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Abstract 

Integrated Optimization of Location, Design, and Operation of Renewable 

Energy Systems for Urban Microgrids 

Navid Shirzadi, Ph.D. 

Concordia University, 2023 

 

The building sector of urban areas plays a crucial role in carbon emissions and climate change. 

Distributed generation using clean energies could help to reduce emissions. Furthermore, urban 

microgrids increase the reliability of power supply since most of the power outages are created in 

the grid distribution system and transmission lines. However, a cost-effective design and operation 

of an urban microgrid poses challenges, such as limited space for installing the renewable 

components, especially in populated areas, the uncertainty of renewable resources, and the 

resiliency of the designed microgrid in case of not having access to the central grid. Therefore, this 

thesis was initiated with the objective of developing a comprehensive method for the efficient 

design of an urban microgrid. The developed framework consists of three main modules. The first 

module aims at designing an energy system for a community microgrid by sizing and finding the 

optimum configuration of the energy system. To resolve the spatial issue problem in urban areas, 

regional renewable generation is proposed in this research where clean energy is produced outside 

of the populated area as a virtual power plant in relation to the microgrid. A mapping model is also 

developed to select the best location for installing components outside the microgrid. The mapping 

model is connected with the optimization model to automatically generate the best configuration 

and location of regional generation based on several aspects of each zone. The second module 

deals with renewable resources and electrical load demand uncertainties and tries to reduce them 

by forecasting strategies. Since renewable resources such as solar irradiance and wind speed are 

not predictable using just historical data, hybridized numeric weather prediction (NWP) and deep 

learning models are offered to tackle the drawback. The last module proposes a solution to ensure 

resilience against power supply failures in electricity grids caused by extreme weather conditions, 

unavailability of generation capacities, and transmission components problems.  
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The discussed models were applied to one of Concordia University's largest buildings in downtown 

Montreal, Canada. The results show a significant improvement in the environmental aspect of the 

regional generation if the existing gas boiler would be substituted by electric boilers and heat 

pumps (using generated renewable electricity outside of microgrid), preventing emissions of about 

4233 tons CO2 and 5.3 tons NOX per year. Using a proposed tariff structure beneficial to both the 

customer and utility, the resulting levelized cost of energy is about 5.3 Cents per kilowatt hour, 

i.e., lower than the current rate of about 6 Cents per kWh. Using the second module’s proposed 

hybrid models for renewable resources and electrical load demand prediction of the case study was 

also helpful by considerably bringing down the error. Finally, operation dispatch scenarios are 

developed to reinforce the system’s resiliency in severe conditions for the case study in the third 

module. A mixed-integer linear programming (MILP) approach is employed to identify global 

optimum dispatch solutions based on the next 48 h plans for different seasons to formulate a whole-

year operational model. The results show that the loss of power supply probability (LPSP), as an 

indicator of resiliency, could be lowered to near zero while minimizing operational cost using the 

proposed optimal load (derived from critical load). 
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Chapter 1: Introduction 

1.1. Background and Motivation 
With increasing energy demand all around the world and depletion of fossil fuels, and the 

climate change issue caused by using them, renewable energy has attracted significant global 

awareness. Raising urbanization is causing a concentration of energy demand in high-density 

urban areas [1]. To increase the power supply's resilience and reliability, the urban energy system 

transition from a centralized limited capacity conventional grid to a distributed one needs to be 

accelerated [2].  

A small-scale energy system consisting of generators, energy storage, load, and control 

units, which could work in an isolated or grid-connected mode, ensuring the power supply for a 

defined region, is called microgrid (MG) [3]. For supplying resilient power at both neighborhood 

and community scales, MGs can play a vital role [4]. Although controlling MG is a crucial step in 

increasing the reliability of a MG, designing, and sizing it in the first place could also impact the 

power supply resiliency.  

Renewable power generation by decentralized energy systems in urban areas is limited to 

the available space for installing renewable components such as PV panels and wind turbines. This 

could be more challenging for large-scale consumers such as high-rise residential or institutional 

buildings typically located in populated areas with a great amount of power consumption, leading 

to low renewable penetration and high dependency on the central grid. Therefore, designing an 

urban distributed generation could be a crucial step toward the building’s lower carbon emissions 

and improvement of the economy of renewable power generation.  

The next important step after designing an urban microgrid is controlling it in an 

economical manner. Grid power failures are common, especially in urban areas that rely on a 

conventional mono grid. The most common causes of electrical disturbances in the power grid 

could be severe weather conditions such as storms or flooding [5] or natural hazards such as 

earthquakes. Beyond environmental hazards, there are other causes, such as equipment failure, 

transmission line damage, or cyberattacks. These may impact the operational resilience of the 

energy system based on their severity. Therefore, the designed energy system requires not only 

reliability but also resiliency which is the ability of the system to quickly recover from the events 
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that caused the outages [6]. Although microgrids could work in an isolated mode and are a reliable 

solution, operation management is necessary to mitigate the unbalanced power supply and increase 

its quality in case of disconnection from the grid. The control strategy that helps the microgrid 

alleviate the consequences of major contingencies could be considered operational resiliency [7]. 

To increase the systems operational resiliency, the probability of loss should be lowered as much 

as it is possible while considering the economic aspect of the system. 

Moreover, the electrical consumption and power output of renewable technologies are 

influenced by varying meteorological conditions that can be impacted by global warming. Using 

just historical data could not capture the complexity of changing wind patterns or the movement 

of clouds that change the solar irradiance and PV panels' power output accordingly. All these 

behaviors could cause significant uncertainties for unit commitment purposes, and few studies 

considered these uncertainties for the operational management of the energy system [8], [9]. Load 

and component power output prediction could reduce this uncertainty and make the model more 

reliable and robust.  

1.2. Problem Statement and Research Questions 
There are several challenges with urban microgrids that could be summarized below: 

• Space Limit and urban renewable integration: One of the major problems preventing MGs 

usage in urban areas, especially metropolitan and downtown sectors, is the spatial issues. 

Renewables such as solar PV panels and wind turbines need large areas to be installed, and 

there are other aspects, such as wind turbines' noise and social acceptance aspects of it, etc. 

Low space availability and low wind speeds due to high roughness coefficients often limit 

the available power, thus requiring regional generation concepts. 

• Carbon emissions and grid congestion: when converting existing building heating systems 

based on fossil fuels with electricity-driven systems, the electricity demand rises and might 

lead to serious grid congestion. Although zero emissions might be achieved with clean 

electricity, grid congestion issues need to be solved through more efficient conversion 

systems while minimizing cost.  

• Dynamic tariff: Although dynamic electricity tariffs were considered as a tool for demand 

side management in some urban microgrids [10], lack of assessing it during the design 
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stage could lead to lower economic efficiency which could be detrimental to the both 

utilities and prosumers.  

• Intermittency of renewable resources and load demand: Due to the intermittent nature of 

renewable power generation and load demand, the available resources and the demand need 

to be forecasted to be used in the operation management stage. However, their complicated 

behavior brings down the prediction’s accuracy.  

• Microgrid's Resiliency and Reliability: Since an urban MG is designed with considering 

access to the central grid, any failure could significantly impact the MG's resilience and 

reliability.  

Based on these challenges, the thesis tries to answer several research questions for the 

design and operation of renewably powered urban energy systems. For the design optimization, 

the questions which could be derived from the first three challenges are:  

• Is it feasible to generate electricity outside of the urban area (regional generation), and 

where is the optimum location to install the power plant in terms of cost and availability of 

renewable resources? How does a design of local generation with PV and low-power urban 

wind turbines compare economically and in terms of reliability with the design of local PV 

and regional generation using high-power wind turbines? 

• What are the optimum configurations of local and regional renewable generation based on 

information such as meteorological conditions, grid infrastructure, tariff structure? 

• How can dynamic tariffs be designed to be beneficial for both customer (urban microgrid 

user) and utility ? 

• What are the best technological choices for heat generation in urban buildings taking into 

account economic, environmental, and grid congestion challenges?  

While for optimum operation, the following questions could be raised (based on the last two 

challenges): 

How can operational schedules be optimized under grid failure conditions using critical 

load concepts? 
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• For a given renewable energy system design and load profile, how well can the load and 

renewable resources be forecasted, and what economic and resiliency benefits can be 

expected through operational optimization?  

1.3. Research Objectives 
Accordingly, this thesis aims at making the urban microgrids more feasible considering 

economic, environmental and technical aspects by presenting a multi-stage framework that 

includes three main modules: 1) Design an urban microgrid with the ability to generate electricity 

outside of the microgrid area as a virtual power plant concept, including energy systems 

configuration, component sizing, land selection, and environmental assessment to address the first 

five research questions, 2) Resilience-oriented optimal operation module to deal with the challenge 

raised in the sixth research question and 3) Power consumption and renewable generation 

forecasting to cover the last research question. This is achieved by means of the following stages 

proposed: 

1) Reviewing the previous research studies in the literature within the context of design and 

control of the community microgrids.  

2) Considering different possible scenarios for designing an economically feasible renewable 

energy system. As shown in Figure 1, the methodology is explained in two different 

modules for a local and regional generation. 

3) Establishing a mapping model for regional renewable power generation to deal with the 

limited space challenges in urban areas 

4) Developing robust operational scheduling model using hybridized forecasting methods to 

diminish uncertainties. 

5) Structuring a resilience-oriented model to bring down the central grid dependency in case 

of failure. As depicted in Figure 1.1, a separate methodology will be discussed for the off-

grid scenario.  

The proposed research framework is summarized in Figure 1.1.  



5 
 

 

Figure 1.1. Research objectives framework 

1.4. Thesis Structure 
The remainder of this thesis is structured into five chapters. Chapter 2 represents the 

previous studies regarding the design and operation of urban microgrids. Chapter 3 illustrates the 

related methodology of the modules (PV and Wind power output models, local and regional design 

models, forecast models, and finally, operation model) and submodules. Chapter 4 explores the 

case study information and data, while Chapter 5 provides the models' results for each module and 

discusses comparing different scenarios. And finally, a conclusion, including a summary of the 

research and suggestion for future works, is provided in chapter 6.  
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Chapter 2: Literature Review 

2.1. Optimum Configuration and Sizing 
The literature has shown an increasing trend in studies that focus on sizing integrated 

renewable energy systems (IRES) and MGs considering the different economic, environmental, 

and even social aspects [11], [12]. In [13], the authors simulated and sized an urban microgrid 

using 100 percent renewable resources while trying to compare the economic aspects of the 

designed system in isolated and grid-connected modes. A multi-objective optimization model for 

designing an IRES, including PV panels, wind turbines, and marine energy, was proposed by [14] 

for a building in a coastal community. It was shown in this reference that an optimum renewable 

system mix, with cost, energy utilization, and loss of power objectives, that reaches 100% 

renewable generation in higher demand hours is a challenging task in practical planning.  

 Reference [15] has developed a framework with multi-perspective performance evaluation 

for an optimal design of a flexible hybrid power plant at a community level (Beijing, China). The 

results of their investigation showed that using 100% of PV rooftops and available biomass could 

satisfy 73% of the electricity demand with a Levelized cost of energy (LCOE) equal to 0.1030 

$/kWh.  

To cover the deficiencies caused by using 100% renewable resources, some studies 

considered the integration of auxiliary fossil fuel generators [16]. Other studies, such as [17], 

presented hybrid grid-connected energy systems with battery and hydrogen vehicle storage for a 

typical high rise residential building with 30 stories and 8 two-occupants flat and 8 four-occupants 

flats in each story). In this reference, the annual net grid exchange is equal to 4.55 MWh.  

A large number of studies have also been conducted to develop single and multi-objective 

algorithms for sizing applications. In [18], they presented an algorithm for planning a residential 

and campus microgrid to maximize renewable generation while finding the most economical 

configuration.  Meta-heuristic approaches were used by [19] to find the optimum size and topology 

of a microgrid in an off-grid mode using a super-capacitator and hydrogen fuel cell system in New 

Zealand. Their results showed that the LCOE of electricity and hydrogen are 0.09 $/kWh and 4.61 

$/kg, respectively, which are below the case study's tariff (Between 0.11 $/kWh and 0.16 $/kWh 

for residential consumers based on their consumption level). Considering the concept of net zero 
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buildings, the authors in [20] carried out research on the optimal design and operation of a solar-

hydro energy system with hydrogen generation and fuel cell technology to minimize the 

investment cost for a 30 kW power demand residential building. Their proposed model could 

reduce the carbon dioxide emission by about 39546 kg while bringing down the cost by about 

50.3%.  

2.2. Energy System’s Operation  
The previous research on economic dispatching can be separated into two main categories:  

standalone microgrids and grid-connected microgrids. A standalone microgrid is a type of MG 

with no access to the grid, such as microgrids in remote areas [21]. While in the grid-connected 

ones, the grid is typically accessible and is part of the system, such as urban microgrids. Augustine 

et al. [22] employed the reduced gradient method for analyzing the dispatch rate of power for an 

isolated microgrid consisting of wind turbines and solar panels as main generators. Their results 

indicate that the system could only be operationally profitable when using governmental subsidies 

for the installation of solar panels. Conti et al. [23] presented research on optimal dispatching in a 

medium voltage islanded microgrid using the niching evolutionary algorithm (NEA). The 

optimization goal was to minimize the overall operational cost and pollutant emissions. Their 

results show the potential of the optimization process in decreasing operating cost and emissions 

while boosting the microgrid performance and reliability. However, they have not considered the 

imprecision caused by using only historical data for future predictions. In addition, their model 

does not provide a basis for the initial sizing of the components. 

 In [24], the authors investigated the effect of using a gravitational search algorithm to 

optimize economic dispatch and boost efficiency and performance in an isolated MG. The results 

that were validated experimentally indicate that the proposed method can improve MG’s 

performance compared to conventional energy management systems. The study did not provide 

an approach for predicting the load demand and renewable generation levels. This could contribute 

to inaccuracies in scheduling. In addition, the impact of storage charging/discharging rates on 

operational costs were not analyzed. In [25], a day-ahead operational strategy was proposed for an 

urban microgrid by Kanchev et al. to optimize the CO2 emission and operational cost. They 

compared the optimal operational planning, considering three different objective functions, 

namely 1. Emission, 2. Fuel Consumption, 3. Trade-off between emission and fuel consumption 
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with typical operational planning without optimization. Their results highlighted at least a 10% 

reduction in total operational cost in all optimal planning scenarios. In the other investigation that 

has been done by KavousiFar et al. [26], although they considered the uncertainty of the wind 

resources in their optimal dispatch strategy, the effect of wind power curtailment has not been 

evaluated. 

Wen et al. [8] considered the optimal load dispatch of a grid-connected microgrid, 

including solar photovoltaic (PV), energy storage system (ESS), and electric vehicles (EV). They 

considered three different scheduling scenarios and employed a particle swarm optimization 

algorithm to reach the optimal schedule. Their results indicate that using ESS and EVs can decrease 

daily operational cost by about 9 percent. They reported the final operating cost of each scenario. 

However, the breakdown of costs was not provided, and as such, the impact of each objective (in 

the scheduling model) on the final cost was not elaborated.  Since the utility and users pursue 

conflicting goals (utility wants to maximize its profit and users want to minimize the cost), Sun et 

al. recently published a paper on the day-ahead economic dispatch strategy based on game theory 

to ensure each one (utility and users) can achieve their optimization goal [27].  

Lu et al. [28] developed a robust dispatch optimization model for a community energy hub 

that includes combined heat and power (CHP), heat storage, gas boiler, wind turbines, PV panels, 

and EV as means of reducing operational cost and emissions. Their model considered a demand 

response (DR) program for accommodating electrical and thermal loads. They evaluated three 

scenarios of EV charging/discharging and DR setting. Their results showed that the DR program 

with a coordinated charging/discharging mode for EV could further bring down the total cost. 

Although the dynamism of electricity pricing was taken into account using a robust optimization 

approach, the impact of possible future variations in load demand and renewable power generation 

levels were not analyzed. 

 Yang et al. [29] proposed a two-stage dispatching optimization for a grid-connected home 

with an integrated PV-Battery system. Their results indicated that the proposed two-stage dispatch 

strategy could significantly improve the user's benefit. They have also investigated the impact of 

sunrise time. However, the impact of battery storage system degradation on costs was not 

incorporated in estimating the user's benefit. The electrical consumption and power output of 

renewable technologies are influenced by varying meteorological conditions. Using just historical 



9 
 

data for unit commitment will cause uncertainties, and few studies considered this uncertainty for 

the operational management of the energy system. Load and component power output prediction 

could reduce this uncertainty and make the model more reliable. With the rise of artificial 

intelligence and machine learning, various research focused on different forecasting types and 

compared the methods' accuracy.  

2.3. Removing Uncertainties 
The electrical consumption and power output of renewable technologies are influenced by 

varying meteorological conditions that can be impacted by global warming. Using just historical 

data for unit commitment will cause uncertainties, and few studies considered this uncertainty for 

the operational management of energy systems [8], [9]. Load and component power output 

prediction could reduce this uncertainty and make the model more reliable [8]. With the rise of 

artificial intelligence and machine learning, various research focused on different forecasting types 

and comparing the methods' accuracy.  

2.3.1. Load Forecasting 

Kialashaki et al. [30] developed and compared two energy demand forecasting models for 

the United States' residential sector based on ANN and multilinear regression (MLR) techniques. 

They considered using different indicators on consumption behavior and made three different 

models based on various features such as Gross Domestic Products (GDP), median household 

incomes, cost of residential electricity, and cost of residential heating oil and used ANN and MLR 

techniques for each model. They used the coefficient of determination (R Squared) to evaluate and 

compare the predictions' accuracy. Their results indicate that the coefficient of determination of 

the ANN models is slightly more than MLR (about 1-3 percent). In 2017, Nageem et al. [31] 

published research on forecasting power output of photovoltaic modules in grid-connected mode 

using a support vector machine (SVR) method. They compared the results of the SVR model with 

an analytical model. Their results indicate that although both methods' mean absolute percentage 

error is high, SVR can predict with about 4% less error than the analytical method, while the 

computational time and complexity of the analytical model are lower. 

While many studies have considered artificial neural network for sequential data, few 

researchers focus on using a recurrent neural network (RNN) and especially the long-term short 
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memory (LSTM) method that is basically designed for time series applications, especially the 

sequential data with long-term dependencies.  

Rahman et al. [32] in 2018  presented an RNN - LSTM model for energy consumption medium-

term prediction of a Public Safety Building in Salt Lake City, Utah (US). They also developed a 

simple deep neural network model to compare the RNN model results with it. They separate the 

load power into heating, ventilation, and air conditioning (HVAC), Computer room air 

conditioning (CRAC), convenience power, and elevator power. Their results demonstrate that 

although the RNN model has significantly less error than a 3-layer multi-layered perceptron (MLP) 

model in the case of predicting the HVAC load profile over an 83-day time horizon, the MLP 

model is more accurate in terms of CRAC load prediction. The impact of long-term dependencies 

is expressed as the reason in this study. However, the comparison of the two models' ability to 

forecast the total load prediction of the building is not reported.  

2.3.2. Wind Speed Forecasting 

Wang et al. [33] proposed a hybrid model including an autoregressive moving average 

(ARMA) and a bivariate fuzzy time series model to forecast daily wind speed in Hainan province 

in China. Their results show that while the mean absolute percentage error (MAPE) of 

conventional (ARMA and ARIMA) models for four different sites ranges between 18.15-22.08%, 

the hybrid model reduces the error to the range of 16.64 – 18.29% for day-ahead wind speed 

forecasting. 

 In 2017, Yatiyana et al. [34] presented a statistical model using an autoregressive 

integrated moving average (ARIMA) to predict wind speed and direction in Western Australia. 

The shorter response time was mentioned as the reason for the method selection. Their results 

show that the MAPE for wind speed prediction of 6 hours is 4.9% and 15.6% for wind direction 

forecasting of 7 days lead time. However, integrating these two models into a single model to 

increase the overall accuracy was not reported, and capturing the fluctuations of the wind speed 

with the ARIMA method was not explained. A day ahead and two days ahead forecasting using 

fractional-ARIMA is reported in [35], and it showed a significant reduction in error and 

improvement in accuracy compared with persistence methods. To consider the seasonality of the 

training data, seasonal autoregressive integrated moving average (SARIMA) has been used in 

several studies. Wang et al. [36] used SARIMA for forecasting daily and monthly wind speed in 
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four sites in northwestern China, and because of the nonlinearity and non-stationary inherent of 

wind speed, they hybridized it with extreme learning machine (ELM) and Ljung-Box Q-test (LBQ) 

to improve the accuracy.  

For instance, in one of the sites, the results of the mean daily forecast showed about 34 

percent MAPE for a single SARIMA method, while their proposed hybrid model brought down 

the error to about 14 percent.  

Other methods, such as employing fuzzy theory [37], [38] and also machine learning 

approaches, such as using support vector machine (SVM) [39], have also been used by researchers 

for day-ahead wind forecasting. However, artificial neural network (ANN) gained the most 

attention and is broadly used for wind speed forecasting, either on its own or as a hybrid model in 

combination with other models (e.g., statistical models). In [40], the authors reported a comparison 

between ANN, ARIMA, and a hybrid model, which is a combination of ARIMA and ANN for 

wind speed forecasting in three regions in India. Their results indicate that the hybrid model could 

predict the wind speed with less error regardless of the linear and non-linear behavior of wind 

speed. Although the hybrid model had a significantly lower error when compared to the ANN-

only model, the MAPE of the hybrid model forecast (18-25%) for different lead times (1 hour, 3 

hours, 8 hours, and 24 hours) still seems high. 

In recent years, deep learning methods such as recurrent neural network (RNN), Elman 

neural network, and convolutional neural network (CNN) are gaining attention for time series 

forecasting given their inherent ability to deal with sequential data [41]–[44]. Liu et al. [45] 

presented a hybrid model that consists of an Elman neural network and a long short-term memory 

(LSTM) for wind speed forecasting. Their results indicate that the LSTM could be suitable for 

non-stationary wind speed forecasting, and also their proposed hybrid model could forecast with 

reasonable accuracy. In other research that has been presented by Wang et al. [43], wind power 

was forecasted using a CNN model, and their results show that the proposed model was sufficient.  

While AI and statistical methods provide proper results in most of the forecasting horizons 

(short-term, medium-term and long-term), using physical approaches becomes necessary in short 

and very short-term horizons since the impact of atmospheric dynamics becomes more important 

[46]. 
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Numerical weather prediction (NWP) models are mathematical models describing the 

current and future status of the atmosphere and surface (ocean and land) with a typical forecast 

horizon of one to two weeks. In [47], the authors proposed a model based on numerical weather 

prediction and historical measurements that combines multiple sources of past physical model 

outputs. Their developed model was then applied to forecast the wind speed in a region near the 

US. Great Lakes. Their results show improvement in the root mean squared error of the proposed 

model.  

Since the NWP is influenced by initial conditions, it could result in a considerable error for 

short-term wind forecasting as it is slowly updated and lags behind the actual changes [48]. 

The above literature shows that AI-based methods, statistical methods, and hybrid models 

have been considerably used for day-ahead wind speed forecasting. However, due to the 

unexpected behavior of the wind and its direct relation with physical indicators, the proposed 

models could not be practically used where higher accuracy is required, such as operational control 

of a microgrid. Moreover, the methods such as the NWP have also been employed to predict wind 

speed. However, still, it only considers current physical conditions, and it cannot learn from the 

past wind speed values and unexpected changes.  

This thesis aims to advance the knowledge for more accurate wind speed forecasting that 

is used in the operation planning of an urban microgrid. The novelty of the proposed approach is 

in developing a hybrid model consisting of Weibull distribution, LSTM, and NWP models to 

reduce the error involved with wind speed prediction using a single LSTM model by considering 

the distribution probability of the historical wind speed data and also the physical description of 

the area. The main contributions of this section, with respect to the prior literature, are as follows: 

• A hybrid model is proposed to circumvent the inaccuracy of the single statistical 

approaches. In the proposed model, the LSTM method is used, which has several 

advantages over the conventional feed-forward neural network.  

• Creating a Weibull distribution of the wind speed, predicting the wind speed based on a 

stochastic approach, and combining the probability distribution of the wind speed with the 

LSTM model creates an integrated model with less error compared to a single LSTM and 

SARIMA model with exogenous variables.  
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• Proposing a hybrid model that includes the NWP model's result and AI models with 

minimum error for short-term forecasting applications (Just for clarity, every time we refer 

to short-term in this paper, it means 24-72 hours forecasting). 

2.3.3. Solar Irradiance Forecasting 

Various methods have been used to forecast solar irradiance in previous studies. These methods 

could be classified into two main categories: numeric weather prediction (NWP), statistical, and 

learning times series methods. Persistence predictions as the simplest time series models  considers 

the forecast of the irradiance model in the next prediction horizon equal to the current irradiance 

at the surface [49]. Persistence models are typically used as a naïve predictor, and the forecasting 

performance of the other robust methods is compared with them [50]. While statistical models use 

historical data to predict future solar irradiance, NWP models forecast the current and future states 

of the atmosphere and surface based on duplicating the physical phenomenon. Moreover, different 

machine learning techniques have recently been widely used for solar irradiance forecasting based 

on learning the pattern of historical data.  

A comparison of different time series solar radiation forecasts has been done by Reikard [51] for 

different time resolutions (5, 15, 30, and 60 minutes). The result of his work shows that the 

autoregressive integrated moving average (ARIMA) model can obtain better accuracy in most of 

the forecast horizons (1, 2, 3, and 4 hours) compared with other statistical and learning models 

such as neural network (NN). In another study, Mellit et al. [52] used a multilayer perceptron 

(MLP) technique to predict day-ahead solar irradiance by using temperature as an independent 

variable. Their forecasting results showed a better correlation coefficient for sunny days (98%) 

and less for cloudy days (95%). In [53], the authors use a multistage neural network instead of a 

single-stage neural network for daily global horizontal irradiance forecasting. Their result shows 

that their proposed model could reduce the mean bias error (MBE) from about 30% (single-stage 

NN) to about 20%. However, in all mentioned statistical and learning models, the impact of 

unexpected cloud movement could not be captured from the historical data. Especially on cloudy 

days, the inaccuracy of these models will rise.  

As advanced machine learning methods, deep learning algorithms are also employed to better deal 

with the dependencies in historical data. Sun et al. [54] used a convolutional neural network (CNN) 

to forecast PV output using sky images. In another study, Qing et al. [55] investigated the ability 



14 
 

of the LSTM method (using meteorological features) for the day ahead prediction with hourly 

resolutions. Moreover, the hybridized models consist of CNN, and LSTM models also developed 

in recent years for solar radiation forecasting [56], [57]. Other types of hybrid machine learning 

models were also developed for solar irradiance forecasting to improve efficiency, and a complete 

study has been done in [58].  

On the other hand, the NWP models that integrate hydrodynamic equations with numeric methods 

are mainly used with an extended forecasting horizon (up to 15 days) [59]. Although the NWP 

model could be a good choice for longer-term forecasts, it could result in lower accuracy when it 

comes to short and very short-term forecasting. Moreover, it is considerably impacted by its initial 

conditions.  

2.4. Operation and Resiliency 
A microgrid is a small-scale energy system including distributed generators, energy 

storage, load, and control units, which could work in a grid-connected or off-grid mode, ensuring 

the power supply for a defined region [60]. Microgrids can play a significant role in supplying 

resilience at the neighborhood or even community level [61]. Although microgrids could work in 

an isolated mode and being a reliable solution, operation management is necessary to mitigate the 

unbalanced power supply and increase its quality in case of disconnection from the grid. The 

control-based strategy that helps the microgrid mend and alleviates the consequences of major 

contingencies could be considered operational resiliency [62]. To increase the systems operational 

resiliency, the probability of loss should be lowered as much as it is possible while considering the 

economic aspect of the system.  

During the last decade, several types of research have been accomplished on optimally 

controlling a microgrid's operation. In [63], the authors studied the different optimal dispatching 

procedures of a grid-connected microgrid. They compared the ability of different optimization 

methods to minimize the operation cost. In [64] and [13], scheduling problems were solved 

considering several uncertainties to bring the operating cost to the minimum level.  

Augustine et al. [22] investigated the dispatch rate of power for a standalone microgrid 

consisting of wind turbines and solar panels as main generators using the reduced gradient method. 

Their results show that using governmental subsidies for the installation of solar panels could cause 
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the system to be operationally profitable. Lu et al. [28] proposed a robust optimal dispatch model 

for the energy management purpose of a community energy hub, considering the uncertainties of 

electric vehicles (EVs) and electricity prices. Their results indicate that adopting a 

charging/discharging mode instead of a single charging mode could bring down the total 

operational cost of the energy hub. 

Various other studies also investigated the different ways of mitigating the operating cost 

of the microgrid, considering the reliability along with economic aspects. In [65], the authors 

investigated the operation cost of a microgrid in both grid-connected and off-grid mode with 

simulation results while considering the reliability using the scenario-based approach to evaluate 

the reliability index of the system. In the other study that was done by Costa et al. [66], they 

evaluated the economic benefits while raising the system's reliability. 

In recent years, several studies have been carried out on controlling the microgrid using 

resilience-oriented approaches. In [67], the authors presented a resilience-based technique by 

taking into account both the survivability of critical loads under emergency conditions and the 

feasibility of islanding mode under normal operating conditions. In 2021 another study [68], 

investigated the various disturbances inside the microgrid and the authors proposed a methodology 

for identifying the vulnerable components and ensuring their operational resilience. A real-time 

control strategy based on model predictive control techniques is suggested in [15], in accordance 

with the microgrid's schedule. In 2022, Javier et al. [69] proposed a stochastic model predictive 

technique to consider feasible transitions from grid-connected to off-grid modes for different 

scheduling horizons.   

 Most of the above studies focused on how to increase the reliability aspects based on a 

trade-off between reliability and the system's operating cost. Nevertheless, they have not 

investigated the resilience of the microgrid during its operation by generating 100% renewable 

energy and how to improve the microgrid's reliability and minimize the power supply's deficiency 

concerning economic factors without using fossil fuels as auxiliary powers. Furthermore, previous 

literature has not explored enhancing the system's resiliency and reducing the costs associated with 

severe power outages. 

This thesis focuses on the optimum operation design of an urban microgrid while exploring 

ways of improving its resiliency. The main contributions of this section of the research could be 
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summarized as considering a penalty for loss of power supply probability to improve the energy 

system's reliability along with optimum loss coefficient selection considering both reliability and 

economic aspects. Moreover, the possibility of maximizing reliability by diminishing the loss of 

power supply probability while covering the critical load of an education building in an urban area 

is also investigated in this research. This thesis also proposes the term "Optimal Load" which 

satisfies the surplus power constraint while maximizing the microgrid's reliability. 
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Chapter 3: Methodology 

3.1. Introduction 
Based on the discussed research objectives, the energy system considered in this thesis 

includes PV panels, wind turbines, converters and inverters, battery storage system, load, and 

central grid, which need to be designed in the first step for supplying electricity demand. To also 

cover the heat demand, heat pump and electric boilers could be used in different scenarios and 

compared with gas boilers. The overall flowchart of the energy system is shown in Figure 3.1. 

 

Figure 3.1. Energy system’s flowchart 

In the following, the methods used in the main components of the system and the overall 

design model will be explained. At the end, the methodology of the optimal operation model will 

also be discussed.  

3.2. PV Model 
To calculate the power output of a PV module, the below parameters and variables are 

considered: 
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1. Temperature model: To design a PV system, a thermal model is required to predict the 

operating temperature of the module. To calculate the module's temperature, first, the 

module's back surface temperature (𝑇𝑇𝑚𝑚) should be determined with the below equation 

[70]: 

 𝑇𝑇𝑚𝑚 = 𝐼𝐼 × exp(𝑎𝑎 + 𝑏𝑏 × 𝑊𝑊) + 𝑇𝑇𝑎𝑎 (3.1) 

Where I is solar irradiance on the module surface (W/m2), 𝑊𝑊 is the wind speed at 10m 

height, 𝑇𝑇𝑎𝑎 is ambient temperature, a is a coefficient that shows the upper limit for the temperature 

at low wind speed and high solar irradiance, while b is a coefficient determining the rate at which 

PV module temperature reduces with rising the wind speed (a and b should be calculated from 

temperature measurements recorded over several different days).  

After calculating 𝑇𝑇𝑚𝑚, then the temperature of the cell (𝑇𝑇𝑐𝑐) could be calculated via the below 

equation [70]: 

 𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑚𝑚 + 𝐼𝐼/𝐼𝐼0 × ∆𝑇𝑇 (3.2) 

Where 𝐼𝐼0 is reference solar irradiance (1000 W/m2), and ∆𝑇𝑇 is the temperature difference 

between the cell and module back surface at the reference irradiance level (1000 W/m2). ∆𝑇𝑇 

depends on the insulation of the back surface, if insulated, it will be 0, and if not, it is usually 2 or 

3 ℃ [70]. 

Coefficients 𝑎𝑎 and 𝑏𝑏, and ∆𝑇𝑇 could vary based on module type and mount method (Table 

3.1 [70]). In open rack mount, the arrays are installed on ground level with a tilt angle that allows 

the air to flow around the panels, while in the roof mount, PV arrays are close to the sloped roof 

with fixed tilt and limited possible airflow [71].  

