

Integrated Optimization of Location, Design, and Operation of Renewable

Energy Systems for Urban Microgrids

Navid Shirzadi

A Thesis in the Department of

Building Civil and Environmental Engineering (BCEE)

 Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy in Civil Engineering

at Concordia University

Montreal, Quebec, Canada

March 2023

C Navid Shirzadi, 2023

ii

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES
This is to certify that the thesis prepared
By: Navid Shirzadi

Entitled: Integrated Optimization of Location, Design, and Operation of Renewable

Energy Systems for Urban Microgrids

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy in Civil Engineering
complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Adam Krzyzak

 Chair

 Thesis Supervisor
Dr. Fuzhan Nasiri

 Thesis Supervisor
Dr. Ursula Eicker

 Examiner
 Dr. Luiz Lopes

 Examiner

 Dr. Hua Ge

 Examiner
 Dr. Andreas Athienitis

 External Examiner
Dr. Ahmed Mohamed

Approved by

 Dr. Mazdak Nik-Bakht, Graduate Program Director

«28 March 2023»

 Dr. Mourad Debbabi, Dean of Gina Cody School of Engineering and

Computer Science

iii

Abstract

Integrated Optimization of Location, Design, and Operation of Renewable

Energy Systems for Urban Microgrids

Navid Shirzadi, Ph.D.

Concordia University, 2023

The building sector of urban areas plays a crucial role in carbon emissions and climate change.

Distributed generation using clean energies could help to reduce emissions. Furthermore, urban

microgrids increase the reliability of power supply since most of the power outages are created in

the grid distribution system and transmission lines. However, a cost-effective design and operation

of an urban microgrid poses challenges, such as limited space for installing the renewable

components, especially in populated areas, the uncertainty of renewable resources, and the

resiliency of the designed microgrid in case of not having access to the central grid. Therefore, this

thesis was initiated with the objective of developing a comprehensive method for the efficient

design of an urban microgrid. The developed framework consists of three main modules. The first

module aims at designing an energy system for a community microgrid by sizing and finding the

optimum configuration of the energy system. To resolve the spatial issue problem in urban areas,

regional renewable generation is proposed in this research where clean energy is produced outside

of the populated area as a virtual power plant in relation to the microgrid. A mapping model is also

developed to select the best location for installing components outside the microgrid. The mapping

model is connected with the optimization model to automatically generate the best configuration

and location of regional generation based on several aspects of each zone. The second module

deals with renewable resources and electrical load demand uncertainties and tries to reduce them

by forecasting strategies. Since renewable resources such as solar irradiance and wind speed are

not predictable using just historical data, hybridized numeric weather prediction (NWP) and deep

learning models are offered to tackle the drawback. The last module proposes a solution to ensure

resilience against power supply failures in electricity grids caused by extreme weather conditions,

unavailability of generation capacities, and transmission components problems.

iv

The discussed models were applied to one of Concordia University's largest buildings in downtown

Montreal, Canada. The results show a significant improvement in the environmental aspect of the

regional generation if the existing gas boiler would be substituted by electric boilers and heat

pumps (using generated renewable electricity outside of microgrid), preventing emissions of about

4233 tons CO2 and 5.3 tons NOX per year. Using a proposed tariff structure beneficial to both the

customer and utility, the resulting levelized cost of energy is about 5.3 Cents per kilowatt hour,

i.e., lower than the current rate of about 6 Cents per kWh. Using the second module’s proposed

hybrid models for renewable resources and electrical load demand prediction of the case study was

also helpful by considerably bringing down the error. Finally, operation dispatch scenarios are

developed to reinforce the system’s resiliency in severe conditions for the case study in the third

module. A mixed-integer linear programming (MILP) approach is employed to identify global

optimum dispatch solutions based on the next 48 h plans for different seasons to formulate a whole-

year operational model. The results show that the loss of power supply probability (LPSP), as an

indicator of resiliency, could be lowered to near zero while minimizing operational cost using the

proposed optimal load (derived from critical load).

v

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Prof. Ursula Eicker and Prof.

Fuzhan Nasiri for all their support throughout this adventure. I was so fortunate to use their

knowledge and academic skills along with emotional support since day one, and I am ultimately

grateful for that.

I also would like to express my deepest appreciation to my examination committee for their useful

and constructive feedback, valuable comments, and support.

I would like to thank Mr. Daniel Gauthier (facility management of Concordia University) and Mr.

Anton Kaifel (Centre for Solar Energy and Hydrogen Research) for providing some part of the

data used in this study.

A highly deserved thank you goes to all my teammates in both CERC and SEISE labs, especially

Dr. Ramanunni Menon, who assisted me in difficult situations.

My absolute love and thanks to my mother Zohreh, my father Mohammadreza, my lovely sisters

Nadia and Nushin and my wonderful brother Hooman for all their support and encouragement

during this journey which helped me to stand again in challenging situations.

Last but not least, an exceptional thanks to my lovely wife Elaheh, who I couldn't have

accomplished this thesis without her endless support, love, and encouragement.

vi

I dedicate this thesis to my loved ones: my mother, my father, my sisters, my brother, and

my wife, who I cannot breathe without them.

vii

Contents

Chapter 1: Introduction ... 1

1.1. Background and Motivation .. 1

1.2. Problem Statement and Research Questions ... 2

1.3. Research Objectives .. 4

1.4. Thesis Structure ... 5

Chapter 2: Literature Review .. 6

2.1. Optimum Configuration and Sizing ... 6

2.2. Energy System’s Operation ... 7

2.3. Removing Uncertainties... 9

2.3.1. Load Forecasting ... 9

2.3.2. Wind Speed Forecasting ... 10

2.3.3. Solar Irradiance Forecasting ... 13

2.4. Operation and Resiliency ... 14

Chapter 3: Methodology ... 17

3.1. Introduction ... 17

3.2. PV Model ... 17

3.3. Wind Farm Model ... 20

3.4. Local and Regional Generation Design ... 23

3.4.1. Local Design optimization model .. 23

3.4.2. Mapping model .. 28

3.4.3. Regional and Local Design Optimization Model ... 29

3.4.4. Economic Evaluation ... 32

3.4.5. Environmental assessment ... 32

viii

3.5. Optimum Operation Scheduling .. 33

3.5.1. Day ahead forecast methods ... 33

3.5.1.1. SARIMAX .. 34

3.5.1.2. LSTM .. 35

3.5.1.3. Weibull distribution... 37

3.5.1.4. NWP Model... 37

3.5.1.5. Hybrid Model .. 37

3.5.1.6. Hyperparameter Optimization ... 38

3.5.1.7. Preprocessing and Evaluation Metrics .. 38

3.5.2. Critical load and resiliency ... 39

3.5.2.1. Optimization model ... 42

3.5.3. Grid-Connected Optimal Operation ... 46

Chapter 4: Case Study ... 48

4.1. Building’s General Information... 48

4.2. Location’s General Information .. 51

4.3. Critical Load .. 53

4.4. Electricity Tariff .. 55

Chapter 5: Results and Discussion .. 57

5.1. Implementation and Utilized Tools ... 57

5.2. PV Power Output ... 57

5.3. Wind Power Output ... 58

5.4. Local Generation Design ... 62

5.5. Heating System .. 69

5.6. Regional Generation Design .. 72

5.6.1. Electric Boiler .. 72

ix

5.6.2. Heat Pump .. 78

5.7. Proposed Tariff .. 82

5.8. Environmental assessment ... 86

5.9. Renewables and Power Consumption Uncertainties 87

5.9.1. Power Consumption Forecasting ... 88

5.9.2. Wind Speed Forecasting... 90

5.9.3. Solar Irradiance Forecasting... 98

5.10. Optimum Operation ... 102

5.10.1. Grid-Connected Optimal Operation ... 102

5.10.2. Resilience-Oriented Off-Grid Operation .. 103

Chapter 6: Conclusion and Future Suggestions .. 110

6.1. Summary .. 110

6.2. Research Contributions.. 113

6.3. Directions for Future Research .. 115

Bibliography ... 116

Appendices .. 124

Appendix Ⅰ: Python Codes .. 124

Appendix Ⅱ: Sample Data... 204

x

List of Figures

Figure 1.1. Research objectives framework .. 5

Figure 3.1. Energy system’s flowchart ... 17

Figure 3.2. Proposed design flowchart ... 23

Figure 3.3. Proposed mapping flowchart .. 29

Figure 3.4. Proposed forecasting framework .. 33

Figure 3.5. Schematic design of an LSTM module .. 35

Figure 3.6. A schematic design of the optimization module .. 42

Figure 3.7. Proposed framework for grid-connected operation .. 46

Figure 4.1. Last three years, EV building’s power consumption with 15 minutes resolution 49

Figure 4.2. Daily consumption of three main sections of EV building for each day of a week ... 50

Figure 4.3. Montreal 2020’s climatic information .. 52

Figure 4.4. Decomposition graph of wind speed data .. 53

Figure 4.5. Monthly HQ rate for Concordia University ... 56

Figure 5.1. DC power output of a PV module .. 58

Figure 5.2. Single 25kW wind turbine power output.. 61

Figure 5.3. The power output of one of the turbines located in the middle of the wind farm 62

Figure 5.4. The annual schedule of the optimum design for local power generation 65

Figure 5.5. The annual schedule of the optimum design .. 67

Figure 5.6. Battery State of Charge and Charge\Discharge schedule for the optimum energy system

... 67

Figure 5.7. Monthly generation, unmet load, surplus power, and grid purchase bar chart 68

Figure 5.8. Electric boilers' electricity consumption during the year 2019 69

Figure 5.9. Available data for heat transfer calculations .. 70

Figure 5.10. EV building’s electricity consumption for the scenario with a replacement of the gas

boiler with the electric boilers ... 71

Figure 5.11. Calculated hourly natural gas consumption in the year 2019................................... 72

Figure 5.12. Created square mesh circle ... 74

Figure 5.13. Final mapping model output ... 75

Figure 5.14. Final mapping model output (Zoomed in).. 77

Figure 5.15. The annual schedule of the optimum regional design using the electric boilers 78

xi

Figure 5.16. EV building’s electricity consumption for the scenario with a replacement of the gas

boiler with the heat pump ... 79

Figure 5.17. The annual schedule of the optimum regional design using a heat pump 81

Figure 5.18. The proposed dynamic pricing strategy for regional generation design using an

electric boiler .. 84

Figure 5.19. The proposed dynamic pricing strategy for regional generation design using a heat

pump ... 85

Figure 5.20. Model convergence plot for a single LSTM model.. 89

Figure 5.21. Power consumption forecasting results for 48 hours ... 90

Figure 5.22. Weibull distribution of the historical wind speed... 92

Figure 5.23. 48 hours forecasting results in different seasons .. 94

Figure 5.24. One week (168 hours) forecasting results of the hybrid model in different seasons 97

Figure 5.25. Correlation heatmap between independent and target variables 98

Figure 5.26. Forecasting results for a Clear Sky day (7th May) ... 99

Figure 5.27. Forecasting results for a scattered day (11th May) .. 100

Figure 5.28. Forecasting results for an overcast day (4th May) ... 101

Figure 5.29. Optimal operation schedule in the grid-connected mode 103

Figure 5.30. Trial and error results for finding the best coefficient .. 105

Figure 5.31. Optimal Schedule using actual load demand.. 106

Figure 5.32. Loss occurrence and value in Summer ... 107

Figure 5.33. Loss occurrence and value in winter .. 107

Figure 5.34. Optimal, actual, and critical loads for summer and winter 108

Figure 5.35. Optimal Schedule using optimal load demand ... 109

xii

List of Tables

Table 3.1. PV module’s information ... 18

Table 3.2. Assumed atmospheric parameters ... 19

Table 3.3. Different Land's friction coefficient .. 21

Table 3.4. Air conditioning critical coefficients ... 41

Table 3.5. Electricity demand critical coefficient ... 41

Table 4.1. User categories and their floor areas in EV Building .. 48

Table 4.2. Concordia University’s available roof area ... 51

Table 4.3. User categories and their floor areas in EV Building .. 53

Table 4.4. Critical coefficient values for summer and winter... 54

Table 4.5. HQ electricity purchase rate for Concordia University – The year 2020 55

Table 4.6. Assumed purchase rate .. 56

Table 5.1. PV modules information .. 57

Table 5.2. Single wind turbine sub-models and parameters ... 59

Table 5.3. Wind farm sub-models and parameters ... 59

Table 5.4. Assumed Hellmann friction factor coefficients ... 60

Table 5.5. Single wind turbine specifications ... 60

Table 5.6. Wind farm wind turbines specifications .. 61

Table 5.7. Input costs parameters ... 63

Table 5.8. battery’s input parameters .. 63

Table 5.9. Flexible loss of power supply penalty coefficient ... 64

Table 5.10. Optimum configuration and economic report of local energy system 64

Table 5.11. Designed local energy system information .. 65

Table 5.12. Land cost and turbine density assumptions ... 73

Table 5.13. Regional model optimum configuration and economic report 75

Table 5.14. Regional generation optimum design parameters .. 76

Table 5.15. Building’s annual consumption in different scenarios .. 79

Table 5.16. Selected air source heat pump specification .. 79

Table 5.17. Regional model using heat pump optimum configuration and economic report 80

Table 5.18. Regional generation optimum design parameters .. 81

Table 5.19. Dynamic pricing strategy ... 83

xiii

Table 5.20. The final optimum configurations and economics using the proposed Tariff 85

Table 5.21. Regional generation optimum design parameters using proposed tariff 86

Table 5.22. EV building’s natural gas consumption by-products ... 87

Table 5.23. Savings by ceasing natural gas consumption ... 87

Table 5.24. Hyper Parameters of the LSTM model and Parameter selection results 88

Table 5.25. Power consumption forecasting results ... 91

Table 5.26. Report of the Grid Search for SARIMAX parameter selection 92

Table 5.27. Selected combination information ... 93

Table 5.28. Evaluation metrics of all the models for Wind Speed Forecasting 96

Table 5.29. Evaluation metrics for solar radiation forecasting in Cloudy day – Overcast (4-May)

... 101

Table 5.30. Purchasing price based on rate G flex ... 102

Table 5.31. The microgrid components and battery information. .. 104

Table 5.32. Comparison of the scheduling results for the actual, critical, and optimal loads 106

xiv

Abbreviations

AC Alternating Current
AI Artificial Intelligence
AIC Akaike Information Criterion
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
BIC Bayesian information criterion
CAD Canadian Dollar
CHP Combined Heat and Power
CNN Convolutional Neural Network
CO2 Carbon Dioxide
COP Coefficient of Performance
CRAC Computer Room Air Conditioning
CRF Capital Recovery Factor
DC Direct Current
DHI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance
DR Demand Response
ELM Extreme Learning Machine
ENCS Engineering and Computer Science
ESS Energy Storage System
EV Electric Vehicle
GAMS General Algebraic Modeling System
GDP Gross Domestic Products
GHI Global Horizontal Irradiance
HQ Hydro Quebec
HQIC Hannan–Quinn information criterion
HRES Hybrid Renewable Energy System
HVAC Heating, Ventilation, and Air Conditioning
IQR Interquartile
LBQ Ljung-Box Q-test
LCOE Levelized Cost of Energy
LPSP Loss of Power Supply Probability
LSTM Long Short-term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MG Microgrid
MILP Mixed Integer Linear Programming

xv

MINLP Mixed Integer Nonlinear Programming
MLP Multi-Layered Perceptron
MLR Multilinear Regression
MSLE Mean Squared Logarithmic Error
MW Megawatt
NEA Niching Evolutionary Algorithm
NOX Nitrogen Oxide
NPC Net Present Cost
NWP Numeric Weather Prediction
OF Objective Function
PDF Probability Distribution Function
PV Photovoltaic
RES Renewable Energy System
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SARIMAX Seasonal Autoregressive Integrated Moving Average
SVM Support Vector Machine
SVR Support Vector Regression
USD US Dollar
VA Visual Arts
ZSW Centre for Solar Energy and Hydrogen Research

1

Chapter 1: Introduction

1.1. Background and Motivation
With increasing energy demand all around the world and depletion of fossil fuels, and the

climate change issue caused by using them, renewable energy has attracted significant global

awareness. Raising urbanization is causing a concentration of energy demand in high-density

urban areas [1]. To increase the power supply's resilience and reliability, the urban energy system

transition from a centralized limited capacity conventional grid to a distributed one needs to be

accelerated [2].

A small-scale energy system consisting of generators, energy storage, load, and control

units, which could work in an isolated or grid-connected mode, ensuring the power supply for a

defined region, is called microgrid (MG) [3]. For supplying resilient power at both neighborhood

and community scales, MGs can play a vital role [4]. Although controlling MG is a crucial step in

increasing the reliability of a MG, designing, and sizing it in the first place could also impact the

power supply resiliency.

Renewable power generation by decentralized energy systems in urban areas is limited to

the available space for installing renewable components such as PV panels and wind turbines. This

could be more challenging for large-scale consumers such as high-rise residential or institutional

buildings typically located in populated areas with a great amount of power consumption, leading

to low renewable penetration and high dependency on the central grid. Therefore, designing an

urban distributed generation could be a crucial step toward the building’s lower carbon emissions

and improvement of the economy of renewable power generation.

The next important step after designing an urban microgrid is controlling it in an

economical manner. Grid power failures are common, especially in urban areas that rely on a

conventional mono grid. The most common causes of electrical disturbances in the power grid

could be severe weather conditions such as storms or flooding [5] or natural hazards such as

earthquakes. Beyond environmental hazards, there are other causes, such as equipment failure,

transmission line damage, or cyberattacks. These may impact the operational resilience of the

energy system based on their severity. Therefore, the designed energy system requires not only

reliability but also resiliency which is the ability of the system to quickly recover from the events

2

that caused the outages [6]. Although microgrids could work in an isolated mode and are a reliable

solution, operation management is necessary to mitigate the unbalanced power supply and increase

its quality in case of disconnection from the grid. The control strategy that helps the microgrid

alleviate the consequences of major contingencies could be considered operational resiliency [7].

To increase the systems operational resiliency, the probability of loss should be lowered as much

as it is possible while considering the economic aspect of the system.

Moreover, the electrical consumption and power output of renewable technologies are

influenced by varying meteorological conditions that can be impacted by global warming. Using

just historical data could not capture the complexity of changing wind patterns or the movement

of clouds that change the solar irradiance and PV panels' power output accordingly. All these

behaviors could cause significant uncertainties for unit commitment purposes, and few studies

considered these uncertainties for the operational management of the energy system [8], [9]. Load

and component power output prediction could reduce this uncertainty and make the model more

reliable and robust.

1.2. Problem Statement and Research Questions
There are several challenges with urban microgrids that could be summarized below:

• Space Limit and urban renewable integration: One of the major problems preventing MGs

usage in urban areas, especially metropolitan and downtown sectors, is the spatial issues.

Renewables such as solar PV panels and wind turbines need large areas to be installed, and

there are other aspects, such as wind turbines' noise and social acceptance aspects of it, etc.

Low space availability and low wind speeds due to high roughness coefficients often limit

the available power, thus requiring regional generation concepts.

• Carbon emissions and grid congestion: when converting existing building heating systems

based on fossil fuels with electricity-driven systems, the electricity demand rises and might

lead to serious grid congestion. Although zero emissions might be achieved with clean

electricity, grid congestion issues need to be solved through more efficient conversion

systems while minimizing cost.

• Dynamic tariff: Although dynamic electricity tariffs were considered as a tool for demand

side management in some urban microgrids [10], lack of assessing it during the design

3

stage could lead to lower economic efficiency which could be detrimental to the both

utilities and prosumers.

• Intermittency of renewable resources and load demand: Due to the intermittent nature of

renewable power generation and load demand, the available resources and the demand need

to be forecasted to be used in the operation management stage. However, their complicated

behavior brings down the prediction’s accuracy.

• Microgrid's Resiliency and Reliability: Since an urban MG is designed with considering

access to the central grid, any failure could significantly impact the MG's resilience and

reliability.

Based on these challenges, the thesis tries to answer several research questions for the

design and operation of renewably powered urban energy systems. For the design optimization,

the questions which could be derived from the first three challenges are:

• Is it feasible to generate electricity outside of the urban area (regional generation), and

where is the optimum location to install the power plant in terms of cost and availability of

renewable resources? How does a design of local generation with PV and low-power urban

wind turbines compare economically and in terms of reliability with the design of local PV

and regional generation using high-power wind turbines?

• What are the optimum configurations of local and regional renewable generation based on

information such as meteorological conditions, grid infrastructure, tariff structure?

• How can dynamic tariffs be designed to be beneficial for both customer (urban microgrid

user) and utility ?

• What are the best technological choices for heat generation in urban buildings taking into

account economic, environmental, and grid congestion challenges?

While for optimum operation, the following questions could be raised (based on the last two

challenges):

How can operational schedules be optimized under grid failure conditions using critical

load concepts?

4

• For a given renewable energy system design and load profile, how well can the load and

renewable resources be forecasted, and what economic and resiliency benefits can be

expected through operational optimization?

1.3. Research Objectives
Accordingly, this thesis aims at making the urban microgrids more feasible considering

economic, environmental and technical aspects by presenting a multi-stage framework that

includes three main modules: 1) Design an urban microgrid with the ability to generate electricity

outside of the microgrid area as a virtual power plant concept, including energy systems

configuration, component sizing, land selection, and environmental assessment to address the first

five research questions, 2) Resilience-oriented optimal operation module to deal with the challenge

raised in the sixth research question and 3) Power consumption and renewable generation

forecasting to cover the last research question. This is achieved by means of the following stages

proposed:

1) Reviewing the previous research studies in the literature within the context of design and

control of the community microgrids.

2) Considering different possible scenarios for designing an economically feasible renewable

energy system. As shown in Figure 1, the methodology is explained in two different

modules for a local and regional generation.

3) Establishing a mapping model for regional renewable power generation to deal with the

limited space challenges in urban areas

4) Developing robust operational scheduling model using hybridized forecasting methods to

diminish uncertainties.

5) Structuring a resilience-oriented model to bring down the central grid dependency in case

of failure. As depicted in Figure 1.1, a separate methodology will be discussed for the off-

grid scenario.

The proposed research framework is summarized in Figure 1.1.

5

Figure 1.1. Research objectives framework

1.4. Thesis Structure
The remainder of this thesis is structured into five chapters. Chapter 2 represents the

previous studies regarding the design and operation of urban microgrids. Chapter 3 illustrates the

related methodology of the modules (PV and Wind power output models, local and regional design

models, forecast models, and finally, operation model) and submodules. Chapter 4 explores the

case study information and data, while Chapter 5 provides the models' results for each module and

discusses comparing different scenarios. And finally, a conclusion, including a summary of the

research and suggestion for future works, is provided in chapter 6.

6

Chapter 2: Literature Review

2.1. Optimum Configuration and Sizing
The literature has shown an increasing trend in studies that focus on sizing integrated

renewable energy systems (IRES) and MGs considering the different economic, environmental,

and even social aspects [11], [12]. In [13], the authors simulated and sized an urban microgrid

using 100 percent renewable resources while trying to compare the economic aspects of the

designed system in isolated and grid-connected modes. A multi-objective optimization model for

designing an IRES, including PV panels, wind turbines, and marine energy, was proposed by [14]

for a building in a coastal community. It was shown in this reference that an optimum renewable

system mix, with cost, energy utilization, and loss of power objectives, that reaches 100%

renewable generation in higher demand hours is a challenging task in practical planning.

 Reference [15] has developed a framework with multi-perspective performance evaluation

for an optimal design of a flexible hybrid power plant at a community level (Beijing, China). The

results of their investigation showed that using 100% of PV rooftops and available biomass could

satisfy 73% of the electricity demand with a Levelized cost of energy (LCOE) equal to 0.1030

$/kWh.

To cover the deficiencies caused by using 100% renewable resources, some studies

considered the integration of auxiliary fossil fuel generators [16]. Other studies, such as [17],

presented hybrid grid-connected energy systems with battery and hydrogen vehicle storage for a

typical high rise residential building with 30 stories and 8 two-occupants flat and 8 four-occupants

flats in each story). In this reference, the annual net grid exchange is equal to 4.55 MWh.

A large number of studies have also been conducted to develop single and multi-objective

algorithms for sizing applications. In [18], they presented an algorithm for planning a residential

and campus microgrid to maximize renewable generation while finding the most economical

configuration. Meta-heuristic approaches were used by [19] to find the optimum size and topology

of a microgrid in an off-grid mode using a super-capacitator and hydrogen fuel cell system in New

Zealand. Their results showed that the LCOE of electricity and hydrogen are 0.09 $/kWh and 4.61

$/kg, respectively, which are below the case study's tariff (Between 0.11 $/kWh and 0.16 $/kWh

for residential consumers based on their consumption level). Considering the concept of net zero

7

buildings, the authors in [20] carried out research on the optimal design and operation of a solar-

hydro energy system with hydrogen generation and fuel cell technology to minimize the

investment cost for a 30 kW power demand residential building. Their proposed model could

reduce the carbon dioxide emission by about 39546 kg while bringing down the cost by about

50.3%.

2.2. Energy System’s Operation
The previous research on economic dispatching can be separated into two main categories:

standalone microgrids and grid-connected microgrids. A standalone microgrid is a type of MG

with no access to the grid, such as microgrids in remote areas [21]. While in the grid-connected

ones, the grid is typically accessible and is part of the system, such as urban microgrids. Augustine

et al. [22] employed the reduced gradient method for analyzing the dispatch rate of power for an

isolated microgrid consisting of wind turbines and solar panels as main generators. Their results

indicate that the system could only be operationally profitable when using governmental subsidies

for the installation of solar panels. Conti et al. [23] presented research on optimal dispatching in a

medium voltage islanded microgrid using the niching evolutionary algorithm (NEA). The

optimization goal was to minimize the overall operational cost and pollutant emissions. Their

results show the potential of the optimization process in decreasing operating cost and emissions

while boosting the microgrid performance and reliability. However, they have not considered the

imprecision caused by using only historical data for future predictions. In addition, their model

does not provide a basis for the initial sizing of the components.

 In [24], the authors investigated the effect of using a gravitational search algorithm to

optimize economic dispatch and boost efficiency and performance in an isolated MG. The results

that were validated experimentally indicate that the proposed method can improve MG’s

performance compared to conventional energy management systems. The study did not provide

an approach for predicting the load demand and renewable generation levels. This could contribute

to inaccuracies in scheduling. In addition, the impact of storage charging/discharging rates on

operational costs were not analyzed. In [25], a day-ahead operational strategy was proposed for an

urban microgrid by Kanchev et al. to optimize the CO2 emission and operational cost. They

compared the optimal operational planning, considering three different objective functions,

namely 1. Emission, 2. Fuel Consumption, 3. Trade-off between emission and fuel consumption

8

with typical operational planning without optimization. Their results highlighted at least a 10%

reduction in total operational cost in all optimal planning scenarios. In the other investigation that

has been done by KavousiFar et al. [26], although they considered the uncertainty of the wind

resources in their optimal dispatch strategy, the effect of wind power curtailment has not been

evaluated.

Wen et al. [8] considered the optimal load dispatch of a grid-connected microgrid,

including solar photovoltaic (PV), energy storage system (ESS), and electric vehicles (EV). They

considered three different scheduling scenarios and employed a particle swarm optimization

algorithm to reach the optimal schedule. Their results indicate that using ESS and EVs can decrease

daily operational cost by about 9 percent. They reported the final operating cost of each scenario.

However, the breakdown of costs was not provided, and as such, the impact of each objective (in

the scheduling model) on the final cost was not elaborated. Since the utility and users pursue

conflicting goals (utility wants to maximize its profit and users want to minimize the cost), Sun et

al. recently published a paper on the day-ahead economic dispatch strategy based on game theory

to ensure each one (utility and users) can achieve their optimization goal [27].

Lu et al. [28] developed a robust dispatch optimization model for a community energy hub

that includes combined heat and power (CHP), heat storage, gas boiler, wind turbines, PV panels,

and EV as means of reducing operational cost and emissions. Their model considered a demand

response (DR) program for accommodating electrical and thermal loads. They evaluated three

scenarios of EV charging/discharging and DR setting. Their results showed that the DR program

with a coordinated charging/discharging mode for EV could further bring down the total cost.

Although the dynamism of electricity pricing was taken into account using a robust optimization

approach, the impact of possible future variations in load demand and renewable power generation

levels were not analyzed.

 Yang et al. [29] proposed a two-stage dispatching optimization for a grid-connected home

with an integrated PV-Battery system. Their results indicated that the proposed two-stage dispatch

strategy could significantly improve the user's benefit. They have also investigated the impact of

sunrise time. However, the impact of battery storage system degradation on costs was not

incorporated in estimating the user's benefit. The electrical consumption and power output of

renewable technologies are influenced by varying meteorological conditions. Using just historical

9

data for unit commitment will cause uncertainties, and few studies considered this uncertainty for

the operational management of the energy system. Load and component power output prediction

could reduce this uncertainty and make the model more reliable. With the rise of artificial

intelligence and machine learning, various research focused on different forecasting types and

compared the methods' accuracy.

2.3. Removing Uncertainties
The electrical consumption and power output of renewable technologies are influenced by

varying meteorological conditions that can be impacted by global warming. Using just historical

data for unit commitment will cause uncertainties, and few studies considered this uncertainty for

the operational management of energy systems [8], [9]. Load and component power output

prediction could reduce this uncertainty and make the model more reliable [8]. With the rise of

artificial intelligence and machine learning, various research focused on different forecasting types

and comparing the methods' accuracy.

2.3.1. Load Forecasting

Kialashaki et al. [30] developed and compared two energy demand forecasting models for

the United States' residential sector based on ANN and multilinear regression (MLR) techniques.

They considered using different indicators on consumption behavior and made three different

models based on various features such as Gross Domestic Products (GDP), median household

incomes, cost of residential electricity, and cost of residential heating oil and used ANN and MLR

techniques for each model. They used the coefficient of determination (R Squared) to evaluate and

compare the predictions' accuracy. Their results indicate that the coefficient of determination of

the ANN models is slightly more than MLR (about 1-3 percent). In 2017, Nageem et al. [31]

published research on forecasting power output of photovoltaic modules in grid-connected mode

using a support vector machine (SVR) method. They compared the results of the SVR model with

an analytical model. Their results indicate that although both methods' mean absolute percentage

error is high, SVR can predict with about 4% less error than the analytical method, while the

computational time and complexity of the analytical model are lower.

While many studies have considered artificial neural network for sequential data, few

researchers focus on using a recurrent neural network (RNN) and especially the long-term short

10

memory (LSTM) method that is basically designed for time series applications, especially the

sequential data with long-term dependencies.

Rahman et al. [32] in 2018 presented an RNN - LSTM model for energy consumption medium-

term prediction of a Public Safety Building in Salt Lake City, Utah (US). They also developed a

simple deep neural network model to compare the RNN model results with it. They separate the

load power into heating, ventilation, and air conditioning (HVAC), Computer room air

conditioning (CRAC), convenience power, and elevator power. Their results demonstrate that

although the RNN model has significantly less error than a 3-layer multi-layered perceptron (MLP)

model in the case of predicting the HVAC load profile over an 83-day time horizon, the MLP

model is more accurate in terms of CRAC load prediction. The impact of long-term dependencies

is expressed as the reason in this study. However, the comparison of the two models' ability to

forecast the total load prediction of the building is not reported.

2.3.2. Wind Speed Forecasting

Wang et al. [33] proposed a hybrid model including an autoregressive moving average

(ARMA) and a bivariate fuzzy time series model to forecast daily wind speed in Hainan province

in China. Their results show that while the mean absolute percentage error (MAPE) of

conventional (ARMA and ARIMA) models for four different sites ranges between 18.15-22.08%,

the hybrid model reduces the error to the range of 16.64 – 18.29% for day-ahead wind speed

forecasting.

 In 2017, Yatiyana et al. [34] presented a statistical model using an autoregressive

integrated moving average (ARIMA) to predict wind speed and direction in Western Australia.

The shorter response time was mentioned as the reason for the method selection. Their results

show that the MAPE for wind speed prediction of 6 hours is 4.9% and 15.6% for wind direction

forecasting of 7 days lead time. However, integrating these two models into a single model to

increase the overall accuracy was not reported, and capturing the fluctuations of the wind speed

with the ARIMA method was not explained. A day ahead and two days ahead forecasting using

fractional-ARIMA is reported in [35], and it showed a significant reduction in error and

improvement in accuracy compared with persistence methods. To consider the seasonality of the

training data, seasonal autoregressive integrated moving average (SARIMA) has been used in

several studies. Wang et al. [36] used SARIMA for forecasting daily and monthly wind speed in

11

four sites in northwestern China, and because of the nonlinearity and non-stationary inherent of

wind speed, they hybridized it with extreme learning machine (ELM) and Ljung-Box Q-test (LBQ)

to improve the accuracy.

For instance, in one of the sites, the results of the mean daily forecast showed about 34

percent MAPE for a single SARIMA method, while their proposed hybrid model brought down

the error to about 14 percent.

Other methods, such as employing fuzzy theory [37], [38] and also machine learning

approaches, such as using support vector machine (SVM) [39], have also been used by researchers

for day-ahead wind forecasting. However, artificial neural network (ANN) gained the most

attention and is broadly used for wind speed forecasting, either on its own or as a hybrid model in

combination with other models (e.g., statistical models). In [40], the authors reported a comparison

between ANN, ARIMA, and a hybrid model, which is a combination of ARIMA and ANN for

wind speed forecasting in three regions in India. Their results indicate that the hybrid model could

predict the wind speed with less error regardless of the linear and non-linear behavior of wind

speed. Although the hybrid model had a significantly lower error when compared to the ANN-

only model, the MAPE of the hybrid model forecast (18-25%) for different lead times (1 hour, 3

hours, 8 hours, and 24 hours) still seems high.

In recent years, deep learning methods such as recurrent neural network (RNN), Elman

neural network, and convolutional neural network (CNN) are gaining attention for time series

forecasting given their inherent ability to deal with sequential data [41]–[44]. Liu et al. [45]

presented a hybrid model that consists of an Elman neural network and a long short-term memory

(LSTM) for wind speed forecasting. Their results indicate that the LSTM could be suitable for

non-stationary wind speed forecasting, and also their proposed hybrid model could forecast with

reasonable accuracy. In other research that has been presented by Wang et al. [43], wind power

was forecasted using a CNN model, and their results show that the proposed model was sufficient.

While AI and statistical methods provide proper results in most of the forecasting horizons

(short-term, medium-term and long-term), using physical approaches becomes necessary in short

and very short-term horizons since the impact of atmospheric dynamics becomes more important

[46].

12

Numerical weather prediction (NWP) models are mathematical models describing the

current and future status of the atmosphere and surface (ocean and land) with a typical forecast

horizon of one to two weeks. In [47], the authors proposed a model based on numerical weather

prediction and historical measurements that combines multiple sources of past physical model

outputs. Their developed model was then applied to forecast the wind speed in a region near the

US. Great Lakes. Their results show improvement in the root mean squared error of the proposed

model.

Since the NWP is influenced by initial conditions, it could result in a considerable error for

short-term wind forecasting as it is slowly updated and lags behind the actual changes [48].

The above literature shows that AI-based methods, statistical methods, and hybrid models

have been considerably used for day-ahead wind speed forecasting. However, due to the

unexpected behavior of the wind and its direct relation with physical indicators, the proposed

models could not be practically used where higher accuracy is required, such as operational control

of a microgrid. Moreover, the methods such as the NWP have also been employed to predict wind

speed. However, still, it only considers current physical conditions, and it cannot learn from the

past wind speed values and unexpected changes.

This thesis aims to advance the knowledge for more accurate wind speed forecasting that

is used in the operation planning of an urban microgrid. The novelty of the proposed approach is

in developing a hybrid model consisting of Weibull distribution, LSTM, and NWP models to

reduce the error involved with wind speed prediction using a single LSTM model by considering

the distribution probability of the historical wind speed data and also the physical description of

the area. The main contributions of this section, with respect to the prior literature, are as follows:

• A hybrid model is proposed to circumvent the inaccuracy of the single statistical

approaches. In the proposed model, the LSTM method is used, which has several

advantages over the conventional feed-forward neural network.

• Creating a Weibull distribution of the wind speed, predicting the wind speed based on a

stochastic approach, and combining the probability distribution of the wind speed with the

LSTM model creates an integrated model with less error compared to a single LSTM and

SARIMA model with exogenous variables.

13

• Proposing a hybrid model that includes the NWP model's result and AI models with

minimum error for short-term forecasting applications (Just for clarity, every time we refer

to short-term in this paper, it means 24-72 hours forecasting).

2.3.3. Solar Irradiance Forecasting

Various methods have been used to forecast solar irradiance in previous studies. These methods

could be classified into two main categories: numeric weather prediction (NWP), statistical, and

learning times series methods. Persistence predictions as the simplest time series models considers

the forecast of the irradiance model in the next prediction horizon equal to the current irradiance

at the surface [49]. Persistence models are typically used as a naïve predictor, and the forecasting

performance of the other robust methods is compared with them [50]. While statistical models use

historical data to predict future solar irradiance, NWP models forecast the current and future states

of the atmosphere and surface based on duplicating the physical phenomenon. Moreover, different

machine learning techniques have recently been widely used for solar irradiance forecasting based

on learning the pattern of historical data.

A comparison of different time series solar radiation forecasts has been done by Reikard [51] for

different time resolutions (5, 15, 30, and 60 minutes). The result of his work shows that the

autoregressive integrated moving average (ARIMA) model can obtain better accuracy in most of

the forecast horizons (1, 2, 3, and 4 hours) compared with other statistical and learning models

such as neural network (NN). In another study, Mellit et al. [52] used a multilayer perceptron

(MLP) technique to predict day-ahead solar irradiance by using temperature as an independent

variable. Their forecasting results showed a better correlation coefficient for sunny days (98%)

and less for cloudy days (95%). In [53], the authors use a multistage neural network instead of a

single-stage neural network for daily global horizontal irradiance forecasting. Their result shows

that their proposed model could reduce the mean bias error (MBE) from about 30% (single-stage

NN) to about 20%. However, in all mentioned statistical and learning models, the impact of

unexpected cloud movement could not be captured from the historical data. Especially on cloudy

days, the inaccuracy of these models will rise.

