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ABSTRACT 

 

Assessing the Impact of Gold Mining on Forest Cover in the Surinamese Amazon Rainforest 

from 1997 – 2019: A Semi-Automated Satellite Based Approach. 

 

Yann Quash 

 

The Amazon rainforest, as a biodiversity hotspot and regulator of the earths climate, is one of the most 

important ecosystems on earth, but has been facing extensive deforestation for decades due to urban 

growth, agricultural expansion, logging and mining. Mining (and the use of remote sensing methods to 

detect it) has been relatively understudied in the Amazon compared to the other drivers up until a decade 

ago, highlighting the importance of current research. The objectives of this study are: To quantify the 

increase in industrial and artisanal mining and its impact on forest cover in the northern Amazonian 

country of Suriname between 1997 and 2019; Evaluate the impact of this expansion on the structure 

(fragmentation) and health (phenology) of the forest; and improve existing remote sensing techniques 

for mining detection through the development of a pioneer method based on cloud processing and semi-

automated mining reclassification. The cloud processing software known as Google Earth Engine (GEE) 

was used for the initial land use land cover classification of the study area. Landsat 5 and 8 images and 

the classification and regression trees (C.A.R.T) algorithm were used in this step. The resulting classified 

maps were fed into the semi-automated re-classification model developed for this study, producing final 

re-classified output maps, which were used to analyse the expansion of mining and its associated impacts 

on forest fragmentation and phenology.  The proposed method is the first documented method which 

combines cloud processing with a semi-automated re-classification model, providing a technologically 

advanced approach capable of rapid and efficient detection of mines. This approach resulted in an 89.5% 

accuracy of mining detection, and the combination of speed, efficiency, and highly accurate detection 

outperformed many of the other currently documented methods for mining detection in the Amazon.  The 

results highlighted that mining increased from 69.4km² in 1997 to 431.6km² in 2019, an increase of 522% 

over 22 years. This growth led directly to 351.9km² of forest loss, 83% of which was due to artisanal 

mining. This loss of forest led to a 122.8km² reduction in the effective mesh size for the artisanal mine 
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sub-area, compared to a decrease of 83km² for the Industrial mine sub-area. Mining also caused a 

decrease in the health of the surrounding forest, with the decrease in peak greenness being more 

pronounced for artisanal mining compared to industrial mining. Recommendations for future research 

include exploring the use of higher resolution imagery such as Sentinel for better results, as well as the 

use of microwave data in the classification to combat the issue of extensive cloud cover in the Amazon. 

The issue of overclassification present in the proposed method can potentially be combated by exploring 

combinations of different classification algorithms with the reclassification model.   
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1. INTRODUCTION 

The Amazon rainforest is one of the most biodiverse regions on earth and plays a key role in ecological 

and climatic processes on both local and global scales (Sanchez-Cuervo et al.. 2020). However, over the 

last few decades, large areas of the Amazon have been cleared due to various drivers such as state-driven 

urban growth and highway construction (Hargrave and Kis-Katos 2013), logging (Asner 2005) and 

agricultural expansion (Fehlenberg et al.. 2017). Mining, both industrial and artisanal, is another major 

driver of land cover change in the Amazon that leads to detrimental impacts on forest cover and 

biodiversity. Early research however focused almost exclusively on the impacts of land cover change 

due to agricultural expansion, with the monitoring of the land cover changes due to mining having been 

given relatively little attention (Almeida-Filho 2002). It is only within the last decade that research began 

to focus on the use of remote sensing methods to map and analyse the growth of mining areas and its 

impact on forest cover. Research on this topic began with early papers by Peterson and Heemskerk (2001) 

and Almeida-Filho (2002), but only gained prominence as of 2013 when research began to focus in more 

detail on land cover change due to mining (Asner 2013; Elmes et al. 2014; Asner and Tupayachi 2016; 

Sonter et al. 2017; Caballero-Espero et al. 2018; Lobo et al. 2018; Nicolau et al. 2019).  

Most previous studies have focused on the western and southern parts of the Amazon, while the northern 

Amazon has been largely ignored. The only studies on this area were by Peterson and Heemskerk (2001), 

and Rahm (2015). This research will therefore focus on the northern Amazonian country of Suriname, 

which is plagued by a plethora of gold mining operations at a variety of scales. While a very small area 

of Bauxite mining is present near the capital city, gold mining is currently the major mining activity 

which dominates the landscape in Suriname. According to Kioe-A-Sen et al. (2016), since the 1800s, 

gold has always been a major economic asset in Suriname and was extracted primarily by small scale 

artisanal mines concentrated in the greenstone belt in the northeast of the country. More recently, there 

has been an increasing development of large-scale industrial gold mines such as the Rosabel and Merian 

mines. The Rosebel mine (initially operated by Canadian company Iam Gold, recently sold to Chinese 

company Zijin Mining), has been in operation since 2000 and as of 2013, was responsible for 46% of 

Suriname’s entire gold production, while the Merian mine first began production in 2016 and is owned 

and operated by the American company Newmont Mining. The development of these industrial mines 

since 2000, in combination with the relative lack of existing studies in the area makes research in this 

region even more pressing and important. 
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In Suriname, while industrial gold mining is prominent, there is another major mining type of gold mining 

known as artisanal and small-scale gold mining, or ASGM, which since 1998, has been growing in the 

Amazon region at an alarming rate (Caballero Espejo et al. 2018). Industrial mining refers to mining 

conducted on a large scale, where mines are owned and operated by multinational companies with deep 

ties to both the global financial and international mineral markets (Kemp and Owen 2019). ASGM on 

the other hand, can be defined as “mining by individuals, groups or co-operatives with minimal or no 

mechanisation, often in the informal sector of the market” (Hentschel et al. 2002). The majority of ASGM 

mining production in Suriname uses modern machinery and hydraulicking (process through which water 

is used to loosen and fracture the soil to remove the top layers of sand and clay) and focuses on alluvial 

gold deposits. These ASGM sites flourish along rivers in the Amazon forest and cause enormous 

environmental impacts including the alteration of river morphology, deforestation, biodiversity and 

landscape degradation, and widespread environmental pollution (Castello and Macedo 2016). 

While these issues make the need for current research critical, this need will become even more crucial 

in the future as mining activities in the Amazon are expected to expand in the near future. According to 

Galbraith and Kalamandeen (2020), the current economic crisis caused by the COVID 19 pandemic is 

expected to drive gold prices up (they have already increased by 25% in 2020 compared to 2019), due to 

the role of gold as a perceived economic stabilizer. This will likely incentivize both small scale and 

industrial mining activities to expand, justifying the continued need for research on the impacts of mining 

on forest cover and the environment. 

The goal of this study is therefore to add to the existing body of work on the impacts of mining on forests 

and raise awareness on an issue that has often been overlooked in the face of other causes of deforestation 

in the Amazon. This study aims to develop a new remote sensing approach to improve the detection and 

mapping of mines, to analyse how mining has progressed over the last two decades and how this has in 

turn impacted forest quantity and quality.  
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2. LITERATURE REVIEW 

To understand the context and significance of this research, this literature review compiles peer reviewed 

articles from established scientific databases such as Web of Science, seeking to answer the 4 review 

questions of: Why is the Amazon rainforest important? What are the drivers of land cover change in the 

Amazon? How has mining impacted forest cover? What are the remote sensing methods used to study 

the impacts of mining on forest cover quantity and quality? In order to answer these questions, the 

following topics will be discussed (Figure 1).   
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Figure 1: Literature Review map showing the papers used for each topic in the Literature Review 
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2.1 IMPORTANCE OF THE AMAZON 
 

Tropical rainforests, also known as jungles, are among the most complex ecosystems on earth. They are 

the natural climax vegetation of the tropical zone and are located within 23.5⁰ of the equator, but thrive 

particularly in the lower latitudes within 10⁰ of the equator. In the tropics, they have been the most 

dominant form of vegetation for millions of years and boast a diversity of species that is unrivalled 

anywhere on earth (Park 2002). The Amazon rainforest is a tropical rainforest that spans across the 

majority of northern South America and is the largest rainforest on the planet. The Amazon rainforest 

encompasses around 7 million square kilometres, over two thirds of which are located in Brazil, making 

it the biggest holder of the world’s largest remaining tropical rainforest (Barbosa 2000).  

The Amazon rainforest, often referred to as the ‘lungs of the earth’ is the most important tropical 

rainforest on the planet due to the multitude of benefits it provides to our climate, biodiversity and water 

supply. Tropical rainforests such as the Amazon play a key part in the world’s climate system due to 

their ability to store large stocks of carbon and regulate carbon, energy and water fluxes (Soares-Filho et 

al. 2010). Forest's role in the terrestrial carbon cycle can be divided into two major fluxes. The uptake 

flux, known as net primary production refers to carbon sequestration by plants through the processes of 

photosynthesis.  The opposing flux is the release of carbon to the atmosphere through plant and soil 

respiration (by microbes that consume dead organic matter). The difference between these two large 

fluxes is the net land-atmosphere flux, known as the net biome production, which is currently responsible 

for sequestrating 30% of global anthropogenic emissions (Ahlstrom et al. 2012). The importance of 

tropical rainforests as a carbon sink therefore cannot be understated. This is reinforced in a study done 

by Soares Filho et al. (2010), who sought to estimate the role of protected areas (PAs) in the Amazon 

rainforest in reducing carbon fluxes to the atmosphere. By analysing 595 Brazilian Amazon PAs, they 

found that the expansion of PAs in Brazil were responsible for 37% of the region’s reduction in 

deforestation between 2004 and 2006. Most importantly, these PAs, if fully implemented, can potentially 

avoid 8.0 ± 2.8 Pg of carbon emissions by 2050 (Soares-Filho et al. 2010).   

The importance of the Amazon as a carbon sink and the subsequent benefits it provides to our climate 

hinges strongly upon the underlying mechanisms driving monthly changes in carbon fluxes. These 

mechanisms, known as vegetation phenology, is part of the metabolic rhythm of the Amazon rainforest 

and is a crucial component of terrestrial biogeochemical cycles (Manoli et al. 2018).  Phenology can be 

defined as a sequence of seasonal changes in leaf development, area, and physiology, which drive 
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seasonal variations in land-atmospheric fluxes such as photosynthesis and respiration due to the 

dependence of these fluxes on leaf quality, quantity and other important leaf characteristics (Pinage et al. 

2020).  The phenological pattern of the Amazon rainforest has been well researched, with the Amazon 

displaying a surge in leaf production and ‘greening’ of the forest canopy towards the end of the dry 

season in October and November (Girardin et al. 2016; Manoli et al. 2018; Pinage et al. 2020). This 

canopy ‘greenness’ can be measured using satellite-derived spectral vegetation indices (VIs). The 

enhanced vegetation index (EVI), for example, is associated with an overall increase in net ecosystem 

productivity, net primary production (NPP) and evapotranspiration (Kim et al. 2012; Girardin et al. 

2016).  According to Manoli et al. (2018), while this ‘greenup’ and associated increased carbon uptake 

is dependent on hydro-climatic (temperature and precipitation) variations, the role of phenology and leaf 

mechanisms is crucial and cannot be understated. Their study used camera observations and leaf 

measurements to show that at the end of the dry season there is a “synchronization between dry season 

litterfall and the subsequent onset of new, greener leaves which have a higher photosynthetic capacity 

and light use efficiency” (Manoli et al. 2018, pg. 1910).  This is corroborated by Girardin et al. (2016), 

who added that this onset of new leaves or ‘leaf flush’ at the end of the dry season and the associated 

change in photosynthetic capacity is the main driver of the greenup cycle and increased carbon uptake at 

this time of year in the Amazon rainforest.  

