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ABSTRACT: Native ambient mass spectrometry enables the in situ analysis of proteins and their complexes directly from tissue,
providing both structural and spatial information. Until recently, the approach was applied exclusively to the analysis of soluble
proteins; however, there is a drive for new techniques that enable analysis of membrane proteins. Here we demonstrate native
ambient mass spectrometry of membrane proteins, including β-barrel and α-helical (single and multipass) integral membrane
proteins and membrane-associated proteins incorporating lipid anchors, by integration of a simple washing protocol to remove
soluble proteins. Mass spectrometry imaging revealed that washing did not disrupt the spatial distributions of the membrane and
membrane-associated proteins. Some delocalization of the remaining soluble proteins was observed.

Native ambient mass spectrometry (NAMS) combines
native mass spectrometry, in which inter- and intra-

molecular non-covalent interactions present in solution are
maintained in the gas phase, and ambient mass spectrometry,
in which substrates such as thin tissue sections are analyzed
directly with little or no sample preparation.1−3 NAMS
provides information about the structure of proteins and
their spatial distribution in a single experiment. To date,
NAMS has focused primarily on soluble proteins and their
assemblies and complexes.4−6

Membrane proteins constitute around a third of the
proteome but around two-thirds of therapeutic targets.7,8

Moreover, a number of measures of research progress indicate
that knowledge of membrane proteins lags behind that of
soluble proteins by a number of decades.9 We recently
demonstrated that NAMS may be extended to membrane
proteins using the example of highly abundant aquaporin-0
(Aqp-0). We showed that Aqp-0 can be observed directly from
eye lens tissue by use of a sampling solvent containing the
detergent tetraethylene glycol monooctyl ether (C8E4) at a
concentration greater than the critical micelle concentration
(CMC).10 Despite these results, empirical observations in our
laboratory suggest that the use of C8E4 at concentrations
greater than the CMC alone is not sufficient to allow detection
of membrane proteins more broadly, e.g., those in other tissue
types or in lower abundance. Here, we demonstrate that
inclusion of a washing step prior to NAMS analysis enables the
detection of integral membrane and membrane-associated
proteins from thin sections of the rat brain and kidney. The use
of washing protocols to remove lipids is well-established in
mass spectrometry imaging.11,12 The aim here was not to
remove lipids, as they are necessary for stabilization of
membrane proteins, but to remove more soluble proteins,
thereby reducing any ion suppression effects, i.e., ionization of
soluble proteins at the expense of less abundant membrane
proteins. Washing may also remove other cytosolic materials
and salts, again reducing any ion suppression effects.

Washing was achieved by pipetting the wash solvent onto
the tissue section, such that the entire section was covered,
followed by inversion of the slide to drain off the wash solvent
and drying in a vacuum desiccator. Both MS-grade water and
200 mM aqueous ammonium acetate were investigated as
potential wash solvents. Tissue washing with water has
previously been applied in the analysis of proteolipid protein
(PLP) from brain tissue by matrix-assisted laser desorption/
ionization (MALDI) mass spectrometry.13 In our hands,
washing with water resulted in visible disruption of the thaw-
mounted tissue and therefore loss of spatial information. The
ammonium acetate wash, however, left the tissue intact (see
Figure S1). Nanospray desorption electrospray ionization
(nano-DESI)6,14,15 sampling was performed as described
previously, i.e., using aqueous ammonium acetate solvent
containing C8E4 micelles to dissolve membrane proteins.10

Micelle-encapsulated membrane proteins were ionized and
introduced into the mass spectrometer. Control experiments
were performed in which unwashed tissue was sampled with
0.5 × CMC and 2 × CMC detergent and washed tissue was
sampled with 0.5 × CMC detergent. Full experimental details
are given in the Supporting Information.