As advanced machine learning methods, deep learning algorithms are also employed to better deal

with the dependencies in historical data. Sun et al. [54] used a convolutional neural network (CNN)

to forecast PV output using sky images. In another study, Qing et al. [55] investigated the ability

14

of the LSTM method (using meteorological features) for the day ahead prediction with hourly

resolutions. Moreover, the hybridized models consist of CNN, and LSTM models also developed

in recent years for solar radiation forecasting [56], [57]. Other types of hybrid machine learning

models were also developed for solar irradiance forecasting to improve efficiency, and a complete

study has been done in [58].

On the other hand, the NWP models that integrate hydrodynamic equations with numeric methods

are mainly used with an extended forecasting horizon (up to 15 days) [59]. Although the NWP

model could be a good choice for longer-term forecasts, it could result in lower accuracy when it

comes to short and very short-term forecasting. Moreover, it is considerably impacted by its initial

conditions.

2.4. Operation and Resiliency
A microgrid is a small-scale energy system including distributed generators, energy

storage, load, and control units, which could work in a grid-connected or off-grid mode, ensuring

the power supply for a defined region [60]. Microgrids can play a significant role in supplying

resilience at the neighborhood or even community level [61]. Although microgrids could work in

an isolated mode and being a reliable solution, operation management is necessary to mitigate the

unbalanced power supply and increase its quality in case of disconnection from the grid. The

control-based strategy that helps the microgrid mend and alleviates the consequences of major

contingencies could be considered operational resiliency [62]. To increase the systems operational

resiliency, the probability of loss should be lowered as much as it is possible while considering the

economic aspect of the system.

During the last decade, several types of research have been accomplished on optimally

controlling a microgrid's operation. In [63], the authors studied the different optimal dispatching

procedures of a grid-connected microgrid. They compared the ability of different optimization

methods to minimize the operation cost. In [64] and [13], scheduling problems were solved

considering several uncertainties to bring the operating cost to the minimum level.

Augustine et al. [22] investigated the dispatch rate of power for a standalone microgrid

consisting of wind turbines and solar panels as main generators using the reduced gradient method.

Their results show that using governmental subsidies for the installation of solar panels could cause

15

the system to be operationally profitable. Lu et al. [28] proposed a robust optimal dispatch model

for the energy management purpose of a community energy hub, considering the uncertainties of

electric vehicles (EVs) and electricity prices. Their results indicate that adopting a

charging/discharging mode instead of a single charging mode could bring down the total

operational cost of the energy hub.

Various other studies also investigated the different ways of mitigating the operating cost

of the microgrid, considering the reliability along with economic aspects. In [65], the authors

investigated the operation cost of a microgrid in both grid-connected and off-grid mode with

simulation results while considering the reliability using the scenario-based approach to evaluate

the reliability index of the system. In the other study that was done by Costa et al. [66], they

evaluated the economic benefits while raising the system's reliability.

In recent years, several studies have been carried out on controlling the microgrid using

resilience-oriented approaches. In [67], the authors presented a resilience-based technique by

taking into account both the survivability of critical loads under emergency conditions and the

feasibility of islanding mode under normal operating conditions. In 2021 another study [68],

investigated the various disturbances inside the microgrid and the authors proposed a methodology

for identifying the vulnerable components and ensuring their operational resilience. A real-time

control strategy based on model predictive control techniques is suggested in [15], in accordance

with the microgrid's schedule. In 2022, Javier et al. [69] proposed a stochastic model predictive

technique to consider feasible transitions from grid-connected to off-grid modes for different

scheduling horizons.

 Most of the above studies focused on how to increase the reliability aspects based on a

trade-off between reliability and the system's operating cost. Nevertheless, they have not

investigated the resilience of the microgrid during its operation by generating 100% renewable

energy and how to improve the microgrid's reliability and minimize the power supply's deficiency

concerning economic factors without using fossil fuels as auxiliary powers. Furthermore, previous

literature has not explored enhancing the system's resiliency and reducing the costs associated with

severe power outages.

This thesis focuses on the optimum operation design of an urban microgrid while exploring

ways of improving its resiliency. The main contributions of this section of the research could be

16

summarized as considering a penalty for loss of power supply probability to improve the energy

system's reliability along with optimum loss coefficient selection considering both reliability and

economic aspects. Moreover, the possibility of maximizing reliability by diminishing the loss of

power supply probability while covering the critical load of an education building in an urban area

is also investigated in this research. This thesis also proposes the term "Optimal Load" which

satisfies the surplus power constraint while maximizing the microgrid's reliability.

17

Chapter 3: Methodology

3.1. Introduction
Based on the discussed research objectives, the energy system considered in this thesis

includes PV panels, wind turbines, converters and inverters, battery storage system, load, and

central grid, which need to be designed in the first step for supplying electricity demand. To also

cover the heat demand, heat pump and electric boilers could be used in different scenarios and

compared with gas boilers. The overall flowchart of the energy system is shown in Figure 3.1.

Figure 3.1. Energy system’s flowchart

In the following, the methods used in the main components of the system and the overall

design model will be explained. At the end, the methodology of the optimal operation model will

also be discussed.

3.2. PV Model
To calculate the power output of a PV module, the below parameters and variables are

considered:

18

1. Temperature model: To design a PV system, a thermal model is required to predict the

operating temperature of the module. To calculate the module's temperature, first, the

module's back surface temperature (𝑇𝑇𝑚𝑚) should be determined with the below equation

[70]:

 𝑇𝑇𝑚𝑚 = 𝐼𝐼 × exp(𝑎𝑎 + 𝑏𝑏 × 𝑊𝑊) + 𝑇𝑇𝑎𝑎 (3.1)

Where I is solar irradiance on the module surface (W/m2), 𝑊𝑊 is the wind speed at 10m

height, 𝑇𝑇𝑎𝑎 is ambient temperature, a is a coefficient that shows the upper limit for the temperature

at low wind speed and high solar irradiance, while b is a coefficient determining the rate at which

PV module temperature reduces with rising the wind speed (a and b should be calculated from

temperature measurements recorded over several different days).

After calculating 𝑇𝑇𝑚𝑚, then the temperature of the cell (𝑇𝑇𝑐𝑐) could be calculated via the below

equation [70]:

 𝑇𝑇𝑐𝑐 = 𝑇𝑇𝑚𝑚 + 𝐼𝐼/𝐼𝐼0 × ∆𝑇𝑇 (3.2)

Where 𝐼𝐼0 is reference solar irradiance (1000 W/m2), and ∆𝑇𝑇 is the temperature difference

between the cell and module back surface at the reference irradiance level (1000 W/m2). ∆𝑇𝑇

depends on the insulation of the back surface, if insulated, it will be 0, and if not, it is usually 2 or

3 ℃ [70].

Coefficients 𝑎𝑎 and 𝑏𝑏, and ∆𝑇𝑇 could vary based on module type and mount method (Table

3.1 [70]). In open rack mount, the arrays are installed on ground level with a tilt angle that allows

the air to flow around the panels, while in the roof mount, PV arrays are close to the sloped roof

with fixed tilt and limited possible airflow [71].

Table 3.1. PV module’s information

Type Mount 𝒂𝒂 𝒃𝒃 ∆𝑻𝑻

Glass/cell/glass Open rack -3.47 -.0594 3

Glass/cell/glass Roof mount -2.98 -.0471 1

Glass/cell/Polymer Sheet Open rack -3.56 -.0750 3

Glass/cell/Polymer Sheet Insulated Back -2.81 -.0455 0

Polymer/thin-film/steel Open rack -3.58 -0.113 3

19

2. Pressure: evaluating the site pressure based on the altitude of the location. Table 3.2,

assumed based on [79], shows the atmospheric parameters.

Table 3.2. Assumed atmospheric parameters

Parameter Value Unit

Pressure at zero altitudes (P0) 101325 Pa

Temperature at zero altitudes (T0) 288.15 K

Acceleration due to gravity (g) 9.80665 m/s2

Lapse rate (L) -6.5×10-3 K/m

Gas constants for air (R) 287.053 J/(kgK)

Relative humidity (Rh) 0% dimensionless

3. Air mass (AM): the length at which sunlight goes through the atmosphere normalized to

the shortest possible path length (when the sun is directly overhead). As the light passes

through the atmosphere, its power reduces and is absorbed by air and dust, and the AM

could quantify this. The zenith angle of the sun is used to calculate the relative AM. The

absolute AM then could be evaluated based on relative AM and estimated pressure.

4. The angle of incidence (aoi): The angle between the solar vector on the surface and the

surface’s normal vector. The input parameters to calculate “aoi” are as follows:

• Surface azimuth

• Surface tilt

• Solar zenith

• Solar azimuth

5. To calculate GHI (Global horizontal irradiance), DNI (Direct normal irradiance), and DHI

(Diffuse horizontal irradiance), Ineichen/Prez model is employed. Apparent zenith,

absolute airmass, altitude, Linke-turbidity, and dni extra are the parameters used to

calculate the irradiances.

6. The effective irradiance then is calculated based on the direct and diffuse irradiance

incident over the module (evaluated in step 5), angle of incident (calculated in step 4),

absolute airmass (calculated in step 3), and the module type (should be selected from the

module libraries).

20

7. Based on the effective irradiance, cell temperature, and module type, the DC power output

of the PV module will be calculated.

8. In the last step, based on the selected inverter type, DC voltage, and DC power output, the

AC power output is determined using Sandia's grid-connected PV inverter model [72].

3.3. Wind Farm Model
For designing the wind farm, several parameters are considered and listed below:

1. Wake effect: The wind speed and, consequently, the power output of the wind turbines in

the downwind direction in the wind farm reduce since the turbines in the upwind direction

convert wind energy into wind power. This is called the wake effect [73]. In this research,

the wake losses are calculated by considering wind farm efficiency.

2. Smoothing: Since wind speed has stochastic behavior, it causes frequency fluctuation in

the grid. Therefore, smoothing strategies are required to control this issue. In individual

wind turbines, smoothing strategies could be categorized into two main classes. Storage

devices and without energy storage devices [73]. Batteries, capacitors, and flywheels could

be considered popular storage devices; however, they have fixed and maintenance costs.

The other category is inertia, pitch angel control, and DC-link voltage control which are

considered as smoothing without energy storage. Furthermore, in the wind farm, since the

power generated from individual units is not fully correlated, smoothing out the short-term

fluctuations will be done when aggregating the generated power [74]. In this research, the

smoothing is set to True in the wind farm simulation model to smooth the power curve

before aggregating wind turbines' power curves to one united power curve that represent

the wind cluster. The smoothed power will be calculated via the below equation [74]:

 𝑃𝑃𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒 = �∆𝑣𝑣𝑖𝑖 × 𝑃𝑃(𝑣𝑣𝑖𝑖) ×
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �

(𝑣𝑣𝑠𝑠𝑠𝑠𝑒𝑒 − 𝑣𝑣𝑖𝑖 − 𝜇𝜇)2

2 × 𝜎𝜎2
�

𝑣𝑣𝑖𝑖

 (3.3)

Where P is power (W), 𝑣𝑣 is wind speed (m/s), 𝜎𝜎 standard deviation (Gauss

Distribution), 𝜇𝜇 is average (Gauss Distribution), 𝑣𝑣𝑠𝑠𝑠𝑠𝑒𝑒 is the standard wind speed in the power

curve and ∆𝑣𝑣𝑖𝑖 is the interval length between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1. In the simulation model ∆𝑣𝑣𝑖𝑖 is given

to the model as a block width parameter that is considered default (0.5).

21

3. Standard deviation method: The method that should be used for calculating the standard

deviation for Gauss distribution. This parameter is only required to be set if the smoothing

is set to True. Available methods are: "turbulence intensity" and "Staffell Pfenninger". In

this research, turbulence intensity is selected as the standard deviation method.

4. Wind speed model: "Hellmann", "logarithmic", and "interpolation_extrapolation" are the

available methods. In this research, the Hellmann method is selected as the wind speed

model, and it is explained in the following:

Correlating the wind speed at two different heights is how Hellmann exponential law

works, and it will be evaluated via below formula:

𝑣𝑣
𝑣𝑣0

= �
𝐻𝐻
𝐻𝐻0
�
𝛼𝛼

 (3.4)

Where 𝑣𝑣 is the wind speed in height 𝐻𝐻 and 𝑣𝑣0 is the speed in the height 𝐻𝐻0 that typically

considered 10 meters. Also, 𝛼𝛼 is the Hellmann exponent or friction coefficient that typically, for

open lands, it is considered equal to 1/7 [75]. However, various indicators could impact this

coefficient, such as height, land features, and temperature [76]. Table 3.3 shows the coefficient for

different land types [77].

Table 3.3. Different Land's friction coefficient

Land Type 𝜶𝜶

Smooth hard ground, calm water 0.1

Tall grass on level ground 0.15

High crops, hedges and shrubs 0.2

Wooded countryside, many trees 0.25

Small town with trees and shrubs 0.30

Large city with tall buildings 0.40

In this research, different wind farm power outputs are considered for different locations

based on the land type shown in Table 3.3.

22

5. Density model: "Barometric" (dropping the air pressure by 11.3 pascals per meter in the

first 1000 meters above the sea, "ideal gas" (𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇) and "interpolation_extrapolation"

are the available models.

Below formula (3.5) [78] is used for the barometric model:

 𝜌𝜌ℎ𝑢𝑢𝑢𝑢 = �
𝑃𝑃

100
− �ℎℎ𝑢𝑢𝑢𝑢 − ℎ𝑝𝑝,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎� ×

1
8
� ×

𝜌𝜌0𝑇𝑇0 × 100
𝑃𝑃0𝑇𝑇ℎ𝑢𝑢𝑢𝑢

 (3.5)

Where P is pressure (Pa), T is temperature (K), h is height and 𝜌𝜌 is density (kg/m3). Also,

ℎ𝑝𝑝,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎 is height of the measurement or model data for pressure 𝑃𝑃0,𝑇𝑇0 and 𝜌𝜌0 are ambient pressure,

temperature, and density, respectively. 𝑇𝑇ℎ𝑢𝑢𝑢𝑢 is the temperature at hub height ℎℎ𝑢𝑢𝑢𝑢.

While the ideal gas model uses the below equation (3.6) to calculate the pressure at hub

height:

 𝜌𝜌ℎ𝑢𝑢𝑢𝑢 = 𝑃𝑃ℎ𝑢𝑢𝑢𝑢
𝑛𝑛𝑠𝑠𝑇𝑇ℎ𝑢𝑢𝑢𝑢� (3.6)

Where 𝑛𝑛𝑠𝑠 is specific gas constant (287.058 J/kg*K).

6. Temperature model: To calculate the temperature of the air at hub height, two options are

available. The first uses linear interpolation-extrapolation, and the other uses the linear

gradient method. The linear gradient method is selected in this study, and the following

equation (3.7) is used to calculate the temperature at the hub height based on this method:

 𝑇𝑇ℎ𝑢𝑢𝑢𝑢 = 𝑇𝑇𝑎𝑎𝑖𝑖𝑎𝑎 − 0.0065 × (ℎℎ𝑢𝑢𝑢𝑢 − ℎ𝑇𝑇,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎) (3.7)

Where ℎ𝑇𝑇,𝑒𝑒𝑎𝑎𝑠𝑠𝑎𝑎 is the height that 𝑇𝑇𝑎𝑎𝑖𝑖𝑎𝑎 is measured.

7. Density correction: In case the parameter “power-output-model” is set to "power-curve"

instead of "power coefficients curve, the density correction has to be selected as True to

correct the power curve based on the air density at hub height.

8. Obstacle height: is given to the model when there are obstacles with a certain height

around the turbine. In case there is no obstacle, this parameter could be set as 0.

23

The input data to the wind farm simulation model is hourly resolution, and it has 6 features

as below:

• Air pressure in 0 height

• Air temperature in 2m height

• Wind speed in 10m height

• Wind speed in 50m height

• Roughness length on 0m

• Temperature in 10m

3.4. Local and Regional Generation Design

3.4.1. Local Design optimization model

Because of the nonlinearity and integrality that exist in design optimization equations (it

will be explained in the following sections), an MINLP model needs to be developed, and a proper

solver needs to be selected to deal with it. The flowchart of the proposed methodology for the local

generation design model is shown in Figure 3.2.

Figure 3.2. Proposed design flowchart

24

The objective function and the constraint of the problem for both local and regional generation are

as follows:

Objective function

The objective function (OF) includes several terms, and it is explicated below:

• Equipment costs: This consists of the fixed purchasing cost, installation cost, and operation

and maintenance (O&M) cost of the equipment employed in the energy system. In this

thesis, fixed and installation costs are considered as a unique cost.

 𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑃𝑃𝑃𝑃 × (𝐸𝐸𝑃𝑃𝑃𝑃 + 𝐸𝐸𝐶𝐶𝑠𝑠𝐶𝐶𝑣𝑣) × �1 +
𝐸𝐸𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
� + 𝑁𝑁𝑊𝑊𝑇𝑇 × 𝐸𝐸𝑊𝑊𝑇𝑇 × �1 +

𝐸𝐸𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
�

+ 𝑁𝑁𝑊𝑊𝑇𝑇 × 𝐸𝐸𝑅𝑅𝑒𝑒𝑐𝑐 + 𝑁𝑁𝐵𝐵𝑎𝑎𝑠𝑠 × (𝐸𝐸𝐵𝐵𝑎𝑎𝑠𝑠 + 𝐸𝐸𝐼𝐼)

(3.8)

Where 𝑁𝑁𝑃𝑃𝑃𝑃, 𝑁𝑁𝑊𝑊𝑇𝑇 are the number of PV panels and wind turbines, respectively while 𝑁𝑁𝐵𝐵𝑎𝑎𝑠𝑠 is the

capacity of the battery storage system. 𝐸𝐸𝑃𝑃𝑃𝑃, 𝐸𝐸𝐶𝐶𝑠𝑠𝐶𝐶𝑣𝑣, 𝐸𝐸𝑊𝑊𝑇𝑇, 𝐸𝐸𝑅𝑅𝑒𝑒𝑐𝑐, 𝐸𝐸𝐵𝐵𝑎𝑎𝑠𝑠 and 𝐸𝐸𝐼𝐼 are PV, converter, wind

turbine, rectifier, battery storage, and inverter initial costs, respectively. Moreover, 𝐸𝐸𝑂𝑂&𝑀𝑀 is

operation and maintenance cost, which is the percentage of the initial cost of the component, and

𝐸𝐸𝑛𝑛𝐶𝐶 is the capital recovery factor that should be calculated using the below equation:

𝐸𝐸𝑛𝑛𝐶𝐶 =

𝑖𝑖 × (1 + 𝑖𝑖)𝐶𝐶

(1 + 𝑖𝑖)𝐶𝐶 − 1

(3.9)

Where 𝑖𝑖 is the real discount rate, and n is the project's lifetime. The real discount rate could be

expressed as below:

𝑖𝑖 =

∝ −𝑓𝑓
1 + 𝑓𝑓

(3.10)

Where ∝ is the nominal discount rate and 𝑓𝑓 is the inflation rate. To calculate the annual capital

recovery, the below formula could be used and multiplied to the related cost:

 𝐸𝐸𝑛𝑛𝐶𝐶𝐶𝐶 = 𝑛𝑛 +
1

(1 + 𝑖𝑖)𝐶𝐶
 (3.11)

The number of PV panels and wind turbines are limited based on the available area for components

installation.

• Battery operation: which includes charging and discharging costs through the whole

horizon.

25

𝐵𝐵𝐵𝐵 = 𝐵𝐵𝑂𝑂𝐶𝐶 × �

𝑃𝑃𝐶𝐶ℎ(𝑡𝑡) + 𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠(𝑡𝑡)
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

(3.12)

Where 𝐵𝐵𝑂𝑂𝐶𝐶 is the battery operating cost factor ($/kWh) and 𝑃𝑃𝐶𝐶ℎ(𝑡𝑡) and 𝑃𝑃𝑒𝑒𝑖𝑖𝑠𝑠(𝑡𝑡) are charging and

discharging power in each time step.

• Battery maintenance and replacement cost: which considers the cost of storage's

maintenance and replacement through the project's lifetime using CRF:

 𝐵𝐵𝐵𝐵 = (𝐵𝐵𝐶𝐶 × 𝐵𝐵𝑎𝑎𝑒𝑒𝐶𝐶𝐶𝐶 + 𝑛𝑛𝑃𝑃𝐶𝐶) × 𝑁𝑁𝐵𝐵𝑎𝑎𝑠𝑠 × 𝐸𝐸𝑛𝑛𝐶𝐶𝐶𝐶 (3.13)

• Grid trade-off: which is the summation of purchasing power (𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡)) from and power

selling (𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡)) to the conventional grid:

𝐺𝐺𝑇𝑇 = �

𝐸𝐸𝑃𝑃𝑝𝑝 × 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡)
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

 − �
𝐸𝐸𝑆𝑆𝑝𝑝 × 𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡)

𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

(3.14)

• Loss of Power Supply Probability (LPSP): To minimize the probability of loss occurrence

and the amount of it, the below term needs to be added to the objective function:

𝐿𝐿𝑆𝑆 = �𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) × 𝜃𝜃(𝑡𝑡)

𝑇𝑇

𝑠𝑠=1

(3.15)

Where Loss(t) is the amount of loss in each time step and 𝜃𝜃(𝑡𝑡) is the penalty coefficient that could

be different for each time steps.

• Environmental cost: Purchasing from the central grid could lead to a penalty if there is non-

clean energy source portion in the central grid electricity. Therefore, a term is added to the

objective function to consider this as below equation (3.16):

𝐸𝐸𝑁𝑁 = �

𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) × 𝜀𝜀 × 𝜗𝜗
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

(3.16)

Where 𝜀𝜀 is the portion of a central grid’s electricity that is non-renewable energy and 𝜗𝜗 is the

assumed penalty coefficient for that portion.

26

Finally, the objective function of the optimization model, which is the net present cost of

the energy system (NPC), is defined based on the below equation:

 Min𝐵𝐵𝐶𝐶 = 𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵 + 𝐺𝐺𝑇𝑇 + 𝐿𝐿𝑆𝑆 + 𝐸𝐸𝑁𝑁 (3.17)

Constraints

The NPC of the system is minimized based on the following constraints:

The operating cost of the system is minimized subject to the following constraints:

• Battery Capacity: The capacity of the battery storage system in the first time step (Eb[1])

is equal to the initial state of charge of the battery, while in the next time steps, the capacity

of the battery is calculated based on the charge/discharge of it in that time step (equation

3.18):

 𝐸𝐸𝑏𝑏(𝑡𝑡) = �
𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 × 𝐸𝐸𝑇𝑇 𝑡𝑡 = 1

𝐸𝐸𝑏𝑏(𝑡𝑡 − 1) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) ∗ 𝜂𝜂𝑐𝑐 −
𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡)
𝜂𝜂𝑒𝑒

 𝑡𝑡 = 𝑇𝑇

(3.18)

Where 𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 is the initial state of charge of the battery (%), 𝐸𝐸𝑇𝑇 is the total capacity of it (kWh)

and 𝜂𝜂𝑃𝑃 and 𝜂𝜂𝑃𝑃 are charging/ discharging efficiencies, respectively. Furthermore, the state of charge

of the battery in each time step (𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡)) should follow the below inequality:

 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑖𝑖𝐶𝐶 ≤ 𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡) ≤ 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 (3.19)

• Local renewable generation: To balance the used renewable power in the microgrid and

the surplus power, two constraints need to be added as follows for both wind power and

PV power generation:

 �𝑃𝑃𝑊𝑊
(𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡)

(3.20)

Where 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) are the used wind and PV power in each time steps, respectively

while 𝐸𝐸𝐿𝐿𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝐿𝐿𝑃𝑃𝑃𝑃(𝑡𝑡) are the surplus electricity of the wind and PV generation. 𝑃𝑃𝑊𝑊(𝑡𝑡) is

the total power generated by the wind turbines in time step t and 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is the total power

generated by the PV panels in time step t.

27

• Reliability: Although a penalty is added to the objective function to minimize the loss, it

still needs to be limited to the certain amount that the user should specify. Therefore, the

LPSP is calculated with the below equation:

𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃 =

∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)𝑇𝑇
𝑠𝑠

∑ 𝐿𝐿𝑒𝑒(𝑡𝑡)𝑇𝑇
𝑠𝑠

 (3.21)

 And then, the amount of LPSP should be less than a percentage (𝜑𝜑) that should be defined

by the user.

• Grid Trade-off: The energy system is designed to be grid-connected with the ability to

access the grid anytime. Therefore, the formulas that should calculate the amount of trade-

off between grid and microgrid are the following equations. This equation shows the selling

to the grid constraint (𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡)).

 𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡) ≤ (𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡)) × 𝜗𝜗 × 𝜑𝜑 (3.22)

Where 𝜗𝜗 is the portion of electricity that could be sold to the grid and 𝜑𝜑 is the binary variable to

switch selling to off mode when purchasing from the grid.

While selling to the grid is constrained by the amount of surplus power generated locally

by microgrid, purchasing from the grid should be just defined based on the upper limit that should

be specified by the grid (the maximum amount of power that could be purchased based on the grid

capacity). Therefore, it could be calculated based on the below formula:

 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) ≤ 𝐺𝐺𝐸𝐸 × 𝜇𝜇 (3.23)

Where 𝐺𝐺𝐸𝐸 is grid purchasing limit and 𝜇𝜇 is the binary variable to switch purchasing to off mode

when selling to the grid.

• Energy Balance: The equation that forces the equity between supply and demand to

minimize the loss of power supply is called the balance equation, and it is expressed via

equation 3.24.

 𝑃𝑃𝑊𝑊(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝑃𝑃(𝑡𝑡) ≥ 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡) (3.24)

28

Where 𝐿𝐿𝑃𝑃(𝑡𝑡) is the total load demand in time step t.

3.4.2. Mapping model

A crucial step in regional generation is finding an optimum place to install the renewable

plant (wind farm) outside of the microgrid's neighborhood. Therefore, a mapping model should be

developed. The mapping model consists of several maps: land type [79], grid power lines, and

transformer location map. The land type map is used as the base map, and the other two maps are

plotted on it. Furthermore, a circle is required to limit the area to certain neighborhoods. A squared

mesh is also located in the circle to specify the zones the renewable plant could be installed. A

model is developed to find the maximum number of squares that could be placed into the circle.

The square mesh function is defined in a way to maximize the number of squares that could be

located in the circle. If more than 50 percent of the area of the square is inside of the circle, then it

will not be removed.

 The user should specify the radius of the circle and the square side of each zone. The

information of each zone, such as the land’s type and cost, the number of turbines that could be

installed (Turbine density), and the distance to transformer stations, could be extracted from the

mapping model by positioning the circle with the squared mesh on the maps.

 The output of the mapping model could then be used as inputs of the optimization model

and also to find the wind power generation in each zone based on the Hellmann exponent selection

discussed in Table 3.3.

The proposed framework for the mapping model and extracting the related data from each

zone is illustrated in Figure 3.3.

29

Figure 3.3. Proposed mapping flowchart

3.4.3. Regional and Local Design Optimization Model

Although the structure of the optimization model when adding the regional generation is

same as what was discussed for local design and it includes all the explained equations, there are

some other terms which should be added to the developed objective function and constraints of

the local design.

The below terms should be added to the discussed objective function:

• Equipment Cost: One of the term which should be added to the objective Function includes

the wind turbines fixed cost (𝐸𝐸𝑅𝑅𝐺𝐺) and O&M cost (𝐸𝐸𝑅𝑅𝑂𝑂&𝑀𝑀), transmission initial cost (𝐸𝐸𝑇𝑇𝑎𝑎)

with its O&M cost (𝐸𝐸𝑇𝑇𝑂𝑂&𝑀𝑀), interconnection cost (𝐸𝐸𝐼𝐼𝐶𝐶) and land cost (𝐸𝐸𝐿𝐿(𝑙𝑙)) and could be

calculated by equation (3.25). The transmission cost includes the CAPEX and OPEX of

transmitting electricity to the nearest transformer station. The reason which the distance to

the nearest transformer station is considered instead of nearest grid power line was

decreasing the cost of creating a new transformer station for injecting electricity.

30

 𝑛𝑛𝐺𝐺 = 𝑁𝑁𝑅𝑅𝐺𝐺 × 𝐸𝐸𝑅𝑅𝐺𝐺 × �1 +
𝐸𝐸𝑅𝑅𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
�

+ �(𝐷𝐷𝑖𝑖𝐿𝐿(𝑙𝑙) × 𝐸𝐸𝑇𝑇𝑎𝑎 + 𝐸𝐸𝐼𝐼𝐶𝐶) × �1 +
𝐸𝐸𝑇𝑇𝑂𝑂&𝑀𝑀

𝐸𝐸𝑛𝑛𝐶𝐶
�

𝐿𝐿

𝑖𝑖=1

+ �𝐸𝐸𝐿𝐿(𝑙𝑙) × 𝐶𝐶 × 𝛽𝛽(𝑙𝑙) + 𝐻𝐻𝑃𝑃𝐺𝐺 × 𝐸𝐸𝐻𝐻𝑃𝑃 × �1 +
𝐸𝐸𝑂𝑂&𝑀𝑀𝐻𝐻𝑃𝑃

𝐸𝐸𝑛𝑛𝐶𝐶
�

𝐿𝐿

𝑖𝑖=1

(3.25)

Where 𝑁𝑁𝑅𝑅𝐺𝐺 is the number of wind turbine in the wind farm, L is defined based on number of zones

created in the mapping model, 𝐶𝐶 is the area that is required for the wind farm and 𝛽𝛽(𝑙𝑙) is the zone

selection binary variable. The last term consists of the heat pump's initial capital (𝐸𝐸𝐻𝐻𝑃𝑃) and

operation and maintenance cost (𝐸𝐸𝑂𝑂&𝑀𝑀𝐻𝐻𝑃𝑃) that is the percentage of the capital cost and the selected

size of the heat pump (𝐻𝐻𝑃𝑃𝐺𝐺). This term is only added in the heat pump scenario in the regional

generation.

• Gas Consumption: The cost related to gas consumption for heat generation could be

calculated by equation (3.26) :

𝐺𝐺𝐸𝐸 = �

𝐺𝐺(𝑡𝑡) × 𝐺𝐺𝑃𝑃
𝐸𝐸𝑛𝑛𝐶𝐶

𝑇𝑇

𝑠𝑠=1

(3.26)

Where 𝐺𝐺(𝑡𝑡) is the amount of gas consumption in each time step and 𝐺𝐺𝑃𝑃 is the gas price per cubic

meter.

• Gas Consumption Environmental Penalty: Based on Canada’s fuel charge regulation

made under the greenhouse gas pollution pricing (FCN10 Regulation) [80], the penalty

value for natural gas consumption usage is calculated based on the below formulation:

 𝐺𝐺𝑃𝑃 = 𝐶𝐶 × 𝐵𝐵 × 0.8
 (3.27)

Where A is the gas consumption in cubic meters and B is equal to 0.0391.

The final objective function which includes both local and regional generation terms, is expressed

with below equation:

 Min𝐵𝐵𝐶𝐶 = 𝐸𝐸𝐸𝐸 + 𝐵𝐵𝐵𝐵 + 𝐵𝐵𝐵𝐵 + 𝐺𝐺𝑇𝑇 + 𝐿𝐿𝑆𝑆 + 𝑛𝑛𝐺𝐺 + 𝐸𝐸𝑁𝑁 − 𝐺𝐺𝐸𝐸 − 𝐺𝐺𝑃𝑃 (3.28)

31

Furthermore, the below constraints should be considered for the regional generation purpose:

• Power generation based on land type: In this thesis, seven land types were considered as

the main land types of the city's neighborhood. Based on what was discussed in the Wind

model section, regional wind power generation 𝑃𝑃𝑊𝑊𝑅𝑅(𝑡𝑡) is calculated. Therefore, a

conditional statement is added to the constraints to select a proper equation based on the

land type selected by the model.

 �
𝑖𝑖𝑓𝑓 𝐿𝐿𝑎𝑎𝑛𝑛𝑃𝑃 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑖𝑖
𝑃𝑃𝑊𝑊𝑅𝑅(𝑡𝑡, 𝑖𝑖) = 𝐸𝐸𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖) + 𝐸𝐸𝑛𝑛𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖)

(3.29)

Where 𝐸𝐸𝑛𝑛𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖) and 𝐸𝐸𝑛𝑛𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖) are used and surplus power of regional generation in land

type i.

• Land selection: for regional generation purposes, the optimization model should select the

optimum place for wind farm installation based on the data that was extracted from the

mapping model. Therefore, a constraint is required to emphasize that only one land could

be selected in each run.

 �𝛽𝛽(𝑙𝑙) = 1
𝐿𝐿

𝑖𝑖=1

 (3.30)

• Wind turbine density: The number of turbines that could be installed outside of the

microgrid (regional) should be limited based on the selected land type. This could also

impact the result of the optimum selection of the land type since the zones with the ability

of a low number of wind turbine installations (turbine density) could cause less regional

generation capacity.

 𝑁𝑁𝑅𝑅𝐺𝐺 ≤�𝑊𝑊𝑇𝑇𝐷𝐷(𝑙𝑙) × 𝛽𝛽(𝑙𝑙)
𝐿𝐿

𝑙𝑙=1

 (3.31)

• Regional design grid trade-off: This equation should be added to regional generation

constraints for selling to the grid based on the selected land for regional generation

(𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡, 𝑖𝑖)).

32

 �
𝑖𝑖𝑓𝑓 𝐿𝐿𝑎𝑎𝑛𝑛𝑃𝑃 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑖𝑖
𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡, 𝑖𝑖) ≤ (𝐸𝐸𝑛𝑛𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡, 𝑖𝑖) + 𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡)) × 𝜗𝜗 × 𝜑𝜑 (3.32)

• Regional design energy balance: The equation that forces the equity between supply and

demand in the regional generation design is called the balance equation, and it is expressed

via equation 3.33 based on the selected land.

 �
𝑖𝑖𝑓𝑓 𝐿𝐿𝑎𝑎𝑛𝑛𝑃𝑃 𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒 = 𝑖𝑖
𝑃𝑃𝑊𝑊𝑅𝑅(𝑡𝑡, 𝑖𝑖) + 𝑃𝑃𝑊𝑊(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝑃𝑃(𝑡𝑡) = 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) + 𝑃𝑃𝐺𝐺𝐺𝐺(𝑡𝑡)

(3.33))

3.4.4. Economic Evaluation

To calculate the Levelized cost of energy (LCOE), the below equation is employed:

 𝐿𝐿𝐸𝐸𝐵𝐵𝐸𝐸 =
𝑁𝑁𝑃𝑃𝐸𝐸 × 𝐸𝐸𝑛𝑛𝐶𝐶

∑𝐿𝐿𝐷𝐷 + ∑𝑃𝑃𝑠𝑠𝑝𝑝(𝑡𝑡)
 (3.34)

Where LD is the total load demand served in each step.

The renewable penetration shows the renewable fraction of the total load demand determined with

equation (3.35).

 𝑛𝑛𝑃𝑃 =
𝑇𝑇𝐿𝐿𝑡𝑡𝑎𝑎𝑙𝑙 𝑆𝑆𝑒𝑒𝑆𝑆𝑣𝑣𝑒𝑒𝑃𝑃 𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒𝐸𝐸𝑎𝑎𝑏𝑏𝑙𝑙𝑒𝑒 𝐸𝐸𝑙𝑙𝑒𝑒𝑃𝑃𝑡𝑡𝑆𝑆𝑖𝑖𝑃𝑃𝑖𝑖𝑡𝑡𝑇𝑇

∑𝐿𝐿𝐷𝐷
 (3.35)

The payback period, which is another important economic indicator and shows the time period for

recovering the initial investment, is evaluated by dividing the calculated total initial cost by the

benefit. The total benefit includes the income from selling electricity to the central grid, removing

environmental penalties, and saving from not using natural gas.

3.4.5. Heat generation and gas consumption

The transferred heat by gas boilers could be calculated based on measurement data using

the below equation for each time step:

 𝑄𝑄 = 𝑚𝑚𝑃𝑃∆𝑇𝑇 (3.36)

Where Q is the total heat transferred in each time step, m is the flow rate, c is the water

specific heat (4.187 kj/kg˚C) and ∆𝑇𝑇 is the difference between water supply and return

temperatures.

33

Based on the calculated heat, the amount of gas consumption (𝑃𝑃𝐺𝐺) could be evaluated

using below equation (3.37):

 𝑃𝑃𝐺𝐺 = �
𝑄𝑄

CV × 𝜏𝜏 ÷ 𝜔𝜔
� ×

1
𝜂𝜂𝐺𝐺

 (3.37)

Where CV is the natural gas calorific value, 𝜏𝜏 is the correction factor (1.02264 in this study), 𝜔𝜔 is

the conversion factor for kWh unit (equal to 3.6) and 𝜂𝜂𝐺𝐺 is the gas boiler efficiency.

3.5. Optimum Operation Scheduling

3.5.1. Day ahead forecast methods

To remove the imprecision of the operation model, the first step is to forecast the day ahead

load demand and renewable resources in an accurate manner. The proposed framework of the

forecasting methods is depicted in Figure 3.4.

Figure 3.4. Proposed forecasting framework

34

This flowchart consists of three main sections. The feature selection and preprocessing of

the data, including feature scaling, outlier detection, and dealing with missing values, is carried

out in the first section. Furthermore, a grid search is employed to determine the optimum parameter

for the statistical model in this section. In the second section, the output of the preprocessing stage

is used for training the developed models. In this stage, a hybrid model is created using the Weibull

distribution output as one of the input features of the LSTM model. Next, the NWP data is

extracted from the NWP model and is used as input of the integrated LSTM-Weibull model for

wind speed prediction and single LSTM model for solar irradiance prediction to create the final

hybrid model. In the last section, the accuracy of each model is evaluated and compared to select

the proper model. The hyperparameter optimization of the LSTM model is also conducted in the

third section.

In the following sub-sections, each method is explained in detail.

