduling, which is surveyed by Boysen and Fliedner

(2010). The existing literature almost without exception assumes that all dock doors process

trucks equally fast, which is not always the case (e.g. Tadumadze et al. (2019), Konur and Go-

lias (2017)). Since dock doors may differ with regard to staff levels and equipment, processing

times may also depend on which truck is processed at which door. Critical trucks can be pro-
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cessed faster at dock doors with more workers, although not every truck profits equally from

additional workers (depending on size and load). In this regard, dock doors can be interpreted as

unrelated parallel machines. It is very common that trucks must be scheduled within fixed time

windows. A distribution center handling incoming trucks is schematically depicted in Figure

3.1(b).

3.3. Solution procedures

In this section, we present novel exact and heuristic algorithms to solve [R|rj , dj |Cmax]. We

later generalize these approaches to include additional constraints (Section 3.4.1) and alternative

minmax objectives (Sections 3.4.2.1, 3.4.2.2). The exact algorithm, based on logic-based branch

and Benders cut, is presented in Section 3.3.1. Since machine scheduling with time windows is

well known to be strongly NP-hard for any |P | ≥ 1 (Lenstra et al., 1977), we also propose a

heuristic column selection approach in Section 3.3.2.

3.3.1. Branch and Benders cut for [R|rj, dj|Cmax]

Our exact logic-based branch & Benders cut (B&BC) algorithm is based on the classic Benders

decomposition. The original algorithm proposed by Benders (1962) decomposes a problem into

a master model, which is usually a relaxed version of the original model, and a slave model,

which is used to iteratively generate feasibility and optimality cuts to be added to the master

model. In our approach, we deviate from the classic Benders scheme by adding so-called logic-

based (or combinatorial) Benders cuts in the spirit of Codato and Fischetti (2006) and Hooker

(2011). Our master model is a type of bin packing problem with the goal of assigning jobs to

processors. The slave problem consists of sequencing a given set of jobs on given processors,

where the assignment of jobs to processors is determined by the current master solution, such

that the makespan is minimal.

3.3.1.1. Master problem

Our master model contains only binary variables yij , which define the assignment of jobs

to machines: yij = 1 if and only if job j is assigned to machine i. Moreover, we define

N(j) = {j′ ∈ J | rj′ ≥ rj} as the set of jobs that are released no sooner than job j and

dmax(j) = max{dj′ | j′ ∈ N(j)} as the latest deadline of the jobs from N(j). Finally, let z
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be an auxiliary continuous variable denoting a lower bound on the completion time of the latest

machine. Our master model is a relaxed version of the original problem, where we assume that

a no-wait earliest release date (ERD) schedule is feasible, which it may not be. It is defined as

the following mixed integer linear program.

[Master] Minimize FM (Y,Z) = z (3.2)

subject to∑
i∈P

yij = 1 ∀j ∈ J (3.3)

rj +
∑

j′∈N(j)

yij′ · pij′ ≤ z ∀i ∈ P ; j ∈ J (3.4)

rj +
∑

j′∈N(j)

yij′ · pij′ ≤ dmax(j) ∀i ∈ P ; j ∈ J (3.5)

yij ∈ {0; 1} ∀i ∈ P, j ∈ J (3.6)

Objective (3.2) minimizes the makespan of the relaxed problem. Constraints (3.3) make sure

that each job is assigned to exactly one machine. Valid inequalities (3.4) enforce that the lower

bound z on the makespan cannot be less than lower bound on the makespan of each processor

i ∈ P , which is the total processing time of the jobs assigned to processor i starting after time

rj . Valid inequalities (3.5) forbid such job-to-machine assignments that obviously lead to the

violation of deadlines, i.e., when even the lower bound on the makespan on a machine exceeds a

potential latest deadline dmax(j) of the jobs on that machine. Constraints (3.6) define the binary

variables. Note that it is possible to solve the model as a pure feasibility problem, i.e., without

variable z and valid inequalities (3.4) and (3.5). However, it is expedient to add these valid

inequalities to drive the search into the promising regions of the solution space.

We solve [Master] using a commercial black box solver. Whenever the solver hits upon a can-

didate integer solution Ȳ , the slave problem is solved to derive a feasible solution from Ȳ (if

any) by sequencing the jobs optimally for the given assignment. Therefore, from the viewpoint

of the slave problem, the assignment of jobs to processors is already given; what remains is

determining the optimal schedule of jobs on each machine.
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3.3.1.2. Slave problem

To solve the slave problem, first off, the problem clearly decomposes along the processors: how

we schedule jobs assigned to one processor does not affect how we schedule jobs assigned to

another processor. Given an integer solution Ȳ for model [Master], the set of jobs assigned to

machine i is Γi = {j ∈ J | ȳij = 1}. Now, scheduling jobs Γi on machine i is equivalent to

solving a single machine scheduling problem with time windows to minimize the makespan, i.e.,

[1|rj , dj |Cmax]. This problem is well known to be NP-hard in the strong sense (Lenstra et al.,

1977). It stands to reason, however, that at least in the applications discussed in Section 3.2, the

number of jobs per processor will not be too high. Therefore, we propose the following bounded

dynamic programming (BDP) scheme based on the general methodology introduced by Held

and Karp (1962).

The dynamic program consists of |Γi| + 1 stages (index l = 0, . . . , |Γi|), each stage containing

states (Σ), where Σ ⊆ Γi is the set of jobs already scheduled. Starting in dummy stage l = 0

from state (∅), successors in stage l + 1 are reached by appending one of the not yet scheduled

jobs to the schedule, i.e., the successor states of some state (Σ) are (Σ ∪ {j}), ∀j ∈ Γi\Σ. Let

C (Σ) be the makespan of the (partial) schedule of state (Σ) which can be recursively computed

as

C (Σ) = min
j∈Σ

{max{C (Σ\{j}), rj}+ pij},

where C (∅) := 0. Further, for each state (Σ), we compute the lower bound on the makespan

LB(Σ) as follows:

LB(Σ) = max
j∈Γi\Σ

max{C (Σ), rj}+
∑

j′∈N(j)∩{Γi\Σ}

pij′

 ,

the idea being that the remaining jobs are appended in a no-wait ERD schedule, which is optimal

but may be infeasible due to the deadlines.

In the dynamic programming graph, the number of nodes (i.e., states) increases exponentially

with the number of jobs to be scheduled. However, we can significantly reduce its size by

generating only such nodes that satisfy the following criteria.

1. It is still possible to schedule every remaining job with regard to its respective time win-

dow, i.e., C (Σ) + pij ≤ dj , ∀j ∈ Γi\Σ, must hold.

2. The remaining jobs can at least theoretically still be feasibly scheduled without violating
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the latest deadline, i.e., C (Σ) +
∑

j∈Γi\Σ pij ≤ maxj∈Γi\Σ{dj} must hold.

3. Let UB be the objective value of the best known feasible solution, i.e., the global upper

bound. Then it must hold that LB(Σ) < UB.

Moreover, if the optimal solution of the relaxed problem, obtained while computing LB(Σ), is

feasible for the original problem (i.e., every job j from Γi is scheduled within its time window),

we fathom the state and, if applicable, store the found solution as the new best known feasible

solution and the corresponding objective value as the local upper bound UB(Σ) on this machine.

If the local upper bound of the state is smaller than the global upper bound (i.e., if UB(Σ) < UB

holds), we replace UB with UB(Σ) in criterion 3.

The optimal makespan of processor i given Γi equals C (Γi). The corresponding sequence of

jobs is obtained by backward recovery along the optimal path. To determine the start times

of the jobs, each job must be scheduled in the given sequence as early as possible, i.e., either

when its predecessor ends or at its release date, whichever comes last. If no final state (Γi)

exists—either because it is impossible to schedule the jobs in Γi without violating any time

windows or because there is no schedule with a makespan of less than UB—we consider the

“optimal makespan” for this processor to be C (Γi) := UB.

Regarding the asymptotic runtime, BDP has O(2|Γi|) states and O(|Γi|2|Γi|) transitions, making

the runtime exponential. However, as mentioned above, in many applications, the number of

jobs per processor |Γi| can be expected to be rather low; hence, solution times may still be

acceptable for many practical uses.

Example: Consider the example data given in Figure 3.2(a), consisting of n = 4 jobs and m = 2

processors. Assume that for some [Master] solution Γ2 = {1, 2, 4}, i.e., jobs 1, 2, and 4 are

assigned to processor 2. The resulting dynamic programming graph is in Figure 3.2(b). One of

the two optimal solutions is bold, corresponding to job sequence ⟨1, 4, 2].

Let C (Γi) be the optimal makespan of machine i given Γi, determined for each machine via

BDP. Let i∗ = argmaxi∈P {C (Γi)} be the machine with the greatest makespan and hence the

machine that determines the makespan for the schedule as a whole. If C (Γi∗) is lower than the

current best upper bound UB, then a new best solution has been found. The solution is stored

and the upper bound is updated, i.e., UB := C (Γi∗). Moreover, the following cut is added to

program [Master]:

z ≤ UB− ϵ,
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j 1 2 3 4

p1,j 5 6 8 4
p2,j 5 5 9 3

rj 1 3 4 2
dj 8 19 13 25

(a) Example problem data. (b) Dynamic programming graph for the slave problem in the example.

Figure 3.2.: Example data and dynamic programming.

where ϵ is a sufficiently small positive number. This way, solutions to model [Master], whose

lower bound z is not less than the best upper bound UB, will be fathomed. Note that the upper

bound can initially be set to UB := maxj∈J{dj} or to the best objective value of some heuristic

procedure.

Regardless of whether a new upper bound has been found, we determine the set I = {i ∈ P |
C (Γi) ≥ UB}. To find a better solution with a lower makespan, at least one of the jobs on each

of the machines in I must be moved to another machine. To enforce this, we add the following

cuts to program [Master]. ∑
j∈Γi

yij ≤ |Γi| − 1 ∀i ∈ I.

Once the cuts are added as constraints, the solver continues solving model [Master] with these

new cuts. When it hits upon another integer solution, the slave problem is again solved, new

cuts are generated, and so on, until no more unexplored and unfathomed solutions remain for

the master model. At that time, the search terminates and the best upper bound is optimal.

This procedure is commonly referred to as (logic-based) branch & Benders cut (Rahmaniani

et al., 2017, Emde, 2017). In Section 3.5.2, we investigate whether it is beneficial to add cuts as

so-called lazy or regular constraints.

3.3.2. Heuristic column selection based on generalized set partitioning

As a first step to solve [R|rj , dj |Cmax] heuristically, we formulate the problem as a generalized

set partitioning problem (GSPP). This model formulation assumes all time related parameters

(i.e., rj , dj , and pij) to be integer. For practical purposes, this assumption can be imposed by
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scaling and rescaling the time unit before and after using the solution procedure, respectively.

We divide the entire planing horizon in discrete time periods t = 1, . . . , T . Note that T =

maxj∈J{dj} is a sufficiently large value for the length of time horizon. Once the [R|rj , dj |Cmax]

problem is formulated as a discrete time-indexed scheduling problem, it can be straightforwardly

transformed to a GSPP as described below. Similar problem formulations and techniques have

also proven successful, for instance, for discrete berth allocation (Buhrkal et al., 2011, Lalla-

Ruiz et al., 2016) and for truck scheduling problems (Boysen et al., 2017, Tadumadze et al.,

2019).

In the GSPP model, a column represents a feasible assignment of a job j to a machine i starting

in period t. Let M = {(i, j, t) ∈ P × J × {1, . . . , T} | rj ≤ t ≤ dj − pij} be the set of all

columns. The following restrictions have to be considered to derive a feasible partition:

• For each job j ∈ J exactly one column (i, j, t) from set M has to be selected, and

• On each processor i ∈ P and in each period t (t = 1, . . . , T ), at most one job j can be

processed.

Among all feasible partitions, we seek one that minimizes the makespan.

M Set of columns
T Number of periods (index t = 1, . . . , T )
vm Binary variable: 1, column m is selected; 0, otherwise

Table 3.1.: Additional notation for the GSPP model.

We define a binary variable vm ∈ {0, 1}, which is 1 if column m = (i, j, t) is selected. This

way, the problem reduces to selecting one column m for each job j while taking into account

that in no period t, more than one job is processed on each processor i. Additional notation

for the GSPP model formulation is summarized in Table 3.1. We formulate our GSPP as the

following integer program.

[GSPP] Minimize G(V ) = max
(i,j,t)=m∈M

{vm · (t+ pij)} (3.7)

subject to∑
(i,j′,t)=m∈M :

j′=j

vm = 1 ∀j ∈ J (3.8)
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∑
(i′,j,t′)=m∈M :

i′=i∧t′≤t<t′+pij

vm ≤ 1 ∀t = 1, . . . , T, i ∈ P (3.9)

vm ∈ {0; 1} ∀m ∈ M (3.10)

Objective function (3.7) minimizes the makespan by minimizing the completion time of the

latest job. Constraints (3.8) ensure that for each job exactly one column is selected. Further-

more, inequalities (3.9) take care that in no period more than one job is processed on the same

processor. Finally, (3.10) sets the domain of the binary variables.

Finding a feasible solution to GSPP is strongly NP-hard (Garey and Johnson, 1979). However,

the GSPP is an extensively studied problem and it offers some modeling advantages. This for-

mulation allows us to heuristically reduce M to a small subset of preselected columns. For all

i ∈ P and j ∈ J , let Mij = {(i′, j′, t) ∈ M | i = i′ ∧ j = j′} be the subset of columns relevant

for job j on machine i. As a simple approach to heuristically reduce Mij , we only select the first

and every µth column from the sorted set of columns, where they are sorted in ascending order

according to their completion time t + pij , and µ is a predefined integer number (µ ≥ 1). As

a result, the number of columns reduces to |Mij | =
⌈
dj−rj−pij+1

µ

⌉
. This way, by varying the

value of parameter µ we can reduce the solution space to the desired size: A greater value of µ

reduces |Mij | and the GSPP becomes easier to solve. On the other hand, smaller |Mij | increase

the risk that the optimal (or promising) columns are not considered. Note that our heuristic does

not guarantee finding a feasible solution (especially if µ has a high value). In such a case, µ

must be reduced to a lower value. We conduct our own series of tests with regard to the best

value of µ in Section 3.5.2. Also note that if µ = 1, model [GSPP] is equivalent to the original

problem (assuming that all parameters are integer). We further investigate this trade-off in our

computational study (Section 3.5.2). Note that this simple heuristic column selection scheme is

shown to be very successful in related problems and superior among other heuristic rules studied

by Tadumadze et al. (2019).

Once the GSPP model is solved, we derive the job sequences for all machines and improve the

machine schedules by starting all jobs as early as possible considering the given sequence. To

do so, we set the start time of each job either to its release date or to the completion time of its

predecessor job on the same machine. The ensuing makespan may be lower than the original

GSPP objective value.
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3.4. Extensions

The proposed algorithms can be easily modified for a broader class of parallel machine schedul-

ing problems. In this section, some extensions of our approaches are presented. First, we discuss

how the algorithms have to be adjusted if the solution space of the problem is changed, i.e., the

problem contains some new or misses some existing constraints. Afterwards, we generalize our

approaches for other minmax objectives than the makespan.

3.4.1. Special cases and generalizations

Since unrelated machine scheduling is a generalization of parallel machine scheduling, the pro-

posed approaches can be also applied for solving its special cases: related (or uniform) machine

scheduling with time windows [Q|rj , dj |Cmax] and identical parallel machine scheduling with

time windows [P |rj , dj |Cmax]. In the case of relaxed deadlines, i.e., dj = ∞, ∀j ∈ J , the

problem becomes [R|rj |Cmax], which is still NP-hard in the strong sense (Garey and Johnson,

1979). However, in this case, for a given set Γi of jobs to be processed on machine i, the slave

problem of our B&BC approach becomes [1|rj |Cmax], which can be solved as a single machine

scheduling problem with the goal of minimizing the maximum lateness, i.e., [1||Lmax], in poly-

nomial time (Lawler, 1973). Analogously, the slave problem of special case [R|dj |Cmax] (i.e.,

when release dates are not considered) becomes [1|dj |Cmax] and can be solved to optimality by

applying the earliest deadline rule (EDD). Note that the set N(j) := {j′ ∈ J |dj ≤ dj′} for

[Master] has to be redefined as the set of jobs whose deadlines are not earlier than dj . If neither

release dates nor deadlines are considered, (i.e. rj = 0 and dj = ∞, ∀j ∈ J), the resulting

problem [R||Cmax] reduces to the decision of assigning jobs to processors. Sequencing jobs on

the processors (i.e., the slave problem) becomes trivial as any no-wait schedule is optimal. It

hence suffices to only solve the master model.

Regarding generalizations, our approaches allow us to easily include some application specific

constraints. For example, we can consider so-called processing set restrictions, surveyed by

Leung and Li (2008). According to this restriction, for each job j, there is a given set of in-

compatible processors G(j) ⊂ P on which job j cannot be processed. For instance, in a berth

allocation context, some ships may not be compatible with certain berths due to insufficient wa-

ter depth (e.g., Tong et al., 1999). The corresponding problem is denoted as [R|rj , dj ,Mj |Cmax].

This restriction can be considered by adding constraints yij = 0, ∀j ∈ J ; i ∈ G(j), to [Master].

For the GSPP heuristic, the processing set constraint can be considered by generating sets of
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columns Mij only for compatible machine and job pairs (i.e., Mij = ∅, ∀j ∈ J, i ∈ G(j)).

Our approaches can also be easily extended to include machine availability restrictions, i.e., for

the case when each processor i cannot process any job before its start time si or after its end time

ei. In the scheduling literature, the resulting problem is denoted as [R,NC|rj , dj |Cmax] (e.g.,

Sanlaville and Schmidt, 1998). Due to its practical relevance, many versions of existing discrete

berth allocation problems consider berth availability times (e.g., Imai et al., 2001, Cordeau et al.,

2005, Buhrkal et al., 2011). Especially, consideration of machine start times enables using a

rolling scheduling environment.

For B&BC, the machine availability times can be taken into account by modifying inequalities

(3.4) and (3.5) as max{rj , si} +
∑

j′∈N(j) yij′ · pij′ ≤ z, ∀i ∈ P ; j ∈ J , and max{rj , si} +∑
j′∈N(j) yij′ · pij′ ≤ min{dmax(j), ei}, ∀i ∈ P ; j ∈ J : si ≤ dmax(j) ∧ ei ≥ rj , respec-

tively. This tightens the current time window of job j on machine i if the machine availability

times are more limiting than the job time windows. Analogously, BDP for the slave problem

on a given machine i can be adjusted by setting C (∅) := si and tightening criteria 1 and 2

from Section 3.3.1.2 as C (Σ) + pij ≤ min{ei; dj}, ∀j ∈ Γi\Σ and C (Σ) +
∑

j∈Γi\Σ pij ≤
min{ei,maxj∈Γi\Σ{dj}}, respectively.

For the GSPP heuristic, the set M of all columns has to contain only such columns that satisfy

both job time window and machine availability-related restrictions (i.e., M = {(i, j, t) ∈ P ×
J × {1, . . . , T} | max{rj ; si} ≤ t ≤ min{dj , ei} − pij}).

We can further extend our problem by considering so called tails (or delivery times) when, for

each job j ∈ J , a nonzero delivery time qj is given. Tail qj is defined as the amount of time

which job j has to spend in the system after completion on a machine. During the delivery step,

job j does not occupy any machine but still affects the makespan, i.e., objective function (3.1)

becomes C(S) = max(i,j,t)∈S{t+ pij + qj}.

To modify B&BC for this extension, we add the smallest delivery time qmin = minj∈J{qj}
to the left-hand sides of inequalities (3.4) and (3.5) of [Master] to tighten the valid inequality.

Moreover, BDP for the slave problem is adjusted as follows. We extend the state space by

considering states (Σ,C (Σ)), i.e., a state is defined by the set Σ of jobs already scheduled and

the makespan C (Σ), when the last job leaves the machine. Each state (Σ,C (Σ)) has successor

states (Σ ∪ {j},max{C (Σ), rj} + pij), ∀j ∈ Γi \ Σ. Let Ξ(Σ,C (Σ)) be the set of states from

which a transition to state (Σ,C (Σ)) exists. We calculate the objective value of a state as

C tails(Σ,C (Σ))= min
(Σ′,C(Σ)′)∈Ξ(Σ,C(Σ))

{
max

{
C tails(Σ′,C (Σ)′);max

{
C (Σ)′, rj

}
+ pij + qj

}}
,
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which is the completion time, including the tails, of the (partial) schedule (note that j = Σ\Σ′).

Conditions 1 through 3 are similarly adapted to account for tails. Note that if the deadlines are

relaxed (i.e., dj = ∞, ∀j ∈ J), then the slave problem [1|rj , qj |Cmax] can be solved by the

procedure proposed by Carlier (1982).

To modify our GSPP heuristic, we substitute the objective function of the GSPP model (Eq.

(3.7)) with objective function minimize G(V ) = max(i,j,t)=m∈M{vm ·(t+pij+qj)}. Moreover,

we only consider columns that satisfy the deadlines, i.e., M = {(i, j, t) ∈ P ×J ×{1, . . . , T} |
rj ≤ t ≤ dj − pij − qj}.

3.4.2. Alternative minmax objectives

Apart from changing the constraint set, our approaches can also be used for different minmax

objectives. Representatively, we discuss two alternative performance criteria, namely the maxi-

mum (weighted) flow time and the maximum (weighted) lateness, in the following.

3.4.2.1. Minimizing the weighted maximum flow time

To adjust [Master] for the case when the maximum weighted flow time is to be minimized,

we define sets Nk(j) ⊆ N(j), containing the k jobs with the earliest release dates from N(j)

(k ∈ {1, . . . , |N(j)|}). We replace valid inequalities (3.4) of [Master] with (3.11)

min
j′∈Nk(j)

{wj′} ·

rj +
∑

j′∈Nk(j)

yij′ · pij′ − max
j′∈Nk(j)

{rj′}

 ≤ z

∀i ∈ P ; j ∈ J ; k ∈ {1, . . . , |N(j)|} (3.11)

Valid inequalities (3.11) set the value for the lower bound z on the maximum flow time by

relaxing deadlines and weights. If the deadlines and weights of the jobs are not considered,

an ERD ordering of jobs is optimal, which is what underlies inequalities (3.11): If the k suc-

cessors of some job j are processed in ERD order, they cannot finish processing sooner than

rj +
∑

j′∈Nk(j)
yij′ · pij′ . The latest release date of these jobs is maxj′∈Nk(j){rj′}; hence, the

maximum flow time on processor i cannot be less than the left side of inequality (3.11).

The corresponding slave problem [1|rj , dj |wFmax] for processor i and a given set Γi can be

solved by adapting our BDP. A state is characterized by tuple (Σ,C (Σ)), where Σ is the set
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of completed jobs and C (Σ) is the completion time of the state. Starting from dummy state

(∅, 0), there are transitions from some state (Σ′,C (Σ)′) to successor states (Σ,C (Σ)), such that

Σ = Σ′ ∪ {j} and C (Σ) = max{C (Σ)′, rj}+ pij , ∀j ∈ Γi\Σ′.

Let Ξ(Σ,C (Σ)) be the set of all states from which a transition to (Σ,C (Σ)) exists. The (partial)

objective value of a state (Σ,C (Σ)) is

Fmax(Σ,C (Σ)) = min
(Σ′,C(Σ)′)∈Ξ(Σ,C(Σ))

{
max

{
Fmax(Σ

′,C (Σ)′);wj · (C (Σ)− rj)
}}

,

where j = Σ\Σ′, and the objective value of the initial state is Fmax(∅, 0) := 0.

Moreover, the calculation of the lower bound of state (Σ,C (Σ)) is modified as follows:

LB(Σ,C (Σ)) = max

{
Fmax(Σ,C (Σ)); max

j∈Γi\Σ;k∈{1,...,|N(j)|}

{
min

j′∈Nk(j)∩(Γi\Σ)
{wj′}·(

max{C (Σ); rj}+
∑

j′∈Nk(j)∩(Γi\Σ)

pij′ − max
j′∈Nk(j)∩(Γi\Σ)

{rj′}

)}}
.

We say that a state (Σ′,C (Σ)′) is dominated by a different state (Σ,C (Σ)) if the following

criteria are satisfied:

• Σ = Σ′, i.e., both states consider the same set of completed jobs,

• C (Σ) ≤ C (Σ)′, i.e., the makespan of (Σ,C (Σ)) is not longer than that of (Σ′,C (Σ)′), and

• Fmax(Σ,C (Σ)) ≤ Fmax(Σ
′,C (Σ)′), i.e., the weighted maximum flow time of the domi-

nating state is at least as good as that of the dominated state.

Dominated states do not have to be considered for the next stage of BDP since they will never

lead to any improvement. Otherwise, the BDP can run as described in Section 3.3.1.2.

Example (cont.): Consider the example from Section 3.3.1.2, where a slave problem for pro-

cessor i = 2 with Γ2 = {1, 2, 4} is to be solved. Additionally, the following weights for jobs

1, 2, and 4 are given: w1 = 1, w2 = 2, w4 = 1. The resulting DP graph for minimizing the

weighted maximum flow time on machine 2 is shown in Figure 3.3. The optimal solution is

bold, corresponding to job sequence ⟨1, 2, 4].

To adjust our GSPP heuristic, only objective function (3.7) of the GSPP model has to be substi-
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tuted by (3.12).

Minimize G(V ) = max
(i,j,t)=m∈M

{wj · vm · (t+ pij − rj)} (3.12)

Figure 3.3.: Dynamic programming graph for the slave problem in the example minimizing
wFmax.

3.4.2.2. Minimizing maximum weighted lateness

Similar considerations as in the previous section can be applied for minimization of the maximum

weighted lateness wLmax.

To modify model [Master] for [R|rj |wLmax], for each job j, we define the set V (j) = {j′ ∈
J |dj′ ≤ dj} of jobs whose due dates are not later than the due date of job j. Further, we

define sets Vk(j) ⊆ V (j), containing the k jobs with the latest due dates from V (j) (k ∈
{1, . . . , |V (j)|}). This way we can replace valid inequalities (3.4) of [Master] with (3.13)

min
j′∈Vk(j)

{wj′} ·

 min
j′∈Vk(j)

{rj′}+
∑

j′∈Vk(j)

yij′ · pij′ − dj

 ≤ z

∀i ∈ P ; j ∈ J ; k ∈ {1, . . . , |V (j)|}, (3.13)

which determines the lower bound on the weighted maximum lateness. The idea behind inequal-

ities (3.13) is to relax the weights and the release dates, so that the relaxed slave problem per

processor becomes [1||Lmax] which can be easily solved to optimality by the EDD rule (see Sec-

tion 3.4.1). Thus, the optimal objective value of the relaxed slave problem [1||Lmax], weighted
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with the smallest weight minj′∈Vk(j){wj′}, is a valid lower bound for the objective function of

[1|rj |wLmax] which is what inequalities (3.13) mimic.

To solve the corresponding slave problem [1|rj |wLmax], BDP has to be adapted similarly as for

wFmax objective with the following differences:

• The (partial) objective value of a state (Σ,C (Σ)) is calculated as

Lmax(Σ,C (Σ)) = min
(Σ′,C(Σ)′)∈Ξ(Σ,C(Σ))

{max{Lmax(Σ
′,C (Σ)′);wj · (C (Σ)− dj)}},

where j = Σ\Σ′.

• The lower bound of state (Σ,C (Σ)) is computed as follows:

LB(Σ,C (Σ)) = max

{
Lmax(Σ,C (Σ)); max

j∈Γi\Σ;k∈{1,...,|V (j)|}

{
min

j′∈Vk(j)∩(Γi\Σ)
{wj′}·(

max

{
C (Σ); min

j′∈Vk(j)∩(Γi\Σ)
{rj′}

}
+

∑
j′∈Vk(j)∩(Γi\Σ)

pij′ − dj

)}}
,

• While generating the states for BDP, criteria 1 and 2 from Section 3.3.1.2 have to be

ignored because the deadlines are no longer strict.

Figure 3.4.: Dynamic programming graph for the slave problem in the example minimizing
Lmax.
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Example (cont.): The dynamic programming graph for the example slave problem from Section

3.3.1.2, minimizing the maximum weighted lateness is depicted in Figure 3.4.

Note that if the problem does not consider any weights, then the corresponding slave problem

[1|rj |Lmax] is a textbook single-machine scheduling problem and can be solved by an exact

algorithm from the literature; for an overview, we refer to Leung (2004, Chap. 10) and Pinedo

(2016, Chap. 3.2).

To adjust the GSPP model for the new objective, only the objective function (3.7) has to be

substituted by new objective function

Minimize G(V ) = max
(i,j,t)=m∈M

{wj · vm · (t+ pij − dj)}.

However, note that GSPP formulation with lateness objective can only be applied if the planning

horizon is bounded from above by another restriction, e.g. end availability time of the machines

or an upper bound on the schedule length.

3.5. Computational study

In this section, we compare the computational performance of the three presented solution ap-

proaches, namely a default solver solving the original mixed integer program (MIP-OP), branch

and Benders cut (B&BC), and heuristic column selection based on a generalized set partitioning

formulation (GSPP). A mixed-integer linear programming model [MIP-OP] for [R|rj , dj |Cmax],

based on the model formulation for the classic discrete berth allocation problem proposed by

Imai et al. (2001) and Monaco and Sammarra (2007), is presented in Appendix 3.6. We use it

as a benchmark. Experiments are performed on newly generated random problem instances as

well as the benchmark instances from the literature for both applications (i.e., berth allocation

and truck scheduling). We first describe how new problem instances have been generated and

then describe the instances from the literature. Afterwards, we present the computational results

of our solution approaches on both instance sets.

3.5.1. Benchmark instances and computational environment

To observe the computational performance of our algorithms, we test them on different kinds

of problem instances. First, we generate new random instances for the basic problem [R|rj , dj |
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Cmax] according to the instance generation scheme proposed by Hall and Posner (2001). Specif-

ically, the processing time pij of each job j ∈ J on each machine i ∈ P is randomly drawn from

the following normal distribution: pij ∼ N(30, 6) (truncated below to positive lower bound).

The release dates rj are generated with the following scheme: r1 = 0 and rj = rj−1 + Xj ,

∀j ∈ 2, . . . , n, where Xj ∼ exp(λ) is an exponentially distributed random number with mean

λ = 30
|P | . This way, the jobs’ arrival represents a Poisson process whose rate matches the total

processors’ job capacity. Finally, we draw the deadline of job j with the following equation:

dj = rj + k · E[pij ], where E[pij ] =
∑

i∈P
pij
|P | and k ≥ 1. Thus, by varying parameter k, we

receive instances that either have tight time windows (low k) or have more flexibility (high k).

All time related parameters are rounded to the next integer value. Note that this instance gen-

eration scheme does not prevent infeasible instances from being generated. However, instances

with a higher value of k are more likely to have feasible solutions.

To observe the impact of the problem size on the computational performance of our algorithms

we generate different sized sets of problem instances. Specifically, we generate small instances

consisting of n = 20 jobs and m ∈ {4, 6, 8} machines (dubbed S) and larger instances with n =

80 jobs and m ∈ {15, 20, 25} machines (dubbed L). Moreover, we vary parameter k ∈ {2, 3, 4}.

Apart from this, for the parameter tuning tests we use medium-sized instances with n = 50 jobs,

m = 10 machines and k = 2.5 (dubbed M).

Apart from our new problem instances, we test the performance of our approaches on extant

problem instances from the literature for both aforementioned applications: berth allocation and

truck scheduling.

In the context of berth allocation, we use the problem instances from sets “I2” and “I3” orig-

inally proposed by Cordeau et al. (2005). These instances were generated based on statistical

traffic and berth allocation data at the Port of Gioia Tauro. I2 contains 50 instances with the

following five instance sizes: 25 ships (i.e., jobs) with 5, 7 and 10 berths (i.e., processors); 35

ships with 7 and 10 berths. I3 consists of 30 larger instances with 60 ships and 13 berths.