In addition to its importance as a carbon sink and regulator of energy fluxes, the Amazon is also important 

for the wide array of biodiversity it supports. According to Lopez-Quintero et al. (2012, pg. 2222), “The 

Amazon Rainforest is arguably the most species rich terrestrial ecosystem in the world”. In fact, the 

Amazon Rainforest is believed to host more than 50% of the worlds plant and animal species, the majority 

of which are still uncatalogued (Barbosa 2000). The exact number of plant species in the Amazon is a 

long standing question that to this date remains unresolved, with some studies estimating that the region 

holds up to 50,000 plant species (Cardoso et al. 2017), while others place this number slightly higher at 

60 000 plant species (Lopez-Quintero et al. 2012).  Of this large number of plant species, it is estimated 

that 25000 to 30000 are endemic species (Rodrigues 2006). The Amazon is home to a vast number of 

large tree species, with an estimated 48% of all tree species in the Amazon reaching a stem diameter of 

>10 cm at breast height. Of the seed plant species in the Amazon, 52% is comprised of shrubs, small 

trees, vines and herbs, with the Leguminosae family being the most species rich (Cardoso et al. 2017). 

According to Albert et al. (2011), the aquatic biodiversity of the region is equally impressive, as the 

Amazon is home to more than 5,600 species, which includes the majority of the worlds freshwater fishes. 

In fact, over 10% of all known vertebrate species on earth are estimated to reside in the Amazon, which 
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is even more remarkable when considering the fact that the Amazon waters make up less than 0.002% 

of the earth’s total liquid water supply (Albert at al 2011).  

 

 

2.2 DRIVERS OF LAND COVER CHANGE IN THE AMAZON 
 

Despite its importance to the climate system and terrestrial and aquatic biodiversity, the Amazon has 

undergone a lot of changes over the last few decades as swathes of its forest cover have been lost. 

According to Barbosa (2000), deforestation in the Amazon began to accelerate starting in the mid-1970s, 

where 152 200 km² of forest had been cleared, which increased to a rate of 225 000 km² per decade 

during the 1980s. Boucher and Chi (2018) add that these very high deforestation rates continued at the 

end of the 20th and beginning of the 21st century, where the Amazon rainforest lost approx. 19,500 km² 

per year between 1996 and 2005. After 2005, this high rate of deforestation began to decline, with the 

levels of deforestation having been reduced by over two thirds of what it was in the previous decade of 

1996-2005 (Boucher et al. 2013).  

This deforestation of the Amazon that has occurred over the last few decades can be attributed to many 

underlying driving forces. The first major driver of deforestation is urban growth. According to Hargrave 

and Kis-Katos (2013), deforestation of the Brazilian Amazon began in the 1960’s as a result of state 

driven infrastructure and settlement projects, such as the rural settlements policy (executed by the 

National Agency for Land Reform), and the construction of national highways that cut through the 

Amazon rainforest. These combined at the time (1960s) to incite yearly deforestation at a rate of about 

10,000 km² per year (Hargrave and Kis-Katos 2013) 

Another important driver of land cover change in the Amazon is agricultural expansion. According to 

Barona et al. (2010), the major driving force behind land cover change in the Amazon has been 

agricultural land use change. Due to rising commodity prices, the availability of cheap labour, and the 

favourable climatic conditions, South America has become a frontier for agricultural expansion into 

forested areas, especially with regards to soybean and beef production (Fehlenberg et al. 2017). Today, 

these factors have made Brazil one of the worlds largest exporters of agricultural products, especially 

soybean, which has been the most harvested crop in the Brazilian Amazon in terms of area since 1990 

(Barona et al. 2010).  Cattle ranching for beef production, which was marginalised until 1970, has grown 
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by over 840% from 1974 to 2015, and is also responsible for the encroachment into the Amazon (Le 

Tourneau 2016). This encroachment into the Amazon is especially prominent in the southern edge of the 

forest known as the arc of deforestation. This agricultural expansion has led to 189 000 km² of land to 

have been deforested in the Brazilian Amazon between 2000 and 2006 (Barona et al. 2010).  

Land cover change in the Amazon is also due to logging, which involves to the removal of forested areas 

for the acquisition of timber. This issue of logging in the Amazon has been driven by land speculation, 

which is the mechanism whereby the intact rainforest is considered more of a liability than an asset, and 

landowners make noteable profits by deforesting their lands and selling the timber (Le Tourneau 2016). 

In a study conducted by Asner (2005), high resolution, automated remote sensing analysis was done on 

selective logging in the Brazilan Amazon. The study found that between 1992 and 2002, logging was 

responsible for 12 075 to 19 823 km² of forest removal per year, while every year, between 27 and 50 

million cubic meters of wood were extracted.   

Mining is another major driver of deforestation, which has seen an unprecedented rise in the larger 

Amazon region since the 1970s gold rush in Brazil (Heemskerk 2002).  Despite an increase in mining in 

the region since this time, where gold rushes have come and gone, the real upsurge in mining activity 

came in 2008, as the global financial crisis caused a substantial increase in commodity gold prices, which 

fuelled the demand for gold (Asner et al. 2013). In the Brazilian Amazon, mining exploration permits, 

leases and concessions cover over 1.65 million km² of land, with approx. 60% of this area being located 

in the Amazon rainforest. Mining in Brazil was directly responsible for 11,670 km² of forest loss between 

2005 and 2015, which represents 9% of all forest loss in the Amazon in that time period (Sonter et al. 

2017).   

This increase in the extent and severity of mining activities was consistent in other Amazonian regions, 

such as Peru, where gold mining increased by 400% between 1999 and 2012, and the rate of deforestation 

due to mining tripled following the 2008 global recession and gold price surge (Asner et al. 2013). The 

increase in mining in the Amazon has not just been pushed forward by large mining corporations, but 

there has also been a huge surge in small scale mining by independent small-scale entrepreneurs. This is 

often welcomed by Amazon countries as it provides income for the poorest population, albeit at the 

expense of rampant forest degradation and other environmental impacts (Heemskerk 2002).   
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2.3 IMPACT OF MINING ACTIVITIES ON FORESTS 
 

Mining in the Amazon is a major concern, as it has an impact on forest cover and by extension its structure 

and composition. According to Asner and Tupayachi (2016), in a study of the impact of mining in the 

Peruvian Amazon, found that mining causes not just widespread and extensive deforestation, but also 

leads to progressive forest loss over time.  In Peru, mining related losses varied from a minimum rate of 

10 km² per year in 1999-2000, to a maximum of rate of 80 km² per year between 2013-2014, and 

importantly, as of 2016, 5.2 km² of forest have been lost even in protected/forest reserve areas (Asner 

and Tupayachi 2016). In another study on mining-induced forest loss in Peru conducted by Swenson et 

al. (2011), found that between 2003-2009, 66 km² of wetlands and primary tropical forests was converted 

into mines. Their impact in environmental and ecological terms far overshadows that of settlement 

deforestation. Sonter et al. (2017) added that the impact of mining on forest cover is not just confined to 

within the boundaries of the mining concessions, but also leads to extensive off-lease impacts up to 70km 

from mining leases.  This occurs through secondary pathways such as “mining infrastructure 

establishment and associated secondary forest clearing such as establishment of new roads” (Sonter et 

al. 2017).  

This removal of this forest cover caused by mining subsequently also impacts forest composition. A 

study conducted on the impacts of small-scale gold mining in Suriname by Peterson and Heemskerk 

(2001) found that the forest cover and composition of mined sites differed greatly from untouched, old-

growth forest. While old-growth forests were characterised by dense, healthy forest cover and an 

abundance of leaf litter, abandoned mined sites were dominated by large areas of exposed bare rock and 

sand, grass, vines, and large pools of stagnant, open water. None of these land cover types were prevalent 

in old-growth forests, and the study also found that regeneration of forests on mined sites was very slow 

(Peterson and Heemskerk 2001).  

In addition to its impacts on forest composition, mining and its associated loss of forest cover also impacts 

forest structure through the alteration and fragmentation of the forested landscape. According to Batar et 

al. (2017), forest cover loss and fragmentation, while closely related, also share an important distinction. 

Forest loss refers to the conversion of forested land into another form of land use such as agriculture or 

urban areas, whereas forest fragmentation refers to the particularly distinct phenomenon whereby a large 

patch of forest is broken up into a collection of smaller patches which are physically disconnected from 

each other (Batar et al. 2017).  This fragmentation results in a phenomenon whereby the landscape 
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resembles a mosaic of natural patches which are bordered by other land uses and can lead to detrimental 

effects on bio-geo chemical, nutrient and water cycling within a forest ecosystem (T.V et al. 2016).  

Mining is one such driver of land use change which leads to fragmentation, and in a study about mining 

in the east Amazonian region of Renca, Siqueira-Gay et al. (2020), found that mining not only caused 

forest loss, but also led to the fragmentation of forests due to the infrastructure such as roads/railways, 

etc that are required to process and transport the extracted materials. This fragmentation has notable 

effects on landscape patterns and structure and leads to “a higher number of patches, decreased average 

size of patches, increased edge effects and increased nearest neighbour distance” (Siqueira-Gay et al. 

2020). 

According to Fagiewicz (2014) mining activities result in a progressive process of fragmentation which 

leads to irreversible and permanent changes to the landscape. In their study conducted on opencast lignite 

mines in Poland, they found that the post-mining landscape was more complex with a greater variety of 

land uses resulting from anthropogenic pressure. The mining activities also resulted in an increase in the 

number of patches of forest from 161 to 347, a decrease in the average area of each patch from 0.1 km² 

to 0.067 km², and an increase in the length of the edges of forests, which almost doubled from 113.52 

km to 209.42 km (Fagiewics 2014).  

These statistics are very useful indicators of fragmentation at the landscape level, and are often used to 

determine the presence and extent of fragmentation in a post-mining landscape. In a study assessing and 

quantifying the impacts that mining had on LULC change and fragmentation in Central India, Malaviya 

et al. (2010) found that the number of patches increased from 243 in 1972 to almost double that number 

in 421 in 2006, which indicates considerable fragmentation.  

Mining activities and the resulting fragmentation of forests also pose a threat to plant species diversity, 

especially in tropical forests. The separation and isolation of patches of forest from each other in a 

fragmented landscape makes movement of native species from one patch to another much more difficult. 

This, combined with the edge effects which place harsh constraints on plant species near the edge of 

fragments leads to elevated levels of species mortality and the subsequent reduction of plant species 

diversity (Kumi et al. 2021).  