Figure 1a,b shows summed nano-DESI mass spectra
obtained from the cortex region of the brain from unwashed
and washed tissue using a sampling solvent system comprising
200 mM ammonium acetate + 2 × CMC C8E4 and a source
compensation value (SCV) of 3% (see Figure S2 for brain
anatomy). The proteins observed in the mass spectrum from
unwashed tissue are similar to those observed when using a
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lower concentration of detergent (0.5 × CMC) in the sampling
solvent (see Figure S3). All proteins labeled in the mass spectra
from unwashed tissue have been identified in previous work4,5

and are assigned here on the basis of intact mass. The mass
spectrum from washed tissue differs markedly from that of
unwashed tissue. Newly detected proteins were identified by
top-down fragmentation followed by protein database
searching (for details, see Table S2). Table S3 provides a
summary of all proteins identified together with known
abundance and spatial distributions where available in the
literature. The proteins identified include the 25.8 kDa ras-
related protein Rab-3A (Rab3A) and the 21.9 kDa brain acid
soluble protein 1 (BASP1) (Figures S4 and S5). Crucially, the
washing protocol together with use of detergent at 2 × CMC
resulted in detection of the membrane protein voltage-
dependent anion channel 1 (VDAC1) (30.6 kDa; see Figure
2a). VDAC1 is a β-barrel membrane protein which is located
in the outer membrane of mitochondria and controls the
transport of cations and respiratory substrates across the
membrane.16

By tuning the SCV (an “uphill” voltage in the source optics
which reduces an ion’s kinetic energy to help transmission
through the flatapole), it is possible to preferentially transmit
ions over different m/z ranges1,4,17 (see Figure S6). At an SCV
of 2.5%, vesicle-associated membrane protein 2 (VAMP2) with
N-terminal acetylation (Figure 2b) was detected. VAMP2
(12.6 kDa) is a single-pass membrane protein found in
synaptic vesicles. It is involved in the docking of the vesicle
with the plasma membrane by formation of the SNARE

complex.18 Other newly detected proteins at an SCV of 2.5%
were hippocalcin-like protein 1 (HPCAL1) with N-terminal
myristoylation and non-covalent attachment of three Ca2+ ions
(22.5 kDa) and the 14.1 kDa short isoform of myelin basic
protein (MBP) (Figures S7 and S8).

Figure 1c shows a photograph of a section of brain tissue
(BE002350-13/An8) after nano-DESI sampling. Figure 1d−g
shows the corresponding ion images obtained with an SCV of
3% (higher m/z). Figure 1h shows a photograph of a brain
section (BE002350-13/An2), with Figure 1i−l showing ion
images obtained using an SCV of 2.5% (lower m/z). The two
membrane proteins (VDAC1 and VAMP2) display distinct
distributions. VDAC1 is distributed throughout the brain but is
absent in the corpus callosum and midbrain. VAMP2 also
displayed a strong signal in the cortex, hippocampus, and
thalamus and a weaker signal in the gray matter of the
cerebellum. Both the distributions of VDAC1 and VAMP2 are
in agreement with previous immunohistochemical studies19,20

and confirm that the spatial distribution of the membrane
proteins were not disrupted by the washing procedure.

In addition to integral membrane proteins, tissue washing
enabled the detection of membrane-associated proteins. Rab3A
(Figures 1e and S4) and HPCAL1 (Figures 1j and S7) were
observed to have distinct spatial distributions (also see Figure
S9). Rab3A is abundant in the cortex, basal ganglia, thalamus,
and gray matter of the cerebellum and was observed to be
modified with hydrophobic S-geranylgeranyl groups on the two
cysteine residues at its C-terminus.21 Rab3A is involved in
vesicle docking and tethering and has a similar distribution to

Figure 1. Summed nano-DESI mass spectra obtained following sampling of the cortex region in (A) unwashed and (B) washed brain tissue
sections. Nano-DESI sampling solvent contained 2 × CMC C8E4 detergent. (C) Photograph of a washed brain section after sampling and (D−G)
corresponding single-charge-state ion images obtained using a source compensation value (SCV) of 3%. (H) Photograph of a washed brain section
after sampling and (J−L) corresponding single-charge-state ion images obtained with an SCV of 2.5%. Scale bars denote 2 mm.
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VAMP2, which is also involved in this process.22 Importantly,
membrane localization is dependent on the geranylgeranyl
lipid anchors.23 In addition, Rab3A was observed to have GDP
non-covalently bound, suggesting that washing does not
necessarily disrupt non-covalent interactions. HPCAL1 was
observed primarily in the cerebellum, in agreement with in situ
hybridization experiments.24 HPCAL1 was observed to be
modified by myristoylation, a known membrane lipid anchor,
at the N-terminus and bound to three Ca2+ ions. The non-
covalent binding of the three Ca2+ ions induces a conforma-
tional change in the protein, exposing the myristoyl anchor and
enabling the protein to attach to a membrane.25 The
observation of the Ca2+ ions further suggests that washing
enables imaging of membrane-associated proteins without
disrupting their non-covalent interactions. MBP short isoform
was observed in the white matter of the cerebellum (Figure