As benchmark instances from the truck scheduling context, we use the problem instances gener-

ated by Tadumadze et al. (2019) that can be downloaded using the following DOI: https:

//doi.org/10.5281/zenodo.1487845. Specifically, we use the problem instances

from the set “ITWS-DC-M” that contains 30 larger problem instances with 100 trucks (i.e., jobs)

and 25 dock doors (i.e., processors). Furthermore, these instances vary in the relative width of

time windows of the trucks, which is controlled by the parameter Ωmax ∈ {1, 2, 3}, where in-

stances with lower Ωmax tend to have tighter time windows (similar to parameter k described

above). Table 3.2 summarizes all the instances used.
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Proposed by Dataset name # Instances n m Additional characteristics

This paper (based on S 90 {20} {4, 5, 6} k ∈ {2, 3, 4}
Hall and Posner (2001)) M 10 {50} {10} k = 2.5

L 90 {80} {15, 20, 25} k ∈ {2, 3, 4}

Cordeau et al. (2005) I2 50 {25, 35} {5, 7, 10} -
I3 30 {60} {13} -

Tadumadze et al. (2019) ITWS-DC-M 30 {100} {25} Ωmax ∈ {1, 2, 3}

Table 3.2.: Summary of benchmark instance sets

Note that there is, to the best of our knowledge, no dataset in the literature for [R|rj , dj | Cmax]

and its variants discussed in this paper. The literature datasets of Cordeau et al. (2005) and

Tadumadze et al. (2019) have a feasible solution space that is covered by our approaches, but the

original papers consider a different objective function – minimization of total (weighted) flow

time
∑

wjFj , which differs from all minmax objectives considered in this work. The numerical

results can therefore not be directly compared. However, the performance of our algorithms on

these datasets should nonetheless give a good idea of the applicability of our approaches.

We have implemented our solution procedures in C# 6.0 and applied off-the-shelf solver IBM

ILOG CPLEX Optimizer V12.8.0 for solving our MILP models, including the master model of

our B&BC approach. All tests have been executed on an x64 PC with an Intel Core i7-8700K

3.70 GHz CPU and 64 GB RAM. The time limit for solving the MILP models is set to 300

CPU seconds. Note that we also experimented with larger time limits in preliminary tests but

found that the best upper bounds are usually found within the first five minutes of computation.

Moreover, to make a fair comparison between alternative solution approaches, we execute all

solution methods (including the default solver) on a single thread. The problem instances as

well as the detailed computational results for every instance are available from the following

DOI: https://doi.org/10.5281/zenodo.3696775.

3.5.2. Parameter tuning

We calibrate both of the proposed approaches in a pretest. Specifically, in the case of B&BC,

we compare two ways of adding cuts to the master model: either as lazy constraints, injecting

them into the branch & bound tree as it grows, or as regular constraints, such that the master

model is resolved from scratch every time a new cut is added. Similarly, the performance of

our heuristic column selection approach strongly depends on the value of the parameter µ. A

low value of µ leads to a high number of generated columns which, on the one hand, can be
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beneficial for smaller size problem instances. On the other hand, it can be counterproductive for

larger instances, where solving the resulting large GSPP model within a given time limit may

lead to poor solutions. The proper value of µ clearly depends on the instance size; thus, we derive

the value of µ from the number of jobs |J | with the equation µ = ⌈|J | · δ⌉ and the predefined

parameter δ. Note that a high value of δ leads to compact GSPP models with a smaller search

space.

For our pretest, we use 10 medium-sized instances with |J | = 50, |P | = 10, and k = 2.5.

We solve them with regard to makespan as an objective function applying both versions of

B&BC (i.e., applying either lazy or regular cuts) and the heuristic GSPP approach, applying five

different values of δ ∈ {0.02, 0.1, 0.2, 0.3, 0.4}.

Table 3.3 shows the results for the parameter tuning test with regard to Cmax (i.e., makespan) as

an objective function. Column “C∗
max” denotes the best known makespan for that instance, found

by B&BC, either applying lazy or regular cuts, where an asterisk (*) after the value indicates that

this objective value is optimal. For each approach (i.e., B&BC with both kinds of cuts and GSPP

heuristics for each value of δ), we report the average relative gap (in %) of the objective value

val′ found by that approach to the best known objective value for that instance val∗, calculated

as gap = val′−val∗

val∗ · 100 and the required computational time (in CPU seconds).

First of all, the results tend to be better when adding cuts to [Master] as lazy constraints. For each

of the 10 instances, B&BC with lazy cuts obtains an optimal solution within the given time limit.

On the other hand, B&BC with regular cuts struggles to solve 2 out of 10 instances to proven

optimality within 300 seconds. This is likely due to the computation time that is expended on

solving the master model from scratch in every iteration. This leads to the solver wasting a lot

of time re-exploring regions of the search space it already explored in previous iterations. Note,

however, that regular cuts are

Figure 3.5.: Influence of δ on the solution quality of the GSPP heuristic.
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B&BC GSPP
Lazy cuts Regular cuts δ = 0.02 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4

lInstance C∗
max Gap/time Gap/time Gap/time Gap/time Gap/time Gap/time Gap/time

50x10-01 175* 0.0/000.6 0.0/000.1 9.1/300.8 0.0/011.4 0.0/1.9 0.0/0.2 0.0/0.2
50x10-02 230* 0.0/000.0 0.0/000.1 2.6/300.8 0.0/006.2 0.0/3.9 0.0/0.2 0.0/0.1
50x10-03 153* 0.0/000.5 0.0/022.7 23.5/300.7 1.3/150.5 3.3/6.7 4.6/4.4 7.8/2.7
50x10-04 201* 0.0/000.4 0.0/000.1 0.0/250.7 0.0/016.4 0.0/4.1 0.0/0.1 0.0/0.1
50x10-05 189* 0.0/001.3 0.0/300.0 -/300.7 1.1/052.2 3.2/8.1 2.7/2.4 3.2/2.0
50x10-06 153* 0.0/000.1 0.0/000.1 -/300.7 0.0/008.0 0.0/0.4 0.7/2.3 3.3/1.5
50x10-07 163* 0.0/001.0 0.0/141.4 -/300.7 1.2/015.4 1.8/6.8 1.8/6.3 3.1/2.4
50x10-08 170* 0.0/114.0 1.8/300.0 -/300.7 1.2/046.4 3.5/5.1 4.7/5.0 3.5/2.1
50x10-09 200* 0.0/000.0 0.0/000.1 10.0/300.8 0.0/019.0 0.0/0.4 0.0/0.2 0.0/0.2
50x10-10 176* 0.0/000.2 0.0/001.8 26.7/300.7 0.0/128.7 0.0/0.3 2.8/1.8 2.8/0.8
mean 0.0/011.8 0.2/076.6 12.0/295.7 0.5/045.4 1.2/3.8 1.7/2.3 2.4/1.2
* indicates that the value is optimal
- indicates that in the time limit no feasible solutionhas been found

Table 3.3.: Calibration of B&BC (type of cuts) and GSPP heuristic (value of δ).

sometimes marginally superior to lazy constraints, probably because the presolver is more ag-

gressive in the absence of lazy constraints and the root node relaxation is stronger in later iter-

ations, when multiple cuts have already been added. Nonetheless, in light of the performance

stability of lazy cuts, adding constraints lazily seems advisable.

Figure 3.5 summarizes the average results in terms of runtime and relative gap to the optimal

objective value (obtained by B&BC) for each value of parameter δ used to select columns for

the GSPP heuristic. The leftmost and rightmost graphics of Figure 3.5 present an apparently

exponential decrease in runtime and number of generated columns when the value of δ rises.

For δ = 0.02, only one out of 10 instances could be solved in less than 300 seconds (note

that δ = 0.02 leads to µ = 1, and the resulting GSPP, containing all columns, is equivalent

to the original problem). For higher values of δ, all resulting GSPP model instances could

be solved within the time limit. However, raising the value of δ makes it less probable that

the GSPP contains potentially good columns, possibly lowering the solution quality. From our

results, δ = 0.1 turns out to be the most promising compromise of solution quality and runtime.

For δ = 0.1, in 6 out of 10 cases, GSPP obtains the optimal solution for the corresponding

original problem while maintaining acceptable computational times. Also, for the remaining

4 instances, GSPP finds near-optimal solutions (with a maximal optimality gap of less than

1.4%) in reasonable computational times. Therefore, for the next computational experiments

we apply δ = 0.1 when using our GSPP heuristic and we add cuts as lazy constraints to the

master model of B&BC. Note that setting δ = 0.1 does not guarantee that a feasible solution is

in the GSPP search space. If no feasible solution can be found, δ must be lowered to expand the

number of columns in the model. However, in our computational experiments, this proves to be

unnecessary; we are able to solve all instances to feasibility with δ = 0.1.
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3.5.3. Computational performance on new instances

In this section, we compare the computational performance of the three proposed approaches

(B&BC, GSPP and MIP-OP) solving [R|rj , dj |Cmax]. For this, we use the problem instances

from two different sized datasets and solve them with all three solution approaches. The first

dataset S contains the problem instances with n = 20 jobs and m ∈ {4, 6, 8} processors while

the second dataset L consists of larger instances considering n = 80 jobs and m = {15, 20, 25}
machines. Further, we observe the impact of the time window tightness on the performance of

our approaches by varying parameter k ∈ {2, 3, 4}. For each parameter constellation, we have

10 random instances, so that in total 180 new problem instances have been generated.

Table 3.4 summarizes the aggregated computational results for the newly generated problem

instances. The first two columns describe the instance characteristics: the number of jobs n

and machines m and the value of parameter k. For each approach, in columns “Gap (%)”

and “Time (s)” we report the average relative gap (in %) of the best found objective value to

the best known objective value of that instance, calculated as described in Section 3.5.2, and

the average computational runtime (in CPU seconds), averaged per 10 instances of the same

size. Furthermore, for each approach we report the share of the instances whose corresponding

(M)ILP models are solved to optimality within the given time limit. Note that in case of our

GSPP heuristic, solving the corresponding ILP does not necessarily mean that the found solution

is optimal. Therefore, for GSPP, we additionally report the share of instances whose objective

value matches the best known objective value (column “Best”). Moreover, the average number of

generated cuts for B&BC and columns for GSPP are reported in columns “Cuts” and “Columns”,

respectively. For the large instances from dataset L the solver runs out of memory even before

generating the corresponding MIP-OP model. Hence, for those instances, we only report the

computational performance of the B&BC and GSPP approaches.

The first remarkable result is that B&BC outperforms its competitors, solving in total 147 out of

180 instances to optimality within 300 seconds. Only for 5 large instances, the solution obtained

by B&BC is improved upon by the GSPP heuristic, which found the best known solution for

108 out of 180 instances. It is noteworthy that the heuristic column selection approach tends

to be more successful for problem instances with tight time windows (i.e., low k) and fewer

processors, leading to fewer columns (i.e., potential starting times of jobs). The default solver,

on the other hand, struggles with solving

instances to proven optimality within the time limit using model [MIP-OP]. Only 28 out of 90

small instances from dataset S can be solved to optimality within a time limit and CPLEX runs
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Instance B&BC GSPP MIP-OP
Size k Opt Gap (%) Time (s) Cuts Best Opt Gap (%) Time (s) Columns Opt Gap (%) Time (s)
Dataset S
20x4 2 1.0 0.0 000.2 314.9 1.0 1.0 0.0 000.3 1265.3 0.3 0.8 267.9
20x4 3 1.0 0.0 000.1 033.6 0.9 1.0 0.0 005.4 2465.2 0.3 0.2 226.2
20x4 4 1.0 0.0 009.3 851.6 0.6 1.0 0.3 013.7 3689.6 0.3 0.6 225.3
20x6 2 0.9 0.0 030.3 256.4 0.8 1.0 0.2 000.6 1882.7 0.2 0.9 276.3
20x6 3 0.9 0.0 030.5 246.6 0.8 1.0 0.1 009.9 3691.8 0.1 0.1 277.4
20x6 4 0.9 0.0 030.1 918.7 0.7 1.0 0.2 007.8 5489.2 0.4 0.3 215.9
20x8 2 1.0 0.0 000.7 013.6 0.8 1.0 0.2 002.9 2524.8 0.4 0.4 232.6
20x8 3 1.0 0.0 002.1 014.6 0.9 1.0 0.2 010.3 4925.7 0.4 0.0 203.6
20x8 4 1.0 0.0 003.6 053.1 1.0 1.0 0.0 009.7 7319.2 0.4 0.2 209.5
mean (S) 0.97 0.00 11.88 300.34 0.83 1.00 0.15 6.73 3694.83 0.31 0.39 237.18
Dataset L
80x15 2 0.5 0.6 184.9 6620.4 0.8 1.0 0.2 061.6 5122.2 - - -
80x15 3 0.8 0.0 076.7 031.4 0.2 0.3 8.5 269.5 9642.5 - - -
80x15 4 0.6 0.0 121.0 038.8 0.0 0.0 21.0 300.6 14188.2 - - -
80x20 2 0.6 0.0 122.4 316.3 0.8 1.0 0.2 111.1 6820.6 - - -
80x20 3 0.8 0.0 089.0 074.0 0.3 0.4 8.8 262.0 12877.1 - - -
80x20 4 0.8 0.0 071.3 033.8 0.2 0.2 22.3 270.7 18926.9 - - -
80x25 2 0.7 0.7 121.1 303.2 0.5 0.5 7.4 219.6 8524.9 - - -
80x25 3 0.6 0.2 121.6 039.1 0.6 0.6 5.3 227.8 16082.4 - - -
80x25 4 0.6 0.0 123.2 043.0 0.0 0.0 36.0 300.8 23684.4 - - -
mean (L) 0.67 0.17 114.58 833.33 0.38 0.44 12.18 224.86 12874.36 - - -
Each entry contains averaged results over 10 instances with the same parameter constellation

Table 3.4.: Comparison between B&BC, GSPP and MIP-OP on newly generated instances.

out of memory even before generating the corresponding MIP-OP models for large instances

from dataset L.

3.5.4. Benchmark tests on berth allocation problem instances from the
literature

To observe the performance of our approaches on berth allocation problem instances, we use

datasets I2 and I3 originally proposed by Cordeau et al. (2005), containing in total 80 realistic

BAP instances.

Note that Cordeau et al. (2005), apart from the time window restrictions for each vessel, addi-

tionally consider the availability times of berths (i.e., start si and end ei of availability for each

berth i ∈ P ). Thus, to solve these instances with our approaches, we modify them to include the

machine availability time restrictions as described in Section 3.4.1. Moreover, since minimizing

the weighted flow time is a common objective in the berth allocation literature, apart from our

baseline objective (i.e., makespan), we solve the instances with regard to maximum weighted

flow time. Finally, we solve the instances with regard to maximum weighted lateness, which

is considered an appropriate objective in many berth allocation scenarios (e.g., Liu et al., 2006,

Chen et al., 2012).

Tables 3.5, 3.6 and 3.7 summarize the computational results of our comparison on the BAP
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instances with regard to objective Cmax, wFmax and wLmax, respectively. Each entry contains

averaged results over all instances of the same size (i.e., for dataset I2, each entry contains

results averaged over 10 instances and for dataset I3, over 30 instances). The columns of Tables

3.5, 3.6 and 3.7 have the same meaning as in Table 3.4 from Section 3.5.3. Furthermore, we

report the objective values of the best found solutions, averaged per parameters constellation

(see columns “C∗
max”, “wF ∗

max” and “wL∗
max” of Tables 3.5, 3.6 and 3.7, respectively).

The results indicate that B&BC remains a successful solution approach for BAP with regard

to all considered performance criteria. It solves in total 77, 78 and 78 out of 80 instances to

proven optimality within 300 seconds for objectives Cmax, wFmax and wLmax, respectively.

Also, the GSPP heuristic performs quite well, providing optimal solutions for 70, 64 and 66

out of 80 instances for Cmax, wFmax and wLmax, while the gaps for non-optimal solutions are

almost always negligible. The default solver, on the other hand, struggles with solving instances

to proven optimality within the time limit using the MIP-OP formulation. CPLEX manages to

solve only 11 out of 80 instances within the time limit while minimizing Cmax. The effort of

MIP-OP rises for the alternative objectives (i.e., minimization wFmax and wLmax). CPLEX

only solves one out of 80 instances within the time limit when wLmax is minimized, and for

wLmax, none of 80 instances are solved within 300 CPU seconds.

B&BC GSPP MIP-OP
Instance size C∗

max Opt Gap (%) Time (s) Cuts Best Opt Gap (%) Time (s) Columns Opt Gap (%) Time (s)
25x5 173.5 0.8 0.0 61.2 60.3 0.8 1.0 0.2 32.5 8,118.5 0.2 1.0 250.9
25x7 163.7 1.0 0.0 0.0 22.2 1.0 1.0 0.0 20.5 11,323.7 0.6 0.1 188.2
25x10 171.5 1.0 0.0 0.1 23.6 1.0 1.0 0.0 23.5 14,973.5 0.3 0.1 255.8
35x7 175.6 0.7 0.0 95.4 57.4 0.4 0.8 0.7 152.6 11,858.2 0.0 5.2 300.7
35x10 173.7 1.0 0.0 0.2 47.8 0.8 0.9 4.2 95.6 15,908.2 0.0 2.6 301.0
60x13 169.5 1.0 0.0 0.1 33.6 1.0 1.0 0.0 47.8 14,940.9 0.0 9.4 310.9
Each entry contains results averaged over all instances of the same size

Table 3.5.: Comparison between B&BC, GSPP and MIP-OP on BAP minimizing makespan.

B&BC GSPP MIP-OP
Instance size wF ∗

max Opt Gap (%) Time (s) Cuts Best Opt Gap (%) Time (s) Columns Opt Gap (%) Time (s)
25x5 58.2 1.0 0.0 5.6 47.3 0.2 1.0 2.5 23.1 8,118.5 0.0 4.5 300.2
25x7 48.9 1.0 0.0 0.3 24.1 1.0 1.0 0.0 24.0 11,323.7 0.0 4.3 300.2
25x10 51.3 1.0 0.0 0.3 20.3 1.0 1.0 0.0 16.3 14,973.5 0.0 1.0 300.3
35x7 57.1 0.9 0.0 55.5 50.5 0.4 1.0 1.4 61.7 11,858.2 0.0 14.8 300.7
35x10 61.1 0.9 0.0 31.5 53.7 0.8 1.0 0.4 72.2 15,908.2 0.0 19.6 301.0
60x13 43.1 1.0 0.0 0.5 11.6 1.0 1.0 0.0 40.7 14,940.9 0.0 219.5 310.7
Each entry contains results averaged over all instances of the same size

Table 3.6.: Comparison between B&BC, GSPP and MIP-OP on BAP minimizing maximum
weighted flow time.
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B&BC GSPP MIP-OP
Instance size wL∗

max Opt Gap (%) Time (s) Cuts Best Opt Gap (%) Time (s) Columns Opt Gap (%) Time (s)
25x5 -241.8 1.0 0.0 6.0 44.1 0.2 1.0 -0.6 27.7 8,118.5 0.0 -1.0 300.0
25x7 -251.1 1.0 0.0 0.9 26.9 1.0 1.0 0.0 14.7 11,323.7 0.0 -0.1 300.0
25x10 -248.7 1.0 0.0 1.0 81.1 1.0 1.0 0.0 15.8 14,973.5 0.1 -0.2 271.4
35x7 -242.9 0.9 0.0 60.9 46.3 0.4 1.0 -0.3 75.1 11,858.2 0.0 -2.1 300.1
35x10 -238.9 0.9 0.0 32.6 52.1 1.0 1.0 0.0 37.3 15,908.2 0.0 -2.3 300.1
60x13 -256.9 1.0 0.0 0.9 11.0 1.0 1.0 0.0 23.2 14,940.9 0.0 -9.2 300.6
Each entry contains results averaged over all instances of the same size

Table 3.7.: Comparison between B&BC, GSPP and MIP-OP on BAP minimizing maximum
weighted lateness.

3.5.5. Benchmark tests on truck scheduling problem instances from the
literature

Our benchmark set of problem instances from the truck scheduling context is originally proposed

by Tadumadze et al. (2019) for what they call the “integrated truck and workforce scheduling

problem” (ITWS). The set contains 30 very large problem instances considering 100 trucks and

25 doors. These instances are characterized by tighter time windows than our newly generated

instances, which are controlled by the parameter Ωmax. More specifically, the expected relative

width of the trucks’ time windows for an ITWS instance with Ωmax = 1 is comparable with the

expected relative width of the time windows of an problem instance generated by our instance

generator using k = 0.5. However, the instances of Tadumadze et al. (2019) are generated in

such way that each problem instance has at least one feasible solution with regard to the trucks’

time windows. Note that the formal definition of the ITWS for the distribution center context

(ITWS-DC) from Tadumadze et al. (2019) differs from our problem as apart from truck schedul-

ing, it simultaneously solves the workforce scheduling problem. The problem of scheduling jobs

with time windows on unrelated machines is equivalent to the case when ITWS-DC is solved

for a given dock-specific workforce assignment as described in the original paper.

Tables 3.8 and 3.9 present the computational results of our approaches on truck scheduling

instances. These instances are too large to be solved by a default solver. MIP-OP runs out of

the memory even before generating the corresponding MILP model. Thus, we only solve each

instance with B&BC and GSPP heuristics. Moreover, not every instance could be solved to

feasibility, which is why we additionally report the share of instances that could be solved to

feasibility within the time limit (see column “Feas”).

As can be seen from the results, B&BC tends to be less successful at solving the large truck

scheduling instances with tighter time windows from Tadumadze et al. (2019).
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Instance B&BC GSPP
Size Ωmax C∗

max Feas Opt Gap (%) Time (s) Cuts Feas Best Opt Gap (%) Time (s) Columns
100x25 1 72.7 0.7 0.7 0.0 114.8 15897.0 1.0 1.0 1.0 0.0 7.8 5677.3
100x25 2 69.2 0.8 0.3 0.6 217.5 7806.5 1.0 0.6 0.8 2.5 131.5 8889.0
100x25 3 69.3 0.8 0.3 1.0 215.8 21499.4 1.0 0.8 0.8 4.3 113.9 10350.7
Each entry contains averaged results over all 10 instances with the same parameter constellation

Table 3.8.: Comparison between B&BC and GSPP on ITWS minimizing makespan.

Instance B&BC GSPP
Size Ωmax F ∗

max Feas Opt Gap (%) Time (s) Cuts Feas Best Opt Gap (%) Time (s) Columns
100x25 1 31.0 0.2 0.0 27.8 301.0 292.2 1.0 1.0 1.0 0.0 24.7 5677.3
100x25 2 37.4 0.8 0.0 20.3 300.9 131.8 1.0 0.7 0.6 8.7 167.8 8889.0
100x25 3 41.6 0.6 0.0 14.7 300.9 139.4 1.0 0.9 0.5 2.3 222.4 10350.7
Each entry contains averaged results over 10 instances with the same parameter constellation

Table 3.9.: Comparison between B&BC and GSPP on ITWS minimizing maximum flow time.

The effort of B&BC is especially high for problem instances with tight time windows (i.e., low

Ωmax). Recall that [Master] is a relaxed version of the problem which ignores the time window-

related constraints. If the time windows of the jobs are too tight, the relaxation is bound to be

less tight. As a result, the number of cuts added to [Master] rises, which negatively affects the

performance of B&BC. While minimizing the makespan, B&BC obtains a feasible solution for

23 out of 30 instances out of which 13 are optimal. The effort is greater when the maximum

weighted flow time is minimized. Here, B&BC manages to find a feasible solution for 16 out of

30 instances, none of which is proven to be optimal. On the other hand, GSPP exhibits exactly

the opposite behavior. This is due to there being fewer columns (i.e., fewer potential starting

times of jobs) in problems with tighter time windows. GSPP manages to find a feasible solution

for every instance, which in most cases matches or improves the solutions found by B&BC.

Specifically, while minimizing the makespan, GSPP manages to match or improve solutions

obtained by B&BC for 24 out of 30 instances in shorter computational times. For the alternative

objective (i.e., Fmax), GSPP shows even better performance matching or improving the B&BC

solutions for 26 out of 30 instances. This indicates that B&BC and GSPP complement each

other.

3.6. Conclusion

In this paper, we propose a novel logic-based branch & Benders cut algorithm for a family

of unrelated parallel machines scheduling problems with time windows and minmax objective.
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We also devise a heuristic column selection approach based on a generalized set partitioning

problem formulation. We show that the proposed approaches can be easily modified for relevant

generalizations. We compare our methods to an adaptation of an existing mixed integer linear

program solved by a commercial solver. We test all algorithms on newly generated problem

instances with varying time window width and realistic benchmark instances from the literature.

The exact B&BC algorithm performs quite well, solving most instances, both from the literature

and generated ones, to optimality within a few minutes, clearly outperforming a default solver

solving the non-decomposed MILP model. The only cases where B&BC exhibits non-negligible

optimality gaps are very large problem instances with tight time windows. For those cases, our

heuristic column selection method is faster and frequently delivers better results.

Future research could aim to adjust the proposed solution method for alternative performance

criteria, like total weighted flow time and other minsum objectives. Moreover, alternative heuris-

tic approaches can also be tested and compared to our GSPP approach.

3.A. Appendix

J Set of jobs (index j)
P Set of processors (index i)
K Set of service positions (index k, K = {1, . . . , n})
M Big integer
pij Processing time of job j on processor i
rj Release date of job j

dj/dj Deadline/due date of job j
xijk Binary variable: 1, if job j is the kth job to be processed on processor i; 0, otherwise
X set of x Variables: X = {xijk | i ∈ P, j ∈ J, k ∈ K}
uik Continuous variable: time interval that processor i stays idle before executing the kth job and

after executing the (k − 1)th job
U Set of u variables: U = {uik | i ∈ P, k ∈ K}

Table 3.10.: Notation for the MILP model.

This appendix contains a mixed-integer linear programming model for [R|rj , dj |Cmax]. The

model is based on the original discrete berth allocation model proposed by Imai et al. (2001)

and Monaco and Sammarra (2007), which is modified to account for minmax objectives. Table
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3.10 summarizes the notation.

[MIP-OP] Minimize C(X,U) = max
i∈P

∑
k∈K

uik +
∑
j∈J

pij · xijk

 (3.14)

subject to∑
i∈P

∑
k∈K

xijk = 1 ∀j ∈ J (3.15)∑
j∈J

xijk ≤ 1 ∀i ∈ P, k ∈ K (3.16)

∑
j∈J

rj · xijk −
∑
l∈K:
l<k

uil +
∑
j∈J

pij · xijl

 ≤ uik ∀i ∈ P, k ∈ K (3.17)

∑
l∈K:
l≤k

uil +
∑
j′∈J

pij′ · xij′l

 ≤ dj + M · (1− xijk) ∀i ∈ P, j ∈ J, k ∈ K (3.18)

uik ≥ 0 ∀i ∈ P, k ∈ K (3.19)

xijk ∈ {0; 1} ∀j ∈ J, i ∈ P, k ∈ K (3.20)

Objective function (3.14) minimizes the makespan of the machine whose completion time after

processing all jobs is highest. The makespan for each machine is derived by adding up the

total processing time of the jobs and the total idle time between jobs. Constraints (3.15) ensure

that every job is assigned to exactly one processor at exactly one service position. Constraints

(3.16) make it impossible for multiple jobs to be assigned the same service position on the same

machine. Inequalities (3.17) define the idle times between jobs: idle time uik (i.e., the amount

of time that machine i stays idle before executing the kth job) must be no less than the duration

between the completion time of the (k−1)th job on machine i and the release date of the kth job

on the same machine (i.e., the earliest possible processing start time of its successive job). Note

that the summation on the left-hand side of constraints (3.17) and (3.18) indicates the completion

time of the (k − 1)th job on machine i. Constraints (3.18) make sure that the deadlines are not

violated. Finally, (3.19) and (3.20) define the domain of the variables.

To extend MIP-OP to account for machine availability restrictions, constraints (3.21) and (3.22)
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are added to the model.

ui1 ≥ si ∀i ∈ P (3.21)

∑
k∈K

uik +
∑
j∈J

pij · xijk

 ≤ ei ∀i ∈ P (3.22)

Constraints (3.21) guarantee that on each machine i ∈ P , processing of its first job cannot be

started before its availability time si. Constraints (3.22) take care that on each machine i none

of the jobs are completed after its availability time ei.

Finally, to consider objectives maximum weighted flow time and lateness, we consider the fol-

lowing models. To minimize the maximum weighted flow time,

minimize F (X,U, F flow) = F flow,

subject to (3.15)-(3.20) and

F flow ≥ wj

∑
k′∈K:
k′≤k

uik′ +
∑
j′∈J

pij′ · xij′k′

− rj

− M · (1− xijk),∀i ∈ P, j ∈ J, k ∈ K.

To minimize the maximum weighted lateness,

minimize L(X,U, F late) = F late,

subject to (3.15)-(3.17), (3.19), (3.20), and

F late ≥ wj

∑
k′∈K:
k′≤k

uik′ +
∑
j′∈J

pij′ · xij′k′

− dj

− M · (1− xijk), ∀i ∈ P, j ∈ J, k ∈ K.
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Paper 4: New solution procedures for the
order picker routing problem in U-shaped
pick areas with a movable depot9

Abstract: This paper develops new solution procedures for the order picker routing problem in U-shaped
order picking zones with a movable depot, which has so far only been solved using simple heuristics.
The paper presents the first exact solution approach, based on combinatorial Benders decomposition, as
well as a heuristic approach based on dynamic programming that extends the idea of the venerable sweep
algorithm. In a computational study, we demonstrate that the exact approach can solve small instances
well, while the heuristic dynamic programming approach is fast and exhibits an average optimality gap
close to zero in all test instances. Moreover, we investigate the influence of various storage assignment
policies from the literature and compare them to a newly derived policy that is shown to be advantageous
under certain circumstances. Secondly, we investigate the effects of having a movable depot compared to
a fixed one and the influence of the effort to move the depot.

Keywords: Order picking; Routing; Storage assignment; U-shaped pick area; Benders decomposition;

Dynamic programming

9This chapter has been published as: Diefenbach, H., Emde, S., Glock, C. H., and Grosse, E. H. (2022). New
solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot. OR
Spectrum, 44(2), 535-573. DOI: https://doi.org/10.1007/s00291-021-00663-8
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4.1. Introduction

The management of warehouse operations has received ample attention over many years. Es-

pecially order picking, which is commonly described as the retrieval of products from storage

locations to fulfill customer orders, is on the top of many research agendas (Van Gils et al.,

2018). This is because of, firstly, the high amount of manual human labor that is usually as-

sociated with picking orders (Grosse et al., 2015), and, secondly, the fact that order picking is

a very time-intensive activity with direct impact on customer service (De Koster et al., 2007).

For example, in the United States, more than 3.7 million people are employed in warehousing

as manual laborers and material movers (Bureau of Labor Statistics, 2016). In the European

Union’s warehousing and transport support sector, 2.6 million persons are employed (Eurostat,

2016). These facts render order picking one of the most important cost factors in warehousing

(Tompkins et al., 2010, Rushton et al., 2014).

To reduce the cost of order picking, researchers have developed various mathematical models in

the past that support warehouse managers in assigning products to shelf locations, in restructur-

ing incoming orders and in routing order pickers through the warehouse (Van Gils et al., 2018). It

is usually advisable to adapt planning procedures to the specific layout of the warehouse (Rood-

bergen et al., 2015). Warehouse layouts that have been studied in research on order picking in the

past include layouts of rectangular shape, which are often denoted as conventional warehouses,

either with a single block (e.g., Petersen et al. (2005), Grosse et al. (2014)) or with two or more

blocks (e.g., Roodbergen and Koster, 2001a, Roodbergen et al., 2015). Non-conventional ware-

houses, such as leaf, chevron or flying-V, are employed less frequently in practice but still play

a significant role (e.g., Masae et al., 2020b, 2021).

U-shaped layouts of warehouse zones, which are sometimes also referred to as “picker nests”,

can be observed quite often in practice, but have not received much attention in the literature so

far. Glock and Grosse (2012), for example, studied order picking in a U-shaped zone and de-

veloped procedures for assigning products to shelf locations, for finding a location for the depot

of the order picker, and for routing the order picker through the U-zone. Inspired by a practical

case in automotive part picking, the authors also introduced the concept of a movable depot: the

depot from which the picker sets off and to which she returns need not be at a fixed location,

but can be moved within certain limits, potentially shortening pick tours. Put differently, the

depot location becomes itself a variable to be optimized. Given the special structure of the pick

zone, the authors used a simple sweep algorithm to solve the routing problem. Diefenbach and

Glock (2019) also studied a U-shaped warehouse and optimized the layout and item assignment
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for single command picking with regard to two different objectives, namely pick efficiency and

ergonomics. They did, however, not study the routing problem since it is not relevant for single

command picking.

The paper at hand revisits the setting studied by Glock and Grosse (2012) and extends the exist-

ing work by the following contributions:

• We develop the first exact solution procedure for the picker routing problem in U-shaped

order picking zones, namely an algorithm based on combinatorial Benders decomposition.

• In a comprehensive numerical study, we compare the solutions of our newly developed

exact procedure to the solutions of the sweep algorithm developed by Glock and Grosse

(2012) to analyze the latter’s solution quality, which had not been done yet.

• We develop a new heuristic approach extending the idea of the sweep algorithm, based

on dynamic programming. The newly developed procedure compares favorably in theory

and in our numerical experiments.

