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Resonant fractional conductance through a 1D Wigner chain

Rose Davies,1, 2 Igor V. Lerner,1 and Igor V. Yurkevich2
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2School of Computer Science & Digital Technologies, Aston University, Birmingham, B4 7ET

(Dated: July 18, 2023)

In recent experiments on conductance of one-dimensional (1D) channels in ultra-clean samples,
a diverse set of plateaus were found at fractions of the quantum of conductance in zero magnetic
field. We consider a discrete model of strongly interacting electrons in a clean 1D system where
the current between weak tunneling contacts is carried by fractionally charged solutions. While in
the spinless case conductance remains unaffected by the interaction, as is typical for the strongly
interacting clean 1D systems, we demonstrate that in the spinful case the peak conductance takes
fractional values that depend on the filling factor of the 1D channel.

Experiments on two-terminal conductance through
one-dimensional (1D) systems contain many complex fea-
tures despite the seeming simplicity of the reduced di-
mensionality. The most well known of these, along with
the standard geometric quantization [1] of conductance
in units of 2e2/h, is the 0.7 plateau [2–4]. Recent ex-
periments have discovered a surprising new feature in
the conductance – additional plateaus occurring at frac-
tional values of the conductance quantum at zero (or very
small) magnetic field [5, 6].

The conductance through the prototypical 1D system,
a clean Luttinger Liquid, is unaffected by interactions
within the system since it is dominated in the dc limit by
the contacts to reservoirs [7–9]. It is only upon adding
a scattering mechanism and more channels when frac-
tional values of the conductance are expected [10, 11].
While such phenomenologically introduced multi-particle
backscattering was successfully utilized to reproduce one
of the most prominent fractions of 2/5 [10], the even-
denominator fractions have not been explained yet.

Typical samples in experiments [5, 6] are ultra-clean
an relatively short so that electron transport is ballistic.
There is the experimental evidence [12] of the formation
of a zigzag Wigner crystal[13, 14] in precisely the same
materials where the fractional conductance has been later
discovered [6].

In this work we suggest a discrete model of a clean
1D material with a strong electron-electron interaction
where fractional charges, which can lead to the fractional
conductance, arise due to incommensurability commen-
surability ? of the Fermi wavelength and the effective
lattice spacing. The fact that such a model results in the
appearance of fractionally charged solitons [15] has been
established by symmetry arguments in a seminal work
by Goldstone and Wilczeck [16]. However, having frac-
tional charges does not necessarily leads to the fractional
quantization of conductance. We will show here that the
latter arises only when additional channels, e.g. due to
spin, are available to the electrons.

The solitons in question could arise due to the for-
mation of the charge density wave (CDW) with a lattice
constant incommensurate with the electrons Fermi wave-

length. In all these experiments, 1D constrictions can
hold only a few electrons and a few superlattice periods,
which makes imperative to build a finite-size model with-
out going to the thermodynamic limit of the Luttinger
liquid.
We consider the Hamiltonian of N electrons hopping

on a lattice of ℓ sites with an infinite on-site repulsion
(forbidden double occupancy) and a next-neighbor re-
pulsion:

H0 =

ℓ−1∑
x=1

[
−t

(
c†xcx+1 + c†x+1cx

)
+ Unx nx+1

]
. (1)

where nx = c†xcx is the on-site number operator. We
assume the next-neighbor repulsion to be strong,

U ≫ t, (2)

which effectively projects out all states with two particles
being on adjacent sites. The chain (1) is connected to the
right and left reservoirs via the tunneling contacts with
the couplings ΓL,R.
We assume for definiteness that the number of sites ℓ

is odd [17] and the gate voltage is such that the maximal
number of states possible under condition (2), 1

2 (ℓ+1) ≡
N+1, is occupied making a string

SN+1 =• ◦ • ◦ •· · · ◦ • (3)

of alternate N+1 occupied (•) and N empty (◦) sites.
Such a string corresponds to the ground state of the sys-
tem with (N+1) particles. We consider the Hilbert sub-
space HN+1, where the high-energy states that contain
adjacent occupied sites have been projected out under
condition (2). In this subspace the ground state (3) is
unique and we denote it as

∣∣N+1
〉
.