1k). MBP is essential for compact myelin membrane stacking
and can undergo partial membrane insertion.26 Lastly, an
unidentified 44.7 kDa protein was observed with a highly
distinctive spatial distribution, localized to the corpus callosum
(Figure 1f). Top-down fragmentation did not allow identi-
fication of this protein, but its sharp ion image suggests that it
is a membrane or membrane-associated protein.

BASP1 was observed at both SCVs (Figure 1g,l) and,
importantly, was observed from washed tissue following
sampling with solvent containing 0.5 × CMC detergent
(Figure S6), suggesting that, despite the myristoylation at the
N-terminus, it is more soluble than other proteins detected.
The increased solubility is due to a highly acidic region within
the protein.27 Consequently, some delocalization of the protein
is observed in both images. Protein signal was detected from
the glass slide adjacent to the tissue section, and the

Figure 2. Top-down fragmentation of membrane proteins sampled directly from tissue using nano-DESI. (A) HCD MS2 of 10+ ions of N-
acetylated VDAC1 (m/z 3067.6 ± 7.5, NCE 55%). (B) HCD MS2 of 5+ ions of N-acetylated VAMP2 (m/z 2521.3 ± 5, NCE 36%). (C) HCD
MS2 of 6+ ions of MAL (m/z 3311.9 ± 7.5, NCE 35%). N-terminal acetylation is marked by an orange box. * indicates noise peaks.
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distribution within the tissue is less focused compared to, e.g.,
VAMP2 and Rab3A. GDP-bound ARF1 was observed in the
nano-DESI mass spectra obtained following washing (Figures
1a and S6). ARF1 is a soluble protein and is also detected in
the absence of washing and at lower detergent concentrations.5

Our findings show that the spatial distribution of this protein
was disrupted as a result of washing (Figure S10).

The workflow was also applied to sections of rat kidney.
Nano-DESI mass spectra obtained from the renal cortex are
shown in Figure S11. Again, the unwashed tissue yielded a
mass spectrum heavily populated with peaks corresponding to
soluble proteins while the washed tissue yielded a range of
newly detected signals. In situ top-down fragmentation resulted
in the identification of the membrane protein VDAC1 (Figure
S12). Nano-DESI mass spectra obtained from the cortex,
medulla, and renal pelvis regions of washed tissue sections are
shown in Figure S13. VDAC1 was particularly abundant in the
cortex and medulla of the kidney. Two further membrane
proteins, myelin and lymphocyte protein (MAL) (16.5 kDa)
and cytochrome b5 (CYB5A) (15.3 kDa), were identified from
the washed tissue (Figures 2C and S14). MAL is a tetraspan
membrane protein involved in formation and stabilization of
lipid rafts28 and was observed here in the renal pelvis. CYB5A
binds heme non-covalently and has a C-terminal trans-
membrane helix and was observed here in the cortex.
Interestingly, the protein was observed without its prosthetic
group, suggesting that in this case washing removed the soluble
heme. Lastly, actin 1, likely bound to ADP (42.1 kDa) due to
the characteristic mass shift observed in the fragmentation
data, was also identified throughout the kidney (Figure S15).

In conclusion, our results show that tissue washing with 200
mM ammonium acetate prior to nano-DESI sampling reduces
or eliminates abundant signals from soluble proteins, enabling
the detection of integral membrane and membrane-associated
proteins directly from tissue sections. Membrane proteins were
observed only when using 2 × CMC detergent in the sampling
solvent. The ion images show that the spatial distributions of
the membrane (and membrane-associated) proteins are not
disrupted by washing. Some delocalization was observed for
the more soluble proteins (BASP1 and ARF1). Future work
will focus on trialing alternative detergents, with the aim of
increasing the depth of membrane protein coverage.
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