• In addition, we derive some managerial insights from our numerical experiments. We pro-

pose a new radial storage assignment policy that better matches the specific characteristics

of a U-shaped order picking zone, compare it to storage assignment policies from the lit-

erature, and demonstrate its advantage in certain situations. Furthermore, we investigate

the effects of having a movable compared to a fixed depot and the influence of the effort

for moving the depot.

The remainder of this paper is structured as follows: Section 4.2 discusses the related literature.

Section 4.3 formally defines the picker routing problem studied in this paper, while Section

4.4 presents exact and heuristic solution methods. Section 4.5 presents the results of numerical

experiments, and Section 4.6 concludes the paper.

4.2. Literature review

Researchers have developed numerous mathematical models and algorithms to provide manage-

rial decision support in planning manual order picking operations. The aim of these works has

mainly been the reduction of order picking time or travel distance and thus the minimization of

costs (see, for reviews, Gu et al., 2007, De Koster et al., 2007, Grosse et al., 2017, Masae et al.,

2020a)). To reach this goal, several planning problems have to be addressed. These include lay-
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out design, routing, storage assignment, and order batching. The reader is referred to the review

of Van Gils et al. (2018) for a detailed overview of order picking planning models.

Works on layout design mostly deal with the definition of a suitable warehouse layout, which

includes decisions about the number of storage blocks, cross aisles, parallel aisles, as well as

height and depth of racks (e.g., Vaughan, 1999, Roodbergen and Vis, 2006, Roodbergen et al.,

2008, 2015). Here, it is important to keep space requirements and other types of restrictions

in mind when determining the width of aisles, which can be narrow, wide or mixed (Mowrey

and Parikh, 2014). The majority of works studies rectangular/conventional layouts, whereas

alternative layouts for manual order picking areas are rather rare (Masae et al., 2020a). However,

alternative layouts for order picking areas are quite common in practice. These include U-shaped

layouts, where shelves or pallets are arranged in the shape of a U within the order picking area

(Glock and Grosse, 2012, Diefenbach and Glock, 2019). We note that Henn et al. (2013) also

refer to their considered layout as U-shaped. It is, however, fundamentally different from the

one considered in this paper as it resembles a more conventional warehouse layout, where the

cross aisles are arranged in the shape of an H or U. Other alternative layouts such as fishbone

(Gue and Meller, 2009) or flying-V designs (Öztürköğlu et al., 2014) are proposed for unit-load

warehouses, where products are picked in pallet quantities.

Routing methods that guide order pickers through the warehouse on preferably shortest routes

are mainly developed for conventional warehouses. An exact algorithm that calculates shortest

routes exists for one-block warehouses, solving a special case of the traveling salesman problem

(Ratliff and Rosenthal, 1983, Scholz et al., 2016, Lu et al., 2016, Chabot et al., 2017, Masae

et al., 2020a). Although this exact algorithm exists, many authors studied simple routing heuris-

tics (such as the well-known s-shape heuristic) because these easy-to-follow patterns are often

applied in practice (Petersen and Aase, 2004, Glock et al., 2017). For special cases of rectan-

gular warehouses with more cross aisles, extensions of this exact algorithm (Roodbergen and

Koster, 2001a, Pansart et al., 2018) as well as heuristic solution approaches exist (Roodbergen

and Koster, 2001b, Theys et al., 2010, Çelik and Süral, 2019, Chen et al., 2019). For alternative

layouts, Masae et al. (2020b), for example, propose an exact algorithm to solve the picker rout-

ing problem in the chevron layout as well as in the leaf warehouse (Masae et al., 2021), and Çelk

and Süral (2014) for the fishbone layout. In U-shaped order picking areas, Glock and Grosse

(2012) propose a sweep algorithm to calculate order picking routes. In a similar setting, Glock

et al. (2019) assume a sufficient capacity of the order picker to transport all requested items in a

single tour, which simplifies the routing problem.

Storage assignment methods assign items to storage positions (Reyes et al., 2019). This can
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either be random or according to some criteria, such as item demand or volume (Füßler et al.,

2019). Common advice for practitioners is to assign frequently requested items to storage loca-

tions close to the depot (also denoted as pick-up/drop-off point, see Petersen and Aase (2004)).

In rectangular warehouses, a common approach is to define item classes (typically A, B, and

C items according to demand frequency), which are then assigned to specific aisles or zones

(De Koster et al., 2007). Petersen et al. (2004) propose several patterns for class-based storage

to classify aisles, e.g., within-aisle, diagonal or rectangular strategies. Several algorithms for

class-based storage assignment exist (Muppani and Adil, 2008). For U-shaped layouts, Glock

and Grosse (2012) propose dedicated storage assignment methods (i.e. horizontal, vertical, and

upper/lower assignments). Moreover, further factors can be considered for storage assignment

models, such as precedence constraints, item weight (Žulj et al., 2018a), or other objectives than

the minimization of travel distance, for example, the minimization of human energy expenditure

(Battini et al., 2016, Calzavara et al., 2017, 2019) or workload (Otto et al., 2017, Glock et al.,

2019).

Consolidating or splitting up orders, which is commonly denoted as order batching, can save on

travel distance (Cergibozan and Tasan, 2019). Only small instances of order batching problems

can be solved optimally in reasonable time (Gademann, 2005), which is why many researchers

propose heuristic or metaheuristic approaches to address this problem (Hong et al., 2012, Henn

and Wäscher, 2012, Matusiak et al., 2014, Pan et al., 2015, Žulj et al., 2018b). Other authors

develop metaheuristic algorithms to solve the combined order batching and picker routing prob-

lems in an integrated fashion (Kulak et al., 2012, Grosse et al., 2014, Van Gils et al., 2019).

This paper addresses two out of the discussed four planning problems, contributing new insights

in this research field, namely developing a new heuristic and an exact algorithm based on combi-

natorial Benders decomposition for the picker-routing problem within the U-zone and proposing

a new radial storage assignment method for this special layout.

4.3. Problem description

This paper studies order picking in a U-shaped order picking area as outlined in Glock and

Grosse (2012). In the considered warehouse setting, items are stored in stillages (i.e., large

boxes that can be accessed from the front), with two rows of stillages stacked one atop the other.

Each U-zone consists of two horizontal and one vertical shelf as illustrated in Figure 4.1. The

depot, where each order picking tour starts and ends, is also a stillage that is brought to and

removed from the U-zone by a forklift truck, and it is represented by the black box in Figure
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4.1a. The picker travels on foot along the shelves of the U-zone, possibly pushing or pulling

a cart or a related device. U-shaped order picking areas, as the one studied in this paper, can

frequently be observed in practice, for example in the automotive or chemical industries (Glock

and Grosse, 2012, Glock et al., 2019).

In these industries, it is common to prepare so-called kits to supply assembly workplaces with the

required materials. For preparing the kits, compact work zones are established in the warehouse

that contain the items required at one or more assembly workplaces (e.g., Hanson et al., 2017).

Especially in cases where only a small number of items is stored in the kitting zones, U-zones

are beneficial because of a clear separation of items and good item accessibility.
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Figure 4.1.: Layout of one U-zone with 38 stillages (n = 8, m = 3) and one depot.

4.3.1. Formal description of the picker routing problem

To model the problem concisely, we make the same assumptions as in Glock and Grosse (2012)

and assume a U-zone arranged as in Figure 4.1:

• We consider a picker processing a single order in a single U-zone. An order constitutes

a set Ω of items that need to be collected and placed together in the depot – for example,

a kit destined for a single production station. During a shift, a picker processes multiple

orders. We assume orders are planned beforehand and given from the perspective of our

problem, such that order picker routing for a single order is independent from other orders.

• The U-zone’s coordinate system is two-dimensional, and the depot can be placed any-

where on the center line of the U-zone (i.e., the y-coordinate of the depot is always 0).

The location of the depot has to be fixed before the order picker starts processing the or-

der. Moving the depot from the open end of the U deeper into the zone consumes a certain
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amount of time proportional to the distance that the depot is moved.

• Euclidean distances are used to calculate the travel distance of the order picker, as we

assume that this is the most intuitive way to travel through the pick zone. Formally, we

define the Euclidean distance between two points P1 = (xp1, y
p
1) and P2 = (xp2, y

p
2) as

De (P1, P2) =

√
(xp1 − xp2)

2
+ (yp1 − yp2)

2. The distance between stillages is calculated

to the center of each stillage or the depot.

• We do not consider service/picking times, because they can be considered constant for a

given picklist and are therefore not affected by the picker routes. Moreover, we equate

travel distances with travel times. Note that, given a fixed average movement speed of

the picker, distances can be transformed into durations by simple multiplication with a

constant factor.

• Stillages are numbered in a clockwise manner starting at the upper left corner (see Figure

4.1).

• The storage assignment policy is selected prior to the start of the order picking process

(see Section 4.5.4). Once items have been assigned to storage locations, the assignment is

kept constant until all orders have been completed. Each kind of item is stored in a single

stillage and each stillage contains only one kind of item. This implies that items have to fit

in a single stillage, which is usually the case in practice for U-shaped order picking zones.

• The order picker must return to the depot when he/she has finished his/her order or when

the transport capacity of his/her picking device has been reached. In the latter case, after

returning to the depot to drop off items there, he/she can continue picking items. After an

order has been completed, the depot is removed, and a new depot is brought to the U-zone

together with a new order (pick-by-order).

• The demand of any item does not exceed the carrying capacity of the picker.

We consider a pick area with a layout as depicted in Figure 4.1, where stillages are arranged

in a U-shape around a picking station (depot). The width of a stillage is w, and to facilitate

picking/exchanging stillages, the gap between them is s. The entire length of a zone can then

be determined as l = n · w + (n − 1) · s, where n is the number of horizontal stillages in

the zone. The width of the zone is b = m · w + (m + 1) · s, where m is the number of

vertical shelves in the zone. The coordinates of the depot are (χ, 0). For the first 1 to 2 · n
stillages, the coordinates of the i-th stillage are

(
⌈ i−1

2 ⌉ · (w + s), b
2

)
. For stillages numbered

i = 2 ·n+1, . . . , 2 ·n+m, the coordinates are
(
l − w

2 , ⌈
2·n+m−i

2 ⌉ · (w + s)
)

for uneven values
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of m, and
(
l − w

2 ,
(
⌈2·n+m−i−1

2 ⌉+ 1
2

)
· (w + s)

)
for even values of m. Stillages with index

numbers i = 2 ·n+m+1, . . . , 4 ·n are mirror images of the first 2 ·n stillages along the x-axis.

The distance between any two locations i and i′ is

di,i′ = De ((xi, yi), (xi′ , yi′)) =
√

(xi − xi′)2 + (yi − yi′)2. (4.1)

Let I = {1, . . . , |I|} be the set of stillages, and let Ω = {1, . . . , |Ω|} be the set of items that

need to be picked for a given order with |Ω| items. Let ι(j) be the stillage i where item j is

stored, and let the items be indexed in the same clockwise order as their respective stillages, i.e.,

let ι(j) ≤ ι(j′), ∀j, j′ ∈ Ω : j < j′, be true. Then, item j is located at coordinates (xι(j), yι(j)).

To shorten notation, we define x̃j = xι(j) and ỹj = yι(j) as well as dι(j),ι(j′) = d̃j,j′ . Moreover,

let Q be the limited carrying capacity of the picker, and let qj be the weight of item j ∈ Ω.

sets

I set of stillages
Ω set of items to be picked (indices i, j)
ωk variable: set of items to be picked on tour k ∈ {1, . . . , r}
ω̃k auxiliary variable: set of stillages to be visited on tour k ∈ {1, . . . , r}

parameters

di,i′ distance from stillage i to stillage i′ (meters)
d̃j,j′ distance between the stillage containing item j and the stillage containing item j′

Q maximum carrying capacity of the order picker (kilograms)
qj weight of item j (kilograms)
v penalty distance factor for moving the depot
b width of the aisle (meters)
l length of the aisle (meters)
n number of stillages in one row of horizontal shelves
m number of stillages in the vertical shelf
s distance/gap between two adjacent stillages (meters)
w width of a stillage (meters)
xi x-coordinate of stillage i (meters)
yi y-coordinate of stillage i (meters)
x̃j x-coordinate of the stillage containing item j (meters)
ỹj y-coordinate of the stillage containing item j (meters)

Table 4.1.: Notation for the picker routing problem.

We look for a partition of Ω into r subsets {ω1, . . . , ωr} such that the total weight of the items

in each set ωk does not exceed the carrying capacity of the picker, i.e.,
∑

j∈ωk
qj ≤ Q, ∀k =

1, . . . , r. Note that the number r of pick tours is not given in advance. Each ωk stands for

one pick tour the picker makes, starting from the depot, visiting all stillages implied by ωk,
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and returning to the depot. For brevity of notation, we introduce sets ω̃k = {ι(j) | j ∈ ωk},

∀k = 1, . . . , r, to denote the stillages to be visited to pick the items in ωk.

Furthermore, we look for a position χ of the depot. The depot can be moved along the center

line of the U-zone with the default position located at the open end of the U-zone with χ = 0

(see Figure 4.1a). If the depot is moved along the aisle, the warehouse worker transporting the

depot has to travel an extra distance into the U-zone both when bringing and removing the depot,

which leads to a time penalty that has to be considered in the model and which depends on the

extra travel distance equaling 2 · χ. Assuming that the picker can walk 2 · v times faster (or

slower, as the case may be) when placing the depot than his/her speed during the order picking

process, the additional distance that has to be covered just to move the depot is 1
v ·χ. All symbols

are summarized in Table 4.1.

A solution to our picker routing problem thus consists of a partition {ω1, . . . , ωr} of Ω and the

depot position 0 ≤ χ ≤ l− w
2 . Among all feasible solutions we seek one where the total distance

travelled by the picker – including the penalty distance to move the depot and the distance to

visit the stillages – is minimal.

Routing the picker for a given set of stillages ω̃k is technically a travelling salesman problem,

which is well-known to be strongly NP-hard (Garey and Johnson, 1979). However, due to the

special structure of the U-shaped pick area, the routing problem is actually tractable.

Proposition 4.1. For a given set ω̃k of stillages to be visited, an optimal route (i.e., sequence

of visits) with regard to total travel distance is to move through the stillages in ω̃k in clockwise

order in the shape of a polygon without intersecting edges.

Proof. Barachet (1957) shows that, in a Euclidean TSP, an optimal TSP tour never crosses itself.

Hence, the optimal tour is in the shape of a polygon without intersecting edges, where an edge

touching another edge (at a vertex) counts as an intersection as well. Moreover, this polygon is

contained within the convex hull around all points to be visited.

Let the points that lie on the convex hull be labeled in clockwise order. Two points i and i′, where

i′ ≥ i + 2, can never be connected directly in the optimal route. This is because a connection

between i and i′ would separate the convex hull into two parts, where one contains the points

i′′ ∈ {i + 1, . . . , i′ − 1} and the other contains the remaining points. Since the optimal route

does not cross itself, there exists no optimal route that connects the points from the separate

parts, because it would intersect the connection between i and i′. It follows that in the optimal
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route, each point i on the convex hull can only be connected with its neighboring points i − 1

and i+ 1 on the convex hull or with points that do not lie on the convex hull.

Clearly, all stillages in a U-shaped picking zone lie on a convex polygon, which also consti-

tutes the convex hull. The only point that can possibly not lie on the convex hull is the depot.

Hence, in the optimal route, every stillage must be connected to its neighboring stillages (i.e.,

its predecessor and successor in a clockwise order) or to the depot. Furthermore, the optimal

route has only two connections to the depot, one outgoing and one incoming. If the depot lies

on the convex hull, it must be connected to its neighboring stillages. If not, the depot must be

connected to two consecutive stillages, due to the same argument as before. If the depot would

not be connected to two consecutive stillages, the connection would separate the convex hull into

two parts that cannot be connected by a route without an intersection. Consequently, the optimal

route is to move from the depot to a stillage, move through the stillages in ω̃k in clockwise (or

counter-clockwise) order in the shape of a polygon without intersecting edges, and move back

to the depot.

Let the pair (j, j′) denote an edge between stillages ι(j) and ι(j′) and let ηk =
{
(j, j′) ∈

ωk × ωk : ι(j) ≤ ι(j′) ∧ {j′′ ∈ ωk | ι(j) ≤ ι(j′′) ≤ ι(j′)} = ∅
}
∪ {(max{ωk},min{ωk})} be

the set of all edges of the convex polygon spanned by the stillages in ω̃k. The optimal route’s

length can then be formalized as

g(ωk, χ) =
∑

(j,j′)∈ηk

d̃j,j′ + min
(j,j′)∈ηk

{
−d̃j,j′ +

√
(x̃j − χ)2 + ỹ2j +

√
(x̃j′ − χ)2 + ỹ2j′

}
=

∑
(j,j′)∈ηk

d̃j,j′ + min
(j,j′)∈ηk

{
γj,j′(χ)

}
, (4.2)

where we define γj,j′(χ) = −d̃j,j′+
√

(x̃j − χ)2 + ỹ2j+
√
(x̃j′ − χ)2 + ỹ2j′ for ease of notation.

Note that the first term of Eq. (4.2) stands for the travel distance of the picker along the U, while

the second term is the distance from and to the depot, where, by Proposition 4.1, it is optimal to

insert the depot visit in-between the two neighboring stillages from ω̃k that minimize the total

distance.

The total objective value of a solution consists of the travel distance of the pick tours plus the

time to position the depot in the first place, and it is hence

G(ω1, . . . , ωr, χ) =
∑

k∈{1,...,r}

g(ωk, χ) +
1

v
· χ. (4.3)
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Among all feasible solutions consisting of partition {ω1, . . . , ωr} and depot location χ, we seek

one which minimizes G(ω1, . . . , ωr, χ). We refer to this problem as the picker routing problem

in a U-shaped pick area (PRP-UA).

4.3.2. Computational complexity

Given that, by Proposition 4.1, routing in a U-shaped pick zone is computationally easier than

on general graphs, it may seem that picker routing in U-shaped zones may not be a hard problem

at all. However, PRP-UA is intractable as can be seen by the following proposition.

Proposition 4.2. Solving PRP-UA is NP-hard in the strong sense.

Proof. We prove Proposition 4.2 by reduction from bin packing, which is well known to be

strongly NP-hard (Garey and Johnson, 1979).

The decision version of bin packing is concerned with the following question. Given a set S of

items i with associated weight wi and bins with capacity C, does there exists a partition of items

into bins such that no subset of items assigned to the same bin exceeds the bin’s capacity C and

at most k bins are used?

We propose the following transformation from an instance of bin packing to an instance of PRP-

UA. Firstly, we set the measurements l and b of the U-zone such that 2·k ·l < b holds (i.e., we set

n and m such that 2 ·k · (n ·w+(n−1) ·s) < m ·w+(m+1) ·s holds). Secondly, we associate

each item i ∈ S of the bin packing instance with an item j ∈ Ω of the PRP-UA instance (with

wi = qj for each associated pair of items) and assign the items j ∈ Ω to (arbitrary) stillages

in the upper row (i.e., in positive y-direction, cf., Figure 4.1a) of the U-layout. Finally, we set

Q = C and v → ∞ (i.e., 1
v → 0).

A solution of an instance of PRP-UA corresponds to a solution of an instance of bin packing if

and only if the objective value is less than (k+1) · b, as is shown in the following. Clearly, each

route cannot contain a subset of items that exceeds the maximum capacity Q, such that we can

associate routes with bins. For PRP-UA, by Proposition 4.1, the length of a single optimal route

is bounded from above by b + 2 · l, i.e., the length of the route if the picker visits every single

stillage in the upper row on one tour cannot be longer than this. Likewise, a route’s minimum

length is b, i.e., visiting only a single stillage directly above the depot cannot be shorter than

this. Hence, a solution using k + 1 tours or more has at least an objective value of (k + 1) · b
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and a solution using at most k tours has at most an objective value of k · (b+ 2 · l) < k · b + b

(since we set 2 · k · l < b). Hence, if and only if the objective value of a solution to PRP-UA is

less than (k + 1) · b, it contains no more than k tours, which corresponds to a solution for the

corresponding instance of bin packing with at most k bins.

Since the decision version of PRP-UA is strongly NP-complete, the corresponding optimization

version is NP-hard in the strong sense, which completes the proof.

4.4. Algorithms

In the following, we present new algorithms to solve PRP-UA. Section 4.4.1 presents the first

exact solution approach based on combinatorial Benders decomposition. With PRP-UA being

NP-hard, we can expect that larger problem instances cannot be solved exactly, as is also shown

in our computational study later on (cf. Section 4.5.2). We therefore present a new heuristic

solution approach based on the concept of dynamic programming in Section 4.4.2.

4.4.1. Logic-based Benders decomposition for the picker routing problem

In addition to being NP-hard, PRP-UA is further complicated by the presence of non-linear

(Euclidean) distances, which depend on a variable, namely the position of the depot. There is

therefore no obvious way of formulating a compact (mixed-integer) linear programming model

without discretization of the depot location χ. For discrete depot locations, the problem would

become a capacitated vehicle routing problem. If we disregard the routing aspect and the move-

able depot, the remaining problem, i.e., batching items on tours such that the picker capacity is

not violated, is a bin packing problem. To avoid making a heuristic choice regarding discretiza-

tion intervals, in the following, we focus on an exact approach where we consider the depot

location χ as a continuous variable.

To make the problem more tractable, we propose a decomposition scheme in the spirit of logic-

based and combinatorial Benders decomposition (Codato and Fischetti, 2006, Hooker, 2007),

which has seen success dealing with difficult combinatorial optimization problems (e.g., Kress

et al., 2019, Tadumadze et al., 2020, Fang et al., 2021, Huang et al., 2021). The general idea

consists of splitting the original problem into a master and a slave component. The master

problem is modeled as a mixed-integer linear programming model that is solved by an off-the-

shelf default solver. Whenever the solver finds a candidate integer solution for this model, the
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solution is passed to the slave problem, which calculates the optimal objective value for the

given master solution. From the slave solution, combinatorial cuts are generated, which remove

suboptimal solutions from the master model. The solver then continues working on the master

model with the newly added cuts, passing candidate solutions to the slave problem until no more

feasible, undiscarded solutions remain. The best incumbent solution at this point is optimal. For

brevity, we refer to this algorithm as CBD (combinatorial Benders decomposition).

In Section 4.4.1.1, we describe the master model for our picker routing problem in detail. In

Section 4.4.1.2 we present the slave model and describe how it can be efficiently solved. Section

4.4.1.3 describes how we generate cuts from solutions of the slave problem.

4.4.1.1. Master problem

The master problem (MP) consists of batching items on tours, i.e., effectively, determining sets

ωk, ∀k. For a given batching, the exact objective value and optimal depot location is then

determined by solving the slave problem described in Section 4.4.1.2. We use binary variables

zj,j′ , which have value 1 if and only if item j′ is on the same tour as item j and j′ is the item

with the greatest index on that tour. Formally, the feasible search space of the master model is

described by the following constraints.∑
j′∈Ω:
j≤j′

zj,j′ = 1 ∀j ∈ Ω (4.4)

zj,j′ ≤ zj′,j′ ∀j, j′ ∈ Ω : j < j′ (4.5)∑
j∈Ω:
j≤j′

qj · zj,j′ ≤ Q ∀j′ ∈ Ω (4.6)

zj,j′ ∈ {0, 1} ∀j, j′ ∈ Ω : j ≤ j′ (4.7)

Constraints (4.4) ensure that each item is on exactly one pick tour. If some item j′ is on the

same tour as item j such that j′ has the highest index in that tour, then zj,j′ is forced to 1, as

ensured by Inequalities (4.5). Inequalities (4.6) ensure that the picker’s carrying capacity is not

exceeded, while Constraints (4.7) define the domain of the decision variables.

While the master model can be solved as a pure feasibility problem, this may not be advisable

from a performance viewpoint. Without any objective to guide the search, we can expect many

mediocre solutions to be evaluated. We therefore use a lower bound on the objective value as a
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subproblem relaxation (Hooker, 2007) based on the following idea.

Proposition 4.1 states that the optimal route to visit a set ω̃k of stillages and the depot is in

the form of a polygon without crossing edges. Clearly, the edge length of the convex polygon

spanned by the stillages in ω̃k and the depot is a lower bound on the optimal tour length. Given

the non-linear Euclidean distances, there is no easy method to calculate the respective convex

polygon’s edge length in a compact linear model. However, we can calculate lower bounds on

the edge length in two ways: first, by using the rectilinear metric (Manhattan metric) and, second,

by using the maximum metric (Chebyshev distance). Formally, for two points P1 = (xp1, y
p
1) and

P2 = (xp2, y
p
2), we define the rectilinear metric distance as Dr (P1, P2) = |xp1 − xp2|+ |yp1 − yp2 |

and the maximum metric distance as Dm (P1, P2) = max {|xp1 − xp2|, |y
p
1 − yp2 |}.

For the first bound, we apply Proposition 4.3.

Proposition 4.3. A convex polygon’s Euclidean (i.e., actual) circumference is at least its recti-

linear metric circumference divided by
√
2.

Proof. The proof is based on the labeling in Figure 4.2a. The circumference of a polygon with

E vertices is given by Cpoly =
∑E−1

i=1 De(Pi, Pi+1) +De(PE , P1). In two-dimensional space,

the distance between two points measured in the rectilinear metric is at most
√
2 times greater

than the distances measured in the Euclidean metric, i.e., De(Pi, Pi′) ≥ 1√
2
·Dr(Pi, Pi′) holds

(cf., Proposition 4.5 in the Appendix). It follows that Cpoly ≥
∑E−1

i=1
1√
2
·Dr(Pi, Pi+1) +

1√
2
·

Dr(PE , P1) ⇒ Cpoly ≥ 1√
2
·
(∑E−1

i=1 Dr(Pi, Pi+1) +Dr(PE , P1)
)
⇒ Cpoly ≥ 1√

2
· Crect,

where Crect is the polygon’s circumference in the rectilinear metric.

Hence, we can calculate the convex polygon’s edge length in the rectilinear metric and divide it

by
√
2 to attain a lower bound for the actual length. For the second bound, we apply Proposition

4.4.

Proposition 4.4. A convex polygon’s Euclidean (i.e., actual) circumference is at least two times

its length in the maximum metric.

Proof. The proof is based on the labeling in Figure 4.2a. Assume any diagonal of the polygon

connecting the two shorter sides of its rectilinear circumference. Such a diagonal always exists,

since each side of the polygon’s rectilinear circumference is connected to at least one of the

polygon’s vertices. The diagonal splits the polygon into two parts, which we label upper part
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and lower part in the following. By the triangle inequality, the polygon’s upper part edge length

is longer than the diagonal. The same applies for the lower part’s edge length. Therefore, the

polygon’s Euclidean circumference is at least two times the length of the diagonal. Again by

the triangle inequality, the diagonal length is never less than the polygon’s maximum length,

which is equal to the longer side of the polygon’s rectilinear circumference. Hence, two times

the polygon’s maximum length is never greater than its Euclidean circumference.

Therefore, two times the convex polygon’s length in the maximum metric is also a lower bound

for the actual (Euclidean) circumference.
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Figure 4.2.: Lower bounds on a picking route’s length.

To calculate the bounds, we introduce four sets of auxiliary continuous variables to the master

model. Variables x̌j (y̌j) denote the distance from the depot to the leftmost (bottommost) stillage

on the tour that contains item j. Analogously, variables x̂j (ŷj) denote the distance from the

depot to the rightmost (topmost) stillage on the tour that contains item j. Moreover, we introduce

auxiliary variable χ̄ to denote the position of the movable depot. An illustrative example is given

in Figure 4.2b. We consider the bounds by adding the following objective and valid inequalities

to the master model:

[MP] Minimize G =
∑
j∈Ω

d̂j +
1

v
· χ̄ (4.8)
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subject to (4.4) - (4.7) and

x̂j ≥ x̃j′ · zj′,j − χ̄ ∀j, j′ ∈ Ω : j′ ≤ j (4.9)

x̌j ≥ χ̄−
((
x̃j′ − l

)
· zj′,j + l

)
∀j, j′ ∈ Ω : j′ ≤ j (4.10)

ŷj ≥ ỹj′ · zj′,j ∀j, j′ ∈ Ω : j′ ≤ j (4.11)

y̌j ≥ −ỹj′ · zj′,j ∀j, j′ ∈ Ω : j′ ≤ j (4.12)

d̂j ≥ 2 · 1√
2
· (x̂j + x̌j + ŷj + y̌j) ∀j ∈ Ω (4.13)

d̂j ≥ 2 · (x̂j + x̌j) ∀j ∈ Ω (4.14)

d̂j ≥ 2 · (ŷj + y̌j) ∀j ∈ Ω (4.15)

x̂j , x̌j ∈
[
0,max

i∈I
{xi}

]
∀j ∈ Ω (4.16)

ŷj , y̌j ∈
[
0,max

i∈I
{|yi|}

]
∀j ∈ Ω (4.17)

d̂j ∈ [0, 2 · l + 4 · b] ∀j ∈ Ω (4.18)

χ̄ ∈
[
0, l − w

2

]
(4.19)

Objective (4.8) minimizes the sum of the distance approximations of the routes plus the cost to

move the depot. For each route, Inequalities (4.9) determine the distance between the depot and

the polygon’s rightmost vertex. If the depot is to the right of the polygon’s rightmost vertex,

x̂j assumes 0. Similarly, Inequalities (4.10) calculate the distance between the depot and the

polygon’s leftmost vertex. If the depot is to the left of the polygon’s leftmost vertex, x̌j assumes

0. Inequalities (4.11) and (4.12) calculate the respective distances on the y-axis for every tour.

Constraints (4.13) calculate lower bounds on the tour length based on the rectilinear metric.

Constraints (4.14) and (4.15) determine respective lower bounds based on the maximum metric.

Finally, Constraints (4.16) through (4.19) define the domain of the auxiliary variables.

4.4.1.2. Slave problem

Solving the master model generates feasible item batches, which may, however, not be optimal.

Let z̄ be a candidate integer solution of the master model, defining r =
∑

j∈Ω z̄j,j pick tours.

Each pick tour k = 1, . . . , r consists of picking the items in set ω̄k = {j ∈ Ω | z̄j,j′ = 1}, where

j′ ∈ Ω is the k-th item for which z̄j′j′ = 1. We refer to the set of pick tours derived from the
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current master solution as Φ̄ = {ω̄1, . . . , ω̄r}, where we use bars to indicate that the sets ω̄k and

Φ̄ are fixed within the slave problem.

Given an item batching z̄, two problems remain to be solved: First, we have to decide on the

location χ of the depot, and second, we need to determine the optimal picker route for each ω̄k.

As soon as the first problem is solved, the second becomes trivial. Hence, we begin with the

former. Note that auxiliary variable χ̄ in the master model does not necessarily correspond to

the optimal depot location because the distance values d̂j are only lower bounds. Instead, the

best depot location χ for a given set Φ̄ of tours can be found by minimizing G(ω̄1, . . . , ω̄r, χ)

(cf., Equation (4.3)) for the given candidate integer solution z̄, which can be done as follows.

The term ∂G(ω̄1,...,ω̄r,χ)
∂χ is not continuous because of the minimum term in each g(ω̄k, χ) (cf.,

Equation (4.2)). However, for a fixed set Φ̄, it is piece-wise continuous in every interval where

argmin(j,j′)∈ηk
{
γj,j′(χ)

}
is constant, ∀k ∈ {1, . . . , r}. Hence, to minimize G(ω̄1, . . . , ω̄r, χ),

three steps are necessary. First, we need to determine every interval, in which G(ω̄1, . . . , ω̄r, χ)

has a constant derivative. Second, for each interval, we need to determine the minimum of

G(ω̄1, . . . , ω̄r, χ) separately. Third, out of all intervals’ minima, we need to select the one that

is minimal overall. The last step is trivial. In the following, we discuss the first two steps, where

we label the minimal value for G(ω̄1, . . . , ω̄r, χ) as G∗(ω̄1, . . . , ω̄r, χ) and the respective depot

location χ∗(ω̄1, . . . , ω̄r).

Starting from the second step, the minimum within an interval can be determined by finding the

root of ∂G(ω̄1,...,ω̄r,χ)
∂χ within that interval. The root within a continuous interval can be deter-

mined with arbitrary precision using a gradient descent method (e.g., Newton’s method). Note

that finding the root of the derivative within each interval is sufficient, since
∂2(−dj,j′+γj,j′ (χ))

∂χ2 =

ỹ2j ·
(
(x̃j − χ)2 + ỹ2j

)− 3
2
+ỹ2j′ ·

((
x̃j′ − χ

)2
+ ỹ2j′

)− 3
2
> 0, hence, in a given interval, G(ω̄1, . . . ,

ω̄r, χ) is convex and only has a single minimum. For the same reason, if the root lies outside of

the interval, the interval’s minimum is equal to one of its boundaries.