An important point is that under the same condition
the ground state energy EN of the system with N parti-
cles can be very close to EN+1 leading to the resonance
conductance at low temperatures.
States with N = 1

2 (ℓ− 1) particles in the projected
subspace HN , which are obtained from

∣∣N+1
〉
, Eq. (3),

by removing an electron from an odd (occupied) site, are
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made of two strings like that in Eq. (3) separated a triplet
of empty sites. Such states can be represented as∣∣i, i;N〉

≡
∣∣⊗Si◦◦◦ SN−i ⊗

〉
, i = 0, 1 · · ·N, (4a)

where the 2m−1-long strings Sm contain m electrons
with alternating occupied and empty sites as defined in
Eq. (3) for m = N+1. Here we represent left and right
reservoirs attached to the chain as two additional sites at
x = 0 and x = ℓ+1 depicted by crossed circles, which are
never occupied by design. This is convenient to incorpo-
rate the states obtained from

∣∣N+1
〉
by removal one of

the edge electrons. Assuming that a string S0 is omitted
together with an adjacent empty site (to keep the total
number of sites unchanged), the boundary states are∣∣0, 0;N〉

=
∣∣⊗◦◦SN ⊗

〉
, ,∣∣N,N ;N

〉
=

∣∣⊗SN ◦◦⊗
〉
.

(4b)

Formally, the states in Eq. (4) are obtained by acting
with the annihilation operator cx on any occupied site in∣∣N+1

〉
: ∣∣i, i;N〉

= cx
∣∣N + 1

〉
δx,2i+1 . (5)

Further states in subspace HN , obtained by acting with
the hopping part of Hamiltonian (1) on states (4), can be
represented as configurations with two doublets of empty
sites separating three strings,∣∣i, j;N〉

=
∣∣⊗Si◦◦Sj−i◦◦SN−j⊗

〉
, i < j, (6a)

including states with the boundary doubles:∣∣0, j;N〉
=

∣∣⊗◦ Sj ◦◦SN−j ⊗
〉
,∣∣j, j;N〉

=
∣∣⊗Sj ◦◦SN−j ◦⊗

〉
,

(6b)

In the states of Eqs. (6), particles in strings separated
by two empty sites occupy either only even or only odd
sites. The occupancy, nx = 0 or 1, of any site can be
represented as nx = 1

2 (cos(πx+ϕx) + 1), with ϕx = 0
for occupied even (or empty odd) sites and ϕx = π for
occupied odd (or empty even) sites. Hence, an electron
hopping by one site can be represented by the motion of
the domain wall (kink) between 0 and π phases by two
sites as illustrated in Fig. 1. In the states of Eqs. (4),
all electron occupied odd sites, and an electron hopping
to an empty site is equivalent to the creation of kink –
anti-kink pair.

As such pairs are created by removing a single electron
from state

∣∣N+1
〉
, each kink carries the one-half electron

charge, in agreement with the classical soliton picture
of Goldstone and Wilczeck for polyacetylene [16]. In a
model similar to that under considerations, the existence
of such kinks has also been demonstrated numerically
[18]. We will show that, by itself, such a fractional charge
does not lead to fractional conductance.

FIG. 1. The one-electron hopping from state
∣∣0, 1; 3〉 to∣∣0, 2; 3〉 to

∣∣0, 3; 3〉, Eq. (6b), is equivalent to the motion of
the domain wall (kink), indicated by the dotted line.

The states in Eqs. (4) and (6), which are degenerate
eigenstates of Hamiltonian H0 in the absence of hopping,
can be used as a basis for spanning any state

∣∣ΨN

〉
in the

projected subspace HN∣∣ΨN

〉
=

∑
0⩽i⩽j⩽N

ψi,j+1

∣∣i, j;N〉
. (7)

To get the eigenvalue equation for H0 within HN , one
needs to keep only the hopping terms acting on the ends
of the strings, which results in

εψij = −t(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1) . (8)

This equation describes two free fermions of charge − 1
2e

with positions i and j+1 on the ficticious lattice of length
N+1, with one being on the left of the other, i ⩽ j. The
constraints on the indices in Eq. (7), 0⩽i⩽j⩽N , can be
accounted for by adding two boundary states, i = −1
and j = N+1, and imposing the boundary conditions

ψ−1,j = ψi,N+1 = ψii = 0 . (9)

The solutions of Eq. (8) with the boundary conditions
(9) are the Slater determinants of the standing waves