3.5.1.1. SARIMAX

Seasonal autoregressive integrated moving average (SARIMA) with exogenous factors is

called SARIMAX and is a statistical model used to predict time series with seasonality. The

exogenous factors allow the model to use other features to reduce the forecasting error. With

considering 𝑇𝑇𝑠𝑠 as the wind speed in time step t, SARIMAX can be modeled as below [81]–[83]:

 𝜑𝜑𝑝𝑝(𝐵𝐵)∅𝑃𝑃(𝐵𝐵𝑠𝑠)(1− 𝐵𝐵)𝑒𝑒(1 − 𝐵𝐵𝑠𝑠)𝐶𝐶𝑇𝑇𝑠𝑠 = 𝛾𝛾𝑞𝑞(𝐵𝐵)𝛿𝛿𝑄𝑄(𝐵𝐵𝑠𝑠)𝜀𝜀𝑠𝑠 (3.38)

Where 𝐵𝐵 is a lag operator that is responsible for back shifting, 𝜑𝜑𝑝𝑝(𝐵𝐵) and ∅𝑃𝑃(𝐵𝐵𝑠𝑠) are non-

seasonal and seasonal autoregressive operators of order p and P, respectively. 𝛾𝛾𝑞𝑞(𝐵𝐵) and 𝛿𝛿𝑄𝑄(𝐵𝐵𝑠𝑠)

are non-seasonal and seasonal moving average function of order q and Q, respectively. (1 − 𝐵𝐵)𝑒𝑒

and (1 − 𝐵𝐵𝑠𝑠)𝐶𝐶 are non-seasonal and seasonal differencing operators. 𝐿𝐿 is the seasonal length and

𝜀𝜀𝑠𝑠 is the residual error.

 𝜑𝜑𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1(𝐵𝐵) − 𝜑𝜑2(𝐵𝐵2) −⋯− 𝜑𝜑𝑝𝑝(𝐵𝐵𝑝𝑝) (3.39)

 ∅𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1(𝐵𝐵𝑠𝑠) − 𝜑𝜑2(𝐵𝐵2𝑠𝑠) −⋯− 𝜑𝜑𝑃𝑃(𝐵𝐵𝑃𝑃𝑠𝑠) (3.40)

 𝛾𝛾𝑞𝑞(𝐵𝐵) = 1 − 𝛾𝛾1(𝐵𝐵)− 𝛾𝛾2(𝐵𝐵2) −⋯− 𝛿𝛿𝑞𝑞(𝐵𝐵𝑞𝑞) (3.41)

 𝛿𝛿𝑝𝑝(𝐵𝐵) = 1 − 𝛿𝛿1(𝐵𝐵𝑠𝑠) − 𝛿𝛿2(𝐵𝐵2𝑠𝑠) −⋯− 𝛿𝛿𝑃𝑃(𝐵𝐵𝑄𝑄𝑠𝑠) (3.42)

𝑒𝑒,𝑃𝑃, and 𝑞𝑞 are integer parameters to show the delay order of non-seasonal autoregressive,

differencing, and moving average terms, respectively, while 𝑃𝑃,𝐷𝐷, and 𝑄𝑄 are integer parameters for

35

indicating the delay order of seasonal autoregressive, differencing and moving average terms,

respectively. An optimum set of these parameters could be specified for the model as input using

different criteria for parameter selection such as Akaike information criterion (AIC), Bayesian

information criterion (BIC), or Hannan–Quinn information criterion (HQIC) methods.

Furthermore, the seasonal length of the model should be estimated using the decomposition of the

training data. Afterward, the model is applied to forecast the future wind speed. The forecast

horizon has a direct impact on the accuracy of prediction. An increase in the length of the horizon

results in a reduction in accuracy [36].

3.5.1.2. LSTM

One of the deep neural networks that is suitable for time series data is the recurrent neural

network (RNN) [84]. The feature that makes the RNN a proper algorithm for dealing with

sequential data is the short-term memory due to the recurrent feedback connections [85]. But

practically, RNN is not capable of treating data with long-term dependencies [86]. Therefore,

LSTM as a specific type of RNN was developed to consider the issue of long-term dependencies

[87], [88].

 The LSTM is a type of RNN proposed by Hochreiter and Schmidhuber in 1997 to deal

with long-term dependencies by upgrading the remembering capacity of a simple recurrent cell

[89].

Figure 3.5. Schematic design of an LSTM module

36

An LSTM cell, unlike a simple RNN cell that includes a single tanh layer [32], is formed

with several layers, as depicted in Figure 3.5. The first step is called forget layer, and it is

responsible for deciding if the information could pass through the cell or it should be dismissed

using an activation function. The activation function generally is a sigmoid function that, based on

the input, generates a number between 0 and 1. While 1 shows the input of the cell can be added

to the cell state, 0 designates that the input should be forgotten. (𝑓𝑓𝑡𝑡) is the output of the forget layer

and it is determined by the below equation [8]:

 𝑓𝑓𝑠𝑠 = 𝜑𝜑(𝐸𝐸𝑓𝑓 . [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝑓𝑓) (3.43)

Where 𝜑𝜑 is the activation function, 𝑇𝑇𝑡𝑡−1 is the output of the previous module, and 𝑒𝑒𝑡𝑡 is input

at time t and 𝑏𝑏𝑓𝑓 and 𝐸𝐸𝑓𝑓 are bias and weight, respectively.

In the second step, the update of new values (It), using equation (3.44), and a vector of new

information (𝑔𝑔�), as shown in equation (3.45), are created to add to the cell state by employing a

sigmoid and tanh functions, respectively [2]:

 𝐼𝐼𝑠𝑠 = 𝜑𝜑(𝐸𝐸𝑖𝑖. [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝑖𝑖)
 (3.44)

 𝑔𝑔� = 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝐸𝐸𝐺𝐺. [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝐺𝐺) (3.45)

Subsequently, in the third step, a new cell state (𝑔𝑔𝑡𝑡) is expressed as the sum of the previous

cell state multiplied with the first step results and the multiplication of the 𝐼𝐼𝑡𝑡 and 𝑔𝑔� shown in

notational form as:

 𝑔𝑔𝑠𝑠 = 𝑓𝑓𝑠𝑠 × 𝑔𝑔𝑠𝑠−1 + 𝐼𝐼𝑠𝑠 × 𝑔𝑔�
(3.46)

In the final step, by employing a sigmoid function, the cell decides what part of the cell

state should be the cell’s output and input to the next cell, and by using a tanh function, it

regenerates the values between -1 and 1.

 𝜕𝜕𝑠𝑠 = 𝜑𝜑 (𝐸𝐸𝜕𝜕. [𝑇𝑇𝑠𝑠−1,𝑒𝑒𝑠𝑠] + 𝑏𝑏𝜕𝜕)
(3.47)

 𝑇𝑇𝑠𝑠 = 𝜕𝜕𝑠𝑠 × tanh(𝑔𝑔𝑠𝑠) (3.48)

Where, 𝜕𝜕𝑡𝑡 is the portion of ‘cell’s state that is transmitted as the output.

37

The four explained layers in each cell of an LSTM model make it a proper algorithm to be

tested for dealing with the unexpected behavior of the load demand and renewable generation.

3.5.1.3. Weibull distribution

Wind speed can be expressed in time series, and the variation of the speed can be described

using a probability distribution function (PDF). For many years, the Weibull distribution has been

used to fit wind speed data, and it is an explicitly proper fit to average wind speed data [90].

The Weibull PDF can be described with equation (3.49) [91]:

 𝐶𝐶(𝑣𝑣) = �
𝑘𝑘
𝑃𝑃
� �
𝑣𝑣
𝑃𝑃
�
𝑘𝑘−1

𝑒𝑒𝑒𝑒𝑒𝑒[−�
𝑣𝑣
𝑃𝑃
�
𝑘𝑘−1

]

(3.49)

Where 𝐶𝐶(𝑣𝑣) is the probability of occurrence of wind speed (𝑣𝑣), and k is the Weibull shape

parameter that is calculated based on the standard deviation (𝜎𝜎) and the average (𝑣𝑣�) of the wind

speed data using equation (3.50) [92]:

 𝑘𝑘 = �
𝜎𝜎
�̅�𝑣
�
−1.086

(3.50)
And 𝑃𝑃 is the Weibull scale parameter that is given as [90]:

 𝑃𝑃 =
�̅�𝑣

𝛤𝛤 �1 + 1
𝑘𝑘�

(3.51)

Where 𝛤𝛤 is the gamma function.

3.5.1.4. NWP Model

In this research, the NWP data was extracted from the NWP model that was developed by

the “Centre for Solar Energy and Hydrogen Research (ZSW)” in Stuttgart, Germany.

3.5.1.5. Hybrid Model

In this study, the basic structure of the Hybrid model is the same as the LSTM model. To

hybridize model X with the LSTM model, the results of model X will be scaled up along with

other predictors and target variables and will be fed to the LSTM model as the input. The

integration of Model X with the LSTM model results in an increase of the input dimension of the

final neural network by one (in other words, it increases the number of input parameters by one).

38

3.5.1.6. Hyperparameter Optimization

In all hybrid forecasting models, LSTM is the core model, while other models are being

hybridized with it. The tuned values for the LSTM model’s hyperparameters, in both single and

hybridized ways, are achieved through the grid search method. These hyperparameters could be

different for each forecasting scenario.

3.5.1.7. Preprocessing and Evaluation Metrics

Due to the use of several predictor variables, such as humidity, temperature, and air

pressure, along with wind speed as the dependent variable, feature scaling is necessary to eliminate

the issues associated with dimensionality caused by a dissimilar range of values. The min-max

scaler method is used to scale the data into a similar range:

 𝑋𝑋𝑁𝑁 =
𝑋𝑋 − 𝑋𝑋min

𝑋𝑋max − 𝑋𝑋min

(3.52)

To find the outliers in the dataset based on an extreme outlier detection procedure, the

minimum and maximum bounds were calculated based on equations 3.53 and 3.54, respectively.

 Min Bound = 𝑄𝑄1 − 3(𝐼𝐼𝑄𝑄𝑛𝑛)
(3.53)

Where Q1 is the lower quartile that shows the number that is more than 25 percent of the data and

IQR is the interquartile range.

 Max Bound = 𝑄𝑄3 + 3(𝐼𝐼𝑄𝑄𝑛𝑛)
(3.54)

Where Q3 is the upper quartile that shows the number that is more than 75 percent of the data.

To assess the forecasting models’ performance, root mean squared error (RMSE), mean

absolute error (MAE), and mean squared logarithmic error (MSLE) are employed to determine the

goodness of fit. RMSE evaluates the error using equation (3.55):

 𝑛𝑛𝐵𝐵𝑆𝑆𝐸𝐸 = ��
(𝑇𝑇�I − 𝑇𝑇𝑖𝑖)2

𝑛𝑛

𝐶𝐶

𝑖𝑖=1

(3.55)

where 𝑇𝑇 is the observed value and 𝑇𝑇� is the predicted value.

And MAE is calculated using equation (3.56)

39

 𝐵𝐵𝐶𝐶𝐸𝐸 =
∑ |𝑇𝑇�I − 𝑇𝑇𝑖𝑖|𝐶𝐶
𝑖𝑖=1

𝑛𝑛
 (3.56)

Due to the wind speed as the target variable is distributed based on Weibull distribution

and the difference between the minimum and maximum value in wind speed data is considerable,

MSLE could be a proper metric to evaluate the error of a model, and it could be calculated using

equation (3.57):

 𝐵𝐵𝑆𝑆𝐿𝐿𝐸𝐸 =
1
𝑛𝑛

 �(𝑙𝑙𝐿𝐿𝑔𝑔(𝑇𝑇𝑖𝑖 + 1) − log(𝑇𝑇�𝑖𝑖 + 1))2
𝐶𝐶

𝑖𝑖=1

(3.57)

3.5.2. Critical load and resiliency

Resilience is defined by the US department of homeland security as the ability to resist,

absorb, recover from, or successfully adapt to adversity or a change in condition [93]. Typically,

it is explained based on the performance of a system under specific time horizon and conditions.

The system’s robustness and the ability of the energy system to provide the critical load during a

power outage are the two main aspects of resilience in this thesis.

The minimum load that needs to be supplied to the emergency and uninterruptable

functions to ensure their performance is considered is critical load [94]. In this thesis, the critical

load could be calculated in 4 main steps listed below:

Step 1: Defining the use types of the building. At a district scale, different buildings might

have different use types, for instance, a residential building might have different use types

compared to an institutional building. The level of importance of these use types and consequently

the loads that should be assigned to them are different.

Step 2: After defining the use types, they are ranked based on their criticality level. Three

levels of loads are defined based on [95]: 1) Non-essential loads, which can be disconnected from

the power supply for noticeable periods of time, 2) Essential loads, which can suffer short de-

energized; and 3) Uninterruptable loads, which need to be supplied without even a short

disconnection. Similar to what was mentioned, in an institutional building, criticality levels could

be expressed in three categories: low criticality level, such as gym; loads with significant criticality

40

level, such as teaching labs; and loads with high criticality level, for instance, health clinic. In a

time of disruption, the demand for this category cannot be disconnected.

In case of unavailability of the load demand for each category, the ratio of use type area to

the total area could be considered as an alternative to evaluate the load of each category. This ratio

could be calculated based on the below equation:

 𝑛𝑛𝑖𝑖 =
𝐶𝐶𝑖𝑖
𝐶𝐶

× 100 (3.58)

Where 𝑛𝑛𝑖𝑖 is the ratio of category I to the total area, 𝐶𝐶𝑖𝑖 is the area of the category I (m2), 𝐶𝐶

is the total area of the building (m2) and in a building with n different use type categories:

 �𝑛𝑛𝑖𝑖 = 1
𝐶𝐶

𝑖𝑖=1

 (3.59)

Step 3: In this step, coefficients related to each use type to estimate the critical load are

defined. The critical load in each building is a portion of the day-to-day demand. Therefore, the

coefficients are a number between 0 and 1, and are defined separately for electricity demand and

air conditioning systems as follows:

Step 3.1: Air conditioning critical coefficient (CA.)

 For a building with a central air conditioning unit, the critical load of the air conditioning

unit is considered to be impacted by the working hour and seasons (summer and winter) to simplify

the process. Therefore, the critical coefficient is defined based on these two parameters and then

multiplied by the actual hourly load of the air conditioning system. As shown in Table 3.4, the

value of the coefficients is defined based on the different time ranges during summer and winter.

𝐸𝐸𝑃𝑃𝑎𝑎𝑇𝑇 shows the critical coefficient of the air conditioning unit during the daytime while 𝐸𝐸Night refer

to the value of the critical coefficients in the nighttime in each season.

41

Table 3.4. Air conditioning critical coefficients

Coefficient Time Range
Summer

𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑 08:00 to 18:59
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠 19:00 to 07:59

Winter
𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑 08:00 to 20:59
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠 21:00 to 07:59

 Step 3.2: Electricity critical coefficient (CE.)

Electricity demand in use types varies, and a critical coefficient is defined based on each

use type. Considering the importance ranking of use types in step 2, the loads with higher levels

of importance have coefficients closer to one. Defining coefficients based on the working and

closing states of the services is suggested to address the load curve pattern changes during the day

and night. Table 3.5 represents the structure of estimating the coefficients where, 𝐸𝐸𝐷𝐷𝑎𝑎𝑇𝑇,𝑖𝑖 and 𝐸𝐸𝑁𝑁𝑖𝑖𝑔𝑔ℎ𝑡𝑡,𝑖𝑖

are critical coefficients of use type I during the day and night. The critical coefficient is defined

based on professional judgment, which is directly correlated to the range of existing use type

categories in the building.

Table 3.5. Electricity demand critical coefficient

Coefficient Time Range
𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑,𝑖𝑖

Use type i
08:00 to 17:59

𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠,𝑖𝑖 18:00 to 07:59

Step 4: In the final step, the total critical load is evaluated. The building’s air conditioning

critical load (𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎) is estimated using equation (3.60):

 𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎(𝑡𝑡) = 𝐸𝐸𝐶𝐶 × 𝐿𝐿𝑒𝑒(𝑡𝑡) (3.60)

Where, 𝐿𝐿𝐸𝐸𝐶𝐶𝑖𝑖𝑆𝑆(𝑡𝑡), and 𝐿𝐿𝑃𝑃(𝑡𝑡) are air conditioning critical and actual load in time step t, respectively.

 𝐸𝐸𝐶𝐶 is the air conditioning critical coefficient that is divided into seasonally coefficients for day

and night (table 3.5).

42

The hourly critical electricity load for each use type is calculated using equation 3.61,

where 𝐿𝐿𝐸𝐸E(𝑡𝑡) and 𝐿𝐿𝑃𝑃(𝑡𝑡) are critical and actual electrical load demands in time step t, respectively,

𝑛𝑛𝑖𝑖 is the ratio of category I to the total area (%) and 𝐸𝐸E is the Critical coefficient which is further

divided into the 𝐸𝐸𝑒𝑒𝑒𝑒𝑎𝑎𝑑𝑑 and 𝐸𝐸𝑒𝑒𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠, coefficients.

 𝐿𝐿𝐶𝐶𝐶𝐶(𝑡𝑡) = 𝑛𝑛𝑖𝑖 × 𝐸𝐸𝐶𝐶 × 𝐿𝐿𝑒𝑒(𝑡𝑡)

(3.61)

The total critical electricity demand of the building (𝐿𝐿𝐸𝐸𝑇𝑇) is the summation of all the available use

types’ critical loads and is assessed using equation (3.62):

 𝐿𝐿𝐶𝐶𝑇𝑇 = ∑𝐿𝐿𝐶𝐶𝐶𝐶 + 𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖𝑎𝑎 (3.62)

3.5.2.1. Optimization model

The optimization model used for the economic dispatch (i.e., operation) of the energy

system is explained in this section. Figure 3.6. shows a flowchart for the optimization module. The

operation model works with an hourly resolution and a 48 h time horizon.

Figure 3.6. A schematic design of the optimization module

43

Objective function

The economic payoff of the energy system corresponds to its operational cost and its

reliability. In this regard, depreciation of the energy storage (batteries), curtailment of renewable

energy, and loss of power supply will be key factors in establishing a trade-off between the

economy and the reliability of the energy system. These factors are formulated as follows:

• Battery depreciation:

There are several factors that could affect the depreciation of lithium-ion battery storage

systems, such as depth of discharge, charge and discharge cycles, and temperature [16]. The impact

of charge/discharge cycles is formulated as a cost indicator (equation 3.63) and added to the

objective function.

 𝐷𝐷𝑃𝑃𝐸𝐸 = �𝐷𝐷𝑃𝑃𝐶𝐶 × 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) + �𝐷𝐷𝑃𝑃𝐶𝐶 × 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡)
𝑇𝑇

𝑠𝑠=1

𝑇𝑇

𝑠𝑠=1

 (3.63)

Where 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) and 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) are the power of charging and discharging in the time period

T, respectively, 𝐷𝐷𝑃𝑃𝐸𝐸 is the depreciation cost of the battery, and 𝐷𝐷𝑃𝑃𝐶𝐶 indicates the degradation

factor expressed as below:

 𝐷𝐷𝑃𝑃𝐶𝐶 =
𝑛𝑛𝐸𝐸
𝐸𝐸𝑃𝑃𝑢𝑢

 (3.64)

Where the total charge/discharge power capacity of the battery showed by 𝐸𝐸𝑃𝑃𝑏𝑏 while 𝑛𝑛𝐸𝐸

is the replacement cost of the battery.

• Renewable Curtailment

The main reason for the renewable curtailment could be a mismatch between the time of

peak demand and the peak of the renewable generation [17]. To improve the economy of the

energy system, the amount of excess renewable electricity needs to be minimized by operation

management. Therefore, one of the main elements of the objective function is a penalty of the

renewable curtailment that is calculated via the below equation (3.65):

 𝑛𝑛𝐸𝐸 = �𝜕𝜕 × 𝑃𝑃𝑤𝑤𝑐𝑐(𝑡𝑡) + �𝜕𝜕 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐(𝑡𝑡)
𝑇𝑇

𝑠𝑠=1

𝑇𝑇

𝑠𝑠=1

 (3.65)

44

Where 𝜕𝜕 is the curtailment factor ($/kW) and 𝑃𝑃𝐸𝐸𝑃𝑃(𝑡𝑡) is the curtailment of wind power while

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) shows the excess electricity of PV generation in period T.

• Loss of Power Supply

To minimize the loss of power supply probability (LPSP), a term needs to be added to the

objective function to penalize the existence of the unmet load in each time step. Therefore, the loss

penalty (LP) includes the summation of the amount of unmet load in each time step (𝐿𝐿(𝑡𝑡))

multiplied by the coefficient (∅) as indicated in equation (3.66).

 𝐿𝐿𝑃𝑃 = �∅ × 𝐿𝐿(𝑡𝑡)
𝑇𝑇

𝑠𝑠=1

 (3.66)

Then, the summation of the discussed terms creates the objective function (𝐵𝐵𝐶𝐶):

 𝐵𝐵𝐶𝐶 = 𝐷𝐷𝑃𝑃𝐸𝐸 + 𝑛𝑛𝐸𝐸 + 𝐿𝐿𝑃𝑃 (3.67)

Constraints

The operating cost of the system is minimized subject to the following constraints:

• Battery Capacity: The capacity of the battery storage system in the first time step (Eb[1]) is

equal to the initial state of charge of the battery, while in the next time steps, the capacity of the

battery is calculated based on the charge/discharge of it in that time step (equation 3.68):

 �
𝐸𝐸𝑏𝑏(𝑡𝑡) = 𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 × 𝐸𝐸𝑇𝑇 𝑡𝑡 = 1

𝐸𝐸𝑏𝑏(𝑡𝑡) = 𝐸𝐸𝑏𝑏(𝑡𝑡 − 1) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) ∗ 𝜂𝜂𝑐𝑐 −
𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡)
𝜂𝜂𝑒𝑒

 𝑡𝑡 = 𝑇𝑇

(3.68)

Where 𝑆𝑆𝐵𝐵𝐸𝐸𝑖𝑖𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑎𝑎𝑖𝑖 is the initial state of charge of the battery (%), 𝐸𝐸𝑇𝑇 is the total capacity of

it (kWh) and 𝜂𝜂𝑃𝑃 and 𝜂𝜂𝑃𝑃 are charging/ discharging efficiencies, respectively. Furthermore, the state

of charge of the battery in each time step (𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡)) should follow the below inequality:

 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑖𝑖𝐶𝐶 ≤ 𝑆𝑆𝐵𝐵𝐸𝐸(𝑡𝑡) ≤ 𝑆𝑆𝐵𝐵𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 (3.69)

• Renewable generation: To balance the used renewable power in the microgrid and the surplus

power, two constraints need to be added as follows for both wind power and PV power

generation:

45

 �𝑃𝑃𝑊𝑊
(𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) = 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃(𝑡𝑡)

(3.70)

Where 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) are the used wind and PV power in each time steps,

respectively while 𝐸𝐸𝐿𝐿𝑊𝑊𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) and 𝐸𝐸𝐿𝐿𝑃𝑃𝑃𝑃(𝑡𝑡) are the surplus electricity of the wind and PV

generation. 𝑃𝑃𝑊𝑊(𝑡𝑡) is the total power generated by the wind turbines in time step t and 𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) is

the total power generated by the PV panels in time step t.

• Energy balance

The equation that shows the balance between the used renewable generation (supply) in

the off-grid mode of the system and the demand (including the load demand and energy that

requires to charge the battery is called the balance constraint, and it is shown by the equation 3.71:

 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) = 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) (3.71)

Where 𝐿𝐿𝑃𝑃(𝑡𝑡) is the total load demand in time step t.

Optimal load
To calculate the load with the upper and lower bound of the actual load demand and critical

load demand, the optimal load in each time step needs to be computed. Since the optimization

model is responsible for finding the best amount of the load in each time step, a variable has to be

defined and added to the balance constraint as below (equation 3.72):

 𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛𝑃𝑃(𝑡𝑡) + 𝐸𝐸𝑃𝑃𝑃𝑃(𝑡𝑡) + 𝑃𝑃𝑃𝑃𝑖𝑖𝐿𝐿(𝑡𝑡) + 𝐿𝐿(𝑡𝑡) = 𝛽𝛽(𝑡𝑡) × 𝐿𝐿𝑒𝑒(𝑡𝑡) + 𝑃𝑃𝑃𝑃ℎ(𝑡𝑡) (3.72)

Where 𝛽𝛽(𝑡𝑡) is the variable coefficients. The Upper bound (𝑢𝑢𝑏𝑏) of this variable is 1, while

the lower bound (𝑙𝑙𝑏𝑏) could be defined based on the proportion of the critical load to the actual load

demand.

 �𝑙𝑙𝑏𝑏(𝑡𝑡) =
𝐿𝐿𝑐𝑐(𝑡𝑡)
𝐿𝐿𝑒𝑒(𝑡𝑡)

𝑢𝑢𝑏𝑏(𝑡𝑡) = 1

(3.73)

Where 𝐿𝐿𝑃𝑃(𝑡𝑡) is the critical load in time step t.

LPSP
In this study, loss of power supply probability (LPSP) is employed to evaluate and compare

the reliability of the energy system in the different scenarios. LPSP could be expressed via the

below equation (3.74) [18]:

46

 𝐿𝐿𝑃𝑃𝑆𝑆𝑃𝑃 =
∑ 𝐿𝐿(𝑡𝑡)𝑇𝑇
𝑠𝑠=1

∑ 𝐿𝐿𝑒𝑒(𝑡𝑡)𝑇𝑇
𝑠𝑠=1

 (3.74)

Where 𝐸𝐸𝑅𝑅𝑒𝑒𝑝𝑝 is replacement cost, 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 is the maximum storage capacity and 𝑁𝑁𝑐𝑐𝑑𝑑𝑐𝑐𝑖𝑖𝑒𝑒 lifetime

cycles.

3.5.3. Grid-Connected Optimal Operation

In this sub-section, the related methodology for reaching the optimal schedule of the

microgrid in grid-connected mode is explained. The overall methodology is shown in Figure 3.7.

Based on this figure, the day ahead optimal operation will be predicted by a MILP model to fulfill

the load demand in each iteration. The objective function of the optimization model includes 4

terms, 1) the trade-off between grid and microgrid, 2) battery depreciation cost by charging and

discharging in each time step, 3) Renewable power curtailment cost, and 4) Environmental

emissions in case central grid uses the non-renewable resources.

Figure 3.7. Proposed framework for grid-connected operation

47

Finally, the optimum operation for the next day will be generated by the model and the

battery schedule will be defined based on that. The basic terms of the optimization model is the

same as what has been explained in the previous optimization sub-section, except for the grid

trade-off that is not evaluated in the off-grid mode. Therefore, the economy of trading between the

urban microgrid and the conventional grid is defined as follows:

 𝐺𝐺𝐸𝐸 = �𝑃𝑃𝑝𝑝(𝑡𝑡) × 𝐸𝐸𝑃𝑃
𝑇𝑇

𝑠𝑠=1

− �𝑃𝑃𝑠𝑠(𝑡𝑡) × 𝐸𝐸𝑆𝑆
𝑇𝑇

𝑠𝑠=1

 (3.75)

Where, 𝐺𝐺𝐸𝐸 is the amount of trading between CG and MG, 𝑃𝑃𝑝𝑝(𝑡𝑡) and 𝑃𝑃𝑠𝑠(𝑡𝑡) are the amounts

of purchased and sold electricity from/to the CG at time t, respectively, EP is the purchasing price

of electricity from CG and ES is the selling price of electricity to CG.

48

Chapter 4: Case Study

4.1. Building’s General Information
The so-called EV building that houses Concordia University’s engineering school is

located in the downtown Sir George Williams Campus in Montreal (Quebec) and is considered the

case study of this research. Therefore, Concordia university is considered the decision maker and

owner of the distributed energy system which is going to be designed in this thesis. However, the

proposed framework in the previous chapter is flexible for changing the ownership to utility or

cooperation between utility and Concordia University.

EV building is one of the largest buildings in downtown Montreal with high electricity

consumption. It consists of four main sectors: the engineering and computer science (ENCS)

department, the visual arts department, the 17th floor (that includes labs and the mechanical room

and air conditioning unit), and the electric boilers for heating purposes. The annual consumption

of this building was about 20 million kWh in 2019, measured with four separate electrical metering

devices in 15 minutes resolution. The data is available from 2015 to 2019. Dataset attributes are

shown in Table 4.1.

Table 4.1. User categories and their floor areas in EV Building

Date Elec Boiler
(kWh)

17th Flr
(kWh)

ENCS
(kWh)

VA
(kWh)

Total EV
(kWh) 2015-01-01 00:00:00 662.565 1363.5 387.5 357.25 2770.815

2015-01-01 01:00:00 664.77 1427.25 406.75 357.75 2856.52
2015-01-01 02:00:00 660.63 1416.25 388 339 2803.88
2015-01-01 03:00:00 657.6325 1413.5 416.5 341.25 2828.883
2015-01-01 04:00:00 658.165 1424 389.5 337 2808.665

Moreover, Figure 4.1, shows the last three years of the available data to explore the power

consumption yearly trend.

49

Figure 4.1. Last three years, EV building’s power consumption with 15 minutes resolution

As is evident in Figure 4.1, the EV building's electricity consumption does not follow the

same pattern as a typical building (lower electricity consumption in summer and higher in winter).

This could be justified by two reasons. First, an institutional building could behave differently

compared to other typical buildings. Second, the more important cause is that the energy source in

the EV building is not only electricity, and the University’s facility management is using natural

gas also to provide heat, especially in winter.

However, based on Figure 4.2, the zoomed-in daily consumption trend seems reasonable

for each day of the week. Evident lower consumption occurs on the weekend for the departments

with low consumption at midnight and higher consumption during working hours for all sectors.

2017 2018 2019

50

Figure 4.2. Daily consumption of three main sections of EV building for each day of a week

The other important information that needs to be considered in the calculation is the

available area of the building. The roof area of a building is the main zone used for installing the

components. Concordia University’s available roof area for its main buildings on the downtown

campus was extracted from the CityGML 3D data model of Montréal, as listed in Table 4.2.

51

Table 4.2. Concordia University’s available roof area

Building Name Available Roof Area (m
2
)

EV 5,790

John Molson 2,457

GM 1,598

Library 5,939

H Building 5,074

FB 3,629

Total 24,487

Based on assumptions and the shape of roof areas, 95 percent of Concordia University’s

available roof area is considered usable for installing renewable energy components. Therefore,

23,262 m2 is the available area for local generation.

4.2. Location’s General Information
Montreal is the second-most populous city in Canada. It is located in the Southern part of

the province of Quebec with latitude and longitude coordinates of 45 N and -73 E degrees,

respectively [96]. Montreal’s hourly resolved data of temperature and humidity is obtained from

the NASA prediction of worldwide energy resources website [97]. Giving the exact location of the

EV building (45.4955, -73.5782) to NASA portal generates all the required climatic data. Figure

4.3. shows the variation and trend of these independent variables for the year 2020 in hourly

resolution. Although the ascending and descending trend from the beginning to the end of the year

is noticeable for temperature, no notable trend is detected in relative humidity. However, a lower

fluctuation range at the beginning of the year (Winter) compared to the middle of the year

(Summer) is perceptible for relative humidity.

52

Figure 4.3. Montreal 2020’s climatic information

Moreover, the wind speed (m/s) in 50-meter height (based on the EV building height) is

also extracted from the NASA data portal for the same year (2020) [97] in hourly resolution. To

evaluate the behavior of the target variable further, the additive decomposition of the wind speed

data is plotted (Figure 4.4). As it is demonstrated in Figure 4.4, although there is no notable trend,

the seasonality graph shows daily fluctuations (ascending and then descending during the day).

However, as the residual graph that shows the error of fitting this seasonality on the real wind

speed data is noticeable, this seasonality can be seen as not being strong.

53

Figure 4.4. Decomposition graph of wind speed data

The same strategy is used after collecting shortwave downward solar irradiance (W/m2)

from the same portal [97]. The decomposition graph shows a clear ascending and descending trend

from the beginning of the year till the end, showing the higher available irradiance in summer and

lower in winter. This difference is considerable at some points. The seasonality follows an evident

pattern while the residual is still significant.

4.3. Critical Load
Based on the explained methodology, different use types in the EV building with

corresponding floor areas are listed in Table 4.3 [98] to calculate the critical load. The assumed

critical coefficients related to electricity demand are shown in 𝐸𝐸𝑒𝑒𝑒𝑒𝑎𝑎𝑑𝑑 and 𝐸𝐸𝑒𝑒𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠 columns.

Table 4.3. User categories and their floor areas in EV Building

Use Type Floor Area (Ai)
Ratio of area to total

area (Ri)
𝑪𝑪𝒆𝒆𝒆𝒆𝒂𝒂𝒆𝒆 𝑪𝑪𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

Health Center 3427.8 4.1% 1 0.2
computer services 134.6 0.2% 1 1

research labs 7957.9 9.5% 1 1
maintenance services 277 0.3% 1 1

54

lavatories 1298 1.5% 1 0.5
offices 10597.3 12.6% 1 1

food services 568.2 0.7% 1 0
offices 5298.6 6.3% 1 0

indoor parking 1647 2.0% 1 0
teaching labs 7328.3 8.7% 1 0
classrooms 1336.8 1.6% 1 0

community services 5413 6.5% 0.2 0
gym 3427.8 4.1% 0.2 0

common areas 24583.9 29.3% 0.2 0.2
museum 237 0.3% 0.2 0

housekeeping 385 0.5% 0.2 0
others 9896.6 11.8% 0.2 0

Total area (A) 83814.9 100.0%

The EV building has central heating and cooling systems, and the critical coefficient

regarding air-conditioning (CA) values is assumed, as presented in Table 4.4. The coefficients and

the time range for day and night are selected based on the working hours of an educational building.

It is assumed that in the case of a power outage caused by natural hazards, the air conditioning will

be set to a state that meets minimum needs with respect to ventilation and comfort temperature for

critical uses such as health centers or research labs inside the building. These coefficients change

based on the season since working hours and space heating and cooling demands differ for summer

and winter. These coefficients could also be different from one building to another (even for the

same building types) due to the possibility of having different use types with varied characteristics

of areas in each building.

Table 4.4. Critical coefficient values for summer and winter

Coefficient Value Time Range
Summer

𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑 0.4 08:00 to 18:59
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠 0.3 19:00 to 07:59

Winter
𝐸𝐸𝑒𝑒𝑎𝑎𝑑𝑑 0.6 08:00 to 20:59
𝐸𝐸𝐶𝐶𝑖𝑖𝑝𝑝ℎ𝑠𝑠 0.2 21:00 to 07:59

55

4.4. Electricity Tariff
Canada has not a unique electricity tariff, and it is different for each province. In Quebec,

Hydro Quebec (HQ) is responsible for defining different electricity rates. These rates are mainly

defined based on user types. For example, the rate for a residential building is different from the

rate of a commercial one. Since Concordia University is considered a large consumer, HQ has a

separate contract with it which is based on the consumption rate. Table 4.5 shows the rate for the

year 2020, which is used as the electricity tariff in this research.

Table 4.5. HQ electricity purchase rate for Concordia University – The year 2020

Month Electricity Rate (CAD/kWh)

January 0.07005544

February 0.06775921

March 0.06770977

April 0.06393077

May 0.06694972

June 0.06953881

July 0.06373102

August 0.06239592

September 0.05969309

October 0.05936981

November 0.061508168

December 0.065685064

Although the mentioned rate in Table 4.5 seems flexible, the price fluctuations each month

are not considerable. This is more evident by looking at Figure 4.5.

56

Figure 4.5. Monthly HQ rate for Concordia University

Based on HQ regulations [99], they are not allowed to buy electricity from the users directly

and without calling for tenders. However, the self-generators still could inject their excess power

into the grid with an exchange of credits in kilowatt-hours. In this research, the credit is considered

as a cent/kWh, and Table 4.6 shows the assumed rate for this credit. In this research, the credit is

considered as the cent/kWh, and Table 4.6 shows the assumed rate for this credit. This rate is

considered flexible since it is based on the time of the year (Winter or Summer), and it is derived

from the Rate flex G [100], which is considered a flexible rate.

Table 4.6. Assumed purchase rate

 Summer (April 1 – Nov. 30) Winter (Dec.1 – March 31)

Proposed Flex Daily Rate 0.1 CAD/kWh 0.2 CAD/kWh

0

0.02

0.04

0.06

0.08

0.1
Hy

dr
o

Q
ue

be
c

Ta
rif

f (
CA

D/
kW

h)

57

Chapter 5: Results and Discussion

5.1. Implementation and Utilized Tools
All modules and sub-modules are written with Python Programming Language using the

below libraries for each module:

 PV Model: The “pvlib” library [101] used for creating the PV arrays and power output

calculations

 Wind Model: For both a single wind turbine and a cluster of wind turbines (wind farm)

power output, the “windpowerlib” library [102] is employed.

 Design Model: The mixed integer nonlinear programming model is developed in the

Pyomo platform [103] using the SCIP solver [104].

 Operation Model: developed in the Pyomo platform [103] using CPLEX solver [105]

 Forecasting Model: developed in Python using several libraries. Keras library [106] with

Tensorflow backend used for developing LSTM model. The SARIMAX model was

developed using “statsmodels” library [107]

 Both the SCIP and CPLEX solvers were used by connecting Python with GAMS [108] to

use GMAS options for adding attributes to the solvers.

5.2. PV Power Output
Using solar irradiance data, which was explained in section 3.2, and the input parameters

of the selected PV modules, which are shown in Table 5.1. the output of the PV system will be

calculated. Based on Table 5.1, the 220W solar panels selected with Glass/Cell/Glass and “Open

Rack” module types and mount method, respectively. Moreover, the surface azimuth is set to 180

since Montreal is located in the northern hemisphere; the best direction of the panels should be

toward the south.

Table 5.1. PV modules information

Module Parameter Type/Value

Manufacturer Canadian Solar

Model CS5P_220M_2009

Type Glass-Cell-Glass

Mount Type Open Rack

58

Inverter Manufacturer ABB

Inverter Model MICRO_0_25_I_OUTD_US_208__208V

Surface Azimuth 180

Surface tilt 45

The Inverter’s model is selected in a way to track the maximum power point (MPPT).

Therefore, the final AC output of the inverter is shown in Figure 5.1. In each time step, the

maximum power output in the form of DC power is calculated. Then based on the inverter

efficiency, it will be converted to AC electricity. The PV power output will be fed to the design

module for the local generation.

Figure 5.1. DC power output of a PV module

5.3. Wind Power Output
Several parameters and sub-models in the wind power model are defined as input by the

user. There are two main models for wind power output: the first model is for single wind turbine

59

power output and the second is for wind farm power output calculation. Table 5.2 shows the sub-

models and related parameters of a single wind turbine.

Table 5.2. Single wind turbine sub-models and parameters

Sub-Model/Parameters Type/Value

Wind Speed Model Hellmann

Density Model Ideal gas

Temperature Model Linear gradient

Power Output Model Power Coefficient Curve

Obstacle Height 0

In Table 5.3. the selected sub-models and parameters of a cluster of turbines (Wind farm)

are shown.