It remains to discuss the first step, i.e., to determine the borders of the intervals in which

argmin(j,j′)∈ηk
{
γj,j′(χ)

}
is constant. The edge argmin(j,j′)∈ηk

{
γj,j′(χ)

}
, which we call

dominant edge in the following, can only change at values χ where the functions γj,j′(χ) and

γj′′,j′′′(χ) intersect, for two edges (j, j′), (j′′, j′′′) ∈ ηk : (j, j′) ̸= (j′′, j′′′). This leads to the

following iterative procedure. Initially, we determine (ĵ, ĵ′) = argmin(j,j′)∈ηk
{
γj,j′(0)

}
as

the dominant edge for χ = 0 and we initialize χ̂ := 0. In each iteration, we determine the
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consecutive dominant edge. The dominant edge (ĵ, ĵ′) changes, when

c((ĵ, ĵ′), (j, j′), χ) = γĵ,ĵ′(χ)− γj,j′(χ)

assumes zero, approaching from a negative value with increasing χ, for any (j, j′) ∈ ηk :

(j, j′) ̸= (ĵ, ĵ′) and l− w
2 ≥ χ > χ̂. Let χ′ be the smallest value of χ for which c((ĵ, ĵ′), (j, j′),

χ) assumes zero approaching from a negative value, ∀(j, j′) ∈ ηk : (j, j′) ̸= (ĵ, ĵ′), and let

(j′′, j′′′) be the respective edge. Then we update χ̂ := χ′ and (ĵ, ĵ′) = (j′′, j′′′) and start the

next iteration. The values of χ̂ found during the iterations mark the intervals’ borders. The

procedure terminates as soon as no χ′ ≤ l − w
2 can be found anymore.

During the iterative procedure, we solve c((ĵ, ĵ′), (j, j′), χ) = 0 as follows. At first glance, we

cannot rule out that function c((ĵ, ĵ′), (j, j′), χ) has none, one or multiple roots, such that we

cannot use a gradient descent approach, since it may overshoot if there are multiple roots or not

terminate if there are none. However, we can conclude that
∣∣∣∂c((j,j′),(j′′,j′′′),χ)∂χ

∣∣∣ ≤ 4 because

0 ≤

∣∣∣∣∣∂
√

(x̃j−χ)2+ỹ2j
∂χ

∣∣∣∣∣ =
∣∣∣∣∣− x̃j−χ√

(x̃j−χ)2+ỹ2j

∣∣∣∣∣ ≤ 1, ∀j ∈ Ω (cf. Equation (4.2)). This means that

if χ changes by a step size of µ, c((j, j′), (j′′, j′′′), χ) changes by no more than 4 · µ, which

leads to the following iterative sub-routine. Starting from χ̃ := χ̂, we determine a step size

µ := max
{
1
4 · |c((j, j′), (j′′, j′′′), χ̃)|, µmin

}
, where µmin is the arbitrarily small numerical

precision. We update χ̃ := χ̃+ µ and evaluate c((j, j′), (j′′, j′′′), χ̃). We repeat this process un-

til c((j, j′), (j′′, j′′′), χ̃) changes from a negative value to a positive value between two iterations

or until we reach χ̃ > l − w
2 and return χ̃ as the solution. The complete procedure to solve the

slave problem is summarized in pseudo-code in Algorithm 4.1.

Example. For additional clarification, in the following, we exemplary demonstrate how we

determine the borders of the intervals in which g (ω̄k, χ) has a continuous derivative. Consider a

U-zone as depicted in Figure 4.1a, where the items j ∈ ωk = {1, 8, 12, 30} should be picked on

the same tour. To keep the example simple, we assume every item is stored in stillage i with the

same respective index and set w = 1.3 m and s = 0.05 m (cf., Section 4.5). The set of edges is

then given as ηk = {(1, 8), (8, 12), (12, 30), (30, 1)}. Figure 4.3a depicts the functions γj,j′ (χ),

∀(j, j′) ∈ ηk.

The procedure starts by determining the dominant edge at χ = 0, which is (ĵ, ĵ′) =

argmin(j,j′)∈ηk
{
γj,j′(0)

}
= (30, 1). Starting with edge (1, 8) and with χ = 0, we itera-

tively increase χ to determine a possible intersection between γ30,1 (χ) and γ1,8 (χ), which is
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Figure 4.3.: Exemplary determination of intervals where g (ωk, χ) has a continuous derivative.

schematically shown in Figure 4.3b. Since there is no intersection, for χ ≤ l − w
2 , we con-

tinue with the next edge, i.e., (8, 12). Here, we find an intersection at χ = 6.77 (cf., Figure

4.3c). We save χ̂ := 6.77 and select the next edge (12, 30) to look for intersections between

γ30,1 (χ) and γ12,30 (χ). We find an intersection at χ = 4.85 and overwrite χ̂ := 4.85. At

this point, we have checked for intersections between γ30,1 (χ) and γj,j′ (χ) for all other edges

(j, j′) ∈ ηk : (j, j′) ̸= (30, 1) and found the intersection closest to 0 at χ̂ := 4.85. Hence, the

fist interval where g (ω̄k, χ) has a constant derivative is [0, 4.85). To determine the next interval,

we set the dominant edge to (ĵ, ĵ′) = (12, 30) and try to find intersections for χ > 4.85 in the

same way as before. Since there are no more intersections, we determine the second (and in this

case final) interval as [4.85, l − w
2 ].

Determining these intervals not only for ω̄k but for all ω̄1, . . . , ω̄r gives the intervals in which

G (ω̄1, . . . , ω̄r, χ) has a continuous derivative. To solve the slave problem, the final step is then

to determine the root of G (ω̄1, . . . , ω̄r, χ) within every such interval and to select the one that

is minimal overall.

Once the optimal depot location χ∗(ω̄1, . . . , ω̄r) has been determined, the optimal route for

each set ω̄k, ∀k = {1, . . . , r}, follows immediately from the continuous interval in which

χ∗(ω̄1, . . . , ω̄r) lies. We define (j∗k(ω̄1, . . . , ω̄r), j
′∗
k (ω̄1, . . . , ω̄r)) = argmin(j,j′)∈ηk

{
γj,j′(χ

∗(

ω̄1, . . . , ω̄r))
}

. Then the optimal route for the set ω̄k visits items j∗k(ω̄1, . . . , ω̄r) and j
′∗
k (ω̄1, . . . ,

ω̄r) directly before returning to and after leaving from the depot, respectively. All other items
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j ∈ ω̄k\{j∗k(ω̄1, . . . , ω̄r), j
′∗
k (ω̄1, . . . , ω̄r)} are visited in clockwise order in-between (cf., Propo-

sition 4.1).

4.4.1.3. Combinatorial cuts

Let UB be the objective value of the current best known solution (i.e., the best currently known

upper bound on the optimal objective value). If no feasible solution is known yet, let UB = ∞.

If G∗ < UB, a new best solution has been found, which is stored, and UB is updated to G∗. If

UB is updated, we add the following cut, which we call an optimality cut, to the constraint set

of the master model:

G ≤ G∗(ω̄1, . . . , ω̄r, χ
∗(z̄))− ϵ, (4.20)

where ϵ is a sufficiently small positive number and G is the objective function of the master

model. This equation cuts off all solutions whose lower bound is not better than the current

upper bound.

Regardless of whether a new upper bound has been found, we make use of the following obser-

vation to generate further cuts. To find a better solution, the duration of at least one of the r tours

must be made shorter, or one of the tours must be dissolved altogether. A tour can only become

shorter if the polygon constituting the tour changes its form. The polygon can only change its

form if a stillage lying at a vertex changes, but the polygon stays unchanged if a stillage lying

on (the middle of) an edge changes. There are two general possibilities where the former is the

case.

The first possibility is that either the first or the last stillage to be visited per face of the U-shaped

picking area changes. Adding or removing stillages that lie in-between two other stillages on the

same face (and that are not visited directly before or after the depot) cannot reduce the duration

of the tour because the picker passes by that stillage in any case. The second possibility is that a

stillage changes that is visited either directly after leaving or before returning to the depot. For

additional clarification, Figure 4.4 provides an example.

Let T = {j ∈ Ω | ỹj = maxi∈I {yi}} be the set of items on the top face of the U-shaped picking

area. Analogously, let B be the set of items on the bottom face, and R be the set of items on the

perpendicular face. For notational convenience, we define the set T k = {j ∈ T ∩ ωk | x̃j =

minj∈T∩ωk
{x̃j}} and T k = {j ∈ T ∩ ωk | x̃j = maxj∈T∩ωk

{x̃j}} as well as, analogously, Bk,

Bk, Rk and Rk as the extreme items on each face. Then the set of all items that could be
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Algorithm 4.1: Algorithm for solving the slave problem.
Input: Φ̄ = {ω̄1, . . . , ω̄r}

1 B :=
{
l − w

2

}
; // borders of the intervals, in which ∂G(ω̄1,...,ω̄r,χ)

∂χ
is

continuous
2 for k ∈ {1, . . . , r} do
3 b := {0}; // borders of the intervals, in which ∂g(ω̄,χ)

∂χ
is continuous

4 χ̂previous := 0; // previous interval border

5 (ĵ, ĵ′) = argmin(j,j′)∈ηk
{γj,j′(0)}; // dominant edge

6 χ̂ := 0; // interval border
7 while χ̂ < l − w

2
do

8 χ̂ := l − w
2

;
9 foreach (j, j′) ∈ ηk : γĵ,ĵ′(χ) ̸= γj,j′(χ) do

10 χ := max{b};
11 while c((ĵ, ĵ′), (j, j′), χ) < 0 ∧ χ < l do
12 χ := χ+max

{
1
4
· |c((j, j′), (j′′, j′′′), χ̃)|, µmin

}
;

13 if χ < χ̂ then
14 χ̂ := χ;
15 (ĵ, ĵ′) = (j, j′)

16 b := b ∪ {χ̂}
17 B := B ∪ b;

18 χ∗ := 0; // optimal depot position for the given Φ̄
19 G∗ := ∞; // optimal objective for the given Φ̄
20 foreach pair of numerically consecutive elements β1 and β2 (with β1 < β2) in B do
21 χ := the solution of ∂G(ω̄1,...,ω̄r,χ)

∂χ
= 0 using Newton’s method;

22 χ := min {χ, β2};
23 χ := max {χ, β1};
24 if G(ω̄1, . . . , ω̄r, χ) < G∗ then
25 G∗ := G(χ);
26 χ∗ := χ;

Output: G∗ and χ∗
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I

legend:
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II: 

III:

𝑇𝑇

𝐵𝐵
𝑅𝑅

The stillage is visited first or 
last on a face (𝑇𝑇, 𝑅𝑅, or 𝐵𝐵) of the U-
layout. Removing it shortens the tour.

The stillage is visited directly after/ 
before the depot. Removing it 
shortens the tour.

The stillage is visited in the middle 
(neither first, nor last) on a face of the 
U-layout. Removing it does not 
shorten the tour.

Figure 4.4.: Example of which stillages are considered in the progression cut.

changed to alter the route of tour k is given as Λk = T k ∪ T k ∪ Bk ∪ Bk ∪ Rk ∪ Rk ∪{
j∗k(ω̄1, . . . , ω̄r), j

′∗
k (ω̄1, . . . , ω̄r)

}
.

Using these definitions, we add the following cut, which we call a progression cut, to the master

model:

1 ≤
r∑

k=1

∑
j∈Λk

(
1− zj,max{ω̄k}

)
(4.21)

Inequality (4.21) enforces that at least one stillage at a polygon’s vertex of one of the r tours

is reassigned. Note that this always makes the current solution infeasible. The solver thus

continues solving the master model with the newly added cut(s), intermittently calling the slave

problem whenever a new candidate integer solution is found until the search space is empty.

4.4.2. Heuristic solution approaches

While the proposed CBD is able to solve problem instances of smaller sizes in acceptable run-

time, its runtime gets excessively long when working on larger sized instances (cf., Section

4.5.2). Therefore, we also consider heuristic solution approaches in the following.

Glock and Grosse (2012) propose a heuristic sweep algorithm (SA) for the picker routing prob-

lem in U-shaped pick areas. In our computational experiments (cf., Section 4.5), the SA pro-

duces good results on average. However, for some instances, the optimality gaps can be sub-

stantial. Inspired by these findings, we propose a heuristic solution procedure using the concept

of dynamic programming (DP) that expands on the idea of the SA. In the following, we briefly
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review the SA of Glock and Grosse (2012) before discussing our DP approach.

4.4.2.1. Sweep algorithm

The SA starts by assuming a fixed depot position χ̄. Its basic idea is to assign items to sets ωk

in clockwise order. Starting from an initial item, the SA assigns items to the same set ωk, until

the next item would exceed the picker’s capacity Q. In that case, the next item is assigned to a

new set ωk+1 and the previous set is closed. For each closed set of items ωk, g(ωk, χ̄) is derived

(cf. Equation 4.2). Since χ̄ is given, g(ωk, χ̄) can be easily calculated. Once all items have been

assigned to sets, the objective value is given by G(ω1, . . . , ωr, χ̄) (cf. Equation 4.3). The fixed

depot position χ̄ and the starting item are varied over multiple iterations of the algorithm. Using

χstep-size as an arbitrarily small step-size to increment χ̄, the algorithm can be formally described

as follows.

1. Set χ̄ := 0, G∗ = ∞ and χ∗ = 0.

2. Set jstart := 1.

3. Set j := jstart and k := 1.

4. Set ωk = {j}.

5. Increment j := j + 1. If j > |Ω| set j := 1, i.e., after the U-zone’s final item has been

reached, proceed with the first item to continue the clockwise sweeping. If j = jstart , i.e.,

if item j has already been considered in the beginning, go to Step 7.

6. If
∑

j′∈ωk
qj′ + qj ≤ Q, add ωk := ωk ∪{j} and go to Step 5. Else, increment k := k+1

and go to Step 4.

7. Calculate G(ω1, . . . , ωk, χ̄). If G(ω1, . . . , ωr, χ̄) < G∗, update G∗ := G(ω1, . . . , ωr, χ̄)

and χ∗ := χ̄. Increment jstart := jstart + 1. If jstart ∈ Ω, go to Step 3.

8. Increment χ̄ := χ̄+ χstep-size. If χ̄ ≤ l − w
2 , go to Step 2. Else, terminate the procedure.

Example. Consider a U-zone as depicted in Figure 4.1a, where the items j ∈ {1, 6, 28, 30, 33}
should be picked. To keep the example simple, we assume every item is stored in stillage i with

the same respective index and set w = 1.3 m and s = 0.05 m (cf., Section 4.5). The weights of

the items are given in Figure 4.5a and the picker has a capacity of Q = 5. For the given initial
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item jstart = 1 and the depot location χ̄ := 0, the solution as determined by the SA is given in

Figure 4.5b with an objective value of 29.43.

j qj

1 1
6 2
28 2
30 1
33 2

(a) Example item weights.

6

30 28

1

33

0

𝜔𝜔1

𝜔𝜔2

(b) Example solved by the the SA.

Figure 4.5.: Example solved by the the SA.

4.4.2.2. Heuristic dynamic programming algorithm

In the SA, items are always added to the currently “open” set ωk until adding another item would

exceed the capacity (cf., Step 6). However, we notice in our computational experiments that this

is not always a good choice (see Section 4.5). Instead, sometimes it is better to “close” a set ωk

before the capacity is reached, and add the next item to the consecutive set ωk+1. The following

DP approach takes this observation into consideration.

Similar to the SA, the DP procedure assumes a fixed depot position χ̄ and an initial start item

jstart at the beginning of each iteration and considers items in a clockwise order. The solution

is then constructed piece-wise using a DP scheme, based on the general idea formulated by

Bellman (1954).

For given values of χ̄ and jstart, the DP consists of |Ω|+1 stages p = 0, . . . , |Ω|, each containing

one state Θp = {j ∈ J : jstart ≤ j < jstart + p ∨ 1 ≤ j < p+ jstart − |Ω|}, denoting the set of

items that have already been considered in the partial solution. Starting from initial stage p = 0

with state Θp = ∅, a successor stage p′ > p is reached by adding the set Θp′ \ Θp to Θp,

indicating that items j ∈ Θp′ \Θp are picked in the same tour ωp′ . A transition is only feasible

if
∑

j∈Θp′\Θp
qj ≤ Q, i.e., if the capacity is not exceeded.

Let V (Θp) be the set of states from which a feasible transition to state Θp exists. The optimal
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objective value h∗(Θp) of the partial solution in state Θp can then be calculated recursively as

h∗(Θp) = min
Θ′∈V (Θp)

{
h∗(Θ′) + g

(
Θp \Θ′, χ̄

)}
,

with h∗(∅) = 0. The objective value of a complete solution in final state Θ|Ω| is also the best

objective value for the given values of χ̄ and jstart. We can obtain the corresponding assignment

by backward recovery along the best path. To complete the proposed DP, we increment χ̄ and

jstart in the same manner as for the SA and save the overall best obtained solution.

The way the DP is set up, it is guaranteed to always find a solution that is at least as good as

the sweep algorithm’s solution. Concerning the time complexity, for given values of χ̄ and jstart,

there are O(n2) transitions. Note that, by careful implementation, it is possible to calculate the

objective contribution of all O(n) successors of a state in O(n) time. Let σ =
l−w

2

χstep-size be the

number of increments considered for χ̄. Then the asymptotic runtime of the complete procedure

(including varying χ̄ and jstart) is bounded by O(σ · n3).

Example. Consider the same example as for the SA in Section 4.4.2.1. For the given initial item

jstart = 1 and the depot location χ̄ := 0, Figure 4.6 depicts the dynamic programming graph

including the optimal path recovered from backtracking. The objective of the DP’s solution is

22.63, which is 23.10% below the one of the SA’s solution.

Θ0 = ∅ Θ1 = 1 Θ2 = 1,6 Θ3 = 1,6,28 Θ4 = 1,6,28,30 Θ5 = 1,6,28,30,33
𝜔𝜔𝑘𝑘 = 6𝜔𝜔𝑘𝑘 = 1 𝜔𝜔𝑘𝑘 = 28 𝜔𝜔𝑘𝑘 = 30 𝜔𝜔𝑘𝑘 = 33

𝜔𝜔𝑘𝑘 = 6,28,30,33

𝜔𝜔𝑘𝑘 = 6,28,30

𝜔𝜔𝑘𝑘 = 6,28
𝜔𝜔𝑘𝑘 = 30,33

𝜔𝜔𝑘𝑘 = 28,30

𝜔𝜔𝑘𝑘 = 28,30,33

𝜔𝜔𝑘𝑘 = 1,6

𝜔𝜔𝑘𝑘 = 1,6,28

𝜔𝜔𝑘𝑘 = 1,6,28,30

𝜔𝜔𝑘𝑘 = 1,6,28,30,33

state infeasible due to violated capacity optimal pathtransitionlegend:

Figure 4.6.: Dynamic programming graph for the example of Section 4.4.2.1.
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4.5. Numerical experiments and analysis

4.5.1. Generating instances for the computational tests

To evaluate our proposed solution procedures and gain some managerial insights, we generate

problem instances based on our observations in practice and the assumptions presented by Glock

and Grosse (2012). The following section describes how the instances are generated.

We consider U-layouts with two different capacities, either 44 stillages (cf., Glock and Grosse,

2012) or 88 stillages. The layout of an instance is defined by setting n and m, the number of

stillages in one horizontal and in one vertical row. Since both Glock and Grosse (2012) and

Diefenbach and Glock (2019) found that narrow U-shapes are advantageous, we consider the

layouts of (n,m) = (10, 2), (n,m) = (9, 4), and (n,m) = (8, 6) if the U contains 44 stillages,

and the layouts of (n,m) = (21, 2), (n,m) = (20, 4), and (n,m) = (19, 6) if the U contains 88

stillages. In accordance with Glock and Grosse (2012), we set the measurements of the stillages

to w = 1.3 m and the gap between the stillages to s = 0.05 m.

For the item demands, we assume a 20/60-Pareto distribution (cf., Bender, 1981), i.e., 20% of

the items are responsible for 60% of demand. Based on the distribution, we randomly draw |Ω|
items to be picked for each instance. For the instances with 44 stillages, we set either |Ω| = 10

or |Ω| = 15; for the instances with 88 stillages, we set either |Ω| = 30 or |Ω| = 60. Items

weights qj are drawn randomly from the set {1, . . . , 5} and the picker capacity is set to Q = 15

(cf., Glock and Grosse, 2012). Finally, we assign the items to stillages in a random manner, and

set v = 3 (cf., Glock and Grosse, 2012) as the default value for the penalty to move the depot.

Note that we will deviate from the default settings for v and the default item assignment in later

experiments.

We generate ten instances for each setting. All instances are labeled as follows: “number of

stillages”-(n,m)-|Ω|-running index. All instances are available for download at https://

doi.org/10.5281/zenodo.4671870.

4.5.2. Computational performance

This section investigates the performance of the three proposed solution procedures, namely

CBD, SA, and DP. All testing is performed on an Intel Core i7-3631QM CPU @ 2.20 GHz and

with 8 GB of RAM. All algorithms are implemented in C#, and CPLEX (version 12.10) is used
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as a default solver for the master model of the proposed CBD at default settings. The maximum

runtime is set to 3600 s (1 h). The numerical precision is set to µ = ϵ = χstep-size = 0.01 for all

procedures and respective parameters.

In a preliminary test we found that the influence of the exact layout (i.e., the values of n and

m for a given number of stillages) on the algorithmic performance is negligible. We therefore

restrict the performance tests to the instances with m = 4. The results of the performance test

are summarized in Table 4.2.

The computational experiments show that the exact CBD is able to solve all instances with |Ω| ≤
15 in acceptable runtime. However, not surprisingly given the NP-hard, non-linear nature of the

problem, for instances with |Ω| ≥ 30 the procedure does not terminate within the maximum

runtime of 3600 s and the gaps to the lower bounds of the MP (as reported by CPLEX) remain

high at the point of termination. Furthermore, both heuristic approaches yield better solutions

for |Ω| ≥ 30. Especially for larger instances, the time share spent solving the MP (which is

above 97% for |Ω| ≥ 30) indicates that the MP is the procedure’s bottleneck; the SP appears to

be sufficiently fast to solve.

The SA runs very fast with a runtime of below 1 s even for |Ω| = 60. For |Ω| ≥ 15, where we

know the optimum thanks to CBD, the optimality gaps are generally low. For most instances, the

optimality gaps are even zero. However, for five instances they are above 2% and can be as high

as about 5%. Nonetheless, we can draw the conclusion that the relatively simple sweep algorithm

works quite well for U-shaped picking areas. This is certainly good news for practitioners, who

may find it easy to implement such a routing scheme.

To further improve the SA, our approach based on dynamic programming yields even better

solutions. It completely closes the optimality gap in all small and most medium size instances.

Even though the DP is a little slower than the SA, it sill runs fast, with a runtime of at most 10 s

for |Ω| = 60, which is clearly sufficient for practical application.

4.5.3. Effects of having a movable depot

In our default settings, we assume a movable depot that can be positioned at any position 0 ≤
χ ≤ l and set v = 3, which means that moving the depot is six times faster than travel during

order picking (cf., Section 4.3.1). However, in practice, companies may find it easier to define

a fixed position for the depot. Furthermore, the depot could be set up and moved in a different

way. For example, the depot could be moved by a forklift or a manual hand lift truck. Depending
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Instances Benders Decomposition Sweep Algorithm Dynamic Programming
label value LB chi runtime time MP time SP opt prog value chi gap runtime value chi gap runtime

CPLEX (in s) (in %) (in %) cuts cuts (in %) (in s) (in %) (in s)
44-(9x4)-10-01 34.34 34.34 3.87 0.58 75.22 24.78 3.0 34.0 34.34 3.87 0.00 0.01 34.34 3.87 0.00 0.76
44-(9x4)-10-02 37.40 37.40 9.13 0.30 80.20 19.80 10.0 23.0 37.40 9.13 0.00 0.01 37.40 9.13 0.00 0.29
44-(9x4)-10-03 44.55 44.55 10.83 1.40 60.73 39.27 12.0 105.0 45.50 10.10 2.13 0.01 44.55 10.83 0.00 0.19
44-(9x4)-10-04 37.26 37.26 8.75 0.45 90.22 9.78 5.0 18.0 37.26 8.75 0.00 0.01 37.26 8.75 0.00 0.22
44-(9x4)-10-05 32.72 32.72 1.74 0.30 79.87 20.13 6.0 25.0 32.72 1.74 0.00 0.01 32.72 1.74 0.00 0.66
44-(9x4)-10-06 38.99 38.99 3.07 0.68 57.46 42.54 7.0 66.0 38.99 3.07 0.00 0.01 38.99 3.07 0.00 0.58
44-(9x4)-10-07 43.11 43.11 5.47 1.10 58.00 42.00 11.0 130.0 43.99 6.54 2.04 0.01 43.11 5.47 0.00 0.35
44-(9x4)-10-08 37.45 37.45 9.80 0.58 75.56 24.44 6.0 55.0 37.91 9.56 1.23 0.01 37.45 9.80 0.00 0.42
44-(9x4)-10-09 34.40 34.40 11.69 0.42 81.67 18.33 5.0 24.0 35.63 11.55 3.58 0.01 34.40 11.69 0.00 0.28
44-(9x4)-10-10 34.35 34.35 8.19 0.72 61.42 38.58 8.0 79.0 34.35 8.19 0.00 0.01 34.35 8.19 0.00 0.19
mean 37.46 37.46 7.25 0.65 72.04 27.97 7.3 55.9 37.81 7.25 0.90 0.01 37.46 7.25 0.00 0.39
44-(9x4)-15-01 52.42 52.42 9.67 39.27 83.84 16.16 12.0 1239.0 52.42 9.67 0.00 0.02 52.42 9.67 0.00 0.64
44-(9x4)-15-02 57.43 57.43 5.12 54.75 85.42 14.58 19.0 1163.0 57.43 5.12 0.00 0.03 57.43 5.12 0.00 0.35
44-(9x4)-15-03 53.81 53.81 6.84 99.48 87.21 12.79 12.0 2096.0 56.41 6.98 4.83 0.02 56.41 6.98 4.83 0.57
44-(9x4)-15-04 47.42 47.42 5.75 12.66 84.28 15.72 9.0 381.0 47.42 5.75 0.00 0.02 47.42 5.75 0.00 0.88
44-(9x4)-15-05 42.47 42.47 3.85 8.07 72.59 27.41 7.0 472.0 42.47 3.85 0.00 0.02 42.47 3.85 0.00 1.38
44-(9x4)-15-06 49.35 49.35 6.00 19.14 94.25 5.75 10.0 220.0 49.35 6.00 0.00 0.03 49.35 6.00 0.00 0.44
44-(9x4)-15-07 43.67 43.67 3.75 13.14 82.69 17.31 10.0 412.0 43.67 3.75 0.00 0.02 43.67 3.75 0.00 1.03
44-(9x4)-15-08 46.98 46.98 6.59 7.54 95.08 4.92 7.0 78.0 46.98 6.59 0.00 0.02 46.98 6.59 0.00 0.58
44-(9x4)-15-09 53.01 53.01 7.96 79.91 91.13 8.87 15.0 1080.0 53.01 7.96 0.00 0.02 53.01 7.96 0.00 0.40
44-(9x4)-15-10 45.75 45.75 10.06 16.82 69.38 30.62 9.0 829.0 46.85 10.03 2.40 0.02 45.75 10.06 0.00 0.99
mean 49.23 49.23 6.56 35.08 84.59 15.41 11.0 797.0 49.60 6.57 0.72 0.02 49.49 6.57 0.48 0.73
88-(20x4)-30-01 148.87 84.97 16.23 – 96.79 3.21 19.0 2732.0 145.65 16.32 -2.16 0.17 144.03 16.31 -3.25 4.73
88-(20x4)-30-02 148.01 84.01 17.24 – 97.67 2.33 21.0 1750.0 140.87 17.42 -4.82 0.20 140.87 17.42 -4.82 2.94
88-(20x4)-30-03 146.74 82.44 14.07 – 98.27 1.73 14.0 1703.0 139.27 14.10 -5.09 0.16 139.27 14.10 -5.09 3.54
88-(20x4)-30-04 177.22 93.24 16.84 – 97.17 2.83 28.0 214.0 167.76 15.78 -5.34 0.22 166.42 16.58 -6.09 2.18
88-(20x4)-30-05 145.45 79.07 11.90 – 98.21 1.79 20.0 1440.0 142.00 10.90 -2.37 0.20 138.11 11.80 -5.05 2.49
88-(20x4)-30-06 171.98 86.04 12.46 – 98.40 1.60 15.0 1261.0 159.75 12.94 -7.11 0.20 159.75 12.94 -7.11 2.70
88-(20x4)-30-07 143.08 81.31 12.78 – 98.10 1.90 32.0 1699.0 134.48 12.97 -6.01 0.17 134.48 12.97 -6.01 6.72
88-(20x4)-30-08 151.92 97.99 13.44 – 99.23 0.77 9.0 665.0 147.22 13.53 -3.09 0.17 147.22 13.53 -3.09 4.02
88-(20x4)-30-09 154.80 93.21 15.48 – 97.85 2.15 26.0 1704.0 148.02 14.35 -4.38 0.19 148.02 14.35 -4.38 2.83
88-(20x4)-30-10 144.04 77.70 13.81 – 99.42 0.58 18.0 457.0 137.94 13.54 -4.23 0.19 137.94 13.54 -4.23 3.52
mean 153.21 86.00 14.43 – 98.11 1.89 20.2 1555.8 146.30 14.19 -4.46 0.19 145.61 14.35 -4.91 3.57
88-(20x4)-60-01 297.23 82.28 14.86 – 98.31 1.69 11.0 388.0 255.57 15.84 -14.02 0.74 255.55 15.83 -14.02 6.24
88-(20x4)-60-02 305.78 74.83 15.12 – 99.33 0.67 9.0 132.0 237.18 15.20 -22.43 0.72 234.57 15.21 -23.29 8.32
88-(20x4)-60-03 288.54 69.71 10.56 – 96.20 3.80 14.0 345.0 234.99 11.67 -18.56 0.72 231.58 11.97 -19.74 10.43
88-(20x4)-60-04 376.85 89.00 12.97 – 96.56 3.44 16.0 645.0 285.32 15.20 -24.29 0.76 283.06 14.81 -24.89 6.31
88-(20x4)-60-05 309.40 83.28 9.66 – 93.53 6.47 14.0 1124.0 239.07 12.25 -22.73 0.68 237.95 12.65 -23.09 6.20
88-(20x4)-60-06 341.57 94.20 13.41 – 99.71 0.29 17.0 67.0 266.08 15.12 -22.10 0.76 263.65 15.58 -22.81 5.77
88-(20x4)-60-07 339.56 98.19 12.69 – 98.29 1.71 10.0 106.0 270.38 14.15 -20.37 0.75 268.30 14.28 -20.99 5.05
88-(20x4)-60-08 334.89 94.83 13.41 – 97.60 2.40 15.0 533.0 275.25 15.14 -17.81 0.84 274.08 14.86 -18.16 5.17
88-(20x4)-60-09 310.37 79.73 12.35 – 98.15 1.85 16.0 414.0 240.26 13.27 -22.59 0.78 239.94 13.24 -22.69 5.98
88-(20x4)-60-10 293.21 77.76 13.19 – 98.73 1.27 25.0 236.0 252.90 13.95 -13.75 0.74 251.66 13.69 -14.17 9.40
mean 319.74 84.38 12.82 – 97.64 2.36 14.7 399.0 255.70 14.18 -19.86 0.75 254.03 14.21 -20.39 6.89
value = objective value; LB CPLEX = lower bound as reportet by CPLEX at the point of termination; chi = depot position of the best solution; runtime =
runtime until termination; time MP =share of the runtime spent solving the master problem; time SP share of the runtime spent solving the slave problem; opt
cuts = number of added optimality cuts; prog cuts = number of added progression cuts; gap = relative gap to the Benders Decomposition’s best upper bound
– = the procedure was terminated because the runtime limit of 3600 s had been reached

Table 4.2.: Computational performance tests.

on this, the factor v may vary.

This section investigates the effects of having a movable or fixed depot as well as the effects

of different values for v. For the experiment, we use the same instances as in the performance

evaluation (cf., Table 4.2). We solve these instances using the DP approach assuming either a

movable or a fixed depot. We test four different fixed depot positions at χ ∈ {0, 0.25 · l, 0.5 ·
l, 0.75 · l}. Furthermore, we test eight different values v ∈ {1, 3, 5, 7, 9, 11, 13, 15}. Figure 4.7.

shows the mean results summarized for each instance size.