Table 3.1. PV module’s information 

Type           Mount 𝒂𝒂 𝒃𝒃 ∆𝑻𝑻 

Glass/cell/glass         Open rack -3.47    -.0594 3 

Glass/cell/glass        Roof mount        -2.98    -.0471 1 

Glass/cell/Polymer Sheet         Open rack        -3.56    -.0750 3 

Glass/cell/Polymer Sheet      Insulated Back         -2.81    -.0455 0 

Polymer/thin-film/steel         Open rack         -3.58     -0.113 3 
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2. Pressure: evaluating the site pressure based on the altitude of the location. Table 3.2, 

assumed based on [79], shows the atmospheric parameters. 

Table 3.2. Assumed atmospheric parameters 

Parameter Value Unit 

Pressure at zero altitudes (P0) 101325 Pa 

Temperature at zero altitudes (T0) 288.15 K 

Acceleration due to gravity (g) 9.80665 m/s2 

Lapse rate (L) -6.5×10-3 K/m 

Gas constants for air (R) 287.053 J/(kgK) 

Relative humidity (Rh) 0% dimensionless 

 

3. Air mass (AM): the length at which sunlight goes through the atmosphere normalized to 

the shortest possible path length (when the sun is directly overhead). As the light passes 

through the atmosphere, its power reduces and is absorbed by air and dust, and the AM 

could quantify this. The zenith angle of the sun is used to calculate the relative AM. The 

absolute AM then could be evaluated based on relative AM and estimated pressure.  

4. The angle of incidence (aoi): The angle between the solar vector on the surface and the 

surface’s normal vector. The input parameters to calculate “aoi” are as follows: 

• Surface azimuth 

• Surface tilt 

• Solar zenith 

• Solar azimuth 

5. To calculate GHI (Global horizontal irradiance), DNI (Direct normal irradiance), and DHI 

(Diffuse horizontal irradiance), Ineichen/Prez model is employed. Apparent zenith, 

absolute airmass, altitude, Linke-turbidity, and dni extra are the parameters used to 

calculate the irradiances.      

6. The effective irradiance then is calculated based on the direct and diffuse irradiance 

incident over the module (evaluated in step 5), angle of incident (calculated in step 4), 

absolute airmass (calculated in step 3), and the module type (should be selected from the 

module libraries). 
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7. Based on the effective irradiance, cell temperature, and module type, the DC power output 

of the PV module will be calculated.  

8. In the last step, based on the selected inverter type, DC voltage, and DC power output, the 

AC power output is determined using Sandia's grid-connected PV inverter model [72]. 

3.3. Wind Farm Model 
For designing the wind farm, several parameters are considered and listed below: 

1. Wake effect: The wind speed and, consequently, the power output of the wind turbines in 

the downwind direction in the wind farm reduce since the turbines in the upwind direction 

convert wind energy into wind power. This is called the wake effect [73]. In this research, 

the wake losses are calculated by considering wind farm efficiency.  

2. Smoothing: Since wind speed has stochastic behavior, it causes frequency fluctuation in 

the grid. Therefore, smoothing strategies are required to control this issue. In individual 

wind turbines, smoothing strategies could be categorized into two main classes. Storage 

devices and without energy storage devices [73]. Batteries, capacitors, and flywheels could 

be considered popular storage devices; however, they have fixed and maintenance costs. 

The other category is inertia, pitch angel control, and DC-link voltage control which are 

considered as smoothing without energy storage. Furthermore, in the wind farm, since the 

power generated from individual units is not fully correlated, smoothing out the short-term 

fluctuations will be done when aggregating the generated power [74]. In this research, the 

smoothing is set to True in the wind farm simulation model to smooth the power curve 

before aggregating wind turbines' power curves to one united power curve that represent 

the wind cluster. The smoothed power will be calculated via the below equation [74]: 

 𝑃𝑃𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 =  �∆𝑣𝑣𝑖𝑖 × 𝑃𝑃(𝑣𝑣𝑖𝑖) ×
1
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2 × 𝜎𝜎2
�

𝑣𝑣𝑖𝑖

 (3.3) 

Where P is power (W),  𝑣𝑣 is wind speed (m/s), 𝜎𝜎 standard deviation (Gauss 

Distribution), 𝜇𝜇 is average (Gauss Distribution), 𝑣𝑣𝑠𝑠𝑠𝑠𝑒𝑒  is the standard wind speed in the power 

curve and ∆𝑣𝑣𝑖𝑖 is the interval length between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1. In the simulation model ∆𝑣𝑣𝑖𝑖 is given 

to the model as a block width parameter that is considered default (0.5).  
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3. Standard deviation method: The method that should be used for calculating the standard 

deviation for Gauss distribution. This parameter is only required to be set if the smoothing 

is set to True. Available methods are: "turbulence intensity" and "Staffell Pfenninger". In 

this research, turbulence intensity is selected as the standard deviation method.  

4. Wind speed model: "Hellmann", "logarithmic", and "interpolation_extrapolation" are the 

available methods. In this research, the Hellmann method is selected as the wind speed 

model, and it is explained in the following: 

Correlating the wind speed at two different heights is how Hellmann exponential law 

works, and it will be evaluated via below formula: 

 
𝑣𝑣
𝑣𝑣0

= �
𝐻𝐻
𝐻𝐻0
�
𝛼𝛼

 (3.4) 

Where 𝑣𝑣 is the wind speed in height 𝐻𝐻 and  𝑣𝑣0 is the speed in the height 𝐻𝐻0 that typically 

considered 10 meters. Also, 𝛼𝛼 is the Hellmann exponent or friction coefficient that typically, for 

open lands, it is considered equal to 1/7 [75]. However, various indicators could impact this 

coefficient, such as height, land features, and temperature [76]. Table 3.3 shows the coefficient for 

different land types [77]. 

Table 3.3. Different Land's friction coefficient 

Land Type  𝜶𝜶 

Smooth hard ground, calm water 0.1 

Tall grass on level ground 0.15 

High crops, hedges and shrubs 0.2 

Wooded countryside, many trees 0.25 

Small town with trees and shrubs 0.30 

Large city with tall buildings 0.40 

             

In this research, different wind farm power outputs are considered for different locations 

based on the land type shown in Table 3.3. 
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5. Density model: "Barometric" (dropping the air pressure by 11.3 pascals per meter in the 

first 1000 meters above the sea, "ideal gas" (𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇) and "interpolation_extrapolation" 

are the available models.  

Below formula (3.5) [78] is used for the barometric model: 

 𝜌𝜌ℎ𝑢𝑢𝑢𝑢 = �
𝑃𝑃

100
− �ℎℎ𝑢𝑢𝑢𝑢 − ℎ𝑝𝑝,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎� ×

1
8
� ×

𝜌𝜌0𝑇𝑇0 × 100
𝑃𝑃0𝑇𝑇ℎ𝑢𝑢𝑢𝑢

 (3.5) 

 

Where P is pressure (Pa), T is temperature (K), h is height and 𝜌𝜌 is density (kg/m3). Also, 

ℎ𝑝𝑝,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎 is height of the measurement or model data for pressure 𝑃𝑃0,𝑇𝑇0 and 𝜌𝜌0 are ambient pressure, 

temperature, and density, respectively. 𝑇𝑇ℎ𝑢𝑢𝑢𝑢 is the temperature at hub height ℎℎ𝑢𝑢𝑢𝑢. 

While the ideal gas model uses the below equation (3.6) to calculate the pressure at hub 

height: 

 𝜌𝜌ℎ𝑢𝑢𝑢𝑢 = 𝑃𝑃ℎ𝑢𝑢𝑢𝑢
𝑛𝑛𝑠𝑠𝑇𝑇ℎ𝑢𝑢𝑢𝑢�  (3.6) 

 

Where 𝑛𝑛𝑠𝑠 is specific gas constant (287.058 J/kg*K). 

6. Temperature model: To calculate the temperature of the air at hub height, two options are 

available. The first uses linear interpolation-extrapolation, and the other uses the linear 

gradient method. The linear gradient method is selected in this study, and the following 

equation (3.7) is used to calculate the temperature at the hub height based on this method: 

 𝑇𝑇ℎ𝑢𝑢𝑢𝑢 = 𝑇𝑇𝑎𝑎𝑖𝑖𝑎𝑎 − 0.0065 × (ℎℎ𝑢𝑢𝑢𝑢 − ℎ𝑇𝑇,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎) (3.7) 

 

Where ℎ𝑇𝑇,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎 is the height that 𝑇𝑇𝑎𝑎𝑖𝑖𝑎𝑎 is measured.  

7. Density correction: In case the parameter “power-output-model” is set to "power-curve" 

instead of "power coefficients curve, the density correction has to be selected as True to 

correct the power curve based on the air density at hub height. 

8. Obstacle height: is given to the model when there are obstacles with a certain height 

around the turbine. In case there is no obstacle, this parameter could be set as 0.  
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The input data to the wind farm simulation model is hourly resolution, and it has 6 features 

as below: 

• Air pressure in 0 height 

• Air temperature in 2m height 

• Wind speed in 10m height 

• Wind speed in 50m height 

• Roughness length on 0m 

• Temperature in 10m 

3.4. Local and Regional Generation Design 

3.4.1. Local Design optimization model 

Because of the nonlinearity and integrality that exist in design optimization equations (it 

will be explained in the following sections), an MINLP model needs to be developed, and a proper 

solver needs to be selected to deal with it. The flowchart of the proposed methodology for the local 

generation design model is shown in Figure 3.2. 

  

Figure 3.2. Proposed design flowchart 
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The objective function and the constraint of the problem for both local and regional generation are 

as follows: 

Objective function 

The objective function (OF) includes several terms, and it is explicated below: 

• Equipment costs: This consists of the fixed purchasing cost, installation cost, and operation 

and maintenance (O&M) cost of the equipment employed in the energy system. In this 

thesis, fixed and installation costs are considered as a unique cost. 

 𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑃𝑃𝑃𝑃 × (𝐸𝐸𝑃𝑃𝑃𝑃 + 𝐸𝐸𝐶𝐶𝑠𝑠𝐶𝐶𝑣𝑣) × �1 +
𝐸𝐸𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
� + 𝑁𝑁𝑊𝑊𝑇𝑇 × 𝐸𝐸𝑊𝑊𝑇𝑇 × �1 +

𝐸𝐸𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
�

+ 𝑁𝑁𝑊𝑊𝑇𝑇 × 𝐸𝐸𝑅𝑅𝑒𝑒𝑐𝑐 + 𝑁𝑁𝐵𝐵𝑎𝑎𝑠𝑠 × (𝐸𝐸𝐵𝐵𝑎𝑎𝑠𝑠 + 𝐸𝐸𝐼𝐼) 

(3.8) 

Where 𝑁𝑁𝑃𝑃𝑃𝑃, 𝑁𝑁𝑊𝑊𝑇𝑇 are the number of PV panels and wind turbines, respectively while 𝑁𝑁𝐵𝐵𝑎𝑎𝑠𝑠 is the 

capacity of the battery storage system. 𝐸𝐸𝑃𝑃𝑃𝑃, 𝐸𝐸𝐶𝐶𝑠𝑠𝐶𝐶𝑣𝑣, 𝐸𝐸𝑊𝑊𝑇𝑇, 𝐸𝐸𝑅𝑅𝑒𝑒𝑐𝑐, 𝐸𝐸𝐵𝐵𝑎𝑎𝑠𝑠 and 𝐸𝐸𝐼𝐼 are PV, converter, wind 

turbine, rectifier, battery storage, and inverter initial costs, respectively. Moreover, 𝐸𝐸𝑂𝑂&𝑀𝑀 is 

operation and maintenance cost, which is the percentage of the initial cost of the component, and 

𝐸𝐸𝑛𝑛𝐶𝐶 is the capital recovery factor that should be calculated using the below equation: 

 
𝐸𝐸𝑛𝑛𝐶𝐶 =

𝑖𝑖 × (1 + 𝑖𝑖)𝐶𝐶

(1 + 𝑖𝑖)𝐶𝐶 − 1
 

(3.9) 

Where 𝑖𝑖 is the real discount rate, and n is the project's lifetime. The real discount rate could be 

expressed as below: 

 
𝑖𝑖 =  

∝ −𝑓𝑓
1 + 𝑓𝑓

 
(3.10) 

Where ∝ is the nominal discount rate and 𝑓𝑓 is the inflation rate. To calculate the annual capital 

recovery, the below formula could be used and multiplied to the related cost: 

 𝐸𝐸𝑛𝑛𝐶𝐶𝐶𝐶 = 𝑛𝑛 +
1

(1 + 𝑖𝑖)𝐶𝐶
 (3.11) 

The number of PV panels and wind turbines are limited based on the available area for components 

installation.  

• Battery operation: which includes charging and discharging costs through the whole 

horizon. 
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𝐵𝐵𝐵𝐵 = 𝐵𝐵𝑂𝑂𝐶𝐶 × �

𝑃𝑃𝐶𝐶ℎ(𝑡𝑡) + 𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠(𝑡𝑡)
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

 
(3.12) 

Where 𝐵𝐵𝑂𝑂𝐶𝐶 is the battery operating cost factor ($/kWh) and  𝑃𝑃𝐶𝐶ℎ(𝑡𝑡) and 𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠(𝑡𝑡) are charging and 

discharging power in each time step. 

• Battery maintenance and replacement cost: which considers the cost of storage's 

maintenance and replacement through the project's lifetime using CRF: 

 𝐵𝐵𝐵𝐵 = (𝐵𝐵𝐶𝐶 × 𝐵𝐵𝑎𝑎𝑒𝑒𝐶𝐶𝐶𝐶 + 𝑛𝑛𝑃𝑃𝐶𝐶) × 𝑁𝑁𝐵𝐵𝑎𝑎𝑠𝑠 × 𝐸𝐸𝑛𝑛𝐶𝐶𝐶𝐶 (3.13) 

 

• Grid trade-off: which is the summation of purchasing power (𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡)) from and power 

selling (𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡)) to the conventional grid: 

 
𝐺𝐺𝑇𝑇 = �

𝐸𝐸𝑃𝑃𝑝𝑝 × 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡)
𝐸𝐸𝑛𝑛𝐶𝐶

 
𝑇𝑇

𝑠𝑠=1

 −  �
𝐸𝐸𝑆𝑆𝑝𝑝 × 𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡)

𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

 
(3.14) 

 

• Loss of Power Supply Probability (LPSP): To minimize the probability of loss occurrence 

and the amount of it, the below term needs to be added to the objective function: 

 
𝐿𝐿𝑆𝑆 = �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) × 𝜃𝜃(𝑡𝑡)

𝑇𝑇

𝑠𝑠=1

 

 

(3.15) 

Where Loss(t) is the amount of loss in each time step and 𝜃𝜃(𝑡𝑡) is the penalty coefficient that could 

be different for each time steps.  

• Environmental cost: Purchasing from the central grid could lead to a penalty if there is non-

clean energy source portion in the central grid electricity. Therefore, a term is added to the 

objective function to consider this as below equation (3.16): 

 
𝐸𝐸𝑁𝑁 = �

𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) × 𝜀𝜀 × 𝜗𝜗
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

 
(3.16) 

Where 𝜀𝜀 is the portion of a central grid’s electricity that is non-renewable energy and 𝜗𝜗 is the 

assumed penalty coefficient for that portion. 
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Finally, the objective function of the optimization model, which is the net present cost of 

the energy system (NPC), is defined based on the below equation: 

 Min𝐵𝐵𝐶𝐶 = 𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵 + 𝐺𝐺𝑇𝑇 + 𝐿𝐿𝑆𝑆 + 𝐸𝐸𝑁𝑁 (3.17) 

 

Constraints 

The NPC of the system is minimized based on the following constraints: 

The operating cost of the system is minimized subject to the following constraints: 

• Battery Capacity: The capacity of the battery storage system in the first time step (Eb[1]) 

is equal to the initial state of charge of the battery, while in the next time steps, the capacity 

of the battery is calculated based on the charge/discharge of it in that time step (equation 

3.18): 

 𝐸𝐸𝑏𝑏(𝑡𝑡) = �
𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖   × 𝐸𝐸𝑇𝑇                                         𝑡𝑡 = 1

𝐸𝐸𝑏𝑏(𝑡𝑡 − 1) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) ∗ 𝜂𝜂𝑐𝑐 −
𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡)
𝜂𝜂𝑒𝑒

      𝑡𝑡 = 𝑇𝑇 

 

(3.18) 

Where 𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 is the initial state of charge of the battery (%), 𝐸𝐸𝑇𝑇 is the total capacity of it (kWh) 

and 𝜂𝜂𝑃𝑃 and 𝜂𝜂𝑃𝑃 are charging/ discharging efficiencies, respectively. Furthermore, the state of charge 

of the battery in each time step (𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡)) should follow the below inequality: 

 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑖𝑖𝐶𝐶 ≤ 𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡) ≤ 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 (3.19) 
 

• Local renewable generation: To balance the used renewable power in the microgrid and 

the surplus power, two constraints need to be added as follows for both wind power and 

PV power generation: 

 �𝑃𝑃𝑊𝑊
(𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡)  + 𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡)  + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡)         

 
(3.20) 

Where 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) are the used wind and PV power in each time steps, respectively 

while 𝐸𝐸𝐿𝐿𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝐿𝐿𝑃𝑃𝑃𝑃(𝑡𝑡) are the surplus electricity of the wind and PV generation. 𝑃𝑃𝑊𝑊(𝑡𝑡) is 

the total power generated by the wind turbines in time step t and  𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the total power 

generated by the PV panels in time step t.  
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• Reliability: Although a penalty is added to the objective function to minimize the loss, it 

still needs to be limited to the certain amount that the user should specify. Therefore, the 

LPSP is calculated with the below equation: 

 
𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃 =

∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)𝑇𝑇
𝑠𝑠

∑ 𝐿𝐿𝑒𝑒(𝑡𝑡)𝑇𝑇
𝑠𝑠

 (3.21) 

 

 And then, the amount of LPSP should be less than a percentage (𝜑𝜑) that should be defined 

by the user.  

• Grid Trade-off: The energy system is designed to be grid-connected with the ability to 

access the grid anytime. Therefore, the formulas that should calculate the amount of trade-

off between grid and microgrid are the following equations. This equation shows the selling 

to the grid constraint (𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡)). 

 𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡) ≤ (𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡))  × 𝜗𝜗 × 𝜑𝜑 (3.22) 
   

Where 𝜗𝜗 is the portion of electricity that could be sold to the grid and 𝜑𝜑 is the binary variable to 

switch selling to off mode when purchasing from the grid. 

While selling to the grid is constrained by the amount of surplus power generated locally 

by microgrid, purchasing from the grid should be just defined based on the upper limit that should 

be specified by the grid (the maximum amount of power that could be purchased based on the grid 

capacity). Therefore, it could be calculated based on the below formula: 

 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) ≤ 𝐺𝐺𝐸𝐸 × 𝜇𝜇 (3.23) 

Where 𝐺𝐺𝐸𝐸 is grid purchasing limit and 𝜇𝜇 is the binary variable to switch purchasing to off mode 

when selling to the grid. 

• Energy Balance: The equation that forces the equity between supply and demand to 

minimize the loss of power supply is called the balance equation, and it is expressed via 

equation 3.24.  

  𝑃𝑃𝑊𝑊(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝑃𝑃(𝑡𝑡) ≥ 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡)  (3.24) 
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Where 𝐿𝐿𝑃𝑃(𝑡𝑡) is the total load demand in time step t.  

3.4.2. Mapping model 

A crucial step in regional generation is finding an optimum place to install the renewable 

plant (wind farm) outside of the microgrid's neighborhood. Therefore, a mapping model should be 

developed. The mapping model consists of several maps: land type [79], grid power lines, and 

transformer location map. The land type map is used as the base map, and the other two maps are 

plotted on it. Furthermore, a circle is required to limit the area to certain neighborhoods. A squared 

mesh is also located in the circle to specify the zones the renewable plant could be installed. A 

model is developed to find the maximum number of squares that could be placed into the circle. 

The square mesh function is defined in a way to maximize the number of squares that could be 

located in the circle. If more than 50 percent of the area of the square is inside of the circle, then it 

will not be removed.  

 The user should specify the radius of the circle and the square side of each zone. The 

information of each zone, such as the land’s type and cost, the number of turbines that could be 

installed (Turbine density), and the distance to transformer stations, could be extracted from the 

mapping model by positioning the circle with the squared mesh on the maps.  

 The output of the mapping model could then be used as inputs of the optimization model 

and also to find the wind power generation in each zone based on the Hellmann exponent selection 

discussed in Table 3.3.   

The proposed framework for the mapping model and extracting the related data from each 

zone is illustrated in Figure 3.3. 
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Figure 3.3. Proposed mapping flowchart 

3.4.3. Regional and Local Design Optimization Model 

Although the structure of the optimization model when adding the regional generation is 

same as what was discussed for local design and it includes all the explained equations, there are 

some other terms which should be added to the developed objective function and constraints of 

the local design.  

The below terms should be added to the discussed objective function: 

• Equipment Cost: One of the term which should be added to the objective Function includes 

the wind turbines fixed cost (𝐸𝐸𝑅𝑅𝐺𝐺) and O&M cost (𝐸𝐸𝑅𝑅𝑂𝑂&𝑀𝑀), transmission initial cost (𝐸𝐸𝑇𝑇𝑎𝑎) 

with its O&M cost (𝐸𝐸𝑇𝑇𝑂𝑂&𝑀𝑀), interconnection cost (𝐸𝐸𝐼𝐼𝐶𝐶) and land cost (𝐸𝐸𝐿𝐿(𝑙𝑙)) and could be 

calculated by equation (3.25). The transmission cost includes the CAPEX and OPEX of 

transmitting electricity to the nearest transformer station. The reason which the distance to 

the nearest transformer station is considered instead of nearest grid power line was 

decreasing the cost of creating a new transformer station for injecting electricity. 
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 𝑛𝑛𝐺𝐺 = 𝑁𝑁𝑅𝑅𝐺𝐺 × 𝐸𝐸𝑅𝑅𝐺𝐺 × �1 +
𝐸𝐸𝑅𝑅𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
�

+ �(𝐷𝐷𝑖𝑖𝐿𝐿(𝑙𝑙) × 𝐸𝐸𝑇𝑇𝑎𝑎 + 𝐸𝐸𝐼𝐼𝐶𝐶) × �1 +
𝐸𝐸𝑇𝑇𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
�

𝐿𝐿

𝑖𝑖=1

+ �𝐸𝐸𝐿𝐿(𝑙𝑙) × 𝐶𝐶 × 𝛽𝛽(𝑙𝑙) + 𝐻𝐻𝑃𝑃𝐺𝐺 × 𝐸𝐸𝐻𝐻𝑃𝑃 × �1 +
𝐸𝐸𝑂𝑂&𝑀𝑀𝐻𝐻𝑃𝑃

𝐸𝐸𝑛𝑛𝐶𝐶
�

𝐿𝐿

𝑖𝑖=1

 

(3.25) 

Where 𝑁𝑁𝑅𝑅𝐺𝐺 is the number of wind turbine in the wind farm, L is defined based on number of zones 

created in the mapping model,  𝐶𝐶 is the area that is required for the wind farm and 𝛽𝛽(𝑙𝑙) is the zone 

selection binary variable. The last term consists of the heat pump's initial capital (𝐸𝐸𝐻𝐻𝑃𝑃) and 

operation and maintenance cost (𝐸𝐸𝑂𝑂&𝑀𝑀𝐻𝐻𝑃𝑃) that is the percentage of the capital cost and the selected 

size of the heat pump (𝐻𝐻𝑃𝑃𝐺𝐺). This term is only added in the heat pump scenario in the regional 

generation. 

• Gas Consumption: The cost related to gas consumption for heat generation could be 

calculated by equation (3.26) : 

 
𝐺𝐺𝐸𝐸 = �

𝐺𝐺(𝑡𝑡) × 𝐺𝐺𝑃𝑃
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

 
 

(3.26) 

Where 𝐺𝐺(𝑡𝑡) is the amount of gas consumption in each time step and 𝐺𝐺𝑃𝑃 is the gas price per cubic 

meter.  

• Gas Consumption Environmental Penalty: Based on Canada’s fuel charge regulation 

made under the greenhouse gas pollution pricing (FCN10 Regulation) [80], the penalty 

value for natural gas consumption usage is calculated based on the below formulation: 

 𝐺𝐺𝑃𝑃 = 𝐶𝐶 × 𝐵𝐵 × 0.8 
 (3.27) 

Where A is the gas consumption in cubic meters and B is equal to 0.0391. 

The final objective function which includes both local and regional generation terms, is expressed 

with below equation: 

 Min𝐵𝐵𝐶𝐶 = 𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵 + 𝐺𝐺𝑇𝑇 + 𝐿𝐿𝑆𝑆 + 𝑛𝑛𝐺𝐺 + 𝐸𝐸𝑁𝑁 − 𝐺𝐺𝐸𝐸 − 𝐺𝐺𝑃𝑃 (3.28) 
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Furthermore, the below constraints should be considered for the regional generation purpose: 

• Power generation based on land type: In this thesis, seven land types were considered as 

the main land types of the city's neighborhood. Based on what was discussed in the Wind 

model section, regional wind power generation 𝑃𝑃𝑊𝑊𝑅𝑅(𝑡𝑡) is calculated. Therefore, a 

conditional statement is added to the constraints to select a proper equation based on the 

land type selected by the model.  

 �
𝑖𝑖𝑓𝑓 𝐿𝐿𝑎𝑎𝑛𝑛𝑃𝑃 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑖𝑖                                                  
𝑃𝑃𝑊𝑊𝑅𝑅(𝑡𝑡, 𝑖𝑖) = 𝐸𝐸𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖)  + 𝐸𝐸𝑛𝑛𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖)     

 
(3.29) 

Where 𝐸𝐸𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖) and 𝐸𝐸𝑛𝑛𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖) are used and surplus power of regional generation in land 

type i.  

• Land selection: for regional generation purposes, the optimization model should select the 

optimum place for wind farm installation based on the data that was extracted from the 

mapping model. Therefore, a constraint is required to emphasize that only one land could 

be selected in each run. 

 �𝛽𝛽(𝑙𝑙) = 1
𝐿𝐿

𝑖𝑖=1

 (3.30) 

 

• Wind turbine density: The number of turbines that could be installed outside of the 

microgrid (regional) should be limited based on the selected land type. This could also 

impact the result of the optimum selection of the land type since the zones with the ability 

of a low number of wind turbine installations (turbine density) could cause less regional 

generation capacity.  

 𝑁𝑁𝑅𝑅𝐺𝐺 ≤�𝑊𝑊𝑇𝑇𝐷𝐷(𝑙𝑙) × 𝛽𝛽(𝑙𝑙)
𝐿𝐿

𝑙𝑙=1

 (3.31) 

 

• Regional design grid trade-off: This equation should be added to regional generation 

constraints for selling to the grid based on the selected land for regional generation 

(𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡, 𝑖𝑖)). 
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 �
𝑖𝑖𝑓𝑓 𝐿𝐿𝑎𝑎𝑛𝑛𝑃𝑃 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑖𝑖                                                                                     
𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡, 𝑖𝑖) ≤ (𝐸𝐸𝑛𝑛𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖)  + 𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡))  × 𝜗𝜗 × 𝜑𝜑  (3.32) 

   
• Regional design energy balance: The equation that forces the equity between supply and 

demand in the regional generation design is called the balance equation, and it is expressed 

via equation 3.33 based on the selected land.  

  �
𝑖𝑖𝑓𝑓 𝐿𝐿𝑎𝑎𝑛𝑛𝑃𝑃 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑖𝑖                                                                                                              
𝑃𝑃𝑊𝑊𝑅𝑅(𝑡𝑡, 𝑖𝑖) + 𝑃𝑃𝑊𝑊(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝑃𝑃(𝑡𝑡) = 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡)    

 
(3.33)) 

 

 

3.4.4. Economic Evaluation 

To calculate the Levelized cost of energy (LCOE), the below equation is employed: 

 𝐿𝐿𝐸𝐸𝐵𝐵𝐸𝐸 =
𝑁𝑁𝑃𝑃𝐸𝐸 × 𝐸𝐸𝑛𝑛𝐶𝐶

∑𝐿𝐿𝐷𝐷 + ∑𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡)
 (3.34) 

Where LD is the total load demand served in each step.  

The renewable penetration shows the renewable fraction of the total load demand determined with 

equation (3.35). 

 𝑛𝑛𝑃𝑃 =
𝑇𝑇𝐿𝐿𝑡𝑡𝑎𝑎𝑙𝑙 𝑆𝑆𝑒𝑒𝑆𝑆𝑣𝑣𝑒𝑒𝑃𝑃 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝐸𝐸𝑎𝑎𝑏𝑏𝑙𝑙𝑒𝑒 𝐸𝐸𝑙𝑙𝑒𝑒𝑃𝑃𝑡𝑡𝑆𝑆𝑖𝑖𝑃𝑃𝑖𝑖𝑡𝑡𝑇𝑇 

∑𝐿𝐿𝐷𝐷
 (3.35) 

The payback period, which is another important economic indicator and shows the time period for 

recovering the initial investment, is evaluated by dividing the calculated total initial cost by the 

benefit. The total benefit includes the income from selling electricity to the central grid, removing 

environmental penalties, and saving from not using natural gas.  

3.4.5. Heat generation and gas consumption 

The transferred heat by gas boilers could be calculated based on measurement data using 

the below equation for each time step: 

 𝑄𝑄 = 𝑚𝑚𝑃𝑃∆𝑇𝑇 (3.36) 
 

Where Q is the total heat transferred in each time step, m is the flow rate, c is the water 

specific heat (4.187 kj/kg˚C) and ∆𝑇𝑇 is the difference between water supply and return 

temperatures. 
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Based on the calculated heat, the amount of gas consumption (𝑃𝑃𝐺𝐺) could be evaluated 

using below equation (3.37): 

 𝑃𝑃𝐺𝐺 = �
𝑄𝑄

CV × 𝜏𝜏 ÷ 𝜔𝜔
� ×

1
𝜂𝜂𝐺𝐺

 (3.37) 

Where CV is the natural gas calorific value, 𝜏𝜏 is the correction factor (1.02264 in this study), 𝜔𝜔 is 

the conversion factor for kWh unit (equal to 3.6) and 𝜂𝜂𝐺𝐺  is the gas boiler efficiency.  

3.5. Optimum Operation Scheduling 

3.5.1. Day ahead forecast methods 

To remove the imprecision of the operation model, the first step is to forecast the day ahead 

load demand and renewable resources in an accurate manner. The proposed framework of the 

forecasting methods is depicted in Figure 3.4. 

 

Figure 3.4. Proposed forecasting framework 
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This flowchart consists of three main sections. The feature selection and preprocessing of 

the data, including feature scaling, outlier detection, and dealing with missing values, is carried 

out in the first section. Furthermore, a grid search is employed to determine the optimum parameter 

for the statistical model in this section. In the second section, the output of the preprocessing stage 

is used for training the developed models. In this stage, a hybrid model is created using the Weibull 

distribution output as one of the input features of the LSTM model. Next, the NWP data is 

extracted from the NWP model and is used as input of the integrated LSTM-Weibull model for 

wind speed prediction and single LSTM model for solar irradiance prediction to create the final 

hybrid model. In the last section, the accuracy of each model is evaluated and compared to select 

the proper model. The hyperparameter optimization of the LSTM model is also conducted in the 

third section. 

In the following sub-sections, each method is explained in detail.  

3.5.1.1. SARIMAX 

Seasonal autoregressive integrated moving average (SARIMA) with exogenous factors is 

called SARIMAX and is a statistical model used to predict time series with seasonality. The 

exogenous factors allow the model to use other features to reduce the forecasting error. With 

considering 𝑇𝑇𝑠𝑠 as the wind speed in time step t, SARIMAX can be modeled as below [81]–[83]: 

 𝜑𝜑𝑝𝑝(𝐵𝐵)∅𝑃𝑃(𝐵𝐵𝑠𝑠)(1− 𝐵𝐵)𝑒𝑒(1 − 𝐵𝐵𝑠𝑠)𝐶𝐶𝑇𝑇𝑠𝑠 =  𝛾𝛾𝑞𝑞(𝐵𝐵)𝛿𝛿𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑠𝑠 (3.38) 

Where 𝐵𝐵 is a lag operator that is responsible for back shifting, 𝜑𝜑𝑝𝑝(𝐵𝐵) and ∅𝑃𝑃(𝐵𝐵𝑠𝑠) are non-

seasonal and seasonal autoregressive operators of order p and P, respectively. 𝛾𝛾𝑞𝑞(𝐵𝐵) and 𝛿𝛿𝑄𝑄(𝐵𝐵𝑠𝑠) 

are non-seasonal and seasonal moving average function of order q and Q, respectively. (1 − 𝐵𝐵)𝑒𝑒 

and (1 − 𝐵𝐵𝑠𝑠)𝐶𝐶 are non-seasonal and seasonal differencing operators. 𝐿𝐿 is the seasonal length and 

𝜀𝜀𝑠𝑠 is the residual error. 