Mining not only impacts forest structure and composition but also leads to severe and persistent 

ecological impacts both on and off-site, as mining strips the forest and soil surface bare (Asner and 

Tupayachi 2016), leading to serious ecological impacts such as the leaching of heavy metals from mining 
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sites into waterways (Velasquez-Ramirez et al. 2020) and the subsequent contamination of fish species, 

especially predator species higher up the trophic levels (Malm 1998). This contamination of fish species 

poses a great risk to Amazonian communities, indigenous people and riverside communities located 

downstream of mining sites, as their high consumption of fish is a crucial source of dietary exposure to 

mercury (Hacon et al. 2020). This risk was researched by Pinheiro et al. (2007) who’s study on children’s 

exposure to mercury contamination in Amazonian communities found that hair samples from children 

(especially those aged two to six) in communities located near to gold mining sites contained higher 

levels of mercury than samples from communities not affected by gold mining.  
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2.4 REMOTE SENSING METHODS FOR MEASURING THE IMPACTS OF MINING 

ON FOREST COVER QUANTITY (DEFORESTATION) AND QUALITY 

(FRAGMENTATION AND PHENOLOGY) 

 

2.4.1 MEASURING FOREST COVER QUANTITY: LAND USE LAND COVER (LULC) CHANGE 

AND DEFORESTATION 

Land cover classification can be used to quantify deforestation over time and space and allows for the 

identification of key drivers of forest cover change. Remotely sensed images can be used to classify 

mining areas and their changes over time. According to Almeida-Filho (2002), there are two main 

methods for conducting change detection studies in mining regions. The first is image enhancement, 

which is the transformation of images into a combination of new bands that highlights changed areas, 

while the second, and much more widely used method, the post-classification comparison method, 

involves the classification of individual images over time, and the subsequent comparison of these images 

to determine land cover changes. In their study, Almeida-Filho opted for the latter, using 6 different 

Landsat-5 TM images ranging from March 1987 – February 1999, upon which he conducted image 

segmentation and region classification, using an unsupervised, K-means clustering algorithm (Almeida-

Filho 2002).  Charou et al. (2010) were among the few who opted for image enhancement, deciding on 

a combination of this and classification to assess mining activities. Using both Landsat 5 and 7 images, 

image enhancement was done through colour-composites and intensity hue saturation images. 

Unsupervised classification using Artificial Neural Networks (ANNs) was then applied in order to 

discriminate between land cover classes.  

Almeida-Filho (2002) was one of the first to utilize remote sensing techniques for mining detection in 

the Amazon, and while their early research ushered in the era of using LULC classification techniques 

for mining detection in the Amazon, it is only a decade later, in 2013, that the use of LULC classification 

really began to gain traction in mining studies, and more refined and sophisticated techniques began to 

be used. The research by Asner et al. (2013) began this new age of remote sensing studies on mining in 

the Amazon. They pioneered the use of spectral unmixing algorithms using the Carnegie Landsat 

Analysis System Lite (CLASLite) for mining detection. In Peru, they used this method to ‘unmix’ 

individual Landsat 5 and 7 pixels into subpixel fractional land cover values of photosynthetic vegetation, 

non-photosynthetic vegetation, and bare substrate. Mines were then determined as pixels with at least 

25% bare substrate. This method was subsequently used by Elmes et al. (2014) in Peru. They also used 
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a spectral mixture analysis/spectral unmixing of Landsat 5 imagery, followed by a classification tree 

analysis (CTA) to split the image into 5 final land cover classes; Mining areas, water, agriculture, forest 

and natural alluvial deposits. This was followed by further research in Peru by Asner and Tupayachi 

(2016) who also used the spectral unmixing approach in CLASLITE in order to detect gold mining 

activities. 

Caballero Espejo et al. (2018) also used the spectral unmixing / CLASLITE approach but built upon and 

modified the original unmixing method (Asner et al. 2013). Using their modified approach in the same 

region of the Peruvian Amazon, they found that using just the CLASLITE approach from previous 

studies resulted in an underestimation of the total mining area by 30%. Additionally, this old approach 

failed to identify large water bodies within mines as part of the mine, relying on manual reclassification 

to reassign these areas (Caballero Espejo et al. 2018). In order to address these shortcomings of under 

classification, Caballero Espejo et al. (2018) added a post-classification step with the goal of identifying 

and re-classifying mining areas that were missed when using the initial CLASLITE / spectral unmixing 

classification from previous studies. Their post-classification step included fusing the initial classified 

map with the global forest change (GFC) dataset to automatically identify all deforested pixels from the 

GFC dataset that were within 200 meters of mines in the classified map and assign these deforested pixels 

to the mining class. For their study, they used 68 landsat TM images spanning 34 years (1985-2017). 

Nicolau et al. (2019) used Landsat 7 ETM+ and 8 OLI images from 2013-2018, and like the previous 

studies by Asner et al. (2013), Elmes et al. (2014) Asner and Tupayachi (2016) and Caballero Espejo et 

al. (2018), they used the spectral unmixing model in the CLASlite program, where each pixel was 

separated into sub-classes of photosynthetic vegetation, non-photosynthetic vegetation, and bare 

substrate. This was followed by change detection, where a deforested pixel was one where the decrease 

in photosynthetic vegetation fraction between a pre and post image was greater than 50%.  

Lobo et al. (2018) diverted from the well-established line of CLASLITE methodologies and used the 

classification and regression trees (CART) algorithm in Google Earth Engine (GEE) for mining detection 

in Brazil. They used higher resolution Sentinel-2A images to map mining across 13 regions in Brazil. As 

the first documented study to utilize cloud processing for mining studies in the Amazon, this method 

made use of the recent technological advancements to further improve methods of mining detection in 

the region. However, while the use of cloud processing in this method sped up the process of the initial 

classification, Lobo et al. (2018) still relied upon extensive manual reclassification of misclassified pixels 



14 
 

in mining regions post-classification, ultimately falling short of the more rapid, automated post-

classification approach developed by Caballero Espejo et al. (2018).  

Following classification map validation in these studies was generally conducted using either high 

resolution imagery (Planet, Worldview, RapidEye) or Landsat imagery where high resolution data wasn’t 

available. Validation was conducted in order to determine the accuracy of the classified maps. For 

validation of a classified map, while in-situ collection of validation points through field visits remains 

the most accurate form of collecting validation points, the use of this method in the literature was limited 

due to constraints regarding the accessibility of remote forested areas in the Amazon. As the only study 

that used in-situ collection of validation points, Asner et al. (2013) collected 166 points in the form of 

field visits in Peru using a handheld GPS system. However, citing the challenges regarding access of 

other sites due to vegetation conditions, they collected the remaining 1500 validation points from 

airborne imagery. Elmes et al. (2014) also relied on remote collection of validation points, stating that 

due to logistical complications of in-situ monitoring, the use of 2.5m Quickbird and Worldview satellite 

images proved to be a suitable alternative. Using these high-resolution images, they collected 580 

validation points (50 points minimum per land cover class) using a spatially stratified sampling design 

where the points were randomly generated within the study region. Rahm et al. (2015) used high 

resolution SPOT images from Google Earth to collect validation points, and where imagery wasn’t 

available, validation points were collected using the same satellite imagery for the initial classification. 

Overall, they collected 8000 validation points using a random sampling approach. Lobo et al (2018) 

conducted validation using RapidEye classified maps, which were compared to the original classified 

maps in order to determine the accuracy of the original classification.  

 

 

2.4.2 MEASURING FOREST COVER QUALITY: FRAGMENTATION AND PHENOLOGY 

In order to assess the impact that mining has on forest structure through fragmentation, models which 

seek to quantify the extent of fragmentation must be employed. Numerous methods have been used over 

the years to quantify fragmentation, with many being based upon the Riitters et al. (2000) model, which 

introduced the concept of quantifying fragmentation within fixed area ‘windows’ of a certain pixel size 

using the metrics Pf (forest area density) and Pff (forest connectivity). Pf refers to the proportion of the 

pixels within the window that are forested while Pff refers to the probability that the pixel adjacent to a 
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forest pixel is also forested. Based on the value of Pf and Pff, the pixel of forest is categorised as either 

core, perforated, edge or patch (Riitters et al. 2002).  

This Riitters model has been heavily used and adapted over the years. In their study on fragmentation of 

temperate and tropical forests in Mexico, Moreno-Sanchez (2009) opted to follow the Riitters model, 

using three window sizes of 3*3, 5*5 and 9*9, calculating forest area density (Pf) and forest connectivity 

(Pff) for the center pixel in each of those windows. Chakraborty et al. (2017), while also basing their 

model upon the Riitters model, opted to build and expand on it by including two further metrics; 

anthropogenic fragmentation (Pfa) and natural fragmentation (Pfm). In their analysis of fragmentation in 

the Uttara Kannada district in India, TV et al. (2016) also opted to use the Riitters model but went further 

by conducting a post hoc principal component analysis (PCA) to quantify the correlation between the 

various drivers of forest loss (urban growth, agricultural expansion, population growth, etc.) with the 

fragmentation of forests.  

In addition to the Riitters model, other methods to assess fragmentation include the morphological spatial 

pattern analysis (MSPA) method adopted by Clay et al. (2016). This method involves the conversion of 

the forest layers into raster format, and subsequent reclassification into a binary raster in ArcGis which 

was then imported into the MSPA software. This software, which is used by major conservation and 

forestry agencies worldwide, “assesses the geometry and connectivity of the input image, as well as user-

defined parameters, to determine 7 basic fragmentation classes; Core, Islet, Loop, Bridge, Perforation, 

Edge and Branch.” (Clay et al. 2016). Conversely, Wulder et al. (2011) opted to use the EOSD data and 

APACK analysis software, and their method focused on using fragmentation metrics that are objective, 

easy to understand, and widely interpretable across various disciplines. These metrics are the “number 

of forested patches, proportion of patches that are forested, mean forest patch size, and standard deviation 

of forest patch size.” (Wulder et al. 2011).  

While all the metrics listed above and dozens of others have been used to quantify fragmentation, the 

move towards the consideration of metrics which take into account ecological processes leaves many of 

these metrics less suitable than other, more developed alternatives (Girvertz et al. 2008). One such metric 

which also takes into account ecological processes is the effective mesh size. Effective mesh size is based 

on the probability that two randomly chosen points placed in a landscape will be connected to each other, 

i.e located in the same patch (Jaeger et al. 2007).  According to Roch and Jaeger (2014), “by multiplying 

this probability by the total area of the reporting unit, it is converted to the size of an area, which is called 

the effective mesh size.”  The more barriers present in a landscape is the lower the probability that two 
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randomly placed points will be connected, and therefore the lower the effective mesh size. A higher 

effective mesh size means that fewer barriers and less fragmentation are present in the landscape (Jaeger 

et al. 2008).  

The effective mesh size has been widely used as a metric to measure fragmentation.  In their study on 

landscape fragmentation in Switzerland, Jaeger et al. (2008) used the effective mesh size and found it 

advantageous when compared to other methods as not only was it a single value that was easy to obtain 

and interpret, but that it was also suitable for comparing fragmentation between regions of different sizes 

and was confirmed as a reliable method after it was systematically compared to nine other quantitative 

methods. Girvertz et al. (2008) also used the effective mesh size in their study on landscape fragmentation 

in California and found that it was the only method that addressed animal dispersal and animal movement 

processes. In their study on fragmentation in the Canadian Prairies, Roch and Jaeger (2014) also utilized 

the effective mesh size, noting that it had highly advantageous characteristics when compared to other 

metrics, as it was not greatly influenced by the inclusion or exclusion of very small patches.    