Table 5.3. Wind farm sub-models and parameters

Sub-Model/Parameters Type/Value

Wind Speed Model Hellmann

Density Model Ideal gas

Temperature Model Linear gradient

Wake Loss Model Wind farm efficiency

Obstacle Height 0

Standard Deviation Method Staffell_Pfenninger

Smoothing Order Wind farm power curve

Although the obstacle height is equal to zero in both single turbine and wind farm models,

using different Hellman friction factors could simulate different geographical situations where the

turbines are installed. Since the single turbines should be installed on the roof of the building in

Montreal’s downtown area, the Hellmann exponent is equal to 0.3. While for the wind farm model,

this could be different based on the land type selected for the turbine cluster installation. The

assumed Hellmann exponents for the wind farm model are reported in Table 5.4.

60

Table 5.4. Assumed Hellmann friction factor coefficients

Land Type (Greater

Montreal)

Hellmann Exponent

(𝜶𝜶)

Land Type (Outside of

Greater Montreal)

Hellmann

Exponent (𝜶𝜶)

Waterbody 0.10 Agricultural 0.10

Open Area 0.10 Forest 0.15

Resource and Industrial 0.20 Industrial 0.20

Parks and Recreational 0.25 Public and Recreational 0.25

Commercial 0.30 Residential 0.30

Residential 0.40 Urban Areas 0.40

Since the wind farm could be installed in both greater Montreal (outside of the populated

areas) and outside of greater Montreal, the land types are different. Moreover, similar land types

inside and outside greater Montreal could have different Hellmann Exponents. For instance,

buildings in residential areas are denser, while outside of Greater Montreal could be scattered.

However, in the case of using the developed tool for other locations, the Hellmann exponents

should be amended accordingly.

In this research, the specification of a single wind turbine is reported in Table 5.5 [109].

The selection of the wind turbine is based on the wind turbine’s power curve and the maximum,

minimum, and average wind speed of the case study. The EO-25 wind turbine is selected since its

cut-out, and cut-in wind speeds are close to the maximum and minimum wind speeds in Montreal.

Table 5.5. Single wind turbine specifications

Wind Turbine Type/Value

Manufacturer eocycle

Model EO-25

Rated Power 25 kW

Cut in Wind Speed 3.1 m/s

Cut out Wind Speed 25 m/s

Blade Length 6 m

Number of Blades 3

Area 125 m2

Hub Height 16m

61

Based on the above specification, the output of a single wind turbine is shown in Figure

5.2 for year 2019.

Figure 5.2. Single 25kW wind turbine power output

As mentioned in section 3, the wind speed data for single wind turbine power output is

collected for a 50-meter height which considers the height of the EV building and the hub height

of the wind turbine.

For wind farm design, a large-scale wind turbine is selected, and the specification is

reported in Table 5.6. [110].

Table 5.6. Wind farm wind turbines specifications

Wind Turbine Type/Value

Manufacturer Enercon

Model E-53

Rated Power 800 kW

Cut in Wind Speed 3 m/s

Cut out Wind Speed 34 m/s

Rotor Diameter 52 m

62

Number of Blades 3

Area 2198 m2

Hub Height 73 m

Since the number of wind turbines in the wind farm depends on several indicators of the

land that will be selected by the optimization model, in this stage, the electrical output of one large-

scale wind turbine in the middle of the wind farm (considering the wake effect of the front turbine)

is displayed in Figure 5.3. Furthermore, the Hellmann friction factor is considered equal to 0.1

(open area). This figure only indicates how the wind farm model works.

Figure 5.3. The power output of one of the turbines located in the middle of the wind farm

5.4. Local Generation Design
In the local generation, the output of the PV and single wind turbine models are used as

input data along with the power consumption. Single wind turbine power output is employed

because of the scattered installation of wind turbines on the roof of the building, and since the wind

turbines are not supposed to be near each other, they could be considered standalone turbines.

63

This module of the tool was developed in a way to receive some inputs before designing

the energy system. Based on the case study, these inputs could be set as default or defined by the

user. In this research, the input parameters are described in Table 5.7 and 5.8.

Table 5.7. Input costs parameters

Component Value

PV Cost (CAD/kW) [111] 1230

PV O&M Cost (% of Capital Cost) [112] 1

Wind Turbine Cost (CAD/kW) [111] 2046

Wind Turbine O&M Cost (% of Capital Cost) [111] 2

Lithium-Ion Battery Cost (CAD/kWh) 660

Battery Replacement Cost (CAD/kWh) 660

Battery Maintenance Cost (CAD/kWh-year) [112] 12.9

Battery Charge/Discharge Operating Cost (CAD/kWh) [112] 0.00053

Converter/Inverters Cost (CAD/kW) 100

Table 5.7 shows the initial and operational costs of different components of the system,

while Table 5.8 reports the battery’s input parameters.

Table 5.8. battery’s input parameters

Parameter Value

Battery maximum charge/discharge ratio 35

Minimum SOC of the batteries (%) 20

Portion of generated electricity that could be sold to grid (%) 100

Discharging efficiency (%) [113] 95

Charging efficiency (%) [113] 95

64

The other important parameter that should be specified based on the case study is the

maximum amount of LPSP. In this research, the maximum LPSP should be less than 0.1 percent

(0.001). Furthermore, the loss penalty coefficient (discussed in the methodology section) is

specified in a flexible manner based on the amount of electricity that is used in each time step.

Table 5.9 shows the penalty coefficient based on the consumption value in each time step.

Table 5.9. Flexible loss of power supply penalty coefficient

Scenario 𝝋𝝋 - $/kW

Power Consumption < 40,000 1

40,000≤Power Consumption ≤50,000 2

50,000≤Power Consumption ≤60,000 3

60,000≤Power Consumption ≤70,000 4

70,000≤Power Consumption ≤80,000 5

80,000 < Power Consumption 6

Using the input parameters, the optimization model results in the optimum configuration

and size of each component, considering the economic and reliability aspects. These results are

reported in Table 5.10.

Table 5.10. Optimum configuration and economic report of local energy system

Parameter Value

NPC (CAD) 39,634,169

LCOE (CAD/kWh) 0.12144

Initial Capital Cost (CAD) 17,137,929

PV Capacity (kW) 3877

65

Wind Turbine (kW) 1200

Battery Capacity (kWh) 10763

To evaluate the amount of generation of each components in different time steps, a scheduling

graph is shown in Figure 5.4.

Figure 5.4. The annual schedule of the optimum design for local power generation

Based on this figure, the amount of unmet load (loss of power) is negligible during the

year, which means the flex scenario for loss penalty coefficient along with considering a constraint

for LPSP, could be functional. However, the amount of purchase from the grid (HQ in this

research) is still considered excessive compared to renewable generation. To assess this issue

further, the amount of renewable penetration along with some other information about the system,

is given in Table 5.11.

Table 5.11. Designed local energy system information

Parameter Value

Renewable Penetration (%) 62

Unmet Load 12 days (15219 kWh)

66

Purchase from grid (kWh) 7,811,121

Sell to Grid (kWh) 63,764

Based on Table 5.11., the amount of renewable penetration for the design of local microgrid

is 62 percent. Since the maximum available area is used for installing renewable components, this

is the maximum renewable penetration that could be achieved. The amount of purchase from the

grid is about 7.8 MWh, and since the summation of power consumption in the building is about

20.8 MWh, then about 13 MWh could be covered by renewable generation, which could lead to

an annual benefit for the University. Since about 95 percent of generated electricity in Quebec

comes from renewable sources such as hydro or wind [114], no penalty is considered for

purchasing from the grid. However, based on the selected case study, the user can specify the

portion of nonrenewable electricity in the central grid and define a penalty for it accordingly.

In Table 5.8, the battery’s parameters are specified. Although most of these parameters

could be set based on the literature as default (or they could be regulated by the user), the maximum

charge/discharge ratio is the one that needs to be studied more to find the optimum value.

Therefore, a sensitivity analysis is carried out on this parameter by changing its value and

analyzing the impact on the levelized cost of energy. The other important factor that needs to be

evaluated is the impact of changing the maximum charge/discharge on the battery’s operating cost.

The result of the sensitivity is shown in Figure 5.5. It is evident that by raising the charge/discharge

rate, the cost of energy reduced; however, this reduction is not sensible after 0.3. On the other

hand, the battery operation cost has an ascending and descending order with increasing the

maximum charge\Discharge rate. Although the minimum battery operation cost happens when it

intersects the LCOE graph, at some point, the operation cost reduction happens because of the

decrease in storage capacity. Therefore, the optimum maximum charge\discharge rate could be

between 0.3 and 0.4, that LCOE is not changing anymore, and battery operation is not at maximum

level. In this research, the average of these two values is considered as the maximum

charge\discharge rate.

67

Figure 5.5. The annual schedule of the optimum design

To focus more on the battery operation, Figure 5.6. shows the battery state of charge and

charging\discharging amount in each time step.

Figure 5.6. Battery State of Charge and Charge\Discharge schedule for the optimum energy system

There is an abnormality between day 200 and day 300, in which the battery is not working

at all. This could be because of the lower grid price from August to October. Moreover, accurate

68

analyzing of storage operations requires smaller resolutions, such as hourly. The operation of the

battery will be assessed in the “Microgrid Operation” section of this thesis.

The monthly generation plot is displayed in a bar chart (Figure 5.7) to better compare the

quantity of renewable generations, unmet load, surplus power and grid purchase.

Figure 5.7. Monthly generation, unmet load, surplus power, and grid purchase bar chart

Based on this figure, the grid purchase volume is higher in the second half of the year in a

meaningful way because of a lower grid purchase price, especially in November. As expected, the

amount of PV generation is higher in warmer months compared to wintertime, while wind

generation behaves the opposite. The summation of surplus power and unmet load in each month

is negligible.

5.5. Heating System
As discussed in the case study (Section 3), electricity is not the only source of energy at

Concordia university. Natural Gas (NG) is the other energy source used for heating purposes.

69

Although electricity is also engaged in heat generation, the value of the heat that is generated by

electric boilers in the building is not considerable. The working schedule of the EV building’s

electric boilers is illustrated in Figure 5.8 for the year 2019.

Figure 5.8. Electric boilers' electricity consumption during the year 2019

Assuming the Coefficient of Performance (COP) is equal to 1 for electric boilers, the

amount of electric consumption of the electric boiler is equal to the heat generation. Therefore,

based on Figure 5.8, the generated heat by electric boilers is not only low but also excessively

fluctuates during the year (on-off).

On the other hand, the gas boiler in the building using natural gas is responsible for a high

portion of the generated heat in the EV building. The only data that was available about the heat

generation by the gas boiler is the supply and return temperature along with the flow rate of the

water passing through it in 15 minutes resolution. The available data for the first day of 2019 is

shown in Figure 5.9.

70

Figure 5.9. Available data for heat transfer calculations

Hence, the final transferred heat, based on the heat transfer formula mentioned in the

methodology section, is calculated.

Based on the information provided by the facility management of the University, the

electric boilers are oversized 50 percent more than the actual capacity. Therefore, most of the time,

there is standby boiler that is not on duty for each electric boiler. Considering the COP equal to 1

for electric boiler, the calculated heat matches the electric boilers’ electricity consumption. Figure

5.10 displays the total electrical consumption of the EV building in hourly resolution, including

the electric boiler consumption.

71

Figure 5.10. EV building’s electricity consumption for the scenario with a replacement of the gas boiler
with the electric boilers

It is evident from this figure that a considerable amount of electricity is required to replace

the gas boilers for heat generation.

After heat calculation, the gas consumption could also be evaluated, as explained in section

2. In this study, the calorific value of Quebec’s natural gas is considered equal to 40 MJ/m3 [115],

and the efficiency of the gas boiler is assumed to be 95 percent [116]. The gas consumption for

the year 2019 is shown in Figure 5.11 with hourly resolution.

72

Figure 5.11. Calculated hourly natural gas consumption in the year 2019

5.6. Regional Generation Design

5.6.1. Electric Boiler

As discussed in the previous subsection, an enormous amount of electricity is required to

remove the gas boilers and replace them with electric boilers that are already installed in the

building. Adding this value to the electrical load demand will cause significant stress on the

conventional grid since it is not prepared for this demand. Meanwhile, the renewable energy

system that is designed in the local generation design subsection could not be oversized since the

maximum available area for both generators (PV and wind turbines) has been reached. Therefore,

this research evaluates the possibility of renewable electricity generation and transmitting it to the

microgrid. It should be noted that the regional generation only includes wind turbines since

installing large-scale wind turbines inside urban areas is more challenging than PV panels.

Based on the discussed methodology for regional generation in section 2, several

assumptions need to be made. Since the case study in this research is located in Greater Montreal,

the first assumption is specifying the land types inside greater Montreal and outside of it and then

assigning the related Hellmann exponent to them. In section 3, the Hellmann exponents for each

land type were reported in Table 5.4. The friction factors were assigned to each land based on the

literature [117].

73

It should be noted that the residential meaning in urban areas differs from the meaning of

residential outside of the metropolitan regions. Therefore, the Hellmann exponent for residential

land type inside Greater Montreal differs from outside of it. This could be justified based on the

building’s dispersion inside and outside of urban areas.

The other critical parameter is the cost of each land type and the number of wind turbines

that could be installed in each zone.

Table 5.12. Land cost and turbine density assumptions

Land Type (Greater

Montreal)

Land Cost

 ($/m2)

Turbine Density

(No.)

Waterbody 1000 10

Open Area 5 100

Resource and Industrial 25 20

Parks and Recreational 60 40

Commercial 40 10

Residential 80 60

 The assumptions are reported in Table 5.12 only for the greater Montreal area since the

outside of greater Montreal is not considered in this case study. However, the user can define any

radius for the square mesh circle around the case study. Moreover, Waterbody land cost is

considered extremely higher than other types (with lower expected turbine density) to exclude it

from the model’s selection since the selected wind turbines are not designed for offshore

applications.

As discussed in section 2, the square mesh circle needs to be created by the user. In this

thesis, Concordia’s EV building is in the center of the circle (Latitude 45,49, Longitude -73.57),

while the circle radius and square side (which define the size of each zone) are 20 and 4 kilometers,

respectively. Therefore, the created mesh includes 76 zones, as illustrated in Figure 5.12.

74

Figure 5.12. Created square mesh circle

Now the created square mesh circle should be located (based on the center’s latitude and

longitude) on top of the other maps (land types of greater Montreal, land types of outside greater

Montreal, Grid power line, and transformer location map). The final created mapping model is

displayed in Figure 5.13.

75

Figure 5.13. Final mapping model output

Afterward, the data for all zones (76 zones) in the square mesh needs to be extracted, and

then it could be used as input for wind power and optimization models, as discussed.

The final result for the regional generation model is reported in Table 5.13.

Table 5.13. Regional model optimum configuration and economic report

Output Value

NPC (CAD) 65,598,245

LCOE (CAD/kWh) 0.09974

Initial Capital Cost 57,711,640

PV Capacity (kW) 3877

Local Wind Turbine (kW) 1200

Battery Capacity (kWh) 6000

Regional Wind Turbines (kW) 23200

76

The result, which is shown in Table 5.13, indicates a sensible improvement in the economic

factors such as the LCOE of the system compared to the local generation because of selling higher

amount of electricity to the grid. However, the NPC of the system raised because of high initial

capital cost which could be caused by purchasing 29 large-scale wind turbines and other related

expenses. Since running the regional model provides vast amounts of electricity for the microgrid,

therefore, while setting no limit on the battery capacity, it selects no storage in the optimum

configuration. However, the designed system without storage could lead to low resiliency and

reliability in case of grid failure, and moreover, the lack of storage system could create problems

for the interaction with the grid as well because of the intermittent behavior of renewables.

Therefore, in this research, about half of the battery storage system in the local generation design

is set as the minimum bound of the battery storage capacity in the regional generation design.

The regional generation also improved the other important design indicators such as

renewable penetration. The list of these indicators is reported in Table 5.14. Based on this Table,

although a considerable amount of load was added to the total electrical demand because of the

heat generation, the renewable penetration is increased since clean energy is also generated outside

of the microgrid.

Table 5.14. Regional generation optimum design parameters

Parameter Value

Renewable Penetration (%) 81

Unmet Load 0 days (0 kWh)

Purchase from grid (kWh) 14,997,320

Sell to Grid (kWh) 13,314,640

The developed model could also automatically select the optimum zone for installing the

wind farm. The designated zone is shown in Figure 5.14. This zone is the optimum zone in terms

of wind speed, distance to the transformers, land cost, and the maximum number of wind turbines

that could be installed.

77

Figure 5.14. Final mapping model output (Zoomed in)

The final yearly schedule of the model is shown in Figure 5.15. Based on this figure,

although the renewable penetration increased by about 20 percent, the grid dependency and

purchasing electricity from the central grid is still high. Unlike local generation, the battery state

of charge fluctuates throughout most of the days. Furthermore, the amount of unmet load is

reduced to zero, which means the system never experienced a loss throughout the year.

78

Figure 5.15. The annual schedule of the optimum regional design using the electric boilers

5.6.2. Heat Pump

Although because of the oversized electric boilers in the EV building, the initial capital

cost for purchasing them is assumed to be zero, comparing it with a heat pump (even when a heat

pump needs to be purchased) could be a viable study. This is mainly because the higher COP of

heat pumps compared with electric boilers makes it an economical solution.

Therefore, in this step, a heat pump is added as a new component to the energy system

instead of the electric boiler to generate heat using electricity. Since the average COP of an air

source heat pump (used just for heat generation) is about 3, hence, after adding the calculated

electricity demand of the heat pump to generate the same amount of heat that electric and gas

boilers are producing, the final electrical consumption is shown in Figure 5.16.

79

Figure 5.16. EV building’s electricity consumption for the scenario with a replacement of the gas boiler
with the heat pump

Comparing Figure 5.10 with Figure 5.16 reveals a considerable difference in the electricity

consumption of heat pumps and electric boilers. The annual consumption in all the scenarios is

reported in Table 5.15 for better estimates.

Table 5.15. Building’s annual consumption in different scenarios

Scenario Annual Consumption (MWh)

Local Generation (Without Heat) 20822

Electric Boiler 65503

Heat Pump 49597

The heat pump specification is reported in Table 5.16. Heat pump capacity is sized based

on the peak heat consumption. Therefore, the model limits the lower bound of the heat pump’s

capacity by the value which is mentioned in Table 16.

Table 5.16. Selected air source heat pump specification

Parameter Value

Capacity (kW) 5897

Fixed Cost (CAD/kW) [118] 1125

80

O&M Cost (% of Capital Cost) 0.6

 The result of the optimum design of the regional generation energy system using a heat

pump is summarized in Table 5.17.

Table 5.17. Regional model using heat pump optimum configuration and economic report

Output Value

NPC (CAD) 56,419,574

LCOE (CAD/kWh) 0.08261

Initial Capital Cost 49,492,415

PV Capacity (kW) 3877

Local Wind Turbine (kW) 1200

Battery Capacity (kWh) 6000

Regional Wind Turbines (kW) 20800

Heat Pump Capacity (kW) 5897

Looking at Table 5.17, it is evident that the economic parameter of the designed system

improved by using heat pump compared to the scenario using an electric boiler. The results show

that the LCOE of the electricity consumption decreased by about 1.7 cents per kilowatt hour.

Moreover, although the heat pump needs to be purchased in the heat pump scenario, and this adds

up to the system’s fixed cost, the initial capital cost is also reduced since fewer regional wind

turbines are selected for this scenario.

To further evaluate the comparison of using the electric boilers and heat pumps, the

optimum design parameters are reported in Table 5.18. Based on these outputs, the renewable

penetration is also improved by about 5 percent while the amount of unmet load is still zero.

81

Table 5.18. Regional generation optimum design parameters

Parameter Value

Renewable Penetration (%) 86

Unmet Load 0 days (0 kWh)

Purchase from grid (kWh) 8,972,505

Sell to Grid (kWh) 14,932,170

The yearly schedule is displayed in Figure 5.17. to evaluate the different generations and

consumptions.

Figure 5.17. The annual schedule of the optimum regional design using a heat pump

While the amount of unmet load is zero during the year, there is considerable surplus power

for regional wind generation. This could be solved by increasing the limit (maximum 0.2 MWh

per day) which has been set for the grid node that the regional generation needs to be injected.

Furthermore, the battery shows considerable fluctuations, especially in wintertime, which could

add to the battery operation cost. This is because of the smaller capacity selected for the storage

system compared with the local generation scenario.

82

5.7. Proposed Tariff
Although in the previous subsection, using a heat pump improved the overall system’s

economic and generation quality, renewable penetration is not still at its highest value since we

can generate even more electricity outside of the microgrid area. Moreover, from the central grid

perspective, a large prosumer like Concordia University could still add stress to the grid, especially

in the wintertime. This could be because of the electricity rate that is being used in the building,

and as mentioned earlier, it is based on the contract between the University and Hydro Quebec.

This rate is slightly flexible and not dynamic. Therefore, in this thesis, the effect of changing the

electricity rate on the designed system is evaluated based on the University and Hydro-Quebec

perspectives.

To create a flexible and dynamic pricing scenario, there are two aspects that need to be

considered. The first is the amount of electricity used in each time step and the second is the usage

time. Taking these two aspects into account could push the design model to purchase less from the

grid in the high demand time. Therefore, to categorize each time step into its class, the if-else

scenario loops should be created as reported in Table 5.19.

83

E
lectric B

oiler Scenario
H

eat Pum
p Scenario

Sum
m

er (A
pril 1-

N
ov. 30) C

A
D

/kW
h

W
inter (D

ec. 1 – M
arch

31) C
A

D
/kW

h

If daily dem
and is less than 140,000

If daily dem
and is less than 100,000

0.06
0.08

If daily dem
and is betw

een 140,000 and 160,000
If daily dem

and is betw
een 100,000 and 120,000

0.08
0.12

If daily dem
and is betw

een 160,000 and 180,000
If daily dem

and is betw
een 120,000 and 140,000

0.10
0.18

If daily dem
and is betw

een 180,000 and 200,000
If daily dem

and is betw
een 140,000 and 160,000

0.12
0.26

If daily dem
and is betw

een 200,000 and 220,000
If daily dem

and is betw
een 160,000 and 180,00 0

0.14
0.36

If daily dem
and is m

ore than 220,000
If daily dem

and is m
ore than 180,000

0.16
0.48

Sell price for any am
ount less than the defined lim

it (200,000 kW
h/Y

r.)
0.10

0.20

Table 5.19. D
ynam

ic pricing strategy

84

Table 5.19 shows the pricing strategy for a regional generation design using both heat

pumps and electric boilers scenarios for purchasing and selling. The result of the explained strategy

on EV building’s data is shown in Figure 5.18 for the regional generation design electric boiler

scenario.

Figure 5.18. The proposed dynamic pricing strategy for regional generation design using an electric boiler

As shown in Figure 5.18, the purchasing price fluctuates in a daily manner based on the

time of use (winter or summer) and the amount of electrical consumption each day. For instance,

with this pricing strategy, a jump in daily consumption in winter causes a considerable rise in the

purchasing price, while the same growth in summer will cause way less increment in price. Unlike

purchasing price, the selling price only changes with the season (winter to summer), and it is

assumed to be constant during the season.

The same pricing strategy could be used for regional generation using a heat pump

scenario, which is shown in Figure 5.19.

85

Figure 5.19. The proposed dynamic pricing strategy for regional generation design using a heat pump

To evaluate the impact of the explained pricing strategy on the final design, the created

pricing policy function is given to the regional generation models (for both the electric boiler and

heat pump scenarios).

Table 5.20. The final optimum configurations and economics using the proposed Tariff

Output Heat Pump Scenario Electric Boiler Scenario

NPC (CAD) 45,311,789 70,661,136

LCOE (CAD/kWh) 0.05282 0.07999

Initial Capital Cost 69,332,415 95,358,040

PV Capacity (kW) 3877 3877

Local Wind Turbine (kW) 1200 1200

Battery Capacity (kWh) 6000 6000

Regional Wind Turbines (kW) 33600 41600

86

Based on the results reported in Table 5.20, all the economic parameters show

improvement in both scenarios compared to the results of using HQ tariff. This means that using

dynamic pricing could be in favor of Concordia university in terms of economic aspects.

Furthermore, the proposed pricing strategy could also be beneficial from HQ's perspective

as well. By looking at Table 5.21, it is evident how the stress on the grid is removed by reducing

the grid purchase in both scenarios when using the proposed Tariff. This reduction is more sensible

in Winter when the central grid is experiencing higher load demand.

Renewable penetration is also at the maximum level and considerably higher, 11 and 14

percent rise for heat pump and electric boilers scenarios, respectively, compared to using HQ

pricing strategy for both scenarios.

Table 5.21. Regional generation optimum design parameters using proposed tariff

Parameter Heat Pump Scenario Electric Boiler Scenario

Renewable Penetration (%) 94 92

Unmet Load 1 day (49579 kWh) 2 day (65503 kWh)

Purchase from grid (kWh) 4,938,031 7,764,784

Sell to Grid (kWh) 26,121,760 27,754,480

Although changing from the local to regional scenario lowered the payback period, using

the proposed tariff could also fairly bring down the amount of time that it takes to recover the

initial investment. This could also make the proposed tariff interesting for the prosumer (Concordia

University) and the investors.

5.8. Environmental assessment
One of the advantages of regional generation scenarios was the environmental benefit and

decarbonization along with economic improvements. As discussed in section 4.4, EV building

alone consumed 2,204,762 m3 of natural gas in one year (2019). Considering 1.92 kg CO2

emissions equivalent per cubic meter of natural gas [119], it generates about 4233 tons of CO2 per

year. Since the gross floor area of the EV building is 69204 m2, the CO2 emission per area of the

87

EV building is about 61 kg/m2 only for space heating which is higher than the CO2 emissions

average values for large-scale buildings in different locations [120]. A complete report of the

annual emissions of Concordia's EV building is shown in Table 5.22 [119]. The space heating

emissions could be reduced to zero by using the regional generation scenarios and replacing the

gas boiler with a heat pump or electric boiler.

Table 5.22. EV building’s natural gas consumption by-products

NG Consumption By-Product Value (kg)

CO2 4,233,143

NOX 5290

CO 2962

N2O 77

CH4 81

Based on the formulation mentioned in section 2 for penalty calculation, the total amount

to which the user should be penalized is about 68,964 CAD per year. Moreover, the University

not only can save by removing the emissions but the annual cost of the natural gas consumption

could also be diminished. Final savings are summarized in Table 5.23.

Table 5.23. Savings by ceasing natural gas consumption

 Saving (CAD/Year)

Removing NG Consumption 661,428

Removing Emissions 68,964

Total Save 730,392

88

5.9. Renewables and Power Consumption Uncertainties
Before starting the operation module, the uncertainties caused by the fluctuations of the

renewable resources and the user behavior that lead to unforeseen power demand must be reduced.

In this thesis, several methods have been analyzed, as explained in the methodology section. The

results of each method will be discussed in the following sections. Since the models are used for

the short-term forecast (one or a maximum of two days), they have been used at different times of

the year (winter and summer) to generalize their results.

 To form the LSTM layers, the Keras library with TensorFlow backend is used.

Furthermore, grid search optimization is applied to find the optimum hyperparameters (Table

5.24).

Table 5.24. Hyper Parameters of the LSTM model and Parameter selection results

Parameter Values/Types
Hyper Parameter

Optimization - Load

Hyper Parameter

Optimization - Wind

Hyper Parameter

Optimization - Solar

Hidden layers (No.) 3 - - -

Number of neurons (No.) 60 - - -

Activation function Sigmoid - - -

Optimizer types {Adam, RMSprop} Adam Adam Adam

Batch size {1,32,64} 64 32 32

No. of epochs {50,80,100,120,135,150} 150 120 100

5.9.1. Power Consumption Forecasting

To forecast two days ahead of electrical consumption of the EV building, the hourly

historical data for 2019 and 2020 is used for training purposes. Afterward, two randomly selected

days in each season, the 12th and 13th of July as representative of summer and the 12th and 13th of

March as representative of Winter, are selected for test purposes.

The hyperparameter optimization shows that the combination of the Adam optimizer and

a batch size of 32 with 150 epochs results in fits with only minor loss in the training stage. Further

increase in the number of epochs results in a slight reduction of error with the training data, as

89

shown in Figure 5.20; moreover, above 150 epochs, the overfitting tends to cause a reduction of

accuracy of the model in forecasting the test data set.

Figure 5.20. Model convergence plot for a single LSTM model

As explained, the trained model was then tested on the 12th and 13th of July and March

2020. The training and test dataset are of the same resolution. The results of all three employed

models to forecast the next 48 hours are depicted in Figure 5.21 for both summer and winter and

are compared with the observed values.

90

Figure 5.21. Power consumption forecasting results for 48 hours

In Figure 5.21, despite the fact that the SARIMAX model better predicted the seasonality

and the noise in the first 24 hours of data, it is not capable of forecasting the next 48 hours as it

only repeats the same seasonality trend and noise every 24 hours. This problem could be resolved

by employing an LSTM model. As it is shown, the predicted values will be in better accordance

with the observed values by using LSTM. However, the small fluctuations, especially in peak

hours, are not properly predicted. Using the proposed hybrid model, as it is demonstrated in Figure

5.21, the peaks will be forecasted in a superior way in comparison with the outcomes from each

individual model.

The performance of each model is summarized in Table 5.25. The evaluation metrics

calculated show less error and higher accuracy for the proposed hybrid model in both seasons. For

instance, in summer, he RMSE of the LSTM and SARIMAX models are 155.15 and 189.96,

respectively, while the RMSE of the Hybrid model is slightly lower (152.59), showing a lower

error for load forecasting. The accuracy improvement is even more considerable in winter, where

the Hybrid model reduced the mean absolute percentage error by about 4 and 6 percent compared

with single LSTM and SARIMAX models, respectively.

91

Table 5.25. Power consumption forecasting results

Model RMSE MAE MAPE
Summer – 12 & 13 July

LSTM 155.15 127.17 6.27
SARIMAX 189.96 151.55 16.74

Hybrid LSTM-SARIMAX 152.49 128.34 6.21
Winter – 12&13 March

LSTM 314.12 259.57 13.78
SARIMAX 295.28 238.39 15.21

Hybrid LSTM-SARIMAX 285.75 232.51 9.62

5.9.2. Wind Speed Forecasting

LSTM, SARIMAX, and the proposed hybrid methods were developed in Python

programming language. To generalize the results of the testing of the developed models for the

whole year, three different test sets from summer (the last 2 days of July 2020), Fall (the last two

days of October 2020), and Winter (the last two days of December 2020) were selected as the

representative of different seasons. For summer, the model trained with the data from Jan 2020

until 29 July 2020, while for Fall and Winter, the training set includes data from Jan 2020 until 29

October 2020 and 29 December 2020, respectively. A few missing values were found in the

training sets, and they all have been replaced by the average of the previous and next values. Also,

the outlier detection procedure is implemented using boxplot visualization and calculating

quartiles based on the formula explained in the methodology section. The results show no outlier

in the training sets.

To scale up the predictors and target variable into a unique scale, the MinMaxScaler

method from preprocessing sub-package of the Sklearn library is used. All features are scaled into

the range between 0 and 1 before feeding to the neural network model.

To form the LSTM layers, the Keras library with TensorFlow backend is used. Furthermore, grid

search optimization is applied to find the optimum hyperparameters (Table 5.24). The

hyperparameter optimization shows that the combination of the Adam optimizer and a batch size

of 32 with 150 epochs results in fits with only minor loss in the training stage.

The Weibull model was developed by creating a function to generate the wind speed

distribution. The Weibull distribution of the wind speed for the year 2020 is calculated in the

92

Python environment by creating a Weibull function using 𝑃𝑃, 𝑘𝑘, and 𝛤𝛤 parameters that have been

explained in the methodology section. The result is shown in Figure 5.22. The histogram graph in

Figure 5.22 displays the data distribution in the range of 0-20 m/s. Also, the Weibull probability

feature is created using the Stats package of the Scipy library.

Figure 5.22. Weibull distribution of the historical wind speed

The parameter selection of the SARIMAX model is made by applying the Autoarima

package from the Pmdarima library and a grid search through 42 different combinations of the

(𝑒𝑒, 𝑃𝑃, 𝑞𝑞)(𝑃𝑃,𝐷𝐷,𝑄𝑄, 𝐿𝐿) parameters. The last two months of wind speed historical data of the first half

of the year 2020 is used for training the Autoarima for parameter selection. The results (Table

5.26) show that the combination of (1,0,1)(2,1,0,24) yields the minimum AIC and is selected as

the optimum set of parameters for the SARIMAX model. All the other combinations that are not

mentioned in Table 37, led to AIC equal to infinity.

Table 5.26. Report of the Grid Search for SARIMAX parameter selection

Combination AIC Combination AIC

(0,0,0)(0,1,0,24) 11271 (1,0,1)(2,1,0,24) 4044

93

(1,0,0)(1,1,0,24) 4955 (2,0,1)(2,1,0,24) 3959

(1,0,0)(0,1,0,24) 5548 (3,0,1)(2,1,0,24) 3961

(1,0,0)(2,1,0,24) 4709 (2,0,2)(2,1,0,24) 4221

(0,0,0)(2,1,0,24) 10553 (1,0,0)(2,1,0,24) 4707

(2,0,0)(2,1,0,24) 3998 (1,0,2)(2,1,0,24) 3972

(2,0,0)(1,1,0,24) 4211 (3,0,0)(2,1,0,24) 3962

(3,0,0)(2,1,0,24) 3964 (3,0,2)(2,1,0,24) 3963

(3,0,0)(1,1,0,24) 4175 (4,0,1)(2,1,0,24) 3963

(5,0,0)(2,1,0,24) 3965 (3,0,1)(1,1,0,24) 4176

The results consist of details of the selected combination, including the AIC, BIC and HQIC are

reported in Table 5.27.

Table 5.27. Selected combination information

Parameter/Metric Value/Type

Optimum non-seasonal orders (2,0,1)

Optimum seasonal orders (2,1,0,24)

No. of observations 2160

Log likelihood -4270.623

AIC 3952.516

BIC 4004.849

HQIC 3976.106

Covariance type Outer Product of Gradients (OPG)

94

Figure 5.23. 48 hours forecasting results in different seasons

95

Figure 5.23 shows the forecasting results of all three models and the hybrid models' results

for the last two days of July, October, and December 2020. At a glance, the results using a single

LSTM model do not show proper wind speed forecasting, especially in peak hours that are way

over or under actual values. By applying the SARIMAX model, although the mean value of the

forecasted wind speeds is nearer to the mean value of the actual wind speed compared with the

single LSTM model, it has not captured the fluctuations, peaks, and trends decently. While using

the NWP model resulted in a significant error, especially in winter, applying the proposed

integrated model can considerably reduce this error. Furthermore, the seasonality and trend issues

seem to be fixed for the whole prediction horizon in different seasons. However, the accuracy is

not high in the two major peaks. A quick comparison between the result of the proposed hybrid

model and the result of the other models reveals the hybrid model's ability to better integrate the

fluctuations and trend.

To evaluate and compare the models precisely, the RMSE, MAE, and MSLE of each

model's results are calculated based on what was explained in the methodology section. The results

are reported in Table 5.28. The LSTM model results show a 2.21-3.16 root mean squared error in

different seasons that depict the LSTM model's inability to accurately predict using the three

meteorological historical data (temperature and humidity) as the independent variables. Although

with the SARIMAX model, the RMSE and MSLE are improved in the fall, the error is still high.

As explained in the methodology section, the LSTM model with different layers in its cells can

deal with unexpected behavior of data. Therefore, a proper feature should be added to the LSTM

model for better training. Integrating the probability distribution of the wind speed with the LSTM

model and using it as an input feature could be one of the alternatives to boost the LSTM ability.

The results in Table 5.28 show that the proposed integrated LSTM-Weibull model can reduce the

RMSE of the single LSTM model in forecasting winter, summer, and fall representative days by

about 13, 39, and 31 percent, respectively. These error reductions show that adding a proper

feature, such as the Weibull probability of the wind speed, can help LSTM accurately forecast the

future. However, in case of any unexpected wind behavior that has not happened before (and it is

normal in climatic situations), even the integrated model could lead to a considerable error.

Therefore, to solve this challenge, hybridizing the results of the NWP model predictions with the

proposed integrated model could be helpful in capturing the unexpected behavior of the wind that

was not recorded in the historical data. The single NWP prediction results also show high RMSE

96

and MAE and even higher MSLE compared with other models, especially in Winter and Fall.

However, by hybridizing the NWP model with the integrated model, the RMSE of the proposed

model decreased 47%, 17%, and 32%, respectively, in summer, winter and fall compared with the

single LSTM model.

Table 5.28. Evaluation metrics of all the models for Wind Speed Forecasting

Model RMSE MAE MSLE
July (Summer)

LSTM 2.21 1.86 0.395
SARIMAX 2.64 2.24 0.234

NWP 2.02 1.70 0.227
Integrated LSTM-Weibull 1.35 1.12 0.071

Hybrid LSTM-Weibull-NWP 1.18 0.95 0.066
December (Winter)

LSTM 2.14 1.63 0.106
SARIMAX 2.81 2.3 0.155

NWP 5.58 4.90 0.849
Integrated LSTM-Weibull 1.87 1.55 0.110

Hybrid LSTM-Weibull-NWP 1.78 1.50 0.078
October (Fall)

LSTM 3.16 2.58 0.272
SARIMAX 2.25 2.73 0.294

NWP 4.14 3.11 0.799
Integrated LSTM-Weibull 2.18 1.60 0.100

Hybrid LSTM-Weibull-NWP 2.16 1.67 0.139

To consider the effect of the prediction horizon on the final accuracy, the prediction periods were

extended to 168 hours (one week) for all seasons instead of 48 hours (two days). Since the lookback

period is 48 hours, it means that after forecasting the first 48 hours into the future, the next hours

will be predicted based on the prior predictions. Therefore, the accuracy of the model could be

lower by increasing the prediction horizon. The result of the prediction horizon extension is shown

in Figure 5.24 for the hybrid model. It is evident that the hybrid model acts less and less accurately

with increasing the prediction period except for fall, which still can predict the third day (until 72

hours) correctly, and that could be because of the fewer fluctuations on the third day.