Obviously, having a stationary depot can never be better than having a movable depot, since the

movable depot can always assume the position of the stationary depot. However, the benefits of

having a movable depot strongly depend on the size of the U-zone and the length of the picklist,

as the results in Figure 4.7 show. For larger U-zones and picklists, a stationary depot at χ = 0.5·l
is almost as efficient as a movable one. For smaller U-zones and picklists, the benefits of the

movable depot are more significant. For the 44-(n,m)-10-instances, the gap in the objective

value between the movable depot case and the best fixed depot case was on average (over all
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Figure 4.7.: Best found objective values for different values of v.

different values of v) 6.37 %. For the 44-(n,m)-15-instances, the 88-(n,m)-30-instances, and

88-(n,m)-60-instances, the gaps were 3.05 %, 1.60 %, and 0.78 %, respectively.

Given these finding, a practically relevant approach might be to limit possible depot positions

to a few discrete locations. As indicated in Section 4.4.1, this would make PRP-UA non-exact

and turn it into a type of capacitated vehicle routing problem. While the problem remains NP-

hard, the capacitated vehicle routing problem is well researched with various exact and heuristic

solution procedures being readily available (cf., Ralphs et al., 2003). Such an approach is beyond

the scope of this paper, but may be interesting to investigate for future research.

Overall, χ = 0.5 · l, i.e., placing the depot in the middle of the U, performs best if a stationary

position is enforced; only for the 44-(n,m)-10-instances, χ = 0.75 · l is better. Fixing the depot

at the entrance of the U-zone, i.e., at χ = 0, is the worst option according to our experiments

and results in objective values that are significantly higher than for a movable depot or any of

the other fixed positions.

Except for the case where the depot is fixed at χ = 0, the objective values decrease with in-

creasing values of v. They do, however, not decrease linearly but asymptotically approach a

constant value due to the fact that v influences the objective anti-proportionally. Hence, there

are diminishing returns for increasing v.

For the movable depot, not only does v affect the objective value, but also the optimized depot

position. Figure 4.8 shows how the mean, maximum and minimum depot positions vary with the
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value of v. Comparing the sub-figures of the different instance sizes shows that the ideal depot

position varies less for bigger U-zones and larger picklists (i.e., the maximum and minimum

positions are closer to each other). The effect of v on the spread is negligible. Furthermore, with

increasing values of v, the ideal depot position increases, asymptotically approaching a constant

value. Again, this can be explained by the anti-proportional effect of v in the objective function.

For increasing values of v, the effort to move the depot approaches zero, such that χ approaches

the value that would be ideal to solely minimize the tour length during order picking.
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Figure 4.8.: Best found depot positions for different values of v.

4.5.4. Effects of storage assignment policies

So far, we have only considered instances with a random assignment of items to stillages. How-

ever, the allocation of items to stillages significantly influences the performance of a warehouse

with regard to the order picking process. Furthermore, in practice, the (time-)effort associated

with exchanging stillages on different levels (upper and lower) needs to be considered in addi-

tion to travel distances. Picking items from stillages requires replenishments of empty stillages

over time. In the industry case described in Glock and Grosse (2012), stillages are stacked one

atop the other, and exchanging stillages in the upper row is less time-consuming than exchanging

stillages on the lower level.

Typically, this problem is addressed with simple rules-of-thumb in both practice and research

(cf., Section 4.2). Among various storage assignment methods that have been discussed in the

literature, Glock and Grosse (2012) use a dedicated storage assignment policy where each item

has a dedicated location in the U-zone, which is kept constant for a set of orders. In this paper,

we develop a new assignment policy that we term “radial assignment” and compare this new
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policy to the four storage assignment policies developed by Glock and Grosse (2012). The

storage assignment policies studied in this paper are briefly explained in the following:

1. Random assignment: Items are assigned randomly to the stillages. Previous work used this

policy as a benchmark for evaluating other assignments, which is also done in this paper.

It was found that the random storage assignment usually leads to the highest average travel

distance.

2. Horizontal assignment: First, items are sorted in descending order of their pick frequency.

More frequently requested items are assigned to locations along the stillages on the left

side of the zone referred to as zone A in Figure 4.9a. Once the stillages in zone A have

been filled, items are assigned to zone B, then to zone C etc. Glock and Grosse (2012)

showed that a horizontal assignment is especially beneficial for wide aisles, as it helps to

avoid unproductive crossings of the aisle.

3. Vertical assignment: Items are again sorted in descending order of their pick frequency.

Items are then assigned to both parallel aisles from left to right, as can be seen in Fig-

ure 4.9b. First, stillages in zone A are filled, followed by zones B, C etc. This type of

assignment was found to produce better results for longer and narrower zones in earlier

research. In such cases, the picker saves more travel distance by crossing the zone to pick

items, instead of continuing along the same row of stillages.

4. Upper/Lower assignment: This storage assignment policy exploits the difference in the

effort associated with exchanging upper and lower level stillages by assigning frequently-

required products (that are assumed to result in frequent exchanges of stillages) to upper

level stillages (Section 4.5.4). Therefore, items are again sorted in descending order of

their pick frequency and then assigned to the upper level first before the lower level stil-

lages are filled. Figure 4.9c illustrates the preference of item allocation following the

order: A,B,..,E,F. Glock and Grosse (2012) reported that this policy is especially bene-

ficial in case the effort of exchanging stillages differs strongly between upper and lower

level stillages.

5. Radial assignment: This new storage assignment policy is introduced in this paper, where

again items are sorted in decreasing order of pick frequency. Frequently required items

are allocated radially closer to the depot location. However, the optimal depot location

is usually unknown when items are assigned. Therefore, we must assume a given depot

location for the radial assignment policy. In this paper, we will investigate four alternative

assumed depot locations χ ∈ {0, 0.25 · l, 0.5 · l, 0.75 · l}. We emphasize that the depot
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location is only assumed to determine the assignment; for the optimization, χ is still freely

adjustable. Figure 4.9d depicts the alphabetical sequence of filling the stillages for the

assumed depot location χ = 0. It is expected that this will reduce the distance covered at

the beginning and end of each tour, and should lead to good results for larger zones.

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

38 36 34 32 30 28 26 24

37 35 33 31 29 27 25 23
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(a) Horizontal assignment.
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(b) Vertical assignment.
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(c) Upper/Lower assignment.
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(d) Radial assignment for χ = 0.

Figure 4.9.: Storage assignment policies for U-shaped order picking zones

In the following, we investigate the effects of these storage assignment policies. We gener-

ate new instances based on the default instances of the performance evaluation (cf., Table 4.2),

by assigning the items according to the presented storage assignment policies instead of ran-

domly. I.e., we neither change the picklists nor the item weights, but only the assignment of

items to stillages. Furthermore, we investigate the effect of different layouts, namely (n,m) ∈
{(10, 2), (9, 4), (8, 6)} for the instances with 44 stillages and (n,m) ∈ {(21, 2), (20, 4), (19, 6)}
for the instances with 88 stillages.
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To evaluate the effort for exchanging stillages, we assume exchanging an upper stillage takes 3

min and exchanging a lower stillage takes 5 min. Assuming a picker has a travel speed of 1.2
m
s , this means that exchanging an upper (a lower) stillage causes an increase in the objective of

3 · 60 · 1.2 = 216 (5 · 60 · 1.2 = 360), since the objective value is measured in the normalized

time the picker requires to travel 1 m. However, stillages only need to be exchanged once they

are empty. To account for this, we assume all stillages have an equal capacity of Qstillage and

need to be exchanged once the capacity is depleted. We can then calculate the time-share per

picklist to exchange a stillage. For example, assume a given picklist where item j is required

with qj and item j is stored in an upper stillage. Based on our assumptions, this would result in

an additional objective value of qj
Qstillage · 216 for the respective item. We evaluate the exchange

effort for two different stillage capacities Qstillage ∈ {50, 100} and solve all instances with the

proposed DP approach. The results of the experiment are summarized in Figure 4.10.
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(c) 88-(n,m)-30-instances.
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(d) 88-(n,m)-60-instances.

Figure 4.10.: Effects of different storage and layouts on the efficiency of U-shaped order picking
zones.

Figure 4.10 shows the mean objective values for (a) the 44-(n,m)-10-, (b) the 44-(n,m)-15-

182



, (c) the 88-(n,m)-30-, and (d) the 88-(n,m)-60-instances in separate bar charts. Each bar

consists of three stacked bars. The lowest bar shows the objective value if the exchange effort

is not considered, the middle bar shows the objective value if Qstillage = 100, and the top bar if

Qstillage = 50. Note that all bars are measured from the bottom line (i.e., 0).

Concerning the efficiency of different layouts, our results confirm the findings of Glock and

Grosse (2012) and Diefenbach and Glock (2019) in that narrow layouts are beneficial. This is

the case for all tested instances. For the most efficient storage assignment policies, the results

show that the upper/lower assignment is best if the exchange effort is taken into account. This

is already true for Qstillage = 100 but especially evident for Qstillage = 50, the reason being that

upper/lower assignment is especially designed to minimize the exchange effort. Interestingly,

upper/lower assignment is the worst assignment policy (except for random storage) if solely

the pick effort is considered. In that case, the newly proposed radial assignment with χ ∈
{0.5 · l, 0.75 · l} performs best.

Concerning the efficiency of the upper/lower assignment if the exchange effort is considered,

we note that the objective value is strongly dependent on the effort for exchanging stillages and

the stillage capacity Qstillage, where higher capacities cause lower exchange efforts. While we

only considered Qstillage ∈ {50, 100} in our experiment, higher capacities are also possible. By

extrapolating our results, we can calculate the theoretical break-even stillage capacities, from

where on the upper/lower assignment is outperformed by the (former) second best assignment

policy, namely radial assignment with χ = 0.5 · l or χ = 0.75 · l. These break-even stillage

capacities are given in Table 4.3.

instances 44-(n,m)-10-instances 44-(n,m)-15-instances 88-(n,m)-30-instances 88-(n,m)-60-instances
layout (10,2) (9,4) (8,6) (10,2) (9,4) (8,6) (21,2) (20,4) (19,6) (21,2) (20,4) (19,6)

break-even at 223.60 197.03 137.96 475.29 487.81 281.00 199.37 217.00 225.37 151.62 183.70 211.81
break-even with radial radial radial radial radial radial radial radial radial radial radial radial

0.50 · l 0.75 · l 0.75 · l 0.50 · l 0.75 · l 0.75 · l 0.50 · l 0.75 · l 0.75 · l 0.50 · l 0.50 · l 0.50 · l

Table 4.3.: Stillage capacity from where on the radial assignment is more efficient than the up-
per/lower assignment.

Finally, we investigate the influence of the items’ demand skewness on the storage assignment

policies’ efficiency. For the previous experiments, we assumed that item demand follows a

20/60-Pareto distribution (cf., Section 4.5.1). However, more and less skewed demand distri-

butions are also common in practice. Therefore, we also consider a 20/80- and a 20/40-Pareto

distribution in the following. For each demand distribution and instance size, we generated ten

new instances, which we solved for all layout options and storage assignment policies (except

for random storage, where the item demand distribution is insignificant). The results are given
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in Table 4.4, which shows the relative change (in %) of the mean objective value (including the

exchange effort for stillages, where we set Qstillage = 100) compared to the default 20/60-Pareto

distribution. The results are summarized over all layout options.

instances 44-(n,m)-10-instances 44-(n,m)-15-instances 88-(n,m)-30-instances 88-(n,m)-60-instances
demand skewness 80/20 60/20 40/20 80/20 60/20 40/20 80/20 60/20 40/20 80/20 60/20 40/20

st
or

ag
e

as
si

gn
m

en
t

po
lic

y

horizontal -4.6 0.0 4.8 1.7 0.0 2.6 -3.2 0.0 2.5 -0.1 0.0 0.2
vertical -3.3 0.0 8.9 -0.2 0.0 2.0 -3.1 0.0 1.8 0.1 0.0 1.4
upper/lower -2.5 0.0 1.7 2.6 0.0 0.2 -2.2 0.0 0.4 0.7 0.0 0.0
radial 0 -4.9 0.0 10.1 0.4 0.0 1.3 -4.3 0.0 2.0 -0.5 0.0 0.9
radial 0.25 -2.4 0.0 9.5 0.4 0.0 1.3 -3.3 0.0 4.8 -0.5 0.0 1.1
radial 0.5 -2.5 0.0 8.1 -0.5 0.0 1.2 -4.4 0.0 3.6 0.1 0.0 1.6
radial 0.75 -4.0 0.0 8.7 0.6 0.0 2.3 -4.5 0.0 3.7 -0.2 0.0 0.3

Table 4.4.: Influence of the demand skewness on the storage assignment policies’ efficiency.

Table 4.4 generally indicates that more skewed demand distributions result in lower objective

values for all storage assignment policies. This was to be expected due to all considered storage

assignment policies being demand-based, meaning they are specifically designed to make use

of a skewed item demand distribution. The benefits of a more skewed demand distribution are

primarily relevant if the U-zone’s capacity is large compared to the order size |Ω|. Otherwise,

the effect is marginal. Moreover, if we compare the best storage assignment policies from the

previous tests, namely upper/lower assignment and radial assignment with χ ∈ {0.5 · l, 0.75 · l},

we gain an interesting insight. The demand skewness has a much lower influence for the former

than for the latter. This indicates that for highly skewed demand, the radial assignment with

χ ∈ {0.5·l, 0.75·l} becomes more beneficial, while for lower demand skewness, the upper/lower

assignment is superior.

4.6. Conclusion

This paper considers the order picker routing problem in U-shaped order picking zones. The

assumed order picking zones are built from stillages stacked one atop another and arranged in a

U-shape with a movable depot at its center-line, where items are dropped off during order pick-

ing. We show that the problem is NP-hard and develop the first exact solution procedure, which

is based on combinatorial Benders decomposition. Furthermore, we develop a new heuristic so-

lution procedure based on dynamic programming by expanding the concept of a heuristic sweep

algorithm from the literature, such that the new heuristic is guaranteed to find solutions that are

at least as good as the ones of the sweep algorithm.

In a computational study, we compare the performance and runtime of our two newly proposed

algorithms and the sweep algorithm. We find that the exact procedure is sufficiently fast to
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solve small problem instances in acceptable runtime but struggles with larger ones. Both the

sweep algorithm and the dynamic programming approach run very fast with at most ten seconds

runtime even for large instances. Comparing the results of the two heuristics to the exact so-

lutions, we find the optimality gaps are very small at below 1% on average and zero for many

instances. Comparing both heuristics, we find that the results of the newly developed dynamic

programming approach are on average 0.55% better than the ones of the sweep algorithm.

Beyond that, we investigate the effects of having a movable depot compared to a static depot

and the influence of different storage assignment policies, where we suggest a new policy, called

radial assignment, and compare it to various policies from the literature. We derive the following

managerial insights:

• A movable depot is always favorable compared to a stationary depot. However, for larger

U-zones and longer picklists, a stationary depot in the middle of the U-zone is almost as

beneficial as having a movable one. In our experiments, objective values were between

0.78% (for large U-zones) and 6.37% (for small U-zones) higher if the depot was fixed

compared to the movable depot case.

• Having a stationary depot directly at the entrance of the U-zone is the worst option by a

large margin in all of our experiments. It is therefore not advisable.

• In our experiments, the newly proposed radial assignment policy minimizes the effort for

order picking, while the upper/lower assignment policy minimizes the combined effort for

order picking and exchanging empty stillages. However, the latter is strongly dependent

on the assumed stillage capacities. For high stillage capacities, radial assignment remains

the best policy even if the effort for exchanging empty stillages is considered. Moreover,

radial assignment appears superior for highly skewed item demand distributions, while

upper/lower assignment is beneficial for lower demand skewness.

• In our experiments, narrow U-zones are advantageous, which validates the results from

the literature.

• The relatively simple sweep algorithm, adapted to U-shaped picking zones with a movable

depot, performs quite well. This may be good news for practitioners who do not wish to

implement complicated optimization logic.

We base our problem definition on some assumptions. Among the more critical ones are the

assumption that the depot is point-like and that pickers travel in Euclidean paths, while actual

human walk paths often resemble an elongated S-shape (cf., Diefenbach and Glock, 2019). We
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regard the resulting errors to be comparatively small. Nevertheless, future research may aim to

improve or refine our assumptions.

Furthermore, we consider storage assignment only in a rudimentary way by comparing vari-

ous assignment policies. However, as our computational study shows, storage assignment can

greatly influence a U-zone’s efficiency. Future research may investigate the possibility to store

multiple kinds of items per stillage, which is sometimes found in practice. Our solution proce-

dures are already suited for such scenarios, but we did not consider suitable storage assignment

policies. Moreover, it could be advisable to consider a combined storage assignment and rout-

ing problem in the future. As the performance of our exact solution approach suggests, this is

most likely only possible with heuristic solution approaches, although investigating stronger cuts

might also present an interesting and promising opportunity to improve our BD’s performance

further in the future.

In this paper, we considered a fully manual system, as currently automation plays a subordinate

role for U-shaped order picking zones. However, automation becomes increasingly important for

order picking in general, where it has achieved significant performance increases in recent years

(Jaghbeer et al., 2020). Looking into future developments for U-shaped picking areas, a logical

step would be to automate depots, enabling them to (autonomously) relocate while the picker

processes pick tours. Future research may investigate the benefits of such (semi-)automated

systems and thereby encourage the development of suitable technologies.

With this paper being the most recent addition, U-shaped order picking zones have been increas-

ingly studied in recent years, since they were first introduction by Glock and Grosse (2012).

However, there has not yet been a comprehensive comparison between U-shaped layouts and

conventional layouts with parallel shelves. Especially from a practical point of view, it might be

desirable to have some guidelines about when which layout poses which benefits. The insight

gathered in previous works and in this paper may spark future research into this topic.
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4.A. Appendix

Proposition 4.5. Given two points P1 = (xp1, y
p
1) and P2 = (xp2, y

p
2) with Cartesian coordinates,

the inequality
√
2 ·De(P1, P2)−Dr(P1, P2) ≥ 0 always holds true.

Proof. To simplify notation, we define lpx = |xp1 − xp2| and lpy = |yp1 − yp2 | and lpy
lpx

= ϕ ⇔
lpy = ϕ · lpx. Using these definitions and the definitions of De(P1, P2) and Dr(P1, P2), it follows

that
√
2 ·
√

(1 + ϕ2) · (lpx)2 − (1 + ϕ) · lpx ≥ 0 must hold in order for Property 4.5 to be true.

Rearranging yields
√
2·
√

(1 + ϕ2)−(1+ϕ) ≥ 0⇒
√
2·
√
(1 + ϕ2) ≥ (1+ϕ)⇒ 2·(1+ϕ2) ≥

(1 + ϕ)2 ⇒ ϕ2 − 2 · ϕ + 1 ≥ 0. Applying the binomial theorem finally yields the inequality

(ϕ− 1)2 ≥ 0, which is always true, since the left side is a quadratic term that cannot be smaller

than zero.
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Paper 5: Multi-depot electric vehicle
scheduling in in-plant production logistics
considering non-linear charging models10

Abstract: Electric vehicle scheduling is concerned with assigning a fleet of electrically powered vehicles
to a set of timetabled trips. Since the range of these vehicles is limited, charging breaks need to be
scheduled in-between trips, which require detours and time. This paper presents a novel electric vehicle
scheduling problem with multiple charging stations in an in-plant logistics setting with the objective
of minimizing the required fleet size. Contrary to previous works, we consider constant, linear and
non-linear battery charging functions, which, among other things, allows to model realistic non-linear
lithium-ion battery charging. We present an integer programming model and an exact branch-and-check
solution procedure, which is based on decomposing the problem into a master and a subproblem. The
former is concerned with assigning vehicles to trips while relaxing the battery constraints. The latter
schedules charging breaks and checks if the master problem’s solution is feasible with regard to the non-
relaxed battery constraints. Our computational tests show that solving the IP model with a standard solver
(CPLEX) is inferior to the branch-and-check approach, which generally performs well even for practically
relevant instance sizes. Furthermore, we derive some insights into the influence of the charging mode and
maximum battery capacity on the required fleet size. Lastly, we investigate the effects of the number of
warehouses (with respective charging stations).

Keywords: Scheduling; Non-linear charging; Tow train; In-plant logistics; Electric vehicle scheduling

10This chapter has been published as: Diefenbach, H., Emde, S., and Glock, C. H. (2022). Multi-depot electric
vehicle scheduling in in-plant production logistics considering non-linear charging models. European Journal of
Operational Research, in press. DOI: https://doi.org/10.1016/j.ejor.2022.06.050
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5.1. Introduction

Vehicle scheduling is concerned with assigning a set of timetabled trips to a set of vehicles

to satisfy some objective, typically the minimization of the size of the vehicle fleet, or of the

total deadheading time, or of a combination of both. While vehicle scheduling problems have

received a lot of attention from academia, interest in scheduling electric vehicles, whose range

is severely limited by their battery, has only recently increased.

This paper considers the multi-depot electric vehicle scheduling problem with the objective of

minimizing the fleet size (EVSP-MD-FS). It can be briefly described as follows. Given are a set

of timetabled service trips with predetermined start and end times, a fleet of homogeneous elec-

tric vehicles with a limited battery capacity, a set of depots for the vehicles, and a set of charging

stations (which can correspond to the depots), where the vehicles can be charged. Which vehicle

should process which service trip such that no battery ever runs empty, the timetabled processing

times are met, and the total fleet size is minimal? Batteries can be (partially or fully) charged in-

between service trips at the charging stations, time permitting. We consider constant, linear and

non-linear battery charging functions, which allows modeling the two most common charging

technologies, battery swapping and lithium-ion battery plug-in charging with a realistic, non-

linear charging function. In contrast to many classic versions of vehicle scheduling problems

(VSP) and electric vehicle scheduling problems (EVSP), we consider deadheading trips solely

in the form of additional time and battery requirements, but not as costs in the objective function.

EVSP-MD-FS is motivated by an application in in-plant production logistics, where the typical

part feeding process in mixed-model assembly plants is as follows (Boysen et al., 2015, Emde

et al., 2018). Customer orders are sequenced several days before production begins, such that

the exact part demand in every work cycle is known with certainty. Subsequently, service trips

– trips for re-supplying the work cells –, schedules, and loads of the tow trains – electric vehi-

cles attached to a handful of wagons carrying parts to the assembly line, see Figure 5.1b – are

determined. Since space at the work cells on the shopfloor is scarce, it is usually not possible to

store parts for more than a few work cycles there. Hence, deliveries are frequent and come in

small lots. Logistics workers in the warehouses prepare the parts needed at the assembly line in

stillages. A service trip – or trip for short – by the tow train then consists of the following steps:

pick-up of the prepackaged stillages from the respective picking stations in the warehouse, drive

to the assembly plant, and drop-off the stillages at the appropriate assembly cells. After com-

pleting a trip, the tow train may set off to the start point of a consecutive trip, to a recharging

station or, at the end of the shift, to a depot, where tow trains are also stationed at the beginning
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of the shift. The parts that need to be picked, the picking zones involved, and the assembly sta-

tions that need to be visited on a given trip depend on the production sequence. Since tow trains

are electric (combustion engines are generally not legally allowed on shopfloors), the vehicles’

batteries must be periodically charged at charging stations.

In classic VSP, the minimization of deadheading distances is often the primary objective. How-

ever, this is not the case for the application in in-plant production logistics due to the following

properties of the latter. Apart from distances being generally shorter, routes are frequently cir-

cular milk-runs: a vehicle sets off from a logistics area, executes a service trip, and returns to

the logistics area for the next trip. Therefore, the vehicles pass by depots and stations quite

frequently. Because of this and due to the short driving distances, deadheading – while still

necessary to some degree – is less of a concern in production logistics. Instead, the number of

vehicles and operators are the main cost drivers, which, therefore, should be minimized (Golz

et al., 2012, Emde et al., 2018). It is essential to minimize the fleet size on an operational level,

since operational decisions entail the satisfaction of tactical objectives – requiring fewer vehicles

for daily operations enables a company to reduce their (tactical) fleet size in the long run.

Throughout the paper, we distinguish trips from routes. Trips always refer to pre-planned service

trips as explained above. A vehicle’s route is a sequence of consecutively executed trips, visited

stations, and depots. An exemplary tow train’s route, where the charging stations correspond to

the depots and the executed trip is marked in bold, is depicted in Figure 5.1a.

production plant
warehouse A

warehouse B

electric tow train

assembly cells / 
points of use

picking zone

example
trip

tow train depot / 
charging station

example route

(a) Example of a tow train making a delivery on factory
premises.

(b) Electric tow train11.

Figure 5.1.: Electric vehicles carrying parts to final assembly.

Vehicles for in-plant production logistics, such as tow trains, for example, are usually equipped
11By AutoGuidedVehicles [Public domain], from Wikimedia Commons
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with lithium-ion batteries. For these vehicles, two approaches are common to replenish empty

batteries: either battery swapping (i.e., exchanging a depleted battery with a charged one) or

plug-in charging. For the latter, either a constant current-constant voltage (CC-CV) scheme or a

constant power-constant voltage scheme (CP-CV) is usually applied (Liu, 2013). Both charging

schemes consist of two phases and aim to reduce battery degradation by avoiding excessive

voltage levels during charging. In the first phase, the battery is charged with a constant current

(CC-CV) or power (CP-CV), which results in a linear increase of the battery’s state-of-charge

(SOC) over time. At some point, usually when the SOC is at about 80%, the battery’s voltage

reaches a critical level and the second phase begins. Here, the voltage is kept constant at the

maximum acceptable level resulting in a declining charging rate over time such that the battery’s

SOC gradually approaches the maximum charge. The resulting charging function is a concave

piece-wise non-linear function (cf., Figure 5.3a).

The contribution of this paper is as follows. We present a novel application for the multi-depot

EVSP in in-plant logistics, thereby extending the electric vehicle milk-run scheduling problem,

first introduced by Emde et al. (2018), by considering multiple depots. Contrary to most previ-

ous works on the EVSP, we consider realistic lithium-ion battery charging functions, including

battery swapping and non-linear charging functions. We develop a MIP model and propose the

first exact solution method, based on branch-and-check, for this kind of problem with non-linear

battery charging. The solution approach is shown to solve instances generated based on realistic

specifications in good time. Moreover, we provide some insight into the effect of the charging

technology as well as warehouse and depot placement on system performance.

The remainder of this paper is organized as follows. We review the literature in Section 5.2.

In Section 5.3, we formally define the problem. A compact mixed-integer programming (MIP)

model is provided in Section 5.4. We propose our branch-and-check solution method in Section

5.5, and test it in a computational study in Section 5.6. Finally, Section 5.7 concludes the paper.

5.2. Literature review

Since the seminal work of Saha (1970), VSP have received a lot of attention from academia.

Bunte and Kliewer (2009) and Ibarra-Rojas et al. (2015) provide surveys. Scheduling of electric

vehicles has been addressed considerably less often. There are some models that impose a maxi-

mum length or duration on schedules for individual vehicles (Freling and Paixão, 1995, Haghani

and Banihashemi, 2002, Wang and Shen, 2007); however, this is not the same as taking into

consideration battery capacities and charging intervals. Only in recent years, the electric vehi-
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cle scheduling problem (EVSP) has gained increasing attention from the scientific community.

The majority of research deals with the EVSP based on the application in public transportation.

Although the problems disucssed in the context of public transportation have a different focus

than EVSP-MD-FS in terms of objectives (mostly minimization of deadheading cost), problem

structure (e.g., chaining multiple visits to charging stations in a row), and instance data (e.g.,

the operational area is much larger, deadheading trips are substantially shorter than service trips,

etc.), from a modelling perspective they are nonetheless similar. We therefore discuss the state

of the art in public transport EVSP in more detail in the following.

Wen et al. (2016) discuss a multi-depot electric VSP, where vehicles have a limited battery

capacity and can be charged at any given charging station. They assume that batteries are charged

at a linear rate (i.e., battery swapping is not considered) and that the energy consumption depends

on the driving distance. Moreover, they allow for chains of charging, i.e., visiting a sequence of

charging stations between trips. The goal is to minimize the weighted sum of the fleet size and

the total deadheading distance. They present a heuristic based on adaptive large neighborhood

search.

Wang et al. (2017) present a case study of the electric mass transit system in Davis, Califor-

nia. They develop a holistic optimization model that considers the total annual operating costs,

including, among other things, charging costs and the cost for setting up the charging stations

in the first place. Similarly, Chao and Xiaohong (2013) present a case study from Chinese

metropolitan areas. Messaoudi and Oulamara (2019) study the operational problem of optimiz-

ing the deployment of electric buses based on a case study at an urban public transportation

service. They assume that buses can only charge at a central depot. Besides scheduling charge

events, they aim to optimize the assignment of buses to line services and to parking positions

with varying accessibility at the depot.

Reuer et al. (2015) and Adler and Mirchandani (2017) investigate the electric VSP where vehi-

cles must always be charged to capacity, i.e., no partial charging is allowed. The latter assume a

constant time for battery charging and allow for chains of charging with the aim to minimize the

fleet size and operational costs for charging. They solve the considered problem using a branch-

and-price approach. Reuer et al. (2015) assume that charging times are constant and minimize

the total deadheading cost. Besides only considering the scheduling of electric vehicles, Reuer

et al. (2015) also consider a scheduling problem with a combined fleet of electrical and conven-

tional vehicles, where the latter have unlimited range. They also assume that charging stations

correspond to the start or end points of a subset of the trips, such that no detours are necessary

to reach charging stations.
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Based on the model and a heuristic solution approach developed by Adler and Mirchandani

(2017), Olsen and Kliewer (2018) study the validity of the often assumed linear and constant-

time battery charging compared to actual non-linear charging. They conclude that the assump-

tion can cause significant discrepancies and suggest a more sophisticated, i.e., non-linear, mod-

eling approach. Olsen and Kliewer (2020) follow this stream of research further, finding that

constant-time charging (as an approximation of non-linear charging) overestimates the time re-

quired to charge, which results in too many vehicles being used. On the other hand, linear

charging is found to underestimate charging times, which results in too tight vehicle schedules

that are infeasible in practice. Moreover, Olsen and Kliewer (2020) investigate the number of

vehicles charging simultaneously at the same station. They find that the maximum number of si-

multaneously charging vehicles ranges from about two to eight, depending on the exact instance

and the assumed battery charging model.

Li (2014) develops two models, one for electric bus scheduling and one for scheduling buses

with limited range that cannot be charged between tours, however. For the electric buses, either

battery swapping or fast charging is assumed. Both are modeled as constant-time charging. The

objective is to minimize the weighted fleet size and total operational costs. An exact branch-

and-price solution approach is developed and shown to perform well on real-world instances.

Sassi and Oulamara (2017) study the scheduling of a given fleet of both electric and conventional

vehicles with the objective of minimizing the total charging and traveling cost, where they only

consider plug-in charging. Similarly, Zhou et al. (2020) study the scheduling of a fleet of electric

and conventionally powered vehicles with the aim to minimize the total operational costs as

well as carbon emissions. Moreover, Yao et al. (2020) consider an EVSP with multiple types of

electric buses, where certain trips can only be performed by certain types of buses. They further

assume that vehicles can only charge at their nearest depot or base depot, where charging is

modeled as constant-time charging.

Janovec and Koháni (2019a) study the effects of degrading battery capacities on an EVSP with

the objective of minimizing the fleet size. They assume linear battery charging, model the prob-

lem as a MIP and solve it using commercial software. The same model and solution approach is

applied to solve real-world instances in Janovec and Koháni (2019b).

While most of the previously considered works assume the trip timetables as given, Teng et al.

(2020) investigate the integrated optimization of trip timetables and vehicle schedules with the

objective of minimizing the fleet size and charging costs. They assume that vehicles can only

be charged at a single depot and must always be charged to the maximum battery capacity.

They solve the integrated problem heuristically using particle swarm optimization. Somewhat

199



related, Schneider et al. (2014) and Goeke and Schneider (2015) are concerned with the routing

of electric vehicles. Their aim is to route a fleet of electric vehicles such that, for a set of given

locations, each location is visited within a respective time window. The electric vehicles have a

limited range and must visit stations to charge. While the former consider a fleet of pure electric

vehicles, the latter assume a mixed fleet of electric and conventionally powered vehicles.

In contrast to the work presented above, where battery charging is assumed to be linear or exe-

cuted in constant time, van Kooten Niekerk et al. (2017) develop a set of EVSP models with more

sophisticated battery charging. Their objective is to minimize the total cost, which depends on

the fleet size, the total energy cost and the battery depreciation. They allow for non-linear charg-

ing and daytime-dependent energy costs when charging. Furthermore, they track the batteries’

SOC over all dis-/charging events to assess the costs of battery depreciation. The authors for-

mulate a MIP with simplified, linear battery charging and solve it using a commercial standard

solver. In addition, they formulate a model based on column generation, where the non-linear

battery charging is incorporated into the models via discretization. Based on this model, they are

able to solve smaller problem instances to optimality and larger instances heuristically. How-

ever, contrary to most of the previously mentioned literature and the problem considered in this

paper, van Kooten Niekerk et al. (2017) assume that charging can take place only at the end/start

of certain trips, such that no detours are necessary to visit charging stations.