 𝜑𝜑𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1(𝐵𝐵) − 𝜑𝜑2(𝐵𝐵2) −⋯− 𝜑𝜑𝑝𝑝(𝐵𝐵𝑝𝑝) (3.39) 

 ∅𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1(𝐵𝐵𝑠𝑠) − 𝜑𝜑2(𝐵𝐵2𝑠𝑠) −⋯− 𝜑𝜑𝑃𝑃(𝐵𝐵𝑃𝑃𝑠𝑠) (3.40) 

 𝛾𝛾𝑞𝑞(𝐵𝐵) = 1 − 𝛾𝛾1(𝐵𝐵)− 𝛾𝛾2(𝐵𝐵2) −⋯− 𝛿𝛿𝑞𝑞(𝐵𝐵𝑞𝑞) (3.41) 

 𝛿𝛿𝑝𝑝(𝐵𝐵) = 1 − 𝛿𝛿1(𝐵𝐵𝑠𝑠) − 𝛿𝛿2(𝐵𝐵2𝑠𝑠) −⋯− 𝛿𝛿𝑃𝑃(𝐵𝐵𝑄𝑄𝑠𝑠) (3.42) 

𝑒𝑒,𝑃𝑃, and 𝑞𝑞 are integer parameters to show the delay order of non-seasonal autoregressive, 

differencing, and moving average terms, respectively, while 𝑃𝑃,𝐷𝐷, and 𝑄𝑄 are integer parameters for 
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indicating the delay order of seasonal autoregressive, differencing and moving average terms, 

respectively. An optimum set of these parameters could be specified for the model as input using 

different criteria for parameter selection such as Akaike information criterion (AIC), Bayesian 

information criterion (BIC), or Hannan–Quinn information criterion (HQIC) methods. 

Furthermore, the seasonal length of the model should be estimated using the decomposition of the 

training data. Afterward, the model is applied to forecast the future wind speed. The forecast 

horizon has a direct impact on the accuracy of prediction. An increase in the length of the horizon 

results in a reduction in accuracy [36].  

3.5.1.2. LSTM 

One of the deep neural networks that is suitable for time series data is the recurrent neural 

network (RNN) [84]. The feature that makes the RNN a proper algorithm for dealing with 

sequential data is the short-term memory due to the recurrent feedback connections [85]. But 

practically, RNN is not capable of treating data with long-term dependencies [86]. Therefore, 

LSTM as a specific type of RNN was developed to consider the issue of long-term dependencies 

[87], [88].  

 The LSTM is a type of RNN proposed by Hochreiter and Schmidhuber in 1997 to deal 

with long-term dependencies by upgrading the remembering capacity of a simple recurrent cell 

[89]. 

 

Figure 3.5. Schematic design of an LSTM module 
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An LSTM cell, unlike a simple RNN cell that includes a single tanh layer [32],  is formed 

with several layers, as depicted in Figure 3.5. The first step is called forget layer, and it is 

responsible for deciding if the information could pass through the cell or it should be dismissed 

using an activation function. The activation function generally is a sigmoid function that, based on 

the input, generates a number between 0 and 1. While 1 shows the input of the cell can be added 

to the cell state, 0 designates that the input should be forgotten. (𝑓𝑓𝑡𝑡) is the output of the forget layer 

and it is determined by the below equation [8]: 

 𝑓𝑓𝑠𝑠 = 𝜑𝜑(𝐸𝐸𝑓𝑓 . [ 𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝑓𝑓) (3.43) 

Where 𝜑𝜑 is the activation function, 𝑇𝑇𝑡𝑡−1 is the output of the previous module, and 𝑒𝑒𝑡𝑡 is input 

at time t and 𝑏𝑏𝑓𝑓 and 𝐸𝐸𝑓𝑓 are bias and weight, respectively. 

In the second step, the update of new values (It), using equation (3.44), and a vector of new 

information (𝑔𝑔�), as shown in equation (3.45), are created to add to the cell state by employing a 

sigmoid and tanh functions, respectively [2]: 

 𝐼𝐼𝑠𝑠 =  𝜑𝜑(𝐸𝐸𝑖𝑖. [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝑖𝑖)  
 (3.44) 

  𝑔𝑔� = 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝐸𝐸𝐺𝐺. [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝐺𝐺) (3.45) 
   

Subsequently, in the third step, a new cell state (𝑔𝑔𝑡𝑡) is expressed as the sum of the previous 

cell state multiplied with the first step results and the multiplication of the 𝐼𝐼𝑡𝑡 and  𝑔𝑔�  shown in 

notational form as: 

 𝑔𝑔𝑠𝑠 = 𝑓𝑓𝑠𝑠 × 𝑔𝑔𝑠𝑠−1 + 𝐼𝐼𝑠𝑠  × 𝑔𝑔�     
(3.46) 

   
In the final step, by employing a sigmoid function, the cell decides what part of the cell 

state should be the cell’s output and input to the next cell, and by using a tanh function, it 

regenerates the values between -1 and 1.  

 𝜕𝜕𝑠𝑠 =   𝜑𝜑 (𝐸𝐸𝜕𝜕. [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝜕𝜕)  
(3.47) 

   
 𝑇𝑇𝑠𝑠 = 𝜕𝜕𝑠𝑠 × tanh(𝑔𝑔𝑠𝑠)     (3.48) 
   

Where, 𝜕𝜕𝑡𝑡 is the portion of ‘cell’s state that is transmitted as the output.  
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The four explained layers in each cell of an LSTM model make it a proper algorithm to be 

tested for dealing with the unexpected behavior of the load demand and renewable generation.  

3.5.1.3. Weibull distribution 

Wind speed can be expressed in time series, and the variation of the speed can be described 

using a probability distribution function (PDF). For many years, the Weibull distribution has been 

used to fit wind speed data, and it is an explicitly proper fit to average wind speed data [90]. 

The Weibull PDF can be described with equation (3.49) [91]:  

 𝐶𝐶(𝑣𝑣) = �
𝑘𝑘
𝑃𝑃
� �
𝑣𝑣
𝑃𝑃
�
𝑘𝑘−1

𝑒𝑒𝑒𝑒𝑒𝑒[−�
𝑣𝑣
𝑃𝑃
�
𝑘𝑘−1

] 
 

(3.49) 
 

Where 𝐶𝐶(𝑣𝑣) is the probability of occurrence of wind speed (𝑣𝑣), and k is the Weibull shape 

parameter that is calculated based on the standard deviation (𝜎𝜎) and the average (𝑣𝑣�) of the wind 

speed data using equation (3.50) [92]: 

 𝑘𝑘 = �
𝜎𝜎
�̅�𝑣
�
−1.086

  
 

(3.50) 
And 𝑃𝑃 is the Weibull scale parameter that is given as [90]: 

 𝑃𝑃 =  
�̅�𝑣

𝛤𝛤 �1 + 1
𝑘𝑘�

    
(3.51) 

Where 𝛤𝛤 is the gamma function. 

3.5.1.4. NWP Model 

In this research, the NWP data was extracted from the NWP model that was developed by 

the “Centre for Solar Energy and Hydrogen Research (ZSW)” in Stuttgart, Germany.  

3.5.1.5. Hybrid Model 

In this study, the basic structure of the Hybrid model is the same as the LSTM model. To 

hybridize model X with the LSTM model, the results of model X will be scaled up along with 

other predictors and target variables and will be fed to the LSTM model as the input. The 

integration of Model X with the LSTM model results in an increase of the input dimension of the 

final neural network by one (in other words, it increases the number of input parameters by one).   
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3.5.1.6. Hyperparameter Optimization 

In all hybrid forecasting models, LSTM is the core model, while other models are being 

hybridized with it. The tuned values for the LSTM model’s hyperparameters, in both single and 

hybridized ways, are achieved through the grid search method. These hyperparameters could be 

different for each forecasting scenario.  

3.5.1.7. Preprocessing and Evaluation Metrics 

Due to the use of several predictor variables, such as humidity, temperature, and air 

pressure, along with wind speed as the dependent variable, feature scaling is necessary to eliminate 

the issues associated with dimensionality caused by a dissimilar range of values. The min-max 

scaler method is used to scale the data into a similar range: 

 𝑋𝑋𝑁𝑁 =
𝑋𝑋 − 𝑋𝑋min

𝑋𝑋max − 𝑋𝑋min
  

(3.52) 
 

To find the outliers in the dataset based on an extreme outlier detection procedure, the 

minimum and maximum bounds were calculated based on equations 3.53 and 3.54, respectively.  

 Min Bound =  𝑄𝑄1 − 3(𝐼𝐼𝑄𝑄𝑛𝑛)  
(3.53) 

Where Q1 is the lower quartile that shows the number that is more than 25 percent of the data and 

IQR is the interquartile range. 

 Max Bound =  𝑄𝑄3 + 3(𝐼𝐼𝑄𝑄𝑛𝑛)  
(3.54) 

Where Q3 is the upper quartile that shows the number that is more than 75 percent of the data. 

To assess the forecasting models’ performance, root mean squared error (RMSE), mean 

absolute error (MAE), and mean squared logarithmic error (MSLE) are employed to determine the 

goodness of fit. RMSE evaluates the error using equation (3.55): 

 𝑛𝑛𝐵𝐵𝑆𝑆𝐸𝐸 =  ��
(𝑇𝑇�I  − 𝑇𝑇𝑖𝑖)2

𝑛𝑛
 

𝐶𝐶

𝑖𝑖=1

 
 

(3.55) 

where 𝑇𝑇 is the observed value and 𝑇𝑇� is the predicted value. 

And MAE is calculated using equation (3.56) 
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 𝐵𝐵𝐶𝐶𝐸𝐸 =
∑ |𝑇𝑇�I  − 𝑇𝑇𝑖𝑖|𝐶𝐶
𝑖𝑖=1

𝑛𝑛
 (3.56) 

 

Due to the wind speed as the target variable is distributed based on Weibull distribution 

and the difference between the minimum and maximum value in wind speed data is considerable, 

MSLE could be a proper metric to evaluate the error of a model, and it could be calculated using 

equation (3.57): 

 𝐵𝐵𝑆𝑆𝐿𝐿𝐸𝐸 =
1
𝑛𝑛

 �(𝑙𝑙𝐿𝐿𝑔𝑔(𝑇𝑇𝑖𝑖 + 1) − log(𝑇𝑇�𝑖𝑖 + 1))2
𝐶𝐶

𝑖𝑖=1

 

 

(3.57) 

 

3.5.2. Critical load and resiliency 

Resilience is defined by the US department of homeland security as the ability to resist, 

absorb, recover from, or successfully adapt to adversity or a change in condition [93]. Typically, 

it is explained based on the performance of a system under specific time horizon and conditions. 

The system’s robustness and the ability of the energy system to provide the critical load during a 

power outage are the two main aspects of resilience in this thesis.  

The minimum load that needs to be supplied to the emergency and uninterruptable 

functions to ensure their performance is considered is critical load [94]. In this thesis, the critical 

load could be calculated in 4 main steps listed below: 

Step 1: Defining the use types of the building. At a district scale, different buildings might 

have different use types, for instance, a residential building might have different use types 

compared to an institutional building. The level of importance of these use types and consequently 

the loads that should be assigned to them are different.  

Step 2: After defining the use types, they are ranked based on their criticality level. Three 

levels of loads are defined based on [95]: 1) Non-essential loads, which can be disconnected from 

the power supply for noticeable periods of time, 2) Essential loads, which can suffer short de-

energized; and 3) Uninterruptable loads, which need to be supplied without even a short 

disconnection. Similar to what was mentioned, in an institutional building, criticality levels could 

be expressed in three categories: low criticality level, such as gym; loads with significant criticality 
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level, such as teaching labs; and loads with high criticality level, for instance, health clinic. In a 

time of disruption, the demand for this category cannot be disconnected.   

In case of unavailability of the load demand for each category, the ratio of use type area to 

the total area could be considered as an alternative to evaluate the load of each category. This ratio 

could be calculated based on the below equation: 

 𝑛𝑛𝑖𝑖 =
𝐶𝐶𝑖𝑖
𝐶𝐶

× 100 (3.58) 

 

Where 𝑛𝑛𝑖𝑖 is the ratio of category I to the total area, 𝐶𝐶𝑖𝑖 is the area of the category I (m2),  𝐶𝐶 

is the total area of the building (m2) and in a building with n different use type categories: 

 

 �𝑛𝑛𝑖𝑖 = 1
𝐶𝐶

𝑖𝑖=1

 (3.59) 

 
Step 3: In this step, coefficients related to each use type to estimate the critical load are 

defined. The critical load in each building is a portion of the day-to-day demand. Therefore, the 

coefficients are a number between 0 and 1, and are defined separately for electricity demand and 

air conditioning systems as follows: 

Step 3.1: Air conditioning critical coefficient (CA.) 

 For a building with a central air conditioning unit, the critical load of the air conditioning 

unit is considered to be impacted by the working hour and seasons (summer and winter) to simplify 

the process. Therefore, the critical coefficient is defined based on these two parameters and then 

multiplied by the actual hourly load of the air conditioning system. As shown in Table 3.4, the 

value of the coefficients is defined based on the different time ranges during summer and winter. 

𝐸𝐸𝑃𝑃𝑎𝑎𝑇𝑇 shows the critical coefficient of the air conditioning unit during the daytime while 𝐸𝐸Night refer 

to the value of the critical coefficients in the nighttime in each season. 
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Table 3.4. Air conditioning critical coefficients 

Coefficient Time Range 
Summer  

𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑  08:00 to 18:59 
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠  19:00 to 07:59 

Winter  
𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑 08:00 to 20:59 
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠  21:00 to 07:59 

 

            Step 3.2: Electricity critical coefficient (CE.) 

Electricity demand in use types varies, and a critical coefficient is defined based on each 

use type. Considering the importance ranking of use types in step 2, the loads with higher levels 

of importance have coefficients closer to one. Defining coefficients based on the working and 

closing states of the services is suggested to address the load curve pattern changes during the day 

and night. Table 3.5 represents the structure of estimating the coefficients where, 𝐸𝐸𝐷𝐷𝑎𝑎𝑇𝑇,𝑖𝑖 and 𝐸𝐸𝑁𝑁𝑖𝑖𝑔𝑔ℎ𝑡𝑡,𝑖𝑖 

are critical coefficients of use type I during the day and night. The critical coefficient is defined 

based on professional judgment, which is directly correlated to the range of existing use type 

categories in the building. 

Table 3.5. Electricity demand critical coefficient 

Coefficient Time Range 
𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑,𝑖𝑖  

Use type i 
08:00 to 17:59 

𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠,𝑖𝑖 18:00 to 07:59 

 

Step 4: In the final step, the total critical load is evaluated. The building’s air conditioning 

critical load (𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎) is estimated using equation (3.60): 

 𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎(𝑡𝑡) =  𝐸𝐸𝐶𝐶 × 𝐿𝐿𝑒𝑒(𝑡𝑡)  (3.60) 
  

Where, 𝐿𝐿𝐸𝐸𝐶𝐶𝑖𝑖𝑆𝑆(𝑡𝑡), and 𝐿𝐿𝑃𝑃(𝑡𝑡) are air conditioning critical and actual load in time step t, respectively. 

 𝐸𝐸𝐶𝐶 is the air conditioning critical coefficient that is divided into seasonally coefficients for day 

and night (table 3.5).   
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The hourly critical electricity load for each use type is calculated using equation 3.61, 

where 𝐿𝐿𝐸𝐸E(𝑡𝑡) and 𝐿𝐿𝑃𝑃(𝑡𝑡) are critical and actual electrical load demands in time step t, respectively, 

𝑛𝑛𝑖𝑖 is the ratio of category I to the total area (%) and 𝐸𝐸E is the Critical coefficient which is further 

divided into the 𝐸𝐸𝑒𝑒𝑒𝑒𝑎𝑎𝑑𝑑  and 𝐸𝐸𝑒𝑒𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠, coefficients.  

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑛𝑛𝑖𝑖 × 𝐸𝐸𝐶𝐶 × 𝐿𝐿𝑒𝑒(𝑡𝑡) 
  

(3.61) 

 

The total critical electricity demand of the building (𝐿𝐿𝐸𝐸𝑇𝑇) is the summation of all the available use 

types’ critical loads and is assessed using equation (3.62): 

 𝐿𝐿𝐶𝐶𝑇𝑇 = ∑𝐿𝐿𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎  (3.62) 
 

 

3.5.2.1. Optimization model 

The optimization model used for the economic dispatch (i.e., operation) of the energy 

system is explained in this section. Figure 3.6. shows a flowchart for the optimization module. The 

operation model works with an hourly resolution and a 48 h time horizon. 

 

Figure 3.6. A schematic design of the optimization module 
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Objective function 

The economic payoff of the energy system corresponds to its operational cost and its 

reliability. In this regard, depreciation of the energy storage (batteries), curtailment of renewable 

energy, and loss of power supply will be key factors in establishing a trade-off between the 

economy and the reliability of the energy system. These factors are formulated as follows:   

• Battery depreciation: 

There are several factors that could affect the depreciation of lithium-ion battery storage 

systems, such as depth of discharge, charge and discharge cycles, and temperature [16]. The impact 

of charge/discharge cycles is formulated as a cost indicator (equation 3.63) and added to the 

objective function. 

 𝐷𝐷𝑃𝑃𝐸𝐸 =  �𝐷𝐷𝑃𝑃𝐶𝐶 × 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) +  �𝐷𝐷𝑃𝑃𝐶𝐶 × 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡)
𝑇𝑇

𝑠𝑠=1

𝑇𝑇

𝑠𝑠=1

 (3.63) 

 

Where 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) and 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) are the power of charging and discharging in the time period 

T, respectively, 𝐷𝐷𝑃𝑃𝐸𝐸 is the depreciation cost of the battery, and 𝐷𝐷𝑃𝑃𝐶𝐶 indicates the degradation 

factor expressed as below:  

 𝐷𝐷𝑃𝑃𝐶𝐶 =
𝑛𝑛𝐸𝐸
𝐸𝐸𝑃𝑃𝑢𝑢

 (3.64) 

 

Where the total charge/discharge power capacity of the battery showed by 𝐸𝐸𝑃𝑃𝑏𝑏 while 𝑛𝑛𝐸𝐸 

is the replacement cost of the battery.  

• Renewable Curtailment 

The main reason for the renewable curtailment could be a mismatch between the time of 

peak demand and the peak of the renewable generation [17]. To improve the economy of the 

energy system, the amount of excess renewable electricity needs to be minimized by operation 

management. Therefore, one of the main elements of the objective function is a penalty of the 

renewable curtailment that is calculated via the below equation (3.65): 

 𝑛𝑛𝐸𝐸 =  �𝜕𝜕 × 𝑃𝑃𝑤𝑤𝑐𝑐(𝑡𝑡) + �𝜕𝜕 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐(𝑡𝑡)
𝑇𝑇

𝑠𝑠=1

𝑇𝑇

𝑠𝑠=1

 (3.65) 
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Where 𝜕𝜕 is the curtailment factor ($/kW) and 𝑃𝑃𝐸𝐸𝑃𝑃(𝑡𝑡) is the curtailment of wind power while 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) shows the excess electricity of PV generation in period T.  

• Loss of Power Supply 

To minimize the loss of power supply probability (LPSP), a term needs to be added to the 

objective function to penalize the existence of the unmet load in each time step. Therefore, the loss 

penalty (LP) includes the summation of the amount of unmet load in each time step (𝐿𝐿(𝑡𝑡)) 

multiplied by the coefficient (∅) as indicated in equation (3.66). 

 𝐿𝐿𝑃𝑃 =  �∅ × 𝐿𝐿(𝑡𝑡)
𝑇𝑇

𝑠𝑠=1

 (3.66) 

Then, the summation of the discussed terms creates the objective function (𝐵𝐵𝐶𝐶): 

 𝐵𝐵𝐶𝐶 =  𝐷𝐷𝑃𝑃𝐸𝐸 + 𝑛𝑛𝐸𝐸 + 𝐿𝐿𝑃𝑃 (3.67) 
 

Constraints 

The operating cost of the system is minimized subject to the following constraints: 

• Battery Capacity: The capacity of the battery storage system in the first time step (Eb[1]) is 

equal to the initial state of charge of the battery, while in the next time steps, the capacity of the 

battery is calculated based on the charge/discharge of it in that time step (equation 3.68): 

 �
𝐸𝐸𝑏𝑏(𝑡𝑡) = 𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖   × 𝐸𝐸𝑇𝑇                                         𝑡𝑡 = 1

𝐸𝐸𝑏𝑏(𝑡𝑡) = 𝐸𝐸𝑏𝑏(𝑡𝑡 − 1) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) ∗ 𝜂𝜂𝑐𝑐 −
𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡)
𝜂𝜂𝑒𝑒

      𝑡𝑡 = 𝑇𝑇 

 

(3.68) 

Where 𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 is the initial state of charge of the battery (%), 𝐸𝐸𝑇𝑇 is the total capacity of 

it (kWh) and 𝜂𝜂𝑃𝑃 and 𝜂𝜂𝑃𝑃 are charging/ discharging efficiencies, respectively. Furthermore, the state 

of charge of the battery in each time step (𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡)) should follow the below inequality: 

 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑖𝑖𝐶𝐶 ≤ 𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡) ≤ 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 (3.69) 
 

• Renewable generation: To balance the used renewable power in the microgrid and the surplus 

power, two constraints need to be added as follows for both wind power and PV power 

generation: 
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 �𝑃𝑃𝑊𝑊
(𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡)  + 𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡)  + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡)         

 
(3.70) 

Where 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) are the used wind and PV power in each time steps, 

respectively while 𝐸𝐸𝐿𝐿𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝐿𝐿𝑃𝑃𝑃𝑃(𝑡𝑡) are the surplus electricity of the wind and PV 

generation. 𝑃𝑃𝑊𝑊(𝑡𝑡) is the total power generated by the wind turbines in time step t and  𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is 

the total power generated by the PV panels in time step t.  

• Energy balance  

The equation that shows the balance between the used renewable generation (supply) in 

the off-grid mode of the system and the demand (including the load demand and energy that 

requires to charge the battery is called the balance constraint, and it is shown by the equation 3.71: 

 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) = 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) (3.71) 
   

Where 𝐿𝐿𝑃𝑃(𝑡𝑡) is the total load demand in time step t.  

Optimal load  
To calculate the load with the upper and lower bound of the actual load demand and critical 

load demand, the optimal load in each time step needs to be computed. Since the optimization 

model is responsible for finding the best amount of the load in each time step, a variable has to be 

defined and added to the balance constraint as below (equation 3.72): 

 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) = 𝛽𝛽(𝑡𝑡) × 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) (3.72) 
 

Where 𝛽𝛽(𝑡𝑡) is the variable coefficients. The Upper bound (𝑢𝑢𝑏𝑏) of this variable is 1, while 

the lower bound (𝑙𝑙𝑏𝑏) could be defined based on the proportion of the critical load to the actual load 

demand. 

 �𝑙𝑙𝑏𝑏(𝑡𝑡) =
𝐿𝐿𝑐𝑐(𝑡𝑡)
𝐿𝐿𝑒𝑒(𝑡𝑡)

                                   

𝑢𝑢𝑏𝑏(𝑡𝑡) = 1                                          
 

 

(3.73) 

Where 𝐿𝐿𝑃𝑃(𝑡𝑡) is the critical load in time step t. 

LPSP 
In this study, loss of power supply probability (LPSP) is employed to evaluate and compare 

the reliability of the energy system in the different scenarios. LPSP could be expressed via the 

below equation (3.74) [18]: 
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 𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃 =
∑ 𝐿𝐿(𝑡𝑡)𝑇𝑇
𝑠𝑠=1

∑ 𝐿𝐿𝑒𝑒(𝑡𝑡)𝑇𝑇
𝑠𝑠=1

  (3.74) 

 

Where 𝐸𝐸𝑅𝑅𝑒𝑒𝑝𝑝 is replacement cost, 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 is the maximum storage capacity and 𝑁𝑁𝑐𝑐𝑑𝑑𝑐𝑐𝑖𝑖𝑒𝑒 lifetime 

cycles.  

3.5.3. Grid-Connected Optimal Operation 

In this sub-section, the related methodology for reaching the optimal schedule of the 

microgrid in grid-connected mode is explained. The overall methodology is shown in Figure 3.7. 

Based on this figure, the day ahead optimal operation will be predicted by a MILP model to fulfill 

the load demand in each iteration. The objective function of the optimization model includes 4 

terms, 1) the trade-off between grid and microgrid, 2) battery depreciation cost by charging and 

discharging in each time step, 3) Renewable power curtailment cost, and 4) Environmental 

emissions in case central grid uses the non-renewable resources.  

 

Figure 3.7. Proposed framework for grid-connected operation 
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Finally, the optimum operation for the next day will be generated by the model and the 

battery schedule will be defined based on that. The basic terms of the optimization model is the 

same as what has been explained in the previous optimization sub-section, except for the grid 

trade-off that is not evaluated in the off-grid mode. Therefore, the economy of trading between the 

urban microgrid and the conventional grid is defined as follows: 

 𝐺𝐺𝐸𝐸 =  �𝑃𝑃𝑝𝑝(𝑡𝑡) × 𝐸𝐸𝑃𝑃
𝑇𝑇

𝑠𝑠=1

−  �𝑃𝑃𝑠𝑠(𝑡𝑡) × 𝐸𝐸𝑆𝑆
𝑇𝑇

𝑠𝑠=1

 (3.75) 

Where, 𝐺𝐺𝐸𝐸 is the amount of trading between CG and MG,  𝑃𝑃𝑝𝑝(𝑡𝑡) and 𝑃𝑃𝑠𝑠(𝑡𝑡) are the amounts 

of purchased and sold electricity from/to the CG at time t, respectively, EP is the purchasing price 

of electricity from CG and ES is the selling price of electricity to CG.  
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Chapter 4: Case Study 

4.1. Building’s General Information 
The so-called EV building that houses Concordia University’s engineering school is 

located in the downtown Sir George Williams Campus in Montreal (Quebec) and is considered the 

case study of this research. Therefore, Concordia university is considered the decision maker and 

owner of the distributed energy system which is going to be designed in this thesis. However, the 

proposed framework in the previous chapter is flexible for changing the ownership to utility or 

cooperation between utility and Concordia University.    

EV building is one of the largest buildings in downtown Montreal with high electricity 

consumption. It consists of four main sectors: the engineering and computer science (ENCS) 

department, the visual arts department, the 17th floor (that includes labs and the mechanical room 

and air conditioning unit), and the electric boilers for heating purposes. The annual consumption 

of this building was about 20 million kWh in 2019, measured with four separate electrical metering 

devices in 15 minutes resolution. The data is available from 2015 to 2019. Dataset attributes are 

shown in Table 4.1. 

Table 4.1. User categories and their floor areas in EV Building 

Date Elec Boiler 
(kWh) 

17th Flr 
(kWh) 

ENCS 
(kWh) 

VA 
(kWh) 

Total EV 
(kWh) 2015-01-01 00:00:00 662.565 1363.5 387.5 357.25 2770.815 

2015-01-01 01:00:00 664.77 1427.25 406.75 357.75 2856.52 
2015-01-01 02:00:00 660.63 1416.25 388 339 2803.88 
2015-01-01 03:00:00 657.6325 1413.5 416.5 341.25 2828.883 
2015-01-01 04:00:00 658.165 1424 389.5 337 2808.665 

 

Moreover, Figure 4.1, shows the last three years of the available data to explore the power 

consumption yearly trend.  
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Figure 4.1. Last three years, EV building’s power consumption with 15 minutes resolution 

As is evident in Figure 4.1, the EV building's electricity consumption does not follow the 

same pattern as a typical building (lower electricity consumption in summer and higher in winter). 

This could be justified by two reasons. First, an institutional building could behave differently 

compared to other typical buildings. Second, the more important cause is that the energy source in 

the EV building is not only electricity, and the University’s facility management is using natural 

gas also to provide heat, especially in winter.  

However, based on Figure 4.2, the zoomed-in daily consumption trend seems reasonable 

for each day of the week. Evident lower consumption occurs on the weekend for the departments 

with low consumption at midnight and higher consumption during working hours for all sectors.  

2017 2018 2019 
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Figure 4.2. Daily consumption of three main sections of EV building for each day of a week 

The other important information that needs to be considered in the calculation is the 

available area of the building. The roof area of a building is the main zone used for installing the 

components. Concordia University’s available roof area for its main buildings on the downtown 

campus was extracted from the CityGML 3D data model of Montréal, as listed in Table 4.2. 
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Table 4.2. Concordia University’s available roof area 

Building Name Available Roof Area (m
2
) 

EV 5,790 

John Molson 2,457 

GM 1,598 

Library 5,939 

H Building 5,074 

FB 3,629 

Total 24,487 

Based on assumptions and the shape of roof areas, 95 percent of Concordia University’s 

available roof area is considered usable for installing renewable energy components. Therefore, 

23,262 m2 is the available area for local generation.  

4.2. Location’s General Information 
Montreal is the second-most populous city in Canada. It is located in the Southern part of 

the province of Quebec with latitude and longitude coordinates of 45 N and -73 E degrees, 

respectively [96]. Montreal’s hourly resolved data of temperature and humidity is obtained from 

the NASA prediction of worldwide energy resources website [97]. Giving the exact location of the 

EV building (45.4955, -73.5782) to NASA portal generates all the required climatic data. Figure 

4.3. shows the variation and trend of these independent variables for the year 2020 in hourly 

resolution. Although the ascending and descending trend from the beginning to the end of the year 

is noticeable for temperature, no notable trend is detected in relative humidity. However, a lower 

fluctuation range at the beginning of the year (Winter) compared to the middle of the year 

(Summer) is perceptible for relative humidity. 
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Figure 4.3. Montreal 2020’s climatic information 

Moreover, the wind speed (m/s) in 50-meter height (based on the EV building height) is 

also extracted from the NASA data portal for the same year (2020) [97] in hourly resolution. To 

evaluate the behavior of the target variable further, the additive decomposition of the wind speed 

data is plotted (Figure 4.4). As it is demonstrated in Figure 4.4, although there is no notable trend, 

the seasonality graph shows daily fluctuations (ascending and then descending during the day). 

However, as the residual graph that shows the error of fitting this seasonality on the real wind 

speed data is noticeable, this seasonality can be seen as not being strong. 
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Figure 4.4. Decomposition graph of wind speed data 

The same strategy is used after collecting shortwave downward solar irradiance (W/m2) 

from the same portal [97]. The decomposition graph shows a clear ascending and descending trend 

from the beginning of the year till the end, showing the higher available irradiance in summer and 

lower in winter. This difference is considerable at some points. The seasonality follows an evident 

pattern while the residual is still significant.  

4.3. Critical Load 
Based on the explained methodology, different use types in the EV building with 

corresponding floor areas are listed in Table 4.3 [98] to calculate the critical load. The assumed 

critical coefficients related to electricity demand are shown in 𝐸𝐸𝑒𝑒𝑒𝑒𝑎𝑎𝑑𝑑 and 𝐸𝐸𝑒𝑒𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠 columns. 

Table 4.3. User categories and their floor areas in EV Building 

Use Type Floor Area (Ai) 
Ratio of area to total 

area (Ri) 
𝑪𝑪𝒆𝒆𝒆𝒆𝒂𝒂𝒆𝒆 𝑪𝑪𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

Health Center 3427.8 4.1% 1 0.2 
computer services 134.6 0.2% 1 1 

research labs 7957.9 9.5% 1 1 
maintenance services 277 0.3% 1 1 
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lavatories 1298 1.5% 1 0.5 
offices 10597.3 12.6% 1 1 

food services 568.2 0.7% 1 0 
offices 5298.6 6.3% 1 0 

indoor parking 1647 2.0% 1 0 
teaching labs 7328.3 8.7% 1 0 
classrooms 1336.8 1.6% 1 0 

community services 5413 6.5% 0.2 0 
gym 3427.8 4.1% 0.2 0 

common areas 24583.9 29.3% 0.2 0.2 
museum 237 0.3% 0.2 0 

housekeeping 385 0.5% 0.2 0 
others 9896.6 11.8% 0.2 0 

Total area (A) 83814.9 100.0%   
 

The EV building has central heating and cooling systems, and the critical coefficient 

regarding air-conditioning (CA) values is assumed, as presented in Table 4.4. The coefficients and 

the time range for day and night are selected based on the working hours of an educational building. 

It is assumed that in the case of a power outage caused by natural hazards, the air conditioning will 

be set to a state that meets minimum needs with respect to ventilation and comfort temperature for 

critical uses such as health centers or research labs inside the building. These coefficients change 

based on the season since working hours and space heating and cooling demands differ for summer 

and winter. These coefficients could also be different from one building to another (even for the 

same building types) due to the possibility of having different use types with varied characteristics 

of areas in each building. 

Table 4.4. Critical coefficient values for summer and winter 

Coefficient Value Time Range 
Summer 

𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑  0.4 08:00 to 18:59 
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠  0.3 19:00 to 07:59 

Winter 
𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑 0.6 08:00 to 20:59 
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠  0.2 21:00 to 07:59 
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4.4. Electricity Tariff 
Canada has not a unique electricity tariff, and it is different for each province. In Quebec, 

Hydro Quebec (HQ) is responsible for defining different electricity rates. These rates are mainly 

defined based on user types. For example, the rate for a residential building is different from the 

rate of a commercial one. Since Concordia University is considered a large consumer, HQ has a 

separate contract with it which is based on the consumption rate. Table 4.5 shows the rate for the 

year 2020, which is used as the electricity tariff in this research.  

Table 4.5. HQ electricity purchase rate for Concordia University – The year 2020 

Month Electricity Rate (CAD/kWh) 

January 0.07005544 

February 0.06775921 

March 0.06770977 

April 0.06393077 

May 0.06694972 

June 0.06953881 

July 0.06373102 

August 0.06239592 

September 0.05969309 

October 0.05936981 

November 0.061508168 

December 0.065685064 

 

Although the mentioned rate in Table 4.5 seems flexible, the price fluctuations each month 

are not considerable. This is more evident by looking at Figure 4.5.  
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Figure 4.5. Monthly HQ rate for Concordia University 

Based on HQ regulations [99], they are not allowed to buy electricity from the users directly 

and without calling for tenders. However, the self-generators still could inject their excess power 

into the grid with an exchange of credits in kilowatt-hours. In this research, the credit is considered 

as a cent/kWh, and Table 4.6 shows the assumed rate for this credit. In this research, the credit is 

considered as the cent/kWh, and Table 4.6 shows the assumed rate for this credit. This rate is 

considered flexible since it is based on the time of the year (Winter or Summer), and it is derived 

from the Rate flex G [100], which is considered a flexible rate. 