ψij(q1, q2) = φi(q1)φj(q2)− φi(q2)φj(q1) , (10)

where

φj(q) =

√
2

N+2
sin q(j+1) , q =

πn

N+2
(11)

with n = 1, 2, · · · , N+1. The corresponding eigenener-
gies are

ε(q1, q2) = −2t[cos q1 + cos q2] . (12)

The ground state, which we call
∣∣N〉

, is given by the
lowest possible q, i.e.

q1 =
π

N + 2
, q2 =

2π

N + 2
, (13)

and its energy is EN = ε(q1, 2q1).
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We consider the current through the system in the lin-
ear response regime under the conditions when only the
states with N+1 = 1

2 (ℓ+1) and N = 1
2 (ℓ−1) electrons in

the chain are relevant as their ground state energies are
close. Then only the ground states,

∣∣N + 1
〉
and

∣∣N〉
,

contribute to the dimensionless conductance, which in
the case of spinless fermions can be written [19] as

g =−
∞∫

−∞

dε T (ε) f ′(ε− µ) , T (ε) = 4ΓLΓR|G1ℓ(ε)|2, (14)

where f(ε−µ) is the electron Fermi distribution function
andG1ℓ(ε) is the retarded Green’s function describing the
propagation of effective excitations with energy ε across
an open chain connected to the left, at x = 1, and right,
at x = ℓ, reservoirs via the tunneling contacts with the
couplings ΓL,R.
We shall use the Dyson equation,

Gxx′ = Gxx′ +
∑
α=1,ℓ

Gxα ΣαGαx′ , (15)

to relate G1ℓ(ε) to the Green’s function Gxx′(ε) of the iso-
lated chain. This equation for G1ℓ is algebraic due to the
locality of the self-energy: Σ1 = −iΓL, Σℓ = −iΓR. Then
the Green’s function for a particle propagating across the
system is found to be

G1ℓ =
G1ℓ

1 + iG11(ΓL + ΓR) + ΓLΓR

(
G2
1ℓ − G2

11)
. (16)

The Green’s function of the isolated chain, Gx,x′(ε), is
calculated assuming infinitesimal coupling to the leads to
ensure the thermal equilibrium. Keeping only the states∣∣N〉

and
∣∣N+1

〉
, the retarded Green’s function has a pole

structure,

Gx,x′(ε) =
ρN + ρN+1

ω + i0

〈
N
∣∣cx∣∣N+1

〉〈
N+1

∣∣c†x′

∣∣N〉
, (17)

ω ≡ ε− (EN − EN+1),

where ρN and ρN+1 are canonical partition functions.
As follows from Eq. (5), the only states with N par-

ticles that contribute to
〈
N
∣∣cx∣∣N+1

〉
in Eq. (17) are∣∣i, i;N〉

, Eq. (4). Then we find from the expansion (7)
that 〈

N+1
∣∣c†x∣∣N〉

= ψi,i+1 , x = 2i+ 1 . (18)

Using the notations x = 2i+1, x′ = 2j+1, we reduce the
Green’s function (17) to

Gxx′ =
zi,j

ω + i0
, zi,j ≡ (ρN + ρN+1)ψi,i+1ψj,j+1 . (19)

The transmission coefficient then acquires the Breit-
Wigner-Fano resonance form,

T (ω) =
4Γ̃LΓ̃Rω

2[
ω2 − (1− s2) Γ̃LΓ̃R

]2
+ Γ̃2 ω2

, (20)

where the couplings to the reservoirs are renormalized by
the Green’s functions residues,

Γ̃L,R = z0,0 ΓL,R , Γ̃ = Γ̃L + Γ̃R , (21)

with s = z0,0/zN,N being the ratio of the residues. Tak-
ing into account that φN+1 = ±φ0 and φN = ±φ1,
Eq. (11), the residues are equal to each other, i.e. s = 1.
The transmission coefficient, therefore, turns into stan-
dard Breit-Wigner formula,

T (ω) =
4Γ̃LΓ̃R

ω2 + Γ̃2
. (22)