Zhang et al. (2021) consider an electric bus scheduling problem with multiple types of buses and

multiple depots. They assume that buses can charge in-between any two service trips. However,

in contrast to the majority of EVSP including EVSP-MD-FS, they assume that each vehicle can

only charge at its respective home depot, which limits the flexibility of schedules significantly.

Their considered objective is to minimize the total operational costs of the fleet, which includes

vehicle purchasing costs, energy consumption costs and time requirement costs. Moreover,

they discuss two possibilities to approximate non-linear battery charging – either by a single

linear function or by a piece-wise linear function. To solve their problem, Zhang et al. (2021)

present a MIP as well as a large neighborhood search heuristic. In their computational study, the

authors find that the piece-wise linear approximation works well. On the other hand, the linear

approximation is shown to frequently cause too tight schedules that are infeasible in practice.

Sweda et al. (2016) examine a somewhat different problem: given a single vehicle following

a given route, where should the vehicle stop to recover how much charge such that the total

charging cost is minimal?

To power electric vehicles, various types of batteries and battery replenishment technologies

have been developed. However, in recent years, lithium-ion batteries have been established as
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the dominant battery technology for electric vehicles (Den Boer et al., 2013). Their main ad-

vantage is a high power density compared to other battery technologies such as, for example,

Pb-acid, NiCd, or NiMH batteries (Den Boer et al., 2013). On the downside, lithium-ion batter-

ies are expensive and have a limited lifespan, which is further influenced by various handling and

employment conditions (Barré et al., 2013). Among other factors, a greater depth of discharge,

higher (dis-)charging rates and a higher SOC during storage can accelerate battery degradation

(Vetter et al., 2005).

Considering the high costs of lithium-ion batteries and the influence of employment conditions

on their lifetime, Pelletier et al. (2017) suggest to integrate battery degradation into decision sup-

port models for electric vehicle operations and discuss respective modeling approaches. How-

ever, according to our observations, such considerations are currently only of minor concern

for intra-logistical planners and only taken into account in a rudimentary manner, for example,

by limiting the depth of discharge of battery powered vehicles. The consideration of battery

degradation is therefore beyond the scope of this paper.

Finally, from a strategic point of view, research has been concerned with planning optimal loca-

tions of charging stations in the context of public transportation. Liu et al. (2018), for example,

consider the location planning of fast-charging stations for electric bus systems. They develop

both an exact and a robust stochastic optimization model with the objective of minimizing the

total costs for charging stations and required batteries. He et al. (2019) consider a similar prob-

lem, where they additionally account for costs of energy storage systems and electricity demand.

Lin et al. (2019) present a large-scale charging station planning approach that not only considers

charging demands but also the available power grid infrastructure. The strategic planning of

charging locations is, however, beyond the scope of this paper.

To summarize the previous review and to emphasize the contribution of this paper, we conclude

the overview of the EVSP with Table 5.1, which compares the versions of EVSP that are most

closely related to the problem considered in this paper. The overview demonstrates the novelty

of this paper by considering realistic, non-linear battery charging in a situation where charging

requires detours and vehicles are free to charge at any charging station. Moreover, most VSP

papers consider the problem in the context of public transportation, which requires a different

focus on things like, e.g., deadheading costs and multiple visits of charging stations in a row

due to the sparse charging infrastructure relative to the large service area. To the best of our

knowledge, the only previous paper dealing with electric VSP in a production logistics context

is Emde et al. (2018), who present a tabu search heuristic for the single depot case. Unlike

this previous paper, we consider both constant-time and non-linear charging as well as multiple
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depots and develop an exact algorithm.
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Chao and Xiaohong (2013) ✓ ✓8 ✓ ✓ ✓ ✓ ✓
Li (2014)1 ✓ ✓ ✓ ✓9 ✓ ✓ ✓ ✓ ✓
Reuer et al. (2015)2 ✓ ✓ ✓ ✓ ✓ ✓
Wen et al. (2016) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adler and Mirchandani (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sassi and Oulamara (2017)2 ✓ ✓ ✓ ✓10 ✓ ✓ ✓ ✓
Wang et al. (2017) ✓ ✓ ✓ ✓ ✓11 ✓ ✓
van Kooten Niekerk et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓12 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Emde et al. (2018) ✓ ✓13 ✓ ✓ ✓ ✓
Olsen and Kliewer (2018)3 ✓ (✓)6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Janovec and Koháni (2019a)4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Messaoudi and Oulamara (2019) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Olsen and Kliewer (2020) ✓ ✓ (✓)6 ✓ ✓ ✓ ✓14 ✓ ✓ ✓ ✓ ✓
Yao et al. (2020) ✓ ✓ ✓15 ✓ ✓ ✓ ✓ ✓ ✓
Zhou et al. (2020)5 ✓ ✓ ✓ ✓16 ✓ ✓ ✓ ✓
Zhang et al. (2021) ✓ (✓)7 ✓ ✓ ✓17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
this paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Abbreviations: bat. = battery; cap. = capacity; de. = depot; FS = fleet size; max. = maximum; TC/RC = travel cost and/or charging
cost; ve. = vehicle; w. = weighted. Annotations: 1 This refers to the considered EVSP with electric buses.; 2 This refers to the considered
EVSP with electric vehicles only.; 3 Their model is identical to the one of Adler and Mirchandani (2017).; 4 The problem is identical to
Janovec and Koháni (2019b).; 5 This refers to the considered electric buses within their mixed-fleet model.; 6 The solution process only
considers constant-time/linear charging – non-linear charging is only considered to examine solutions afterwards.; 7 Non-linear charging is
approximated using a piece-wise linear function; 8 The objective is to minimize the cost of the fleet size, standby batteries, and total charge
demand.; 9 The considered objective is to minimize the fleet size, the total travel distance, and total battery charging service cost.; 10 The
objective is to maximize the distance covered with electric buses (instead of conventional ones), and minimize their energy consumption.;
11 The objective is to minimize the annual total electric bus recharging system operating costs.; 12 The considered objective is to minimize
the fleet size, total energy cost, and total battery depreciation costs.; 13 The objective is to minimize the fleet size and the workload of the
busiest vehicle.; 14 The objective is to minimize the fleet size plus the operational costs.; 15 The objective is to minimize the total annual
scheduling costs.; 16 The objective is to minimize the operative costs and carbon emissions; 17 The objective is to minimize the operational
costs including vehicle purchasing costs, energy consumption costs, and travel time costs.

Table 5.1.: Comparison of different electric vehicle scheduling problems.

Given that tow trains are widely employed in many production systems, it is not surprising

that several publications deal with the routing and scheduling of such vehicles in a just-in-time

context (e.g., Emde and Boysen, 2012, Emde and Gendreau, 2017, Emde and Schneider, 2018,

Fathi et al., 2014, 2016, Zhou and Peng, 2017). Despite the fact that in-plant delivery vehicles

are almost without exception electric ones, very few papers on automotive part feeding have so

far considered this aspect. Hu et al. (2017) address the problem of drawing up a schedule for a

single electric tow train serving a given route, where the speed of the vehicle can be adjusted to

modify its energy consumption, which is to be minimized. Zhou and Tan (2018) optimize both

the location of charging stations and the routes of the tow trains in a holistic approach. Finally,
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Briand et al. (2018) aim to schedule tow trains such that their energy consumption is minimal.

They also propose a method to derive realistic energy expenditures, showing that minimizing

travel distance and minimizing energy expenditure are not always the same. All of these papers

consider the superordinate problems of deciding on routes and schedules for the vehicles, not

assigning individual vehicles to already timetabled trips. An overview of the whole part logistics

process in the automotive industry is given by Boysen et al. (2015).

From a scheduling perspective, the EVSP-MD-FS is somewhat reminiscent of scheduling point-

to-point deliveries with time windows (Emde and Zehtabian, 2019, Gschwind et al., 2019), ex-

cept that trips do not only have time windows, but that they are already timetabled. Scheduling

jobs with fixed starting times on a set of machines is the subject of interval scheduling (sur-

veyed by Kovalyov et al., 2007, Kolen et al., 2007), which does not take battery charging into

account, however.

5.3. Problem description

We present a formal description of the EVSP-MD-FS in Section 5.3.1 and a MIP model in

Section 5.4. Like all mathematical models, our problem definition is based on some assumptions.

Specifically, we assume that all parameters, especially all trips, are known and deterministic,

which is a realistic assumption in just-in-time industries, where production sequences are typ-

ically fixed several days in advance, and the exact transport demands are consequently known

(Emde et al., 2012). Moreover, we consider homogeneous vehicles with fully charged batteries

at the beginning of the planning horizon, which are initially all stationed at depots.

All charging stations always have sufficient space and capacity to service any docked tow trains.

Clearly, this may not always be the case in practice, where charging capacities can be limited by

space or the charging infrastructure’s capacity. Nevertheless, it presents a common assumption

in the literature (e.g., Reuer et al., 2015, Wen et al., 2016, Zhang et al., 2021). Moreover, Olsen

and Kliewer (2020) found that even without restricting the stations’ capacities in their model,

solutions rarely had an excessive number of vehicles charging simultaneously, which is in line

with our observations in practice. Finally, we consider deadheading implicitly in the constraints,

but not in the objective function, because vehicle and operator costs tend to dominate the detour

costs due to the relatively short driving distances (Golz et al., 2012, Emde et al., 2018).
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5.3.1. Formal problem description

We base the definition of the EVSP-MD-FS on the notation summarized in Table 5.2. Let D =

{1, . . . , d} be the set of depots, let J = {d + 1, . . . , d + n} be the set of trips to be processed

during the planning horizon and let S = {d+n+1, . . . , d+n+s} be the set of charging stations

(called “stations” in the following). Note that we introduce offset indices to ease notation in the

following definitions and models. Generally speaking, the locations of stations do not have to

coincide with the depots or the start or end points of the trips, but can of course correspond to

these locations. In fact, the former is the case for most of the in-plant milk-run logistic systems

we observed. Each trip consists of a vehicle visiting multiple locations (i.e., assembly cells) in

a given path. The exact path the vehicle takes is immaterial for the EVSP-MD-FS; we assume

that this issue has been decided in a previous step. Let sj be the start time of trip j, i.e., the

time when the vehicle arrives at the trip’s first location, and let ej be the end time of trip j,

i.e., the time when the vehicle departs from the trip’s last location. For notational convenience,

we also define sj = ∞ and ej = 0, ∀j ∈ D ∪ S, which implies that depots and stations are

always available. Without loss of generality, we assume that sj ≤ sj′ holds, ∀j, j′ ∈ J : j < j′,

i.e., the trips are indexed according to their starting time in ascending order. Moreover, let tj,j′ ,

∀j, j′ ∈ D∪S ∪J : j ̸= j′, be the transit time of a vehicle from depot, station, or the end of trip

j to depot, station, or the starting point of trip j′. For transit times, we assume that the triangle

inequality holds in the sense that tj,j′ ≤ tj,j′′+max{ej′′−sj′′ , 0}+tj′′,j′ , ∀j, j′, j′′ ∈ J∪D∪S,

where max{ej′′ − sj′′ , 0} is the trip’s execution time if j′′ ∈ J , and zero if j′′ ∈ D ∪ S. Let the

battery capacity, i.e., maximum SOC, of the vehicle be ĉ, and the charge required to complete

trip j ∈ J be c̃j , where we assume c̃j ≤ ĉ applies, ∀j ∈ J . Note that the required charge c̃j may

depend on the total distance covered, the number of stopovers, the carried load, the terrain (e.g.,

steep slopes), and other factors. We assume that these values have been determined beforehand

and are given. To ease notation, we further define c̃j = 0 and c̄j,j = 0, ∀j ∈ D ∪ S. Let c̄j,j′

be the charge required to drive from depot, station or the end of trip j to depot, station, or the

starting point of trip j′. As for travel times, we assume that the triangle inequality also holds for

battery requirements in the sense that c̄j,j′ ≤ c̄j,j′′ + c̃j′′ + c̄j′′,j′ , ∀j, j′, j′′ ∈ J ∪ D ∪ S. We

assume that charging is only possible at stations. If vehicles should be able to charge at depots or

at the start or end points of trips, we can add stations that correspond to the respective locations.

204



c state of charge (SOC)
ĉ maximum SOC
D set of depots; D = {1, . . . , d}
J set of trips; J = {d+ 1, . . . , d+ n}
j depot, trip or station index
S set of charging stations; S = {d+ n+ 1, . . . , d+ n+ s}
c̃j required charge to complete trip j

c̄j,j′ required charge for the transit from depot, station, or (the end of) trip j to depot,
station, or (the start of) trip j′

ej end time of trip j

m̄j maximum vehicle capacity of depot j
m number of vehicles
r constant time required to attach a vehicle to a charger (or to exchange the battery,

depending on the context)
sj start time of trip j

tj,j′ transit time from depot, station, or (the end of) trip j to depot, station, or (the start
of) trip j′

δk(l) mapping signifying that vehicle k visits station δk(l) ∈ S or no station at all (δk(l) =
0) after the l-th trip of its schedule

ζ(j, j′, j′′, c) function giving the maximum SOC at the end of trip (or depot) j′ for a vehicle
coming from j with SOC c visiting station j′′ ∈ S or no station at all (j′′ = 0)
in-between

ζ̄(k, l) SOC at the end of the l-th trip of vehicle k

η(τ) battery charging function dependent on time τ ; η(τ) is the SOC if an empty battery
is charged for time τ

τ amount of time
τ̄(j, j′, j′′, c) time a vehicles spends charging at station j′′ while transiting from j with SOC c to

j′

ωk ordered set denoting which depots are to be visited and trips are to be performed by
vehicle k in what order

Table 5.2.: Notation.

Let η(τ) denote the charging function over time τ , i.e, the SOC an empty battery would have

after being charged for a time of τ . We assume that η(τ) is either a constant function, a linear

function or a non-linear function, which, in the latter two cases, is capped at ĉ, i.e., when the

battery is full. Moreover, we assume that a vehicle arriving at a station requires a time of r before

charging can start, where, depending on the assumed charging technology, r is the time required

to swap the battery or to connect the battery to the charger. This enables us to account for the
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two most commonly encountered charging technologies in practice, namely battery swapping

and charging via power cable with a realistic non-linear increase of the SOC. Furthermore, we

assume the charging function is equal for all vehicles and stations and that vehicles are always

charged whenever they spend sufficient time at a charging station. For a vehicle charging for a

time of τ beginning from a SOC c ≥ 0, the resulting SOC is given as η
(
η−1 (c) + τ

)
, where

η−1 (c) is the inverse function of η(τ) and states the time τ required to charge an empty battery

to SOC c. For the case of η(τ) being a constant function, we define η−1(c) = 0. To further ease

notation, we define η−1(c) = 0 , for c < 0, and η−1(c) = ∞, for c > ĉ, as well as η(τ) = 0, for

τ < 0. This makes it easy to accommodate non-linear charging.

A solution for EVSP-MD-FS then consists of

• a collection {ω1, . . . , ωm} of ordered sets ωk, denoting which depots are to be visited and

which trips are to be performed by each vehicle k = 1, . . . ,m in what order,

• and m mappings δk : {1, . . . , |ωk| − 1} → j, for k = 1, . . . ,m, where δk(l) = j specifies

the deadheading route of vehicle k between the l-th trip (or depot for l = 1) and the

(l + 1)-th trip (or depot for l = |ωk| − 1). Two general types of deadheading routes are

possible: If j = 0, the vehicle drives directly form trip l to l + 1 without any charging

break. Otherwise, if j ∈ S, the vehicle visits station j after the l-th trip (or depot) to

recharge its battery before heading for the (l + 1)-th trip (or depot).

Let ωk(l) refer to the l-th element in the ordered set. For all vehicles k = 1, . . . ,m, it must

hold that ωk(1) ∈ D and ωk(|ωk|) ∈ D, since each vehicle departs from a depot initially

and returns to one at the end. Furthermore, all trips need to be processed exactly once, i.e.,⋃m
k=1

⋃|ωk|−1
l=2 {ωk(l)} = J and ωk(l) ̸= ωk′(l

′), ∀k, k′ = 1, . . . ,m; l, l′ = 2, . . . , |ωk|−1 : k ̸=
k′ ∨ l ̸= l′ must hold.

Note that by these definitions, vehicles are also allowed (but not required) to visit a charging

station right after leaving and before returning to a depot. Moreover, our definition of δk im-

poses that vehicles visit at most one station between consecutively executed service trips. This

forecloses the possibility of chains of charging, which would be especially useful if distances be-

tween service trips are large compared to the vehicles’ battery reach, such that multiple charges

are required to travel between consecutive service trips. Since distances are comparatively small

in intra-logistic transportation systems, visiting multiple charging stations in direct succession

is all but unheard of, however.

We say a solution to an instance of EVSP-MD-FS is feasible if it is feasibly executable. I.e., for
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every vehicle, the battery’s SOC must never be negative and the executed route must not violate

the time constraints. For a formal definition, see Section 5.3.2.

Moreover, while somewhat uncommon in the in-plant transportation systems that motivated this

paper, there are additional constraints that planners may reasonably want to consider. First, due

to space constraints, each depot j ∈ D could be required to host no more than m̄j vehicles,

where m̄j = n if no limit exists. Second, vehicles could be required to return to their depot

of initial departure at the end of their schedule. In the following, we discuss them as optional

extensions of the basic EVSP-MD-FS problem. Specifically, |{k ∈ {1, . . . ,m} : ωk(1) =

j}| ≤ m̄j ∧ |{k ∈ {1, . . . ,m} : ωk (|ωk|) = j}| ≤ m̄j , ∀j ∈ D, must hold to account for the

limited capacity of the depots. Finally, if vehicles are required to return to their depot of initial

departure, it must hold that ωk(1) = ωk (|ωk|), ∀k ∈ {1, . . . ,m}.

The objective of EVSP-MD-FS is to find a feasible schedule that minimizes the number of

vehicles m. Hence, we minimize the number of vehicles m to which trips are assigned.

5.3.2. Feasibly executable solutions

In order to determine whether a solution is feasibly executable, we must determine the recharged

battery during charging breaks and, hence, their duration. Each vehicle can charge its battery

whenever it visits a station, i.e., whenever δk(l) ∈ S. We can preempt the decision on the

charging breaks’ duration by taking the following proposition into account.

Proposition 5.6. Given the trips (and depots) ωk to be executed (or visited) by vehicle k, the

policy of charging the vehicle at every charging station it visits for as long as the trip sequence

ωk permits creates a feasible solution, if any exists. I.e., using this charging policy, the vehicle

reaches each trip (and depot) j ∈ ωk with the maximum SOC possible given ωk.

Proof. The proof is by an interchange argument. Assume that in some feasible solution, vehicle

k reaches trip j ∈ ωk : j ̸= ωk(|ωk|) with SOC c′ and the consecutive trip (or depot) j′

with c′′, where it executes the deadheading route j′′ in-between. We refer to this as case one.

Alternatively, assume a second case, where j is reached with SOC c′′′ = c′ + ∆c and j′ with

SOC c′′′′, where ∆c is a positive amount of charge. In the following, we prove that c′′′′ ≥ c′′ is

guaranteed to hold true.

In the second case, the vehicle can execute the exact same deadheading route as in the first case.

If j′′ = 0, it follows that c′′ = c′ − c̄j,j′ and c′′′′ = c′′′ − c̄j,j′ = c′ +∆c− c̄j,j′ , hence c′′′′ > c′′
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applies. Else, if j′′ ∈ S, in case one, the vehicle reaches j′′ with SOC c′ − c̄j,j′′ . Let τ ′ denote

the time the vehicle charges at station j′′, such that it has SOC η
(
η−1

(
c′ − c̄j,j′′

)
+ τ ′

)
when

leaving j′′. Consequently, c′′ = η
(
η−1

(
c′ − c̄j,j′′

)
+ τ ′

)
− c̄j′′,j′ follows. In the second case,

the vehicle reaches station j′′ with c′ +∆c− c̄j,j′′ and can charge for the exact same duration τ ′

as in the first case. Consequently, it follows that c′′′′ = η
(
η−1

(
c′ +∆c− c̄j,j′′

)
+ τ ′

)
− c̄j′′,j′ .

Since η−1(c) is an increasing function of c and η(τ) is an increasing function of τ , c′′′′ ≥ c′′ is

guaranteed to hold true.

The same reasoning applies for all consecutive trips in ωk until the final depot ωk(|ωk|) is

reached. Hence, if there exists a feasible solution, there also exists a feasible solution where

the remaining charge when reaching each j ∈ ωk is maximized, that is, where charging breaks

are never cut short before the vehicle must depart for its next trip.

Therefore, at each visited station, the vehicle should charge for the maximum possible duration

that still allows to timely reach the consecutive trip or depot. Given δk(l) = j′′ with j′′ ∈ S, let

ωk(l) = j and ωk(l + 1) = j′ be two consecutively executed trips or one of them be a depot.

Furthermore, let c be the SOC when the vehicle leaves from trip (or depot) j. The optimal time

τ̄(j, j′, j′′, c) the vehicle spends charging at station j′′ then follows as

τ̄
(
j, j′, j′′, c

)
= sj′ − ej − tj,j′′ − tj′′,j′ − r, (5.1)

which is comprised of the available time between the start of trip j′ and the end of trip j minus

the travel time to and from station j′′ minus the plug-in/battery swap time r.

Given two consecutively executed trips ωk(l) = j and ωk(l + 1) = j′ (where either might be a

depot instead) and δk(l) = j′′ (with j′′ ∈ S ∪{0}) indicating the deadheading route in-between,

the maximal SOC at the end of trip (or depot) j′ can be calculated as

ζ
(
j, j′, j′′, c

)
=



c− c̄j,j′ − c̃j′ if j′′ = 0 ∧ ej + tj,j′ ≤ sj′

η
(
η−1

(
c− c̄j,j′′

)
+ τ̄ (j, j′, j′′, c)

)
if j′′ ∈ S ∧ c̄j,j′′ ≤ c

−c̄j′′,j′ − c̃j′ ∧τ̄ (j, j′, j′′, c) ≥ 0

−1 otherwise

. (5.2)

If no station is visited at the deadheading route, the first case applies. Here, the SOC at the end

of trip j′ is the SOC at the end of trip j minus the battery charge consumed for the transit from

j to j′ and for the execution of j′. If a station is visited in-between j and j′, the second case

applies. Here, the vehicle reaches station j′′ with SOC c − c̄j,j′′ and charges for a duration of
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τ̄ (j, j′, j′′, c), which results in a SOC of η
(
η−1

(
c− c̄j,j′′

)
+ τ̄ (j, j′, j′′, c)

)
at the end of the

charging procedure. Afterwards, trip j′ must be reached and executed, which reduces the SOC

at the end of trip j′ by c̄j′′,j′ + c̃j′ . If either the charge c is not sufficient to reach the station j′′

or there is not enough time, ζ (j, j′, j′′, c) assumes a value < 0 to indicate infeasibility.

We define ζ̄(k, l) as the SOC of vehicle k at the end of the l-th trip or depot, where ζ̄ (k, |ωk|)
denotes the SOC when vehicle k reaches the final depot. For l ≥ 2, it can be recursively

calculated as

ζ̄(k, l) = ζ
(
ωk(l − 1), ωk(l), δk(l − 1), ζ̄(k, l − 1)

)
,

with ζ̄(k, 1) = ĉ for l = 1.

Based on these definitions, a solution to EVSP-MD-FS is feasibly executable if and only if

ζ (k, l) ≥ 0, ∀k ∈ {1, . . . ,m} , l ∈ {1, . . . , |ωk|}. I.e., for every vehicle, the battery’s SOC must

never be negative and the executed route must not violate the time constraints (since, otherwise,

ζ (j, j′, j′′, c) and, hence, ζ̄(k, l), would assume the value -1).
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(b) Optimal solution in the example.

Figure 5.2.: Example data and solution.

Example: Consider the example problem depicted in Figure 5.2a, consisting of n = 3 trips and

d = s = 2 depots that are also charging stations. Let the battery capacity of the vehicles be

ĉ = 11, the charge function be linear η(τ) = τ (with the cap η(τ) = 11, for τ ≥ 11) and the

constant charge time be r = 0. Furthermore, let m̄j = n, ∀j ∈ D, and let the vehicles be not

required to return to their initial depot. Note that in this example, we assume that all driving

times (tj,j′) are equal to the energy expenditures (c̄j,j′), which generally does not need to be the

case. The optimal solution is depicted in Figure 5.2b, corresponding to m = 2 vehicles being
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used. Solid arrows denote the route of vehicle 1, dotted arrows the route of vehicle 2. Vehicle

1 processes only trip 3 (i.e., ω1 = {1, 3, 1}, δ1(1) = 0, δ1(2) = 0, ζ̄(1, 1) = 11, ζ̄(1, 2) = 7,

ζ̄(1, 3) = 6). Vehicle 2 processes trips 4 and 5 (in that order), returning to, first, station 6 –

where it charges its battery for a time of τ̄(4, 5, 6, 1) = 18− 6− 1− 3− 0 = 8 – and, second,

depot 1 after the trips (i.e., ω2 = {1, 4, 5, 1}, δ2(1) = 0, δ2(2) = 6, δ2(3) = 0, ζ̄(2, 1) = 11,

ζ̄(2, 2) = 1, ζ̄(2, 3) = 2, ζ̄(2, 4) = 0).

5.3.3. Complexity

Concerning the time complexity of EVSP-MD-FS, classic (single-depot) non-electric vehicle

scheduling is well-known to be tractable (Saha, 1970), as it can be reduced to finding a minimum

cost perfect matching in a bipartite graph (Bertossi et al., 1987). This result also holds for the

special single-depot case of EVSP-MD-FS where the battery capacity is not a limiting factor

(ĉ = ∞). In this case, charging breaks need not be considered and the driving time t to/from the

depot is immaterial. The problem then is to assign the given trips to as few vehicles as possible

such that no trips overlap, which is equivalent to classic vehicle scheduling with the objective of

minimizing the fleet size.

However, as soon as the battery capacity becomes a limiting factor, single-depot electric vehicle

scheduling with finite battery capacity and the objective of minimizing the fleet size becomes

intractable, as is proven by Emde et al. (2018, Proposition 3) by a reduction from bin packing.

Obviously, this result extends to the multi-depot case as considered in EVSP-MD-FS. Finally,

the result also holds if additional constraints are considered, since they merely generalize the

basic EVSP-MD-FS problem.

5.3.4. Feasible deadheading routes

By the definitions in Section 5.3.1, a solution to EVSP-MD-FS consists of two distinctive parts.

The ordered subsets ω1, . . . , ωm denote which depots are to be visited and which trips to be ex-

ecuted by which vehicle in which sequence. The mappings δ1, . . . , δm indicate the deadheading

route in-between the trips and depots for all vehicles 1, . . . ,m. Given only ωk, the respective

feasible deadheading routes δk can be determined efficiently as follows.

Let ωk(l) = j and ωk(l + 1) = j′ be two consecutively executed trips or either be a depot.

Furthermore, let c be the SOC when the vehicle leaves from trip (or depot) j. By Proposition

5.6, provided that any feasible solution exists at all for a given ωk, there is always a feasible
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solution that reaches j′ with the highest possible SOC and, consequently, completes j′ with the

maximum possible SOC (since c̃j′ is constant). The latter SOC is given by ζ(j, j′, j′′, c) (cf.,

Equation 5.2), which beyond j, j′ and c is solely dependent on δk(l) = j′′, the deadheading

route between j and j′. Hence, it follows that

δ∗k(l) = argmax
j′′∈S∪{0}

{
ζ
(
j, j′, j′′, c

)}
is guaranteed to be feasible (if feasibility is attainable at all). Consequently, the maximum and

therefore feasible charge at the end of trip j′ is given as

ζ∗
(
j, j′, c

)
= max

j′′∈S∪{0}

{
ζ
(
j, j′, j′′, c

)}
.

5.4. MIP model

To enable the use of default solvers, we propose a MIP model based on the notation given in

Table 5.3. We incorporate non-linear battery charging by discretizing the SOC. I.e., the SOC can

only assume discrete values c ∈ C. We note that the discretization is only required for the MIP

model; the solution procedure presented in Section 5.5 does not rely on discretization. For linear

and constant-time charging, the discrete SOC is exact, as long as we assume that all problem

parameters, i.e., travel times and required battery charges, are integer. For non-linear charging,

using discrete SOC is an approximation. By scaling the problem parameters accordingly, we

can, however, approximate the actual SOC to any desired precision.

C set of discrete SOC values; index c; C = {0, . . . , ĉ}; a value of c′ refers to c′

ĉ of the maximum
SOC

vj,j′ binary variable: 1, if trip j is associated with depot j′, else 0
xj,j′ binary variable: 1, if a vehicle transits from trip or depot j to trip or depot j′ (with possible

detours for charging in-between), else 0
βj,c binary variable: 1, if trip j is completed (or depot j is reached) with SOC c

Table 5.3.: Notation for the MIP.

We introduce binary variables βj,c to track the discrete SOC c ∈ C at the end ej of each trip

j ∈ J and when a vehicle reaches the final depot j ∈ D. Note that the number of variables βj,c
grows pseudo-polynomially with O(ĉ ·n). Moreover, we define set N = {(j, c) ∈ (J∪D)×C |
c ̸= ⌊ζ∗ (j′, j, c′)⌋,∀j′ ∈ J ∪ D, c′ ∈ C} as the set of pairs (j, c) indicating that trip j is

never completed with SOC c in the optimal solution. Note that set N can be determined in
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O((n + d)2 · s · ĉ), by simply finding all combinations j, j′ ∈ J ∪ D : j < j′, c ∈ C, where

maxj′′∈S∪{0} {ζ (j, j′, j′′, c)} = ζ∗ (j, j′, c) < 0.

Using these definitions, Equations (5.3) to (5.13) define a MIP model for the case that vehicles

are not required to return to their initial depot at the end of their schedules.

[EVSP-MD-FS] Minimize F (x,β) =
∑
j∈D

∑
j′∈J

xj,j′ (5.3)

subject to∑
j′∈J∪D:

j′>j∨j′∈D

xj,j′ = 1 ∀j ∈ J (5.4)

∑
j∈J∪D:
j<j′

xj,j′ = 1 ∀j′ ∈ J (5.5)

∑
c∈C:

(j,c)/∈N

βj,c = 1 ∀j ∈ J (5.6)

0 ≥ xj,j′ + βj,c − 1 ∀j ∈ J, j′ ∈ J ∪D : j < j′ ∨ j′ ∈ D,

c ∈ C : (j, c) /∈ N ∧ ⌊ζ∗
(
j, j′, c

)
⌋ < 0 (5.7)

βj′,⌊ζ∗(j,j′,c)⌋ ≥ xj,j′ + βj,c − 1 ∀j ∈ J, j′ ∈ J ∪D : j < j′ ∨ j′ ∈ D,

c ∈ C : (j, c) /∈ N ∧ ⌊ζ∗
(
j, j′, c

)
⌋ ≥ 0 (5.8)

βj′,⌊ζ∗(j,j′,ĉ)⌋ ≥ xj,j′ ∀j ∈ D, j′ ∈ J : ⌊ζ∗
(
j, j′, ĉ

)
⌋ ≥ 0 (5.9)∑

j∈J
xj′,j ≤ m̄j′ ∀j′ ∈ D (5.10)

∑
j∈J ′

xj,j′ ≤ m̄j′ ∀j′ ∈ D (5.11)

xj,j′ ∈ {0, 1} ∀j, j′ ∈ J ∪D : (j, j′ ∈ J ∧ j < j′) ∨ (j ∈ J ∧ j′ ∈ D)

∨(j ∈ D ∧ j′ ∈ J ∧ ⌊ζ∗
(
j, j′, ĉ

)
⌋ ≥ 0) (5.12)

βj,c ∈ {0, 1} ∀j ∈ J ∪D, c ∈ C : (j, c) /∈ N (5.13)

Objective function (5.3) minimizes the number of required vehicles. Constraints (5.4) and (5.5)

enforce that every trip has exactly one preceding and one succeeding trip or depot. Constraints

(5.6) make sure that each trip is finished with exactly one non-negative SOC.
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Constraints (5.7) to (5.9) ensure consistent SOC values. Inequalities (5.7) prohibit the execution

of trip j′ after trip j has been completed with SOC c if the SOC would be insufficient for

completing the trip or time constraints would be violated (i.e., ⌊ζ∗ (j, j′, c)⌋ < 0). Likewise, if

the SOC is sufficient and no time constraints are violated (i.e., ⌊ζ∗ (j, j′, c)⌋ ≥ 0), Inequalities

(5.8) set the SOC at the end of trip j′ to the appropriate value. Constraints (5.9) determine the

SOC of the trips that are initially executed after the vehicles leave the depots.