Table 4.6. Assumed purchase rate 

 Summer (April 1 – Nov. 30) Winter (Dec.1 – March 31) 

Proposed Flex Daily Rate 0.1 CAD/kWh 0.2 CAD/kWh 
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Chapter 5: Results and Discussion 

5.1. Implementation and Utilized Tools 
All modules and sub-modules are written with Python Programming Language using the 

below libraries for each module: 

 PV Model: The “pvlib” library [101] used for creating the PV arrays and power output 

calculations 

 Wind Model: For both a single wind turbine and a cluster of wind turbines (wind farm) 

power output, the “windpowerlib” library [102] is employed.  

 Design Model: The mixed integer nonlinear programming model is developed in the 

Pyomo platform [103] using the SCIP solver [104].  

 Operation Model: developed in the Pyomo platform [103] using CPLEX solver [105] 

 Forecasting Model: developed in Python using several libraries. Keras library [106] with 

Tensorflow backend used for developing LSTM model. The SARIMAX model was 

developed using “statsmodels” library [107] 

 Both the SCIP and CPLEX solvers were used by connecting Python with GAMS [108] to 

use GMAS options for adding attributes to the solvers.  

5.2. PV Power Output 
Using solar irradiance data, which was explained in section 3.2, and the input parameters 

of the selected PV modules, which are shown in Table 5.1. the output of the PV system will be 

calculated. Based on Table 5.1, the 220W solar panels selected with Glass/Cell/Glass and “Open 

Rack” module types and mount method, respectively. Moreover, the surface azimuth is set to 180 

since Montreal is located in the northern hemisphere; the best direction of the panels should be 

toward the south.  

Table 5.1. PV modules information 

Module Parameter Type/Value 

Manufacturer Canadian Solar 

Model CS5P_220M_2009 

Type Glass-Cell-Glass 

Mount Type Open Rack 
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Inverter Manufacturer ABB 

Inverter Model MICRO_0_25_I_OUTD_US_208__208V 

Surface Azimuth 180 

Surface tilt 45 

 

The Inverter’s model is selected in a way to track the maximum power point (MPPT). 

Therefore, the final AC output of the inverter is shown in Figure 5.1. In each time step, the 

maximum power output in the form of DC power is calculated. Then based on the inverter 

efficiency, it will be converted to AC electricity. The PV power output will be fed to the design 

module for the local generation.  

 

Figure 5.1. DC power output of a PV module 

5.3. Wind Power Output 
Several parameters and sub-models in the wind power model are defined as input by the 

user. There are two main models for wind power output: the first model is for single wind turbine 
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power output and the second is for wind farm power output calculation. Table 5.2 shows the sub-

models and related parameters of a single wind turbine.  

Table 5.2. Single wind turbine sub-models and parameters 

Sub-Model/Parameters Type/Value 

Wind Speed Model Hellmann 

Density Model Ideal gas 

Temperature Model Linear gradient 

Power Output Model Power Coefficient Curve 

Obstacle Height 0 

 

In Table 5.3. the selected sub-models and parameters of a cluster of turbines (Wind farm) 

are shown.  

Table 5.3. Wind farm sub-models and parameters 

Sub-Model/Parameters Type/Value 

Wind Speed Model Hellmann 

Density Model Ideal gas 

Temperature Model Linear gradient 

Wake Loss Model Wind farm efficiency 

Obstacle Height 0 

Standard Deviation Method Staffell_Pfenninger 

Smoothing Order Wind farm power curve 

 

Although the obstacle height is equal to zero in both single turbine and wind farm models, 

using different Hellman friction factors could simulate different geographical situations where the 

turbines are installed. Since the single turbines should be installed on the roof of the building in 

Montreal’s downtown area, the Hellmann exponent is equal to 0.3. While for the wind farm model, 

this could be different based on the land type selected for the turbine cluster installation. The 

assumed Hellmann exponents for the wind farm model are reported in Table 5.4.  
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Table 5.4. Assumed Hellmann friction factor coefficients 

Land Type (Greater 

Montreal) 

Hellmann Exponent 

(𝜶𝜶) 

Land Type (Outside of 

Greater Montreal) 

Hellmann 

Exponent (𝜶𝜶) 

Waterbody 0.10 Agricultural 0.10 

Open Area 0.10 Forest 0.15 

Resource and Industrial 0.20 Industrial 0.20 

Parks and Recreational 0.25 Public and Recreational 0.25 

Commercial 0.30 Residential 0.30 

Residential 0.40 Urban Areas 0.40 

 

Since the wind farm could be installed in both greater Montreal (outside of the populated 

areas) and outside of greater Montreal, the land types are different. Moreover, similar land types 

inside and outside greater Montreal could have different Hellmann Exponents. For instance, 

buildings in residential areas are denser, while outside of Greater Montreal could be scattered. 

However, in the case of using the developed tool for other locations, the Hellmann exponents 

should be amended accordingly.  

In this research, the specification of a single wind turbine is reported in Table 5.5 [109]. 

The selection of the wind turbine is based on the wind turbine’s power curve and the maximum, 

minimum, and average wind speed of the case study. The EO-25 wind turbine is selected since its 

cut-out, and cut-in wind speeds are close to the maximum and minimum wind speeds in Montreal.  

Table 5.5. Single wind turbine specifications 

Wind Turbine Type/Value 

Manufacturer eocycle 

Model EO-25 

Rated Power 25 kW 

Cut in Wind Speed 3.1 m/s 

Cut out Wind Speed 25 m/s 

Blade Length 6 m 

Number of Blades 3 

Area 125 m2 

Hub Height 16m 
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Based on the above specification, the output of a single wind turbine is shown in Figure 

5.2 for year 2019.  

 

Figure 5.2. Single 25kW wind turbine power output 

As mentioned in section 3, the wind speed data for single wind turbine power output is 

collected for a 50-meter height which considers the height of the EV building and the hub height 

of the wind turbine. 

For wind farm design, a large-scale wind turbine is selected, and the specification is 

reported in Table 5.6. [110]. 

Table 5.6. Wind farm wind turbines specifications 

Wind Turbine Type/Value 

Manufacturer Enercon 

Model E-53 

Rated Power 800 kW 

Cut in Wind Speed 3 m/s 

Cut out Wind Speed 34 m/s 

Rotor Diameter 52 m 
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Number of Blades 3 

Area 2198 m2 

Hub Height 73 m 

 

Since the number of wind turbines in the wind farm depends on several indicators of the 

land that will be selected by the optimization model, in this stage, the electrical output of one large-

scale wind turbine in the middle of the wind farm (considering the wake effect of the front turbine) 

is displayed in Figure 5.3. Furthermore, the Hellmann friction factor is considered equal to 0.1 

(open area). This figure only indicates how the wind farm model works.  

  

 

Figure 5.3. The power output of one of the turbines located in the middle of the wind farm 

5.4. Local Generation Design 
In the local generation, the output of the PV and single wind turbine models are used as 

input data along with the power consumption. Single wind turbine power output is employed 

because of the scattered installation of wind turbines on the roof of the building, and since the wind 

turbines are not supposed to be near each other, they could be considered standalone turbines.  
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This module of the tool was developed in a way to receive some inputs before designing 

the energy system. Based on the case study, these inputs could be set as default or defined by the 

user. In this research, the input parameters are described in Table 5.7 and 5.8.  

Table 5.7. Input costs parameters 

Component Value 

PV Cost (CAD/kW) [111] 1230 

PV O&M Cost (% of Capital Cost) [112] 1 

Wind Turbine Cost (CAD/kW) [111] 2046 

Wind Turbine O&M Cost (% of Capital Cost) [111] 2 

Lithium-Ion Battery Cost (CAD/kWh) 660 

Battery Replacement Cost (CAD/kWh) 660 

Battery Maintenance Cost (CAD/kWh-year) [112] 12.9 

Battery Charge/Discharge Operating Cost (CAD/kWh) [112]  0.00053 

Converter/Inverters Cost (CAD/kW) 100 

 

Table 5.7 shows the initial and operational costs of different components of the system, 

while Table 5.8 reports the battery’s input parameters. 

Table 5.8. battery’s input parameters 

Parameter Value 

Battery maximum charge/discharge ratio 35 

Minimum SOC of the batteries (%) 20 

Portion of generated electricity that could be sold to grid (%) 100 

Discharging efficiency (%) [113] 95 

Charging efficiency (%) [113] 95 
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The other important parameter that should be specified based on the case study is the 

maximum amount of LPSP. In this research, the maximum LPSP should be less than 0.1 percent 

(0.001). Furthermore, the loss penalty coefficient (discussed in the methodology section) is 

specified in a flexible manner based on the amount of electricity that is used in each time step. 

Table 5.9 shows the penalty coefficient based on the consumption value in each time step.  

Table 5.9. Flexible loss of power supply penalty coefficient 

Scenario 𝝋𝝋 - $/kW 

Power Consumption < 40,000 1 

40,000≤Power Consumption ≤50,000 2 

50,000≤Power Consumption ≤60,000 3 

60,000≤Power Consumption ≤70,000 4 

70,000≤Power Consumption ≤80,000 5 

80,000 < Power Consumption 6 

 

Using the input parameters, the optimization model results in the optimum configuration 

and size of each component, considering the economic and reliability aspects. These results are 

reported in Table 5.10.  

Table 5.10. Optimum configuration and economic report of local energy system 

Parameter Value 

NPC (CAD) 39,634,169 

LCOE (CAD/kWh) 0.12144 

Initial Capital Cost (CAD) 17,137,929 

PV Capacity (kW) 3877  
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Wind Turbine (kW) 1200 

Battery Capacity (kWh) 10763 

 

To evaluate the amount of generation of each components in different time steps, a scheduling 

graph is shown in Figure 5.4.  

 

 

Figure 5.4. The annual schedule of the optimum design for local power generation 

Based on this figure, the amount of unmet load (loss of power) is negligible during the 

year, which means the flex scenario for loss penalty coefficient along with considering a constraint 

for LPSP, could be functional. However, the amount of purchase from the grid (HQ in this 

research) is still considered excessive compared to renewable generation. To assess this issue 

further, the amount of renewable penetration along with some other information about the system, 

is given in Table 5.11. 

Table 5.11. Designed local energy system information 

Parameter Value 

Renewable Penetration (%) 62 

Unmet Load 12 days (15219 kWh) 
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Purchase from grid (kWh) 7,811,121 

Sell to Grid (kWh) 63,764  

 

Based on Table 5.11., the amount of renewable penetration for the design of local microgrid 

is 62 percent. Since the maximum available area is used for installing renewable components, this 

is the maximum renewable penetration that could be achieved. The amount of purchase from the 

grid is about 7.8 MWh, and since the summation of power consumption in the building is about 

20.8 MWh, then about 13 MWh could be covered by renewable generation, which could lead to 

an annual benefit for the University. Since about 95 percent of generated electricity in Quebec 

comes from renewable sources such as hydro or wind [114], no penalty is considered for 

purchasing from the grid. However, based on the selected case study, the user can specify the 

portion of nonrenewable electricity in the central grid and define a penalty for it accordingly.  

In Table 5.8, the battery’s parameters are specified. Although most of these parameters 

could be set based on the literature as default (or they could be regulated by the user), the maximum 

charge/discharge ratio is the one that needs to be studied more to find the optimum value. 

Therefore, a sensitivity analysis is carried out on this parameter by changing its value and 

analyzing the impact on the levelized cost of energy. The other important factor that needs to be 

evaluated is the impact of changing the maximum charge/discharge on the battery’s operating cost. 

The result of the sensitivity is shown in Figure 5.5. It is evident that by raising the charge/discharge 

rate, the cost of energy reduced; however, this reduction is not sensible after 0.3. On the other 

hand, the battery operation cost has an ascending and descending order with increasing the 

maximum charge\Discharge rate. Although the minimum battery operation cost happens when it 

intersects the LCOE graph, at some point, the operation cost reduction happens because of the 

decrease in storage capacity. Therefore, the optimum maximum charge\discharge rate could be 

between 0.3 and 0.4, that LCOE is not changing anymore, and battery operation is not at maximum 

level. In this research, the average of these two values is considered as the maximum 

charge\discharge rate. 
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Figure 5.5. The annual schedule of the optimum design 

To focus more on the battery operation, Figure 5.6. shows the battery state of charge and 

charging\discharging amount in each time step.  

 

Figure 5.6. Battery State of Charge and Charge\Discharge schedule for the optimum energy system 

There is an abnormality between day 200 and day 300, in which the battery is not working 

at all. This could be because of the lower grid price from August to October. Moreover, accurate 
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analyzing of storage operations requires smaller resolutions, such as hourly. The operation of the 

battery will be assessed in the “Microgrid Operation” section of this thesis.  

The monthly generation plot is displayed in a bar chart (Figure 5.7) to better compare the 

quantity of renewable generations, unmet load, surplus power and grid purchase.  

 

Figure 5.7. Monthly generation, unmet load, surplus power, and grid purchase bar chart 

Based on this figure, the grid purchase volume is higher in the second half of the year in a 

meaningful way because of a lower grid purchase price, especially in November. As expected, the 

amount of PV generation is higher in warmer months compared to wintertime, while wind 

generation behaves the opposite. The summation of surplus power and unmet load in each month 

is negligible.  

5.5. Heating System 
As discussed in the case study (Section 3), electricity is not the only source of energy at 

Concordia university. Natural Gas (NG) is the other energy source used for heating purposes. 
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Although electricity is also engaged in heat generation, the value of the heat that is generated by 

electric boilers in the building is not considerable. The working schedule of the EV building’s 

electric boilers is illustrated in Figure 5.8 for the year 2019.  

 

Figure 5.8. Electric boilers' electricity consumption during the year 2019 

Assuming the Coefficient of Performance (COP) is equal to 1 for electric boilers, the 

amount of electric consumption of the electric boiler is equal to the heat generation. Therefore, 

based on Figure 5.8, the generated heat by electric boilers is not only low but also excessively 

fluctuates during the year (on-off).  

On the other hand, the gas boiler in the building using natural gas is responsible for a high 

portion of the generated heat in the EV building. The only data that was available about the heat 

generation by the gas boiler is the supply and return temperature along with the flow rate of the 

water passing through it in 15 minutes resolution. The available data for the first day of 2019 is 

shown in Figure 5.9. 
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Figure 5.9. Available data for heat transfer calculations 

Hence, the final transferred heat, based on the heat transfer formula mentioned in the 

methodology section, is calculated. 

Based on the information provided by the facility management of the University, the 

electric boilers are oversized 50 percent more than the actual capacity. Therefore, most of the time, 

there is standby boiler that is not on duty for each electric boiler. Considering the COP equal to 1 

for electric boiler, the calculated heat matches the electric boilers’ electricity consumption. Figure 

5.10 displays the total electrical consumption of the EV building in hourly resolution, including 

the electric boiler consumption.  
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Figure 5.10. EV building’s electricity consumption for the scenario with a replacement of the gas boiler 
with the electric boilers 

It is evident from this figure that a considerable amount of electricity is required to replace 

the gas boilers for heat generation.  

After heat calculation, the gas consumption could also be evaluated, as explained in section 

2. In this study, the calorific value of Quebec’s natural gas is considered equal to 40  MJ/m3 [115], 

and the efficiency of the gas boiler is assumed to be 95 percent [116].  The gas consumption for 

the year 2019 is shown in Figure 5.11 with hourly resolution.  
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Figure 5.11. Calculated hourly natural gas consumption in the year 2019 

5.6. Regional Generation Design 

5.6.1. Electric Boiler 

As discussed in the previous subsection, an enormous amount of electricity is required to 

remove the gas boilers and replace them with electric boilers that are already installed in the 

building. Adding this value to the electrical load demand will cause significant stress on the 

conventional grid since it is not prepared for this demand. Meanwhile, the renewable energy 

system that is designed in the local generation design subsection could not be oversized since the 

maximum available area for both generators (PV and wind turbines) has been reached. Therefore, 

this research evaluates the possibility of renewable electricity generation and transmitting it to the 

microgrid. It should be noted that the regional generation only includes wind turbines since 

installing large-scale wind turbines inside urban areas is more challenging than PV panels.  

Based on the discussed methodology for regional generation in section 2, several 

assumptions need to be made. Since the case study in this research is located in Greater Montreal, 

the first assumption is specifying the land types inside greater Montreal and outside of it and then 

assigning the related Hellmann exponent to them. In section 3, the Hellmann exponents for each 

land type were reported in Table 5.4. The friction factors were assigned to each land based on the 

literature [117]. 
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It should be noted that the residential meaning in urban areas differs from the meaning of 

residential outside of the metropolitan regions. Therefore, the Hellmann exponent for residential 

land type inside Greater Montreal differs from outside of it. This could be justified based on the 

building’s dispersion inside and outside of urban areas.  

The other critical parameter is the cost of each land type and the number of wind turbines 

that could be installed in each zone. 

Table 5.12. Land cost and turbine density assumptions 

Land Type (Greater 

Montreal) 

Land Cost 

 ($/m2) 

Turbine Density 

(No.) 

Waterbody 1000 10 

Open Area 5 100 

Resource and Industrial 25 20 

Parks and Recreational 60 40 

Commercial 40 10 

Residential 80 60 

 

 The assumptions are reported in Table 5.12 only for the greater Montreal area since the 

outside of greater Montreal is not considered in this case study. However, the user can define any 

radius for the square mesh circle around the case study. Moreover, Waterbody land cost is 

considered extremely higher than other types (with lower expected turbine density) to exclude it 

from the model’s selection since the selected wind turbines are not designed for offshore 

applications.  

As discussed in section 2, the square mesh circle needs to be created by the user. In this 

thesis, Concordia’s EV building is in the center of the circle (Latitude 45,49, Longitude -73.57), 

while the circle radius and square side (which define the size of each zone) are 20 and 4 kilometers, 

respectively. Therefore, the created mesh includes 76 zones, as illustrated in Figure 5.12. 
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Figure 5.12. Created square mesh circle 

Now the created square mesh circle should be located (based on the center’s latitude and 

longitude) on top of the other maps (land types of greater Montreal, land types of outside greater 

Montreal, Grid power line, and transformer location map). The final created mapping model is 

displayed in Figure 5.13. 
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Figure 5.13. Final mapping model output  

Afterward, the data for all zones (76 zones) in the square mesh needs to be extracted, and 

then it could be used as input for wind power and optimization models, as discussed.  

The final result for the regional generation model is reported in Table 5.13. 

Table 5.13. Regional model optimum configuration and economic report 

Output Value 

NPC (CAD) 65,598,245 

LCOE (CAD/kWh) 0.09974 

Initial Capital Cost 57,711,640 

PV Capacity (kW) 3877  

Local Wind Turbine (kW) 1200 

Battery Capacity (kWh) 6000 

Regional Wind Turbines (kW) 23200 
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The result, which is shown in Table 5.13, indicates a sensible improvement in the economic 

factors such as the LCOE of the system compared to the local generation because of selling higher 

amount of electricity to the grid. However, the NPC of the system raised because of high initial 

capital cost which could be caused by purchasing 29 large-scale wind turbines and other related 

expenses. Since running the regional model provides vast amounts of electricity for the microgrid, 

therefore, while setting no limit on the battery capacity, it selects no storage in the optimum 

configuration. However, the designed system without storage could lead to low resiliency and 

reliability in case of grid failure, and moreover, the lack of storage system could create problems 

for the interaction with the grid as well because of the intermittent behavior of renewables. 

Therefore, in this research, about half of the battery storage system in the local generation design 

is set as the minimum bound of the battery storage capacity in the regional generation design.  

The regional generation also improved the other important design indicators such as 

renewable penetration. The list of these indicators is reported in Table 5.14. Based on this Table, 

although a considerable amount of load was added to the total electrical demand because of the 

heat generation, the renewable penetration is increased since clean energy is also generated outside 

of the microgrid.  

Table 5.14. Regional generation optimum design parameters 

Parameter Value 

Renewable Penetration (%) 81 

Unmet Load 0 days (0 kWh) 

Purchase from grid (kWh) 14,997,320 

Sell to Grid (kWh) 13,314,640  

 

The developed model could also automatically select the optimum zone for installing the 

wind farm. The designated zone is shown in Figure 5.14. This zone is the optimum zone in terms 

of wind speed, distance to the transformers, land cost, and the maximum number of wind turbines 

that could be installed.  
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Figure 5.14. Final mapping model output (Zoomed in)  

The final yearly schedule of the model is shown in Figure 5.15. Based on this figure, 

although the renewable penetration increased by about 20 percent, the grid dependency and 

purchasing electricity from the central grid is still high. Unlike local generation, the battery state 

of charge fluctuates throughout most of the days. Furthermore, the amount of unmet load is 

reduced to zero, which means the system never experienced a loss throughout the year. 
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Figure 5.15. The annual schedule of the optimum regional design using the electric boilers 

5.6.2. Heat Pump 

Although because of the oversized electric boilers in the EV building, the initial capital 

cost for purchasing them is assumed to be zero, comparing it with a heat pump (even when a heat 

pump needs to be purchased) could be a viable study. This is mainly because the higher COP of 

heat pumps compared with electric boilers makes it an economical solution.  

Therefore, in this step, a heat pump is added as a new component to the energy system 

instead of the electric boiler to generate heat using electricity. Since the average COP of an air 

source heat pump (used just for heat generation) is about 3, hence, after adding the calculated 

electricity demand of the heat pump to generate the same amount of heat that electric and gas 

boilers are producing, the final electrical consumption is shown in Figure 5.16.  
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Figure 5.16. EV building’s electricity consumption for the scenario with a replacement of the gas boiler 
with the heat pump 

Comparing Figure 5.10 with Figure 5.16 reveals a considerable difference in the electricity 

consumption of heat pumps and electric boilers. The annual consumption in all the scenarios is 

reported in Table 5.15 for better estimates.  

Table 5.15. Building’s annual consumption in different scenarios 

Scenario Annual Consumption (MWh) 

Local Generation (Without Heat) 20822 

Electric Boiler  65503 

Heat Pump  49597 

 

The heat pump specification is reported in Table 5.16. Heat pump capacity is sized based 

on the peak heat consumption. Therefore, the model limits the lower bound of the heat pump’s 

capacity by the value which is mentioned in Table 16.  

Table 5.16. Selected air source heat pump specification 

Parameter Value 

Capacity (kW) 5897 

Fixed Cost (CAD/kW) [118] 1125 
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O&M Cost (% of Capital Cost) 0.6 

 

 The result of the optimum design of the regional generation energy system using a heat 

pump is summarized in Table 5.17.  

Table 5.17. Regional model using heat pump optimum configuration and economic report 

Output Value 

NPC (CAD) 56,419,574 

LCOE (CAD/kWh) 0.08261 

Initial Capital Cost 49,492,415 

PV Capacity (kW) 3877  

Local Wind Turbine (kW) 1200 

Battery Capacity (kWh) 6000 

Regional Wind Turbines (kW) 20800 

Heat Pump Capacity (kW) 5897 

 

Looking at Table 5.17, it is evident that the economic parameter of the designed system 

improved by using heat pump compared to the scenario using an electric boiler. The results show 

that the LCOE of the electricity consumption decreased by about 1.7 cents per kilowatt hour. 

Moreover, although the heat pump needs to be purchased in the heat pump scenario, and this adds 

up to the system’s fixed cost, the initial capital cost is also reduced since fewer regional wind 

turbines are selected for this scenario.  

To further evaluate the comparison of using the electric boilers and heat pumps, the 

optimum design parameters are reported in Table 5.18. Based on these outputs, the renewable 

penetration is also improved by about 5 percent while the amount of unmet load is still zero.  
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Table 5.18. Regional generation optimum design parameters 

Parameter Value 

Renewable Penetration (%) 86 

Unmet Load 0 days (0 kWh) 

Purchase from grid (kWh) 8,972,505 

Sell to Grid (kWh) 14,932,170 

 

The yearly schedule is displayed in Figure 5.17. to evaluate the different generations and 

consumptions.  

 

Figure 5.17. The annual schedule of the optimum regional design using a heat pump 

While the amount of unmet load is zero during the year, there is considerable surplus power 

for regional wind generation. This could be solved by increasing the limit (maximum 0.2 MWh 

per day) which has been set for the grid node that the regional generation needs to be injected. 

Furthermore, the battery shows considerable fluctuations, especially in wintertime, which could 

add to the battery operation cost. This is because of the smaller capacity selected for the storage 

system compared with the local generation scenario.  
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5.7. Proposed Tariff 
Although in the previous subsection, using a heat pump improved the overall system’s 

economic and generation quality, renewable penetration is not still at its highest value since we 

can generate even more electricity outside of the microgrid area. Moreover, from the central grid 

perspective, a large prosumer like Concordia University could still add stress to the grid, especially 

in the wintertime. This could be because of the electricity rate that is being used in the building, 

and as mentioned earlier, it is based on the contract between the University and Hydro Quebec. 

This rate is slightly flexible and not dynamic. Therefore, in this thesis, the effect of changing the 

electricity rate on the designed system is evaluated based on the University and Hydro-Quebec 

perspectives.  

To create a flexible and dynamic pricing scenario, there are two aspects that need to be 

considered. The first is the amount of electricity used in each time step and the second is the usage 

time. Taking these two aspects into account could push the design model to purchase less from the 

grid in the high demand time. Therefore, to categorize each time step into its class, the if-else 

scenario loops should be created as reported in Table 5.19.  
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Table 5.19 shows the pricing strategy for a regional generation design using both heat 

pumps and electric boilers scenarios for purchasing and selling. The result of the explained strategy 

on EV building’s data is shown in Figure 5.18 for the regional generation design electric boiler 

scenario. 

 

Figure 5.18. The proposed dynamic pricing strategy for regional generation design using an electric boiler 

As shown in Figure 5.18, the purchasing price fluctuates in a daily manner based on the 

time of use (winter or summer) and the amount of electrical consumption each day. For instance, 

with this pricing strategy, a jump in daily consumption in winter causes a considerable rise in the 

purchasing price, while the same growth in summer will cause way less increment in price. Unlike 

purchasing price, the selling price only changes with the season (winter to summer), and it is 

assumed to be constant during the season.  

The same pricing strategy could be used for regional generation using a heat pump 

scenario, which is shown in Figure 5.19. 



85 
 

 

Figure 5.19. The proposed dynamic pricing strategy for regional generation design using a heat pump 

To evaluate the impact of the explained pricing strategy on the final design, the created 

pricing policy function is given to the regional generation models (for both the electric boiler and 

heat pump scenarios).  

Table 5.20. The final optimum configurations and economics using the proposed Tariff 

Output Heat Pump Scenario Electric Boiler Scenario 

NPC (CAD) 45,311,789 70,661,136 

LCOE (CAD/kWh) 0.05282 0.07999 

Initial Capital Cost 69,332,415 95,358,040 

PV Capacity (kW) 3877 3877 

Local Wind Turbine (kW) 1200 1200 

Battery Capacity (kWh) 6000 6000 

Regional Wind Turbines (kW) 33600 41600 
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Based on the results reported in Table 5.20, all the economic parameters show 

improvement in both scenarios compared to the results of using HQ tariff. This means that using 

dynamic pricing could be in favor of Concordia university in terms of economic aspects.  

Furthermore, the proposed pricing strategy could also be beneficial from HQ's perspective 

as well. By looking at Table 5.21, it is evident how the stress on the grid is removed by reducing 

the grid purchase in both scenarios when using the proposed Tariff. This reduction is more sensible 

in Winter when the central grid is experiencing higher load demand.  

Renewable penetration is also at the maximum level and considerably higher, 11 and 14 

percent rise for heat pump and electric boilers scenarios, respectively, compared to using HQ 

pricing strategy for both scenarios.  

Table 5.21. Regional generation optimum design parameters using proposed tariff 

Parameter Heat Pump Scenario Electric Boiler Scenario 

Renewable Penetration (%) 94       92 

Unmet Load 1 day (49579 kWh) 2 day (65503 kWh) 

Purchase from grid (kWh) 4,938,031 7,764,784 

Sell to Grid (kWh) 26,121,760 27,754,480 

 

Although changing from the local to regional scenario lowered the payback period, using 

the proposed tariff could also fairly bring down the amount of time that it takes to recover the 

initial investment. This could also make the proposed tariff interesting for the prosumer (Concordia 

University) and the investors.  

5.8. Environmental assessment  
One of the advantages of regional generation scenarios was the environmental benefit and 

decarbonization along with economic improvements. As discussed in section 4.4, EV building 

alone consumed 2,204,762 m3 of natural gas in one year (2019). Considering 1.92 kg CO2 

emissions equivalent per cubic meter of natural gas [119], it generates about 4233 tons of CO2 per 

year. Since the gross floor area of the EV building is 69204 m2, the CO2 emission per area of the 
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EV building is about 61 kg/m2 only for space heating which is higher than the CO2 emissions 

average values for large-scale buildings in different locations [120]. A complete report of the 

annual emissions of Concordia's EV building is shown in Table 5.22 [119]. The space heating 

emissions could be reduced to zero by using the regional generation scenarios and replacing the 

gas boiler with a heat pump or electric boiler. 

Table 5.22. EV building’s natural gas consumption by-products 

NG Consumption By-Product Value (kg) 

CO2 4,233,143 

NOX 5290 

CO 2962 

N2O 77 

CH4 81 

 

Based on the formulation mentioned in section 2 for penalty calculation, the total amount 

to which the user should be penalized is about 68,964 CAD per year. Moreover, the University 

not only can save by removing the emissions but the annual cost of the natural gas consumption 

could also be diminished. Final savings are summarized in Table 5.23. 

Table 5.23. Savings by ceasing natural gas consumption 

 Saving (CAD/Year) 

Removing NG Consumption 661,428 

Removing Emissions 68,964 

Total Save 730,392 
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5.9. Renewables and Power Consumption Uncertainties 
Before starting the operation module, the uncertainties caused by the fluctuations of the 

renewable resources and the user behavior that lead to unforeseen power demand must be reduced. 

In this thesis, several methods have been analyzed, as explained in the methodology section. The 

results of each method will be discussed in the following sections. Since the models are used for 

the short-term forecast (one or a maximum of two days), they have been used at different times of 

the year (winter and summer) to generalize their results.  

  To form the LSTM layers, the Keras library with TensorFlow backend is used. 

Furthermore, grid search optimization is applied to find the optimum hyperparameters (Table 

5.24). 

Table 5.24. Hyper Parameters of the LSTM model and Parameter selection results 

Parameter           Values/Types 
Hyper Parameter 

Optimization - Load 

Hyper Parameter 

Optimization - Wind 

Hyper Parameter 

Optimization - Solar 

Hidden layers (No.)     3    -                    -                  - 

Number of neurons (No.)   60 - -                  - 

Activation function Sigmoid   -                   -  - 

Optimizer types {Adam, RMSprop} Adam               Adam              Adam 

Batch size {1,32,64} 64 32 32 

No. of epochs {50,80,100,120,135,150} 150 120 100 

 

5.9.1. Power Consumption Forecasting 

To forecast two days ahead of electrical consumption of the EV building, the hourly 

historical data for 2019 and 2020 is used for training purposes. Afterward, two randomly selected 

days in each season, the 12th and 13th of July as representative of summer and the 12th and 13th of 

March as representative of Winter, are selected for test purposes.  

The hyperparameter optimization shows that the combination of the Adam optimizer and 

a batch size of 32 with 150 epochs results in fits with only minor loss in the training stage. Further 

increase in the number of epochs results in a slight reduction of error with the training data, as 
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shown in Figure 5.20; moreover, above 150 epochs, the overfitting tends to cause a reduction of 

accuracy of the model in forecasting the test data set.  

 

Figure 5.20. Model convergence plot for a single LSTM model 

As explained, the trained model was then tested on the 12th and 13th of July and March 

2020. The training and test dataset are of the same resolution. The results of all three employed 

models to forecast the next 48 hours are depicted in Figure 5.21 for both summer and winter and 

are compared with the observed values. 
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Figure 5.21. Power consumption forecasting results for 48 hours 

In Figure 5.21, despite the fact that the SARIMAX model better predicted the seasonality 

and the noise in the first 24 hours of data, it is not capable of forecasting the next 48 hours as it 

only repeats the same seasonality trend and noise every 24 hours. This problem could be resolved 

by employing an LSTM model. As it is shown, the predicted values will be in better accordance 

with the observed values by using LSTM. However, the small fluctuations, especially in peak 

hours, are not properly predicted. Using the proposed hybrid model, as it is demonstrated in Figure 

5.21, the peaks will be forecasted in a superior way in comparison with the outcomes from each 

individual model.   