97

Figure 5.24. One week (168 hours) forecasting results of the hybrid model in different seasons

98

5.9.3. Solar Irradiance Forecasting

 The confusion matrix for predictors and target variables is shown by a heatmap in Figure

5.25. The heatmap shows a strong correlation between downward shortwave solar irradiance

(NWP-Forecast-SW) and the observed irradiance. Although, as Figure 5.25 shows, there is a poor

correlation between the observed irradiance and the downward longwave irradiance (NWP-

Forecast-LW), the predictor is still considered as an input since it could positively impact the

results.

Figure 5.25. Correlation heatmap between independent and target variables

The forecasting results for all models: single LSTM, NWP, and the proposed hybrid model

are shown in Figures 5.26 to 5.27. Three different days in May are selected to test the model. The

days are chosen based on the clearness index of the sky and the sky cloud coverage. Although

there are about six different cloud coverage conditions based on the Oktas unit [121], in this study,

99

three scenarios are considered for sky condition: clear sky, scattered (partly cloudy), and overcast

(cloudy). The days are selected in a way to challenge the prediction ability of different models,

especially the single LSTM model that only uses historical data. On 7th May, with a clear sky

situation, the forecasting result (Figure 5.26) shows an inaccurate forecast for all models; however,

the proposed integrated model forecasting result has a better fit with the observed values compared

with other single models. Moreover, since the NWP shortwave prediction is shifted to the right

and misses the peak, it also caused a slight shift in the hybrid model and decreased its accuracy.

 Figure 5.26. Forecasting results for a Clear Sky day (7th May)

On the other hand, on 11th May, the sky is scattered, and the single LSTM model cannot

capture the unexpected movement of the clouds from the historical data; it predicts a pattern based

on the historical trend while it is far from the actual trend. However, during this time, the NWP

prediction could contribute to the hybrid model providing more accurate forecasts. As shown in

Figure 5.27, the hybrid model forecasted values have less error than single LSTM and NWP

models.

100

 Figure 5.27. Forecasting results for a scattered day (11th May)

The effectiveness of the proposed method is shown even more significantly in the case of

the overcast sky on 4th May (in contrast to a clear sky on previous days). The day ahead forecast

has shown that the proposed model can deal with the existence of clouds and adequately predict

solar irradiance, especially in peak hours (Figure 5.28).

101

Figure 5.28. Forecasting results for an overcast day (4th May)

Table 5.29. shows the day ahead solar irradiance forecasting results (hourly resolution) of

different models for three discussed days. The evaluation metrics show a significant improvement

in the results of the single LSTM model when it is hybridized with the NWP model in scattered

and overcast scenarios (presents of the clouds in the sky).

Table 5.29. Evaluation metrics for solar radiation forecasting in Cloudy day – Overcast (4-May)

Model RMSE MAE
4th May (Overcast)

Single LSTM 197.19 124.43
NWP-Shortwave 117 77

Integrated Proposed Model 62.96 (±0.10) 40.60
11th May (Scattered)

Single LSTM 192.81 126.91
NWP-Shortwave 101.48 67.76

Integrated Proposed Model 72.01 53
7th May (Clear-Sky)

Single LSTM 272.64 185.82
NWP-Shortwave 171.60 123.26

Integrated Proposed Model 167.13 114.43

102

5.10. Optimum Operation
In the design section, both local and regional generations have been studied. However,

since one of the assumptions was transmitting the regional power generation to the nearest

transformer of the central grid and then transmitting it to the microgrid, in case of any failure of

the grid, the microgrid doesn’t have access to the regional generation as well. Therefore, the

operation strategies in this research are all developed considering only the local energy system.

Operation management is categorized into two classes as follows. First, assuming the

microgrid has access to the grid, and second is the resilience-oriented optimal operation in the time

of grid failure.

5.10.1. Grid-Connected Optimal Operation

Rate flex G [122] was selected as the Hydro Quebec Tariff for operation management

purposes, and it is reported in Table 5.30.

Table 5.30. Purchasing price based on rate G flex

 Summer (April 1-Nov. 30) Winter (Dec. 1-March 31)

Price of energy outside peak hours 10.29 Cent/kWh 12.815 Cent/kWh

Price of energy during peak hours N/A 51.967 Cent/kWh

Based on Hydro Quebec rules [123], the peak hours only are defined for winter, and it is

between 6 to 9 AM in the morning and between 4 to 8 PM in the evening.

As discussed in the methodology, the main goal of the grid-connected optimal operation is

an optimum unit commitment to minimize the operation cost. To generalize the result for a whole

year, two randomly selected days from the summer and winter seasons are chosen. The result is

displayed in Figure 5.29, which shows the optimal schedule of the grid-connected mode.

103

Figure 5.29. Optimal operation schedule in the grid-connected mode

As shown in Figure 5.29, in the optimum schedule, wind power is available through most

of the hours of the day in winter, while in summer, due to the lack of wind speed at the beginning

of the day, this amount is negligible. On the other hand, solar generation covers the day demand

as expected in both seasons. Since the case study is an educational building, the demand is still

high at midnight, and while wind power covers some parts of winter, in summer, grid purchase is

the only method of supply. The surplus power in both seasons is about zero since one of the terms

in objective functions is minimizing the curtailment.

Since the flex tariff is used (Table 5.30) peak and off-peak hours electricity rates, an

unintentional peak shaving is also employed in the economic dispatch of the grid connected system

which led to the lower operating cost.

The operation cost on the selected winter day is about 1676 CAD, while in summer, it is

about 1693 CAD. The cost includes the trade-off between the grid and microgrid and the battery

operation.

104

5.10.2. Resilience-Oriented Off-Grid Operation

The load demand is randomly selected for two days in winter (15th and 16th February 2019)

and two days in summer (14th and 15th July 2019) as representatives of the cold and warm seasons

when load demand fluctuates more. The resolution of the load demand is hourly, and the time

horizon is 48 h.

The number/capacity of the components in the designed energy system is listed in Table

5.31.

Table 5.31. The microgrid components and battery information.

Component No./Capacity
Wind Turbine 25 kW (No.) 50
PV Panel 220 W (No.) 13,662
Battery (kWh) 9584
Maximum SOC of the batteries (%) 95
Minimum SOC of the batteries (%) 10
Initial State of Charge (kWh) 8000
Discharging Efficiency (%) [24] 90
Charging Efficiency (%) [24] 95
Maximum charge/discharge rate 0.3
Replacement cost (USD/kWh) 156
Total cycles in the lifetime of each unit [25] 300
Curtailment Factor ($/kW) [26] 0.1

Since the microgrid is designed to be grid-connected in urban areas, the renewable

penetration is 53%. Therefore, the system requires a sufficient energy management system to

control the operation during grid power failure resulting in the loss of power supply.

The other important parameter that needs to be set and one that significantly impacts the

final results is the loss coefficient (∅), with $/kW unit, which is a constant parameter (not changing

through the time horizon). Selecting a proper coefficient needs a trial-and-error process to find an

optimal coefficient in the case of both economic and reliability aspects. Therefore, in this research,

all possible coefficients in the range of 0.01 to 1 (step = 0.01) are tested. Since the final results of

the unmet load only change with certain coefficients (the other coefficients have the same rate and

trend of the amount of unmet load (kWh) while having a higher operation cost), the threshold

coefficients are selected and are shown in Figure 5.30. The results show that increasing the penalty

105

for having an unmet load could reduce the loss; however, this increment could cause a considerable

rise in the operating cost.

Figure 5.30. Trial and error results for finding the best coefficient

Furthermore, increasing the loss after the maximum thresholds (0.08 and 0.17) will not

further affect the loss. Therefore, in this study, the threshold coefficients 0.08 and 0.17 were

considered the loss coefficients for winter and summer, respectively. These coefficients have a

minimum loss and a minimum cost (compared to the larger coefficients).

The optimization model was coded in Python programming language using the Pyomo

platform [103]. Since there is no nonlinearity in the model’s equations, and with the presence of

binary variables, the mixed-integer linear programming (MILP) method [124] is used to formulate

the problem. The CPLEX solver [105] is selected to solve the developed MILP problem.

The results of using the actual load demand to find the optimum schedule of the microgrid

in the off-grid mode in summer and winter are illustrated in Figure 5.31. The model’s outcome

shows that the amount of wind surplus power in the winter season is considerable in some hours.

On the other hand, this amount is negligible on the selected days in summer since wind power

generation is reduced in summer compared to winter.

106

Figure 5.31. Optimal Schedule using actual load demand

The other noticeable trend is the amount of unmet load in summer, which is significant in

most hours. The notable volume of the loss of power supply in summer drastically raises the

operational cost (Table 5.32). Furthermore, based on the results in Table 5.32, the unmet load in

winter is also considerable and needs to be diminished.

Table 5.32. Comparison of the scheduling results for the actual, critical, and optimal loads

Coverage Loss Occurrence
(No.)

Loss
(kWh)

Loss Reduction
(%) LPSP Operating Cost

($)
Cost Reduction

(%)
14 and 15 of July (Summer) Loss Coefficient = 0.17

Actual Load 34 44452.86 - 0.446 8921.71 -
Critical Load 1 551.94 98 0.012 2565.01 71
Optimal Load 2 551.63 98 0.010 1938.22 78

15 and 16 of February (Winter) Loss Coefficient = 0.08
Actual Load 4 4226.17 - 0.048 5687.43 -
Critical Load 0 0 100 0 7856.48 −27
Optimal Load 0 0 100 0 4725.89 17

One of the alternatives to lessen the unmet load is using the calculated critical load to at

least serve the power to vulnerable sections. Figures 5.32 and 5.33 illustrate the number of times

that a loss of power could happen and its representing value in an hourly resolution in summer and

winter, respectively, using actual, critical, and proposed optimal loads. According to these figures,

using both critical load and optimal load can reduce the number of power loss occurrences and

their values to zero in winter and to a minimum level in summer. Although using a critical load

could decrease the loss of power supply probability to a minimum level, in the winter case, it

107

drastically increases the microgrid’s operating cost (Table 5.32). This growth in operational cost

is also mildly observed in summer. The curtailed renewable power growth could explain the

increase in operation cost in the winter during different hours.

Figure 5.32. Loss occurrence and value in Summer

Figure 5.33. Loss occurrence and value in winter

Therefore, to tackle the challenge of having a surplus power penalty caused by using the

critical load, the optimal load needs to be calculated by the MILP model to not only bring down

the loss of power supply probability but also minimize the operating cost of the system. The

optimal loads evaluated by the MILP model for both summer and winter are shown in Figure 5.34.

108

Figure 5.34. Optimal, actual, and critical loads for summer and winter

It is evident from the results that, in winter, the optimal load fluctuates more between the

critical and actual loads and tends toward the actual load. In summer, there is just one fluctuation,

which leans toward the critical load. This could be justified by the amount of renewable generation

on different days and the actual load demand. For example, on the second summer day, the actual

load demand rises while the amount of renewable generation is insufficient (Figure 5.31).

Therefore, the optimal load tends to be the critical load on this day since this could be the lower

limit for the optimal load. The loss value using actual, optimal, and critical loads are depicted in

Figures 5.32 and 5.33 for summer and winter, respectively.

The optimum scheduling results of using the optimal load that the optimization model

calculates are shown in Figure 5.35. Based on this figure and Table 5.32, the amount of unmet

load in winter is zero and in summer is near zero, while the amount of added surplus power in both

seasons is not very considerable compared to the actual load schedule. This will cause a meaningful

reduction in the operating cost of the microgrid. Moreover, comparing the optimal load schedule

(Figure 5.35) with the schedule corresponding to the actual load reveals that the amount of battery

charge-discharge increases (not significantly) in the case of optimal load in both summer and

winter, slightly raising the operational cost.

109

Figure 5.35. Optimal Schedule using optimal load demand

Based on the results demonstrated in Table 5.32, employing the optimal load proposed by

the optimization model in summer and winter could bring down the operating cost of the microgrid

in the off-grid mode by about 78% and 17%, respectively (loss and cost reductions are reported in

Table 5.32 compared to the actual load coverage). Moreover, it could lessen the LPSP to near zero

(0.010) in summer and drop it to zero in winter. Although using optimal load has reduced the

operating cost of the microgrid in winter to 4725.89$ from 5687.43$, this change is not significant

compared to that in summer (reducing operating cost from 8921.71$ to 1938.22$). This is due to

variations in renewable generation over those randomly selected days in summer and winter. Since

the amount of wind power generation for the chosen day in summer is much less than that of the

selected day in winter, the amount of unmet load in summer is considerably higher (44,452.86

kWh) compared to winter (4226.17 kWh).

110

Chapter 6: Conclusion and Future Suggestions

6.1. Summary
This thesis investigates the possibility of designing an urban microgrid in an optimum way

by developing a framework with three modules to address the related barriers and challenges. A

regional generation strategy with a virtual power plant concept is proposed in the first module to

resolve the low renewable penetration caused by space limitations. A mapping model is integrated

with the design model to explore the optimum location of the regional generation plant by

considering different aspects, such as the amount of available wind speed and the area which could

be used for the installation of components. For robust operation scheduling, the load demand and

renewable resources are required to be forecasted accurately. Therefore, the second module

presents prediction strategies for removing the uncertainties of the optimal operation by

hybridizing different models such as LSTM, NWP, and SARIMAX models. Moreover, the last

module explores the resilience-oriented methods for enhancing the reliability of the designed

system in case of grid power failure. An optimal load is calculated in this module by considering

the critical load of the building to improve the resiliency and minimize the unmet load while

decreasing the operation cost of the designed system by reducing the surplus power.

Then the developed methodology was applied to a case study (Concordia University’s EV

building) in Montreal. In the first module, since the EV building is located in the downtown area

and with space limitations, the central grid dependency of the local generation design was

relatively high (62% self-sufficiency), and the LCOE was also higher than the average grid

purchasing price. The other important issue was the considerable value of gas consumption in the

EV building for heating purposes using gas boilers. However, substituting natural gas with clean

energy was not practicable since the maximum available area for installing renewable components

has already been used. Therefore, a regional generation idea was proposed in this thesis to not only

alleviate the grid dependency but also replace natural gas with renewable resources. In the regional

generation scenario, a wind farm is designed outside of the microgrid, and the optimum location

to install the wind farm was also selected using a developed mapping model. The MINLP

optimization model selects the land based on several aspects, such as land cost, the number of

turbines that could be installed in that zone, and the distance to the nearest transformer.

Considering electric boilers already installed in Concordia for heat generation instead of gas

111

boilers, the regional generation system increased the renewable penetration from 62% in the local

generation to 81%, reducing the grid dependency. However, the LCOE of the system (0.099

CAD/kWh) was still higher than the current average grid price (0.064 CAD/kWh). The possibility

of installing an air-source heat pump instead of an electric boiler was also investigated, which

resulted in economic improvement and a rise in renewable penetration.

Although the regional generation considerably impacted the environmental emissions by

removing about 4.2 million kilograms of CO2 per year, the LCOE of the designed system are still

high and the grid dependency is still not at its minimum level. Therefore, instead of using the

central grid monthly prices, a dynamic pricing strategy was developed and used for regional

generation design that caused a considerable reduction in LCOE (for example, in the heat pump

scenario, the LCOE reduced to 0.053 CAD/kWh from 0.082 CAD/kWh). Moreover, the renewable

penetration increased significantly to 94 and 92 percent using the heat pump and electric boilers

scenarios, respectively.

The second module studied the possibility of reducing the forecasting method’s error. Since

renewable resources and electrical load demand are following unexpected behaviors, even short-

term forecasting is not straightforward. Therefore, in this thesis, hybridized models were proposed

to solve this problem. For instance, for renewable resources, since they have fluctuating behavior

(for example due to cloud movement for solar irradiance), the result of a physical model (Numeric

Weather Prediction) was hybridized with a deep learning model to increase the accuracy of the

forecasts.

For wind speed forecasting, due to high fluctuations of wind speed and difficulties in

finding a genuine daily trend and seasonality in the historical data, this thesis aims to propose a

hybrid wind speed forecasting model utilizing deep learning, probability distributions, and numeric

weather prediction methods capable of reducing the forecasting error as much as possible. The

results showed that although the LSTM model has several layers for remembering and forgetting

past values, practically, it is incapable of accurate prediction, especially when there is a sudden

peak/unexpected change. The first proposed model that was created by integrating the Weibull

distribution probabilities with the single LSTM model reduced the error significantly (The average

RMSE for three different prediction horizons during the year decreased by about 28%). To

consider unexpected behavior of wind that was not reflected in the historical data, the results of

112

the numerical weather prediction model were also hybridized with the LSTM-Weibull integrated

model. The results indicated that the final hybridized model reduces the average RMSE of the

single LSTM model prediction by about 32% and can be effective in a more accurate prediction

of fluctuations that happen in the central peaks.

Furthermore, for solar irradiance forecasting, three different forecasting scenarios (Clear-

sky, scattered, and overcast) were considered. The results show that the proposed hybrid model

could significantly improve the forecasting accuracy in the presence of clouds in the sky (in

scattered and overcast days). On clear sky days, the inaccuracy is high in all models; however, the

proposed model can still make stronger predictions compared with the other two single models.

Finally, in the third module, which used the first and second modules’ output, the optimum

operation of the microgrid with considering the resiliency aspects of it was studied. The aim was

to propose an approach for reducing the risk of power failure in urban microgrids by improving

resilience while minimizing operating costs. In particular, employing a two-step process is

proposed to reduce the cost while improving reliability. Step 1 considers a penalty for loss and

calculates the optimum penalty factor, and Step 2 finds an optimal load demand that can be covered

by the microgrid during the off-grid mode. The results indicate that with the proposed method, the

LPSP of the system could be significantly reduced to near zero, and the amount of loss could

drastically diminish (17% and 78% in winter and summer, respectively). Furthermore, using

optimal load, the amount of curtailed renewable power was controlled and remained at the

minimum level. The proposed method also minimized the system’s operating cost compared to

other scenarios.

The developed tool in this thesis could be used by both prosumers with different scales

who are experiencing challenges in urban areas, and central grid decision-makers to better design

their systems. Furthermore, the output of this thesis could be used by Hydro Quebec to amend its

electricity tariff for large consumers that tend to be prosumers in the near future. This tool is

designed from the perspective of both parties (microgrid and central grid) to improve their

performance. The proposed framework in this thesis is scalable and it could be used for smaller

scales (only local generation) and larger scale (with considering regional generation).

113

6.2. Research Contributions
The research questions raised in the problem statement section could be answered and

justified with the research contributions and approaches of this thesis which can be categorized

based on each module as below:

• Design Module:

Although in the discussed literature, researchers tried to design an urban microgrid with

minimized cost or maximum reliability, some challenges, such as increasing the renewable

penetration while having a limited amount of space, especially in metropolitan areas, or increasing

the reliability of the designed systems in the higher demand hours using 100% clean energy are

still not investigated. Therefore, this study focuses on developing a mathematical model for

optimal sizing of an urban microgrid, considering the integration of regional renewable power

generation (renewable power generation in a selected area outside of the microgrid) using the

virtual power plant concept along with local generation (renewable power generation inside the

microgrid).

The main contribution of this section of the thesis could be summarized as 1) a feasibility

study and sensitivity analysis on generating electricity outside of the urban area and transmitting

it to the nearest grid power line, 2) finding the optimum configuration and size of the urban energy

system for both local and regional generation, 3) proposing a mapping model to find the optimum

place for installing the regional generation plant based on land type, wind turbine density, power

transmission distance and cost of the land, 4) proposing dynamic pricing for electricity rate to

improve the economic aspects and renewable penetration, 5) feasibility study on using heat pumps

and electric boilers as the substitute for gas boiler.

• Prediction Module:

Wind Speed Prediction:

The mentioned literature shows that AI-based methods, statistical methods, and hybrid

models have been considerably used for day-ahead wind speed forecasting. However, due to the

unexpected behavior of the wind and its direct relation with physical indicators, the proposed

models could not be practically used where higher accuracy is required, such as operational control

of a microgrid. Moreover, the methods such as the NWP have also been employed to predict wind

114

speed. However, still, it only considers current physical conditions, and it cannot learn from past

wind speed values and unexpected changes.

This thesis aims for the advancement of knowledge for more accurate wind speed

forecasting that can be used in the operation planning of an urban microgrid. The novelty of the

proposed approach is in developing a hybrid model consisting of Weibull distribution, LSTM, and

NWP models to reduce the error involved with wind speed prediction using a single LSTM model

by considering the distribution probability of the historical wind speed data and also the physical

description of the area. The main contributions of this section, with respect to the prior literature,

are as follows:

 A hybrid model is proposed to circumvent the inaccuracy of the single statistical

approaches. In the proposed model, the LSTM method is used, which has several

superiorities over the conventional feed-forward neural network.

 Creating a Weibull distribution of the wind speed, predicting the wind speed based on a

stochastic approach, and combining the probability distribution of the wind speed with the

LSTM model creates an integrated model with less error compared to a single LSTM and

SARIMA model with exogenous variables.

 Proposing a hybrid model that includes the NWP model's result and AI models with

minimum error for short-term forecasting applications (Just for clarity, every time we refer

to short-term in this thesis, it means 24-72 hours forecasting).

Solar Irradiance Prediction:

Although several studies have been carried out for solar irradiance forecasting, there is still

a need to development of methods that can more accurately capture solar irradiance behavior. This

thesis aims at providing a methodology for precise solar irradiance forecasting in a short-term (day

ahead) horizon that could contribute to better smart grid and microgrid energy management. The

novelty of the proposed approach rests in the integration of deep learning and the NWP model for

better forecasting results. In this sense, the main objectives and originality of this section could be

summarized as follows:

 Development and application of an LSTM model as a time-series learning method for

dealing with long-term dependencies

115

 Comparison of deep learning forecasting results with NWP solar irradiance forecasting

results as single models for 3 days with the different climatic situations.

 Proposing a hybrid model integrating the results of LSTM and NWP models to better deal

with unexpected trends in solar irradiance that could not be captured using historical data.

Electrical Load Prediction:

 The main contribution of this section compared to the literature is proposing a novel hybrid

model for electrical load forecasting to boost the accuracy and lessen the error.

6.3. Directions for Future Research
A few suggestions which could help the enhancement of the developed framework in this

thesis could be summarized as follow:

1) A crucial piece of information which is the capacity of each node (transformer) for injecting

electricity into power grid lines, should be added to the developed tool. This data was not

added to the regional generation model because of the lack of data; however, the tool is

developed in a way to add this variable. Adding this data to the model's input layer could

make the model's results more trustable and practical.

2) Moreover, a feasibility study could be carried out on adding other components, such as fuel

cells (using hydrogen generation on-site and off-site) and biomass gasifier as a regional

generation method.

3) Although in this thesis, the impact of generating wind energy outside of the urban areas is

studied, PV model regional generation could also be implemented in future studies.

4) Assessing the feasibility of considering fuzzy instead of binary logic in the mapping model

and land selection. With using fuzzy approach, the feasibility of selecting more than one

location for installing the regional plant could be evaluated.

5) Since the grid power line map is also available, the feasibility of injecting electricity to the

nearest grid power line instead of the nearest transformer could be studied.

6) A bilevel programming model could be developed to connect the design and operation

model to each other. By considering this connection, design would not be a onetime

decision anymore and it could be updated over time based on the feedback of the operation

model.

116

7) To make the location decision (mapping) model more practical, adding other features such

as the perspective of the people living in the different zones could be studied. This needs a

social study on individual’s opinion regarding renewable technologies living in different

neighborhoods.

Bibliography
[1] S.-H. Park, Y.-S. Jang, and E.-J. Kim, ‘Multi-objective optimization for sizing multi-source

renewable energy systems in the community center of a residential apartment complex’,
Energy Convers. Manag., vol. 244, p. 114446, Sep. 2021, doi:
10.1016/j.enconman.2021.114446.

[2] X. Zhang et al., ‘A review of urban energy systems at building cluster level incorporating
renewable-energy-source (RES) envelope solutions’, Appl. Energy, vol. 230, pp. 1034–1056,
Nov. 2018, doi: 10.1016/j.apenergy.2018.09.041.

[3] Y. V. P. Kumar and R. Bhimasingu, ‘Optimal sizing of microgrid for an urban community
building in south India using HOMER’, in 2014 IEEE International Conference on Power
Electronics, Drives and Energy Systems (PEDES), Mumbai, India, Dec. 2014, pp. 1–6. doi:
10.1109/PEDES.2014.7042059.

[4] A. M. Abdilahi, A. H. Mohd Yatim, M. W. Mustafa, O. T. Khalaf, A. F. Shumran, and F.
Mohamed Nor, ‘Feasibility study of renewable energy-based microgrid system in
Somaliland׳s urban centers’, Renew. Sustain. Energy Rev., vol. 40, pp. 1048–1059, Dec. 2014,
doi: 10.1016/j.rser.2014.07.150.

[5] Z. Li, M. Shahidehpour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, ‘Networked
Microgrids for Enhancing the Power System Resilience’, Proc. IEEE, vol. 105, no. 7, pp.
1289–1310, Jul. 2017, doi: 10.1109/JPROC.2017.2685558.

[6] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, and P. Mancarella, ‘Power System
Resilience to Extreme Weather: Fragility Modeling, Probabilistic Impact Assessment, and
Adaptation Measures’, IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3747–3757, Sep. 2017,
doi: 10.1109/TPWRS.2016.2641463.

[7] M. Borghei and M. Ghassemi, ‘Optimal planning of microgrids for resilient distribution
networks’, Int. J. Electr. Power Energy Syst., vol. 128, p. 106682, Jun. 2021, doi:
10.1016/j.ijepes.2020.106682.

[8] L. Wen, K. Zhou, S. Yang, and X. Lu, ‘Optimal load dispatch of community microgrid with
deep learning based solar power and load forecasting’, Energy, vol. 171, pp. 1053–1065, Mar.
2019, doi: 10.1016/j.energy.2019.01.075.

[9] P. Nagapurkar and J. D. Smith, ‘Techno-economic optimization and social costs assessment
of microgrid-conventional grid integration using genetic algorithm and Artificial Neural
Networks: A case study for two US cities’, J. Clean. Prod., vol. 229, pp. 552–569, Aug. 2019,
doi: 10.1016/j.jclepro.2019.05.005.

[10] J. Freier and V. von Loessl, ‘Dynamic electricity tariffs: Designing reasonable pricing
schemes for private households’, Energy Econ., vol. 112, p. 106146, Aug. 2022, doi:
10.1016/j.eneco.2022.106146.

117

[11] B. Ugwoke, S. P. Corgnati, P. Leone, R. Borchiellini, and J. M. Pearce, ‘Low emissions
analysis platform model for renewable energy: Community-scale case studies in Nigeria’,
Sustain. Cities Soc., vol. 67, p. 102750, Apr. 2021, doi: 10.1016/j.scs.2021.102750.

[12] M. Bagheri, N. Shirzadi, E. Bazdar, and C. A. Kennedy, ‘Optimal planning of hybrid
renewable energy infrastructure for urban sustainability: Green Vancouver’, Renew. Sustain.
Energy Rev., vol. 95, pp. 254–264, Nov. 2018, doi: 10.1016/j.rser.2018.07.037.

[13] N. Shirzadi, F. Nasiri, and U. Eicker, ‘Optimal Configuration and Sizing of an Integrated
Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban
University Campus’, Energies, vol. 13, no. 14, p. 3527, Jul. 2020, doi: 10.3390/en13143527.

[14] Y. Q. Ang, A. Polly, A. Kulkarni, G. B. Chambi, M. Hernandez, and M. N. Haji, ‘Multi-
objective optimization of hybrid renewable energy systems with urban building energy
modeling for a prototypical coastal community’, Renew. Energy, p. S0960148122014859, Oct.
2022, doi: 10.1016/j.renene.2022.09.126.

[15] L. Ji, Y. Wu, Y. Liu, L. Sun, Y. Xie, and G. Huang, ‘Optimizing design and performance
assessment of a community-scale hybrid power system with distributed renewable energy and
flexible demand response’, Sustain. Cities Soc., vol. 84, p. 104042, Sep. 2022, doi:
10.1016/j.scs.2022.104042.

[16] M. R. Cremi, A. M. Pantaleo, K. H. van Dam, and N. Shah, ‘Optimal design and operation
of an urban energy system applied to the Fiera Del Levante exhibition centre’, Appl. Energy,
vol. 275, p. 115359, Oct. 2020, doi: 10.1016/j.apenergy.2020.115359.

[17] J. Liu, S. Cao, X. Chen, H. Yang, and J. Peng, ‘Energy planning of renewable applications
in high-rise residential buildings integrating battery and hydrogen vehicle storage’, Appl.
Energy, vol. 281, p. 116038, Jan. 2021, doi: 10.1016/j.apenergy.2020.116038.

[18] S.-G. Yoon and S.-G. Kang, ‘Economic Microgrid Planning Algorithm with Electric
Vehicle Charging Demands’, Energies, vol. 10, no. 10, p. 1487, Sep. 2017, doi:
10.3390/en10101487.

[19] S. Mohseni, A. C. Brent, and D. Burmester, ‘A comparison of metaheuristics for the
optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid’, Appl.
Energy, vol. 259, p. 114224, Feb. 2020, doi: 10.1016/j.apenergy.2019.114224.

[20] H. Mehrjerdi, A. Iqbal, E. Rakhshani, and J. R. Torres, ‘Daily-seasonal operation in net-
zero energy building powered by hybrid renewable energies and hydrogen storage systems’,
Energy Convers. Manag., vol. 201, p. 112156, Dec. 2019, doi:
10.1016/j.enconman.2019.112156.

[21] A. R. Bhatti, Z. Salam, and R. H. Ashique, ‘Electric Vehicle Charging Using Photovoltaic
based Microgrid for Remote Islands’, Energy Procedia, vol. 103, pp. 213–218, Dec. 2016, doi:
10.1016/j.egypro.2016.11.275.

[22] N. Augustine, S. Suresh, P. Moghe, and K. Sheikh, ‘Economic dispatch for a microgrid
considering renewable energy cost functions’, in 2012 IEEE PES Innovative Smart Grid
Technologies (ISGT), Washington, DC, USA, Jan. 2012, pp. 1–7. doi:
10.1109/ISGT.2012.6175747.

[23] S. Conti, R. Nicolosi, S. A. Rizzo, and H. H. Zeineldin, ‘Optimal Dispatching of
Distributed Generators and Storage Systems for MV Islanded Microgrids’, IEEE Trans. Power
Deliv., vol. 27, no. 3, pp. 1243–1251, Jul. 2012, doi: 10.1109/TPWRD.2012.2194514.

[24] M. Marzband, M. Ghadimi, A. Sumper, and J. L. Domínguez-García, ‘Experimental
validation of a real-time energy management system using multi-period gravitational search

118

algorithm for microgrids in islanded mode’, Appl. Energy, vol. 128, pp. 164–174, Sep. 2014,
doi: 10.1016/j.apenergy.2014.04.056.

[25] H. Kanchev, F. Colas, V. Lazarov, and B. Francois, ‘Emission Reduction and Economical
Optimization of an Urban Microgrid Operation Including Dispatched PV-Based Active
Generators’, IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1397–1405, Oct. 2014, doi:
10.1109/TSTE.2014.2331712.

[26] A. Kavousi-Fard, M.-R. Akbari-Zadeh, F. Kavousi-Fard, and M.-A. Rostami, ‘Effect of
wind turbine on the economic load dispatch problem considering the wind speed uncertainty’,
J. Intell. Fuzzy Syst., vol. 28, no. 2, pp. 693–705, 2015, doi: 10.3233/IFS-141350.

[27] L. Sun, Q. Xu, X. Chen, and Y. Fan, ‘Day-ahead economic dispatch of microgrid based on
game theory’, Energy Rep., vol. 6, pp. 633–638, Feb. 2020, doi: 10.1016/j.egyr.2019.11.131.

[28] X. Lu, Z. Liu, L. Ma, L. Wang, K. Zhou, and N. Feng, ‘A robust optimization approach for
optimal load dispatch of community energy hub’, Appl. Energy, vol. 259, p. 114195, Feb.
2020, doi: 10.1016/j.apenergy.2019.114195.

[29] H. Yang, Z. Gong, Y. Ma, L. Wang, and B. Dong, ‘Optimal two-stage dispatch method of
household PV-BESS integrated generation system under time-of-use electricity price’, Int. J.
Electr. Power Energy Syst., vol. 123, p. 106244, Dec. 2020, doi:
10.1016/j.ijepes.2020.106244.

[30] A. Kialashaki and J. R. Reisel, ‘Modeling of the energy demand of the residential sector in
the United States using regression models and artificial neural networks’, Appl. Energy, vol.
108, pp. 271–280, Aug. 2013, doi: 10.1016/j.apenergy.2013.03.034.

[31] R. Nageem and J. R, ‘Predicting the Power Output of a Grid-Connected Solar Panel Using
Multi-Input Support Vector Regression’, Procedia Comput. Sci., vol. 115, pp. 723–730, 2017,
doi: 10.1016/j.procs.2017.09.143.

[32] A. Rahman, V. Srikumar, and A. D. Smith, ‘Predicting electricity consumption for
commercial and residential buildings using deep recurrent neural networks’, Appl. Energy, vol.
212, pp. 372–385, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.051.

[33] J. Wang and S. Xiong, ‘A hybrid forecasting model based on outlier detection and fuzzy
time series – A case study on Hainan wind farm of China’, Energy, vol. 76, pp. 526–541, Nov.
2014, doi: 10.1016/j.energy.2014.08.064.

[34] E. Yatiyana, S. Rajakaruna, and A. Ghosh, ‘Wind speed and direction forecasting for wind
power generation using ARIMA model’, in 2017 Australasian Universities Power
Engineering Conference (AUPEC), Melbourne, VIC, Nov. 2017, pp. 1–6. doi:
10.1109/AUPEC.2017.8282494.

[35] R. G. Kavasseri and K. Seetharaman, ‘Day-ahead wind speed forecasting using f-ARIMA
models’, Renew. Energy, vol. 34, no. 5, pp. 1388–1393, May 2009, doi:
10.1016/j.renene.2008.09.006.

[36] J. Wang, J. Hu, K. Ma, and Y. Zhang, ‘A self-adaptive hybrid approach for wind speed
forecasting’, Renew. Energy, vol. 78, pp. 374–385, Jun. 2015, doi:
10.1016/j.renene.2014.12.074.

[37] S. An, H. Shi, Q. Hu, X. Li, and J. Dang, ‘Fuzzy rough regression with application to wind
speed prediction’, Inf. Sci., vol. 282, pp. 388–400, Oct. 2014, doi: 10.1016/j.ins.2014.03.090.

[38] A. Ul Haque and J. Meng, ‘Short-Term Wind Speed Forecasting Based On Fuzzy Artmap’,
Int. J. Green Energy, vol. 8, no. 1, pp. 65–80, Feb. 2011, doi: 10.1080/15435075.2010.529784.

119

[39] J. Zhou, J. Shi, and G. Li, ‘Fine tuning support vector machines for short-term wind speed
forecasting’, Energy Convers. Manag., vol. 52, no. 4, pp. 1990–1998, Apr. 2011, doi:
10.1016/j.enconman.2010.11.007.

[40] K. R. Nair, ‘Forecasting of wind speed using ANN, ARIMA and Hybrid Models’, p. 6,
2017.

[41] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi, ‘Time series forecasting using
a deep belief network with restricted Boltzmann machines’, Neurocomputing, vol. 137, pp.
47–56, Aug. 2014, doi: 10.1016/j.neucom.2013.03.047.

[42] H. Z. Wang, G. B. Wang, G. Q. Li, J. C. Peng, and Y. T. Liu, ‘Deep belief network based
deterministic and probabilistic wind speed forecasting approach’, Appl. Energy, vol. 182, pp.
80–93, Nov. 2016, doi: 10.1016/j.apenergy.2016.08.108.

[43] H. Wang, G. Li, G. Wang, J. Peng, H. Jiang, and Y. Liu, ‘Deep learning based ensemble
approach for probabilistic wind power forecasting’, Appl. Energy, vol. 188, pp. 56–70, Feb.
2017, doi: 10.1016/j.apenergy.2016.11.111.

[44] S. A. Khadem and A. D. Rey, ‘Nucleation and growth of cholesteric collagen tactoids: A
time-series statistical analysis based on integration of direct numerical simulation (DNS) and
long short-term memory recurrent neural network (LSTM-RNN)’, J. Colloid Interface Sci.,
vol. 582, pp. 859–873, Jan. 2021, doi: 10.1016/j.jcis.2020.08.052.

[45] H. Liu, X. Mi, and Y. Li, ‘Wind speed forecasting method based on deep learning strategy
using empirical wavelet transform, long short term memory neural network and Elman neural
network’, Energy Convers. Manag., vol. 156, pp. 498–514, Jan. 2018, doi:
10.1016/j.enconman.2017.11.053.

[46] J. Jung and R. P. Broadwater, ‘Current status and future advances for wind speed and power
forecasting’, Renew. Sustain. Energy Rev., vol. 31, pp. 762–777, Mar. 2014, doi:
10.1016/j.rser.2013.12.054.

[47] J. Bessac, E. Constantinescu, and M. Anitescu, ‘Stochastic simulation of predictive space–
time scenarios of wind speed using observations and physical model outputs’, Ann. Appl. Stat.,
vol. 12, no. 1, Mar. 2018, doi: 10.1214/17-AOAS1099.

[48] S. Hu et al., ‘Hybrid forecasting method for wind power integrating spatial correlation and
corrected numerical weather prediction’, Appl. Energy, vol. 293, p. 116951, Jul. 2021, doi:
10.1016/j.apenergy.2021.116951.

[49] A. Kumler, Y. Xie, and Y. Zhang, ‘A New Approach for Short-Term Solar Radiation
Forecasting Using the Estimation of Cloud Fraction and Cloud Albedo’, NREL/TP--5D00-
72290, 1476449, Oct. 2018. doi: 10.2172/1476449.

[50] S. Das, ‘Short term forecasting of solar radiation and power output of 89.6kWp solar PV
power plant’, Mater. Today Proc., vol. 39, pp. 1959–1969, 2021, doi:
10.1016/j.matpr.2020.08.449.

[51] G. Reikard, ‘Predicting solar radiation at high resolutions: A comparison of time series
forecasts’, Sol. Energy, vol. 83, no. 3, pp. 342–349, Mar. 2009, doi:
10.1016/j.solener.2008.08.007.

[52] A. Mellit and A. M. Pavan, ‘A 24-h forecast of solar irradiance using artificial neural
network: Application for performance prediction of a grid-connected PV plant at Trieste,
Italy’, Sol. Energy, vol. 84, no. 5, pp. 807–821, May 2010, doi: 10.1016/j.solener.2010.02.006.