In addition to the general classification and fragmentation methods listed above, the impacts that mining 

has on forests can also be measured through an assessment of the changes in vegetation phenology of 

forest areas surrounding mining regions. The remote sensing methods to study phenological changes in 

the Amazon are well accepted and widely used. According to Koltunov et al. (2009), there are two 

methods to estimate the phenological impact of a disturbance event: the contextual method and the 

temporal method. The temporal approach requires a comparison of pre-disturbance and post-disturbance 

images, while the contextual approach involves measuring the difference between the vegetation index 

value of a given pixel and that of all of the non-clouded pixels of the same vegetation type within a 

defined radius of that pixel. Due to a lack of images before the disturbance date, Koltunov et al. (2009) 

opted for the contextual method, using MODIS NBAR images to calculate the enhanced vegetation index 

(EVI) and normalized difference water index (NDWI) of a deforested site in the Brazilian Amazon. 

Pinage et al. (2020) opted to use the temporal method, where they analysed pre and post disturbance 

images of four ‘disturbance sites’ of once-burned forest, twice burnt forest, logged forest and intact forest 

(as a control) in the Amazon. The sites were chosen so that the year of the disturbance event across all 4 

sites was the same. For each study site, they derived the enhanced vegetation index (EVI) and normalized 

burn ratio (NBR) from 288 MODIS 16-day images at a 250m resolution spanning a 12 year period (2002 

– 2014). Subsequently, they filled any missing values using linear interpolation and created a pre and 

post disturbance time series for each of the four study sites, which was analysed to see the phenological 

changes that occurred due to each disturbances (Pinage et al. 2020).  
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In their study on the phenology of the Cerrado ecoregion in Brazil, Ratana et al. (2006), like Pinage et 

al. (2020) opted to use five years of 16 day MODIS images at a 250m resolution, utilizing the MODIS 

enhanced vegetation index (EVI) time series data in order to determine seasonal variations in 

phenological patterns. Moreau and Defourny (2012) used ten day composites of SPOT-vegetation (VGT) 

images at a resolution of 1 kilometer, ranging from January 2000 to December 2010. They then derived 

EVI from the four main spectral bands of these images. All four studies used EVI rather than NDVI, as 

EVI uses the more appropriate near infrared (NIR) reflectance, while NDVI is heavily reliant on the red 

band, which is affected by cloud cover and atmospheric perturbations in the wet season and aerosol 

contamination in the dry season (Ratana et al. 2006; Moreau and Defourny 2012).  
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2.5 LITERATURE REVIEW SYNTHESIS 

 

This literature review sought to summarize the current research on the review questions. Research on the 

importance of the Amazon is extensive and shows that the Amazon plays a key role not only as a 

biodiversity hotspot, but also as a carbon sink due to its role of regulating the earth’s climate, with yearly 

phenological patterns playing an important role in the timing and effectiveness of the Amazon’s carbon 

uptake. Research has also focused heavily on urban growth, agricultural expansion and logging as drivers 

of deforestation and land cover change, with studies estimating that deforestation in the Amazon began 

to accelerate from the mid 1960’s firstly by state-driven urban expansion, and then even further due to 

agricultural expansion for beef production in the 1970s, and soybean production in the 1990s. More 

recent studies also showed that mining appeared to be a major driver of deforestation, which started with 

the 1970s gold rush in Brazil and was further fuelled by the 2008 global recession when the price of gold 

spiked. Research shows that mining alters the composition of the forests that have been exposed to 

mining, and causes serious impacts to forest structure through forest fragmentation. Research papers on 

the effects of fragmentation on forests showed that mining and its associated secondary infrastructure 

such as roads not only lead to an increase in the number of patches and decrease in the average area of 

patches, but also threatens plant species diversity, especially near the edge of fragments.  

Remote sensing methods for detecting mining in the Amazon rely upon land use land cover classification 

algorithms, predominantly using Landsat images. While remote sensing first began to be used for mining 

detection in the Amazon in 2002, the use of more advanced algorithms started with the use of the spectral 

unmixing classification algorithm in the CLASLITE program by Asner et al. (2013). This well-

established methodology was widely used throughout the years, eventually being improved by Caballero 

Espejo et al. (2018), who added a semi-automated post classification step to address the problem of 

under-classification present in the original spectral unmixing approach. Lobo et al. (2018) diverted from 

this approach and was one of the first to use new cloud processing technologies in GEE in an attempt to 

improve mining detection methods. While this approach sped up the initial classification, their study still 

relied upon manual reclassification for the post-classification stage, ultimately falling short of the more 

automated post-classification approach by Caballero Espejo et al. (2018). To date, there is no documented 

method that combines both cloud processing for the initial classification and an automated model for 

post-classification in the same methodology.  
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Assessing the impact of mining on forest structure through fragmentation relied upon the use of metrics 

capable of quantifying the extent of fragmentation. Over the years, dozens of fragmentation metrics have 

been used, with many being based on the Ritters et al. (2000) model. Other promising methods include 

the effective mesh size developed by Jaeger (2000), which was subsequently used in many other studies. 

Methods to assess phenological changes as a result of a disturbance such as mining all used MODIS 

images and the enhanced vegetation index (EVI). Depending on the availability of data before a 

disturbance event, studies either used the temporal or contextual methods.   

Overall, early research on land cover change in the Amazon was mainly focused on the impacts of well-

known drivers such as logging, agricultural expansion and urban growth, while very little focus was 

placed on mining. It is only in the last decade that mining began to be studied in more detail, with many 

papers being published on the impacts of mining on forest cover in the Madre de Dios region of Peru and 

parts of the Brazilian Amazon. Apart from Peterson and Heemskerk (2001) and Rahm (2015) there has 

been no other research (to the best of my knowledge) that has focused on the impacts of mining in the 

northern Amazon in the region of Guyana and Suriname. Not only is there a strong need for research in 

this area, especially after the period of 2001, but there is also a need for more advanced and updated 

methods for mining detection which incorporate both cloud processing and automated classification 

models, both of which this study will seek to address.  
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3. OBJECTIVES 

 

This study addresses four research objectives: 

 

1. To improve existing LU/LC classification techniques for mining detection through the development 

of a cloud processing based, semi-automated approach to the mining detection process; 

 

2. To quantify the increase of industrial mining and ASGM and its impact on forest cover between 1997 

and 2019 in the Suriname Amazon rainforest; 

 

3. To evaluate the impact of mining expansion on forest fragmentation in industrial mining vs ASGM 

sub regions; and     

 

4. To analyse the impact of mining expansion on the phenology of the forest ecosystem in industrial 

mining vs. ASGM vs natural sub regions.  
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4. STUDY AREA 

The study area is in the South American country of Suriname, which has a population of 612 000 

and an area of 163 000 km². Suriname is located entirely in the northern portion of the Amazon basin, 

and the Amazon rainforest makes up 98.3% of the country’s total area, making it the most forested 

country in the world (Miller 2019). However, the rising number of industrial and artisanal mines presents 

a threat to the quantity and quality of forest cover. Suriname is currently ranked 10th globally in mining 

production relative to area (Amazon conservation team 2022). The study area (figure 2) encompasses 4 

Landsat tiles that are located in the area of the country where the overwhelming majority of mining is 

located, and where the largest growth is concentrated. The study area covers 43% of the country of 

Suriname. For the fragmentation and phenology analyses, 3 smaller sub areas were used. 

Figure 2. Map showing the location of the study area  
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5. DATA AND METHODS 

 

The methodology for this study is summarized according to the 4 objectives (Figure 3). 

  

  

Figure 3. Simplified flowchart showing the flow of methods  
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5.1: LULC CLASSIFICATION (GEE) 

 

5.1.1 Platform 

The first step of this study, which forms the basis of all the supplementary analyses, is the initial land use 

/ land cover classification. This was done using Google Earth Engine, a cloud processing platform which 

provides a public catalog containing petabytes of satellite imagery and geospatial datasets, allowing for 

high performance and rapid planetary scale processing and analysis of images (Gorelick et al. 2017). 

This platform was chosen as the large scale at which this study is conducted (covering almost the entire 

country of Suriname and 4 Landsat Tiles) necessitates a platform which allows for ease of access to large 

data files which can be rapidly processed. The use of GEE is corroborated by Lobo et al. (2018), who 

found that GEE proved to be a cost-effective method in terms of both time and resources as it allows for 

access, selection and processing of satellite images in seconds to minutes, compared to the hours it would 

take using other databases such as the USGS website.  

 

5.1.2 Data 

The first step in GEE was to import, filter, and display the Landsat images. For this study, Landsat 5 

(USGS Landsat 5 Level 2, Collection 2, Tier 1) and Landsat 8  (USGS Landsat 8 Level 2, Collection 

2, Tier 1) images were used. Landsat is a joint USGA/NASA program which has been launching 

satellites for the purpose of earth observation for the last 40 years. Landsat satellites record the earth at a 

30 meter resolution and have a 16 day repeat cycle. While alternate sources of data such as Sentinel and 

the Moderate Resolution Imaging Spectroradiometer (MODIS) were also options, Landsat data proved 

to be the most suitable for the context of this study. As the study sought to fill a gap since the last research 

paper by Peterson and Heemskerk in 2001 and analyse the growth of mines in the 21st century, especially 

with the mining boom that followed the 2008 financial crisis, data that was available from at least the 

early 2000s was required. Sentinel Images, as used by Lobo et al. (2018) while boasting a higher spatial 

resolution of 10m, was only launched in 2014 and therefore does not cover a span of time long enough 

for the purposes of this study. Such a short time period would not have given enough data to analyse the 

trends in mining growth.  MODIS on the other hand, while having launched earlier in 1999, provides 

data at a spatial resolution of 250 meters, which was too coarse to accurately classify the growth of 

mining regions. Landsat therefore provided an excellent balance between time period covered and a 
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resolution high enough to accurately classify mining regions. For mining studies, while higher resolution 

images (e.g. 10 m) are preferred for the identification of the smallest mine components, images with 

resolutions of 30 m are capable of accurately identify mines and their clearly identifiable larger 

components such as pools of water, patches of vegeation and bare soil. Images with lower resolutions 

(e.g 250 m) fail to identify mining components, making them unsuitable in mining studies. The use of 

Landsat images at a 30 m resolution is consistent with the approach of the majority of remote sensing 

mining studies conducted in the Amazon rainforest (e.g. Almeida-Filho (2002), Charou et al. (2010). 

Elmes et al. (2014), Caballero Espejo et al. (2018) and Nicolau et al. (2019). All of the data for this study 

used the WGS 1984 UTM Zone 21N coordinate system. 

 

5.1.3 Data Collection and Preparation / Pre-Processing 

After the Landsat image collections were imported into GEE, the images were filtered in order to reduce 

the collection to the most suitable images. The images were firstly reduced by region, whereby only 

images over the study area (which encompassed 4 Landsat tiles) were selected. Subsequently, the images 

were then reduced according to their cloud cover (each image reported a pre-calculated value for % cloud 

cover) , where only images within the study area with less than 10% cloud cover were selected. Finally, 

only the years in which all 4 Landsat images in the study area met the threshold of <10% cloud cover 

were selected. From these available years, the 3 years of 1997, 2009, and 2019 were chosen. This time 

period met the goal of filling a 2 decade long research gap since the last paper on mining in Suriname by 

Peterson and Heemskerk was published in 2001.  The use of an intermediate time step in 2009 allowed 

for a more detailed analysis of the rate of change between the base year of 1997 and the final year of 

2019. Landsat 5 was used for the 1997 and 2009 images, with Landsat 8 being used for 2019. 

The 4 best Landsat images in each year were chosen. These were selected as the images with the least 

cloud cover (especially over the known mining hotspot areas near the Brokopondo reservoir). The dates 

of the 1997 images (Landsat 5) ranged from August to October. The 2009 images (Landsat 5) ranged 

from ranged from August to November. Due to constraints with cloud cover in the 2019 images (Landsat 

8), 3 were from September to October 2019 and one (lower right scene) was from 2020. A total of 12 

Landsat images (4 for each of the 3 years) were used. To avoid persistent cloud cover over the rainforest, 

all images were collected from the dry season in Suriname, which runs from mid-August to late 

November. 
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The 4 images for the first time period (1997) were combined to form an image collection for that year. 