The performance of each model is summarized in Table 5.25. The evaluation metrics 

calculated show less error and higher accuracy for the proposed hybrid model in both seasons.  For 

instance, in summer, he RMSE of the LSTM and SARIMAX models are 155.15 and 189.96, 

respectively, while the RMSE of the Hybrid model is slightly lower (152.59), showing a lower 

error for load forecasting. The accuracy improvement is even more considerable in winter, where 

the Hybrid model reduced the mean absolute percentage error by about 4 and 6 percent compared 

with single LSTM and SARIMAX models, respectively.   
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Table 5.25. Power consumption forecasting results 

Model RMSE MAE MAPE 
Summer – 12 & 13 July       

LSTM 155.15 127.17 6.27 
SARIMAX 189.96 151.55 16.74 

Hybrid LSTM-SARIMAX 152.49 128.34 6.21 
Winter – 12&13 March       

LSTM 314.12 259.57 13.78 
SARIMAX 295.28 238.39 15.21 

Hybrid LSTM-SARIMAX 285.75 232.51 9.62 
 

5.9.2. Wind Speed Forecasting 

LSTM, SARIMAX, and the proposed hybrid methods were developed in Python 

programming language. To generalize the results of the testing of the developed models for the 

whole year, three different test sets from summer (the last 2 days of July 2020), Fall (the last two 

days of October 2020), and Winter (the last two days of December 2020) were selected as the 

representative of different seasons. For summer, the model trained with the data from Jan 2020 

until 29 July 2020, while for Fall and Winter, the training set includes data from Jan 2020 until 29 

October 2020 and 29 December 2020, respectively. A few missing values were found in the 

training sets, and they all have been replaced by the average of the previous and next values. Also, 

the outlier detection procedure is implemented using boxplot visualization and calculating 

quartiles based on the formula explained in the methodology section. The results show no outlier 

in the training sets. 

To scale up the predictors and target variable into a unique scale, the MinMaxScaler 

method from preprocessing sub-package of the Sklearn library is used. All features are scaled into 

the range between 0 and 1 before feeding to the neural network model. 

To form the LSTM layers, the Keras library with TensorFlow backend is used. Furthermore, grid 

search optimization is applied to find the optimum hyperparameters (Table 5.24). The 

hyperparameter optimization shows that the combination of the Adam optimizer and a batch size 

of 32 with 150 epochs results in fits with only minor loss in the training stage.  

The Weibull model was developed by creating a function to generate the wind speed 

distribution. The Weibull distribution of the wind speed for the year 2020 is calculated in the 
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Python environment by creating a Weibull function using 𝑃𝑃, 𝑘𝑘, and 𝛤𝛤 parameters that have been 

explained in the methodology section. The result is shown in Figure 5.22. The histogram graph in 

Figure 5.22 displays the data distribution in the range of 0-20 m/s. Also, the Weibull probability 

feature is created using the Stats package of the Scipy library. 

 

 

Figure 5.22. Weibull distribution of the historical wind speed 

The parameter selection of the SARIMAX model is made by applying the Autoarima 

package from the Pmdarima library and a grid search through 42 different combinations of the 

(𝑒𝑒, 𝑃𝑃, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄, 𝐿𝐿) parameters. The last two months of wind speed historical data of the first half 

of the year 2020 is used for training the Autoarima for parameter selection. The results (Table 

5.26) show that the combination of (1,0,1)(2,1,0,24) yields the minimum AIC and is selected as 

the optimum set of parameters for the SARIMAX model. All the other combinations that are not 

mentioned in Table 37, led to AIC equal to infinity.  

Table 5.26. Report of the Grid Search for SARIMAX parameter selection 

Combination AIC Combination AIC 

(0,0,0)(0,1,0,24) 11271 (1,0,1)(2,1,0,24) 4044 
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(1,0,0)(1,1,0,24) 4955 (2,0,1)(2,1,0,24) 3959 

(1,0,0)(0,1,0,24) 5548 (3,0,1)(2,1,0,24) 3961 

(1,0,0)(2,1,0,24) 4709 (2,0,2)(2,1,0,24) 4221 

(0,0,0)(2,1,0,24) 10553 (1,0,0)(2,1,0,24) 4707 

(2,0,0)(2,1,0,24) 3998 (1,0,2)(2,1,0,24) 3972 

(2,0,0)(1,1,0,24) 4211 (3,0,0)(2,1,0,24) 3962 

(3,0,0)(2,1,0,24) 3964 (3,0,2)(2,1,0,24) 3963 

(3,0,0)(1,1,0,24) 4175 (4,0,1)(2,1,0,24) 3963 

(5,0,0)(2,1,0,24) 3965 (3,0,1)(1,1,0,24) 4176 

 

The results consist of details of the selected combination, including the AIC, BIC and HQIC are 

reported in Table 5.27.  

Table 5.27. Selected combination information 

Parameter/Metric Value/Type 

Optimum non-seasonal orders (2,0,1) 

Optimum seasonal orders (2,1,0,24) 

No. of observations 2160 

Log likelihood -4270.623 

AIC 3952.516 

BIC 4004.849 

HQIC 3976.106 

Covariance type Outer Product of Gradients (OPG) 
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Figure 5.23. 48 hours forecasting results in different seasons 
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Figure 5.23 shows the forecasting results of all three models and the hybrid models' results 

for the last two days of July, October, and December 2020. At a glance, the results using a single 

LSTM model do not show proper wind speed forecasting, especially in peak hours that are way 

over or under actual values. By applying the SARIMAX model, although the mean value of the 

forecasted wind speeds is nearer to the mean value of the actual wind speed compared with the 

single LSTM model, it has not captured the fluctuations, peaks, and trends decently. While using 

the NWP model resulted in a significant error, especially in winter, applying the proposed 

integrated model can considerably reduce this error. Furthermore, the seasonality and trend issues 

seem to be fixed for the whole prediction horizon in different seasons. However, the accuracy is 

not high in the two major peaks. A quick comparison between the result of the proposed hybrid 

model and the result of the other models reveals the hybrid model's ability to better integrate the 

fluctuations and trend. 

To evaluate and compare the models precisely, the RMSE, MAE, and MSLE of each 

model's results are calculated based on what was explained in the methodology section. The results 

are reported in Table 5.28. The LSTM model results show a 2.21-3.16 root mean squared error in 

different seasons that depict the LSTM model's inability to accurately predict using the three 

meteorological historical data (temperature and humidity) as the independent variables. Although 

with the SARIMAX model, the RMSE and MSLE are improved in the fall, the error is still high. 

As explained in the methodology section, the LSTM model with different layers in its cells can 

deal with unexpected behavior of data. Therefore, a proper feature should be added to the LSTM 

model for better training. Integrating the probability distribution of the wind speed with the LSTM 

model and using it as an input feature could be one of the alternatives to boost the LSTM ability. 

The results in Table 5.28 show that the proposed integrated LSTM-Weibull model can reduce the 

RMSE of the single LSTM model in forecasting winter, summer, and fall representative days by 

about 13, 39, and 31 percent, respectively. These error reductions show that adding a proper 

feature, such as the Weibull probability of the wind speed, can help LSTM accurately forecast the 

future. However, in case of any unexpected wind behavior that has not happened before (and it is 

normal in climatic situations), even the integrated model could lead to a considerable error. 

Therefore, to solve this challenge, hybridizing the results of the NWP model predictions with the 

proposed integrated model could be helpful in capturing the unexpected behavior of the wind that 

was not recorded in the historical data. The single NWP prediction results also show high RMSE 
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and MAE and even higher MSLE compared with other models, especially in Winter and Fall. 

However, by hybridizing the NWP model with the integrated model, the RMSE of the proposed 

model decreased 47%, 17%, and 32%, respectively, in summer, winter and fall compared with the 

single LSTM model.  

Table 5.28. Evaluation metrics of all the models for Wind Speed Forecasting 

Model RMSE MAE MSLE 
July (Summer)    

LSTM 2.21 1.86 0.395 
SARIMAX 2.64 2.24 0.234 

NWP 2.02 1.70 0.227 
Integrated LSTM-Weibull 1.35 1.12 0.071 

Hybrid LSTM-Weibull-NWP 1.18 0.95 0.066 
December (Winter)    

LSTM 2.14 1.63 0.106 
SARIMAX 2.81 2.3 0.155 

NWP 5.58 4.90 0.849 
Integrated LSTM-Weibull 1.87 1.55 0.110 

Hybrid LSTM-Weibull-NWP 1.78 1.50 0.078 
October (Fall)    

LSTM 3.16 2.58 0.272 
SARIMAX 2.25 2.73 0.294 

NWP 4.14 3.11 0.799 
Integrated LSTM-Weibull 2.18 1.60 0.100 

Hybrid LSTM-Weibull-NWP 2.16 1.67 0.139 
 

To consider the effect of the prediction horizon on the final accuracy, the prediction periods were 

extended to 168 hours (one week) for all seasons instead of 48 hours (two days). Since the lookback 

period is 48 hours, it means that after forecasting the first 48 hours into the future, the next hours 

will be predicted based on the prior predictions. Therefore, the accuracy of the model could be 

lower by increasing the prediction horizon. The result of the prediction horizon extension is shown 

in Figure 5.24 for the hybrid model. It is evident that the hybrid model acts less and less accurately 

with increasing the prediction period except for fall, which still can predict the third day (until 72 

hours) correctly, and that could be because of the fewer fluctuations on the third day.  
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Figure 5.24. One week (168 hours) forecasting results of the hybrid model in different seasons 
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5.9.3. Solar Irradiance Forecasting 

 The confusion matrix for predictors and target variables is shown by a heatmap in Figure 

5.25. The heatmap shows a strong correlation between downward shortwave solar irradiance 

(NWP-Forecast-SW) and the observed irradiance. Although, as Figure 5.25 shows, there is a poor 

correlation between the observed irradiance and the downward longwave irradiance (NWP-

Forecast-LW), the predictor is still considered as an input since it could positively impact the 

results. 

 

Figure 5.25. Correlation heatmap between independent and target variables 

The forecasting results for all models: single LSTM, NWP, and the proposed hybrid model 

are shown in Figures 5.26 to 5.27. Three different days in May are selected to test the model. The 

days are chosen based on the clearness index of the sky and the sky cloud coverage. Although 

there are about six different cloud coverage conditions based on the Oktas unit [121], in this study, 
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three scenarios are considered for sky condition: clear sky, scattered (partly cloudy), and overcast 

(cloudy). The days are selected in a way to challenge the prediction ability of different models, 

especially the single LSTM model that only uses historical data. On 7th May, with a clear sky 

situation, the forecasting result (Figure 5.26) shows an inaccurate forecast for all models; however, 

the proposed integrated model forecasting result has a better fit with the observed values compared 

with other single models. Moreover, since the NWP shortwave prediction is shifted to the right 

and misses the peak, it also caused a slight shift in the hybrid model and decreased its accuracy.  

 

 Figure 5.26. Forecasting results for a Clear Sky day (7th May) 

On the other hand, on 11th May, the sky is scattered, and the single LSTM model cannot 

capture the unexpected movement of the clouds from the historical data; it predicts a pattern based 

on the historical trend while it is far from the actual trend. However, during this time, the NWP 

prediction could contribute to the hybrid model providing more accurate forecasts. As shown in 

Figure 5.27, the hybrid model forecasted values have less error than single LSTM and NWP 

models.   
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 Figure 5.27. Forecasting results for a scattered day (11th May) 

The effectiveness of the proposed method is shown even more significantly in the case of 

the overcast sky on 4th May (in contrast to a clear sky on previous days). The day ahead forecast 

has shown that the proposed model can deal with the existence of clouds and adequately predict 

solar irradiance, especially in peak hours (Figure 5.28).  
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Figure 5.28. Forecasting results for an overcast day (4th May) 

Table 5.29. shows the day ahead solar irradiance forecasting results (hourly resolution) of 

different models for three discussed days. The evaluation metrics show a significant improvement 

in the results of the single LSTM model when it is hybridized with the NWP model in scattered 

and overcast scenarios (presents of the clouds in the sky). 

Table 5.29. Evaluation metrics for solar radiation forecasting in Cloudy day – Overcast (4-May) 

Model RMSE MAE 
4th May (Overcast)  

Single LSTM 197.19 124.43 
NWP-Shortwave 117 77 

Integrated Proposed Model 62.96 (±0.10) 40.60 
11th May (Scattered)  

Single LSTM 192.81 126.91 
NWP-Shortwave 101.48 67.76 

Integrated Proposed Model 72.01 53 
7th May (Clear-Sky)  

Single LSTM 272.64 185.82 
NWP-Shortwave 171.60 123.26 

Integrated Proposed Model 167.13 114.43 
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5.10. Optimum Operation 
In the design section, both local and regional generations have been studied. However, 

since one of the assumptions was transmitting the regional power generation to the nearest 

transformer of the central grid and then transmitting it to the microgrid, in case of any failure of 

the grid, the microgrid doesn’t have access to the regional generation as well. Therefore, the 

operation strategies in this research are all developed considering only the local energy system.  

Operation management is categorized into two classes as follows. First, assuming the 

microgrid has access to the grid, and second is the resilience-oriented optimal operation in the time 

of grid failure.  

5.10.1. Grid-Connected Optimal Operation   

Rate flex G [122] was selected as the Hydro Quebec Tariff for operation management 

purposes, and it is reported in Table 5.30. 

Table 5.30. Purchasing price based on rate G flex 

 Summer (April 1-Nov. 30) Winter (Dec. 1-March 31) 

Price of energy outside peak hours 10.29 Cent/kWh 12.815 Cent/kWh 

Price of energy during peak hours N/A 51.967 Cent/kWh 

 

Based on Hydro Quebec rules [123], the peak hours only are defined for winter, and it is 

between 6 to 9 AM in the morning and between 4 to 8 PM in the evening.  

As discussed in the methodology, the main goal of the grid-connected optimal operation is 

an optimum unit commitment to minimize the operation cost. To generalize the result for a whole 

year, two randomly selected days from the summer and winter seasons are chosen. The result is 

displayed in Figure 5.29, which shows the optimal schedule of the grid-connected mode. 
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Figure 5.29. Optimal operation schedule in the grid-connected mode 

As shown in Figure 5.29, in the optimum schedule, wind power is available through most 

of the hours of the day in winter, while in summer, due to the lack of wind speed at the beginning 

of the day, this amount is negligible. On the other hand, solar generation covers the day demand 

as expected in both seasons. Since the case study is an educational building, the demand is still 

high at midnight, and while wind power covers some parts of winter, in summer, grid purchase is 

the only method of supply. The surplus power in both seasons is about zero since one of the terms 

in objective functions is minimizing the curtailment.  

Since the flex tariff is used (Table 5.30) peak and off-peak hours electricity rates, an 

unintentional peak shaving is also employed in the economic dispatch of the grid connected system 

which led to the lower operating cost. 

The operation cost on the selected winter day is about 1676 CAD, while in summer, it is 

about 1693 CAD. The cost includes the trade-off between the grid and microgrid and the battery 

operation.  
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5.10.2. Resilience-Oriented Off-Grid Operation 

The load demand is randomly selected for two days in winter (15th and 16th February 2019) 

and two days in summer (14th and 15th July 2019) as representatives of the cold and warm seasons 

when load demand fluctuates more. The resolution of the load demand is hourly, and the time 

horizon is 48 h. 

The number/capacity of the components in the designed energy system is listed in Table 

5.31. 

Table 5.31. The microgrid components and battery information. 

Component No./Capacity 
Wind Turbine 25 kW (No.) 50 
PV Panel 220 W (No.) 13,662 
Battery (kWh) 9584 
Maximum SOC of the batteries (%) 95 
Minimum SOC of the batteries (%) 10 
Initial State of Charge (kWh) 8000 
Discharging Efficiency (%) [24] 90 
Charging Efficiency (%) [24] 95 
Maximum charge/discharge rate 0.3 
Replacement cost (USD/kWh) 156 
Total cycles in the lifetime of each unit [25] 300 
Curtailment Factor ($/kW) [26] 0.1 

  

Since the microgrid is designed to be grid-connected in urban areas, the renewable 

penetration is 53%. Therefore, the system requires a sufficient energy management system to 

control the operation during grid power failure resulting in the loss of power supply. 

The other important parameter that needs to be set and one that significantly impacts the 

final results is the loss coefficient (∅), with $/kW unit, which is a constant parameter (not changing 

through the time horizon). Selecting a proper coefficient needs a trial-and-error process to find an 

optimal coefficient in the case of both economic and reliability aspects. Therefore, in this research, 

all possible coefficients in the range of 0.01 to 1 (step = 0.01) are tested. Since the final results of 

the unmet load only change with certain coefficients (the other coefficients have the same rate and 

trend of the amount of unmet load (kWh) while having a higher operation cost), the threshold 

coefficients are selected and are shown in Figure 5.30. The results show that increasing the penalty 
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for having an unmet load could reduce the loss; however, this increment could cause a considerable 

rise in the operating cost. 

 

Figure 5.30. Trial and error results for finding the best coefficient 

Furthermore, increasing the loss after the maximum thresholds (0.08 and 0.17) will not 

further affect the loss. Therefore, in this study, the threshold coefficients 0.08 and 0.17 were 

considered the loss coefficients for winter and summer, respectively. These coefficients have a 

minimum loss and a minimum cost (compared to the larger coefficients). 

The optimization model was coded in Python programming language using the Pyomo 

platform [103]. Since there is no nonlinearity in the model’s equations, and with the presence of 

binary variables, the mixed-integer linear programming (MILP) method [124] is used to formulate 

the problem. The CPLEX solver [105] is selected to solve the developed MILP problem. 

The results of using the actual load demand to find the optimum schedule of the microgrid 

in the off-grid mode in summer and winter are illustrated in Figure 5.31. The model’s outcome 

shows that the amount of wind surplus power in the winter season is considerable in some hours. 

On the other hand, this amount is negligible on the selected days in summer since wind power 

generation is reduced in summer compared to winter.  
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Figure 5.31. Optimal Schedule using actual load demand 

The other noticeable trend is the amount of unmet load in summer, which is significant in 

most hours. The notable volume of the loss of power supply in summer drastically raises the 

operational cost (Table 5.32). Furthermore, based on the results in Table 5.32, the unmet load in 

winter is also considerable and needs to be diminished. 

Table 5.32. Comparison of the scheduling results for the actual, critical, and optimal loads 

Coverage Loss Occurrence 
(No.) 

Loss 
(kWh) 

Loss Reduction 
(%) LPSP Operating Cost 

($) 
Cost Reduction 

(%) 
14 and 15 of July (Summer) Loss Coefficient = 0.17  

Actual Load  34 44452.86 - 0.446 8921.71 - 
Critical Load 1 551.94 98 0.012 2565.01 71 
Optimal Load 2 551.63 98 0.010 1938.22 78 

15 and 16 of February (Winter) Loss Coefficient = 0.08  
Actual Load  4 4226.17 - 0.048 5687.43 - 
Critical Load 0 0 100 0 7856.48 −27 
Optimal Load 0 0 100 0 4725.89 17 

 

One of the alternatives to lessen the unmet load is using the calculated critical load to at 

least serve the power to vulnerable sections. Figures 5.32 and 5.33 illustrate the number of times 

that a loss of power could happen and its representing value in an hourly resolution in summer and 

winter, respectively, using actual, critical, and proposed optimal loads. According to these figures, 

using both critical load and optimal load can reduce the number of power loss occurrences and 

their values to zero in winter and to a minimum level in summer. Although using a critical load 

could decrease the loss of power supply probability to a minimum level, in the winter case, it 
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drastically increases the microgrid’s operating cost (Table 5.32). This growth in operational cost 

is also mildly observed in summer. The curtailed renewable power growth could explain the 

increase in operation cost in the winter during different hours. 

 

Figure 5.32. Loss occurrence and value in Summer 

 

Figure 5.33. Loss occurrence and value in winter 

Therefore, to tackle the challenge of having a surplus power penalty caused by using the 

critical load, the optimal load needs to be calculated by the MILP model to not only bring down 

the loss of power supply probability but also minimize the operating cost of the system. The 

optimal loads evaluated by the MILP model for both summer and winter are shown in Figure 5.34.  
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Figure 5.34. Optimal, actual, and critical loads for summer and winter 

It is evident from the results that, in winter, the optimal load fluctuates more between the 

critical and actual loads and tends toward the actual load. In summer, there is just one fluctuation, 

which leans toward the critical load. This could be justified by the amount of renewable generation 

on different days and the actual load demand. For example, on the second summer day, the actual 

load demand rises while the amount of renewable generation is insufficient (Figure 5.31). 

Therefore, the optimal load tends to be the critical load on this day since this could be the lower 

limit for the optimal load. The loss value using actual, optimal, and critical loads are depicted in 

Figures 5.32 and 5.33 for summer and winter, respectively. 

The optimum scheduling results of using the optimal load that the optimization model 

calculates are shown in Figure 5.35. Based on this figure and Table 5.32, the amount of unmet 

load in winter is zero and in summer is near zero, while the amount of added surplus power in both 

seasons is not very considerable compared to the actual load schedule. This will cause a meaningful 

reduction in the operating cost of the microgrid. Moreover, comparing the optimal load schedule 

(Figure 5.35) with the schedule corresponding to the actual load reveals that the amount of battery 

charge-discharge increases (not significantly) in the case of optimal load in both summer and 

winter, slightly raising the operational cost. 
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Figure 5.35. Optimal Schedule using optimal load demand 

Based on the results demonstrated in Table 5.32, employing the optimal load proposed by 

the optimization model in summer and winter could bring down the operating cost of the microgrid 

in the off-grid mode by about 78% and 17%, respectively (loss and cost reductions are reported in 

Table 5.32 compared to the actual load coverage). Moreover, it could lessen the LPSP to near zero 

(0.010) in summer and drop it to zero in winter. Although using optimal load has reduced the 

operating cost of the microgrid in winter to 4725.89$ from 5687.43$, this change is not significant 

compared to that in summer (reducing operating cost from 8921.71$ to 1938.22$). This is due to 

variations in renewable generation over those randomly selected days in summer and winter. Since 

the amount of wind power generation for the chosen day in summer is much less than that of the 

selected day in winter, the amount of unmet load in summer is considerably higher (44,452.86 

kWh) compared to winter (4226.17 kWh). 
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Chapter 6: Conclusion and Future Suggestions 

6.1. Summary 
This thesis investigates the possibility of designing an urban microgrid in an optimum way 

by developing a framework with three modules to address the related barriers and challenges. A 

regional generation strategy with a virtual power plant concept is proposed in the first module to 

resolve the low renewable penetration caused by space limitations. A mapping model is integrated 

with the design model to explore the optimum location of the regional generation plant by 

considering different aspects, such as the amount of available wind speed and the area which could 

be used for the installation of components. For robust operation scheduling, the load demand and 

renewable resources are required to be forecasted accurately. Therefore, the second module 

presents prediction strategies for removing the uncertainties of the optimal operation by 

hybridizing different models such as LSTM, NWP, and SARIMAX models. Moreover, the last 

module explores the resilience-oriented methods for enhancing the reliability of the designed 

system in case of grid power failure. An optimal load is calculated in this module by considering 

the critical load of the building to improve the resiliency and minimize the unmet load while 

decreasing the operation cost of the designed system by reducing the surplus power.  

Then the developed methodology was applied to a case study (Concordia University’s EV 

building) in Montreal. In the first module, since the EV building is located in the downtown area 

and with space limitations, the central grid dependency of the local generation design was 

relatively high (62% self-sufficiency), and the LCOE was also higher than the average grid 

purchasing price. The other important issue was the considerable value of gas consumption in the 

EV building for heating purposes using gas boilers. However, substituting natural gas with clean 

energy was not practicable since the maximum available area for installing renewable components 

has already been used. Therefore, a regional generation idea was proposed in this thesis to not only 

alleviate the grid dependency but also replace natural gas with renewable resources. In the regional 

generation scenario, a wind farm is designed outside of the microgrid, and the optimum location 

to install the wind farm was also selected using a developed mapping model. The MINLP 

optimization model selects the land based on several aspects, such as land cost, the number of 

turbines that could be installed in that zone, and the distance to the nearest transformer. 

Considering electric boilers already installed in Concordia for heat generation instead of gas 
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boilers, the regional generation system increased the renewable penetration from 62% in the local 

generation to 81%, reducing the grid dependency. However, the LCOE of the system (0.099 

CAD/kWh) was still higher than the current average grid price (0.064 CAD/kWh). The possibility 

of installing an air-source heat pump instead of an electric boiler was also investigated, which 

resulted in economic improvement and a rise in renewable penetration.  

Although the regional generation considerably impacted the environmental emissions by 

removing about 4.2 million kilograms of CO2 per year, the LCOE of the designed system are still 

high and the grid dependency is still not at its minimum level. Therefore, instead of using the 

central grid monthly prices, a dynamic pricing strategy was developed and used for regional 

generation design that caused a considerable reduction in LCOE (for example, in the heat pump 

scenario, the LCOE reduced to 0.053 CAD/kWh from 0.082 CAD/kWh). Moreover, the renewable 

penetration increased significantly to 94 and 92 percent using the heat pump and electric boilers 

scenarios, respectively.  

The second module studied the possibility of reducing the forecasting method’s error. Since 

renewable resources and electrical load demand are following unexpected behaviors, even short-

term forecasting is not straightforward. Therefore, in this thesis, hybridized models were proposed 

to solve this problem. For instance, for renewable resources, since they have fluctuating behavior 

(for example due to cloud movement for solar irradiance), the result of a physical model (Numeric 

Weather Prediction) was hybridized with a deep learning model to increase the accuracy of the 

forecasts.  

For wind speed forecasting, due to high fluctuations of wind speed and difficulties in 

finding a genuine daily trend and seasonality in the historical data, this thesis aims to propose a 

hybrid wind speed forecasting model utilizing deep learning, probability distributions, and numeric 

weather prediction methods capable of reducing the forecasting error as much as possible. The 

results showed that although the LSTM model has several layers for remembering and forgetting 

past values, practically, it is incapable of accurate prediction, especially when there is a sudden 

peak/unexpected change. The first proposed model that was created by integrating the Weibull 

distribution probabilities with the single LSTM model reduced the error significantly (The average 

RMSE for three different prediction horizons during the year decreased by about 28%). To 

consider unexpected behavior of wind that was not reflected in the historical data, the results of 
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the numerical weather prediction model were also hybridized with the LSTM-Weibull integrated 

model. The results indicated that the final hybridized model reduces the average RMSE of the 

single LSTM model prediction by about 32% and can be effective in a more accurate prediction 

of fluctuations that happen in the central peaks. 

Furthermore, for solar irradiance forecasting, three different forecasting scenarios (Clear-

sky, scattered, and overcast) were considered. The results show that the proposed hybrid model 

could significantly improve the forecasting accuracy in the presence of clouds in the sky (in 

scattered and overcast days). On clear sky days, the inaccuracy is high in all models; however, the 

proposed model can still make stronger predictions compared with the other two single models. 

Finally, in the third module, which used the first and second modules’ output, the optimum 

operation of the microgrid with considering the resiliency aspects of it was studied. The aim was 

to propose an approach for reducing the risk of power failure in urban microgrids by improving 

resilience while minimizing operating costs. In particular, employing a two-step process is 

proposed to reduce the cost while improving reliability. Step 1 considers a penalty for loss and 

calculates the optimum penalty factor, and Step 2 finds an optimal load demand that can be covered 

by the microgrid during the off-grid mode. The results indicate that with the proposed method, the 

LPSP of the system could be significantly reduced to near zero, and the amount of loss could 

drastically diminish (17% and 78% in winter and summer, respectively). Furthermore, using 

optimal load, the amount of curtailed renewable power was controlled and remained at the 

minimum level. The proposed method also minimized the system’s operating cost compared to 

other scenarios. 

The developed tool in this thesis could be used by both prosumers with different scales 

who are experiencing challenges in urban areas, and central grid decision-makers to better design 

their systems. Furthermore, the output of this thesis could be used by Hydro Quebec to amend its 

electricity tariff for large consumers that tend to be prosumers in the near future. This tool is 

designed from the perspective of both parties (microgrid and central grid) to improve their 

performance. The proposed framework in this thesis is scalable and it could be used for smaller 

scales (only local generation) and larger scale (with considering regional generation).  
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6.2. Research Contributions 
The research questions raised in the problem statement section could be answered and 

justified with the research contributions and approaches of this thesis which can be categorized 

based on each module as below: 

• Design Module: 

Although in the discussed literature, researchers tried to design an urban microgrid with 

minimized cost or maximum reliability, some challenges, such as increasing the renewable 

penetration while having a limited amount of space, especially in metropolitan areas, or increasing 

the reliability of the designed systems in the higher demand hours using 100% clean energy are 

still not investigated. Therefore, this study focuses on developing a mathematical model for 

optimal sizing of an urban microgrid, considering the integration of regional renewable power 

generation (renewable power generation in a selected area outside of the microgrid) using the 

virtual power plant concept along with local generation (renewable power generation inside the 

microgrid).  

The main contribution of this section of the thesis could be summarized as 1) a feasibility 

study and sensitivity analysis on generating electricity outside of the urban area and transmitting 

it to the nearest grid power line, 2) finding the optimum configuration and size of the urban energy 

system for both local and regional generation, 3) proposing a mapping model to find the optimum 

place for installing the regional generation plant based on land type, wind turbine density, power 

transmission distance and cost of the land, 4) proposing dynamic pricing for electricity rate to 

improve the economic aspects and renewable penetration, 5) feasibility study on using heat pumps 

and electric boilers as the substitute for gas boiler. 

• Prediction Module: 

Wind Speed Prediction: 

The mentioned literature shows that AI-based methods, statistical methods, and hybrid 

models have been considerably used for day-ahead wind speed forecasting. However, due to the 

unexpected behavior of the wind and its direct relation with physical indicators, the proposed 

models could not be practically used where higher accuracy is required, such as operational control 

of a microgrid. Moreover, the methods such as the NWP have also been employed to predict wind 
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speed. However, still, it only considers current physical conditions, and it cannot learn from past 

wind speed values and unexpected changes.  

This thesis aims for the advancement of knowledge for more accurate wind speed 

forecasting that can be used in the operation planning of an urban microgrid. The novelty of the 

proposed approach is in developing a hybrid model consisting of Weibull distribution, LSTM, and 

NWP models to reduce the error involved with wind speed prediction using a single LSTM model 

by considering the distribution probability of the historical wind speed data and also the physical 

description of the area. The main contributions of this section, with respect to the prior literature, 

are as follows: 

 A hybrid model is proposed to circumvent the inaccuracy of the single statistical 

approaches. In the proposed model, the LSTM method is used, which has several 

superiorities over the conventional feed-forward neural network.  

 Creating a Weibull distribution of the wind speed, predicting the wind speed based on a 

stochastic approach, and combining the probability distribution of the wind speed with the 

LSTM model creates an integrated model with less error compared to a single LSTM and 

SARIMA model with exogenous variables.  

 Proposing a hybrid model that includes the NWP model's result and AI models with 

minimum error for short-term forecasting applications (Just for clarity, every time we refer 

to short-term in this thesis, it means 24-72 hours forecasting). 

Solar Irradiance Prediction: 

Although several studies have been carried out for solar irradiance forecasting, there is still 

a need to development of methods that can more accurately capture solar irradiance behavior. This 

thesis aims at providing a methodology for precise solar irradiance forecasting in a short-term (day 

ahead) horizon that could contribute to better smart grid and microgrid energy management. The 

novelty of the proposed approach rests in the integration of deep learning and the NWP model for 

better forecasting results. In this sense, the main objectives and originality of this section could be 

summarized as follows: 

 Development and application of an LSTM model as a time-series learning method for 

dealing with long-term dependencies 
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 Comparison of deep learning forecasting results with NWP solar irradiance forecasting 

results as single models for 3 days with the different climatic situations. 

 Proposing a hybrid model integrating the results of LSTM and NWP models to better deal 

with unexpected trends in solar irradiance that could not be captured using historical data. 

Electrical Load Prediction: 

 The main contribution of this section compared to the literature is proposing a novel hybrid 

model for electrical load forecasting to boost the accuracy and lessen the error. 

6.3. Directions for Future Research 
A few suggestions which could help the enhancement of the developed framework in this 

thesis could be summarized as follow: 

1) A crucial piece of information which is the capacity of each node (transformer) for injecting 

electricity into power grid lines, should be added to the developed tool. This data was not 

added to the regional generation model because of the lack of data; however, the tool is 

developed in a way to add this variable. Adding this data to the model's input layer could 

make the model's results more trustable and practical.  

2) Moreover, a feasibility study could be carried out on adding other components, such as fuel 

cells (using hydrogen generation on-site and off-site) and biomass gasifier as a regional 

generation method.  

3) Although in this thesis, the impact of generating wind energy outside of the urban areas is 

studied, PV model regional generation could also be implemented in future studies. 

4) Assessing the feasibility of considering fuzzy instead of binary logic in the mapping model 

and land selection. With using fuzzy approach, the feasibility of selecting more than one 

location for installing the regional plant could be evaluated.  

5) Since the grid power line map is also available, the feasibility of injecting electricity to the 

nearest grid power line instead of the nearest transformer could be studied.  

6) A bilevel programming model could be developed to connect the design and operation 

model to each other. By considering this connection, design would not be a onetime 

decision anymore and it could be updated over time based on the feedback of the operation 

model.  



116 
 

7) To make the location decision (mapping) model more practical, adding other features such 

as the perspective of the people living in the different zones could be studied. This needs a 

social study on individual’s opinion regarding renewable technologies living in different 

neighborhoods.  
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Appendices 
Related written python codes and samples from the used datasets are provided in this section. 