[53] Y. Kemmoku, S. Orita, S. Nakagawa, and T. Sakakibara, ‘DAILY INSOLATION
FORECASTING USING A MULTI-STAGE NEURAL NETWORK’, Sol. Energy, vol. 66,
no. 3, pp. 193–199, Jun. 1999, doi: 10.1016/S0038-092X(99)00017-1.

120

[54] Y. Sun, G. Szucs, and A. R. Brandt, ‘Solar PV output prediction from video streams using
convolutional neural networks’, Energy Environ. Sci., vol. 11, no. 7, pp. 1811–1818, 2018,
doi: 10.1039/c7ee03420b.

[55] X. Qing and Y. Niu, ‘Hourly day-ahead solar irradiance prediction using weather forecasts
by LSTM’, Energy, vol. 148, pp. 461–468, Apr. 2018, doi: 10.1016/j.energy.2018.01.177.

[56] S. Ghimire, R. C. Deo, N. Raj, and J. Mi, ‘Deep solar radiation forecasting with
convolutional neural network and long short-term memory network algorithms’, Appl. Energy,
vol. 253, p. 113541, Nov. 2019, doi: 10.1016/j.apenergy.2019.113541.

[57] K. Yan, H. Shen, L. Wang, H. Zhou, M. Xu, and Y. Mo, ‘Short-Term Solar Irradiance
Forecasting Based on a Hybrid Deep Learning Methodology’, Information, vol. 11, no. 1, p.
32, Jan. 2020, doi: 10.3390/info11010032.

[58] M. Guermoui, F. Melgani, K. Gairaa, and M. L. Mekhalfi, ‘A comprehensive review of
hybrid models for solar radiation forecasting’, J. Clean. Prod., vol. 258, p. 120357, Jun. 2020,
doi: 10.1016/j.jclepro.2020.120357.

[59] E. Lorenz and D. Heinemann, ‘Prediction of Solar Irradiance and Photovoltaic Power’, in
Comprehensive Renewable Energy, Elsevier, 2012, pp. 239–292. doi: 10.1016/B978-0-08-
087872-0.00114-1.

[60] M. A. Hossain, H. R. Pota, M. J. Hossain, and F. Blaabjerg, ‘Evolution of microgrids with
converter-interfaced generations: Challenges and opportunities’, Int. J. Electr. Power Energy
Syst., vol. 109, pp. 160–186, Jul. 2019, doi: 10.1016/j.ijepes.2019.01.038.

[61] S. Mishra, K. Anderson, B. Miller, K. Boyer, and A. Warren, ‘Microgrid resilience: A
holistic approach for assessing threats, identifying vulnerabilities, and designing
corresponding mitigation strategies’, Appl. Energy, vol. 264, p. 114726, Apr. 2020, doi:
10.1016/j.apenergy.2020.114726.

[62] M. Borghei and M. Ghassemi, ‘Optimal planning of microgrids for resilient distribution
networks’, Int. J. Electr. Power Energy Syst., vol. 128, p. 106682, Jun. 2021, doi:
10.1016/j.ijepes.2020.106682.

[63] R. Rigo-Mariani, B. Sareni, X. Roboam, and C. Turpin, ‘Optimal power dispatching
strategies in smart-microgrids with storage’, Renew. Sustain. Energy Rev., vol. 40, pp. 649–
658, Dec. 2014, doi: 10.1016/j.rser.2014.07.138.

[64] X. Kong, J. Xiao, D. Liu, J. Wu, C. Wang, and Y. Shen, ‘Robust stochastic optimal
dispatching method of multi-energy virtual power plant considering multiple uncertainties’,
Appl. Energy, vol. 279, p. 115707, Dec. 2020, doi: 10.1016/j.apenergy.2020.115707.

[65] H. Daneshi and H. Khorashadi-Zadeh, ‘Microgrid energy management system: A study of
reliability and economic issues’, in 2012 IEEE Power and Energy Society General Meeting,
San Diego, CA, Jul. 2012, pp. 1–5. doi: 10.1109/PESGM.2012.6344957.

[66] P. M. Costa and M. A. Matos, ‘Economic Analysis of Microgrids Including Reliability
Aspects’, in 2006 International Conference on Probabilistic Methods Applied to Power
Systems, Stockholm, Sweden, Jun. 2006, pp. 1–8. doi: 10.1109/PMAPS.2006.360236.

[67] A. Hussain, V.-H. Bui, and H.-M. Kim, ‘Resilience-Oriented Optimal Operation of
Networked Hybrid Microgrids’, IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 204–215, Jan.
2019, doi: 10.1109/TSG.2017.2737024.

[68] H. Zakernezhad, M. S. Nazar, M. Shafie-khah, and J. P. S. Catalão, ‘Optimal resilient
operation of multi-carrier energy systems in electricity markets considering distributed energy
resource aggregators’, Appl. Energy, vol. 299, p. 117271, Oct. 2021, doi:
10.1016/j.apenergy.2021.117271.

121

[69] J. Tobajas, F. Garcia-Torres, P. Roncero-Sánchez, J. Vázquez, L. Bellatreche, and E. Nieto,
‘Resilience-oriented schedule of microgrids with hybrid energy storage system using model
predictive control’, Appl. Energy, vol. 306, p. 118092, Jan. 2022, doi:
10.1016/j.apenergy.2021.118092.

[70] J. Kratochvil, W. Boyson, and D. King, ‘Photovoltaic array performance model.’,
SAND2004-3535, 919131, Aug. 2004. doi: 10.2172/919131.

[71] N. M. Kumar, P. R. K. Reddy, and K. Praveen, ‘Optimal energy performance and
comparison of open rack and roof mount mono c-Si photovoltaic Systems’, Energy Procedia,
vol. 117, pp. 136–144, Jun. 2017, doi: 10.1016/j.egypro.2017.05.116.

[72] W. Boyson, G. Galbraith, D. King, and S. Gonzalez, ‘Performance model for grid-
connected photovoltaic inverters.’, SAND2007-5036, 920449, Sep. 2007. doi:
10.2172/920449.

[73] Y. Shen et al., ‘Coordinated optimal control of active power of wind farms considering
wake effect’, Energy Rep., vol. 8, pp. 84–90, Apr. 2022, doi: 10.1016/j.egyr.2021.11.132.

[74] P. Nørgaard and H. Holttinen, ‘A Multi-Turbine Power Curve Approach’, p. 6.
[75] R. C. Bansal, T. S. Bhatti, and D. P. Kothari, ‘On some of the design aspects of wind energy

conversion systems’, Energy Convers. Manag., vol. 43, no. 16, pp. 2175–2187, Nov. 2002,
doi: 10.1016/S0196-8904(01)00166-2.

[76] S. Rehman and N. M. Al-Abbadi, ‘Wind shear coefficients and their effect on energy
production’, Energy Convers. Manag., vol. 46, no. 15–16, pp. 2578–2591, Sep. 2005, doi:
10.1016/j.enconman.2004.12.005.

[77] G. M. Masters, ‘Renewable and Efficient Electric Power Systems’, p. 676.
[78] E. Hau, Wind power systems. Fundamentals, technology, applications, economic aspects.

4. 2008. [Online]. Available: https://doi.org/10.1007/978-3-540-72151-2
[79] N. R. Canada, ‘Maps’, May 30, 2019. https://www.nrcan.gc.ca/maps-tools-and-

publications/maps/22020 (accessed Nov. 21, 2022).
[80] C. R. Agency, ‘FCN10 Regulations Amending the Fuel Charge Regulations Made Under

the Greenhouse Gas Pollution Pricing Act’, May 04, 2021. https://www.canada.ca/en/revenue-
agency/services/forms-publications/publications/fcn10.html (accessed Nov. 28, 2022).

[81] N. S. Arunraj, D. Ahrens, and M. Fernandes, ‘Application of SARIMAX Model to Forecast
Daily Sales in Food Retail Industry’:, Int. J. Oper. Res. Inf. Syst., vol. 7, no. 2, pp. 1–21, Apr.
2016, doi: 10.4018/IJORIS.2016040101.

[82] Y. Chen and S. Tjandra, ‘Daily Collision Prediction with SARIMAX and Generalized
Linear Models on the Basis of Temporal and Weather Variables’, Transp. Res. Rec. J. Transp.
Res. Board, vol. 2432, no. 1, pp. 26–36, Jan. 2014, doi: 10.3141/2432-04.

[83] D. B. Alencar, C. M. Affonso, R. C. L. Oliveira, and J. C. R. Filho, ‘Hybrid Approach
Combining SARIMA and Neural Networks for Multi-Step Ahead Wind Speed Forecasting in
Brazil’, IEEE Access, vol. 6, pp. 55986–55994, 2018, doi: 10.1109/ACCESS.2018.2872720.

[84] R. Jozefowicz, W. Zaremba, and I. Sutskever, ‘An Empirical Exploration of Recurrent
Network Architectures’, p. 9.

[85] J. Koutník, K. Greff, F. Gomez, and J. Schmidhuber, ‘A Clockwork RNN’. arXiv, Feb. 14,
2014. Accessed: Nov. 21, 2022. [Online]. Available: http://arxiv.org/abs/1402.3511

[86] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, ‘LSTM: A
Search Space Odyssey’, IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–
2232, Oct. 2017, doi: 10.1109/TNNLS.2016.2582924.

122

[87] Y. Bengio, P. Simard, and P. Frasconi, ‘Learning Long-Term Dependencies with Gradient
Descent is Difficult’, vol. 2, no. 2, 1994.

[88] J. Hochreiter, ‘Untersuchungen zu dynamischen neuronalen Netzen’. Institut f¨ur
Informatik Technische Universit¨at M¨unchen, 1991.

[89] J. Schmidhuber and S. Hochreiter, ‘LONG SHORT-TERM MEMORY’, Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, 1997.

[90] C. Ozay and M. S. Celiktas, ‘Statistical analysis of wind speed using two-parameter
Weibull distribution in Alaçatı region’, Energy Convers. Manag., vol. 121, pp. 49–54, Aug.
2016, doi: 10.1016/j.enconman.2016.05.026.

[91] A. A. Kadhem, N. Wahab, I. Aris, J. Jasni, and A. Abdalla, ‘Advanced Wind Speed
Prediction Model Based on a Combination of Weibull Distribution and an Artificial Neural
Network’, Energies, vol. 10, no. 11, p. 1744, Oct. 2017, doi: 10.3390/en10111744.

[92] F. C. Odo, S. U. Offiah, and P. E. Ugwuoke, ‘Weibull distribution-based model for
prediction of wind potential in Enugu, Nigeria’, p. 7, 2012.

[93] U.S. Department of Homeland Security Risk Lexicon, ‘U.S. Department of Homeland
Security Risk Lexicon’. 2008.

[94] V. Chalishazar, S. Poudel, S. Hanif, and P. Thekkumparambath Mana, ‘Power System
Resilience Metrics Augmentation for Critical Load Prioritization’, PNNL--30837, 1764623,
Jan. 2021. doi: 10.2172/1764623.

[95] UFC 3-540-01, ‘Unified Facilities Criteria (Ufc) Approved for Public Release; Distribution
Unlimited Engine-Driven Generator Systems for Prime \1\ and Standby Power Applications
/1’. Nov. 2014.

[96] ‘Where is Montreal, Quebec, Canada on Map Lat Long Coordinates’.
https://www.latlong.net/place/montreal-quebec-canada-27653.html (accessed Nov. 22, 2022).

[97] ‘NASA POWER | Prediction Of Worldwide Energy Resources’.
https://power.larc.nasa.gov/ (accessed Nov. 22, 2022).

[98] ‘Archidata’. https://fmis.concordia.ca/ (accessed Nov. 22, 2022).
[99] ‘Self-generation | Hydro-Québec’. http://www.hydroquebec.com/self-generation/faq.html

(accessed Nov. 23, 2022).
[100] ‘Rate Flex G – Business | Hydro-Québec’.

https://www.hydroquebec.com/business/customer-space/rates/rate-flex-g-billing.html
(accessed Nov. 23, 2022).

[101] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, ‘pvlib python: a python package for
modeling solar energy systems’, J. Open Source Softw., vol. 3, no. 29, p. 884, Sep. 2018, doi:
10.21105/joss.00884.

[102] S. Haas, B. Schachler, U. Krien, and S. Bosch, ‘windpowerlib: A python library to model
wind power plants (v0.1.0)’. Zenodo, Jan. 17, 2019. doi: 10.5281/zenodo.2542896.

[103] M. L. Bynum et al., Pyomo — Optimization Modeling in Python, vol. 67. Cham: Springer
International Publishing, 2021. doi: 10.1007/978-3-030-68928-5.

[104] K. Bestuzheva et al., ‘The SCIP Optimization Suite 8.0’, p. 114.
[105] ‘CPLEX User�s Manual’, p. 596.
[106] ‘Keras: the Python deep learning API’. https://keras.io/ (accessed Nov. 22, 2022).
[107] ‘Introduction — statsmodels’. https://www.statsmodels.org/stable/index.html (accessed

Nov. 22, 2022).
[108] ‘GAMS - Cutting Edge Modeling’. https://www.gams.com/ (accessed Nov. 22, 2022).

123

[109] ‘25 kW Direct-Drive Wind Turbine’. eocycle TECHNOLOGIES. [Online]. Available:
eocycle.com

[110] L. Bauer, ‘Enercon E-53 - 800,00 kW - Wind turbine’. https://en.wind-turbine-
models.com/turbines/530-enercon-e-53 (accessed Nov. 24, 2022).

[111] M. Nasser, T. F. Megahed, S. Ookawara, and H. Hassan, ‘Techno-economic assessment of
clean hydrogen production and storage using hybrid renewable energy system of PV/Wind
under different climatic conditions’, Sustain. Energy Technol. Assess., vol. 52, p. 102195, Aug.
2022, doi: 10.1016/j.seta.2022.102195.

[112] A. Malheiro, P. M. Castro, R. M. Lima, and A. Estanqueiro, ‘Integrated sizing and
scheduling of wind/PV/diesel/battery isolated systems’, Renew. Energy, vol. 83, pp. 646–657,
Nov. 2015, doi: 10.1016/j.renene.2015.04.066.

[113] L. Wen, K. Zhou, S. Yang, and X. Lu, ‘Optimal load dispatch of community microgrid
with deep learning based solar power and load forecasting’, Energy, vol. 171, pp. 1053–1065,
Mar. 2019, doi: 10.1016/j.energy.2019.01.075.

[114] C. E. R. Government of Canada, ‘CER – Provincial and Territorial Energy Profiles –
Quebec’, Jul. 28, 2022. https://www.cer-rec.gc.ca/en/data-analysis/energy-
markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-
quebec.html (accessed Nov. 25, 2022).

[115] ‘Natural gas properties | Énergir’. https://www.energir.com/en/major-industries/natural-
gas-quebec/natural-gas-properties/ (accessed Dec. 01, 2022).

[116] E. K. Vakkilainen, ‘3 - Boiler Processes’, in Steam Generation from Biomass, Butterworth-
Heinemann, 2017, pp. 57–86. [Online]. Available: https://doi.org/10.1016/B978-0-12-
804389-9.00003-4.

[117] G. M. Masters, ‘Renewable and Efficient Electric Power Systems’, p. 676.
[118] ‘2022 Heat Pump Cost | Installation & Replacement Prices’, HomeGuide.

https://homeguide.com/costs/heat-pump-cost (accessed Nov. 27, 2022).
[119] Technical Support Division, Office of Air Quality Planning and Standards, U. S.

Environmental Protection Agency, ‘Emission Factor Documentation for AP-42 Section 1.4—
Natural Gas Combustion’. 1997.

[120] I. M. Lisitano, A. Biglia, E. Fabrizio, and M. Filippi, ‘Building for a Zero Carbon future:
trade-off between carbon dioxide emissions and primary energy approaches’, Energy
Procedia, vol. 148, pp. 1074–1081, Aug. 2018, doi: 10.1016/j.egypro.2018.08.052.

[121] R. Stull, Practical Meteorology: An Algebra-based Survey of Atmospheric Science. 2017.
[122] ‘Rate Flex G – Business | Hydro-Québec’.

https://www.hydroquebec.com/business/customer-space/rates/rate-flex-g.html (accessed
Nov. 29, 2022).

[123] ‘Dynamic pricing – Business customers | Hydro-Québec’.
https://www.hydroquebec.com/business/customer-space/rates/dynamic-pricing.html
(accessed Nov. 29, 2022).

[124] L. A. Wolsey, ‘Mixed Integer Programming’, in Wiley Encyclopedia of Computer Science
and Engineering, John Wiley & Sons, Ltd, 2008, pp. 1–10. doi:
10.1002/9780470050118.ecse244.

124

Appendices
Related written python codes and samples from the used datasets are provided in this section.

Appendix Ⅰ: Python Codes
PV Model

import numpy as np

import pandas as pd

import pvlib

import matplotlib.pyplot as plt

import pytz

coordinates = [(45.49, -73.57, 233, 'Etc/GMT+5')]

modules_lib = pvlib.pvsystem.retrieve_sam('SandiaMod')

module = modules_lib['Canadian_Solar_CS5P_220M___2009_']

inverters_lib = pvlib.pvsystem.retrieve_sam('cecinverter')

inverter = inverters_lib['ABB__MICRO_0_25_I_OUTD_US_208__208V_']

temperature_model_parameters=

pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_glass'

]

naive_times = pd.date_range(start='2019', end='2020', freq='1h')

temp_air = 5 #input('input the air temperature: ')

wind_speed = 5 #input('input wind speed: ')

system = {'module': module, 'inverter': inverter,

 'surface_azimuth': 180}

#pvlib.clearsky.lookup_linke_turbidity('Etc/GMT+5', 45, -73, filepath=None,

interp_turbidity=True)

125

for latitude, longitude, altitude, timezone in coordinates:

 times = naive_times.tz_localize(timezone)

 system['surface_tilt'] = 45

 solpos = pvlib.solarposition.get_solarposition(times, latitude, longitude)

 dni_extra = pvlib.irradiance.get_extra_radiation(times)

 airmass = pvlib.atmosphere.get_relative_airmass(solpos['apparent_zenith'])

 pressure = pvlib.atmosphere.alt2pres(altitude)

 am_abs = pvlib.atmosphere.get_absolute_airmass(airmass, pressure)

 tl = pvlib.clearsky.lookup_linke_turbidity(times, latitude, longitude)

 cs = pvlib.clearsky.ineichen(solpos['apparent_zenith'], am_abs, tl,

 dni_extra=dni_extra, altitude=altitude)

total_irrad = pvlib.irradiance.get_total_irradiance(system['surface_tilt'],

 system['surface_azimuth'],

 solpos['apparent_zenith'],

 solpos['azimuth'],

 cs['dni'], cs['ghi'], cs['dhi'],

 dni_extra=dni_extra,

 model='haydavies')

 #Angle of Incidence

 aoi = pvlib.irradiance.aoi(system['surface_tilt'], system['surface_azimuth'],

 solpos['apparent_zenith'], solpos['azimuth'])

126

 tcell = pvlib.temperature.sapm_cell(total_irrad['poa_global'],

 temp_air, wind_speed,

 **temperature_model_parameters)

 effective_irradiance = pvlib.pvsystem.sapm_effective_irradiance(

 total_irrad['poa_direct'], total_irrad['poa_diffuse'],

 am_abs, aoi, module)

 # sapm (Sandia Array Performance Model)

 #DC Power Output (i_sc Short Circut Module Current/ i_mp, v_mp, p_mp are module current,

voltage and power at maximum power point

 DC_Power = pvlib.pvsystem.sapm(effective_irradiance, tcell, module)

#AC Power output using Sandia's grid connected model

AC_Power = pvlib.inverter.sandia(DC_Power['v_mp'], DC_Power['p_mp'], inverter)

AC_Power = pd.DataFrame(AC_Power)

AC_Power = AC_Power.rename(columns={0:'PV'})

AC_Power[AC_Power < 0] = 0

AC_Power = AC_Power.iloc[:8760,:]

AC_Power.to_csv('PV.csv')

DC_Power = DC_Power.iloc[:,:5]

plt.plot(DC_Power['i_sc'],label = 'short circuit module current')

plt.plot(DC_Power['v_oc'],label = 'open circut module voltage')

plt.plot(DC_Power['v_mp'],label = 'voltage at maximum power point')

plt.plot(DC_Power['i_mp'],label = 'current at maximum power point')

plt.plot(DC_Power['p_mp'],label = 'power at maximum power point')

127

plt.xlabel('Date')

plt.ylabel('Power(W),Voltage(V),Current(A)')

plt.legend(ncol=3,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=9)

plt.show()

Single Wind Turbine Model

import os

import pandas as pd

import requests

from windpowerlib import ModelChain, WindTurbine, create_power_curve

from windpowerlib import data as wt

weather = pd.read_csv(

 'weather_montreal.csv',

 index_col=0,

 header=[0, 1],

 date_parser=lambda idx: pd.to_datetime(idx, utc=True))

df = wt.get_turbine_types(print_out=False)

En_Wind = {

 'turbine_type': 'E-53/800',

 'hub_height': 60

 }

e126 = WindTurbine(**En_Wind)

128

modelchain_data = {

 'wind_speed_model': 'hellman', # 'logarithmic' (default),

 # 'hellman' or

 # 'interpolation_extrapolation'

 'density_model': 'ideal_gas', # 'barometric' (default), 'ideal_gas'

 # or 'interpolation_extrapolation'

 'temperature_model': 'linear_gradient', # 'linear_gradient' (def.) or

 # 'interpolation_extrapolation'

 'power_output_model':

 'power_coefficient_curve', # 'power_curve' (default) or

 # 'power_coefficient_curve'

 'density_correction': True, # False (default) or True

 'obstacle_height': 0, # default: 0

 'hellman_exp': 0.25} # None (default) or None

mc_e126 = ModelChain(e126, **modelchain_data).run_model(weather)

e126power_output = mc_e126.power_output

Wind Farm Model

from windpowerlib import TurbineClusterModelChain, WindTurbineCluster, WindFarm

import matplotlib.pyplot as plt

wind_turbine_fleet = pd.DataFrame(

 {'wind_turbine': [e126, None],

 'number_of_turbines': [20, None]})

129

 #'total_capacity': [None, 12.6e6]})

farm_data = {

 'name': 'farm_Data_2',

 'wind_turbine_fleet': [e126.to_group(1)],#,e126.to_group(total_capacity=12.6e6)],

 'efficiency': 0.9}

farm_Data_2 = WindFarm(**farm_data)

modelchain_data = {

 'wake_losses_model': 'wind_farm_efficiency', #

 # 'dena_mean' (default), None,

 # 'wind_farm_efficiency' or name

 # of another wind efficiency curve

 # see :py:func:`~.wake_losses.get_wind_efficiency_curve`

 'smoothing': True, # False (default) or True

 'block_width': 0.5, # default: 0.5

 'standard_deviation_method': 'Staffell_Pfenninger', #

 # 'turbulence_intensity' (default)

 # or 'Staffell_Pfenninger'

 'smoothing_order': 'wind_farm_power_curves', #

 # 'wind_farm_power_curves' (default) or

 # 'turbine_power_curves'

 'wind_speed_model': 'hellman', # 'logarithmic' (default),

 # 'hellman' or

 # 'interpolation_extrapolation'

130

 'density_model': 'ideal_gas', # 'barometric' (default), 'ideal_gas' or

 # 'interpolation_extrapolation'

 'temperature_model': 'linear_gradient', # 'linear_gradient' (def.) or

 # 'interpolation_extrapolation'

 'power_output_model': 'power_curve', # 'power_curve' (default) or

 # 'power_coefficient_curve'

 'density_correction': True, # False (default) or True

 'obstacle_height': 0, # default: 0

 'hellman_exp': 0.1} # None (default) or None

Power_Farm=TurbineClusterModelChain(farm_Data_2,

**modelchain_data).run_model(weather)

power_output = (Power_Farm.power_output)/1000

plt.plot(power_output, color = 'indigo')

plt.xlabel('Date')

plt.ylabel('Power (kW)')

plt.show()

Solar Irradiance Forecasting Model (Hybrid)

import pandas as pd

import numpy as np

df = pd.read_csv('New_Data.csv')

df.dropna(inplace=True)

import seaborn as sn

chart = sn.heatmap(

131

square=True,

cbar_kws={'fraction' : 0.01},

cmap='OrRd',

linewidth=1,

data = df.corr(),

vmin = -1,

vmax = 1,

annot = True)

 chart.set_xticklabels(chart.get_xticklabels(), rotation=0, horizontalalignment='center')

chart.set_yticklabels(chart.get_xticklabels(), rotation=90, verticalalignment='center')

training_set = df.iloc[:3432,1:4].values

test_set = df.iloc[3432:,1:4].values

from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler(feature_range=(0,1))

training_set_scaled = sc.fit_transform(training_set)

test_set_scaled = sc.fit_transform(test_set)

test_set_scaled = test_set_scaled[:,1:3]

X_train = []

y_train = []

for i in range(24, 3432):

 X_train.append(training_set_scaled[i-24:i, 0:3])

 y_train.append(training_set_scaled[i, 0])

132

X_train, y_train = np.array(X_train),np.array(y_train)

X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 3))

from keras import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import Dropout

regressor = Sequential()

regressor.add(LSTM(units = 60, return_sequences = True, input_shape=(X_train.shape[1], 3)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 60, return_sequences = True))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 60, return_sequences = True))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 60))

regressor.add(Dropout(0.2))

regressor.add(Dense(units = 1))

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

regressor.fit(X_train, y_train, epochs=100, batch_size= 32)

regressor.save('Multi_24_32_100_24May')

from keras.models import load_model

regressor=load_model('Multi_24_32_100_24May')

import matplotlib.pyplot as plt

plt.plot(range(len(regressor.history.history['loss'])),regressor.history.history['loss'])

133

plt.xlabel('Epoch Number')

plt.ylabel('Loss')

plt.show()

prediction_test = []

First_batch = training_set_scaled[-24:]

current_batch= First_batch.reshape((1,24,3))

for i in range (24):

 current_pred = regressor.predict(current_batch)[0]

 prediction_test.append(current_pred)

 New_var = test_set_scaled[i,:]

 New_var = New_var.reshape(1,2)

 New_test = np.insert(New_var,2,[current_pred],axis=1)

 New_test = New_test.reshape(1,1,3)

 current_batch = np.append(current_batch[:,1:,:],New_test,axis=1)

prediction_test = np.array(prediction_test)

SI = MinMaxScaler(feature_range=(0,1))

y_Scale = training_set[:,0:1]

SI.fit_transform(y_Scale)

predictions_H = SI.inverse_transform(prediction_test)

real_values = test_set[:24,0:1]

import matplotlib.pyplot as plt

plt.plot(real_values, color = 'red',label = 'Actual Solar Irradiance')

plt.plot(predictions_H, color = 'blue',label = 'Predicted Solar Irradiance')

134

#plt.title('RNN - Radiation Forecasting')

plt.xlabel('Time(hr)')

plt.ylabel('Solar Irradiance (W/m2)')

plt.legend()

plt.show()

import math

from sklearn.metrics import mean_squared_error

rmse = math.sqrt(mean_squared_error(real_values, predictions_H))

from sklearn.metrics import mean_absolute_error

mean_absolute_error(real_values, predictions_H)

from sklearn.metrics import r2_score

Rsqure = r2_score(real_values, predictions_H)

import tensorflow as tf

m = tf.keras.metrics.MeanSquaredLogarithmicError()

m.update_state(real_values, predictions_H)

m.result().numpy()

ShortW = df.iloc[:,2:3].values

LongW = df.iloc[:,3:4].values

plt.plot(ShortW, color = 'navy',label = 'Downward Shortwave Irradiance')

plt.plot(LongW, color = 'red',label = 'Downward Longwave Irradiance')

plt.xlabel('Time(hr)')

plt.ylabel('Solar Irradiance (W/m2)')

plt.legend()

135

plt.show()

Prediction results

import matplotlib.pyplot as plt

plt.plot(real_values, color = 'red',label = 'Actual Solar Irradiance',marker = "s")

plt.plot(predictions_H, color = 'darkblue',label = 'Proposed Hybrid Model',marker = "^")

plt.plot(NWP_SW, color = 'turquoise',label = 'NWP-Shortwave',marker = "p")

plt.plot(predictions_S, color = 'chocolate',label = 'Single LSTM',marker = "o")

plt.xlabel('Time(hr)')

plt.ylabel('Solar Irradiance (W/m2)')

plt.legend()

plt.show()

test = df.iloc[:,1:2]

plt.plot(test)

Wind Speed Forecasting Model (Hybrid)

import pandas as pd

import numpy as np

df = pd.read_csv('Wind_NWP.csv')

df.dropna(inplace=True)

#import seaborn as sn

#sn.heatmap(df.corr())

training_set = df.iloc[:5064,1:].values

test_set = df.iloc[5064:5232,1:].values

136

from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler(feature_range=(0,1))

training_set_scaled = sc.fit_transform(training_set)

test_set_scaled = sc.fit_transform(test_set)

test_set_scaled = test_set_scaled[:,0:4]

X_train = []

y_train = []

for i in range(24,5064):

 X_train.append(training_set_scaled[i-24:i, 0:5])

 y_train.append(training_set_scaled[i, 4])

X_train, y_train = np.array(X_train),np.array(y_train)

X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 5))

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import Dropout

regressor = Sequential()

regressor.add(LSTM(units = 60, return_sequences = True, input_shape=(X_train.shape[1], 5)))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 60, return_sequences = True))

regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 60, return_sequences = True))

regressor.add(Dropout(0.2))

137

regressor.add(LSTM(units = 60))

regressor.add(Dropout(0.2))

regressor.add(Dense(units = 1))

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

regressor.fit(X_train, y_train, epochs=150, batch_size= 32)

regressor.save('Hybrid_Dec')

from keras.models import load_model

regressor=load_model('Hybrid_July')

import matplotlib.pyplot as plt

plt.plot(range(len(regressor.history.history['loss'])),regressor.history.history['loss'])

plt.xlabel('Epoch Number')

plt.ylabel('Loss')

plt.show()

prediction_test = []

First_batch = training_set_scaled[-24:]

current_batch= First_batch.reshape((1,24,5))

for i in range (168):

 current_pred = regressor.predict(current_batch)[0]

 prediction_test.append(current_pred)

 New_var = test_set_scaled[i,:]

 New_var = New_var.reshape(1,4)

 New_test = np.insert(New_var,4,[current_pred],axis=1)

138

 New_test = New_test.reshape(1,1,5)

 current_batch = np.append(current_batch[:,1:,:],New_test,axis=1)

prediction_test = np.array(prediction_test)

SI = MinMaxScaler(feature_range=(0,1)

y_Scale = training_set[:,4:5]

SI.fit_transform(y_Scale)

predictions = SI.inverse_transform(prediction_test)

real_values = test_set[:168,4]

import matplotlib.pyplot as plt

plt.plot(real_values, color = 'navy',label = 'Actual Wind Speed')

plt.plot(predictions, color = 'slategrey',label = 'Hybrid Model Prediction',marker = 'o')

#plt.title('RNN - Wind Speed Forecasting')

plt.xlabel('Time(hr)')

plt.ylabel('Wind speed (m/s)')

plt.legend(ncol=2,bbox_to_anchor=(0.5,0.95),loc='center',fontsize=10)

plt.grid(which='minor', linewidth=0.6, alpha=0.1)

plt.show()

import math

from sklearn.metrics import mean_squared_error

rmse = math.sqrt(mean_squared_error(real_values, predictions))

from sklearn.metrics import mean_absolute_error

mean_absolute_error(real_values, predictions)

139

from sklearn.metrics import r2_score

Rsqure = r2_score(real_values, predictions)

def mean_absolute_percentage_error(y_true, y_pred):

 y_true, y_pred = np.array(y_true), np.array(y_pred)

 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

MAPE = mean_absolute_percentage_error(real_values, predictions)

import tensorflow as tf

mae = tf.keras.losses.MeanAbsoluteError()

mae(real_values, predictions).numpy()

m = tf.keras.metrics.MeanSquaredLogarithmicError()

m.update_state(real_values, predictions)

m.result().numpy()

Prediction_Hybrid = pd.DataFrame(predictions)

Prediction_Hybrid.to_csv('Hybrid_Summer_168.csv')

Load Forecasting Model (SARIMAX)

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

df1 = pd.read_csv('Data-Temp.csv')

df2 = pd.read_csv('Data_EV.csv').iloc[:,5:6]

df = pd.concat([df1,df2],axis=1)

df.dropna(inplace=True)

140

Date = pd.date_range('jan 01 2018', periods = 17520, freq = 'H')

df.set_index(Date,drop=True,inplace=True)

df = df.iloc[:,1:]

df.index.freq = 'H'

df.dropna(inplace=True)

train = df.iloc[11640:12384,1:]

test = df.iloc[12384:13416,1:]

exo = df.iloc[:,0:1]

exo_train = exo.iloc[11640:12384]

exo_test = exo.iloc[12384:13416]

from pmdarima import auto_arima

auto_arima(df['Load'], exogenous = exo, m = 24, trace=True, surpress_warnings=True,

D=1).summary()

from statsmodels.tsa.statespace.sarimax import SARIMAX

Model = SARIMAX(train,exog = exo_train, order=(2,0,0),seasonal_order=(2, 1, 0, 24))

Model = Model.fit()

start = len(train)

end = len(train) + len(test) - 1

prediction = Model.predict(start,end,exog = exo_test)

real_values = np.array(test)

prediction = np.array(prediction)

plt.plot(real_values, color = 'red',label = 'Actual Load Demand')

plt.plot(prediction, color = 'blue',label = 'Predicted Load Demand')

141

plt.xlabel('Time(hr)')

plt.ylabel('Load Demand (kW)')

plt.legend()

plt.show()

import math

from sklearn.metrics import mean_squared_error

rmse = math.sqrt(mean_squared_error(real_values, prediction))

from sklearn.metrics import r2_score

Rsqure = r2_score(real_values, prediction)

def mean_absolute_percentage_error(y_true, y_pred):

 y_true, y_pred = np.array(y_true), np.array(y_pred)

 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

MAPE = mean_absolute_percentage_error(real_values, prediction)

from sklearn.metrics import mean_absolute_error

mean_absolute_error(real_values, prediction)

import tensorflow as tf

mae = tf.keras.losses.MeanAbsoluteError()

mae(real_values, prediction).numpy()

m = tf.keras.metrics.MeanSquaredLogarithmicError()

m.update_state(real_values, prediction)

m.result().numpy()

142

Load Forecasting Model (Hybrid LSTM-SARIMAX)

import pandas as pd

import numpy as np

df = pd.read_csv('Data_Summer.csv')

df.dropna(inplace=True)

training_set = df.iloc[:984,1:].values

test_set = df.iloc[984:,1:].values

from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler(feature_range=(0,1))

training_set_scaled = sc.fit_transform(training_set)

test_set_scaled = sc.fit_transform(test_set)

test_set_scaled = test_set_scaled[:,0:2]

X_train = []

y_train = []

for i in range(48, 984):

 X_train.append(training_set_scaled[i-48:i, 0:3])

 y_train.append(training_set_scaled[i, 2])

X_train, y_train = np.array(X_train),np.array(y_train)

X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 3))

from keras.models import Sequential

from keras.layers import LSTM

from keras.layers import Dense

from keras.layers import Dropout

143

Initializing RNN

regressor = Sequential()

Adding the first LSTM layer and some Dropout regularization

regressor.add(LSTM(units = 60, return_sequences = True, input_shape=(X_train.shape[1], 3)))

regressor.add(Dropout(0.2))

Adding the Second LSTM layer and some Dropout regularization

regressor.add(LSTM(units = 60, return_sequences = True))

regressor.add(Dropout(0.2))

Adding the Third LSTM layer and some Dropout regularization

regressor.add(LSTM(units = 60, return_sequences = True))

regressor.add(Dropout(0.2))

Adding the Forth LSTM layer and some Dropout regularization

regressor.add(LSTM(units = 60))

regressor.add(Dropout(0.2))

Adding output layer

regressor.add(Dense(units = 1))

Compiling the RNN

regressor.compile(optimizer='adam', loss = 'mean_squared_error')

Fitting RNN to the Training Set

regressor.fit(X_train, y_train, epochs=150, batch_size= 64)

regressor.save('all_features_100_64-168')

from keras.models import load_model

regressor=load_model('all_features_100_64-168')

144

prediction_test = []

First_batch = training_set_scaled[-48:]

current_batch= First_batch.reshape((1,48,3))

for i in range (48):

 current_pred = regressor.predict(current_batch)[0]

 prediction_test.append(current_pred)

 New_var = test_set_scaled[i,:]

 New_var = New_var.reshape(1,2)

 New_test = np.insert(New_var,2,[current_pred],axis=1)

 New_test = New_test.reshape(1,1,3)

 current_batch = np.append(current_batch[:,1:,:],New_test,axis=1)

prediction_test = np.array(prediction_test)

SI = MinMaxScaler(feature_range=(0,1))

y_Scale = test_set[:,2:3]

SI.fit_transform(y_Scale)

predictions = SI.inverse_transform(prediction_test)

real_values = test_set[:48,2:3]

import matplotlib.pyplot as plt

plt.plot(real_values, color = 'red',label = 'Actual Load Demand')

plt.plot(predictions, color = 'blue',label = 'Predicted Load Demand')

plt.xlabel('Time(hr)')

plt.ylabel('Load Demand (kW)')

plt.legend()

145

plt.show()

import math

from sklearn.metrics import mean_squared_error

rmse = math.sqrt(mean_squared_error(real_values, predictions))

from sklearn.metrics import r2_score

Rsqure = r2_score(real_values, predictions)

def mean_absolute_percentage_error(y_true, y_pred):

 y_true, y_pred = np.array(y_true), np.array(y_pred)

 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

MAPE = mean_absolute_percentage_error(real_values, predictions)

from sklearn.metrics import mean_absolute_error

mean_absolute_error(real_values, predictions)

import tensorflow as tf

mae = tf.keras.losses.MeanAbsoluteError()

mae(real_values, predictions).numpy()

m = tf.keras.metrics.MeanSquaredLogarithmicError()

m.update_state(real_values, predictions)

m.result().numpy()

Local Optimum Design Model

import pyomo.environ as pyo

from pyomo.environ import *

from pyomo.opt import SolverFactory

import pandas as pd

146

import math

import numpy as np

import matplotlib.pyplot as plt

data = pd.read_excel("Input_Daily_Sum.xlsx")