This was repeated for the other 2 years in the study, resulting in 3 image collections.  

 

5.1.4 Cloud Masking  

Based on the image quality band, a cloud mask for each of the 4 images was then created, where clouds 

were assigned a value of 0, and all other cloud free regions a value of 1. This was done using the GEE 

cloud masking algorithm. This was done for all 4 images in each of the 3 years, resulting in 12 cloud 

mask files. These files were used solely for visualisation in the following steps and not as inputs to the 

unsupervised and supervised classification. The unsupervised and supervised classification in the 

following steps was done on each of the 12 Landsat scenes used in the study separately and this step was 

repeated 12 times.  

 

5.1.5 Unsupervised classification 

Unsupervised classification was firstly conducted on the images. Unsupervised classification serves to 

automatically separate pixels in the image into distinct spectral groups. The unsupervised classification 

algorithm used was the K means clustering algorithm (known as ee.Clusterer.wekaKMeans in GEE), 

which segmented the image into 10 classes. 10 classes were chosen as this number doubled the amount 

of classes to be used in the supervised classification (5), and therefore allowed for an initial assessment 

of the study area and the identification of sub-class spectral patterns that existed within each of the 5 final 

classes. This provided crucial information which allowed a more informed decision to be made as to 

which areas were most suitable to place training sites for the supervised classification. The unsupervised 

classification map was produced solely for the purpose of visualisation for the supervised classification 

and was not exported.  

 

5.1.6 Supervised Classification: 

Selection of LULC classes and training sites:  

The first step in the supervised classification was the selection of the LULC classes to be used in the 

algorithm. 5 classes (mines, water, forest, urban areas, and bare soil) were selected. These 5 classes 



26 
 

reflected all the major LULC classes present in the area and were spectrally distinct enough to allow 

them to be easily discerned and classed separately from each other. Within each of these 5 classes, the 

spectral signature was homogenous enough to justify the need for only one class per LULC type. For 

example, for the mining class, even though the study area had not only gold mines but also a small bauxite 

mine, these areas displayed very similar reflectance properties in the unsupervised classification, 

justifying the need for only one class for all mines in the area.  

The next step was the selection of training sites. Due to the vast, remote and dangerous nature of the 

study area, it was not feasible to collect training data through fieldwork. A lack of high-resolution 

imagery available for many of the earlier points in time meant that the original Landsat imagery along 

with the unsupervised classification map was used to collect training data. Locations for training sites 

were chosen by using a.) the scaled Landsat image collection from step 5.1.3 which was used as a 

basemap, b.) the cloud mask file created in Step 5.1.4 to avoid clouded areas when training, and c.) the 

unsupervised classification map produced in step 5.1.5 as a further guide. Seventy training sites in the 

form of points (each point represents one pixel on the map) were selected for each of the 5 classes, 

making up a total of 350 points per image. The points were placed using a stratified random sampling 

approach. Stratified in the sense that 5 sub-groups or land cover classes were analysed, but within each 

class, the points were placed randomly. In supervised classification, the spectral characteristics of these 

training sites are aggregated to create a user-defined spectral reflectance group for each LULC class. 

Each remaining pixel in the image, based on it’s spectral reflectance, is subsequently assigned to one of 

these user-defined groups.  

 

Classification Algorithm: 

The algorithm used to classify/assign the remaining pixels into the chosen groups was a decision trees 

classifier known as the classification and regression trees algorithm (CART). According to Lobo et al. 

(2018) who used CART as the algorithm of choice to classify mines in the Brazilian Amazon, “CART 

can be defined as a non-parametric, pixel based classifier that uses the DN levels from the training 

samples to create a decision tree that subsequently classifies each pixel in the image.” The CART 

algorithm was chosen due to its superior performance compared to many other algorithms on GEE. Farda 

(2017) for example, conducted a study on ten different machine learning classifiers in GEE (using 

Landsat 5,7 and 8 images), and found that CART outperformed the nine other LULC classification 
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methods. Over 3 stages of experiments, CART proved to be the highest performing, most accurate 

classifier, consistently producing results in the high accuracy range (>90%).  

In GEE, the CART algorithm, which is known as ee.Classifier.smileCart, contained two adjustable 

parameters: MaxNodes and MinLeafPopulation. MaxNodes is the maximum number of leaf nodes in 

each decision tree, while minLeafPopulation represents the minimum number of points present in a 

training set in order for nodes to be created. Both parameters were set to the default, null or no limits for 

the maximum number of nodes, and 1 for the minimum number of points for node creation. Due to the 

complex nature of the mining regions, misclassifications between mine, urban and water classes were 

expected, with or without optimized model parameters. It was thus decided to use the algorithm with the 

default parameters. 

The CART algorithm was run on the 1st Landsat image in the 1st time period (1997) resulting in a 

classified map for that image. The entire supervised classification step was repeated 12 times, until all of 

the other images in the study were classified as well.  

 

5.1.7 Export/Output 

The 12 supervised classification maps produced above, as well as the 12 cloud mask files from step 5 

were exported to Google drive, downloaded and used as input to the next step. The final script used to 

automate all these steps in GEE will be made freely available and shared in the appendix (App. A).  
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5.2: RE-CLASSIFICATION MODEL (ARCGIS PRO) 

5.2.1 The need for automated reclassification models in mining detection  

Mines typically contain bare rock that makes up the core of the mine, but also exposed earth and pools 

of water (Figure 4). The challenge with mining detection is that classification algorithms commonly 

misclassify the exposed earth and pools of water as urban and water classes, respectively. Most current 

solutions, such as those employed by Asner et al. (2013), Elmes et al. (2014), Rahm (2015), and Lobo et 

al. (2018) involve extensive manual reclassification to re-assign these misclassified pixels into the 

appropriate mining class. This can prove tedious, time consuming, and costly when applied to large areas, 

which is why automated models are essential in mining studies.  

 

Figure 4: Landsat 8 Image (left) compared to output of CART classification (right) 

 

The output maps of the GEE step were used as input data for the re-classification model. The 

reclassification model runs on one individual classified map at a time and was therefore run a total of 12 

times. The model is separated into 3 sub-models. The first is the cloud masking model, the second is the 

urban reclass model, and the 3rd is the water reclass model. The output of each sub-model forms the input 

into the next, with all 3 sub-models running automatically as one overall model, with one output file 

(figure 5). 
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Figure 5: Proposed automated re-classification model. 
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5.2.2 Model Documentation: 

 

A. Cloud Masking Model: 

 

1 to 3. Cloud Mask Files (INPUT) – The first input files to the model were the cloud mask files 

of 1 Landsat tile for each point in time in the study (1997, 2009, 2019). Three files were used as 

there were three points in time in the study, and a combined cloud mask highlighting all locations 

that had clouds in any of the three images needed to be created. The number of input files in this 

step corresponded to the number of years used in the study. For example, had six points in time 

been used, the inputs would have been six cloud mask files.  

 

4. Classified Map for 1 Landsat Tile (INPUT) – This model input represents 1 of the 12 

classified maps produced from the GEE stage. Each time the model was run on a new classified 

map, this input was changed. This task was repeated 12 times until each classified maps from the 

GEE step was run through the model. 

 

4. Study Area Polygon (INPUT) – The creation of a study area polygon as an input to the 

model was a simple but crucial step. This was done as a kind of input control to ensure that 

the other input files could be clipped to the exact same size and area.  

 

6. Cip and Mask (PROCESS) – In this step, the study area polygon was used to clip the 3 cloud 

masks and the classified map so that they were all of the exact same size and area. This was 

necessary as the Landsat 5 and 8 images used came from different satellites which had slightly 

different swaths, and therefore did not overlap exactly. The study area polygon, therefore, served 

to remove the edges of the input files where the overlap was not even and create a standard study 

area to ensure consistency in the comparison of the model outputs over time.   

Additionally, the input cloud mask files were combined to create one file which highlighted where 

all of the clouds across all 3 images were present. For example, if a given area was cloud free in 

the 1997 cloud mask file but contained clouds in the 2009 cloud mask file, this area would be 

assigned a value of 0 as containing clouds. This was done to ensure consistency in the comparison 

of results over time, so that only areas where there were no clouds in all 3 time periods of the 

study could be compared.  



31 
 

B. Urban Reclass Model 

 

7.  Cloud Free Classified Map (OUTPUT) – This output file represents the output of the cloud 

masking model. It is the same classified map used as input in step 4; however, all areas with 

clouds have been removed and the map is now the size of the study are polygon specified in step 

5.  

 

8. Creation of Sub-Regions (ADJUSTABLE PARAMETER) – This step involved creating a 

buffer of a specified distance around any pixels classified as mine in the classified map. All 

overlapping or connected buffers were dissolved to create individual “sub-regions”. A sub region 

can therefore be defined as any separate, distinct region where groups of mining pixels are located 

in close proximity to each other. This can be a “mining sub-area”, which contains groups of 

correctly classified mining pixels, or an “urban sub-area” which contains groups of incorrectly 

classified mining pixels. The size of the sub-region depends on the size of the buffer chosen, 

which varied depending on the input image.  For this study, the buffer distances ranged between 

100-900 meters. The size of the buffer varied depending on the input image, as this value was 

dictated by the complexity and potential misclassification of LULC classes in the area. Images 

with a high complexity of classes, such as the presence of urban areas and mines in close 

proximity to each other, required a smaller buffer distance to avoid the merging of buffers from 

two sub-regions in close proximity to each other. Images with a less complex interaction of 

classes, such as in remote areas of the amazon where an urban class is either non-existent (or is 

limited to a few small villages) and is not located in close proximity to mining areas, did not 

require a restriction in the buffer size as there was no risk of overlap between sub-regions. A 

suitable buffer distance is therefore the value that most accurately identifies and separates the 

major mining and urban areas into individual sub-regions. Regardless of the buffer distance used, 

all of the mining and urban pixels within each sub-area were completely captured, ensuring that 

changes in the size of the buffer did not alter the calculations for any of the subsequent steps.  

 

9. Calculate Ratio of Mine-Urban Pixels and Determine Threshold (ADJUSTABLE 

PARAMETER) – In each sub-region identified in step 8, the model calculates the ratio of mining 

pixels to urban pixels and assigns the value to the sub-region. This step of the model was based 

upon a closely observed pattern in the spatial arrangement of mining and urban pixels. It was 
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observed that urban areas, while they did contain misclassified mining pixels, were always 

dominated by an overwhelming majority of urban pixels, hence a low mine-urban pixel ratio. In 

mining areas, while the mine-urban pixel pattern initially appears to be random, closer 

observation shows that the ratio of mine to urban pixels within a mine is consistently higher than 

the corresponding ratio in urban areas. This observed pattern provided the basis for the 

reclassification model, as it provided a quantifiable metric through which we can consistently 

distinguish between mining and urban areas.  

Once the ratio was calculated for each sub-area, the next step was to observe the assigned values 

and determine a specific ratio that can act as a threshold to separate mining and urban sub-regions. 