Appendix Ⅰ: Python Codes 
PV Model 

import numpy as np 

import pandas as pd 

import pvlib 

import matplotlib.pyplot as plt 

import pytz 

coordinates = [(45.49, -73.57, 233, 'Etc/GMT+5')] 

modules_lib = pvlib.pvsystem.retrieve_sam('SandiaMod') 

module = modules_lib['Canadian_Solar_CS5P_220M___2009_'] 

inverters_lib = pvlib.pvsystem.retrieve_sam('cecinverter') 

inverter = inverters_lib['ABB__MICRO_0_25_I_OUTD_US_208__208V_'] 

temperature_model_parameters= 

pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass'

] 

naive_times = pd.date_range(start='2019', end='2020', freq='1h') 

temp_air = 5 #input('input the air temperature: ') 

wind_speed = 5 #input('input wind speed: ') 

system = {'module': module, 'inverter': inverter, 

             'surface_azimuth': 180} 

#pvlib.clearsky.lookup_linke_turbidity('Etc/GMT+5', 45, -73, filepath=None, 

interp_turbidity=True) 
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for latitude, longitude, altitude, timezone in coordinates: 

    times = naive_times.tz_localize(timezone) 

    system['surface_tilt'] = 45 

    solpos = pvlib.solarposition.get_solarposition(times, latitude, longitude) 

    dni_extra = pvlib.irradiance.get_extra_radiation(times) 

    airmass = pvlib.atmosphere.get_relative_airmass(solpos['apparent_zenith']) 

    pressure = pvlib.atmosphere.alt2pres(altitude) 

    am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure) 

    tl = pvlib.clearsky.lookup_linke_turbidity(times, latitude, longitude) 

    cs = pvlib.clearsky.ineichen(solpos['apparent_zenith'], am_abs, tl,  

                                       dni_extra=dni_extra, altitude=altitude) 

total_irrad = pvlib.irradiance.get_total_irradiance(system['surface_tilt'], 

                                                           system['surface_azimuth'], 

                                                          solpos['apparent_zenith'], 

                                                          solpos['azimuth'], 

                                                         cs['dni'], cs['ghi'], cs['dhi'], 

                                                        dni_extra=dni_extra, 

                                                        model='haydavies') 

    #Angle of Incidence 

    aoi = pvlib.irradiance.aoi(system['surface_tilt'], system['surface_azimuth'], 

                                   solpos['apparent_zenith'], solpos['azimuth']) 
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    tcell = pvlib.temperature.sapm_cell(total_irrad['poa_global'], 

                                           temp_air, wind_speed, 

                                         **temperature_model_parameters) 

 effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance( 

                 total_irrad['poa_direct'], total_irrad['poa_diffuse'], 

                 am_abs, aoi, module) 

 # sapm (Sandia Array Performance Model) 

 #DC Power Output (i_sc Short Circut Module Current/ i_mp, v_mp, p_mp are module current, 

voltage and power at maximum power point 

 DC_Power = pvlib.pvsystem.sapm(effective_irradiance, tcell, module) 

#AC Power output using Sandia's grid connected model 

AC_Power = pvlib.inverter.sandia(DC_Power['v_mp'], DC_Power['p_mp'], inverter) 

AC_Power = pd.DataFrame(AC_Power) 

AC_Power = AC_Power.rename(columns={0:'PV'}) 

AC_Power[AC_Power < 0] = 0 

AC_Power = AC_Power.iloc[:8760,:] 

AC_Power.to_csv('PV.csv') 

DC_Power = DC_Power.iloc[:,:5] 

plt.plot(DC_Power['i_sc'],label = 'short circuit module current') 

plt.plot(DC_Power['v_oc'],label = 'open circut module voltage') 

plt.plot(DC_Power['v_mp'],label = 'voltage at maximum power point') 

plt.plot(DC_Power['i_mp'],label = 'current at maximum power point') 

plt.plot(DC_Power['p_mp'],label = 'power at maximum power point') 
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plt.xlabel('Date') 

plt.ylabel('Power(W),Voltage(V),Current(A)') 

plt.legend(ncol=3,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=9) 

plt.show() 

Single Wind Turbine Model 

import os 

import pandas as pd 

import requests 

from windpowerlib import ModelChain, WindTurbine, create_power_curve 

from windpowerlib import data as wt 

weather = pd.read_csv( 

        'weather_montreal.csv', 

        index_col=0, 

        header=[0, 1], 

        date_parser=lambda idx: pd.to_datetime(idx, utc=True)) 

df = wt.get_turbine_types(print_out=False) 

En_Wind = { 

        'turbine_type': 'E-53/800', 

        'hub_height': 60 

    } 

e126 = WindTurbine(**En_Wind) 
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modelchain_data = { 

    'wind_speed_model': 'hellman',          # 'logarithmic' (default), 

                                            # 'hellman' or 

                                            # 'interpolation_extrapolation' 

    'density_model': 'ideal_gas',           # 'barometric' (default), 'ideal_gas' 

                                            #  or 'interpolation_extrapolation' 

    'temperature_model': 'linear_gradient', # 'linear_gradient' (def.) or 

                                            # 'interpolation_extrapolation' 

    'power_output_model': 

        'power_coefficient_curve',          # 'power_curve' (default) or 

                                            # 'power_coefficient_curve' 

    'density_correction': True,             # False (default) or True 

    'obstacle_height': 0,                   # default: 0 

    'hellman_exp': 0.25}                     # None (default) or None 

 

mc_e126 = ModelChain(e126, **modelchain_data).run_model(weather) 

e126power_output = mc_e126.power_output 

Wind Farm Model 

from windpowerlib import TurbineClusterModelChain, WindTurbineCluster, WindFarm 

import matplotlib.pyplot as plt 

wind_turbine_fleet = pd.DataFrame( 

        {'wind_turbine': [e126, None],   

         'number_of_turbines': [20, None]}) 
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         #'total_capacity': [None, 12.6e6]}) 

farm_data = { 

    'name': 'farm_Data_2', 

    'wind_turbine_fleet': [e126.to_group(1)],#,e126.to_group(total_capacity=12.6e6)], 

    'efficiency': 0.9} 

farm_Data_2 = WindFarm(**farm_data) 

modelchain_data = { 

        'wake_losses_model': 'wind_farm_efficiency',  # 

                                           # 'dena_mean' (default), None, 

                                           # 'wind_farm_efficiency' or name 

                                           #  of another wind efficiency curve 

                #  see :py:func:`~.wake_losses.get_wind_efficiency_curve` 

        'smoothing': True,  # False (default) or True 

        'block_width': 0.5,  # default: 0.5 

        'standard_deviation_method': 'Staffell_Pfenninger',  # 

                                            # 'turbulence_intensity' (default) 

                                            # or 'Staffell_Pfenninger' 

        'smoothing_order': 'wind_farm_power_curves',  # 

                                        # 'wind_farm_power_curves' (default) or 

                                        # 'turbine_power_curves' 

        'wind_speed_model': 'hellman',  # 'logarithmic' (default), 

                                            # 'hellman' or 

                                            # 'interpolation_extrapolation' 



130 
 

        'density_model': 'ideal_gas',  # 'barometric' (default), 'ideal_gas' or 

                                       # 'interpolation_extrapolation' 

        'temperature_model': 'linear_gradient',  # 'linear_gradient' (def.) or 

                                                 # 'interpolation_extrapolation' 

        'power_output_model': 'power_curve',  # 'power_curve' (default) or 

                                              # 'power_coefficient_curve' 

        'density_correction': True,  # False (default) or True 

        'obstacle_height': 0,  # default: 0 

        'hellman_exp': 0.1}  # None (default) or None 

Power_Farm=TurbineClusterModelChain(farm_Data_2, 

**modelchain_data).run_model(weather) 

power_output = (Power_Farm.power_output)/1000 

plt.plot(power_output, color = 'indigo') 

plt.xlabel('Date') 

plt.ylabel('Power (kW)') 

plt.show() 

Solar Irradiance Forecasting Model (Hybrid) 

import pandas as pd 

import numpy as np 

df = pd.read_csv('New_Data.csv') 

df.dropna(inplace=True) 

import seaborn as sn 

chart = sn.heatmap( 
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square=True, 

cbar_kws={'fraction' : 0.01}, 

cmap='OrRd', 

linewidth=1, 

data = df.corr(), 

vmin = -1, 

vmax = 1, 

annot = True) 

 chart.set_xticklabels(chart.get_xticklabels(), rotation=0, horizontalalignment='center') 

chart.set_yticklabels(chart.get_xticklabels(), rotation=90, verticalalignment='center') 

training_set = df.iloc[:3432,1:4].values 

test_set = df.iloc[3432:,1:4].values 

from sklearn.preprocessing import MinMaxScaler 

sc = MinMaxScaler(feature_range=(0,1)) 

training_set_scaled = sc.fit_transform(training_set) 

test_set_scaled = sc.fit_transform(test_set) 

test_set_scaled = test_set_scaled[:,1:3] 

X_train = [] 

y_train = [] 

for i in range(24, 3432): 

    X_train.append(training_set_scaled[i-24:i, 0:3]) 

    y_train.append(training_set_scaled[i, 0]) 
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X_train, y_train = np.array(X_train),np.array(y_train) 

X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 3)) 

from keras import Sequential 

from keras.layers import LSTM 

from keras.layers import Dense 

from keras.layers import Dropout 

regressor = Sequential() 

regressor.add(LSTM(units = 60, return_sequences = True, input_shape=(X_train.shape[1], 3))) 

regressor.add(Dropout(0.2)) 

regressor.add(LSTM(units = 60, return_sequences = True)) 

regressor.add(Dropout(0.2)) 

regressor.add(LSTM(units = 60, return_sequences = True)) 

regressor.add(Dropout(0.2)) 

regressor.add(LSTM(units = 60)) 

regressor.add(Dropout(0.2)) 

regressor.add(Dense(units = 1)) 

regressor.compile(optimizer='adam', loss = 'mean_squared_error') 

regressor.fit(X_train, y_train, epochs=100, batch_size= 32) 

regressor.save('Multi_24_32_100_24May') 

from keras.models import load_model 

regressor=load_model('Multi_24_32_100_24May') 

import matplotlib.pyplot as plt 

plt.plot(range(len(regressor.history.history['loss'])),regressor.history.history['loss']) 
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plt.xlabel('Epoch Number') 

plt.ylabel('Loss') 

plt.show() 

prediction_test = [] 

First_batch = training_set_scaled[-24:] 

current_batch= First_batch.reshape((1,24,3)) 

for i in range (24): 

    current_pred = regressor.predict(current_batch)[0] 

    prediction_test.append(current_pred) 

    New_var = test_set_scaled[i,:] 

    New_var = New_var.reshape(1,2) 

    New_test = np.insert(New_var,2,[current_pred],axis=1) 

    New_test = New_test.reshape(1,1,3) 

    current_batch = np.append(current_batch[:,1:,:],New_test,axis=1) 

prediction_test = np.array(prediction_test) 

SI = MinMaxScaler(feature_range=(0,1)) 

y_Scale = training_set[:,0:1] 

SI.fit_transform(y_Scale) 

predictions_H = SI.inverse_transform(prediction_test) 

real_values = test_set[:24,0:1] 

import matplotlib.pyplot as plt 

plt.plot(real_values, color = 'red',label = 'Actual Solar Irradiance') 

plt.plot(predictions_H, color = 'blue',label = 'Predicted Solar Irradiance') 
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#plt.title('RNN - Radiation Forecasting') 

plt.xlabel('Time(hr)') 

plt.ylabel('Solar Irradiance (W/m2)') 

plt.legend() 

plt.show() 

import math 

from sklearn.metrics import mean_squared_error 

rmse = math.sqrt(mean_squared_error(real_values, predictions_H)) 

from sklearn.metrics import mean_absolute_error 

mean_absolute_error(real_values, predictions_H) 

from sklearn.metrics import r2_score 

Rsqure = r2_score(real_values, predictions_H) 

import tensorflow as tf 

m = tf.keras.metrics.MeanSquaredLogarithmicError() 

m.update_state(real_values, predictions_H) 

m.result().numpy() 

ShortW = df.iloc[:,2:3].values 

LongW = df.iloc[:,3:4].values 

plt.plot(ShortW, color = 'navy',label = 'Downward Shortwave Irradiance') 

plt.plot(LongW, color = 'red',label = 'Downward Longwave Irradiance') 

plt.xlabel('Time(hr)') 

plt.ylabel('Solar Irradiance (W/m2)') 

plt.legend() 
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plt.show() 

# Prediction results 

import matplotlib.pyplot as plt 

plt.plot(real_values, color = 'red',label = 'Actual Solar Irradiance',marker = "s") 

plt.plot(predictions_H, color = 'darkblue',label = 'Proposed Hybrid Model',marker = "^") 

plt.plot(NWP_SW, color = 'turquoise',label = 'NWP-Shortwave',marker = "p") 

plt.plot(predictions_S, color = 'chocolate',label = 'Single LSTM',marker = "o") 

plt.xlabel('Time(hr)') 

plt.ylabel('Solar Irradiance (W/m2)') 

plt.legend() 

plt.show() 

test = df.iloc[:,1:2] 

plt.plot(test) 

Wind Speed Forecasting Model (Hybrid) 

import pandas as pd 

import numpy as np 

df = pd.read_csv('Wind_NWP.csv') 

df.dropna(inplace=True) 

#import seaborn as sn 

#sn.heatmap(df.corr()) 

training_set = df.iloc[:5064,1:].values 

test_set = df.iloc[5064:5232,1:].values 
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from sklearn.preprocessing import MinMaxScaler 

sc = MinMaxScaler(feature_range=(0,1)) 

training_set_scaled = sc.fit_transform(training_set) 

test_set_scaled = sc.fit_transform(test_set) 

test_set_scaled = test_set_scaled[:,0:4] 

X_train = [] 

y_train = [] 

for i in range(24,5064): 

    X_train.append(training_set_scaled[i-24:i, 0:5]) 

    y_train.append(training_set_scaled[i, 4]) 

X_train, y_train = np.array(X_train),np.array(y_train) 

X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 5)) 

from keras.models import Sequential 

from keras.layers import LSTM 

from keras.layers import Dense 

from keras.layers import Dropout 

regressor = Sequential() 

regressor.add(LSTM(units = 60, return_sequences = True, input_shape=(X_train.shape[1], 5))) 

regressor.add(Dropout(0.2)) 

regressor.add(LSTM(units = 60, return_sequences = True)) 

regressor.add(Dropout(0.2)) 

regressor.add(LSTM(units = 60, return_sequences = True)) 

regressor.add(Dropout(0.2)) 
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regressor.add(LSTM(units = 60)) 

regressor.add(Dropout(0.2)) 

regressor.add(Dense(units = 1)) 

regressor.compile(optimizer='adam', loss = 'mean_squared_error') 

regressor.fit(X_train, y_train, epochs=150, batch_size= 32) 

regressor.save('Hybrid_Dec') 

from keras.models import load_model 

regressor=load_model('Hybrid_July') 

import matplotlib.pyplot as plt 

plt.plot(range(len(regressor.history.history['loss'])),regressor.history.history['loss']) 

plt.xlabel('Epoch Number') 

plt.ylabel('Loss') 

plt.show() 

prediction_test = [] 

First_batch = training_set_scaled[-24:] 

current_batch= First_batch.reshape((1,24,5)) 

for i in range (168): 

    current_pred = regressor.predict(current_batch)[0] 

    prediction_test.append(current_pred) 

    New_var = test_set_scaled[i,:] 

    New_var = New_var.reshape(1,4) 

    New_test = np.insert(New_var,4,[current_pred],axis=1) 
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    New_test = New_test.reshape(1,1,5) 

    current_batch = np.append(current_batch[:,1:,:],New_test,axis=1) 

prediction_test = np.array(prediction_test) 

SI = MinMaxScaler(feature_range=(0,1) 

y_Scale = training_set[:,4:5] 

SI.fit_transform(y_Scale) 

predictions = SI.inverse_transform(prediction_test) 

real_values = test_set[:168,4] 

import matplotlib.pyplot as plt 

plt.plot(real_values, color = 'navy',label = 'Actual Wind Speed') 

plt.plot(predictions, color = 'slategrey',label = 'Hybrid Model Prediction',marker = 'o') 

#plt.title('RNN - Wind Speed Forecasting') 

plt.xlabel('Time(hr)') 

plt.ylabel('Wind speed (m/s)') 

plt.legend(ncol=2,bbox_to_anchor=(0.5,0.95),loc='center',fontsize=10) 

plt.grid(which='minor', linewidth=0.6, alpha=0.1) 

plt.show() 

import math 

from sklearn.metrics import mean_squared_error 

rmse = math.sqrt(mean_squared_error(real_values, predictions)) 

from sklearn.metrics import mean_absolute_error 

mean_absolute_error(real_values, predictions) 
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from sklearn.metrics import r2_score 

Rsqure = r2_score(real_values, predictions) 

def mean_absolute_percentage_error(y_true, y_pred):  

    y_true, y_pred = np.array(y_true), np.array(y_pred) 

    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 

MAPE = mean_absolute_percentage_error(real_values, predictions) 

import tensorflow as tf 

mae = tf.keras.losses.MeanAbsoluteError() 

mae(real_values, predictions).numpy() 

m = tf.keras.metrics.MeanSquaredLogarithmicError() 

m.update_state(real_values, predictions) 

m.result().numpy() 

Prediction_Hybrid = pd.DataFrame(predictions) 

Prediction_Hybrid.to_csv('Hybrid_Summer_168.csv') 

Load Forecasting Model (SARIMAX) 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

df1 = pd.read_csv('Data-Temp.csv') 

df2 = pd.read_csv('Data_EV.csv').iloc[:,5:6] 

df = pd.concat([df1,df2],axis=1)  

df.dropna(inplace=True) 
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Date = pd.date_range('jan 01 2018', periods = 17520, freq = 'H') 

df.set_index(Date,drop=True,inplace=True) 

df = df.iloc[:,1:] 

df.index.freq = 'H' 

df.dropna(inplace=True) 

train = df.iloc[11640:12384,1:] 

test = df.iloc[12384:13416,1:] 

exo = df.iloc[:,0:1] 

exo_train = exo.iloc[11640:12384] 

exo_test = exo.iloc[12384:13416] 

from pmdarima import auto_arima 

auto_arima(df['Load'], exogenous = exo, m = 24, trace=True, surpress_warnings=True, 

D=1).summary() 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

Model = SARIMAX(train,exog = exo_train, order=(2,0,0),seasonal_order=(2, 1, 0, 24))  

Model = Model.fit() 

start = len(train) 

end = len(train) + len(test) - 1 

prediction = Model.predict(start,end,exog = exo_test) 

real_values = np.array(test) 

prediction = np.array(prediction) 

plt.plot(real_values, color = 'red',label = 'Actual Load Demand') 

plt.plot(prediction, color = 'blue',label = 'Predicted Load Demand') 
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plt.xlabel('Time(hr)') 

plt.ylabel('Load Demand (kW)') 

plt.legend() 

plt.show() 

import math 

from sklearn.metrics import mean_squared_error 

rmse = math.sqrt(mean_squared_error(real_values, prediction)) 

from sklearn.metrics import r2_score 

Rsqure = r2_score(real_values, prediction) 

def mean_absolute_percentage_error(y_true, y_pred):  

    y_true, y_pred = np.array(y_true), np.array(y_pred)  

    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 

MAPE = mean_absolute_percentage_error(real_values, prediction) 

from sklearn.metrics import mean_absolute_error 

mean_absolute_error(real_values, prediction) 

import tensorflow as tf 

mae = tf.keras.losses.MeanAbsoluteError() 

mae(real_values, prediction).numpy() 

m = tf.keras.metrics.MeanSquaredLogarithmicError() 

m.update_state(real_values, prediction) 

m.result().numpy() 
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Load Forecasting Model (Hybrid LSTM-SARIMAX) 

import pandas as pd 

import numpy as np 

df = pd.read_csv('Data_Summer.csv') 

df.dropna(inplace=True) 

training_set = df.iloc[:984,1:].values 

test_set = df.iloc[984:,1:].values 

from sklearn.preprocessing import MinMaxScaler 

sc = MinMaxScaler(feature_range=(0,1)) 

training_set_scaled = sc.fit_transform(training_set) 

test_set_scaled = sc.fit_transform(test_set) 

test_set_scaled = test_set_scaled[:,0:2] 

X_train = [] 

y_train = [] 

for i in range(48, 984): 

    X_train.append(training_set_scaled[i-48:i, 0:3]) 

    y_train.append(training_set_scaled[i, 2]) 

X_train, y_train = np.array(X_train),np.array(y_train) 

X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 3)) 

from keras.models import Sequential 

from keras.layers import LSTM 

from keras.layers import Dense 

from keras.layers import Dropout 
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Initializing RNN 

regressor = Sequential() 

Adding the first LSTM layer and some Dropout regularization 

regressor.add(LSTM(units = 60, return_sequences = True, input_shape=(X_train.shape[1], 3))) 

regressor.add(Dropout(0.2)) 

Adding the Second LSTM layer and some Dropout regularization 

regressor.add(LSTM(units = 60, return_sequences = True)) 

regressor.add(Dropout(0.2)) 

Adding the Third LSTM layer and some Dropout regularization 

regressor.add(LSTM(units = 60, return_sequences = True)) 

regressor.add(Dropout(0.2)) 

Adding the Forth LSTM layer and some Dropout regularization 

regressor.add(LSTM(units = 60)) 

regressor.add(Dropout(0.2)) 

Adding output layer 

regressor.add(Dense(units = 1)) 

Compiling the RNN 

regressor.compile(optimizer='adam', loss = 'mean_squared_error') 

Fitting RNN to the Training Set  

regressor.fit(X_train, y_train, epochs=150, batch_size= 64) 

regressor.save('all_features_100_64-168') 

from keras.models import load_model 

regressor=load_model('all_features_100_64-168') 
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prediction_test = [] 

First_batch = training_set_scaled[-48:] 

current_batch= First_batch.reshape((1,48,3)) 

for i in range (48): 

    current_pred = regressor.predict(current_batch)[0] 

    prediction_test.append(current_pred) 

    New_var = test_set_scaled[i,:] 

    New_var = New_var.reshape(1,2) 

    New_test = np.insert(New_var,2,[current_pred],axis=1) 

    New_test = New_test.reshape(1,1,3) 

    current_batch = np.append(current_batch[:,1:,:],New_test,axis=1) 

prediction_test = np.array(prediction_test) 

SI = MinMaxScaler(feature_range=(0,1)) 

y_Scale = test_set[:,2:3] 

SI.fit_transform(y_Scale) 

predictions = SI.inverse_transform(prediction_test) 

real_values = test_set[:48,2:3] 

import matplotlib.pyplot as plt 

plt.plot(real_values, color = 'red',label = 'Actual Load Demand') 

plt.plot(predictions, color = 'blue',label = 'Predicted Load Demand') 

plt.xlabel('Time(hr)') 

plt.ylabel('Load Demand (kW)') 

plt.legend() 
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plt.show() 

import math 

from sklearn.metrics import mean_squared_error 

rmse = math.sqrt(mean_squared_error(real_values, predictions)) 

from sklearn.metrics import r2_score 

Rsqure = r2_score(real_values, predictions) 

def mean_absolute_percentage_error(y_true, y_pred):  

    y_true, y_pred = np.array(y_true), np.array(y_pred) 

    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 

MAPE = mean_absolute_percentage_error(real_values, predictions) 

from sklearn.metrics import mean_absolute_error 

mean_absolute_error(real_values, predictions) 

import tensorflow as tf 

mae = tf.keras.losses.MeanAbsoluteError() 

mae(real_values, predictions).numpy() 

m = tf.keras.metrics.MeanSquaredLogarithmicError() 

m.update_state(real_values, predictions) 

m.result().numpy() 

Local Optimum Design Model 

import pyomo.environ as pyo 

from pyomo.environ import * 

from pyomo.opt import SolverFactory 

import pandas as pd 
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import math 

import numpy as np   

import matplotlib.pyplot as plt 

data = pd.read_excel("Input_Daily_Sum.xlsx") 

Grid_P = [] 

for i in range(len(data['Load'])): 

   if (data['time'][i]<=31): 

       Grid_P.append(0.07005544*0.74) 

   if (31<data['time'][i]<=59): 

       Grid_P.append(0.06775921*0.74) 

   if (59<data['time'][i]<=90): 

       Grid_P.append(0.06770977*0.74) 

   if (90<data['time'][i]<=120): 

       Grid_P.append(0.06393077*0.74) 

   if (120<data['time'][i]<=151): 

       Grid_P.append(0.06694972*0.74) 

   if (151<data['time'][i]<=181): 

       Grid_P.append(0.06953881*0.74) 

   if (181<data['time'][i]<=212): 

       Grid_P.append(0.063731026*0.74) 

   if (212<data['time'][i]<=243): 

       Grid_P.append(0.062395918*0.74) 

   if (243<data['time'][i]<=273): 
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       Grid_P.append(0.05969309*0.74) 

   if (273<data['time'][i]<=304): 

       Grid_P.append(0.059369803*0.74) 

   if (304<data['time'][i]<=334): 

       Grid_P.append(0.061508168*0.74) 

   if (334<data['time'][i]<=365): 

       Grid_P.append(0.065685064*0.74) 

Grid_P = pd.DataFrame(Grid_P) 

Grid_P.columns = ['Grid_Price'] 

data = pd.concat([data,Grid_P],axis=1) 

Grid_S = [] 

for i in range(len(data['Load'])): 

   if data['time'][i]<=90: 

       Grid_S.append(0.2*0.74) 

   if 90<data['time'][i]<335: 

       Grid_S.append(0.1*0.74) 

   if data['time'][i]>=335: 

       Grid_S.append(0.2*0.74) 

Grid_S = pd.DataFrame(Grid_S) 

Grid_S.columns = ['Grid_Sell'] 

data = pd.concat([data,Grid_S],axis=1) 

data.loc[data['Load']<40000, 'Loss_Coeff'] = 1 

data.loc[(data['Load']>=40000) & (data['Load']<50000), 'Loss_Coeff'] = 2 
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data.loc[(data['Load']>=50000) & (data['Load']<60000), 'Loss_Coeff'] = 3 

data.loc[(data['Load']>=60000) & (data['Load']<70000), 'Loss_Coeff'] = 4 

data.loc[(data['Load']>=70000) & (data['Load']<80000), 'Loss_Coeff'] = 5 

data.loc[data['Load']>80000, 'Loss_Coeff'] = 6 

model = pyo.ConcreteModel() 

model.t = pyo.RangeSet(1,365) 

model.Load = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load))) 

Load = model.Load  

model.Wind = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind))) 

Wind = model.Wind  

model.PV = pyo.Param(model.t, initialize=dict(zip(data.time, data.PV))) 

PV = model.PV 

model.CGp = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Price))) 

CGp = model.CGp 

model.CGs = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Sell))) 

CGs = model.CGs 

model.Coeff = pyo.Param(model.t, initialize=dict(zip(data.time, data.Loss_Coeff))) 

Coeff = model.Coeff 

model.eta_c = pyo.Param(initialize=0.95)  

model.eta_d = pyo.Param(initialize=0.95)  

model.maxcd = pyo.Param(initialize=0.35)   

model.PE = pyo.Param(initialize=1) 

model.cpv = pyo.Param(initialize=205)     
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model.cOMpv = pyo.Param(initialize=0.001)    

model.cc = pyo.Param(initialize=75 

model.Gp_up = pyo.Param(initialize=200000)   

model.cwt = pyo.Param(initialize=38750)   

model.cOM = pyo.Param(initialize=0.001)    

model.CRF = pyo.Param(initialize=0.064)   

model.CRFB = pyo.Param(initialize=1.7743)  

#model.cR = pyo.Param(initialize=75)     

model.ci = pyo.Param(initialize=75)     

model.cb = pyo.Param(initialize=500)      

model.Ob = pyo.Param(initialize=0.0004)  

model.Mb = pyo.Param(initialize=9.8)      

model.RPC = pyo.Param(initialize=500)     

model.Teta = pyo.Param(initialize=1)      

model.eps = pyo.Param(initialize=0)      

model.socmin = pyo.Param(initialize=0.2)   

Ob = model.Ob 

Mb = model.Mb 

RPC = model.RPC 

#CGs = model.CGs 

#CGp = model.CGp 

#cR = model.cR 

ci = model.ci 
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cb = model.cb 

CRF = model.CRF 

cc = model.cc 

cOM = model.cOM 

cwt = model.cwt 

cpv = model.cpv 

socmin = model.socmin 

eta_c = model.eta_c 

maxcd = model.maxcd 

eta_d = model.eta_d 

Gp_up = model.Gp_up 

PE = model.PE 

Teta = model.Teta 

eps = model.eps 

#Coeff = model.Coeff 

cOMpv = model.cOMpv 

CRFB = model.CRFB 

model.Npv = pyo.Var(within=pyo.Integers, bounds=(0, 17623)) 

Npv = model.Npv 

model.Nwt = pyo.Var(within=pyo.Integers, bounds=(0, 48)) 

Nwt = model.Nwt 

model.Nb = pyo.Var(bounds=(0, None)) 

Nb = model.Nb 
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model.Eb = pyo.Var(model.t, bounds=(0, None)) 

Eb = model.Eb 

model.Pc = pyo.Var(model.t, bounds=(0, None)) 

Pc = model.Pc 

model.Pd = pyo.Var(model.t, bounds=(0, None)) 

Pd = model.Pd 

model.Ewind = pyo.Var(model.t, bounds=(0, None)) 

Ewind = model.Ewind 

model.Eswind = pyo.Var(model.t, bounds=(0, None)) 

Eswind = model.Eswind 

model.Epv = pyo.Var(model.t, bounds=(0, None)) 

Epv = model.Epv 

model.Espv = pyo.Var(model.t, bounds=(0, None)) 

Espv = model.Espv 

model.Gp = pyo.Var(model.t, bounds=(0, 50000)) 

Gp = model.Gp 

model.Gs = pyo.Var(model.t, bounds=(0, 200000)) 

Gs = model.Gs 

model.gamma = pyo.Var(model.t, within=pyo.Binary) 

gamma = model.gamma 

model.teta = pyo.Var(model.t, within=pyo.Binary) 

teta = model.teta 
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model.lam = pyo.Var(model.t, within=pyo.Binary) 

lam = model.lam 

model.eta = pyo.Var(model.t, within=pyo.Binary) 

eta = model.eta 

model.Loss = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, 5000)) 

Loss = model.Loss 

def storage1(model, t): 

    if t==1: 

        return Eb[t] == Nb 

    else: 

        return Eb[t] == Eb[t - 1] + Pc[t] * eta_c - Pd[t] / eta_d 

model.Const_1 = pyo.Constraint(model.t, rule=storage1) 

def storage2(model, t): 

    return Eb[t] >= Nb * socmin 

model.Const_2 = pyo.Constraint(model.t, rule=storage2) 

def storage3(model, t): 

    return Eb[t] <= Nb 

model.Const_3 = pyo.Constraint(model.t, rule=storage3) 

def storage4(model, t): 

    return Pc[t] * eta_c + Pd[t] / eta_d <= maxcd * Nb 

model.Const_4 = pyo.Constraint(model.t, rule=storage4) 
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def storage5(model, t): 

    return Pc[t] <= Nb * gamma[t] 

model.Const_5 = pyo.Constraint(model.t, rule=storage5) 

def storage6(model, t): 

    return Pd[t] <= Nb * teta[t] 

model.Const_6 = pyo.Constraint(model.t, rule=storage6) 

def storage7(model, t): 

    return gamma[t] + teta[t] == 1 

model.Const_7 = pyo.Constraint(model.t, rule=storage7) 

def grid1(model, t): 

    return Gs[t] <= (Eswind[t] + Espv[t]) * PE * eta[t] 

model.Const_8 = pyo.Constraint(model.t, rule=grid1) 

def grid2(model, t): 

    return Gp[t] <= Gp_up * lam[t] 

model.Const_9 = pyo.Constraint(model.t, rule=grid2) 

def grid3(model, t): 

    return eta[t] + lam[t] == 1 

model.Const_10 = pyo.Constraint(model.t, rule=grid3) 

def Wind_surplus(model, t): 

    return Nwt * Wind[t] == (Ewind[t] + Eswind[t]) 

model.Const_11 = pyo.Constraint(model.t, rule=Wind_surplus) 
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def PV_surplus(model, t): 

    return Npv * PV[t] == Epv[t] + Espv[t] 

model.Const_12 = pyo.Constraint(model.t, rule=PV_surplus) 

def Balance(model, t): 

    return Ewind[t] + Epv[t] + Pd[t] + Gp[t] + Loss[t] >= Load[t] + Pc[t] + Gs[t] 

model.Const_13 = pyo.Constraint(model.t, rule=Balance) 

def Loss_Constraint(model,t): 

    return sum(Loss[t] for t in model.t) <= 0.001*sum(Load[t] for t in model.t) 

model.Const_14 = pyo.Constraint(model.t, rule=Loss_Constraint) 

def objective_rule(model): 

    return (Npv * (cpv + cc)*(1 + cOMpv / CRF)) + (Nwt * cwt * (1 + cOM / CRF)) + Nb * (cb + 

ci) + Ob * ( 

        sum((Pd[t] + Pc[t]) / CRF for t in model.t)) + (Mb * maxcd * Nb)*20.7743 + (RPC * Nb) * 

CRFB + sum( 

            (CGp[t] * Gp[t]) / CRF for t in model.t) - sum((CGs[t] * Gs[t]) / CRF for t in model.t)+sum( 

                Loss[t]*Coeff[t] for t in model.t)+sum(Gp[t]*eps*Teta for t in model.t)             

model.objective = pyo.Objective(rule=objective_rule, sense=pyo.minimize) 

model.write('Opt_New.lp')  

opt = SolverFactory('scipampl') 

results = opt.solve(model, tee=True) 