Grid_P = []

for i in range(len(data['Load'])):

 if (data['time'][i]<=31):

 Grid_P.append(0.07005544*0.74)

 if (31<data['time'][i]<=59):

 Grid_P.append(0.06775921*0.74)

 if (59<data['time'][i]<=90):

 Grid_P.append(0.06770977*0.74)

 if (90<data['time'][i]<=120):

 Grid_P.append(0.06393077*0.74)

 if (120<data['time'][i]<=151):

 Grid_P.append(0.06694972*0.74)

 if (151<data['time'][i]<=181):

 Grid_P.append(0.06953881*0.74)

 if (181<data['time'][i]<=212):

 Grid_P.append(0.063731026*0.74)

 if (212<data['time'][i]<=243):

 Grid_P.append(0.062395918*0.74)

 if (243<data['time'][i]<=273):

147

 Grid_P.append(0.05969309*0.74)

 if (273<data['time'][i]<=304):

 Grid_P.append(0.059369803*0.74)

 if (304<data['time'][i]<=334):

 Grid_P.append(0.061508168*0.74)

 if (334<data['time'][i]<=365):

 Grid_P.append(0.065685064*0.74)

Grid_P = pd.DataFrame(Grid_P)

Grid_P.columns = ['Grid_Price']

data = pd.concat([data,Grid_P],axis=1)

Grid_S = []

for i in range(len(data['Load'])):

 if data['time'][i]<=90:

 Grid_S.append(0.2*0.74)

 if 90<data['time'][i]<335:

 Grid_S.append(0.1*0.74)

 if data['time'][i]>=335:

 Grid_S.append(0.2*0.74)

Grid_S = pd.DataFrame(Grid_S)

Grid_S.columns = ['Grid_Sell']

data = pd.concat([data,Grid_S],axis=1)

data.loc[data['Load']<40000, 'Loss_Coeff'] = 1

data.loc[(data['Load']>=40000) & (data['Load']<50000), 'Loss_Coeff'] = 2

148

data.loc[(data['Load']>=50000) & (data['Load']<60000), 'Loss_Coeff'] = 3

data.loc[(data['Load']>=60000) & (data['Load']<70000), 'Loss_Coeff'] = 4

data.loc[(data['Load']>=70000) & (data['Load']<80000), 'Loss_Coeff'] = 5

data.loc[data['Load']>80000, 'Loss_Coeff'] = 6

model = pyo.ConcreteModel()

model.t = pyo.RangeSet(1,365)

model.Load = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load)))

Load = model.Load

model.Wind = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind)))

Wind = model.Wind

model.PV = pyo.Param(model.t, initialize=dict(zip(data.time, data.PV)))

PV = model.PV

model.CGp = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Price)))

CGp = model.CGp

model.CGs = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Sell)))

CGs = model.CGs

model.Coeff = pyo.Param(model.t, initialize=dict(zip(data.time, data.Loss_Coeff)))

Coeff = model.Coeff

model.eta_c = pyo.Param(initialize=0.95)

model.eta_d = pyo.Param(initialize=0.95)

model.maxcd = pyo.Param(initialize=0.35)

model.PE = pyo.Param(initialize=1)

model.cpv = pyo.Param(initialize=205)

149

model.cOMpv = pyo.Param(initialize=0.001)

model.cc = pyo.Param(initialize=75

model.Gp_up = pyo.Param(initialize=200000)

model.cwt = pyo.Param(initialize=38750)

model.cOM = pyo.Param(initialize=0.001)

model.CRF = pyo.Param(initialize=0.064)

model.CRFB = pyo.Param(initialize=1.7743)

#model.cR = pyo.Param(initialize=75)

model.ci = pyo.Param(initialize=75)

model.cb = pyo.Param(initialize=500)

model.Ob = pyo.Param(initialize=0.0004)

model.Mb = pyo.Param(initialize=9.8)

model.RPC = pyo.Param(initialize=500)

model.Teta = pyo.Param(initialize=1)

model.eps = pyo.Param(initialize=0)

model.socmin = pyo.Param(initialize=0.2)

Ob = model.Ob

Mb = model.Mb

RPC = model.RPC

#CGs = model.CGs

#CGp = model.CGp

#cR = model.cR

ci = model.ci

150

cb = model.cb

CRF = model.CRF

cc = model.cc

cOM = model.cOM

cwt = model.cwt

cpv = model.cpv

socmin = model.socmin

eta_c = model.eta_c

maxcd = model.maxcd

eta_d = model.eta_d

Gp_up = model.Gp_up

PE = model.PE

Teta = model.Teta

eps = model.eps

#Coeff = model.Coeff

cOMpv = model.cOMpv

CRFB = model.CRFB

model.Npv = pyo.Var(within=pyo.Integers, bounds=(0, 17623))

Npv = model.Npv

model.Nwt = pyo.Var(within=pyo.Integers, bounds=(0, 48))

Nwt = model.Nwt

model.Nb = pyo.Var(bounds=(0, None))

Nb = model.Nb

151

model.Eb = pyo.Var(model.t, bounds=(0, None))

Eb = model.Eb

model.Pc = pyo.Var(model.t, bounds=(0, None))

Pc = model.Pc

model.Pd = pyo.Var(model.t, bounds=(0, None))

Pd = model.Pd

model.Ewind = pyo.Var(model.t, bounds=(0, None))

Ewind = model.Ewind

model.Eswind = pyo.Var(model.t, bounds=(0, None))

Eswind = model.Eswind

model.Epv = pyo.Var(model.t, bounds=(0, None))

Epv = model.Epv

model.Espv = pyo.Var(model.t, bounds=(0, None))

Espv = model.Espv

model.Gp = pyo.Var(model.t, bounds=(0, 50000))

Gp = model.Gp

model.Gs = pyo.Var(model.t, bounds=(0, 200000))

Gs = model.Gs

model.gamma = pyo.Var(model.t, within=pyo.Binary)

gamma = model.gamma

model.teta = pyo.Var(model.t, within=pyo.Binary)

teta = model.teta

152

model.lam = pyo.Var(model.t, within=pyo.Binary)

lam = model.lam

model.eta = pyo.Var(model.t, within=pyo.Binary)

eta = model.eta

model.Loss = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, 5000))

Loss = model.Loss

def storage1(model, t):

 if t==1:

 return Eb[t] == Nb

 else:

 return Eb[t] == Eb[t - 1] + Pc[t] * eta_c - Pd[t] / eta_d

model.Const_1 = pyo.Constraint(model.t, rule=storage1)

def storage2(model, t):

 return Eb[t] >= Nb * socmin

model.Const_2 = pyo.Constraint(model.t, rule=storage2)

def storage3(model, t):

 return Eb[t] <= Nb

model.Const_3 = pyo.Constraint(model.t, rule=storage3)

def storage4(model, t):

 return Pc[t] * eta_c + Pd[t] / eta_d <= maxcd * Nb

model.Const_4 = pyo.Constraint(model.t, rule=storage4)

153

def storage5(model, t):

 return Pc[t] <= Nb * gamma[t]

model.Const_5 = pyo.Constraint(model.t, rule=storage5)

def storage6(model, t):

 return Pd[t] <= Nb * teta[t]

model.Const_6 = pyo.Constraint(model.t, rule=storage6)

def storage7(model, t):

 return gamma[t] + teta[t] == 1

model.Const_7 = pyo.Constraint(model.t, rule=storage7)

def grid1(model, t):

 return Gs[t] <= (Eswind[t] + Espv[t]) * PE * eta[t]

model.Const_8 = pyo.Constraint(model.t, rule=grid1)

def grid2(model, t):

 return Gp[t] <= Gp_up * lam[t]

model.Const_9 = pyo.Constraint(model.t, rule=grid2)

def grid3(model, t):

 return eta[t] + lam[t] == 1

model.Const_10 = pyo.Constraint(model.t, rule=grid3)

def Wind_surplus(model, t):

 return Nwt * Wind[t] == (Ewind[t] + Eswind[t])

model.Const_11 = pyo.Constraint(model.t, rule=Wind_surplus)

154

def PV_surplus(model, t):

 return Npv * PV[t] == Epv[t] + Espv[t]

model.Const_12 = pyo.Constraint(model.t, rule=PV_surplus)

def Balance(model, t):

 return Ewind[t] + Epv[t] + Pd[t] + Gp[t] + Loss[t] >= Load[t] + Pc[t] + Gs[t]

model.Const_13 = pyo.Constraint(model.t, rule=Balance)

def Loss_Constraint(model,t):

 return sum(Loss[t] for t in model.t) <= 0.001*sum(Load[t] for t in model.t)

model.Const_14 = pyo.Constraint(model.t, rule=Loss_Constraint)

def objective_rule(model):

 return (Npv * (cpv + cc)*(1 + cOMpv / CRF)) + (Nwt * cwt * (1 + cOM / CRF)) + Nb * (cb +

ci) + Ob * (

 sum((Pd[t] + Pc[t]) / CRF for t in model.t)) + (Mb * maxcd * Nb)*20.7743 + (RPC * Nb) *

CRFB + sum(

 (CGp[t] * Gp[t]) / CRF for t in model.t) - sum((CGs[t] * Gs[t]) / CRF for t in model.t)+sum(

 Loss[t]*Coeff[t] for t in model.t)+sum(Gp[t]*eps*Teta for t in model.t)

model.objective = pyo.Objective(rule=objective_rule, sense=pyo.minimize)

model.write('Opt_New.lp')

opt = SolverFactory('scipampl')

results = opt.solve(model, tee=True)

#opt.options['limits/time'] = 100

#opt = SolverFactory('gams')

155

#results = opt.solve(model, solver= 'dicopt', tee=True, keepfiles=True, add_options=['option

reslim=20;'])

#results = opt.solve(model, solver= 'dicopt', tee=True,add_options=['option nlp=ipopt;'])

#model.display()

Evaluation of Results

Data_Load = pd.read_excel('Load.xlsx')

print(results)

print('objec Fu = ' , pyo.value(model.objective)*1.32, 'CAD')

print('Cost of energy (COE) = ',

(pyo.value(model.objective)*CRF/Data_Load['Load'].sum())*1.32, 'CAD/kWh')

print('Total Capital Cost = ' , (pyo.value(model.Npv)*(cpv +

cc)+pyo.value(model.Nwt)*cwt+pyo.value(model.Nb)*(cb + ci))*1.32, 'CAD')

print('number of PV = ' , pyo.value(model.Npv))

print('PV Capacity = ' , (pyo.value(model.Npv))/4.5455)

print('number of Wt = ' , pyo.value(model.Nwt))

print('Battery Storage Capacity = ' , pyo.value(model.Nb), 'kWh')

Gs_values = pd.DataFrame(list(Gs[:].value),columns=['Gs'])

Gp_values = pd.DataFrame(list(Gp[:].value),columns=['Gp'])

Pd_values = pd.DataFrame(list(Pd[:].value),columns=['Pd'])

Pc_values = pd.DataFrame(list(Pc[:].value),columns=['Pc'])

Eb_values = pd.DataFrame(list(Eb[:].value),columns=['Eb'])

EWind_values = pd.DataFrame(list(Ewind[:].value),columns=['EWind'])

EPV_values = pd.DataFrame(list(Epv[:].value),columns=['EPV'])

156

ESWind_values = pd.DataFrame(list(Eswind[:].value),columns=['ESWind'])

ESPV_values = pd.DataFrame(list(Espv[:].value),columns=['ESPV'])

Unmet_Load = pd.DataFrame(list(Loss[:].value),columns=['Loss'])

Indexed_Result =

pd.concat([Gs_values,Gp_values,Pd_values,Pc_values,Eb_values,EWind_values,EPV_values,

 ESWind_values,ESPV_values,Unmet_Load],axis=1)

Indexed_Result.to_csv('Results_Local_New.csv')

plt.plot(Unmet_Load)

print('Unmet Load = ',Unmet_Load.sum())

print('Number of days we have unmet load = ', 365-(Unmet_Load==0).sum())

Cycles_C = 365 - (Pc_values==0).sum()

Cycles_D = 365 - (Pd_values==0).sum()

Charging = Pc_values.sum()

Discharging = Pd_values.sum()

print('Charge Cycles = ',Cycles_C)

print('discharge Cycles = ',Cycles_D)

Unmet_sum = Unmet_Load.sum()

SOC = (Eb_values/12094)*100

Battery Analysis

MaxCH = [0.02,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5]

COE = [1.056,0.55,0.3,0.22,0.18,0.15,0.14,0.12,0.12,0.11,0.1]

Cycles = [95,111,114,121,118,116,122,99,103,126]

Battery = [131547,84659,42329,28219,21164,16931,14109,12094,10582,9406,8465]

157

Ch_Dis =

[330780,356686,392332,404214,401678,404585,398483,390494,384498,366652,299703]

B_Operation = [2067,2229,2452,2526,2510,2528,2490,2440,2403,2291,1873]

x = MaxCH

y2=0

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()

ax1.plot(x,COE, color = 'blue',label = 'LCOE')

ax2.plot(x,B_Operation, color = 'darkorange',label = 'Battery Operation Cost')

ax1.set_xlabel('Max Charge-Discharge Rate',fontsize=13)

ax1.set_ylabel('LCOE $/kWh',fontsize=13)

ax2.set_ylabel('Battery Operation Cost $',fontsize=13)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='major', labelsize=12)

ax1.legend(ncol=1,bbox_to_anchor=(0.5,1.12),loc='center',fontsize=12)

ax2.legend(ncol=1,bbox_to_anchor=(0.5,1.06),loc='center',fontsize=12)

plt.show()

x = range(365)

y2=0

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()

ax1.fill_between(x, EPV_values.iloc[:,0].values,y2,facecolor='firebrick',label = 'PV Used

Power',alpha=0.7)

158

ax1.fill_between(x, Gp_values.iloc[:,0],y2,facecolor='darkorange',label = 'Purchase from

Grid',alpha=0.7)

ax1.fill_between(x, EWind_values.iloc[:,0],y2,facecolor='indigo',label = 'Wind Used

Power',alpha=0.7)

ax1.fill_between(x, Pc_values.iloc[:,0],y2,facecolor='limegreen',label = 'Battery

Charge',alpha=0.7)

ax1.fill_between(x, Pd_values.iloc[:,0],y2,facecolor='slategrey',label = 'Battery

Discharge',alpha=0.7)

ax1.fill_between(x, ESWind_values.iloc[:,0],y2,facecolor='pink',label = 'Wind

Surplus',alpha=0.7)

ax1.fill_between(x, ESPV_values.iloc[:,0],y2,facecolor='green',label = 'PV Surplus',alpha=0.7)

ax1.fill_between(x, Unmet_Load.iloc[:,0],y2,facecolor='red',label = 'Unmet Load',alpha=0.7)

ax1.fill_between(x, Gs_values.iloc[:,0],y2,facecolor='yellow',label = 'Sell to Grid',alpha=0.7)

ax1.plot(x, data.iloc[:,2], 'black',label = 'Demand',linestyle = 'dashed')

ax2.plot(x, SOC.iloc[:,0], 'black',label = 'SOC')

ax2.set_ylim([0, 110])

ax1.set_xlabel('Days',fontsize=13)

ax1.set_ylabel('Power (kWh)',fontsize=13)

ax2.set_ylabel('State of Charge of the Battery %',fontsize=13)

ax2.tick_params(axis='both', which='major', labelsize=12)

ax1.tick_params(axis='both', which='major', labelsize=12)

ax2.legend(loc='upper right',fontsize=12)

ax1.legend(ncol=5,bbox_to_anchor=(0.5,1.08),loc='center',fontsize=12)

plt.show()

159

#Grid Trade-off

plt.plot(Gp_values, color = 'blue',label = 'Purchase from Grid')

plt.plot(Gs_values, color = 'darkorange',label = 'Sell to Grid')

plt.xlabel('Time(day)',fontsize=13)

plt.ylabel('Energy (kWh)',fontsize=13)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.legend(ncol=2,bbox_to_anchor=(0.5,1.06),loc='center',fontsize=12)

plt.show()

#Battery Ch-Disch

SOC = (Eb_values/12094)*100

Pc_Perc = (Pc_values/(12094))*100

Pd_Perc = (Pd_values/(12094))*100

plt.plot(Pc_Perc, color = 'firebrick',label = 'Battery Charging')

plt.plot(Pd_Perc, color = 'navy',label = 'Battery Discharging')

plt.plot(SOC, color = 'green',label = 'SOC')

plt.xlabel('Days',fontsize=13)

plt.ylabel('%',fontsize=13)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.legend(ncol=3,bbox_to_anchor=(0.5,1.08),loc='center',fontsize=12)

plt.show()

160

#Monthly Graph

bar_width = 0.15

Month_b = np.arange(12)

plt.bar(1,EPV_values.iloc[:30,0].sum(), bar_width, color = 'firebrick', label = 'PV')

plt.bar(2,EPV_values.iloc[31:60,0].sum(), bar_width, color = 'firebrick')

plt.bar(3,EPV_values.iloc[61:90,0].sum(), bar_width, color = 'firebrick')

plt.bar(4,EPV_values.iloc[91:121,0].sum(), bar_width, color = 'firebrick')

plt.bar(5,EPV_values.iloc[121:151,0].sum(), bar_width, color = 'firebrick')

plt.bar(6,EPV_values.iloc[151:181,0].sum(), bar_width, color = 'firebrick')

plt.bar(7,EPV_values.iloc[181:211,0].sum(), bar_width, color = 'firebrick')

plt.bar(8,EPV_values.iloc[211:241,0].sum(), bar_width, color = 'firebrick')

plt.bar(9,EPV_values.iloc[241:271,0].sum(), bar_width, color = 'firebrick')

plt.bar(10,EPV_values.iloc[271:301,0].sum(), bar_width, color = 'firebrick')

plt.bar(11,EPV_values.iloc[301:331,0].sum(), bar_width, color = 'firebrick')

plt.bar(12,EPV_values.iloc[332:365,0].sum(), bar_width, color = 'firebrick')

plt.bar(1+bar_width,EWind_values.iloc[:30,0].sum(), bar_width, color = 'navy', label = 'Wind')

plt.bar(2+bar_width,EWind_values.iloc[31:60,0].sum(), bar_width, color = 'navy')

plt.bar(3+bar_width,EWind_values.iloc[61:90,0].sum(), bar_width, color = 'navy')

plt.bar(4+bar_width,EWind_values.iloc[91:121,0].sum(), bar_width, color = 'navy')

plt.bar(5+bar_width,EWind_values.iloc[121:151,0].sum(), bar_width, color = 'navy')

plt.bar(6+bar_width,EWind_values.iloc[151:181,0].sum(), bar_width, color = 'navy')

plt.bar(7+bar_width,EWind_values.iloc[181:211,0].sum(), bar_width, color = 'navy')

plt.bar(8+bar_width,EWind_values.iloc[211:241,0].sum(), bar_width, color = 'navy')

161

plt.bar(9+bar_width,EWind_values.iloc[241:271,0].sum(), bar_width, color = 'navy',)

plt.bar(10+bar_width,EWind_values.iloc[271:301,0].sum(), bar_width, color = 'navy')

plt.bar(11+bar_width,EWind_values.iloc[301:331,0].sum(), bar_width, color = 'navy')

plt.bar(12+bar_width,EWind_values.iloc[332:365,0].sum(), bar_width, color = 'navy')

plt.bar(1-bar_width,Gp_values.iloc[:30,0].sum(), bar_width, color = 'gold', label = 'Purchase from

Grid')

plt.bar(2-bar_width,Gp_values.iloc[31:60,0].sum(), bar_width, color = 'gold')

plt.bar(3-bar_width,Gp_values.iloc[61:90,0].sum(), bar_width, color = 'gold')

plt.bar(4-bar_width,Gp_values.iloc[91:121,0].sum(), bar_width, color = 'gold')

plt.bar(5-bar_width,Gp_values.iloc[121:151,0].sum(), bar_width, color = 'gold')

plt.bar(6-bar_width,Gp_values.iloc[151:181,0].sum(), bar_width, color = 'gold')

plt.bar(7-bar_width,Gp_values.iloc[181:211,0].sum(), bar_width, color = 'gold')

plt.bar(8-bar_width,Gp_values.iloc[211:241,0].sum(), bar_width, color = 'gold')

plt.bar(9-bar_width,Gp_values.iloc[241:271,0].sum(), bar_width, color = 'gold',)

plt.bar(10-bar_width,Gp_values.iloc[271:301,0].sum(), bar_width, color = 'gold')

plt.bar(11-bar_width,Gp_values.iloc[301:331,0].sum(), bar_width, color = 'gold')

plt.bar(12-bar_width,Gp_values.iloc[332:365,0].sum(), bar_width, color = 'gold')

plt.bar(1+2*bar_width,Pd_values.iloc[:30,0].sum(), bar_width, color = 'slategrey', label = 'Battery

Discharge')

plt.bar(2+2*bar_width,Pd_values.iloc[31:60,0].sum(), bar_width, color = 'slategrey')

plt.bar(3+2*bar_width,Pd_values.iloc[61:90,0].sum(), bar_width, color = 'slategrey')

plt.bar(4+2*bar_width,Pd_values.iloc[91:121,0].sum(), bar_width, color = 'slategrey')

plt.bar(5+2*bar_width,Pd_values.iloc[121:151,0].sum(), bar_width, color = 'slategrey')

162

plt.bar(6+2*bar_width,Pd_values.iloc[151:181,0].sum(), bar_width, color = 'slategrey')

plt.bar(7+2*bar_width,Pd_values.iloc[181:211,0].sum(), bar_width, color = 'slategrey')

plt.bar(8+2*bar_width,Pd_values.iloc[211:241,0].sum(), bar_width, color = 'slategrey')

plt.bar(9+2*bar_width,Pd_values.iloc[241:271,0].sum(), bar_width, color = 'slategrey',)

plt.bar(10+2*bar_width,Pd_values.iloc[271:301,0].sum(), bar_width, color = 'slategrey')

plt.bar(11+2*bar_width,Pd_values.iloc[301:331,0].sum(), bar_width, color = 'slategrey')

plt.bar(12+2*bar_width,Pd_values.iloc[332:365,0].sum(), bar_width, color = 'slategrey')

#Surplus = (ESWind_values.iloc[:744,0]+ESPV_values.iloc[:744,0]).sum()

plt.bar(1-2*bar_width,(ESWind_values.iloc[:30,0]+ESPV_values.iloc[:30,0]).sum(), bar_width,

color = 'peru', label = 'Surplus Power')

plt.bar(2-2*bar_width,(ESWind_values.iloc[31:60,0]+ESPV_values.iloc[31:60,0]).sum(),

bar_width, color = 'peru')

plt.bar(3-2*bar_width,(ESWind_values.iloc[61:90,0]+ESPV_values.iloc[61:90,0]).sum(),

bar_width, color = 'peru')

plt.bar(4-2*bar_width,(ESWind_values.iloc[91:121,0]+ESPV_values.iloc[91:121,0]).sum(),

bar_width, color = 'peru')

plt.bar(5-2*bar_width,(ESWind_values.iloc[121:151,0]+ESPV_values.iloc[121:151,0]).sum(),

bar_width, color = 'peru')

plt.bar(6-2*bar_width,(ESWind_values.iloc[151:181,0]+ESPV_values.iloc[151:181,0]).sum(),

bar_width, color = 'peru')

plt.bar(7-2*bar_width,(ESWind_values.iloc[181:211,0]+ESPV_values.iloc[181:211,0]).sum(),

bar_width, color = 'peru')

plt.bar(8-2*bar_width,(ESWind_values.iloc[211:241,0]+ESPV_values.iloc[211:241,0]).sum(),

bar_width, color = 'peru')

163

plt.bar(9-2*bar_width,(ESWind_values.iloc[241:271,0]+ESPV_values.iloc[241:271,0]).sum(),

bar_width, color = 'peru',)

plt.bar(10-2*bar_width,(ESWind_values.iloc[271:301,0]+ESPV_values.iloc[271:301,0]).sum(),

bar_width, color = 'peru')

plt.bar(11-2*bar_width,(ESWind_values.iloc[301:331,0]+ESPV_values.iloc[301:331,0]).sum(),

bar_width, color = 'peru')

plt.bar(12-2*bar_width,(ESWind_values.iloc[332:365,0]+ESPV_values.iloc[332:365,0]).sum(),

bar_width, color = 'peru')

labels = ('Jan', 'Feb', 'March', 'April', 'May', 'June', 'July', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec')

positions = (1,2,3,4,5,6,7,8,9,10,11,12)

LoadD =

np.array([data.iloc[:30,1].sum(),data.iloc[31:60,1].sum(),data.iloc[61:90,1].sum(),data.iloc[91:12

1,1].sum(),

data.iloc[121:151,1].sum(),data.iloc[151:181,1].sum(),data.iloc[181:211,1].sum(),data.iloc[211:2

41,1].sum(),

data.iloc[241:271,1].sum(),data.iloc[271:301,1].sum(),data.iloc[301:331,1].sum(),data.iloc[332:3

65,1].sum()])

plt.plot(positions,LoadD ,'black',label = 'Demand',linestyle = 'dashed',marker = 'o')

plt.xlabel('Month',fontsize=13)

plt.ylabel('Energy (kWh)',fontsize=13)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.xticks(positions,labels)

plt.legend(ncol=6,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=12)

164

plt.show()

Monthly Bar Chart

Date = pd.date_range('jan 01 2019', periods = 365, freq = 'D')

Indexed_Result.set_index(Date, inplace=True)

Indexed_Result_M = Indexed_Result.resample(rule = 'M').sum()

labels = ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'July', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec')

labels = pd.DataFrame(labels)

Indexed_Result_M = Indexed_Result_M.reset_index(drop=True)

Indexed_Result_M = pd.concat([labels,Indexed_Result_M], axis=1)

Indexed_Result_M.set_index(0,inplace=True)

Indexed_Result_M = Indexed_Result_M.rename(columns={'Gs': 'Grid Sell', 'Gp': 'Grid Purchase',

'Pd': 'Battery Discharge', 'Pc': 'Battery Charge'

 , 'Eb': 'BState', 'EWind': 'Wind', 'EPV': 'PV','ESPV': 'PV

Surplus','ESWind': 'Wind Surplus','Loss': 'Unmet Load'})

Indexed_Result_M['Surplus'] = Indexed_Result_M['PV Surplus'] + Indexed_Result_M['Wind

Surplus']

Indexed_Result_M = Indexed_Result_M.iloc[:,[1,2,5,6,9,10]]

Indexed_Result_M.plot(kind='bar',stacked=True,hatch='\\\\\\\\',width=0.8,rot=0,alpha=0.75)

plt.xlabel('Months')

plt.ylabel('Power kWh')

plt.legend(ncol=6,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=10)

Mix of Regional and Local Optimum Design

import pyomo.environ as pyo

165

from pyomo.environ import *

from pyomo.opt import SolverFactory

import pandas as pd

import numpy as np

import math

import matplotlib.pyplot as plt

import os

data = pd.read_excel("Input_Daily_Sum.xlsx")

data2 = pd.read_excel("Map_Params.xlsx")

Propose Rate

Grid_P = []

for i in range(len(data['Load_HP'])):

 if (data['time'][i]<=90) & (data['Load_HP'][i]+data['Load_E'][i]<100000):

 Grid_P.append(0.08)

 if (90<data['time'][i]<335) & (data['Load_HP'][i]+data['Load_E'][i]<100000):

 Grid_P.append(0.06)

 if (data['time'][i]>=335) & (data['Load_HP'][i]+data['Load_E'][i]<100000):

 Grid_P.append(0.08)

 if (data['time'][i]<=90) & (100000<=data['Load_HP'][i]+data['Load_E'][i]<120000):

 Grid_P.append(0.12)

 if (90<data['time'][i]<335) & (100000<=data['Load_HP'][i]+data['Load_E'][i]<120000):

 Grid_P.append(0.08)

 if (data['time'][i]>=335) & (100000<=data['Load_HP'][i]+data['Load_E'][i]<120000):

166

 Grid_P.append(0.12)

 if (data['time'][i]<=90) & (120000<=data['Load_HP'][i]+data['Load_E'][i]<140000):

 Grid_P.append(0.18)

 if (90<data['time'][i]<335) & (120000<=data['Load_HP'][i]+data['Load_E'][i]<140000):

 Grid_P.append(0.1)

 if (data['time'][i]>=335) & (120000<=data['Load_HP'][i]+data['Load_E'][i]<140000):

 Grid_P.append(0.18)

 if (data['time'][i]<=90) & (140000<=data['Load_HP'][i]+data['Load_E'][i]<160000):

 Grid_P.append(0.26)

 if (90<data['time'][i]<335) & (140000<=data['Load_HP'][i]+data['Load_E'][i]<160000):

 Grid_P.append(0.12)

 if (data['time'][i]>=335) & (140000<=data['Load_HP'][i]+data['Load_E'][i]<160000):

 Grid_P.append(0.26)

 if (data['time'][i]<=90) & (160000<=data['Load_HP'][i]+data['Load_E'][i]<180000):

 Grid_P.append(0.36)

 if (90<data['time'][i]<335) & (160000<=data['Load_HP'][i]+data['Load_E'][i]<180000):

 Grid_P.append(0.14)

 if (data['time'][i]>=335) & (160000<=data['Load_HP'][i]+data['Load_E'][i]<180000):

 Grid_P.append(0.36)

 if (data['time'][i]<=90) & (data['Load_HP'][i]+data['Load_E'][i]>180000):

 Grid_P.append(0.48)

 if (90<data['time'][i]<335) & (data['Load_HP'][i]+data['Load_E'][i]>180000):

 Grid_P.append(0.16)

167

 if (data['time'][i]>=335) & (data['Load_HP'][i]+data['Load_E'][i]>180000):

 Grid_P.append(0.48)

Grid_P = pd.DataFrame(Grid_P)

Grid_P.columns = ['Grid_Price']

data = pd.concat([data,Grid_P],axis=1)

Grid_S = []

for i in range(len(data['Load_HP'])):

 if data['time'][i]<=90:

 Grid_S.append(0.2)

 if 90<data['time'][i]<335:

 Grid_S.append(0.1)

 if data['time'][i]>=335:

 Grid_S.append(0.2)

Grid_S = pd.DataFrame(Grid_S)

Grid_S.columns = ['Grid_Sell']

data = pd.concat([data,Grid_S],axis=1)

data.loc[data['Load_HP']+data['Load_E'][i]<100000, 'Loss_Coeff'] = 1

data.loc[(data['Load_HP']+data['Load_E'][i]>=100000) &

(data['Load_HP']+data['Load_E'][i]<120000), 'Loss_Coeff'] = 2

data.loc[(data['Load_HP']+data['Load_E'][i]>=120000) &

(data['Load_HP']+data['Load_E'][i]<140000), 'Loss_Coeff'] = 3

168

data.loc[(data['Load_HP']+data['Load_E'][i]>=140000) &

(data['Load_HP']+data['Load_E'][i]<160000), 'Loss_Coeff'] = 4

data.loc[(data['Load_HP']+data['Load_E'][i]>=160000) &

(data['Load_HP']+data['Load_E'][i]<180000), 'Loss_Coeff'] = 5

data.loc[data['Load_HP']+data['Load_E'][i]>180000, 'Loss_Coeff'] = 6

model = pyo.ConcreteModel()

Sets and Parameters

model.t = pyo.RangeSet(1,365)

model.l = pyo.RangeSet(1,76)

model.Load_E = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load_E)))

Load_E = model.Load_E

model.Load_HP = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load_HP)))

Load_HP = model.Load_HP

model.Gas = pyo.Param(model.t, initialize=dict(zip(data.time, data.Gas_Cons)))

Gas = model.Gas

Wind1 is for local wind generation

model.Wind1 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind1)))

Wind1 = model.Wind1

Wind2 is for 'OPEN AREA'

model.Wind2 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind2)))

Wind2 = model.Wind2

Wind3 is for 'RESOURCE AND INDUSTRIAL'

169

model.Wind3 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind3)))

Wind3 = model.Wind3

Wind4 is for 'COMMERCIAL'

model.Wind4 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind4)))

Wind4 = model.Wind4

Wind5 is for 'PARKS AND RECREATIONAL'

model.Wind5 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind5)))

Wind5 = model.Wind5

Wind6 is for 'GOVERNMENT AND INSTITUTIONAL'

model.Wind6 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind6)))

Wind6 = model.Wind6

Wind7 is for 'RESIDENTIAL'

model.Wind7 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind7)))

Wind7 = model.Wind7

Wind8 is for 'Waterbody'

model.Wind8 = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind8)))

Wind8 = model.Wind8

model.PV = pyo.Param(model.t, initialize=dict(zip(data.time, data.PV)))

PV = model.PV

model.Cl = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Land_Cost)))

Cl = model.Cl # Land Cost ($/m2)

model.TD = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Turbine_D)))

TD = model.TD

170

model.dis = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Distance)))

dis = model.dis

model.LT = pyo.Param(model.l, initialize=dict(zip(data2.LandType, data2.Zone_type)))

LT = model.LT

model.CGp = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Price)))

CGp = model.CGp

model.CGs = pyo.Param(model.t, initialize=dict(zip(data.time, data.Grid_Sell)))

CGs = model.CGs

model.Coeff = pyo.Param(model.t, initialize=dict(zip(data.time, data.Loss_Coeff)))

Coeff = model.Coeff

model.eta_c = pyo.Param(initialize=0.95)

model.eta_d = pyo.Param(initialize=0.95)

model.maxcd = pyo.Param(initialize=0.35)

model.PE = pyo.Param(initialize=1)

model.cpv = pyo.Param(initialize=205)

model.cc = pyo.Param(initialize=75)

model.Gp_up = pyo.Param(initialize=2000000000)

model.cwt = pyo.Param(initialize=38750)

model.cOMwt = pyo.Param(initialize=0.001)

model.cOMpv = pyo.Param(initialize=0.001)

model.CRF = pyo.Param(initialize=0.064)

model.CRFG = pyo.Param(initialize=20.6)

model.CRFB = pyo.Param(initialize=1.7743)

171

#model.cR = pyo.Param(initialize=75)

model.ci = pyo.Param(initialize=75)

model.cb = pyo.Param(initialize=500)

model.Ob = pyo.Param(initialize=0.0004)

model.Mb = pyo.Param(initialize=9.8)

model.RPC = pyo.Param(initialize=500)

model.socmin = pyo.Param(initialize=0.2)

model.Bd = pyo.Param(initialize=20000000)

model.Ct = pyo.Param(initialize=2000)

model.A = pyo.Param(initialize=10)

model.crc = pyo.Param(initialize=1240000)

model.Ci = pyo.Param(initialize=20000)

model.omT = pyo.Param(initialize=0.0005

model.eps = pyo.Param(initialize=0)

model.Teta = pyo.Param(initialize=1)

model.hpc = pyo.Param(initialize=853)

model.cOMhp = pyo.Param(initialize=0.00003)

model.maxhp = pyo.Param(initialize=6224)

model.Cg = pyo.Param(initialize=0.1517)

Ob = model.Ob

Mb = model.Mb

RPC = model.RPC

CGp = model.CGp

172

CGs = model.CGs

#cR = model.cR

ci = model.ci

cb = model.cb

CRF = model.CRF

cc = model.cc

cOMwt = model.cOMwt

cwt = model.cwt

cpv = model.cpv

socmin = model.socmin

eta_c = model.eta_c

maxcd = model.maxcd

eta_d = model.eta_d

Gp_up = model.Gp_up

PE = model.PE

Bd = model.Bd

Ct = model.Ct

A = model.A

crc = model.crc

Ci = model.Ci

omT = model.omT

Teta = model.Teta

eps = model.eps

173

cOMpv = model.cOMpv

hpc = model.hpc

maxhp = model.maxhp

cOMhp = model.cOMhp

Cg = model.Cg

CRFB = model.CRFB

CRFG = model.CRFG

area = 24487 #This area will be defined by user or automatically by software

def PV_Count(model):

return (0,area/1.32

model.Npv = pyo.Var(within=pyo.Integers, bounds=(0, 17623))

Npv = model.Npv

model.Nwt = pyo.Var(within=pyo.Integers, bounds=(0, 48))

Nwt = model.Nwt

model.Nb = pyo.Var(bounds=(6000, None))

Nb = model.Nb

model.Eb = pyo.Var(model.t, bounds=(0, None))

Eb = model.Eb

model.Pc = pyo.Var(model.t, bounds=(0, None))

Pc = model.Pc

model.Pd = pyo.Var(model.t, bounds=(0, None))

174

Pd = model.Pd

model.Ewind = pyo.Var(model.t, bounds=(0, None))

Ewind = model.Ewind

model.Eswind = pyo.Var(model.t, bounds=(0, None))

Eswind = model.Eswind

model.Epv = pyo.Var(model.t, bounds=(0, None))

Epv = model.Epv

model.Espv = pyo.Var(model.t, bounds=(0, None))

Espv = model.Espv

model.Gp = pyo.Var(model.t, bounds=(0, 200000))

Gp = model.Gp

model.Gs = pyo.Var(model.t, bounds=(0, 200000))

Gs = model.Gs

model.gamma = pyo.Var(model.t, within=pyo.Binary)

gamma = model.gamma

model.teta = pyo.Var(model.t, within=pyo.Binary)

teta = model.teta

model.lam = pyo.Var(model.t, within=pyo.Binary)

lam = model.lam

model.eta = pyo.Var(model.t, within=pyo.Binary)

eta = model.eta

model.La = pyo.Var(bounds=(0,None))

175

La = model.La

model.Nrg = pyo.Var(within=pyo.Integers,bounds=(0,None))

Nrg = model.Nrg

model.Esrg1 = pyo.Var(model.t,bounds=(0,None))

Esrg1 = model.Esrg1

model.Esrg2 = pyo.Var(model.t,bounds=(0,None))

Esrg2 = model.Esrg2

model.Esrg3 = pyo.Var(model.t,bounds=(0,None))

Esrg3 = model.Esrg3

model.Esrg4 = pyo.Var(model.t,bounds=(0,None))

Esrg4 = model.Esrg4

model.Esrg5 = pyo.Var(model.t,bounds=(0,None))

Esrg5 = model.Esrg5

model.Esrg6 = pyo.Var(model.t,bounds=(0,None))

Esrg6 = model.Esrg6

model.Esrg7 = pyo.Var(model.t,bounds=(0,None))

Esrg7 = model.Esrg7

model.Erg1 = pyo.Var(model.t,bounds=(0,None))