Constraints (5.10) and (5.11) enforce limits on the number of vehicles per depot. Finally, Con-

straints (5.12) and (5.13) define the domains of the decision variables. Note that – in order to

reduce the search space – we omit βj,c for (j, c) ∈ N , since the states can never be feasibly

reached.

Moreover, to formulate the MIP, we note that determining ζ∗ (j, j′, c) requires a pseudo-polyno-

mial amount O((n+d)2 ·s · ĉ) of pre-calculations. Furthermore, the optimal deadheading routes

need to be determined from the MIP’s solution in a O((n + d) · s) post-processing procedure

(cf., Section 5.3.4).

To enforce the optional constraint that each vehicle returns to the depot of its initial departure, we

introduce the binary variables vj,j′ that are 1 if trip j is associated with depot j′, and 0 otherwise.

Using these variables, we extend the MIP with the following equations:∑
j′∈D

vj,j′ = 1 ∀j ∈ J (5.14)

vj′,j′′ ≥ xj,j′ + vj,j′′ − 1 ∀j, j′ ∈ J : j < j′, j′′ ∈ D (5.15)

vj,j′ ≥ xj′,j ∀j ∈ J, j′ ∈ D (5.16)

vj,j′ ≥ xj,j′ ∀j ∈ J, j′ ∈ D (5.17)

vj,j′ ∈ {0, 1} ∀j ∈ J, j′ ∈ D (5.18)

Constraints (5.14) make sure that every trip j ∈ J is associated with exactly one depot. Inequal-

ities (5.15) force each pair of consecutively executed trips, j and j′, to be associated with the

same depot. Constraints (5.16) force the trip executed directly after leaving a depot to be as-

sociated with the respective depot. Likewise, Constraints (5.17) associate each final trip before

returning to a depot with the respective depot. In conjunction, these constraints enforce each

tour to start from and end at the same depot.
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5.5. Branch-and-check

Our computational tests reveal that a default solver using the MIP model from Section 5.4 per-

forms subpar for instances with n ≥ 100 (see Section 5.6.2). We therefore propose a decompo-

sition scheme based on branch-and-check (BCH, Thorsteinsson, 2001, Beck, 2010).

The general idea of BCH is to split a complicated problem into two parts, which are individually

easier to solve: a mixed-integer programming master model, which is a relaxation of the original

problem, and a subproblem, which encodes the remaining variables and/or constraints, albeit not

necessarily in the form of a MIP. The master model is solved using classic branch-and-bound

methods. Periodically, when it is advantageous, the subproblem is solved at a node of the branch-

and-bound tree to check the feasibility of the current master solution and/or determine its exact

objective value. This information is then communicated to the overarching branch-and-bound

process, usually via cuts. The search terminates when there are no more unfathomed nodes in

the enumeration tree left to explore. The best found solution is optimal.

For the EVSP-MD-FS, the flow is as follows. The master MIP model is concerned with assign-

ing trips to vehicles, while relaxing the limited battery capacity. The feasibility and charging

detours are determined by solving the subproblem. The master model is solved by a black-box

default solver (CPLEX). Whenever the solver finds an integer solution during its branch-and-

bound process, the solution is passed to the subproblem, which is solved by a polynomial-time

algorithm and – in the case of limited depot capacities – by solving a (small) additional MIP.

Information about the feasibility is injected into the branch-and-bound tree by way of combina-

torial cuts, similar in form to logic-based (Hooker, 2011) or combinatorial (Codato and Fischetti,

2006) Benders cuts.

The master model is described in more detail in Section 5.5.1. The subproblem and its solution

are presented in Section 5.5.2. Finally, the cuts derived from the subproblem are explained in

Section 5.5.3.

5.5.1. Master problem

The purpose of the master model is assigning trips to vehicles. Charging breaks (and deadhead-

ing routes) are not scheduled at this stage. As in model [EVSP-MD-FS], we use variables xj,j′

to denote whether two jobs, j and j′, are processed consecutively by the same vehicle. Moreover

x0,j and xj,0 denote that a vehicle departs from any depot or returns to any depot, respectively.
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The exact depots are determined later in the subproblem. Unlike before, we omit the binary

variables βj,c and use continuous variables β̃j , ∀j ∈ J , to calculate upper and lower bounds on

the remaining SOC at the end of each trip.

Some trips can clearly not be assigned to the same vehicle due to either overlapping execution

times or insufficient battery capacity. Therefore, we define the set of incompatible pairs of trips

as

I =

{
(j, j′) ∈ J × J | ζ∗

(
j, j′,max

{
C̃j

})
< min

{
C̃j′

}}
, (5.19)

where C̃j =
{
z ∈ R | minj′∈D∪S

{
c̄j,j′

}
≤ z ≤ ĉ− c̃j −minj′∈D∪S

{
c̄j′,j

}}
is the set of fea-

sible SOC values at the end of trip j, which takes into consideration that a vehicle must be able

to feasibly reach and leave j. Note that it is possible that the vehicle executes another trip after

trip j′ before returning to a station or depot. However, the minimum required charge is guar-

anteed to be at least minj′′∈D∪S{c̄j′,j′′} due to the triangle inequality holding true. In the case

of insufficient time, function ζ∗ will always assume −1. Otherwise, the maximum SOC that

can remain at the end of trip j is max
{
C̃j

}
. Hence, the maximum SOC at the end of trip j′ is

ζ∗
(
j, j′,max

{
C̃j

})
, which must be at least min

{
C̃j′

}
for the vehicle to feasibly continue its

tour.

The master model is then given as follows.

[MP] Minimize
∑
j∈J

x0,j (5.20)

subject to∑
j′∈J∪{0}:
(j,j′)/∈I

xj,j′ = 1 ∀j ∈ J (5.21)

∑
j∈J∪{0}:
(j,j′)/∈I

xj,j′ = 1 ∀j′ ∈ J (5.22)

β̃j′ ≤ β̃j + c̄max
j,j′ +M ·

(
1− xj,j′

)
∀ ∈ j, j′ ∈ J : (j, j′) /∈ I

∧min
{
C̃j

}
+ c̄max

j,j′ < ĉmax
j,j′ (5.23)

β̃j′ ≤ ĉmax
j,j′ +M ·

(
1− xj,j′

)
∀j ∈ J ∪ {0}, j′ ∈ J : (j, j′) /∈ I (5.24)
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β̃j ≥
∑

j′∈J∪{0}:
(j,j′)/∈I∧min(C̃j)=c̄min

j,j′

c̄min
j,j′ · xj,j′ ∀j ∈ J (5.25)

xj,j′ ∈ {0, 1} ∀j, j′ ∈ J ∪ {0} : (j, j′) /∈ {0}2 ∪ I (5.26)

β̃j ∈ C̃j ∀j ∈ J (5.27)

Objective function (5.20) minimizes the number of vehicles in use, i.e., the vehicles that ini-

tially depart from the depots. Constraints (5.21) and (5.22) enforce that each trip j ∈ J has a

predecessor and a successor, which can also be depots.

Constraints (5.23) and (5.24) calculate upper bounds on the SOC after trip j, ∀j ∈ J . For

Constraints (5.23), we define the parameter c̄max
j,j′ as the maximum increase in SOC between the

end of trip j and the end of trip j′. If more charge is consumed than charged, c̄max
j,j′ is negative.

Formally, we define c̄max
j,j′ = maxc∈C̃j

{ζ∗(j, j′, c)− c}. How to calculate c̄max
j,j′ is explained in

Appendix 5.7. By Constraints (5.23), an upper bound on the remaining SOC β̃j′ after trip j′ is

c̄max
j,j′ plus the upper bound of the SOC β̃j after the preceding trip j.

For Constraints (5.24), we define the parameter ĉmax
j,j′ as the maximum SOC at the end of trip

j′ if j and j′ are processed consecutively. Formally, we define ĉmax
j,j′ = ζ∗

(
j, j′,max

{
C̃j

})
and ĉmax

0,j′ = maxj∈D

{
ĉmax
j,j′

}
. Constraints (5.24) provide an additional upper bound by enforc-

ing ĉmax
j,j′ as the maximum remaining charge at the end of trip j′ if it is executed after trip j.

Furthermore, if min
{
C̃j

}
+ c̄max

j,j′ ≥ ĉmax
j,j′ applies, the upper bound from Constraints (5.23) is

guaranteed to be weaker than the respective one from Constraints (5.24), which is why we omit

these in Constraints (5.23). Additionally, Constraints (5.24) provide upper bounds for the trips

executed directly after the vehicles leave the initial depots. Finally, note that if two trips j and

j′ are not executed consecutively, M ·
(
1− xj,j′

)
makes sure that no bound is forced upon β̃j′ .

Since 0 ≤ β̃j′ ≤ ĉ and ĉmax
j,j′ ≥ c̄max

j,j′ ≥ −ĉ, it is sufficient to set M = 2 · ĉ.

To formulate lower bounds on the SOC, we define c̄min
j,j′ as the charge that must remain at the

end of trip j if trip j′ is processed consecutively. Formally, we define c̄min
j,j′ = min

{
c ∈ C̃j |

ζ∗(j, j′, c) ≥ min
{
C̃j′

}}
and c̄min

j,0 = minj′∈D

{
c̄min
j,j′

}
. How to determine ĉmin

j,j′ is explained

in Appendix 5.7. Note that the SOC must not only be sufficient to reach and process trip j′,

but also to reach a station or depot after that trip (cf., Equation (5.19)). Using this definition,

Constraints (5.25) set a lower bound on the SOC at the end of trip j, ∀j ∈ J . Moreover, we can

omit the pair j and j′ in the sum, if min
{
C̃j

}
= c̄min

j,j′ holds, because Constraints (5.27) already

sets an equally strict bound on β̃j .
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Finally, Constraints (5.26) and (5.27) define the domains of the decision variables.

We solve model [MP] via a commercial black-box solver (CPLEX). Given a feasible integer

candidate solution x̄, we derive the corresponding assignment of trips to vehicles with the fol-

lowing iterative procedure. We define ω̂k as the correspondent to ωk (cf., Section 5.3.1) without

scheduled depots at the beginning and the end, i.e., ω̂k = ωk \D. To distinguish ω̂k from ωk, we

refer to the former as a vehicle’s working schedule in the following. Starting with k = u = 1, we

calculate ω̃u
k =

{
j ∈ J | xmax{ω̃u−1

k },j = 1
}
∪ ω̃u−1

k , where ω̃0
k =

{
minj∈J\

⋂k−1
k′=1

{ω̂k′}
{j}
}

.

As long as ω̃u
k \ ω̃u−1

k ̸= ∅, we increment u and repeat the calculation. Otherwise, we set

ω̂k = ω̃u
k , increment k, and reset u = 1 to start the procedure all over. If we reach ω̃0

k ={
minj∈J\

⋂k−1
k′=1

{ω̃k′}
{j}
}
= ∅, we terminate the procedure and set m = k− 1 for the fleet size.

The resulting assignments, i.e. ω̂k, ∀k = {1, . . . ,m}, are, however, incomplete, because the

actual depots to be visited at the beginning and in the end still need to be determined. Moreover,

they may not allow a feasible solution for the original problem, because no charging breaks

are scheduled and the battery of one or more vehicles may thus be insufficient. Consequently,

we separate cuts and add them to model [MP] iteratively to converge on feasible and optimal

solutions.

5.5.2. Subproblem

Given an integer candidate solution x̄ that is feasible for model [MP] and the assignments ω̂k,

∀k = 1, . . . ,m, derived from it, we aim to answer two questions: First, which vehicle should

depart from and return to which depot, and, second, when should which vehicle visit what station

to charge, i.e., determine δk, ∀k ∈ {1, . . . ,m}?

The first question, i.e., determining the start and end depot for each working schedule ω̂k, can

be approached by simply trying all possibilities, where the start and end depot can be enforced

to be identical if required. Let Ωk be the set of all schedules ωk for a given working schedule

ω̂k, where Ωk(i) denotes the i-th schedule in Ωk, corresponding to one specific pair of start

(Ωk(i)(1)) and end (Ωk(i)(|Ωk(i)|)) depot. If the depots’ capacities are unlimited, for a given

working schedule ω̂k, it is sufficient to find a single feasible start and a single feasible end depot,

i.e., one feasible schedule ωk ∈ Ωk. We describe how to determine if a certain ωk is feasible

later in the section.

However, if the depots’ capacities are limited, we must ensure that they are not exceeded, which

we do as follows. Let Ω̂k ⊆ Ωk be the set of feasible schedules ωk for a given working schedule
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ω̂k. Let yi,k be binary variables that are one if the i-th schedule in set Ω̂k is selected and zero

otherwise. I.e., if yi,k assumes one, working schedule ω̂k is matched with depots Ω̂k(i)(1) and

Ω̂k(i)
(∣∣∣Ω̂k(i)

∣∣∣) as initial and final depot to form a proper schedule ωk. Moreover, let zk be

binary variables that are one if no schedule in Ω̂k is selected and zero otherwise. I.e., if zk

assumes one, working schedule ω̂k has not been matched with an initial and final depot. Based

on these definitions, we formulate the following integer program (IP):

[Depot-Matching] Minimize Z =
∑

k∈{1,...,m}

zk (5.28)

subject to∑
i∈{1,...,|Ω̂k|}

yi,k + zk = 1 ∀k ∈ {1, . . . ,m} (5.29)

∑
k∈{1,...,m}

∑
i∈{1,...,|Ω̂k|}:
Ω̂k(i)(1)=j

yi,k ≤ m̄j ∀j ∈ D (5.30)

∑
k∈{1,...,m}

∑
i∈{1,...,|Ω̂k|}:

Ω̂k(i)(|Ω̂k(i)|)=j

yi,k ≤ m̄j ∀j ∈ D (5.31)

yi,k ∈ {0, 1} ∀k ∈ {1, . . . ,m}, i ∈
{
1, . . . , |Ω̂k|

}
(5.32)

zk ∈ {0, 1} ∀k ∈ {1, . . . ,m} (5.33)

Objective (5.28) minimizes the number of vehicles where no feasible schedule could be selected,

i.e., where no three-dimensional matching between a working schedule, the initial, and the final

depot was found. If objective Z is zero, the solution is feasible for the original problem, i.e.,

there exists a combination of feasible schedules such that no depots’ capacity is violated. Else,

we need to add cuts to [MP], as we explain in Section 5.5.3.

Constraints (5.29) enforce that either exactly one or no schedule ωk is selected for every vehicle

k. Constraints (5.30) and (5.31) ensure the depots’ capacities are not exceeded by the departing

and returning vehicles, respectively. Finally, Constraints (5.32) and (5.33) define the domains of

the decision variables. We solve [Depot-Matching] using a default solver.

Generally, [Depot-Matching] is NP-hard since it presents a three-dimensional matching prob-

lem. Nevertheless, it may still be solved quickly by a standard solver, due to the number of

variables being in O(m · s2) and usually not exceeding a couple of thousands in practical ap-

plication. Moreover, if vehicles are required to return to their initial depots at the end of their
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schedules, [Depot-Matching] reduces to a bipartite matching problem, which is known to be

solvable in polynomial time.

Concerning the determination of charging breaks and detours, let ωk be the i-th element in Ωk.

The optimal deadheading routes δk(l), ∀l = 1, . . . , |ωk| − 1, can be derived in polynomial time

by determining ζ∗(j, j′, c) for every two consecutive elements, j and j′, in ωk and tracking

the SOC c accordingly. More formally, we apply the following |ωk|-step iterative procedure.

Starting from the initial state l = 1, for each state l = 2, . . . , |ωk|, we calculate ζ̄ (k, l) =

ζ∗
(
ωk(l − 1), ωk(l), ζ̄ (k, l − 1)

)
, where ζ̄(k, 1) = ĉ is the initial SOC. If we reach a state l,

where ζ̄(k, l) ≤ min
{
C̃ωk(l)

}
, the assignment ωk cannot be solved in a feasible manner. In this

case, we save the latest state l∗k,i := l to add cuts to the MP (cf., Section 5.5.3). Otherwise, if

we reach state l = |ωk| with ζ̄(k, l) ≥ 0, a feasible tour has been found and we set l∗k,i := 0.

Furthermore, we save the solution to omit solving the subproblem again, if ωk is part of a future

solution to [MP].

The proposed procedure of determining the optimal deadheading routes for a given ωk has at

most |ωk| states. In each state, the runtime for determining the optimal detour is asymptotically

bounded by O(s) (cf., Section 5.3.4), resulting in an asymptotic runtime of O(|ωk| · s) to solve

the subproblem for a single schedule ωk. This has to be repeated for all vehicles k = 1, . . . ,m

and all ωk ∈ Ωk. The number of vehicles m cannot reasonably be greater than the number of

trips n. Furthermore,
∑

k∈{1,...,m} |ωk| ≤ 3 · n and |Ωk| ≤ d2−d
2 holds. Hence, the feasibility

status, detours, and charging breaks for a given master solution can be determined in at most

O(n · s · d2) time.

The idea of the above procedure can also be applied in a reverse manner. It is sufficient for the

vehicle to return to the final depot with exactly zero SOC. Starting from the final depot, i.e. state

l = |ωk|, we can derive the minimum sufficient SOC at a previous state l− 1 from the minimum

sufficient SOC at state l. If we reach a state l where the minimum sufficient SOC exceeds ĉ,

the assignment is infeasible, we save l∗, rev
k,i = l, and terminate the procedure. Otherwise, if we

reach state l = 0, we set l∗, rev
k,i := |ωk|+1. Clearly, concerning the feasibility of an assignment,

the original and the reversed procedure yield the same result. However, l∗, rev
k,i of the reverse

procedure can be used for additional cuts if an assignment is infeasible. Hence, we only apply

the reverse procedure, whenever the original procedure encounters an infeasible assignment.
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5.5.3. Cuts

The subproblem may be infeasible in two distinctive ways, either due to the capacity limit of one

or multiple depots being violated (i.e., Z > 0) or due to the working schedule ω̂k being impossi-

ble to execute feasibly for one or multiple vehicles k = 1, . . . ,m (i.e., mini∈{1,...,|Ωk|}

{
l∗i,k

}
>

0, ∃k = 1, . . . ,m).

In the first case, we add the cut

1 ≤
∑
j∈J

∑
j′∈J :
x̄j,j′=1

(
1− xj,j′

)

to the model [MP], to which we refer as depot feasibility cut. The cut ensures that at least

one working schedule ω̂k for one vehicle k ∈ {1, . . . ,m} changes, making the current solution

infeasible for model [MP] and thereby progressing the search.

In the second case, when there exists no feasible schedule ωk for some vehicle k, we add so-

called schedule feasibility cuts to model [MP] to exclude this infeasible solution and solutions

sharing the same infeasible subset of consecutively executed trips from the search space. For-

mally, feasibility cuts are added for all k ∈ {1, . . . ,m | mini∈{1,...,|Ωk|}

{
l∗i,k

}
> 0}. Since

maxi∈{1,...,|Ωk|}

{
l∗i,k

}
is the first trip that could not be feasibly served anymore for any choice

of initial depot, at least one of the first maxi∈{1,...,|Ωk|}

{
l∗i,k

}
trips must change to attain feasi-

bility. We ensure this by adding the cut

1 ≤
maxi∈{1,...,|Ωk|}{l

∗
i,k}−1∑

l=1

(
1− xω̂k(l),ω̂k(l+1)

)
to the constraint set of model [MP]. Likewise, if it is not possible to execute the trips

maxi∈{1,...,|Ωk|}

{
l∗, rev
i,k

}
to |ω̂k| feasibly, we add the cut

1 ≤
|ω̂k|−1∑

l=mini∈{1,...,|Ωk|}{l
∗, rev
i,k }−1

(
1− xω̂k(l),ω̂k(l+1)

)
.

If mini∈{1,...,|Ωk|}

{
l∗i,k

}
= 0, ∀k = 1, . . . ,m, and Z = 0 the solution is feasible for the original

problem and is stored as the currently best known solution. We note that the black-box solver
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passes every encountered integer solution that is feasible for model [MP] to be evaluated by

solving the emerging subproblems. That means that even if the solution is feasible for the orig-

inal problem, it is not necessarily optimal. Hence, a feasible solution presents merely an upper

bound on [MP] and the original problem. Therefore, to expedite solving the master problem

optimally, we add the optimality cut ∑
j∈J

x0,j ≤ m− 1 (5.34)

to [MP]. As soon as the solution space of [MP] becomes empty, the last found solution that is

feasible to the original problem is guaranteed to also be optimal and the procedure terminates.

5.6. Computational study

In this section, we test the computational performance of our proposed branch-and-check proce-

dure and compare it to a default solver, namely CPLEX, solving the proposed [EVSP-MD-FS]

MIP model. To do so, we generate randomized instances of various sizes and based on in-plant

logistics. We describe the instance generation in the following section.

Furthermore, we derive some managerial insights into the influence of the battery capacity and

charging mode on the fleet size. Finally, we investigate the influence of the number of ware-

houses and depots in the production facility.

5.6.1. Benchmark instances and computational environment

5.6.1.1. Generating instances for the EVSP-MD-FS based on an in-plant
milk-run logistics setting

We model the instances for EVSP-MD-FS based on an in-plant milk-run logistics setting in

accordance with the one regarded by Emde et al. (2018). As shown in Figure 5.1a, we assume

a facility where the production area and the warehouses are separated. This need not always

be the case, but is a reasonable assumption for a lot of practical cases. We implement this

assumption by placing the warehouses at random locations within a 1000 m × 1000 m area that

represents the facility, where the production area is located at coordinates (1000 m, 500 m), i.e.,

centrally at the right border of the facility. All warehouses are assumed to have an internal size
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of 200 m × 200 m and the production area is set to 400 m × 400 m.

We further assume that the tow train depots are located within the warehouses and that all depots,

and exclusively depots, can be used as charging stations. As described in Section 5.1, a trip

starts in a warehouse, where the tow train is loaded with the materials required at the production

stations. The tow train then sets off to the production area and visits a set of predetermined

assembly cells to deliver the required goods. Once the final assembly cell has been supplied,

the tow train is ready to process the next trip or return to a depot. This is modeled by placing

the depots and the trips’ start points at random locations within the warehouses, where each

warehouse can host at most one depot. The trips’ end points are set to random locations within

the production area.

The proposed branch-and-check approach can handle real-valued parameters. However, the

[EVSP-MD-FS] model requires all parameters to be integer to yield an exact result, which is

why we round parameters to integer values in the following. Considering time parameters, we

use a precision of half-minutes. I.e., an integer value of 1 represents half a minute. The trips’

start times are determined according to Emde et al. (2018). The first trip is set so start at s1 = 10

half-minutes, such that the trip’s start can be reached by a tow train departing from a depot no

sooner than time 0. The starting times of all consecutive trips are set iteratively according to

sj = sj−1 + rnd([0, 10]) half-minutes, where rnd([0, 10]) is a random integer from the interval

[0, 10], which results in close to real-world timetables (Emde et al., 2018). Hence, on average,

there are 24 tips per hour, which – for comparison – falls in the upper quarter of trips per hour

reported for tow train systems in the German industry (cf., Lieb et al., 2017). The trips’ execution

times are set to random integers drawn from the interval [20, 50] half-minutes, since those are

typical trip durations in practice. A trip’s end time is its start time plus its execution time.

To determine realistic time requirements for the detours, we first calculate respective distances

applying the rectilinear metric. The total distance between two locations (e.g., the end point of

a trip and the location of a depot) is set to be the sum of the internal distance (i.e., the distance

within the warehouse and production area) and the external distance (i.e., the distance between

warehouses and the production area), which is in line with our assumed facility layout. The travel

times for all detours are then calculated by dividing the respective distances by an assumed travel

speed of 10 kph and rounding to the nearest half-minute value, where 10 kph is a representative

speed for tow trains.

We state all battery-related values as percentages of the maximum charge and use a precision

of half-percentages. I.e., an integer value of 1 represents half a percentage of the maximum

SOC. The trips’ battery requirements may not be strictly proportional to their distance or execu-
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tion time, since each trip requires a different number of stops at assembly stations and the tow

train may need to carry different loads on every trip. To account for this fact, we determine the

trips’ battery requirements in the following way. First, we associate the minimum trip duration

of 20 half-minutes with a battery requirement of 12.5% and the maximum trip duration of 50

half-minutes with 30%, which is based on the technical data of a representative tow train (cf.,

Still, 2019). Second, we interpolate each trip’s preliminary battery requirement based on its

duration. Third, we randomize the battery requirement by multiplying the preliminary battery

requirement with a random factor from the interval [0.75, 1.25] and round it to the nearest half-

percentage value. While processing detours, the tow train is mostly empty and does not need to

stop frequently. Hence, here, distance, execution time and battery requirement are proportional

in good approximation. Therefore, we calculated the detours’ battery requirements by multiply-

ing their respective distances with the factor 5 %
km , which, again, is derived from a representative

tow train’s technical data (cf., Still, 2019).

Using the proposed scheme, we generate ten instances of each size n ∈ {50, 100, 200} with

two, three, and five warehouses, respectively, where every warehouse also hosts a depot. Note

that with n = 200, an instance covers roughly an eight-hour workday. Moreover, note that

at this point, we do not make any assumptions regarding the way in which the batteries are

charged. This is discussed in Section 5.6.1.2. All instances are named according to the scheme

“I-s-d-n-##”, where “##” is a continuous counting number.

5.6.1.2. Modeling (piecewise) non-linear and constant-time battery charging

Both the [EVSP-MD-FS] model and the proposed branch-and-check approach are able to handle

various battery charging functions. In our computational study, we consider two ways of realistic

battery charging, namely constant-time battery charging, e.g., battery swapping, and (piecewise)

concave non-linear charging as common for lithium-ion batteries, which are frequently used for

powering electric vehicles in intra-logistic applications.

As stated in Section 5.3.1, battery swapping (or other means of constant-time battery charging)

can be modeled by setting r, the time between the arrival of the vehicle at the charging station

and the start of the actual charging, to the time it takes to swap the battery. The battery charging

function is η(τ) = ĉ in this case. Based on our observations, the time it takes to swap a tow

train’s battery can vary depending on the skills of the worker, the setup of the charging station

and, most importantly, the exact model of the tow train. Nevertheless, we found three minutes

to be a representative value, for a broad variety of cases. Hence, we set r = 6 half-minutes.
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Lithium-ion batteries are a common type of batteries frequently used to power electric vehicles

(Kisacikoglu et al., 2011, Pelletier et al., 2017). Their charging function is (piecewise) non-

linear, concave, and usually consists of two phases, as exemplarily depicted in Figure 5.3a and

explained in Section 5.1. To briefly recap, first, between 0% of total charge up to about 75% to

90%, depending on the exact battery type, charging is linear with time τ . In the second phase,

the charging rate continuously depreciates, which results in a charging function that gradually

approaches 100% over time. The transition between both phases is continuous. Depending on

the exact type of battery, the first phase takes about 25% to 75% of the total charging time and

the second phase takes between 75% to 25% of the time (Kisacikoglu et al., 2011, Pelletier et al.,

2017). In the following, we assume that both phases take an equal duration and linear charging

ends at 80% of total charge. Furthermore, we approximate the charging function in the second

phase with a function of the general shape of ηsecond phase(τ) = k1 +
k2

k3+x , where k1, k2 and k3

are adjustable factors. Given these assumption and the battery’s charging rate in the first phase,

we can determine the factors k1, k2 and k3 by fitting ηsecond phase(τ) to the end of the first phase

with a continuous transition from the linear charging rate. We assume a battery charging rate in

the linear phase of 2 %
min , which is about an average value for most tow-trains (cf. Emde et al.,

2018). This results in the battery charging function

η(τ) =


2 · τ if τ ≤ 80

640
3 −

12800
9

τ− 160
3

if 80 < τ ≤ 160

200 if 160 < τ

,

where τ is in the unit of half-minutes and η(τ) is in the unit of half-percentages. The charging

function is depicted in Figure 5.3b. Furthermore, we assume the delay between the arrival at the

station and the beginning of the charging procedure to be r = 1 half-minute.

5.6.2. Computational results

In this section, we present our computational results. All testing was performed on an Intel Core

i7-6700 CPU @ 3.40 Gigahertz and with 16 Gigabyte of RAM. All algorithms were imple-

mented in C# and CPLEX (version 12.10) was used as default solver (for the [EVSP-MD-FS]

MIP as well as the [MP] master model and [Depot-Matching] subproblem model of the pro-

posed branch-and-check procedure) at default settings. Furthermore, we limited the runtime to

solve a single instance to 3600 seconds (i.e., 1 h). The results of the tests are summarized in the
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Figure 5.3.: Non-linear battery charging functions.

following. Detailed reports on the results as well as the original instances are provided as online

supplementary material at https://doi.org/10.5281/zenodo.6406201.

5.6.2.1. Performance evaluation

We solved all instances with CPLEX and with the proposed BCH approach. The results are

summarized in Table 5.4. Generally, CPLEX performed better for constant-time charging than

for non-linear charging. It was able to solve all instances with n ≤ 100 to optimality for both

types of battery charging within a runtime of 3600 s. For instances with n = 200, CPLEX was

able to find solutions, which were not always optimal, however. Especially for non-linear battery

charging, the respective optimality gaps were rather large with 67 % on average.

The proposed BCH procedure clearly outperformed CPLEX. For constant-time charging, the

BCH procedure solved all instances in at most 2.6 s. For non-linear charging, the BCH procedure

solved all instances with n = 50 in below 0.1 s and every instance with n = 100 in no more than

5.1 s. While the BCH procedure could solve all T-3-3-200-## instances in 364.8 s on average,

one instance required 3418.4 s to be solved while the other instances were solved much faster.