#opt.options['limits/time'] = 100 

#opt = SolverFactory('gams') 
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#results = opt.solve(model, solver= 'dicopt', tee=True, keepfiles=True, add_options=['option 

reslim=20;']) 

#results = opt.solve(model, solver= 'dicopt', tee=True,add_options=['option nlp=ipopt;']) 

#model.display() 

# **Evaluation of Results** 

Data_Load = pd.read_excel('Load.xlsx') 

print(results) 

print('objec Fu = ' , pyo.value(model.objective)*1.32, 'CAD') 

print('Cost of energy (COE) = ', 

(pyo.value(model.objective)*CRF/Data_Load['Load'].sum())*1.32, 'CAD/kWh') 

print('Total Capital Cost = ' , (pyo.value(model.Npv)*(cpv + 

cc)+pyo.value(model.Nwt)*cwt+pyo.value(model.Nb)*(cb + ci))*1.32, 'CAD') 

print('number of PV = ' , pyo.value(model.Npv)) 

print('PV Capacity = ' , (pyo.value(model.Npv))/4.5455) 

print('number of Wt = ' , pyo.value(model.Nwt)) 

print('Battery Storage Capacity = ' , pyo.value(model.Nb), 'kWh') 

Gs_values = pd.DataFrame(list(Gs[:].value),columns=['Gs']) 

Gp_values = pd.DataFrame(list(Gp[:].value),columns=['Gp']) 

Pd_values = pd.DataFrame(list(Pd[:].value),columns=['Pd']) 

Pc_values = pd.DataFrame(list(Pc[:].value),columns=['Pc']) 

Eb_values = pd.DataFrame(list(Eb[:].value),columns=['Eb']) 

EWind_values = pd.DataFrame(list(Ewind[:].value),columns=['EWind']) 

EPV_values = pd.DataFrame(list(Epv[:].value),columns=['EPV']) 
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ESWind_values = pd.DataFrame(list(Eswind[:].value),columns=['ESWind']) 

ESPV_values = pd.DataFrame(list(Espv[:].value),columns=['ESPV']) 

Unmet_Load = pd.DataFrame(list(Loss[:].value),columns=['Loss']) 

Indexed_Result = 

pd.concat([Gs_values,Gp_values,Pd_values,Pc_values,Eb_values,EWind_values,EPV_values, 

                            ESWind_values,ESPV_values,Unmet_Load],axis=1) 

Indexed_Result.to_csv('Results_Local_New.csv') 

plt.plot(Unmet_Load) 

print('Unmet Load = ',Unmet_Load.sum()) 

print('Number of days we have unmet load = ', 365-(Unmet_Load==0).sum()) 

Cycles_C =  365 - (Pc_values==0).sum() 

Cycles_D =  365 - (Pd_values==0).sum() 

Charging = Pc_values.sum() 

Discharging = Pd_values.sum() 

print('Charge Cycles = ',Cycles_C) 

print('discharge Cycles = ',Cycles_D) 

Unmet_sum = Unmet_Load.sum() 

SOC = (Eb_values/12094)*100 

# Battery Analysis 

MaxCH = [0.02,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5] 

COE = [1.056,0.55,0.3,0.22,0.18,0.15,0.14,0.12,0.12,0.11,0.1] 

Cycles = [95,111,114,121,118,116,122,99,103,126] 

Battery = [131547,84659,42329,28219,21164,16931,14109,12094,10582,9406,8465] 
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Ch_Dis = 

[330780,356686,392332,404214,401678,404585,398483,390494,384498,366652,299703] 

B_Operation = [2067,2229,2452,2526,2510,2528,2490,2440,2403,2291,1873] 

x = MaxCH 

y2=0 

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx() 

ax1.plot(x,COE, color = 'blue',label = 'LCOE') 

ax2.plot(x,B_Operation, color = 'darkorange',label = 'Battery Operation Cost') 

ax1.set_xlabel('Max Charge-Discharge Rate',fontsize=13) 

ax1.set_ylabel('LCOE $/kWh',fontsize=13) 

ax2.set_ylabel('Battery Operation Cost $',fontsize=13) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.tick_params(axis='both', which='major', labelsize=12) 

ax1.legend(ncol=1,bbox_to_anchor=(0.5,1.12),loc='center',fontsize=12) 

ax2.legend(ncol=1,bbox_to_anchor=(0.5,1.06),loc='center',fontsize=12) 

plt.show() 

x = range(365) 

y2=0 

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx() 

ax1.fill_between(x, EPV_values.iloc[:,0].values,y2,facecolor='firebrick',label = 'PV Used 

Power',alpha=0.7) 
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ax1.fill_between(x, Gp_values.iloc[:,0],y2,facecolor='darkorange',label = 'Purchase from 

Grid',alpha=0.7) 

ax1.fill_between(x, EWind_values.iloc[:,0],y2,facecolor='indigo',label = 'Wind Used 

Power',alpha=0.7) 

ax1.fill_between(x, Pc_values.iloc[:,0],y2,facecolor='limegreen',label = 'Battery 

Charge',alpha=0.7) 

ax1.fill_between(x, Pd_values.iloc[:,0],y2,facecolor='slategrey',label = 'Battery 

Discharge',alpha=0.7) 

ax1.fill_between(x, ESWind_values.iloc[:,0],y2,facecolor='pink',label = 'Wind 

Surplus',alpha=0.7) 

ax1.fill_between(x, ESPV_values.iloc[:,0],y2,facecolor='green',label = 'PV Surplus',alpha=0.7) 

ax1.fill_between(x, Unmet_Load.iloc[:,0],y2,facecolor='red',label = 'Unmet Load',alpha=0.7) 

ax1.fill_between(x, Gs_values.iloc[:,0],y2,facecolor='yellow',label = 'Sell to Grid',alpha=0.7) 

ax1.plot(x, data.iloc[:,2], 'black',label = 'Demand',linestyle = 'dashed') 

ax2.plot(x, SOC.iloc[:,0], 'black',label = 'SOC') 

ax2.set_ylim([0, 110]) 

ax1.set_xlabel('Days',fontsize=13) 

ax1.set_ylabel('Power (kWh)',fontsize=13) 

ax2.set_ylabel('State of Charge of the Battery %',fontsize=13) 

ax2.tick_params(axis='both', which='major', labelsize=12) 

ax1.tick_params(axis='both', which='major', labelsize=12) 

ax2.legend(loc='upper right',fontsize=12) 

ax1.legend(ncol=5,bbox_to_anchor=(0.5,1.08),loc='center',fontsize=12) 

plt.show() 
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#Grid Trade-off 

plt.plot(Gp_values, color = 'blue',label = 'Purchase from Grid') 

plt.plot(Gs_values, color = 'darkorange',label = 'Sell to Grid') 

plt.xlabel('Time(day)',fontsize=13) 

plt.ylabel('Energy (kWh)',fontsize=13) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.legend(ncol=2,bbox_to_anchor=(0.5,1.06),loc='center',fontsize=12) 

plt.show() 

#Battery Ch-Disch 

SOC = (Eb_values/12094)*100 

Pc_Perc = (Pc_values/(12094))*100 

Pd_Perc = (Pd_values/(12094))*100 

 

plt.plot(Pc_Perc, color = 'firebrick',label = 'Battery Charging') 

plt.plot(Pd_Perc, color = 'navy',label = 'Battery Discharging') 

plt.plot(SOC, color = 'green',label = 'SOC') 

plt.xlabel('Days',fontsize=13) 

plt.ylabel('%',fontsize=13) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.legend(ncol=3,bbox_to_anchor=(0.5,1.08),loc='center',fontsize=12) 

plt.show() 
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#Monthly Graph 

bar_width = 0.15 

Month_b = np.arange(12) 

plt.bar(1,EPV_values.iloc[:30,0].sum(), bar_width, color = 'firebrick', label = 'PV') 

plt.bar(2,EPV_values.iloc[31:60,0].sum(), bar_width, color = 'firebrick') 

plt.bar(3,EPV_values.iloc[61:90,0].sum(), bar_width, color = 'firebrick') 

plt.bar(4,EPV_values.iloc[91:121,0].sum(), bar_width, color = 'firebrick') 

plt.bar(5,EPV_values.iloc[121:151,0].sum(), bar_width, color = 'firebrick') 

plt.bar(6,EPV_values.iloc[151:181,0].sum(), bar_width, color = 'firebrick') 

plt.bar(7,EPV_values.iloc[181:211,0].sum(), bar_width, color = 'firebrick') 

plt.bar(8,EPV_values.iloc[211:241,0].sum(), bar_width, color = 'firebrick') 

plt.bar(9,EPV_values.iloc[241:271,0].sum(), bar_width, color = 'firebrick') 

plt.bar(10,EPV_values.iloc[271:301,0].sum(), bar_width, color = 'firebrick') 

plt.bar(11,EPV_values.iloc[301:331,0].sum(), bar_width, color = 'firebrick') 

plt.bar(12,EPV_values.iloc[332:365,0].sum(), bar_width, color = 'firebrick') 

plt.bar(1+bar_width,EWind_values.iloc[:30,0].sum(), bar_width, color = 'navy', label = 'Wind') 

plt.bar(2+bar_width,EWind_values.iloc[31:60,0].sum(), bar_width, color = 'navy') 

plt.bar(3+bar_width,EWind_values.iloc[61:90,0].sum(), bar_width, color = 'navy') 

plt.bar(4+bar_width,EWind_values.iloc[91:121,0].sum(), bar_width, color = 'navy') 

plt.bar(5+bar_width,EWind_values.iloc[121:151,0].sum(), bar_width, color = 'navy') 

plt.bar(6+bar_width,EWind_values.iloc[151:181,0].sum(), bar_width, color = 'navy') 

plt.bar(7+bar_width,EWind_values.iloc[181:211,0].sum(), bar_width, color = 'navy') 

plt.bar(8+bar_width,EWind_values.iloc[211:241,0].sum(), bar_width, color = 'navy') 
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plt.bar(9+bar_width,EWind_values.iloc[241:271,0].sum(), bar_width, color = 'navy',) 

plt.bar(10+bar_width,EWind_values.iloc[271:301,0].sum(), bar_width, color = 'navy') 

plt.bar(11+bar_width,EWind_values.iloc[301:331,0].sum(), bar_width, color = 'navy') 

plt.bar(12+bar_width,EWind_values.iloc[332:365,0].sum(), bar_width, color = 'navy') 

plt.bar(1-bar_width,Gp_values.iloc[:30,0].sum(), bar_width, color = 'gold', label = 'Purchase from 

Grid') 

plt.bar(2-bar_width,Gp_values.iloc[31:60,0].sum(), bar_width, color = 'gold') 

plt.bar(3-bar_width,Gp_values.iloc[61:90,0].sum(), bar_width, color = 'gold') 

plt.bar(4-bar_width,Gp_values.iloc[91:121,0].sum(), bar_width, color = 'gold') 

plt.bar(5-bar_width,Gp_values.iloc[121:151,0].sum(), bar_width, color = 'gold') 

plt.bar(6-bar_width,Gp_values.iloc[151:181,0].sum(), bar_width, color = 'gold') 

plt.bar(7-bar_width,Gp_values.iloc[181:211,0].sum(), bar_width, color = 'gold') 

plt.bar(8-bar_width,Gp_values.iloc[211:241,0].sum(), bar_width, color = 'gold') 

plt.bar(9-bar_width,Gp_values.iloc[241:271,0].sum(), bar_width, color = 'gold',) 

plt.bar(10-bar_width,Gp_values.iloc[271:301,0].sum(), bar_width, color = 'gold') 

plt.bar(11-bar_width,Gp_values.iloc[301:331,0].sum(), bar_width, color = 'gold') 

plt.bar(12-bar_width,Gp_values.iloc[332:365,0].sum(), bar_width, color = 'gold') 

plt.bar(1+2*bar_width,Pd_values.iloc[:30,0].sum(), bar_width, color = 'slategrey', label = 'Battery 

Discharge') 

plt.bar(2+2*bar_width,Pd_values.iloc[31:60,0].sum(), bar_width, color = 'slategrey') 

plt.bar(3+2*bar_width,Pd_values.iloc[61:90,0].sum(), bar_width, color = 'slategrey') 

plt.bar(4+2*bar_width,Pd_values.iloc[91:121,0].sum(), bar_width, color = 'slategrey') 

plt.bar(5+2*bar_width,Pd_values.iloc[121:151,0].sum(), bar_width, color = 'slategrey') 
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plt.bar(6+2*bar_width,Pd_values.iloc[151:181,0].sum(), bar_width, color = 'slategrey') 

plt.bar(7+2*bar_width,Pd_values.iloc[181:211,0].sum(), bar_width, color = 'slategrey') 

plt.bar(8+2*bar_width,Pd_values.iloc[211:241,0].sum(), bar_width, color = 'slategrey') 

plt.bar(9+2*bar_width,Pd_values.iloc[241:271,0].sum(), bar_width, color = 'slategrey',) 

plt.bar(10+2*bar_width,Pd_values.iloc[271:301,0].sum(), bar_width, color = 'slategrey') 

plt.bar(11+2*bar_width,Pd_values.iloc[301:331,0].sum(), bar_width, color = 'slategrey') 

plt.bar(12+2*bar_width,Pd_values.iloc[332:365,0].sum(), bar_width, color = 'slategrey') 

#Surplus = (ESWind_values.iloc[:744,0]+ESPV_values.iloc[:744,0]).sum() 

plt.bar(1-2*bar_width,(ESWind_values.iloc[:30,0]+ESPV_values.iloc[:30,0]).sum(), bar_width, 

color = 'peru', label = 'Surplus Power') 

plt.bar(2-2*bar_width,(ESWind_values.iloc[31:60,0]+ESPV_values.iloc[31:60,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(3-2*bar_width,(ESWind_values.iloc[61:90,0]+ESPV_values.iloc[61:90,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(4-2*bar_width,(ESWind_values.iloc[91:121,0]+ESPV_values.iloc[91:121,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(5-2*bar_width,(ESWind_values.iloc[121:151,0]+ESPV_values.iloc[121:151,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(6-2*bar_width,(ESWind_values.iloc[151:181,0]+ESPV_values.iloc[151:181,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(7-2*bar_width,(ESWind_values.iloc[181:211,0]+ESPV_values.iloc[181:211,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(8-2*bar_width,(ESWind_values.iloc[211:241,0]+ESPV_values.iloc[211:241,0]).sum(), 

bar_width, color = 'peru') 
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plt.bar(9-2*bar_width,(ESWind_values.iloc[241:271,0]+ESPV_values.iloc[241:271,0]).sum(), 

bar_width, color = 'peru',) 

plt.bar(10-2*bar_width,(ESWind_values.iloc[271:301,0]+ESPV_values.iloc[271:301,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(11-2*bar_width,(ESWind_values.iloc[301:331,0]+ESPV_values.iloc[301:331,0]).sum(), 

bar_width, color = 'peru') 

plt.bar(12-2*bar_width,(ESWind_values.iloc[332:365,0]+ESPV_values.iloc[332:365,0]).sum(), 

bar_width, color = 'peru') 

labels = ('Jan', 'Feb', 'March', 'April', 'May', 'June', 'July', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec') 

positions = (1,2,3,4,5,6,7,8,9,10,11,12) 

LoadD = 

np.array([data.iloc[:30,1].sum(),data.iloc[31:60,1].sum(),data.iloc[61:90,1].sum(),data.iloc[91:12

1,1].sum(),                

data.iloc[121:151,1].sum(),data.iloc[151:181,1].sum(),data.iloc[181:211,1].sum(),data.iloc[211:2

41,1].sum(), 

                  

data.iloc[241:271,1].sum(),data.iloc[271:301,1].sum(),data.iloc[301:331,1].sum(),data.iloc[332:3

65,1].sum()]) 

plt.plot(positions,LoadD ,'black',label = 'Demand',linestyle = 'dashed',marker = 'o') 

plt.xlabel('Month',fontsize=13) 

plt.ylabel('Energy (kWh)',fontsize=13) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.xticks(positions,labels) 

plt.legend(ncol=6,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=12) 
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plt.show() 

# Monthly Bar Chart 

Date = pd.date_range('jan 01 2019', periods = 365, freq = 'D') 

Indexed_Result.set_index(Date, inplace=True) 

Indexed_Result_M = Indexed_Result.resample(rule = 'M').sum() 

labels = ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'July', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec') 

labels = pd.DataFrame(labels) 

Indexed_Result_M = Indexed_Result_M.reset_index(drop=True) 

Indexed_Result_M = pd.concat([labels,Indexed_Result_M], axis=1) 

Indexed_Result_M.set_index(0,inplace=True) 

Indexed_Result_M = Indexed_Result_M.rename(columns={'Gs': 'Grid Sell', 'Gp': 'Grid Purchase', 

'Pd': 'Battery Discharge', 'Pc': 'Battery Charge' 

                                                    , 'Eb': 'BState', 'EWind': 'Wind', 'EPV': 'PV','ESPV': 'PV 

Surplus','ESWind': 'Wind Surplus','Loss': 'Unmet Load'}) 

Indexed_Result_M['Surplus'] = Indexed_Result_M['PV Surplus'] + Indexed_Result_M['Wind 

Surplus'] 

Indexed_Result_M = Indexed_Result_M.iloc[:,[1,2,5,6,9,10]] 

Indexed_Result_M.plot(kind='bar',stacked=True,hatch='\\\\\\\\',width=0.8,rot=0,alpha=0.75) 

plt.xlabel('Months') 

plt.ylabel('Power kWh') 

plt.legend(ncol=6,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=10) 

Mix of Regional and Local Optimum Design 

import pyomo.environ as pyo 
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from pyomo.environ import * 

from pyomo.opt import SolverFactory 

import pandas as pd 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import os 

data = pd.read_excel("Input_Daily_Sum.xlsx") 

data2 = pd.read_excel("Map_Params.xlsx") 

# Propose Rate 

Grid_P = [] 

for i in range(len(data['Load_HP'])): 

   if (data['time'][i]<=90) & (data['Load_HP'][i]+data['Load_E'][i]<100000): 

       Grid_P.append(0.08) 

   if (90<data['time'][i]<335) & (data['Load_HP'][i]+data['Load_E'][i]<100000): 

       Grid_P.append(0.06) 

   if (data['time'][i]>=335) & (data['Load_HP'][i]+data['Load_E'][i]<100000): 

       Grid_P.append(0.08) 

   if (data['time'][i]<=90) & (100000<=data['Load_HP'][i]+data['Load_E'][i]<120000): 

       Grid_P.append(0.12) 

   if (90<data['time'][i]<335) & (100000<=data['Load_HP'][i]+data['Load_E'][i]<120000): 

       Grid_P.append(0.08) 

   if (data['time'][i]>=335) & (100000<=data['Load_HP'][i]+data['Load_E'][i]<120000): 
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       Grid_P.append(0.12) 

   if (data['time'][i]<=90) & (120000<=data['Load_HP'][i]+data['Load_E'][i]<140000): 

       Grid_P.append(0.18) 

   if (90<data['time'][i]<335) & (120000<=data['Load_HP'][i]+data['Load_E'][i]<140000): 

       Grid_P.append(0.1) 

   if (data['time'][i]>=335) & (120000<=data['Load_HP'][i]+data['Load_E'][i]<140000): 

       Grid_P.append(0.18) 

   if (data['time'][i]<=90) & (140000<=data['Load_HP'][i]+data['Load_E'][i]<160000): 

       Grid_P.append(0.26) 

   if (90<data['time'][i]<335) & (140000<=data['Load_HP'][i]+data['Load_E'][i]<160000): 

       Grid_P.append(0.12) 

   if (data['time'][i]>=335) & (140000<=data['Load_HP'][i]+data['Load_E'][i]<160000): 

       Grid_P.append(0.26) 

   if (data['time'][i]<=90) & (160000<=data['Load_HP'][i]+data['Load_E'][i]<180000): 

       Grid_P.append(0.36) 

   if (90<data['time'][i]<335) & (160000<=data['Load_HP'][i]+data['Load_E'][i]<180000): 

       Grid_P.append(0.14) 

   if (data['time'][i]>=335) & (160000<=data['Load_HP'][i]+data['Load_E'][i]<180000): 

       Grid_P.append(0.36) 

   if (data['time'][i]<=90) & (data['Load_HP'][i]+data['Load_E'][i]>180000): 

       Grid_P.append(0.48) 

   if (90<data['time'][i]<335) & (data['Load_HP'][i]+data['Load_E'][i]>180000): 

       Grid_P.append(0.16) 
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   if (data['time'][i]>=335) & (data['Load_HP'][i]+data['Load_E'][i]>180000): 

       Grid_P.append(0.48)  

Grid_P = pd.DataFrame(Grid_P) 

Grid_P.columns = ['Grid_Price'] 

data = pd.concat([data,Grid_P],axis=1) 

Grid_S = [] 

for i in range(len(data['Load_HP'])): 

   if data['time'][i]<=90: 

       Grid_S.append(0.2) 

   if 90<data['time'][i]<335: 

       Grid_S.append(0.1) 

   if data['time'][i]>=335: 

       Grid_S.append(0.2) 

 

Grid_S = pd.DataFrame(Grid_S) 

Grid_S.columns = ['Grid_Sell'] 

data = pd.concat([data,Grid_S],axis=1) 

data.loc[data['Load_HP']+data['Load_E'][i]<100000, 'Loss_Coeff'] = 1 

data.loc[(data['Load_HP']+data['Load_E'][i]>=100000) & 

(data['Load_HP']+data['Load_E'][i]<120000), 'Loss_Coeff'] = 2 

data.loc[(data['Load_HP']+data['Load_E'][i]>=120000) & 

(data['Load_HP']+data['Load_E'][i]<140000), 'Loss_Coeff'] = 3 
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data.loc[(data['Load_HP']+data['Load_E'][i]>=140000) & 

(data['Load_HP']+data['Load_E'][i]<160000), 'Loss_Coeff'] = 4 

data.loc[(data['Load_HP']+data['Load_E'][i]>=160000) & 

(data['Load_HP']+data['Load_E'][i]<180000), 'Loss_Coeff'] = 5 

data.loc[data['Load_HP']+data['Load_E'][i]>180000, 'Loss_Coeff'] = 6 

model = pyo.ConcreteModel() 

# **Sets and Parameters** 

model.t = pyo.RangeSet(1,365) 

model.l = pyo.RangeSet(1,76) 

model.Load_E = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load_E))) 

Load_E = model.Load_E 

model.Load_HP = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load_HP))) 

Load_HP = model.Load_HP 

model.Gas = pyo.Param(model.t, initialize=dict(zip(data.time, data.Gas_Cons))) 

Gas = model.Gas 

 

# Wind1 is for local wind generation 

model.Wind1 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind1))) 

Wind1 = model.Wind1  

# Wind2 is for 'OPEN AREA'  

model.Wind2 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind2))) 

Wind2 = model.Wind2  

# Wind3 is for 'RESOURCE AND INDUSTRIAL'  
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model.Wind3 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind3))) 

Wind3 = model.Wind3  

# Wind4 is for 'COMMERCIAL'  

model.Wind4 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind4))) 

Wind4 = model.Wind4  

# Wind5 is for 'PARKS AND RECREATIONAL'  

model.Wind5 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind5))) 

Wind5 = model.Wind5  

# Wind6 is for 'GOVERNMENT AND INSTITUTIONAL'  

model.Wind6 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind6))) 

Wind6 = model.Wind6  

# Wind7 is for 'RESIDENTIAL'  

model.Wind7 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind7))) 

Wind7 = model.Wind7  

# Wind8 is for 'Waterbody'  

model.Wind8 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind8))) 

Wind8 = model.Wind8  

model.PV = pyo.Param(model.t, initialize=dict(zip(data.time, data.PV))) 

PV = model.PV 

model.Cl = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Land_Cost))) 

Cl = model.Cl      # Land Cost ($/m2)                     

model.TD = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Turbine_D))) 

TD = model.TD 
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model.dis = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Distance))) 

dis = model.dis 

model.LT = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Zone_type))) 

LT = model.LT 

model.CGp = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Price))) 

CGp = model.CGp 

model.CGs = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Sell))) 

CGs = model.CGs 

model.Coeff = pyo.Param(model.t, initialize=dict(zip(data.time, data.Loss_Coeff))) 

Coeff = model.Coeff 

model.eta_c = pyo.Param(initialize=0.95)  

model.eta_d = pyo.Param(initialize=0.95)  

model.maxcd = pyo.Param(initialize=0.35)   

model.PE = pyo.Param(initialize=1)      

model.cpv = pyo.Param(initialize=205)     

model.cc = pyo.Param(initialize=75)     

model.Gp_up = pyo.Param(initialize=2000000000)   

model.cwt = pyo.Param(initialize=38750)   

model.cOMwt = pyo.Param(initialize=0.001)    

model.cOMpv = pyo.Param(initialize=0.001)    

model.CRF = pyo.Param(initialize=0.064)   

model.CRFG = pyo.Param(initialize=20.6)  

model.CRFB = pyo.Param(initialize=1.7743)  
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#model.cR = pyo.Param(initialize=75)     

model.ci = pyo.Param(initialize=75)     

model.cb = pyo.Param(initialize=500)      

model.Ob = pyo.Param(initialize=0.0004)  

model.Mb = pyo.Param(initialize=9.8)      

model.RPC = pyo.Param(initialize=500)     

model.socmin = pyo.Param(initialize=0.2)   

model.Bd = pyo.Param(initialize=20000000)   

model.Ct = pyo.Param(initialize=2000)      

model.A = pyo.Param(initialize=10)         

model.crc = pyo.Param(initialize=1240000)    

model.Ci = pyo.Param(initialize=20000)      

model.omT = pyo.Param(initialize=0.0005 

model.eps = pyo.Param(initialize=0)      

model.Teta = pyo.Param(initialize=1) 

model.hpc = pyo.Param(initialize=853) 

model.cOMhp = pyo.Param(initialize=0.00003)       

model.maxhp = pyo.Param(initialize=6224)       

model.Cg = pyo.Param(initialize=0.1517)       

Ob = model.Ob 

Mb = model.Mb 

RPC = model.RPC 

CGp = model.CGp 
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CGs = model.CGs 

#cR = model.cR 

ci = model.ci 

cb = model.cb 

CRF = model.CRF 

cc = model.cc 

cOMwt = model.cOMwt 

cwt = model.cwt 

cpv = model.cpv 

socmin = model.socmin 

eta_c = model.eta_c 

maxcd = model.maxcd 

eta_d = model.eta_d 

Gp_up = model.Gp_up 

PE = model.PE 

Bd = model.Bd 

Ct = model.Ct 

A = model.A 

crc = model.crc 

Ci = model.Ci 

omT = model.omT 

Teta = model.Teta 

eps = model.eps 
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cOMpv = model.cOMpv 

hpc = model.hpc 

maxhp = model.maxhp 

cOMhp = model.cOMhp 

Cg = model.Cg 

CRFB = model.CRFB 

CRFG = model.CRFG 

# area = 24487      #This area will be defined by user or automatically by software 

#  

# def PV_Count(model): 

#     return (0,area/1.32 

model.Npv = pyo.Var(within=pyo.Integers, bounds=(0, 17623)) 

Npv = model.Npv 

model.Nwt = pyo.Var(within=pyo.Integers, bounds=(0, 48)) 

Nwt = model.Nwt 

 

model.Nb = pyo.Var(bounds=(6000, None)) 

Nb = model.Nb 

model.Eb = pyo.Var(model.t, bounds=(0, None)) 

Eb = model.Eb 

model.Pc = pyo.Var(model.t, bounds=(0, None)) 

Pc = model.Pc 

model.Pd = pyo.Var(model.t, bounds=(0, None)) 
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Pd = model.Pd 

model.Ewind = pyo.Var(model.t, bounds=(0, None)) 

Ewind = model.Ewind 

model.Eswind = pyo.Var(model.t, bounds=(0, None)) 

Eswind = model.Eswind 

model.Epv = pyo.Var(model.t, bounds=(0, None)) 

Epv = model.Epv 

model.Espv = pyo.Var(model.t, bounds=(0, None)) 

Espv = model.Espv 

model.Gp = pyo.Var(model.t, bounds=(0, 200000)) 

Gp = model.Gp 

model.Gs = pyo.Var(model.t, bounds=(0, 200000)) 

Gs = model.Gs 

model.gamma = pyo.Var(model.t, within=pyo.Binary) 

gamma = model.gamma 

 

model.teta = pyo.Var(model.t, within=pyo.Binary) 

teta = model.teta 

model.lam = pyo.Var(model.t, within=pyo.Binary) 

lam = model.lam 

model.eta = pyo.Var(model.t, within=pyo.Binary) 

eta = model.eta 

model.La = pyo.Var(bounds=(0,None)) 



175 
 

La = model.La 

model.Nrg = pyo.Var(within=pyo.Integers,bounds=(0,None)) 

Nrg = model.Nrg 

model.Esrg1 = pyo.Var(model.t,bounds=(0,None)) 

Esrg1 = model.Esrg1 

model.Esrg2 = pyo.Var(model.t,bounds=(0,None)) 

Esrg2 = model.Esrg2 

model.Esrg3 = pyo.Var(model.t,bounds=(0,None)) 

Esrg3 = model.Esrg3 

model.Esrg4 = pyo.Var(model.t,bounds=(0,None)) 

Esrg4 = model.Esrg4 

model.Esrg5 = pyo.Var(model.t,bounds=(0,None)) 

Esrg5 = model.Esrg5 

model.Esrg6 = pyo.Var(model.t,bounds=(0,None)) 

Esrg6 = model.Esrg6 

 

model.Esrg7 = pyo.Var(model.t,bounds=(0,None)) 

Esrg7 = model.Esrg7 

model.Erg1 = pyo.Var(model.t,bounds=(0,None)) 

Erg1 = model.Erg1 

model.Erg2 = pyo.Var(model.t,bounds=(0,None)) 

Erg2 = model.Erg2 

model.Erg3 = pyo.Var(model.t,bounds=(0,None)) 
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Erg3 = model.Erg3 

model.Erg4 = pyo.Var(model.t,bounds=(0,None)) 

Erg4 = model.Erg4 

model.Erg5 = pyo.Var(model.t,bounds=(0,None)) 

Erg5 = model.Erg5 

model.Erg6 = pyo.Var(model.t,bounds=(0,None)) 

Erg6 = model.Erg6 

model.Erg7 = pyo.Var(model.t,bounds=(0,None)) 

Erg7 = model.Erg7 

model.Bin = pyo.Var(model.l,within=pyo.Binary) 

Bin = model.Bin 

model.Loss = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

Loss = model.Loss 

model.Chp = pyo.Var(within=pyo.NonNegativeReals, bounds=(0, None)) 

Chp = model.Chp 

 

def storage1(model, t): 

    if t==1: 

        return Eb[t] == Nb 

    else: 

        return Eb[t] == Eb[t - 1] + Pc[t] * eta_c - Pd[t] / eta_d 

model.Const_1 = pyo.Constraint(model.t, rule=storage1) 

def storage2(model, t): 



177 
 

    return Eb[t] >= Nb * socmin 

model.Const_2 = pyo.Constraint(model.t, rule=storage2) 

def storage3(model, t): 

    return Eb[t] <= Nb 

model.Const_3 = pyo.Constraint(model.t, rule=storage3) 

def storage4(model, t): 

    return Pc[t] * eta_c + Pd[t] / eta_d <= maxcd * Nb 

model.Const_4 = pyo.Constraint(model.t, rule=storage4) 

def storage5(model, t): 

    return Pc[t] <= Nb * gamma[t] 

model.Const_5 = pyo.Constraint(model.t, rule=storage5) 

def storage6(model, t): 

    return Pd[t] <= Nb * teta[t] 

model.Const_6 = pyo.Constraint(model.t, rule=storage6) 

 

 

def storage7(model, t): 

    return gamma[t] + teta[t] == 1 

model.Const_7 = pyo.Constraint(model.t, rule=storage7) 

def gridS1(model, t,l): 

    if LT[l] == 'OPEN AREA': 

        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg1[t]) * PE * eta[t] 

    if LT[l] == 'RESOURCE AND INDUSTRIAL': 
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        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg2[t]) * PE * eta[t] 

    if LT[l] == 'COMMERCIAL': 

        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg3[t]) * PE * eta[t] 

    if LT[l] == 'PARKS AND RECREATIONAL': 

        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg4[t]) * PE * eta[t] 

    if LT[l] == 'GOVERNMENT AND INSTITUTIONAL': 

        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg5[t]) * PE * eta[t] 

    if LT[l] == 'RESIDENTIAL': 

        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg6[t]) * PE * eta[t] 

    if LT[l] == 'WATERBODY': 

        return Gs[t] <= (Eswind[t] + Espv[t] + Esrg7[t]) * PE * eta[t]  

model.Const_8 = pyo.Constraint(model.t,model.l, rule=gridS1) 

def grid2(model, t): 

    return Gp[t] <= Gp_up * lam[t] 

 