For example, in a given image (Figure 6), known urban areas such as towns and villages may 

exhibit ratios between 0.1 and 0.25 (highlighted in white). Conversely, mining sub-regions 

consistently display higher ratios anywhere upwards of 0.25 (highlighted in brown). A suitable 

ratio for this image to separate mining and urban sub-regions is therefore 0.25. While threshold 

values may vary greatly depending on the input image, the principle remained the same; urban 

areas consistently displayed lower ratios than mining areas and can be distinguished once a 

suitable threshold is identified.  

 

Figure 6: Map highlighting examples of sub-areas created by the model and their assigned 

ratios. Low ratio (urban) sub-areas are highlighted in white; high ratio (mining) sub-areas in 

brown. 
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10-11. Mining Sub Regions and Urban Sub-regions (INTERMEDIATE OUTPUT) – 

Following the selection of a threshold, the model split the sub regions into sub-regions that were 

below the specified threshold (these were categorised as “urban sub-regions”, and regions that 

were above the specified threshold (these were categorised as “mining sub-regions”.  

 

12-13. Isolate and Reclassify Misclassified Pixels (PROCESS) - The next step was to isolate 

the misclassified pixels in these areas and reclassify them to the appropriate class. For example, 

urban pixels located within mining sub-regions were isolated and reclassified to the appropriate 

mining class. Likewise, any misclassified mining pixels located within urban sub-areas were 

reclassified to the appropriate urban class. Any mining pixel in an urban sub-areas was deemed a 

misclassified pixel, and likewise any urban pixel within a mining sub-area was deemed a 

misclassified pixel, and subsequently reclassified. 

 

14. Replace Original Pixels with Reclassified Pixels (PROCESS) – In overlapping areas, the 

original pixels were replaced with newly re-classified pixels. 

 

15. Reclassified Map (OUTPUT) – This output file represents the output of the urban reclass 

model, where all the misclassified pixels within the designated sub-regions were assigned to the 

correct class.  

 

 

 

C. Water Reclass Model 

 

16. Official Water Bodies (INPUT) – The final input to the model is a layer representing all the 

official water bodies in the study region. This file is crucial to the success of the water reclass 

mode, and can be either isolated from the re-classified map produced in step 15 or obtained from 

free external sources such as Open Street Map, etc. For the purposes of this study, the prior 
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method was chosen, and the official water bodies were obtained from the re-classified map. These 

areas were visually identified by using underlying high resolution satellite imagery as a basemap. 

This basemap was used solely to visually identify and verify the location of any rivers, lakes, 

wetlands, or other official water bodies that were classified in the reclassified map. Once these 

areas were identified, they were manually selected from the re-classified map, isolated and 

extracted to form a separate layer named “Official Water Bodies”. 

 

17. Remove Official Water Bodies and Isolate Unofficial Water Bodies (PROCESS) - Once 

the official water bodies had been identified, the next step was to remove the official water bodies 

from the layer with all the water bodies in the area. This left the map with all the remaining water 

bodies that did not make up rivers, lakes or wetlands. These included pools of water located in 

the forest for example, such as pools of water in exposed mining pits (which is the target water 

body for the water reclass model), as well as other unidentified pools of water. These were 

deemed “unofficial water bodies” and were isolated to ensure that only these water bodies were 

included in the water reclass model, to ensure that none of the official water bodies such as rivers 

or lakes were incorrectly reclassified.   

 

18. Select Mining Pixels Above 3 pixel sizes (PROCESS) - In order to remove the influence of 

isolated, small, misclassified pixels (that are usually 1-2 pixels in size), the minimum size of a 

mine for this step of the model was deemed as 3 pixels in size (or >2700 m² in a Landsat Image). 

It is a common occurrence in LULC classification maps, especially those done on a large scale, 

to contain isolated, misclassified individual pixels. Therefore, only mines above 2700 m² were 

selected, removing the influence of small, misclassified pixels on the reclassification of water 

bodies to ensure the most accurate result could be achieved.    

 

19. Proximity of Water Bodies to Mine Function (ADJUSTABLE PARAMETER) - With 

problematic areas (small, misclassified mining pixels and official water bodies) having been 

removed, the remaining areas of interest (mining areas above 2700 m² and unofficial water 

bodies) were selected for further use in the model. For this stage of the model, a proximity 

function was used to identify water bodies that were within a specified distance of mining regions 

above 2700 m². This was done to isolate pools of water that collected in exposed pits of mines. 

These pools of water would be in a mining region and therefore either directly adjacent to or in 
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very close proximity to other mining pixels. By setting a very small distance (150 m was used for 

this model) these pools of water could be distinguished from other pools of water that were 

present in forested or other areas on the map. This is an adjustable parameter than can be tweaked 

accordingly, however the best results were attained when a smaller distance (< 200 m) was used. 

The selected pools of water located within the specified distance of mines were isolated and 

reclassified to mine.  

 

20. Final Reclassified Map (OUTPUT) – This output file represents the final output of the water 

reclass model. It is also the final output of the entire model.  

 

 

Final Notes: The entire model, which runs on one classified map at a time, was re-run a total of 

12 times until all the initial classified maps from the GEE step were reclassified. The model 

worked best when it was run with default parameters (buffer distance 100 m, threshold 0.25, 

water distance to water bodies 150 m) the first time, and the results were observed. This was done 

in order to get an idea of which model parameters were most suitable for the study area. Once the 

suitable parameters were identified, they were adjusted to suit and the model was re-run using the 

corrected parameters. It was noted that the model parameters tended to change for Landsat Images 

of a different area. This was due to the geography of the area, and whether it was predominantly 

urban, semi-urban, or rural. Landsat images containing major urban areas such as large cities, 

airports, and towns required a small threshold value (below 0.5) to split mining regions from 

urban regions. Conversely, Landsat images in remote rural areas required much higher threshold 

values (above 1). While parameters changed across images in different areas, different images 

over time in the same study area used the same parameters, as the geography of each Landsat 

image (whether it was urban vs rural) remained relatively consistent over time. The adjustable 

parameters were therefore influenced by a change in location rather than a change over time. 
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5.3 VALIDATION 

After the model was run on the 12 classified images, the next step was to conduct a validation assessment. 

Validation was conducted on both the 12 re-classified output maps from the model and on the 12 initial 

classification maps that were exported from GEE before they were run through the model. The validation 

phase involved conducting an accuracy assessment on the classified maps (before the model) and the re-

classified maps (after the model) and comparing the results to get quantifiable data as to how well the 

reclassification model performed. The large scope of this study (12 Landsat images spanning over 2 

decades) provided an ideal platform to test the performance of the model.   

The validation data was collected in the form of points in Google Earth Engine. For the 1997 and 2009 

images, the lack of high-resolution satellite images available in those time periods meant that the original 

Landsat 5 images (30-meter resolution) from both time periods were used to collect validation points. 

For the 2019 image, validation points were collected using high resolution Sentinel images at a 10-meter 

resolution. The sampling approach for the validation points was stratified random sampling. Stratified in 

the sense that 5 sub-groups or land cover classes were analysed, but within each class, the points were 

placed randomly. Validation points were collected for each of the 5 classes, and in total, for all 12 images, 

3430 validation points were collected. The distribution of validation points was 819 for mines, 768 for 

urban, 706 for water, 755 for forest, and 382 for bare soil. Bare soil/fallow field land use class was only 

present in 2 images, and therefore had approx. half the number of points compared to the other classes. 

For each class, roughly 60 validation points were collected per image. The placement of more points in 

mining areas followed the same rationale and approach of Rahm (2015), who placed a higher density of 

points in mining areas in order to increase the probability of detecting errors and misclassifications, 

making the results for that class more reliable. Placement of validation points in GEE adhered to 2 major 

rules: 1. That the validation points were located in cloud-free areas, and 2. The points should not coincide 

with the training points used in the CART classification.  Once validation points were suitably placed, 

they were then exported from GEE into ArcMap, where the accuracy assessment of the classified maps 

from GEE and the re-classified model outputs took place. 

In ArcMap, a very simple model was created to compare the locations of the validation points to the 

corresponding LULC classes in the classified map. This model worked on 1 map at a time. This model 

compared the location of each of the 5 classes for the validation points against each of the 5 classes in 

the classified Map. For example, for the validation points collected for the mining class, the model 

determined which classes in the classified map (mining, urban, water, forest, etc.) each of these validation 
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points ended up in. This process was done for all the classes in the map. The model counted the number 

of points from each class in the validation data that ended up in each corresponding class in the classified 

map, and exported these values to Excel, where an error matrix was created in order to get the final 

statistics for the accuracy assessment.  

In Excel, the error matrix was used to calculate the number of points from the validation data that ended 

up in the correct corresponding class in the classified map. This was used to calculate the overall accuracy 

of the classified map, which was expressed as a percentage. Additionally, the user accuracy, which is the 

accuracy of the map from the perspective of a map user, and producer accuracy, which is the accuracy 

of the map from the perspective of the map maker was also calculated for the mining class alone. This 

accuracy was expressed as a percentage in order to see how the model performed in reclassifying mines 

(which is what it was built to do). While the model was built to reclassify mines, it also performed the 

combined role of reclassifying misclassified mining pixels in urban areas, and therefore also improved 

the accuracy of the classification of the urban class. The user and producer accuracies of the urban class 

were also calculated and expressed as a percentage. This process was repeated for each of the 12 images 

for the classified maps exported from GEE before the model was run. The exact same process was also 

repeated for the 12 re-classified maps that were produced as an output of the model.  
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5.4: MANUAL RECLASSIFICATION 

After validation was conducted on the data, the re-classified maps underwent one final step before the 

final maps were produced. This step was a quick manual reclassification in order to remove any major 

misclassified areas. While the model ensured that the reclassification of mining areas across the map was 

not necessary as this process was automated, in classification studies, as a form of quality control, it is 

still important to have the user look over the results and re-classify any major misclassifications. The 

model therefore does not replace manual re-classification entirely, but rather significantly reduces the 

length of time it takes by automating the vast majority of the process.   

For the manual reclassification, the 4 re-classified maps for each time period were combined to create 

one large map. This was done for all 3 time periods to create 3 large maps. These maps were then 

reviewed, and any major misclassifications were removed and reclassified manually. The main 

misclassified element on the map were areas of shoreline sediment on the banks of the lake, which due 

to their reflectance properties, were often classified as a mix of either mining or urban areas. Due to the 

mix of mining and urban pixels within one area, the model often identified these areas as a sub-region, 

and reclassified them to either mining or urban depending on the ratio of these areas and the threshold 

used. The misclassified shoreline sediment areas represented 26% of all mining areas but were very easy 

to identify and reclassify as they were concentrated on the edge of the lake. These 3 final manually 

reclassified maps of 1997, 2009, and 2019 created in this step were used for all the supplementary 

analyses (fragmentation and phenology) and calculation of statistics such as growth of mines, forest loss, 

and growth of Industrial vs. ASGM mines in the entire study area.    