Erg1 = model.Erg1

model.Erg2 = pyo.Var(model.t,bounds=(0,None))

Erg2 = model.Erg2

model.Erg3 = pyo.Var(model.t,bounds=(0,None))

176

Erg3 = model.Erg3

model.Erg4 = pyo.Var(model.t,bounds=(0,None))

Erg4 = model.Erg4

model.Erg5 = pyo.Var(model.t,bounds=(0,None))

Erg5 = model.Erg5

model.Erg6 = pyo.Var(model.t,bounds=(0,None))

Erg6 = model.Erg6

model.Erg7 = pyo.Var(model.t,bounds=(0,None))

Erg7 = model.Erg7

model.Bin = pyo.Var(model.l,within=pyo.Binary)

Bin = model.Bin

model.Loss = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

Loss = model.Loss

model.Chp = pyo.Var(within=pyo.NonNegativeReals, bounds=(0, None))

Chp = model.Chp

def storage1(model, t):

 if t==1:

 return Eb[t] == Nb

 else:

 return Eb[t] == Eb[t - 1] + Pc[t] * eta_c - Pd[t] / eta_d

model.Const_1 = pyo.Constraint(model.t, rule=storage1)

def storage2(model, t):

177

 return Eb[t] >= Nb * socmin

model.Const_2 = pyo.Constraint(model.t, rule=storage2)

def storage3(model, t):

 return Eb[t] <= Nb

model.Const_3 = pyo.Constraint(model.t, rule=storage3)

def storage4(model, t):

 return Pc[t] * eta_c + Pd[t] / eta_d <= maxcd * Nb

model.Const_4 = pyo.Constraint(model.t, rule=storage4)

def storage5(model, t):

 return Pc[t] <= Nb * gamma[t]

model.Const_5 = pyo.Constraint(model.t, rule=storage5)

def storage6(model, t):

 return Pd[t] <= Nb * teta[t]

model.Const_6 = pyo.Constraint(model.t, rule=storage6)

def storage7(model, t):

 return gamma[t] + teta[t] == 1

model.Const_7 = pyo.Constraint(model.t, rule=storage7)

def gridS1(model, t,l):

 if LT[l] == 'OPEN AREA':

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg1[t]) * PE * eta[t]

 if LT[l] == 'RESOURCE AND INDUSTRIAL':

178

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg2[t]) * PE * eta[t]

 if LT[l] == 'COMMERCIAL':

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg3[t]) * PE * eta[t]

 if LT[l] == 'PARKS AND RECREATIONAL':

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg4[t]) * PE * eta[t]

 if LT[l] == 'GOVERNMENT AND INSTITUTIONAL':

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg5[t]) * PE * eta[t]

 if LT[l] == 'RESIDENTIAL':

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg6[t]) * PE * eta[t]

 if LT[l] == 'WATERBODY':

 return Gs[t] <= (Eswind[t] + Espv[t] + Esrg7[t]) * PE * eta[t]

model.Const_8 = pyo.Constraint(model.t,model.l, rule=gridS1)

def grid2(model, t):

 return Gp[t] <= Gp_up * lam[t]

model.Const_9 = pyo.Constraint(model.t, rule=grid2)

def grid3(model, t):

 return eta[t] + lam[t] == 1

model.Const_10 = pyo.Constraint(model.t, rule=grid3)

def Wind_surplus(model, t):

 return Nwt * Wind1[t] == (Ewind[t] + Eswind[t])

model.Const_11 = pyo.Constraint(model.t, rule=Wind_surplus)

179

def PV_surplus(model, t):

 return Npv * PV[t] == Epv[t] + Espv[t]

model.Const_12 = pyo.Constraint(model.t, rule=PV_surplus)

model.Const_13 = pyo.Constraint(expr = La == Nrg*A)

def LandCost(model, l):

 return dis[l]*Ct + Cl[l]*La <= Bd

model.Const_14 = pyo.Constraint(model.l, rule=LandCost)

def Wind_regional2(model, t,l):

 if LT[l] == 'OPEN AREA':

 return Nrg * Wind2[t] == (Erg1[t] + Esrg1[t])

 if LT[l] == 'RESOURCE AND INDUSTRIAL':

 return Nrg * Wind3[t] == (Erg2[t] + Esrg2[t])

 if LT[l] == 'COMMERCIAL':

 return Nrg * Wind4[t] == (Erg3[t] + Esrg3[t])

 if LT[l] == 'PARKS AND RECREATIONAL':

 return Nrg * Wind5[t] == (Erg4[t] + Esrg4[t])

 if LT[l] == 'GOVERNMENT AND INSTITUTIONAL':

 return Nrg * Wind6[t] == (Erg5[t] + Esrg5[t])

 if LT[l] == 'RESIDENTIAL':

 return Nrg * Wind7[t] == (Erg6[t] + Esrg6[t])

 if LT[l] == 'WATERBODY':

 return Nrg * Wind8[t] == (Erg7[t] + Esrg7[t])

model.Const_15 = pyo.Constraint(model.t,model.l, rule=Wind_regional2)

180

def Balance(model, t,l):

 if LT[l] == 'OPEN AREA':

 return Ewind[t] + Epv[t] + Erg1[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

 if LT[l] == 'RESOURCE AND INDUSTRIAL':

 return Ewind[t] + Epv[t] + Erg2[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

 if LT[l] == 'COMMERCIAL':

 return Ewind[t] + Epv[t] + Erg3[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

 if LT[l] == 'PARKS AND RECREATIONAL':

 return Ewind[t] + Epv[t] + Erg4[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

 if LT[l] == 'GOVERNMENT AND INSTITUTIONAL':

 return Ewind[t] + Epv[t] + Erg5[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

 if LT[l] == 'RESIDENTIAL':

 return Ewind[t] + Epv[t] + Erg6[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

 if LT[l] == 'WATERBODY':

 return Ewind[t] + Epv[t] + Erg7[t] + Pd[t] + Gp[t] + Loss[t] >= Load_E[t] + Load_HP[t] +

Pc[t] + Gs[t]

model.Const_16 = pyo.Constraint(model.t,model.l, rule=Balance)

def Land_Selection(model,l):

 return sum(Bin[l] for l in model.l) == 1

181

model.Const_17 = pyo.Constraint(model.l,rule=Land_Selection)

def Turbine_Density(model,l):

 return Nrg <= sum(TD[l]*Bin[l] for l in model.l)

model.Const_18 = pyo.Constraint(model.l,rule=Turbine_Density)

def Loss_Constraint(model,t):

 return sum(Loss[t] for t in model.t) <= 0.001*sum(Load_E[t] + Load_HP[t] for t in model.t)

model.Const_19 = pyo.Constraint(model.t, rule=Loss_Constraint)

def Heat_Pump(model,t):

 return Chp >= maxhp

model.Const_20 = pyo.Constraint(model.t,rule=Heat_Pump)

**Objective Function

def objective_rule(model):

 return (Npv * (cpv + cc)*(1 + cOMpv / CRF)) + (Nwt * cwt * (1 + cOMwt / CRF)) + Nb * (cb

+ ci) + Ob * (

 sum((Pd[t] + Pc[t]) / CRF for t in model.t)) + (Mb * maxcd * Nb)*20.7743 + (RPC * Nb) *

CRFB + sum(

 (CGp[t] * Gp[t]) / CRF for t in model.t) - sum((CGs[t] * Gs[t]) / CRF for t in model.t)+(

 Nrg * crc * (1 + cOMwt / CRF)) + sum(((dis[l]*Ct) + Ci)*(1 + omT / CRF)*Bin[l] for l

in model.l) + sum(

 Cl[l]*La*Bin[l] for l in model.l)+sum(Loss[t]*Coeff[t] for t in

model.t)+sum(Gp[t]*eps*Teta for t in model.t)+(

 Chp*hpc*(1 + cOMhp / CRF)) - sum(Gas[t]*Cg for t in model.t)/CRF -

sum(Gas[t]*0.0391*0.8*0.74 for t in model.t)*CRFG

model.objective = pyo.Objective(rule=objective_rule, sense=pyo.minimize)

182

model.write('Opt_New.lp', io_options={'symbolic_solver_labels': True})

opt = SolverFactory('scipampl')

#opt = SolverFactory('gams')

#results = opt.solve(model, solver= 'dicopt', tee=True, add_options=['option optcr=0.2;','option

reslim=3600;'])

#results = opt.solve(model, solver= 'dicopt', tee=True,add_options=['option nlp=ipopt;'])

#results = opt.solve(model, solver= 'scip', tee=True, keepfiles=True, add_options=['option

optcr=3.56;','option reslim=200;'])

#results = opt.solve(model, solver= 'scip', tee=True, keepfiles=True, add_options=['option

reslim=100;'])

#results = opt.solve(model, solver= 'couenne', tee=True, keepfiles=True)

#results = opt.solve(model, solver= 'scip', tee=True)

results = opt.solve(model,tee=True)

Data_Load = pd.read_excel('Load.xlsx')

print(results)

print('objec Fu = ' , pyo.value(model.objective)*1.32, 'CAD')

print('Cost of energy (COE) = ', pyo.value(model.objective)*CRF/Data_Load['Load'].sum()*1.32,

'CAD/kWh')

print('Total Capital Cost = ' , pyo.value(model.Npv)*(cpv +

cc)+pyo.value(model.Nwt)*cwt+pyo.value(model.Nb)*(cb + ci)+

 pyo.value(model.Nrg)*crc + pyo.value(model.Chp)*hpc*1.32, 'CAD')

print('number of pv = ' , pyo.value(model.Npv))

print('number of Wt = ' , pyo.value(model.Nwt))

print('Battery Storage Capacity = ' , pyo.value(model.Nb), 'kWh')

183

print('number of Nrg = ' , pyo.value(model.Nrg))

print('Heat Pump Capacity = ' , pyo.value(model.Chp), 'kWh')

for l in model.l:

 if Bin[l].value!=0:

 print('Zone',l, 'is the selected for regional generation')

Gs_values = pd.DataFrame(list(Gs[:].value),columns=['Gs'])

Gp_values = pd.DataFrame(list(Gp[:].value),columns=['Gp'])

Pd_values = pd.DataFrame(list(Pd[:].value),columns=['Pd'])

Pc_values = pd.DataFrame(list(Pc[:].value),columns=['Pc'])

Eb_values = pd.DataFrame(list(Eb[:].value),columns=['Eb'])

EWind_values = pd.DataFrame(list(Ewind[:].value),columns=['EWind'])

EPV_values = pd.DataFrame(list(Epv[:].value),columns=['EPV'])

ESWind_values = pd.DataFrame(list(Eswind[:].value),columns=['ESWind'])

ESPV_values = pd.DataFrame(list(Espv[:].value),columns=['ESPV'])

Erg_values = pd.DataFrame(list(Erg1[:].value),columns=['Erg'])

Esrg_values = pd.DataFrame(list(Esrg1[:].value),columns=['Esrg'])

Unmet_Load = pd.DataFrame(list(Loss[:].value),columns=['Loss'])

Indexed_Result =

pd.concat([Gs_values,Gp_values,Pd_values,Pc_values,Eb_values,EWind_values,EPV_values,

 ESWind_values,ESPV_values,Erg_values,Esrg_values,Unmet_Load],axis=1)

plt.plot(Unmet_Load)

184

print('Renewable Penetration = ' ,

((np.array(EPV_values.sum()))+(np.array(Erg_values.sum()))+(np.array(EWind_values.sum())))

/(

(np.array(EPV_values.sum()))+(np.array(Erg_values.sum()))+(np.array(EWind_values.sum()))+

(np.array(Gp_values.sum()))))

print('Unmet Load = ',Unmet_Load.sum())

print('Number of days we have unmet load = ', 365 - (Unmet_Load==0).sum())

Indexed_Result.to_csv('Results_Local_New.csv')

SOC = (Eb_values/6000)*100

Date = pd.date_range('jan 01 2019', periods = 365, freq = 'D')

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()

ax1.plot(Date, data['Load_HP']+data['Load_E'], 'navy',label = 'Load Demand')

ax2.plot(Date, Grid_P, 'maroon',label = 'Purchase Price')

ax2.plot(Date, Grid_S, 'green',label = 'Sell Price')

ax2.set_ylim([0, 0.8])

ax1.set_xlabel('Date',fontsize=10)

ax1.set_ylabel('Power (kW)',fontsize=10)

ax2.set_ylabel('Price ($/kWh)',fontsize=10)

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax2.legend(lines + lines2, labels + labels2, loc='upper center',fontsize=10)

plt.show()

185

x = range(365)

y2=0

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()

ax1.fill_between(x, Erg_values.iloc[:,0],y2,facecolor='blue',label = 'Regional Wind',alpha=0.7)

ax1.fill_between(x, EPV_values.iloc[:,0].values,y2,facecolor='firebrick',label = 'PV Used

Power',alpha=0.7)

ax1.fill_between(x, EWind_values.iloc[:,0],y2,facecolor='indigo',label = 'Wind Used

Power',alpha=0.7)

ax1.fill_between(x, Pc_values.iloc[:,0],y2,facecolor='limegreen',label = 'Battery

Charge',alpha=0.7)

ax1.fill_between(x, Pd_values.iloc[:,0],y2,facecolor='slategrey',label = 'Battery

Discharge',alpha=0.7)

ax1.fill_between(x, ESWind_values.iloc[:,0],y2,facecolor='pink',label = 'Wind

Surplus',alpha=0.7)

ax1.fill_between(x, ESPV_values.iloc[:,0],y2,facecolor='green',label = 'PV Surplus',alpha=0.7)

ax1.fill_between(x, Esrg_values.iloc[:,0],y2,facecolor='olive',label = 'Regional Wind

Surplus',alpha=0.7)

ax1.fill_between(x, Gp_values.iloc[:,0],y2,facecolor='darkorange',label = 'Purchase from

Grid',alpha=0.7)

ax1.fill_between(x, Gs_values.iloc[:,0],y2,facecolor='yellow',label = 'Sell to Grid',alpha=0.7)

ax1.fill_between(x, Unmet_Load.iloc[:,0],y2,facecolor='red',label = 'Unmet Load',alpha=0.7)

ax1.plot(x, data.iloc[:,2], 'black',label = 'Demand',linestyle = 'dashed')

ax2.plot(x, SOC.iloc[:,0], 'black',label = 'SOC')

ax2.set_ylim([0, 110])

186

ax1.set_xlabel('Hours',fontsize=13)

ax1.set_ylabel('Power Consumption (kWh)',fontsize=13)

ax2.set_ylabel('State of Charge of the Battery %',fontsize=13)

ax2.tick_params(axis='both', which='major', labelsize=12)

ax1.tick_params(axis='both', which='major', labelsize=12)

ax2.legend(loc='upper right',fontsize=12)

ax1.legend(ncol=6,bbox_to_anchor=(0.5,1.08),loc='center',fontsize=12)

plt.show()

Grid Trade-off

plt.plot(Gp_values, color = 'blue',label = 'Purchase from Grid')

plt.plot(Gs_values, color = 'darkorange',label = 'Sell to Grid')

plt.xlabel('Time(hr)',fontsize=13)

plt.ylabel('Energy (kWh)',fontsize=13)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.tick_params(axis='both', which='major', labelsize=12)

plt.legend(ncol=2,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=12)

plt.show()

Battery Charge and Discharge Power

plt.plot(Pc_values, color = 'red',label = 'Battery Charging')

plt.plot(Pd_values, color = 'blue',label = 'Battery Discharging')

plt.plot(Eb_values, color = 'green',label = 'SOC')

plt.xlabel('Time(hr)')

plt.ylabel('Energy (kWh)')

187

plt.legend()

plt.show()

Resilience Oriented Optimal Dispatch Operation

import pyomo.environ as pyo

from pyomo.opt import SolverFactory

import pandas as pd

import math

import numpy as np

import matplotlib.pyplot as plt

!pip install cplex -q

data = pd.read_excel("Input_Dispatch_OffGrid.xlsx", sheet_name = 'Summer')

model = pyo.ConcreteModel()

Sets and Parameters

model.t = pyo.RangeSet(48)

model.Load = pyo.Param(model.t, initialize=dict(zip(data.time, data.Load)))

Load = model.Load

model.Wind = pyo.Param(model.t, initialize=dict(zip(data.time, data.Wind)))

Wind = model.Wind

model.PV = pyo.Param(model.t, initialize=dict(zip(data.time, data.PV)))

PV = model.PV

lb={1:0.25022,

2:0.24969,3:0.25000,4:0.25015,5:0.24837,6:0.24447,7:0.24270,8:0.24130,9:0.59211,10:0.59218

,11:0.59205,12:0.59210,13:0.59205,14:0.59211,15:0.59185,16:0.59203,17:0.59197,18:0.59208,1

188

9:0.59212,20:0.59188,21:0.59118,22:0.24805,23:0.25060,24:0.25185,25:0.25164,

26:0.25149,27:0.25206,28:0.25241,29:0.25252,30:0.25101,31:0.25302,32:0.25225,33:0.59047,3

4:0.59011,35:0.59059,36:0.59070,37:0.59061,

38:0.59053,39:0.59073,40:0.59061,41:0.59060,42:0.59069,43:0.59110,44:0.59121,45:0.59109,4

6:0.24575,47:0.24677,48:0.24519}

ub={1:1,2:1,3:1,4:1,5:1,6:1,7:1,8:1,9:1,10:1,11:1,12:1,13:1,14:1,15:1,16:1,17:1,18:1,19:1,20:1,2

1:1,22:1,23:1,24:1,25:1,26:1,27:1,28:1,

29:1,30:1,31:1,32:1,33:1,34:1,35:1,36:1,37:1,38:1,39:1,40:1,41:1,42:1,43:1,44:1,45:1,46:1,47:1,

48:1}

def fb(model, i):

 return (lb[i], ub[i])

model.eta_c = pyo.Param(initialize=0.95)

model.eta_d = pyo.Param(initialize=0.90)

model.RPC = pyo.Param(initialize=156)

model.Deg = pyo.Param(initialize=0.074)

model.SOC0 = pyo.Param(initialize=8000)

model.CCF = pyo.Param(initialize=0.1)

model.Ebamx = pyo.Param(initialize=9375)

model.maxcd = pyo.Param(initialize=0.3)

model.Coeff = pyo.Param(initialize=0.17)

model.SOCmin = pyo.Param(initialize= 937)

RPC = model.RPC

eta_c = model.eta_c

eta_d = model.eta_d

189

Deg = model.Deg

SOC0 = model.SOC0

CCF = model.CCF

Ebmax = model.Ebamx

maxcd = model.maxcd

Coeff = model.Coeff

SOCmin =model.SOCmin

model.Eb = pyo.Var(model.t, domain=pyo.NonNegativeReals, bounds=(0, 9375))

Eb = model.Eb

model.Pc = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

Pc = model.Pc

model.Pd = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

Pd = model.Pd

model.EWind = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

EWind = model.EWind

model.ESWind = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

ESWind = model.ESWind

model.EPV = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

EPV = model.EPV

model.ESPV = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

ESPV = model.ESPV

model.Loss = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=(0, None))

Loss = model.Loss

190

model.teta = pyo.Var(model.t, within=pyo.Binary)

teta = model.teta

model.eta = pyo.Var(model.t, within=pyo.Binary)

eta = model.eta

model.C = pyo.Var(model.t,domain=pyo.NonNegativeReals, bounds=fb)

C = model.C

def storage1(model, t):

 if t==1:

 return Eb[t] == SOC0

 else:

 return Eb[t] == Eb[t - 1] + Pc[t] * eta_c - Pd[t] / eta_d

model.Const_1 = pyo.Constraint(model.t, rule=storage1)

def storage2(model, t):

 return Pc[t] * eta_c + Pd[t] / eta_d <= maxcd * Ebmax

model.Const_2 = pyo.Constraint(model.t, rule=storage2)

def storage3(model, t):

 return Pc[t] <= Ebmax * eta[t]

model.Const_3 = pyo.Constraint(model.t, rule=storage3)

def storage4(model, t):

 return Pd[t] <= Ebmax * teta[t]

model.Const_4 = pyo.Constraint(model.t, rule=storage4)

def storage5(model, t):

 return eta[t] + teta[t] <= 1

191

model.Const_5 = pyo.Constraint(model.t, rule=storage5)

def storage6(model, t):

 return Eb[t] >= SOCmin

model.Const_6 = pyo.Constraint(model.t, rule=storage6)

def Surplus1(model, t):

 return Wind[t] == EWind[t]+ESWind[t]

model.Const_7 = pyo.Constraint(model.t, rule=Surplus1)

def Surplus2(model, t):

 return PV[t] == EPV[t]+ESPV[t]

model.Const_8 = pyo.Constraint(model.t, rule=Surplus2)

def Balance(model, t):

 return EWind[t] + EPV[t] + Pd[t] + Loss[t] == C[t]*Load[t] + Pc[t]

model.Const_9 = pyo.Constraint(model.t, rule=Balance)

**Objective Function

def objective_rule(model):

 return sum(Deg*Pc[t] for t in model.t) + sum(Deg*Pd[t] for t in model.t) + sum(CCF*ESPV[t]

for t in model.t) + sum(

 CCF*ESWind[t] for t in model.t) + sum(Loss[t]*Coeff for t in model.t)

Solving and Results

model.objective = pyo.Objective(rule=objective_rule, sense=pyo.minimize)

model.write('Opt_New.lp')

opt = SolverFactory('cplex_direct')

results = opt.solve(model, tee=True)

192

print(results)

print('obec Fu = ' , pyo.value(model.objective), '$')

EWind_values = pd.DataFrame(list(EWind[:].value),columns=['Ewind'])

EPV_values = pd.DataFrame(list(EPV[:].value),columns=['EPV'])

Pd_values = pd.DataFrame(list(Pd[:].value),columns=['Pd'])

Pc_values = pd.DataFrame(list(Pc[:].value),columns=['Pc'])

Eb_values = pd.DataFrame(list(Eb[:].value),columns=['Eb'])

ESWind = pd.DataFrame(list(ESWind[:].value),columns=['ESWind'])

ESPV = pd.DataFrame(list(ESPV[:].value),columns=['ESPV'])

Loss = pd.DataFrame(list(Loss[:].value),columns=['Loss'])

C = pd.DataFrame(list(C[:].value),columns=['C'])

Indexed_Result =

pd.concat([EWind_values,EPV_values,Pd_values,Pc_values,Eb_values,ESWind,ESPV,Loss],axi

s=1)

#Indexed_Result.to_excel('Summer_Actual.xlsx')

#Indexed_Result.to_excel('Summer_Optimal.xlsx')

SOC = (Eb_values/9375.303)*100

x = range(48)

y2=0

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()

ax1.fill_between(x, EPV_values.iloc[:,0],y2,facecolor='firebrick',label = 'PV Used

Power',alpha=0.7)

193

ax1.fill_between(x, Pd_values.iloc[:,0],y2,facecolor='indigo',label = 'Battery

Discharging',alpha=0.7)

ax1.fill_between(x, Pc_values.iloc[:,0],y2,facecolor='limegreen',label = 'Battery

Charging',alpha=0.7)

ax1.fill_between(x, EWind_values.iloc[:,0],y2,facecolor='darkorange',label = 'Wind Used

Power',alpha=0.7)

ax1.fill_between(x, ESWind.iloc[:,0],y2,facecolor='slategrey',label = 'Wind Surplus',alpha=0.7)

ax1.fill_between(x, ESPV.iloc[:,0],y2,facecolor='blue',label = 'PV Surplus',alpha=0.7)

ax1.plot(x, data.iloc[:,1], 'black',label = 'Demand',linestyle = 'dashed')

ax2.plot(x, SOC.iloc[:,:], 'black',label = 'SOC')

ax2.set_ylim([0, 110])

ax1.set_xlabel('Hours')

ax1.set_ylabel('Power Consumption (kWh)')

ax2.set_ylabel('State of Charge of the Battery %')

ax2.legend(loc='upper right')

ax1.legend(ncol=9,bbox_to_anchor=(0.5,1.05),loc='center',fontsize=8)

plt.show()

Sensetivity on Loss Coeff

Cost1 = np.repeat(675,48)

Cost2 = np.repeat(1242,48)

Cost3 = np.repeat(1569,48)

Cost4 = np.repeat(1659,48)

Cost5 = np.repeat(1938,48)

194

Loss_fun = pd.read_excel('Loss.xlsx',sheet_name = 'Summer')

Loss_fun = Loss_fun.iloc[:48,0:5]

x = range(48)

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()

ax1.plot(x, Loss_fun.iloc[:,0], 'maroon',label = 'Loss for Coeff=0.01', marker= 'o')

ax1.plot(x, Loss_fun.iloc[:,1], 'green',label = 'Loss for Coeff=0.05',marker= '^')

ax1.plot(x, Loss_fun.iloc[:,2], 'navy',label = 'Loss for Coeff=0.08',marker= 'v')

ax1.plot(x, Loss_fun.iloc[:,3], 'black',label = 'Loss for Coeff=0.1',marker= 's')

ax1.plot(x, Loss_fun.iloc[:,4], 'red',label = 'Loss for Coeff=0.17',marker= 'P')

ax2.plot(x, Cost1, 'maroon',label = 'Cost for Coeff=0.01')

ax2.plot(x, Cost2, 'green',label = 'Cost for Coeff=0.05')

ax2.plot(x, Cost3, 'navy',label = 'Cost for Coeff=0.08')

ax2.plot(x, Cost4, 'black',label = 'Cost for Coeff=0.1')

ax2.plot(x, Cost5, 'red',label = 'Cost for Coeff=0.17')

ax2.set_ylim([500, 2500])

ax1.set_xlabel('Hours')

ax1.set_ylabel('Loss (kWh)')

ax2.set_ylabel('Operating Cost($)')

#ax2.legend(bbox_to_anchor=(0.9,1.08),loc='center',fontsize=8)

ax2.legend(ncol=6,bbox_to_anchor=(0.5,1.04),loc='center',fontsize=8)

ax1.legend(ncol=6,bbox_to_anchor=(0.5,1.09),loc='center',fontsize=8)

plt.show()

195

Load_N = pd.DataFrame(data['Load'])

Load_Optimal = pd.DataFrame(Load_N.values*C.values, columns=Load_N.columns,

index=Load_N.index)

C_Load = pd.DataFrame(data['C_Load'])

plt.plot(x, C_Load, 'red', label = 'Critical Load Demand',marker= 's')

plt.plot(x, Load_N, 'navy', label = 'Actual Load Demand', marker= 'o')

plt.plot(x, Load_Optimal, 'forestgreen', label = 'Covered Load Demand',marker= '^')

plt.xlabel('Hours')

plt.ylabel('Load Demand (kW)')

plt.legend(ncol=3,bbox_to_anchor=(0.5,1.07),loc='center',fontsize=8)

plt.show()

Mapping Model

import numpy as np

import pandas as pd

import geopandas

from shapely import geometry as sg

from itertools import product

import math

def set_grid(gdf, size):

 """

 Args:

 gdf: input geo dataframe (of the circle)

 size: the square size in meters

196

 Return:

 the grid in 4326

 proj_gdf = gdf.to_crs(3857)

 aoi_bb = sg.box(*proj_gdf.total_bounds)

 min_x, min_y, max_x, max_y = aoi_bb.bounds

 lon = np.concatenate([np.arange(min_x, max_x, size), [max_x]])

 lat = np.concatenate([np.arange(min_y, max_y, size), [max_y]])

 squares = []

 for ix, iy in product(range(len(lon) - 1), range(len(lat) - 1)):

 square = sg.box(lon[ix], lat[iy], lon[ix + 1], lat[iy + 1])

 squares.append(square)

 # create a buffer grid in lat-long

 grid = geopandas.GeoDataFrame({"geometry": squares}, crs="EPSG:3857")

 grid = grid.to_crs(4326)

 return grid, squares

def updated_grid(res, r, x, squares):

 '''

 r and x are in km

 squares is the same as in the previous definition

 '''

 res_complete = [0.0] * int((round(2*r/x)-len(res))/2)+res+[0.0] * int((round(2*r/x)-len(res))/2)

 start_loop = [(round(2*r/x)-k)/2 if k!=0 else 0.0 for k in res_complete]

197

 start_loop_real = [int(k+n*20) if k!=0 else 0 for n, k in enumerate(start_loop)] #(20-

math.floor(k/2))

 end_loop_real = [int(z+ res_complete[w]) for w, z in enumerate(start_loop_real)]

 select_squares = []

 for ix in range(len(start_loop_real)):

 select_squares.append(squares[start_loop_real[ix]:end_loop_real[ix]])

 # print(len(squares[s[ix]:e[ix]]))

 select_squares = [tt for r in select_squares for tt in r]

 grid_3857 = geopandas.GeoDataFrame({"geometry": select_squares}, crs="EPSG:3857")

 grid_3857_centroid = grid_3857.centroid

 grid = grid_3857.to_crs(4326)

 grid_centroid = grid_3857_centroid.to_crs(4326)

 return grid, grid_centroid, grid_3857

def grid_land_type(Base_map, square_map):

 land_type = []

 for x in range(len(square_map.geometry.values)):

 ref_gdf = geopandas.GeoDataFrame({"geometry":square_map.iloc[x,:].values},

crs="EPSG:4326")

 ex_data_clip = geopandas.clip(Base_map, ref_gdf)

 ex_data_clip = ex_data_clip.to_crs(3857)

 land_type.append(ex_data_clip[ex_data_clip.area ==

max(ex_data_clip.area)]._category.values[0])

198

 return land_type

def clean_up_grid(Circle_map, grid_map):

 clips_df =[]

 square_clip = []

 for x in range(len(grid_map)):

 grid_1 = geopandas.GeoDataFrame({"geometry":grid_map.iloc[x,:].values},

crs="EPSG:4326")

 df_clip =geopandas.clip(Circle_map, grid_1)

 if df_clip.empty==False:

 if df_clip.is_empty[0]==False:

 clips_df.append(df_clip)

print((df_clip.to_crs(3857).area/grid_1.to_crs(3857).area)[0]*100)

 if (100*(df_clip.to_crs(3857).area/grid_1.to_crs(3857).area)[0])>=55:

 square_clip.append(grid_1)

 else:

 pass

 return clips_df, square_clip

def distance(df1, df2):

 df_distance=df1.to_crs("EPSG:3857").geometry.apply(lambdag:

df2.to_crs("EPSG:3857").distance(g))

 if len(df2)==1:

 df_distance = df_distance.rename(columns={0: "Distances"})

 return df_distance

199

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import geopandas

import gurobipy as gp

from gurobipy import GRB

from shapely.geometry import Point

from shapely import geometry as sg

from itertools import product

import math

from geopandas import GeoDataFrame

import geopandas as gpd

resf1 = "57331/dmti_landcover_2021_s_poly.shp"

Land_1 = geopandas.read_file(resf1)

res1 = "57332/ppat_affect_terri_2020_s_poly.shp"

Land_2= geopandas.read_file(res1)

fp3 = "canvec_50K_QC_Res_MGT_shp/canvec_50K_QC_Res_MGT/power_line_1.shp"

pwline_df = geopandas.read_file(fp3)

fp1 =

"canvec_50K_QC_Res_MGT_shp/canvec_50K_QC_Res_MGT/transformer_station_0.shp"

tstation_df = geopandas.read_file(fp1)

200

pwline_df = pwline_df.to_crs(epsg=4326)

Land_C2 = pd.concat([Land_2.iloc[:319,],Land_2.iloc[323:,]]).reset_index(drop=True) #319-322

Land_C1 = pd.concat([Land_1.iloc[:280,],Land_1.iloc[283:,]]).reset_index(drop=True)

rad =20

side =4

#Circle geo information

df = pd.DataFrame(

 {

 'lat':[45.5],

 'lon':[-73.6],

 'rad':[rad*1000]

 }

)

gdf = geopandas.GeoDataFrame(

 df, geometry=geopandas.points_from_xy(df.lon, df.lat), crs="epsg:4326")

gdf_centre = gdf.copy()

gdf = gdf.to_crs('epsg:3857') #or 3797 or 3347

gdf['geometry'] = gdf.geometry.buffer(df.rad)

gdf=gdf.to_crs('epsg:4326')

from Square_grid_func_Updated import

set_grid,updated_grid,grid_land_type,clean_up_grid,distance

grid, squares =set_grid(gdf, side*1000)

#grid_update, grid_update_centroid, grid_update_3857 =updated_grid(res, rad, side, squares)

201

clips_df, square_clip = clean_up_grid(gdf,grid)

land_array=grid_land_type(Land_C1, pd.concat(square_clip, ignore_index=True)) # When

change to Montreal change it to C1

griddf = pd.concat(square_clip, ignore_index=True)

fig, ax = plt.subplots(1, 1, figsize=(10,10))

Land_C2.plot(ax=ax, column = "_theme_pro",cmap="viridis", lw=0.7, legend_kwds={'loc':

'lower right','bbox_to_anchor':(1.28, 0.75),'title':"Outside of Greater Montreal"})

leg1 = ax.get_legend()

#leg1.set_title("First graph legend")

Land_C1.plot(ax=ax, column = "_category",cmap="bone", lw=0.7,legend=True,

legend_kwds={'loc': 'lower left','bbox_to_anchor':(1.03, 0.55),'title':"Greater Montreal"})

pwline_df.plot(ax = ax, color='red', linewidth=2*pwline_df['numli'])

tstation_df.plot(ax = ax, color='red')

gdf.plot(ax=ax, label = "Circle",edgecolor="green", facecolor="None", lw=2, zorder=12)

#grid_update.plot(ax=ax, edgecolor="red", facecolor="None", label="Square box", zorder=11)

for y in square_clip:

 y.plot(ax=ax, edgecolor="black", facecolor="None",zorder=11)

grid.plot(ax=ax, edgecolor="black")

gdf.geom.plot(ax=ax, label = "Circle",edgecolor="green", facecolor="None", lw=2, zorder=11)

gdf.geometry.plot(ax=ax, label = "Centre", color="red",zorder=11)

gdf_centre.plot(ax=ax)

test_gdf1 = geopandas.GeoDataFrame({"geometry":griddf.iloc[62,:].values}, crs="EPSG:4326")

Bottom to top, left to right (Start from left)

202

test_gdf1.plot(ax=ax, edgecolor="yellow", facecolor="None", lw=3, zorder=63)

ax.set_xlim(-75, -72)

ax.set_ylim(45, 46.5)

ax.add_artist(leg1)

plt.show()

sq_centroid_df = pd.concat(square_clip, ignore_index=True).to_crs(3857).centroid.to_crs(4326)

dist= distance(sq_centroid_df, gdf_centre)

val3 = distance(tstation_df, sq_centroid_df)

Selecting the nearest transformer to each square

dist2_M = val3.min(axis=0)

List of Land Cost

List_LC=[]

List of Turbine Density

List_TD=[]

LC = [5,40,30,60,80,25,800]

TD = [100,10,20,40,60,20,10]

land_array = np.array(land_array)

for x in range (len(land_array)):

 if land_array[x] == 'OPEN AREA':

 List_LC.append(LC[0])

 List_TD.append(TD[0])

 if land_array[x] == 'COMMERCIAL':

 List_LC.append(LC[1])

203

 List_TD.append(TD[1])

 if land_array[x] == 'GOVERNMENT AND INSTITUTIONAL':

 List_LC.append(LC[2])

 List_TD.append(TD[1])

 if land_array[x] == 'PARKS AND RECREATIONAL':

 List_LC.append(LC[3])

 List_TD.append(TD[1])

 if land_array[x] == 'RESIDENTIAL':

 List_LC.append(LC[4])

 List_TD.append(TD[1])

 if land_array[x] == 'RESOURCE AND INDUSTRIAL':

 List_LC.append(LC[5])

 List_TD.append(TD[1])

 if land_array[x] == 'WATERBODY':

 List_LC.append(LC[6])

 List_TD.append(TD[1])

204

Appendix Ⅱ: Sample Data
NASA Data Portal

205

Sample Downloaded Data from NASA Portal

206

Sample Measured Power Consumption Data Received from Concordia’s Facility Management

	Chapter 1: Introduction
	1.1. Background and Motivation
	1.2. Problem Statement and Research Questions
	1.3. Research Objectives
	1.4. Thesis Structure

	Chapter 2: Literature Review
	2.1. Optimum Configuration and Sizing
	2.2. Energy System’s Operation
	2.3. Removing Uncertainties
	2.3.1. Load Forecasting
	2.3.2. Wind Speed Forecasting
	2.3.3. Solar Irradiance Forecasting

	2.4. Operation and Resiliency

	Chapter 3: Methodology
	3.1. Introduction
	3.2. PV Model
	3.3. Wind Farm Model
	3.4. Local and Regional Generation Design
	3.4.1. Local Design optimization model
	3.4.2. Mapping model
	3.4.3. Regional and Local Design Optimization Model
	3.4.4. Economic Evaluation
	3.4.5. Heat generation and gas consumption

	3.5. Optimum Operation Scheduling
	3.5.1. Day ahead forecast methods
	3.5.1.1. SARIMAX
	3.5.1.2. LSTM
	3.5.1.3. Weibull distribution
	3.5.1.4. NWP Model
	3.5.1.5. Hybrid Model
	3.5.1.6. Hyperparameter Optimization
	3.5.1.7. Preprocessing and Evaluation Metrics
	3.5.2. Critical load and resiliency
	3.5.2.1. Optimization model
	3.5.3. Grid-Connected Optimal Operation

	Chapter 4: Case Study
	4.1. Building’s General Information
	4.2. Location’s General Information
	4.3. Critical Load
	4.4. Electricity Tariff

	Chapter 5: Results and Discussion
	5.1. Implementation and Utilized Tools
	5.2. PV Power Output
	5.3. Wind Power Output
	5.4. Local Generation Design
	5.5. Heating System
	5.6. Regional Generation Design
	5.6.1. Electric Boiler
	5.6.2. Heat Pump

	5.7. Proposed Tariff
	5.8. Environmental assessment
	5.9. Renewables and Power Consumption Uncertainties
	5.9.1. Power Consumption Forecasting
	5.9.2. Wind Speed Forecasting
	5.9.3. Solar Irradiance Forecasting

	5.10. Optimum Operation
	5.10.1. Grid-Connected Optimal Operation
	5.10.2. Resilience-Oriented Off-Grid Operation

	Chapter 6: Conclusion and Future Suggestions
	6.1. Summary
	6.2. Research Contributions
	6.3. Directions for Future Research

	Bibliography
	Appendices
	Appendix Ⅰ: Python Codes
	Appendix Ⅱ: Sample Data