 

model.Const_9 = pyo.Constraint(model.t, rule=grid2) 

def grid3(model, t): 

    return eta[t] + lam[t] == 1 

model.Const_10 = pyo.Constraint(model.t, rule=grid3) 

def Wind_surplus(model, t): 

    return Nwt * Wind1[t] == (Ewind[t] + Eswind[t]) 

model.Const_11 = pyo.Constraint(model.t, rule=Wind_surplus) 
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def PV_surplus(model, t): 

    return Npv * PV[t] == Epv[t] + Espv[t] 

model.Const_12 = pyo.Constraint(model.t, rule=PV_surplus) 

model.Const_13 = pyo.Constraint(expr = La == Nrg*A) 

def LandCost(model, l): 

    return dis[l]*Ct + Cl[l]*La <= Bd 

model.Const_14 = pyo.Constraint(model.l, rule=LandCost)  

def Wind_regional2(model, t,l): 

    if LT[l] == 'OPEN AREA': 

        return Nrg * Wind2[t] == (Erg1[t] + Esrg1[t]) 

    if LT[l] == 'RESOURCE AND INDUSTRIAL': 

        return Nrg * Wind3[t] == (Erg2[t] + Esrg2[t]) 

    if LT[l] == 'COMMERCIAL': 

        return Nrg * Wind4[t] == (Erg3[t] + Esrg3[t]) 

    if LT[l] == 'PARKS AND RECREATIONAL': 

        return Nrg * Wind5[t] == (Erg4[t] + Esrg4[t]) 

    if LT[l] == 'GOVERNMENT AND INSTITUTIONAL': 

        return Nrg * Wind6[t] == (Erg5[t] + Esrg5[t]) 

    if LT[l] == 'RESIDENTIAL': 

        return Nrg * Wind7[t] == (Erg6[t] + Esrg6[t]) 

    if LT[l] == 'WATERBODY': 

        return Nrg * Wind8[t] == (Erg7[t] + Esrg7[t]) 

model.Const_15 = pyo.Constraint(model.t,model.l, rule=Wind_regional2) 
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def Balance(model, t,l): 

    if LT[l] == 'OPEN AREA': 

        return Ewind[t] + Epv[t] + Erg1[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

    if LT[l] == 'RESOURCE AND INDUSTRIAL': 

        return Ewind[t] + Epv[t] + Erg2[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

    if LT[l] == 'COMMERCIAL': 

        return Ewind[t] + Epv[t] + Erg3[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

    if LT[l] == 'PARKS AND RECREATIONAL': 

        return Ewind[t] + Epv[t] + Erg4[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

    if LT[l] == 'GOVERNMENT AND INSTITUTIONAL': 

        return Ewind[t] + Epv[t] + Erg5[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

    if LT[l] == 'RESIDENTIAL': 

        return Ewind[t] + Epv[t] + Erg6[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

    if LT[l] == 'WATERBODY': 

        return Ewind[t] + Epv[t] + Erg7[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] + 

Pc[t] + Gs[t] 

model.Const_16 = pyo.Constraint(model.t,model.l, rule=Balance) 

def Land_Selection(model,l): 

    return sum(Bin[l] for l in model.l) == 1 
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model.Const_17 = pyo.Constraint(model.l,rule=Land_Selection)     

def Turbine_Density(model,l): 

    return Nrg <= sum(TD[l]*Bin[l] for l in model.l) 

model.Const_18 = pyo.Constraint(model.l,rule=Turbine_Density) 

def Loss_Constraint(model,t): 

    return sum(Loss[t] for t in model.t) <= 0.001*sum(Load_E[t] + Load_HP[t]   for t in model.t) 

model.Const_19 = pyo.Constraint(model.t, rule=Loss_Constraint) 

def Heat_Pump(model,t): 

    return Chp >= maxhp 

model.Const_20 = pyo.Constraint(model.t,rule=Heat_Pump) 

# **Objective Function 

def objective_rule(model): 

    return (Npv * (cpv + cc)*(1 + cOMpv / CRF)) + (Nwt * cwt * (1 + cOMwt / CRF)) + Nb * (cb 

+ ci) + Ob * ( 

        sum((Pd[t] + Pc[t]) / CRF for t in model.t)) + (Mb * maxcd * Nb)*20.7743 + (RPC * Nb) * 

CRFB + sum( 

            (CGp[t] * Gp[t]) / CRF for t in model.t) - sum((CGs[t] * Gs[t]) / CRF for t in model.t)+( 

                Nrg * crc * (1 + cOMwt / CRF)) + sum(((dis[l]*Ct) + Ci)*(1 + omT / CRF)*Bin[l] for l 

in model.l) + sum( 

                Cl[l]*La*Bin[l] for l in model.l)+sum(Loss[t]*Coeff[t] for t in 

model.t)+sum(Gp[t]*eps*Teta for t in model.t)+( 

                   Chp*hpc*(1 + cOMhp / CRF)) - sum(Gas[t]*Cg for t in model.t)/CRF - 

sum(Gas[t]*0.0391*0.8*0.74 for t in model.t)*CRFG 

model.objective = pyo.Objective(rule=objective_rule, sense=pyo.minimize) 
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model.write('Opt_New.lp', io_options={'symbolic_solver_labels': True}) 

opt = SolverFactory('scipampl') 

#opt = SolverFactory('gams') 

#results = opt.solve(model, solver= 'dicopt', tee=True, add_options=['option optcr=0.2;','option 

reslim=3600;']) 

#results = opt.solve(model, solver= 'dicopt', tee=True,add_options=['option nlp=ipopt;']) 

#results = opt.solve(model, solver= 'scip', tee=True, keepfiles=True, add_options=['option 

optcr=3.56;','option reslim=200;']) 

#results = opt.solve(model, solver= 'scip', tee=True, keepfiles=True, add_options=['option 

reslim=100;']) 

#results = opt.solve(model, solver= 'couenne', tee=True, keepfiles=True) 

#results = opt.solve(model, solver= 'scip', tee=True) 

results = opt.solve(model,tee=True) 

Data_Load = pd.read_excel('Load.xlsx') 

print(results) 

print('objec Fu = ' , pyo.value(model.objective)*1.32, 'CAD') 

print('Cost of energy (COE) = ', pyo.value(model.objective)*CRF/Data_Load['Load'].sum()*1.32, 

'CAD/kWh') 

print('Total Capital Cost = ' , pyo.value(model.Npv)*(cpv + 

cc)+pyo.value(model.Nwt)*cwt+pyo.value(model.Nb)*(cb + ci)+ 

      pyo.value(model.Nrg)*crc + pyo.value(model.Chp)*hpc*1.32, 'CAD') 

print('number of pv = ' , pyo.value(model.Npv)) 

print('number of Wt = ' , pyo.value(model.Nwt)) 

print('Battery Storage Capacity = ' , pyo.value(model.Nb), 'kWh') 
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print('number of Nrg = ' , pyo.value(model.Nrg)) 

print('Heat Pump Capacity = ' , pyo.value(model.Chp), 'kWh') 

for l in model.l: 

    if Bin[l].value!=0: 

        print('Zone',l, 'is the selected for regional generation') 

Gs_values = pd.DataFrame(list(Gs[:].value),columns=['Gs']) 

Gp_values = pd.DataFrame(list(Gp[:].value),columns=['Gp']) 

Pd_values = pd.DataFrame(list(Pd[:].value),columns=['Pd']) 

Pc_values = pd.DataFrame(list(Pc[:].value),columns=['Pc']) 

Eb_values = pd.DataFrame(list(Eb[:].value),columns=['Eb']) 

EWind_values = pd.DataFrame(list(Ewind[:].value),columns=['EWind']) 

EPV_values = pd.DataFrame(list(Epv[:].value),columns=['EPV']) 

ESWind_values = pd.DataFrame(list(Eswind[:].value),columns=['ESWind']) 

ESPV_values = pd.DataFrame(list(Espv[:].value),columns=['ESPV']) 

Erg_values = pd.DataFrame(list(Erg1[:].value),columns=['Erg']) 

Esrg_values = pd.DataFrame(list(Esrg1[:].value),columns=['Esrg']) 

Unmet_Load = pd.DataFrame(list(Loss[:].value),columns=['Loss']) 

Indexed_Result = 

pd.concat([Gs_values,Gp_values,Pd_values,Pc_values,Eb_values,EWind_values,EPV_values, 

                            ESWind_values,ESPV_values,Erg_values,Esrg_values,Unmet_Load],axis=1) 

plt.plot(Unmet_Load) 
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print('Renewable Penetration = ' , 

((np.array(EPV_values.sum()))+(np.array(Erg_values.sum()))+(np.array(EWind_values.sum())))

/( 

(np.array(EPV_values.sum()))+(np.array(Erg_values.sum()))+(np.array(EWind_values.sum()))+

(np.array(Gp_values.sum())))) 

print('Unmet Load = ',Unmet_Load.sum()) 

print('Number of days we have unmet load = ', 365 - (Unmet_Load==0).sum()) 

Indexed_Result.to_csv('Results_Local_New.csv') 

SOC = (Eb_values/6000)*100 

Date = pd.date_range('jan 01 2019', periods = 365, freq = 'D') 

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx() 

ax1.plot(Date, data['Load_HP']+data['Load_E'], 'navy',label = 'Load Demand') 

ax2.plot(Date, Grid_P, 'maroon',label = 'Purchase Price') 

ax2.plot(Date, Grid_S, 'green',label = 'Sell Price') 

ax2.set_ylim([0, 0.8]) 

ax1.set_xlabel('Date',fontsize=10) 

ax1.set_ylabel('Power (kW)',fontsize=10) 

ax2.set_ylabel('Price ($/kWh)',fontsize=10) 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

ax2.legend(lines + lines2, labels + labels2, loc='upper center',fontsize=10) 

plt.show() 
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x = range(365) 

y2=0 

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx() 

ax1.fill_between(x, Erg_values.iloc[:,0],y2,facecolor='blue',label = 'Regional Wind',alpha=0.7) 

ax1.fill_between(x, EPV_values.iloc[:,0].values,y2,facecolor='firebrick',label = 'PV Used 

Power',alpha=0.7) 

ax1.fill_between(x, EWind_values.iloc[:,0],y2,facecolor='indigo',label = 'Wind Used 

Power',alpha=0.7) 

ax1.fill_between(x, Pc_values.iloc[:,0],y2,facecolor='limegreen',label = 'Battery 

Charge',alpha=0.7) 

ax1.fill_between(x, Pd_values.iloc[:,0],y2,facecolor='slategrey',label = 'Battery 

Discharge',alpha=0.7) 

ax1.fill_between(x, ESWind_values.iloc[:,0],y2,facecolor='pink',label = 'Wind 

Surplus',alpha=0.7) 

ax1.fill_between(x, ESPV_values.iloc[:,0],y2,facecolor='green',label = 'PV Surplus',alpha=0.7) 

ax1.fill_between(x, Esrg_values.iloc[:,0],y2,facecolor='olive',label = 'Regional Wind 

Surplus',alpha=0.7) 

ax1.fill_between(x, Gp_values.iloc[:,0],y2,facecolor='darkorange',label = 'Purchase from 

Grid',alpha=0.7) 

ax1.fill_between(x, Gs_values.iloc[:,0],y2,facecolor='yellow',label = 'Sell to Grid',alpha=0.7) 

ax1.fill_between(x, Unmet_Load.iloc[:,0],y2,facecolor='red',label = 'Unmet Load',alpha=0.7) 

ax1.plot(x, data.iloc[:,2], 'black',label = 'Demand',linestyle = 'dashed') 

ax2.plot(x, SOC.iloc[:,0], 'black',label = 'SOC') 

ax2.set_ylim([0, 110]) 
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ax1.set_xlabel('Hours',fontsize=13) 

ax1.set_ylabel('Power Consumption (kWh)',fontsize=13) 

ax2.set_ylabel('State of Charge of the Battery %',fontsize=13) 

ax2.tick_params(axis='both', which='major', labelsize=12) 

ax1.tick_params(axis='both', which='major', labelsize=12) 

ax2.legend(loc='upper right',fontsize=12) 

ax1.legend(ncol=6,bbox_to_anchor=(0.5,1.08),loc='center',fontsize=12) 

plt.show() 

# Grid Trade-off 

plt.plot(Gp_values, color = 'blue',label = 'Purchase from Grid') 

plt.plot(Gs_values, color = 'darkorange',label = 'Sell to Grid') 

plt.xlabel('Time(hr)',fontsize=13) 

plt.ylabel('Energy (kWh)',fontsize=13) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.tick_params(axis='both', which='major', labelsize=12) 

plt.legend(ncol=2,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=12) 

plt.show() 

# Battery Charge and Discharge Power 

plt.plot(Pc_values, color = 'red',label = 'Battery Charging') 

plt.plot(Pd_values, color = 'blue',label = 'Battery Discharging') 

plt.plot(Eb_values, color = 'green',label = 'SOC') 

plt.xlabel('Time(hr)') 

plt.ylabel('Energy (kWh)') 
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plt.legend() 

plt.show() 

Resilience Oriented Optimal Dispatch Operation 

import pyomo.environ as pyo 

from pyomo.opt import SolverFactory 

import pandas as pd 

import math 

import numpy as np 

import matplotlib.pyplot as plt 

!pip install cplex -q 

data = pd.read_excel("Input_Dispatch_OffGrid.xlsx", sheet_name = 'Summer') 

model = pyo.ConcreteModel() 

# **Sets and Parameters** 

model.t = pyo.RangeSet(48) 

model.Load = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load))) 

Load = model.Load  

model.Wind = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind))) 

Wind = model.Wind  

model.PV = pyo.Param(model.t, initialize=dict(zip(data.time, data.PV))) 

PV = model.PV 

lb={1:0.25022, 

2:0.24969,3:0.25000,4:0.25015,5:0.24837,6:0.24447,7:0.24270,8:0.24130,9:0.59211,10:0.59218

,11:0.59205,12:0.59210,13:0.59205,14:0.59211,15:0.59185,16:0.59203,17:0.59197,18:0.59208,1
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9:0.59212,20:0.59188,21:0.59118,22:0.24805,23:0.25060,24:0.25185,25:0.25164, 

26:0.25149,27:0.25206,28:0.25241,29:0.25252,30:0.25101,31:0.25302,32:0.25225,33:0.59047,3

4:0.59011,35:0.59059,36:0.59070,37:0.59061,  

38:0.59053,39:0.59073,40:0.59061,41:0.59060,42:0.59069,43:0.59110,44:0.59121,45:0.59109,4

6:0.24575,47:0.24677,48:0.24519} 

ub={1:1,2:1,3:1,4:1,5:1,6:1,7:1,8:1,9:1,10:1,11:1,12:1,13:1,14:1,15:1,16:1,17:1,18:1,19:1,20:1,2

1:1,22:1,23:1,24:1,25:1,26:1,27:1,28:1,  

29:1,30:1,31:1,32:1,33:1,34:1,35:1,36:1,37:1,38:1,39:1,40:1,41:1,42:1,43:1,44:1,45:1,46:1,47:1,

48:1} 

 

def fb(model, i): 

   return (lb[i], ub[i]) 

model.eta_c = pyo.Param(initialize=0.95)  

model.eta_d = pyo.Param(initialize=0.90)  

model.RPC = pyo.Param(initialize=156)     

model.Deg = pyo.Param(initialize=0.074)    

model.SOC0 = pyo.Param(initialize=8000)    

model.CCF = pyo.Param(initialize=0.1)    

model.Ebamx = pyo.Param(initialize=9375)   

model.maxcd = pyo.Param(initialize=0.3)   

model.Coeff = pyo.Param(initialize=0.17)     

model.SOCmin = pyo.Param(initialize= 937)  

RPC = model.RPC 

eta_c = model.eta_c 

eta_d = model.eta_d 
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Deg = model.Deg 

SOC0 = model.SOC0 

CCF = model.CCF 

Ebmax = model.Ebamx 

maxcd = model.maxcd 

Coeff = model.Coeff 

SOCmin =model.SOCmin 

model.Eb = pyo.Var(model.t, domain=pyo.NonNegativeReals, bounds=(0, 9375)) 

Eb = model.Eb 

model.Pc = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

Pc = model.Pc 

model.Pd = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

Pd = model.Pd 

model.EWind = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

EWind = model.EWind 

model.ESWind = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

ESWind = model.ESWind 

model.EPV = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

EPV = model.EPV 

model.ESPV = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

ESPV = model.ESPV 

model.Loss = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None)) 

Loss = model.Loss 
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model.teta = pyo.Var(model.t, within=pyo.Binary) 

teta = model.teta 

model.eta = pyo.Var(model.t, within=pyo.Binary) 

eta = model.eta 

model.C = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=fb) 

C = model.C 

def storage1(model, t): 

    if t==1: 

        return Eb[t] == SOC0  

    else: 

        return Eb[t] == Eb[t - 1] + Pc[t] * eta_c - Pd[t] / eta_d 

model.Const_1 = pyo.Constraint(model.t, rule=storage1) 

def storage2(model, t): 

    return Pc[t] * eta_c + Pd[t] / eta_d <= maxcd * Ebmax 

model.Const_2 = pyo.Constraint(model.t, rule=storage2) 

def storage3(model, t): 

    return Pc[t] <= Ebmax * eta[t] 

model.Const_3 = pyo.Constraint(model.t, rule=storage3) 

def storage4(model, t): 

    return Pd[t] <= Ebmax * teta[t] 

model.Const_4 = pyo.Constraint(model.t, rule=storage4) 

def storage5(model, t): 

    return eta[t] + teta[t] <= 1 
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model.Const_5 = pyo.Constraint(model.t, rule=storage5) 

def storage6(model, t): 

    return Eb[t] >= SOCmin 

model.Const_6 = pyo.Constraint(model.t, rule=storage6) 

def Surplus1(model, t): 

    return Wind[t] == EWind[t]+ESWind[t] 

model.Const_7 = pyo.Constraint(model.t, rule=Surplus1) 

def Surplus2(model, t): 

    return PV[t] == EPV[t]+ESPV[t] 

model.Const_8 = pyo.Constraint(model.t, rule=Surplus2) 

def Balance(model, t): 

    return EWind[t] + EPV[t] + Pd[t] + Loss[t] == C[t]*Load[t] + Pc[t] 

model.Const_9 = pyo.Constraint(model.t, rule=Balance) 

# **Objective Function 

def objective_rule(model): 

    return sum(Deg*Pc[t] for t in model.t) + sum(Deg*Pd[t] for t in model.t) + sum(CCF*ESPV[t] 

for t in model.t) + sum( 

        CCF*ESWind[t] for t in model.t) + sum(Loss[t]*Coeff for t in model.t) 

# **Solving and Results**              

model.objective = pyo.Objective(rule=objective_rule, sense=pyo.minimize) 

model.write('Opt_New.lp') 

opt = SolverFactory('cplex_direct') 

results = opt.solve(model, tee=True) 
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print(results) 

print('obec Fu = ' , pyo.value(model.objective), '$') 

EWind_values = pd.DataFrame(list(EWind[:].value),columns=['Ewind']) 

EPV_values = pd.DataFrame(list(EPV[:].value),columns=['EPV']) 

Pd_values = pd.DataFrame(list(Pd[:].value),columns=['Pd']) 

Pc_values = pd.DataFrame(list(Pc[:].value),columns=['Pc']) 

Eb_values = pd.DataFrame(list(Eb[:].value),columns=['Eb']) 

ESWind = pd.DataFrame(list(ESWind[:].value),columns=['ESWind']) 

ESPV = pd.DataFrame(list(ESPV[:].value),columns=['ESPV']) 

Loss = pd.DataFrame(list(Loss[:].value),columns=['Loss']) 

C = pd.DataFrame(list(C[:].value),columns=['C']) 

Indexed_Result = 

pd.concat([EWind_values,EPV_values,Pd_values,Pc_values,Eb_values,ESWind,ESPV,Loss],axi

s=1) 

#Indexed_Result.to_excel('Summer_Actual.xlsx') 

#Indexed_Result.to_excel('Summer_Optimal.xlsx') 

SOC = (Eb_values/9375.303)*100 

x = range(48) 

y2=0 

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx() 

ax1.fill_between(x, EPV_values.iloc[:,0],y2,facecolor='firebrick',label = 'PV Used 

Power',alpha=0.7) 
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ax1.fill_between(x, Pd_values.iloc[:,0],y2,facecolor='indigo',label = 'Battery 

Discharging',alpha=0.7) 

ax1.fill_between(x, Pc_values.iloc[:,0],y2,facecolor='limegreen',label = 'Battery 

Charging',alpha=0.7) 

ax1.fill_between(x, EWind_values.iloc[:,0],y2,facecolor='darkorange',label = 'Wind Used 

Power',alpha=0.7) 

ax1.fill_between(x, ESWind.iloc[:,0],y2,facecolor='slategrey',label = 'Wind Surplus',alpha=0.7) 

ax1.fill_between(x, ESPV.iloc[:,0],y2,facecolor='blue',label = 'PV Surplus',alpha=0.7) 

ax1.plot(x, data.iloc[:,1], 'black',label = 'Demand',linestyle = 'dashed') 

ax2.plot(x, SOC.iloc[:,:], 'black',label = 'SOC') 

ax2.set_ylim([0, 110]) 

ax1.set_xlabel('Hours') 

ax1.set_ylabel('Power Consumption (kWh)') 

ax2.set_ylabel('State of Charge of the Battery %') 

ax2.legend(loc='upper right') 

ax1.legend(ncol=9,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=8) 

plt.show() 

# Sensetivity on Loss Coeff 

Cost1 = np.repeat(675,48) 

Cost2 = np.repeat(1242,48) 

Cost3 = np.repeat(1569,48) 

Cost4 = np.repeat(1659,48) 

Cost5 = np.repeat(1938,48) 
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Loss_fun = pd.read_excel('Loss.xlsx',sheet_name = 'Summer') 

Loss_fun = Loss_fun.iloc[:48,0:5] 

x = range(48) 

fig, ax1 = plt.subplots() 

ax2 = ax1.twinx() 

ax1.plot(x, Loss_fun.iloc[:,0], 'maroon',label = 'Loss for Coeff=0.01', marker= 'o') 

ax1.plot(x, Loss_fun.iloc[:,1], 'green',label = 'Loss for Coeff=0.05',marker= '^') 

ax1.plot(x, Loss_fun.iloc[:,2], 'navy',label = 'Loss for Coeff=0.08',marker= 'v') 

ax1.plot(x, Loss_fun.iloc[:,3], 'black',label = 'Loss for Coeff=0.1',marker= 's') 

ax1.plot(x, Loss_fun.iloc[:,4], 'red',label = 'Loss for Coeff=0.17',marker= 'P') 

ax2.plot(x, Cost1, 'maroon',label = 'Cost for Coeff=0.01') 

ax2.plot(x, Cost2, 'green',label = 'Cost for Coeff=0.05') 

ax2.plot(x, Cost3, 'navy',label = 'Cost for Coeff=0.08') 

ax2.plot(x, Cost4, 'black',label = 'Cost for Coeff=0.1') 

ax2.plot(x, Cost5, 'red',label = 'Cost for Coeff=0.17') 

ax2.set_ylim([500, 2500]) 

ax1.set_xlabel('Hours') 

ax1.set_ylabel('Loss (kWh)') 

ax2.set_ylabel('Operating Cost($)') 

#ax2.legend(bbox_to_anchor=(0.9,1.08),loc='center',fontsize=8) 

ax2.legend(ncol=6,bbox_to_anchor=(0.5,1.04),loc='center',fontsize=8) 

ax1.legend(ncol=6,bbox_to_anchor=(0.5,1.09),loc='center',fontsize=8) 

plt.show() 
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Load_N = pd.DataFrame(data['Load']) 

Load_Optimal = pd.DataFrame(Load_N.values*C.values, columns=Load_N.columns, 

index=Load_N.index) 

C_Load = pd.DataFrame(data['C_Load']) 

plt.plot(x, C_Load, 'red', label = 'Critical Load Demand',marker= 's') 

plt.plot(x, Load_N, 'navy', label = 'Actual Load Demand', marker= 'o') 

plt.plot(x, Load_Optimal, 'forestgreen', label = 'Covered Load Demand',marker= '^') 

plt.xlabel('Hours') 

plt.ylabel('Load Demand (kW)') 

plt.legend(ncol=3,bbox_to_anchor=(0.5,1.07),loc='center',fontsize=8) 

plt.show() 

Mapping Model 

import numpy as np 

import pandas as pd 

import geopandas 

from shapely import geometry as sg 

from itertools import product 

import math 

def set_grid(gdf, size): 

    """ 

    Args: 

        gdf: input geo dataframe (of the circle) 

        size: the square size in meters 
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    Return: 

        the grid in 4326 

    proj_gdf = gdf.to_crs(3857) 

    aoi_bb = sg.box(*proj_gdf.total_bounds) 

    min_x, min_y, max_x, max_y = aoi_bb.bounds 

    lon = np.concatenate([np.arange(min_x, max_x, size), [max_x]]) 

    lat = np.concatenate([np.arange(min_y, max_y, size), [max_y]]) 

    squares = [] 

    for ix, iy in product(range(len(lon) - 1), range(len(lat) - 1)): 

        square = sg.box(lon[ix], lat[iy], lon[ix + 1], lat[iy + 1]) 

        squares.append(square) 

    # create a buffer grid in lat-long 

    grid = geopandas.GeoDataFrame({"geometry": squares}, crs="EPSG:3857") 

    grid = grid.to_crs(4326) 

    return grid, squares     

def updated_grid(res, r, x, squares): 

    ''' 

    r and x are in km 

    squares is the same as in the previous definition 

    ''' 

    res_complete = [0.0] * int((round(2*r/x)-len(res))/2)+res+[0.0] * int((round(2*r/x)-len(res))/2) 

    start_loop = [(round(2*r/x)-k)/2 if k!=0 else 0.0 for k in res_complete] 
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    start_loop_real = [int(k+n*20) if k!=0 else 0 for n, k in enumerate(start_loop)] #(20-

math.floor(k/2)) 

    end_loop_real = [int(z+ res_complete[w]) for w, z in enumerate(start_loop_real)] 

    select_squares = [] 

    for ix in range(len(start_loop_real)): 

        select_squares.append(squares[start_loop_real[ix]:end_loop_real[ix]]) 

    #     print(len(squares[s[ix]:e[ix]])) 

    select_squares = [tt for r in select_squares for tt in r] 

    grid_3857 = geopandas.GeoDataFrame({"geometry": select_squares}, crs="EPSG:3857") 

    grid_3857_centroid = grid_3857.centroid 

    grid = grid_3857.to_crs(4326) 

    grid_centroid = grid_3857_centroid.to_crs(4326)  

    return grid, grid_centroid, grid_3857 

     

def grid_land_type(Base_map, square_map): 

    land_type = [] 

    for x in range(len(square_map.geometry.values)): 

        ref_gdf = geopandas.GeoDataFrame({"geometry":square_map.iloc[x,:].values}, 

crs="EPSG:4326") 

        ex_data_clip = geopandas.clip(Base_map, ref_gdf) 

        ex_data_clip = ex_data_clip.to_crs(3857) 

        land_type.append(ex_data_clip[ex_data_clip.area == 

max(ex_data_clip.area)]._category.values[0])   
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    return land_type 

def clean_up_grid(Circle_map, grid_map): 

    clips_df =[] 

    square_clip = [] 

    for x in range(len(grid_map)): 

        grid_1 = geopandas.GeoDataFrame({"geometry":grid_map.iloc[x,:].values}, 

crs="EPSG:4326") 

        df_clip =geopandas.clip(Circle_map, grid_1) 

        if df_clip.empty==False: 

            if df_clip.is_empty[0]==False: 

                clips_df.append(df_clip) 

#                 print((df_clip.to_crs(3857).area/grid_1.to_crs(3857).area)[0]*100) 

                if (100*(df_clip.to_crs(3857).area/grid_1.to_crs(3857).area)[0])>=55: 

                    square_clip.append(grid_1) 

                else: 

                    pass 

    return clips_df, square_clip 

def distance(df1, df2): 

    df_distance=df1.to_crs("EPSG:3857").geometry.apply(lambdag: 

df2.to_crs("EPSG:3857").distance(g)) 

    if len(df2)==1: 

        df_distance = df_distance.rename(columns={0: "Distances"}) 

    return df_distance 
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import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import geopandas 

import gurobipy as gp 

from gurobipy import GRB 

from shapely.geometry import Point 

from shapely import geometry as sg 

from itertools import product 

import math 

from geopandas import GeoDataFrame 

import geopandas as gpd 

resf1 = "57331/dmti_landcover_2021_s_poly.shp" 

Land_1 = geopandas.read_file(resf1) 

 

res1 = "57332/ppat_affect_terri_2020_s_poly.shp" 

Land_2= geopandas.read_file(res1) 

fp3 = "canvec_50K_QC_Res_MGT_shp/canvec_50K_QC_Res_MGT/power_line_1.shp" 

pwline_df = geopandas.read_file(fp3) 

fp1 = 

"canvec_50K_QC_Res_MGT_shp/canvec_50K_QC_Res_MGT/transformer_station_0.shp" 

tstation_df = geopandas.read_file(fp1) 
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pwline_df = pwline_df.to_crs(epsg=4326) 

Land_C2 = pd.concat([Land_2.iloc[:319,],Land_2.iloc[323:,]]).reset_index(drop=True) #319-322 

Land_C1 = pd.concat([Land_1.iloc[:280,],Land_1.iloc[283:,]]).reset_index(drop=True) 

rad =20 

side =4 

#Circle geo information 

df = pd.DataFrame( 

    { 

        'lat':[45.5], 

        'lon':[-73.6], 

        'rad':[rad*1000] 

    } 

) 

gdf = geopandas.GeoDataFrame( 

    df, geometry=geopandas.points_from_xy(df.lon, df.lat), crs="epsg:4326") 

gdf_centre = gdf.copy() 

gdf = gdf.to_crs('epsg:3857') #or 3797 or 3347 

gdf['geometry'] = gdf.geometry.buffer(df.rad) 

gdf=gdf.to_crs('epsg:4326') 

from Square_grid_func_Updated import 

set_grid,updated_grid,grid_land_type,clean_up_grid,distance 

grid, squares =set_grid(gdf, side*1000) 

#grid_update, grid_update_centroid, grid_update_3857 =updated_grid(res, rad, side, squares) 
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clips_df, square_clip = clean_up_grid(gdf,grid) 

land_array=grid_land_type(Land_C1, pd.concat(square_clip, ignore_index=True)) # When 

change to Montreal change it to C1 

griddf = pd.concat(square_clip, ignore_index=True) 

fig, ax = plt.subplots(1, 1, figsize=(10,10)) 

Land_C2.plot(ax=ax, column = "_theme_pro",cmap="viridis", lw=0.7, legend_kwds={'loc': 

'lower right','bbox_to_anchor':(1.28, 0.75),'title':"Outside of Greater Montreal"}) 

leg1 = ax.get_legend() 

#leg1.set_title("First graph legend") 

Land_C1.plot(ax=ax, column = "_category",cmap="bone", lw=0.7,legend=True, 

legend_kwds={'loc': 'lower left','bbox_to_anchor':(1.03, 0.55),'title':"Greater Montreal"}) 

pwline_df.plot(ax = ax, color='red', linewidth=2*pwline_df['numli']) 

tstation_df.plot(ax = ax, color='red') 

gdf.plot(ax=ax, label = "Circle",edgecolor="green", facecolor="None", lw=2, zorder=12) 

#grid_update.plot(ax=ax, edgecolor="red", facecolor="None", label="Square box", zorder=11) 

for y in square_clip: 

    y.plot(ax=ax, edgecolor="black", facecolor="None",zorder=11) 

# grid.plot(ax=ax, edgecolor="black") 

# gdf.geom.plot(ax=ax, label = "Circle",edgecolor="green", facecolor="None", lw=2, zorder=11) 

# gdf.geometry.plot(ax=ax, label = "Centre", color="red",zorder=11) 

gdf_centre.plot(ax=ax) 

test_gdf1 = geopandas.GeoDataFrame({"geometry":griddf.iloc[62,:].values}, crs="EPSG:4326") 

# Bottom to top, left to right (Start from left) 
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test_gdf1.plot(ax=ax, edgecolor="yellow", facecolor="None", lw=3, zorder=63) 

ax.set_xlim(-75, -72) 

ax.set_ylim(45, 46.5) 

ax.add_artist(leg1) 

plt.show() 

sq_centroid_df = pd.concat(square_clip, ignore_index=True).to_crs(3857).centroid.to_crs(4326) 

dist= distance(sq_centroid_df, gdf_centre) 

val3 = distance(tstation_df, sq_centroid_df) 

# Selecting the nearest transformer to each square 

dist2_M = val3.min(axis=0) 

# List of Land Cost 

List_LC=[] 

# List of Turbine Density 

List_TD=[] 

LC = [5,40,30,60,80,25,800] 

TD = [100,10,20,40,60,20,10] 

land_array = np.array(land_array) 

for x in range (len(land_array)): 

    if land_array[x] == 'OPEN AREA': 

        List_LC.append(LC[0])  

        List_TD.append(TD[0])               

    if land_array[x] == 'COMMERCIAL': 

        List_LC.append(LC[1])   
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        List_TD.append(TD[1])   

    if land_array[x] == 'GOVERNMENT AND INSTITUTIONAL': 

        List_LC.append(LC[2])  

        List_TD.append(TD[1])   

    if land_array[x] == 'PARKS AND RECREATIONAL': 

        List_LC.append(LC[3])  

        List_TD.append(TD[1])   

    if land_array[x] == 'RESIDENTIAL': 

        List_LC.append(LC[4]) 

        List_TD.append(TD[1])   

    if land_array[x] == 'RESOURCE AND INDUSTRIAL': 

        List_LC.append(LC[5]) 

        List_TD.append(TD[1])   

    if land_array[x] == 'WATERBODY': 

        List_LC.append(LC[6])  

        List_TD.append(TD[1])   
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Appendix Ⅱ: Sample Data 
NASA Data Portal 
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Sample Downloaded Data from NASA Portal 
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Sample Measured Power Consumption Data Received from Concordia’s Facility Management 
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