 

5.5 ANALYSIS OF MINING EXPANSION AND FOREST LOSS 

The (rapid) manual reclassification ensured that the post-classification statistics calculated in this step 

were as accurate as possible. Before the statistics were calculated, the locations of the two active 

industrial mines in Suriname were obtained from the Amazon Conservation Team in Suriname (Amazon 

Conservation Team 2022). All remaining gold mining areas were ASGM. Subsequently, the areas (in 

km²) of industrial and ASGM mines were calculated for the entire study area for each of the 3 points in 

time. A change detection analysis was then conducted to determine the associated forest loss caused 

directly by both types of mining. The overall forest loss and mining growth for the entire area were also 

calculated.  
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5.6  FOREST FRAGMENTATION 

The first portion of this step involved the selection of two subset areas of 1000 km² each. These subset 

areas were rectangles measuring 34.5 km² by 29 km². These two subset areas were chosen in the most 

concentrated ASGM and industrial mining regions respectively. For these sub areas, the cutting out 

(CUT) procedure was used, where the boundary of the sub area is considered a barrier. In each subset 

area, the classified maps of the study areas were surveyed with underlying imagery to determine the 

presence of fragmenting elements which were disconnected on the maps but connected in reality (as 

verified in high resolution images). Fragmenting elements refer to all the LULC classes (urban, water, 

bare soil, mine) in the classified map which contributed to fragmentation of the forest class. Roads, which 

were also a fragmenting element, were classified as the urban class except when they were located within 

a mine, where they were classified as the mining class.  These fragmenting elements appeared 

disconnected in some areas due to misclassification. For example, misclassified forest pixels in a road 

would make the road appear disconnected as two separate parts instead of as one feature. As this would 

lead to miscalculations, these fragmenting elements were connected where necessary to ensure the 

calculations of the fragmentation metric of Effective Mesh Size was as accurate as possible. All of the 

fragmenting elements were then dissolved and added to a separate layer. The forested LULC class was 

added to another layer. The fragmenting elements layer was then erased from the forests layer to highlight 

the patches created in the forest class as a result of the fragmenting elements. The effective mesh size for 

the fragmented landscape was then calculated. Effective Mesh size refers to the size of an area an animal 

that is randomly dropped into a fragmented landscape would have access to without encountering any 

fragmenting elements (Jaeger et al. 2007). It was determined by first calculating the probability that any 

two randomly chosen points in the study area are connected. This value of probability was then multiplied 

by the size of the study area to get the value for effective mesh size (Meff) in km². The formula for Meff 

is as follows:  

 

where n is the number of patches, A1 to An represent the size of the patches from the first patch (A1) to 

patch n (An), with At being the total area of the study region (Jaeger et al. 2007). Effective Mesh size was 

used as not only is it a single value that is easily interpreted, but “it’s reliability has been confirmed on 

the basis of nine suitability criteria through a systematic comparison with other quantitative measures” 

(Jaeger et al. 2008). The Effective Mesh size was calculated for all fragmenting elements in the study 
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area combined, and then was re-calculated with mining areas excluded as a fragmenting element. The 

influence of mining on the effective mesh size was then directly determined by calculating the difference 

between the two values. 

 

5.6: PHENOLOGY 

The assessment of the forest phenology was done through the peak of season (POS) greenness metric, 

which was obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover 

dynamics version 6 data. This data has a spatial resolution of 500 m and includes multiple bands with 

phenology metrics derived from daily EVI2 measures, including: “onset of greenness, green-up midpoint, 

maturity, peak greenness, senescence, greendown midpoint, dormancy, EVI2 minimum, EVI2 

amplitude, integrated EVI2” (Friedl et al. 2019). The multi-band satellite images from 2001 to 2019 were 

downloaded through GEE, and the POS metric was calculated for each year as the EVI2 min + EVI2 

amplitude (see figure 7 for visualization of the metrics). Annual means and standard deviations of this 

metric were calculated for the three sub areas (see figure 2 in Study area section) using the zonal statistics 

tool in ArcGIS Pro (version 2.8.0, ESRI 2021) and changes in the POS values were calculated between 

2001 and 2009, 2009 and 2019, and 2001 and 2019. 

 

 

Figure 7: Diagram of MCD12Q2 phenometrics for a hypothetical vegetation cycle. Points indicate 

times of phenometrics recording (dates) at which EVI2 reached particular fractions of the cycle's 

overall amplitude. Source: Land Surface Phenology | USA National Phenology Network 
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6. RESULTS 

6.1 RE-CLASSIFICATION MODEL 

Table 1 presents the results of the original CART classification, which shows overall accuracies of 84%, 

86%, and 81% for the 1997, 2009, and 2019 images, respectively. The average overall accuracy was 

84%, with the highest accuracies coming from the water (99% producer accuracy, 94% user accuracy), 

forest (100% producer accuracy, 93% user accuracy) and bare soil class (77% producer accuracy, 86% 

user accuracy). The major problematic classes which contributed greatly to a reduction in the overall 

accuracy were the mining class (65% producer, 79% user accuracy) and urban class (76% producer, 68% 

user accuracy). These two classes reported lower accuracies than the other 3 classes and were responsible 

for reducing the overall accuracies of the images across all 3 years. A detailed breakdown of the accuracy 

of these problematic classes is provided in table 2 below.  

 

 

Table 1: Overall, producer and user accuracies (in brackets) of Original CART Classification for each 

of the 3 years. 

Year Water 

Accuracy 

(%) 

Forest 

Accuracy 

(%) 

Bare Soil 

Accuracy 

(%) 

Mining 

Accuracy 

(%) 

Urban 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

2019 100(82) 99(91) 78(91) 70 (76) 72 (68) 81 

2009 100 (99) 100 (92) 78 (90) 69 (81) 78 (72) 86 

1997 96 (100) 100 (95) 76 (77) 55 (81) 79 (65) 84 

Average 99 (94) 100 (93) 77 (86) 65 (79) 76 (68) 84 
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Table 2: Producer accuracy, user accuracy (in brackets) and overall accuracy of each image for the 

original CART classification (before model) compared to the accuracy after application of the re-

classification model.  

 

 

  BEFORE MODEL AFTER MODEL 

 IMAGE Overall 

Accuracy of 

all classes 

(%) 

Mining 

Accuracy (%) 

Producer 

(User) 

Urban 

Accuracy (%) 

Producer 

(User) 

 Overall 

Accuracy of 

all 5 classes 

(%) 

Mining 

Accuracy (%) 

Producer 

(User) 

Urban 

Accuracy (%) 

Producer 

(User) 

 

 

2019 

2019 Upper Left 78 52 (60) 58 (58) 93 85 (100) 97 (84) 

2019 Upper Right 84 81 (84) 74 (71) 89 93 (100) 89 (79) 

2019 Lower Left 80 79 (73) 83 (63) 91 88 (100) 89 (91) 

2019 Lower Right 82 67 (86) 74 (81) 96 98 (95) 86 (100) 

 Average 81 70 (76) 72 (68) 92 91 (99) 90 (89) 

        

 

 

2009 

2009 Upper Left 84 65 (92) 87 (60) 93 94 (100) 94 (81) 

2009 Upper Right 78 60 (53) 48 (62) 85 47 (100) 93 (69) 

2009 Lower Left 90 59 (97) 99 (74) 93 70 (100) 100 (81) 

2009 Lower Right 92 93 (82) 77 (93) 95 89 (94) 89 (91) 

 Average 86 69 (81) 78 (72) 92 75 (99) 94 (81) 

        

 

 

1997 

1997 Upper Left 82 59 (98) 83 (76) 86 79 (100) 89 (70) 

1997 Upper Right 83 69 (87) 72 (54) 89 88 (100) 85 (69) 

1997 Lower Left 85 17 (71) 94 (56) 94 100 (74) 69 (100) 

1997 Lower Right 85 73 (66) 67 (74) 90 82 (77) 78 (84) 

 Average 84 55 (81) 79 (65) 90 87 (88) 81 (81) 

        

 OVERALL 

AVERAGE 

84 65 (79) 76 (68) 91 84 (95) 88 (84) 
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The overall accuracy of all classes varied from one image to another for each year. Overall, the lower 

left and lower right images tended to have higher accuracies than the upper left and upper right. This was 

due to the land cover complexity of the upper left and upper right images, which were located in a highly 

urbanized setting, where large towns and cities were present, which made it much more difficult to 

accurately classify. The complex nature of these images also necessitated the inclusion of a bare soil 

class. The lower right and left images on the other hand, were much less complex, as they were located 

in remote, almost fully forested areas, and did not require the inclusion of a bare soil class. The 

classification therefore covers images with vastly different geographies, which tests the performance of 

the model in a variety of different settings. 

The mining accuracy was lowest in the 1997 images, with an average producer accuracy of 55% and user 

accuracy of 81%. The mining accuracy for the 2009 images was slightly higher, with a producer accuracy 

of 69% and user accuracy of 81%. The 2019 images had a producer accuracy of 70% and a user accuracy 

of 76%. These low accuracies are typical of mining regions given their notoriously high spectral 

variability (Lobo et al. 2018). As the target class for the semi-automated reclassification model, the 

mining accuracy in all the images greatly improved after the model was run. The mining producer 

accuracy in 1997 increased by 32 (55% to 87%), while the user accuracy increased by 7 (81% to 88%). 

The 2009 images saw an increase of 6 in producer accuracy (69% to 75%) and an increase of 18 in user 

accuracy (81% to 99%). The model performed at its best for the Landsat 8 images in 2019 (where the 

extent of mining was greatest) with an increase in producer accuracy of 21 (70% to 91%), and an increase 

of 23 in user accuracy (76% to 99%).  

In addition to the improvements in mining accuracy, the construction of the model and its ability to 

reclassify misclassified pixels in urban areas led to a concurrent improvement in the urban accuracy 

across all 12 images. The urban producer accuracy in 1997 increased by 2 (79% to 81%), while the user 

accuracy improved by 16 (65% to 81%).  For the 2009 images, the urban producer accuracy increased 

by 16 (78% to 94%) while the user accuracy increased by 9 (72% to 81%). The 2019 images saw an 

improvement in producer accuracy of 18 (72% to 90%) and user accuracy of 21 (68% to 89%). 
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Figure 8: Summary of model performance showing average mining accuracy, urban accuracy and 

overall accuracy in all three time points. 

 

The combined impact of this improvement of both the mining and urban class led to noticeable increases 

in the overall accuracy of the classification. As seen in figure 8, the overall accuracy of the classified 

map increased by 7 from 84% to 91%. The urban producer accuracy increased by 12 from 76% to 88% 

while the user accuracy increased by 16 from 68% to 84%. The mining class saw even greater 

improvements, with an increase of 19 in producer accuracy and an increase of 16 in user accuracy after 

the reclassification.  
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Figure 9: Performance of model in reclassifying the largest mines (such as Rosabel Industrial Mine) 

and urban areas (Paramaribo) 

 

This improvement in the accuracy of both mining and urban detection is apparent in large, medium, and 

small mines/urban areas. As seen in figure 9, the model performed well in re-classifying the largest 

industrial mines and as well as misclassified mining pixels in the capital city of Paramaribo. 
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Figure 10: Performance of model in reclassifying medium-sized mines and urban areas 

 

A seen in figure 10, the model also performed well in reclassifying artisanal mines and medium-sized 

urban areas, successfully reclassifying one of the larger artisanal mines as well as the medium-sized town 

of Brownsweg.  
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Figure 11: Performance of model in reclassifying the smallest mines and urban areas 

 

The model also showed good performance on even on the smallest mines and urban areas, such as the 

smallest artisanal mines and villages near the riverbanks (Figure 11). Misclassified pixels in these areas 

were successfully removed and reclassified into the appropriate mining or urban class.  
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6.2 MINING EXPANSION AND FOREST LOSS 

The two main types of gold mining activities in Suriname (industrial and artisanal mines) are 

concentrated around the Brokopondo reservoir (figure 12). The two industrial gold mines (Rosabel and 

Merian mines) are located in the west and east of the study area, while the other gold mining areas are 

all artisanal gold mines. A very small area of industrial bauxite mining is also present in the north of the 

study area near the capital city of Paramaribo.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Map of major types of Mining in Suriname 

 

The final classified maps highlight the clear growth of gold mines between the time periods (Figure 13). 