Our results clearly indicate that instances were easier to solve if constant-time charging was

assumed, especially if instances were large. We attribute this to constant-time charging being

generally quicker than non-linear charging, which makes it easier to find feasible solutions for

the former. This becomes evident when the “s. f. cut” column in Tables 5.4 is considered. It
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instance non-linear battery recharging constant-time battery recharging
CPLEX branch-and-check CPLEX branch-and-check

lable value LB time value LB time time MP time SP s. inf. d. inf. opt. value LB time value LB time time MP time SP s. inf. d. inf. opt.
(in s) (in s) (in %) (in %) cuts cuts cuts (in s) (in s) (in %) (in %) cuts cuts cuts

I-2-2-50-01 13 13 9.5 13 13 0.1 89.1 10.9 1 0 1 13 13 7.3 13 13 0.0 100.0 0.0 0 0 1
I-2-2-50-02 12 12 11.4 12 12 0.1 86.3 13.7 11 0 1 12 12 6.9 12 12 0.0 100.0 0.0 0 0 1
I-2-2-50-03 12 12 9.4 12 12 0.0 97.6 2.4 4 0 1 12 12 8.2 12 12 0.0 100.0 0.0 0 0 1
I-2-2-50-04 17 17 8.6 17 17 0.0 93.8 6.3 0 0 1 17 17 6.1 17 17 0.0 93.8 6.3 0 0 1
I-2-2-50-05 15 15 8.2 15 15 0.0 97.1 2.9 2 0 1 15 15 6.4 15 15 0.0 94.7 5.3 1 0 1
I-2-2-50-06 13 13 9.2 13 13 0.0 94.6 5.4 4 0 1 13 13 6.2 13 13 0.0 100.0 0.0 0 0 1
I-2-2-50-07 16 16 8.8 16 16 0.0 100.0 0.0 0 0 1 16 16 6.1 16 16 0.0 100.0 0.0 0 0 1
I-2-2-50-08 12 12 9.8 12 12 0.0 95.1 4.9 8 0 1 12 12 6.3 12 12 0.0 100.0 0.0 0 0 1
I-2-2-50-09 16 16 8.3 16 16 0.0 95.0 5.0 1 0 1 16 16 6.6 16 16 0.0 93.8 6.3 0 0 1
I-2-2-50-10 13 13 11.5 13 13 0.0 95.0 5.0 0 0 1 13 13 6.2 13 13 0.0 100.0 0.0 0 0 1
mean 13.9 13.9 9.5 13.9 13.9 0.0 94.4 5.6 3.1 0.0 1.0 13.9 13.9 6.6 13.9 13.9 0.0 98.2 1.8 0.1 0.0 1.0
I-3-3-100-01 15 15 342.3 15 15 3.1 68.2 31.8 538 0 4 15 15 66.7 15 15 0.1 94.3 5.8 0 0 1
I-3-3-100-02 17 17 76.8 17 17 0.2 75.3 24.7 13 0 1 17 17 85.7 17 17 0.1 89.0 11.0 0 0 1
I-3-3-100-03 16 16 200.7 16 16 0.3 75.1 24.9 13 0 1 16 16 75.9 16 16 0.2 91.1 8.9 1 0 1
I-3-3-100-04 16 16 265.7 16 16 0.3 75.4 24.6 17 0 1 16 16 54.4 16 16 0.1 85.1 14.9 0 0 2
I-3-3-100-05 18 18 450.7 18 18 5.1 64.5 35.5 824 0 3 18 18 39.8 18 18 0.1 90.9 9.1 1 0 1
I-3-3-100-06 15 15 1464.3 15 15 4.1 68.6 31.4 824 0 4 15 15 138.8 15 15 0.1 93.1 6.9 0 0 1
I-3-3-100-07 14 14 3597.4 14 14 0.8 68.4 31.6 77 0 3 14 14 99.0 14 14 0.1 94.4 5.6 0 0 1
I-3-3-100-08 15 15 478.3 15 15 1.8 59.3 40.8 204 0 4 15 15 146.7 15 15 0.1 91.0 9.0 2 0 1
I-3-3-100-09 19 19 117.4 19 19 0.2 65.4 34.6 8 0 1 19 19 26.2 19 19 0.1 87.7 12.4 0 0 1
I-3-3-100-10 19 19 267.7 19 19 0.4 63.1 36.9 21 0 4 19 19 42.7 19 19 0.1 89.4 10.6 1 0 1
mean 16.4 16.4 726.1 16.4 16.4 1.6 68.3 31.7 253.9 0.0 2.6 16.4 16.4 77.6 16.4 16.4 0.1 90.6 9.4 0.5 0.0 1.1
I-5-5-200-01 20 18 3600.0 18 18 7.2 53.7 46.4 96 0 3 19 18 3600.0 18 18 0.4 84.1 15.9 0 0 1
I-5-5-200-02 36 17 3600.0 17 17 3418.4 86.4 13.6 38018 0 4 17 17 1039.2 17 17 0.8 87.4 12.6 1 0 1
I-5-5-200-03 37 15 3600.0 15 15 1.7 58.0 42.0 34 0 1 15 15 2913.9 15 15 0.4 87.7 12.3 0 0 1
I-5-5-200-04 17 16 3600.0 16 16 1.3 70.2 29.8 10 0 1 16 16 1750.3 16 16 2.6 42.4 57.6 10 0 3
I-5-5-200-05 18 18 1439.9 18 18 8.8 47.1 52.9 76 0 3 18 18 1750.9 18 18 0.9 82.5 17.5 1 0 1
I-5-5-200-06 16 16 1904.1 16 16 1.1 82.6 17.4 5 0 1 16 16 1037.1 16 16 0.4 84.9 15.1 0 0 1
I-5-5-200-07 31 16 3600.0 16 16 5.8 63.5 36.5 54 0 3 16 16 344.5 16 16 0.4 85.3 14.7 0 0 1
I-5-5-200-08 47 16 3600.0 16 16 2.7 56.2 43.8 34 0 2 16 16 2121.4 16 16 0.4 85.7 14.4 0 0 1
I-5-5-200-09 18 18 1365.1 18 18 191.7 45.7 54.3 4331 0 4 18 18 2250.0 18 18 0.8 91.5 8.5 0 0 1
I-5-5-200-10 41 18 3600.0 18 18 9.7 52.2 47.8 156 0 3 18 18 1486.8 18 18 0.4 85.0 15.0 0 0 1
mean 28.1 16.8 2990.9 16.8 16.8 364.8 61.6 38.4 4281.4 0.0 2.5 16.9 16.8 1829.4 16.8 16.8 0.8 81.6 18.4 1.2 0.0 1.2
LB = lower bound at the point of termination; s./d. inf. cuts = number of added schedule/depot infeasibility cuts; opt. cuts = number of added optimality cuts; time MP/SP = relative runtime of
the BCH master problem/of the BCH subproblem including cut generation

Table 5.4.: Computational test on the I-|S|-|D|-n-## instances.

indicates an instance’s hardness by stating the number of times the MP’s solution was infeasible

(due to violated battery constraints) such that one or multiple schedule feasibility cuts had to

be added to the MP. The observation is also supported by the results in Section 5.6.2.4, where

instances with less battery capacity were harder to solve.

5.6.2.2. Performance on instances with additional constraints

As described in Section 5.3, we also consider optional constrains for EVSP-MD-FS, namely that

vehicles must return to their depot of initial departure and that the depots’ capacities are limited.

While these constraints are not currently relevant in the production plants we visited, they are

often discussed in the VSP literature and may also play a role in intra-logistics, especially in

such cases where the depots are small and vehicles are fixedly assigned to them. To evaluate

the effects of these constraints, we generated constrained instances from regular instances as

follows. From each regular instance in Table 5.4, we constructed a constrained instance with the

same time and battery parameters. To obtain reasonable capacity limits for the depots, we took

the regular instance’s optimal objective value, multiplied it by a factor of 1.25, rounded the result

up, and split it into integer values that we distributed randomly between the depots, where we

made sure that each depot has at least a capacity of 1. Moreover, we made the instance require

that vehicles must return to their depot of initial departure. Each constrained instance is labeled

according to the regular instance it is based on except for an initial “C” instead of “I”.
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We solved all constrained instances with CPLEX and with the proposed BCH approach. The

results are summarized in Table 5.5.

instance non-linear battery recharging constant-time battery recharging
CPLEX branch-and-check CPLEX branch-and-check

lable value LB time value LB time time MP time SP s. inf. d. inf. opt. value LB time value LB time time MP time SP s. inf. d. inf. opt.
(in s) (in s) (in %) (in %) cuts cuts cuts (in s) (in s) (in %) (in %) cuts cuts cuts

C-2-2-50-01 13 13 10.2 13 13 0.0 81.6 18.4 1 0 1 13 13 7.1 13 13 0.0 82.6 17.4 0 0 1
C-2-2-50-02 12 12 13.1 12 12 0.0 83.3 16.7 11 0 1 12 12 9.0 12 12 0.0 72.0 28.0 0 0 1
C-2-2-50-03 12 12 11.0 12 12 0.0 78.4 21.6 4 0 1 12 12 7.7 12 12 0.0 73.7 26.3 0 0 1
C-2-2-50-04 17 17 8.7 17 17 0.0 79.0 21.1 0 0 1 17 17 6.3 17 17 0.0 79.0 21.1 0 0 1
C-2-2-50-05 15 15 8.8 15 15 0.0 85.7 14.3 2 0 1 15 15 6.2 15 15 0.0 77.3 22.7 1 0 1
C-2-2-50-06 13 13 9.3 13 13 0.0 83.3 16.7 4 0 1 13 13 6.6 13 13 0.0 76.2 23.8 0 0 1
C-2-2-50-07 16 16 8.7 16 16 0.0 79.0 21.1 0 0 1 16 16 6.3 16 16 0.0 76.2 23.8 0 0 1
C-2-2-50-08 12 12 10.4 12 12 0.0 84.2 15.8 8 0 1 12 12 8.4 12 12 0.0 83.3 16.7 0 0 1
C-2-2-50-09 16 16 9.4 16 16 0.0 71.4 28.6 1 0 1 16 16 6.0 16 16 0.0 75.0 25.0 0 0 1
C-2-2-50-10 13 13 12.4 13 13 0.0 77.3 22.7 0 0 1 13 13 6.5 13 13 0.0 77.3 22.7 0 0 1
mean 13.9 13.9 10.2 13.9 13.9 0.0 80.3 19.7 3.1 0.0 1.0 13.9 13.9 7.0 13.9 13.9 0.0 77.2 22.8 0.1 0.0 1.0
C-3-3-100-01 15 15 1450.1 15 15 4.8 65.1 34.9 987 2 3 15 15 48.2 15 15 0.1 88.0 12.1 0 0 1
C-3-3-100-02 17 17 818.6 17 17 0.2 68.2 31.8 13 0 1 17 17 54.4 17 17 0.1 86.6 13.4 0 0 1
C-3-3-100-03 16 16 272.6 16 16 0.3 73.4 26.6 13 0 1 16 16 48.3 16 16 0.1 86.6 13.4 1 0 1
C-3-3-100-04 16 16 1620.2 16 16 0.2 70.3 29.7 17 0 1 16 16 87.9 16 16 0.1 75.0 25.0 0 0 2
C-3-3-100-05 18 18 1008.9 18 18 4.7 63.8 36.2 824 0 3 18 18 98.5 18 18 0.1 87.5 12.5 1 0 1
C-3-3-100-06 15 15 988.0 15 15 1.9 62.2 37.8 374 2 1 15 15 65.1 15 15 0.1 88.1 11.9 0 0 1
C-3-3-100-07 14 14 1766.6 14 14 0.9 57.1 42.9 98 2 1 14 14 52.3 14 14 0.1 85.7 14.3 0 0 1
C-3-3-100-08 15 15 1738.5 15 15 8.0 61.0 39.0 1140 2 3 15 15 114.5 15 15 0.1 87.3 12.7 2 0 1
C-3-3-100-09 19 19 945.1 19 19 0.2 66.7 33.3 8 0 1 19 19 44.1 19 19 0.1 84.6 15.4 0 0 1
C-3-3-100-10 19 19 272.5 19 19 0.4 60.6 39.4 18 2 1 19 19 28.5 19 19 0.1 86.1 13.9 1 0 1
mean 16.4 16.4 1088.1 16.4 16.4 2.2 64.8 35.2 349.2 1.0 1.6 16.4 16.4 64.2 16.4 16.4 0.1 85.6 14.4 0.5 0.0 1.1
C-5-5-200-01 - 18 3600.0 18 18 13.2 49.1 50.9 163 2 1 23 18 3600.0 18 18 0.4 83.5 16.5 0 0 1
C-5-5-200-02 - 17 3600.0 18 17 3600.0 90.4 9.6 26417 2 2 23 17 3600.0 17 17 0.8 85.8 14.2 1 0 1
C-5-5-200-03 - 15 3600.0 15 15 1.8 59.7 40.4 34 0 1 - 15 3600.0 15 15 0.4 85.4 14.7 0 0 1
C-5-5-200-04 - 16 3600.0 16 16 1.3 70.5 29.5 10 0 1 - 16 3600.0 16 16 2.6 40.8 59.2 10 2 1
C-5-5-200-05 - 18 3600.0 18 18 36.3 38.1 61.9 509 2 2 22 18 3600.0 18 18 0.9 83.1 16.9 1 0 1
C-5-5-200-06 - 16 3600.0 16 16 1.1 81.9 18.1 5 0 1 - 16 3600.0 16 16 0.4 84.3 15.7 0 0 1
C-5-5-200-07 - 16 3600.0 16 16 11.2 58.5 41.5 139 2 1 21 16 3600.0 16 16 0.4 83.5 16.5 0 0 1
C-5-5-200-08 - 16 3600.0 16 16 2.8 56.5 43.5 34 0 2 19 16 3600.0 16 16 0.4 85.1 14.9 0 0 1
C-5-5-200-09 - 18 3600.0 18 18 17.5 41.0 59.0 273 2 2 23 18 3600.0 18 18 0.8 89.9 10.1 0 0 1
C-5-5-200-10 - 18 3600.0 18 18 15.6 54.3 45.7 285 2 1 24 18 3600.0 18 18 0.4 83.5 16.5 0 0 1
mean - 16.8 3600.0 16.9 16.8 370.1 60.0 40.0 2786.9 1.2 1.4 22.1 16.8 3600.0 16.8 16.8 0.8 80.5 19.5 1.2 0.2 1.0
LB = lower bound at the point of termination; s./d. inf. cuts = number of added schedule/depot infeasibility cuts; opt. cuts = number of added optimality cuts; time MP/SP = relative runtime of
the BCH master problem/of the BCH subproblem including cut generation; - = no feasible solution was found within the runtime

Table 5.5.: Computational test on the C-|S|-|D|-n-## instances.

The results indicate that the constrained instances were generally harder to solve for both CPLEX

and – to a lesser degree – the proposed BCH approach. Especially for the former, required

runtimes increase significantly such that for n = 200 and non-linear charging, CPLEX did not

find any solution at all within the runtime limit. On the other hand, runtimes only increased

slightly for the BCH approach, such that all instances except for instances C-5-5-200-02 at non-

linear charging were solved optimally within the runtime limit. This is in line with the rather

low number of applied depot feasibility cuts (cf., the “d. f. cut” columns in Table 5.5), which

never exceeded two.

5.6.2.3. Performance on large instances

In Section 5.6.2.1, we considered instances with up to n = 200 trips, which cover roughly an

eight-hour shift. To test the performance of our solution method on even larger instances and see

how it scales from a theoretical perspective, we apply the scheme described in Section 5.6.1.1 to

randomly generate instances with s = d = 5 as well as 1000, 2000, 3000, and 4000 trips, which

is well beyond the number of trips we expect in practical intra-logistic applications.

We tried to solve the respective instances by applying CPLEX to the MIP. However, during

initialization of the model, CPLEX always reported an out of memory error. For the BCH
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approach, we set a runtime limit of 24 h (86400 s). The results are given in Table 5.6.

instance non-linear charging constant-time charging
lable value LB time time MP time SP s. inf. d. inf. opt. value LB time time MP time SP s. inf. d. inf. opt.

(in s) (in %) (in %) cuts cuts cuts (in s) (in %) (in %) cuts cuts cuts
I-5-5-1000-01 291 18 86400.0 47.8 52.2 61044 0 2 18 18 46.6 78.1 21.9 0 0 1
I-5-5-1000-02 291 17 86400.0 62.5 37.5 51369 0 2 17 17 86.0 61.3 38.7 5 0 1
I-5-5-1000-03 298 19 86400.0 39.3 60.7 57756 0 2 19 19 46.0 77.5 22.5 0 0 1
I-5-5-1000-04 295 18 86400.0 45.6 54.5 69618 0 2 18 18 65.2 58.2 41.8 2 0 1
I-5-5-1000-05 284 18 86400.0 40.3 59.7 69693 0 2 18 18 37.2 68.1 31.9 0 0 1
mean 291.8 18.0 86400.0 47.1 52.9 61896.0 0.0 2.0 18.0 18.0 56.2 68.6 31.4 1.4 0.0 1.0
I-5-5-2000-01 596 16 86400.0 54.9 45.1 2206 0 2 16 16 1043.0 59.1 41.0 3 0 1
I-5-5-2000-02 583 19 86400.0 45.6 54.4 4316 0 2 19 19 2777.2 33.4 66.7 10 0 2
I-5-5-2000-03 577 18 86400.0 60.6 39.5 3158 0 2 18 18 4766.5 32.3 67.7 23 0 2
I-5-5-2000-04 576 21 86400.0 28.7 71.3 4860 0 2 21 21 263.3 49.4 50.6 0 0 1
I-5-5-2000-05 578 18 86400.0 59.9 40.1 3616 0 2 18 18 665.2 84.6 15.4 0 0 1
mean 582.0 18.4 86400.0 49.9 50.1 3631.2 0.0 2.0 18.4 18.4 1903.1 51.8 48.2 7.2 0.0 1.4
I-5-5-3000-01 877 21 86400.0 9.8 90.3 46 0 2 21 21 2174.5 77.3 22.7 0 0 1
I-5-5-3000-02 872 18 86400.0 13.6 86.4 47 0 2 18 18 1714.9 77.0 23.1 0 0 1
I-5-5-3000-03 876 20 86400.0 16.9 83.1 60 0 2 20 20 2943.9 84.9 15.1 0 0 1
I-5-5-3000-04 883 19 86400.0 12.1 87.9 86 0 2 19 19 2239.4 64.9 35.1 2 0 1
I-5-5-3000-05 879 22 86400.0 11.4 88.6 54 0 2 22 22 1132.8 50.0 50.0 0 0 1
mean 877.4 20.0 86400.0 12.8 87.2 58.6 0.0 2.0 20.0 20.0 2041.1 70.8 29.2 0.4 0 1
I-5-5-4000-01 4000 18 86400.0 7.1 92.9 19 0 1 18 18 4211.9 78.2 21.8 0 0 1
I-5-5-4000-02 4000 19 86400.0 10.5 89.5 19 0 1 20 19 86400.0 54.7 45.3 348 0 2
I-5-5-4000-03 4000 17 86400.0 9.7 90.3 36 0 1 17 17 7106.2 89.1 10.9 0 0 1
I-5-5-4000-04 4000 20 86400.0 5.2 94.8 6 0 1 20 20 4857.9 53.9 46.1 1 0 1
I-5-5-4000-05 4000 19 86400.0 10.0 90.0 6 0 1 19 19 12185.7 67.0 33.0 3 0 1
mean 4000.0 18.6 86400.0 8.5 91.5 17.2 0.0 1.0 18.8 18.6 22952.3 68.6 31.4 70.4 0.0 1.2
LB = lower bound at the point of termination; s./d. inf. cuts = number of added schedule/depot infeasibility cuts; opt. cuts = number of added optimality
cuts; time MP/SP = relative runtime of the BCH master problem/of the BCH subproblem including cut generation

Table 5.6.: Computational test on large instances.

For non-linear charging, only exceptionally bad solutions were found within the runtime limit.

We explain this as follows. At the beginning of the procedure, CPLEX, which is used to solve

the MP in the BCH approach, forwards rather bad solutions to the subproblem, which (unsur-

prisingly) are validated to be feasible. Afterwards, CPLEX repeatedly forwards solutions with

objective values equaling the lower bound to the subproblem, which are found to be infeasible,

however. As a consequence, no close-to-optimal solutions are explored within the runtime and

the best found solutions remain at a bad objective value.

On the other hand, for constant-time charging, the BCH approach was able to find optimal

solutions for all instances except instance I-5-5-4000-2, where the optimality gap is only 1. This

is quite a remarkable result for an exact solution approach and indicates that our approach may

be quite suitable in practice even for very large instances if battery-swapping technology is used.

Note that, as mentioned in Section 5.6.2, all computational tests were performed on a desktop PC

with 16 GB of RAM available. However, for the larger instances, the BCH procedure required

far greater memory, which sometimes even exceeded 50 GB during processing. Hence, hard

drive memory was used, which slowed down processing significantly. For example, for the I-

5-5-4000-## instances, reading out an integer candidate solution x̄ from the MP required more

than half an hour, even though the number of variables is bounded by O(n2). Since we attribute

this time to the subproblem’s runtime, it also explains the large proportion of runtime spent

solving the subproblem in Table 5.6. Hence, if the BCH would be executed on a machine with
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sufficient RAM, we expect further performance increases.

5.6.2.4. Influence of the battery capacity and charging mode

This section investigates the influence of the battery capacity and the charging mode on the

number of required vehicles. We examined the effects of increasing and decreasing the battery

capacity by 10%, 20% and 30% and compared it to the status quo. Changing the battery capacity

requires adjusting the battery charging function η(τ), which we did by simply multiplying its

output by the same factor. We performed the experiment for all instances with n = 100. The

results of the experiment are summarized in Table 5.7 and Figure 5.4.

instance non-linear with a capacity of constant-time with a capacity of
label 70% 80% 90% 100% 110% 120% 130% 70% 80% 90% 100% 110% 120% 130%

I-3-3-100-01 520 318 116 15 15 15 15 15 15 15 15 15 15 15
I-3-3-100-02 320 17 17 17 17 17 17 17 17 17 17 17 17 17
I-3-3-100-03 420 117 16 16 16 16 16 16 16 16 16 16 16 16
I-3-3-100-04 319 16 16 16 16 16 16 16 16 16 16 16 16 16
I-3-3-100-05 423 321 119 18 18 18 18 19 18 18 18 18 18 18
I-3-3-100-06 621 318 116 15 15 15 15 116 15 15 15 15 15 15
I-3-3-100-07 418 216 115 14 14 14 14 14 14 14 14 14 14 14
I-3-3-100-08 218 217 15 15 15 15 15 16 15 15 15 15 15 15
I-3-3-100-09 120 19 19 19 19 19 19 19 19 19 19 19 19 19
I-3-3-100-10 322 19 19 19 19 19 19 19 19 19 19 19 19 19
mean 20.1 17.8 16.8 16.4 16.4 16.4 16.4 16.7 16.4 16.4 16.4 16.4 16.4 16.4
preceding superscripts denote duality gaps > 0 after 3600 s of runtime

Table 5.7.: Computational study on the influence of the battery capacity and charging.
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Figure 5.4.: Influence of the battery capacity and charging mode on the fleet size.

The battery charging mode did not influence the number of required vehicles for the regular

or an increased battery capacity. However, for below 100 % of battery capacity, more vehicles

were required for non-linear charging. For 70 % of battery capacity, the required fleet size also

slightly increased for constant-time charging. Furthermore, the lower the battery capacity, the
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harder it was for the BCH approach to find optimal solutions, especially for the case of non-linear

charging.

Generally, non-linear battery charging required a larger fleet size than constant-time charging.

The difference was only relevant for battery capacities below 100 %, however. In conclusion,

our experiments show that the battery charging mode and capacity did influence the required

fleet size. Above a certain threshold, which was at about 90 % to 100 % battery capacity in our

experiments, the effects became marginal, however.

Despite the generally low impact of the charging mode on the fleet size, it has an important

influence. As the schedule infeasibility cuts in Tables 5.4 and 5.5 show, significantly more solu-

tions needed to be evaluated for non-linear charging than for constant-time charging before the

optimal solution was found. This strongly suggests that the solution space (i.e., the number of

solutions with minimal fleet size) is much narrower for the former than for the latter. Conse-

quently, if secondary objectives, additional constraints, or robustness aspects become relevant,

constant-time charging offers greater flexibility.

As a final remark, we checked whether solutions found for either of the charging modes would

be feasible for the other. While all solutions found for non-linear charging were also feasible for

constant-time charging, the opposite was only true for nine solutions and only when the battery

capacity was at 120% or above. This is in line with the findings of Olsen and Kliewer (2018) and

Olsen and Kliewer (2020) inasmuch as it demonstrates the necessity to model plug-in charging

as non-linear charging to avoid schedules that are infeasible in practice.

5.6.2.5. Influence of the number of depots

Our instances consider a facility with multiple warehouses (as depicted in Figure 5.1a), where

each warehouse has a separate tow train depot (which is also a charging station). In this section,

we investigate how the number of warehouses and depots effects the fleet size.

We generated instances with s ∈ {1, 2, 3, 4} from the regular I-5-5-200-## instances in the fol-

lowing way. Starting with a I-5-5-200-## instance with five warehouses, we merged the first and

second warehouse into a single warehouse to attain a comparable instance with four warehouses.

Likewise, to attain an instance with three warehouses, we merged warehouses one and two as

well as three and four. To attain instances with two warehouses, we merged warehouses one,

two, and five, as well as three and four. Finally, instances with a single warehouse were gen-

erated by merging all five warehouses. Whenever we merged two or more warehouses, we set
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the location of the resulting warehouse within the facility to the average location of all merged

warehouses. We did the same for the location of the depot within the merged warehouse. Fur-

thermore, we scaled up the size of the merged warehouse – and all trip start locations within –,

such that the merged warehouse’s area equals the sum of the separate warehouses’ areas. All

other parameters were left unchanged to get fair comparisons.

We solved all I-s-d-200-## instances for non-linear and constant-time battery charging with the

BCH approach. The results are summarized in Table 5.8.

In general, our experiment only found a small influence in the number of warehouses and depots

on the required fleet size. On average having a medium number of warehouses – three to four in

our experiments – resulted in the smallest average fleet size. Having five decentralized or only

one or two centralized warehouses resulted in marginally larger fleet sizes.

While, on average, detours increased for the case of fewer and therefore larger warehouses,

they increased only by a comparatively small amount. On the other hand, since (to make the

comparison fair) we assumed merged warehouses to be the average distance of the individual

warehouses away from the production area, very long tours that require a large amount of charge

were less crucial, which increased flexibility. According to our results, the trade-off was most

favorable for a medium number of warehouses. Overall, the effect of the centralization was

comparatively small, however, and we expect the warehouses’ locations (as opposed to their

number) to be a much greater factor in practice.

instance non-linear battery charging constant-time battery charging

label s = d = 5 s = d = 4 s = d = 3 s = d = 2 s = d = 1 s = d = 5 s = d = 4 s = d = 3 s = d = 2 s = d = 1

I-s-d-200-01 18 18 18 18 18 18 18 18 18 18
I-s-d-200-02 17 ∗18 18 18 18 17 17 18 18 18
I-s-d-200-03 15 15 15 15 15 15 15 15 15 15
I-s-d-200-04 16 16 16 16 17 16 16 16 16 17
I-s-d-200-05 18 18 17 17 19 18 18 17 17 19
I-s-d-200-06 16 16 16 16 16 16 16 16 16 16
I-s-d-200-07 16 15 15 ∗16 16 16 15 15 15 16
I-s-d-200-08 16 16 17 17 17 16 16 17 17 17
I-s-d-200-09 18 18 18 18 ∗19 18 18 18 18 18
I-s-d-200-10 18 17 17 18 18 18 17 17 18 18
mean 16.8 16.7 16.7 16.9 17.3 16.8 16.6 16.7 16.8 17.2
∗ optimality was not proven within 3600 s

Table 5.8.: Computational study on the influence of the number of depots/warehouses.
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5.7. Conclusion

In this paper, we consider the multi-depot electric vehicle scheduling problem with the objective

of minimizing the required fleet size, which is motivated by a novel application in in-plant

logistics. We consider the problem for various battery charging functions, but primarily focus

on realistic concave non-linear lithium-ion battery charging and constant-time charging (i.e.,

battery swapping) in the course of the paper. We briefly discuss the problem’s computational

complexity and show that finding an optimal solution is NP-hard.

For a discrete version of the problem, we formulate a MIP model. For the real-valued (non-

discrete) problem, an exact branch-and-check procedure is developed. The branch-and-check

procedure decomposes the problem into two parts: first, a master problem with relaxed battery

constraints that is concerned with assigning trips to vehicles and, second, a subproblem that

schedules charging breaks and checks whether the master problem’s solutions are feasible with

regard to the battery constraints.

Computational tests show that solving the MIP model with an off-the-shelf standard solver (i.e.,

CPLEX) results in a subpar performance. On the other hand, the branch-and-check procedure

solves instances with up to n = 200 trips in below 2.6 s and instances with up to n = 4000 in a

couple of hours on average, if constant-time charging is assumed. For non-linear charging, the

performance is somewhat worse. Nevertheless, for instances with n = 200 trips, the branch-

and-check procedure is still able to find optimal solutions within a runtime of one hour. Based on

our computational tests, we further derive the following take-home insights from a managerial

viewpoint:

• Generally, constant-time battery charging requires a smaller fleet size than non-linear

charging. This is especially relevant if the vehicles’ maximum battery capacity is small.

For larger battery capacities, the effect is marginal. Moreover, constant-time battery charg-

ing results in a larger solution space (i.e., more possible solutions with the minimal fleet

size) and therefore generally more flexibility.

• Applying a model with constant-time charging to a situation with non-linear charging (i.e.,

plug-in charging) is not advisable, as solutions found by the constant-time model are very

likely to be infeasible for the non-linear charging case. Hence, it is important to actually

model non-linear charging as such.

• The greater the vehicles’ battery capacity, the fewer vehicles are required. However, this

becomes marginal once a certain threshold in battery capacity is reached, which is between
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90 % and 100 % of the regular capacity in our experiments. Furthermore, the effect is more

severe for non-linear battery charging.

• The required fleet size is smallest for an intermediate number of warehouses and depots.

The effect is quite marginal and actual warehouse locations are likely to be much more

important, however.

Future research may aim to extend our experiments on the deployment of warehouses and depots

in in-plant logistics. While we only considered the effects of the number of warehouses, it

stands to reason that their location has a much more severe influence, where there is a multitude

of ways depots and warehouses could be arranged in practice. However, such a study would

ideally include a case study on typical facility layouts, which is out of the scope of this paper.

While our solution procedure is suitable to solve instances of realistic size (with n = 200, an

instance covers roughly an eight-hour workday), larger instances with n ≥ 1000 could not be

solved when non-linear plug-in charging was assumed. Therefore, future research may develop

heuristic approaches inspired by the idea of the branch-and-check procedure. A straightforward

way would be to turn the exact master problem into a heuristic beam search procedure. Alter-

natively, the master problem could be replaced by a meta-heuristic search approach such as tabu

search or simulated annealing.

Finally, future research could consider adapting our general solution approach for electric vehi-

cle problems with other or extended objectives as summarized in Table 5.1. While Li (2014),

van Kooten Niekerk et al. (2017), and Adler and Mirchandani (2017) found that column genera-

tion performs well as an exact solution approach in that matter, the generally good performance

of the BCH procedure in this paper suggests row generation may be a worthwhile consideration,

too.
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5.A. Appendix

Determining the parameters c̄max
j,j′ and c̄min

j,j′

Determining the parameter c̄max
j,j′ is not straightforward from its definition in Section 5.5.1, be-

cause we do not know which value of c maximizes the term ζ∗(j, j, c)− c. The same is the case

for c̄min
j,j′ . However, we can reformulate c̄max

j,j′ = maxc∈C̃j

{
maxj′′∈S∪{0} {ζ(j, j′, j′′, c)− c}

}
=

maxj′′∈S∪{0}

{
maxc∈C̃j

{
ζ(j, j′, j′′, c)− c

}}
. Likewise, we can reformulate c̄min

j,j′ = min
{
c ∈

C̃j | maxj′′∈S∪{0}
{
ζ(j, j′, j′′, c)

}
≥ min

{
C̃j′
}}

= minj′′∈S∪{0}

{
min

{
c ∈ C̃j | ζ(j, j′, j′′,

c) ≥ min
{
C̃j′

}}}
. From the reformulations, it becomes evident that we need to consider

every j′′ ∈ S ∪ {0} separately, for which we then calculate

c̄max, red
j,j′ (j′′) = max

c∈C̃j

{
ζ(j, j′, j′′, c)− c

}
(5.35)

and

c̄min, red
j,j′ (j′′) = min

{
c ∈ C̃j | ζ(j, j′, j′′, c) ≥ min

{
C̃j′

}}
, (5.36)

respectively. Moreover, note that we do not need to determine c̄max
j,j′ and c̄min

j,j′ if (j, j′) ∈ I (cf.,

Constraints (5.23) to (5.25)).

For j′′ = 0 and (j, j′) /∈ I , it follows that c̄max, red
j,j′ (j′′) = −c̄j,j′ − c̃j′ and c̄min, red

j,j′ (j′′) =

min
{
c ∈ C̃j | c− c̄j,j′ − c̃j′ ≥ min

{
C̃j′

}}
= min

{
C̃j′

}
+ c̄j,j′ + c̃j .

For j′′ ∈ S, we take the following observation into account. For all charging functions η we

consider in this paper, charging is faster (or at least not slower) the lower the SOC. Therefore,

the maximum increase in the SOC between j and j′ occurs if station j′′ ∈ S is visited with the

minimum possible SOC that allows for a feasible execution. Since c̄min, red
j,j′ (j′′) is the minimum

SOC that must be left at j to execute the transition to j′ via the deadheading route j′′ feasibly,

it follows that c̄max, red
j,j′ (j′′) = ζ(j, j′, j′′, c̄min, red

j,j′ (j′′)) − c̄min, red
j,j′ (j′′). Hence, it follows that

c̄min, red
j,j′ (j′′) = min

{
c ∈ C̃j | η

(
η−1

(
c− c̄j,j′′

)
+ τ̄ (j, j′, j′′, c)

)
− c̄j′′,j′ − c̃j′ ≥ min

{
C̃j′

}}
= η

(
η−1
(
min{C̃j′}+ c̄j′′,j′ + c̃j′

)
− τ̄(j, j′, j′′, c)

)
+ c̄j,j′′ . Inserting the respective value for

c into Expression (5.35) yields c̄max, red
j,j′ (j′′) accordingly.

To foster the understanding, the procedure to determine c̄max
j,j′ and c̄min

j,j′ simultaneously is summa-

rized as pseudo-code in Algorithm 5.1.
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Algorithm 5.1: Algorithm for determining c̄max
j,j′ and c̄min

j,j′ simultaneously.

Input: j, j′, C̃j , C̃j′

1 c̄max
j,j′ = −c̄j,j′ − c̃j′ ; // maximal increase in the SOC between j and j′; the

initial value results from the case that j′′ = 0

2 c̄min
j,j′ = c̄j,j′ + c̃j′ +min

{
C̃j

}
; // minimum required SOC that must remain at j if

j′ should be reached consecutively; the initial value results from the
case that j′′ = 0

3 for j′′ ∈ S do
4 c := η

(
η−1

(
min{C̃j′}+ c̄j′′,j′ − c̃j′

)
− sj′ + ej + tj,j′′ + tj′′,j′ + r

)
+ c̄j,j′′ ;

5 c̄max
j,j′ := max

{
ζ(j, j′, j′′, c)− c, c̄max

j,j′
}

;
6 c̄min

j,j′ := min
{
c, c̄min

j,j′
}

;

Output: c̄max
j,j′ , c̄

min
j,j′
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