For ΓL = ΓR this peaks at 1 at the resonance, ω → 0,
leading to the universal value of conductance, e2/h, un-
affected by the fractional character of the quasiparticles
(kinks) inside the wire. This is similar to the well-known
result for the Luttinger liquid [7–9] where any internal
interaction does not change, in the absence of backscat-
tering, the universal conductance.
The generalization of the model (1) to a spinful case

drastically changes such a conclusion and results in frac-
tional values of conductance. Similar to the Luttinger
liquid model, inclusion of the spin degrees of freedom in
the model under considerations opens up an interaction
channel not available in the spinless case. However, un-
like the Luttinger liquid model there is no spin–charge
separation in our setup. We show below that the addi-
tion of the spin degree of freedom suppresses the charge
transport.
It turns out that in long constrictions the conductance

g would be exponentially suppressed but in short con-
strictions, relevant for the experiments where the non-
magnetic fractional conductance was discovered [5, 6], it
takes fractional values that depend on the constriction
length and filling factor.
To prove this claim, we generalize Hamiltonian (1) to

include spin σ =↑, ↓:

cx → cx,σ, c†x → c†x,σ , nx = nx,↑ + nx,↓ . (23)

Each occupied state (•) in string (3) and in the strings
in Eqs. (4) and (6) now acquires a spin index σ.
The spinful Green’s function for an isolated chain,

Gσσ′

x,x′(ε), is calculated along the same route as the spinless
one in Eqs. (17)–(19). Now each configuration of strings
bears spin indices, which order cannot change as only the
hopping part of H0 affects the dynamics in the large-U
limit.
The spin degrees of freedom in Green’s function

Gσσ′

x,x′(ε) impose strong restriction on the matrix ele-

ment
〈
N
∣∣cx,σ∣∣N+1

〉
which should be substituted for〈

N
∣∣cx∣∣N+1

〉
in Eq. (17): on top of the absence of the

adjacent occupied states we should require that the spin
configurations in

∣∣N〉
and

∣∣cx〉N+1 are identical – oth-
erwise, these two states are orthogonal as illustrated in
Fig. 2.
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FIG. 2. Demonstrating the orthogonality of a spin configu-
ration under the hopping process. The dashes lines at either
side of the chain represent the connection to the reservoirs.

As directions of spins in each string are arbitrary, the
relative number of non-orthogonal configurations expo-
nentially decreases with the length of the chain. Calcu-
lating this number with relatively straightforward combi-
natorics results in the following expression for the Green’s
function of an isolated chain in the spinful case, again us-
ing the notations x = 2i+1, x′ = 2j+1:

Gσσ′

xx′ =
zi,j

ω + i0
Aσ

ijδσσ′ ≡ Gσ
xx′ , (24)

where the spin factor is

Aσ
i,j = 2N+i−j−1 , (25)

and the residues zi,j are given by Eq. (17). (Although ρN
and ρN+1 there include trace over spin configurations, it
is not relevant for what follows).

The full Green’s function G1ℓ, which enters expres-
sion (14) for conductance, is given by Eq. (16) where
Gσ
xx′ ≡ Gσσ′

xx′ δσσ′ is substituted for Gxx′ . To calculate the
conductance, one needs only two components of it:

Gσ
11 = 2N−1G11 , Gσ

1ℓ ==
1

2
G1ℓ . (26)

Substituting this into Eq. (20) we find that s = 2−N

there with an additional factor of 2 coming from the trac-
ing over spin configurations, i.e. allowing for two spin
channels. From this follows the main result: in the zero
temperature limit, at the resonant condition for equal
coupling, the peak value of the transmission

Tpeak = 2−2N+1 (27)

takes fractional values that should be observable in ex-
periment on short constrictions.

Figure 3 displays the spinful conductance at different
lengths of chain. The suppression of the conductance is
caused by the increase in length of the system as the num-
ber of conducting spin configurations becomes a smaller
part of the state space. This is in excellent correspon-
dence to the experimental results on Germanium [5].

FIG. 3. A graph showing the peaks in the spinful conductance
and their reduction as the length of the system is increased as
only transitions that conserve spin configurations are permit-
ted. The energy has been set so that each length is plotted
centered on its minimum energy

Recent experiments investigating the conductance of
one-dimensional channels have unveiled a diverse range
of plateaus occurring at fractions of the conductance
quantum of in zero magnetic field. The adiabatic con-
tacts in a clean interacting 1D system must guarantee
insensitivity of the conductance to the microscopic de-
tails of interaction. Similar result is anticipated for the
tunneling contacts under the resonant conditions. Our
research demonstrates that this is true for spin-polarized
electrons, where the peak resonant conductance matches
the conductance quantum. However, in the case of spin-
ful electrons experiencing strong electron-electron inter-
action, the peak conductance assumes fractional values
dependent on the filling factor of the constriction and its
length.
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