From 1997 to 2009, there was the noticeable expansion in the development of the Rosabel mine, along 

with the development of smaller artisanal mines in the southeast region of the reservoir. From 2009 to 

2019, there was the inception of the new Merian industrial mine in the northeast, along with a massive 

development of artisanal mines all over the study area.  
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Figure 13: Map showing all final classified maps highlighting mining expansion between 1997 and 2019. 
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Table 3: Mining growth and net forest loss between 1997 and 2019 

 

The considerable growth of mining highlighted in figure 11 is quantified in table 3 and can be 

attributed to the 2 main types of mining: industrial gold mining and artisanal gold mining. Overall, 

artisanal gold mining dominates the landscape and accounts for 84% of all mines in Suriname in 

2019, followed by industrial gold mining, which accounts for 15%. Bauxite mining is also present 

in Suriname, however, is only present in one area, and has been gradually decreasing in size over 

the years leading up to it being decommissioned and closed in 2017. Bauxite mining also only 

accounts for a very small portion (1%) of mining in the region.   

Given the lack of data before 1997, the 1997 year was used as a baseline, and the assumption was 

made that all mining growth leading up to that year was into forested areas and resulted in forest 

loss. 

 

 

 1997 2009 2019 

Area of Industrial Gold Mines (km2) 2 27.5 64.1 

Net Forest Loss from Industrial Gold Mines (km2) -2 -22.5 -62 

    

Area of Artisanal Gold Mines (km2) 50.7 117.6 362 

Net Forest Loss from Artisanal Gold Mines (km2) -50.7 -113.2 -343.9 

    

Area of Bauxite Mines (km2) 16.7 9.3 5.5 

Net Forest Loss from Bauxite Mines (km2) -16.7 -15.1 -15.4 

    

Total Area of Mines (km2) 69.4 154.4 431.6 

Total Net Forest Loss from Mining (km2) -69.4 -150.8 -421.3 
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Figure 14: Mining expansion (A) and associated forest loss (B) for bauxite, industrial, small 

scale (ASGM) and total mines. 

 

The overall trend of mining growth for industrial and small scale gold mining as well as the bauxite 

mine is displayed in figure 14. Overall, mining grew by 362.2 km² from 69.4 km² in 1997 to 431.6 

km² in 2019, an increase of over 522% over 22 years. 77% of this overall growth occurred in the 

second time period between 2009-2019 compared to 23% for the first time period (1997-2009). 

The results highlight a clear and alarming pattern of considerable artisanal mining growth in the 

second time period. Overall, 98% of mining expansion occurred in forested areas (figure 15), 

leading directly to 351.9 km² of forest loss. The remaining 10.3 km² of mining expansion occurred 

in either bare soil or urban areas. 
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Figure 15: Pie Chart highlighting the percentage of mining expansion into forested areas. 

 

 

Table 4: Forest Loss and Regrowth for Industrial and Artisanal Mines between 1997 and 2019 

 

 1997 - 2009 2009 - 2019 Total (1997 – 2019) 

Industrial Mine Regrowth (km2) 0.9 1.2 2.1 

Industrial Mine Forest Loss (km2) -21.4 -40.7 - 62.1 

Industrial Mine Net Forest Loss 

(Regrowth – Forest Loss) (km2) 

-20.5 -39.5 -60 

    

ASGM Regrowth (km2) 24.9 41.2 66.1 

ASGM Forest Loss (km2) -87.3 -271.9 -359.2 

ASGM Net Forest Loss (Regrowth – 

Forest Loss) (km2) 

-62.4 -230.7 -293.1 
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The net forest loss caused directly by both industrial and artisanal mining in both time periods is 

quantified in table 4. Net forest loss is equal to regrowth minus forest loss. Artisanal mining caused 

the overwhelming majority of net forest loss (293.1 km2), accounting for 83% of all net forest loss. 

Industrial mining on the other hand was responsible for 17% of net forest loss (60 km2).  

 

 

Figure 16: Forest loss and regrowth of forest on abandoned mines in each of the two time 

periods. 

 

 

Figure 16 highlights the trend in forest loss and regrowth in more detail. The results indicate that 

there is a clear continued pattern of overwhelming forest loss in the second time period. Forest loss 

for both industrial and artisanal mines more than tripled in the second time period compared to the 

first. This loss of forest cover between 2009-2019 can be attributed mainly to artisanal mines, 

which accounted for 6 times the forest loss when compared to industrial mines in this time period. 

Also apparent is the large difference in regrowth rates for both types of mining. Regrowth refers 
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to abandoned mines where the forest managed to recover and regrow after the mine was 

abandoned. Regrowth on abandoned mines was 31x greater in artisanal mines compared to 

industrial. In industrial mines, the ratio of regrowth on abandoned mines compared to forest loss 

was only 3%, compared to 16% in artisanal mines (Figures 17, 18). This much greater regrowth 

rate on abandoned mines highlights the dynamic, shifting nature of artisanal mines where exiting 

mines are frequently abandoned in favour of new locations . This is in stark contrast to the 

concentrated, static nature of industrial mines, where the area within the mining lease is fully 

exhausted, leaving little to no abandoned areas and relatively little regrowth.  

 

 

Figure 17: Pie chart showing the ratio of regrowth        Figure 18: Pie chart showing the ratio of 

to forest loss in Industrial mines                                     regrowth to forest loss in Artisanal mines. 
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6.3 FOREST FRAGMENTATION  

The differences in the patterns of mining growth become more apparent when a sub-level 

comparison of industrial and artisanal gold mines at a smaller scale is conducted. These sub-areas 

(Figure 19) have an area of 1000 km², and were chosen as the two regions where the most 

concentrated industrial and artisanal gold mining activities occurred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Location of the Sub-Areas 
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The progression of fragmentation in the two sub-areas is depicted in figure 20. The concentrated 

nature of industrial mining leads to an earlier onset of fragmentation with the initial construction 

of large roads that connect different areas of the mine, compared to the relative lack of patch 

development in the first point in time (2009) for artisanal mining. In 2019, there was a noticeable 

increase in fragmentation for industrial mining; however, the concentrated nature of mining limited 

the development of patches to the same geographical area. Conversely, the expansive nature of 

artisanal mining meant that patch development was less centralised, while the creation of larger 

patches was also possible as these long, stringy mines began connecting to each other. This caused 

large, disconnected patches (<20 km²) to be created between different mines, rather than the 

relatively smaller patches (<5 km²) created within industrial mines. 
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Figure 20: Progression of forest fragmentation (1997-2019) in the two sub-areas 
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Table 5: Effective mesh size (Meff) of all fragmenting elements including mines, all fragmenting 

elements excluding mines, and the influence of mines on the Meff (i.e the direct change in the 

Meff caused by mining, and is calculated as the difference between the first two values) 

 

The pattens of fragmentation seen in figure 20 can be quantified through the fragmentation metric 

of effective mesh size, which is displayed in table 5 above. The effective mesh size of the entire 

area, both with mines included as a fragmenting element and with mines excluded, decreased over 

time in both sub-areas. Once the influence of mines alone was isolated, the results depicted that 

mines caused a clear decrease in the effective mesh size, and this decrease became larger over time 

highlighting progressively intensifying fragmentation.  

This result is illustrated visually in figure 21. In the first time period, the effective mesh size 

decreased for both industrial and artisanal mines. While the decrease was greater for industrial 

mines in the first time period, this was overtaken by artisanal mining in the second time period. 

These results support the trend seen in the maps, where the concentrated nature of industrial mining 

caused greater fragmentation in the first time period, but was overtaken by the considerable 

  1997 2009 2019 

 

 

 

INDUSTRIAL 

MINE AREA 

Meff (km²) including mines as a 

fragmenting element  

 

559.74 

 

493.79 

 

441.6 

Meff (km²) excluding mines as a 

fragmenting element 

561.75 541.2 524.6 

Influence of mining on the Meff (km²) -2.01 

 (-0.3%) 

-47.41 

(-8.8%) 

-83.00 

(-15.8%) 

     

 

 

ASGM AREA 

Meff (km²) including mines as a 

fragmenting element 

758.73 719.42 591.52 

Meff (km²) excluding mines as a 

fragmenting element 

765.38 755.35 714.35 

Influence of mining on the Meff (km²) -6.65 

(-0.8%) 

-35.93 

(-4.8%) 

-122.83 

(-17.2%) 
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increase in fragmentation caused by artisanal mining in the second time period as these mines 

began connecting to each other.  

 

Figure 21: Comparison of decrease in effective mesh size due to mining over time in the two 

sub-areas 

 

 

 

6.4 PHENOLOGY 

Further analysis at a sub-level highlighted concerning impacts to the health of the forested 

ecosystem. The majority of the forested pixels in both the artisanal and industrial mine sub-areas 

displayed a marked decrease in peak greenness (highlighted in red) in both time periods (figure 

22). This is in stark contrast to the positive change in peak greenness (highlighted in green) 

identified within the majority of forested pixels in the natural, undisturbed sub-area. The overall 

change from 2001 to 2019 highlights the improvement in forest health over time for the natural 

area and a simultaneous decline in health for both mining sub-regions. The lack of data or pixels 

in certain parts of the sub-areas is due to issues with cloud cover, where in these areas data was 

not made available due to extensive cloud coverage in those areas for that year. 
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Figure 22: Change in peak greenness for the two mining sub areas and the natural sub-area. For 

each time period, change in peak greenness is calculated as the peak greenness value of the 

second year (e.g. 2009) minus the peak greenness value of the first year (e.g. 2001), for each 

pixel in the image.  
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The average peak greenness for the entire study area (Figure 23) underscores this trend of 

increasing peak greenness over time for the natural area, and gradual decline in peak greenness of 

the forest in mining regions. The difference between the average peak values (which is a proxy for 

vegetation health) of the different sites were significant for all site pairs with P-values  < 0.05, 

highlighting that the vegetation health of the natural site was significantly higher than the health 

of the vegetation for the industrial and ASGM sites. This decline in peak greenness is more 

pronounced for the artisanal mine sub-area, highlighting the greater impacts this type of mining 

poses for the health of the surrounding forests. In 2010, there was a marked drop in peak greenness 

that was consistent across all study areas. This was due to the severe drought in the Amazon Basin 

in 2010 which brought about drought stress in trees, resulting in abnormally low vegetation index 

values for that year (Nasa Earth Observatory 2011) 

 

 

Figure 23: Change in average peak greenness in the three sub-areas over time. 
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7. DISCUSSION 

 

7.1 – RE-CLASSIFICATION MODEL 

The mining detection accuracy of 89.5% (84% producer accuracy, 95% user accuracy) that was 

achieved by the GEE + Ratio/Threshold Reclassification model approach developed in this study 

shows the feasibility of this semi-automated cloud processing-based algorithm in producing 

reliable and highly accurate results for mining detection. Other studies reported varying degrees 

of success depending on the method. Among the well-established line of CLASLITE 

methodologies, the most successful approach was that of Asner (2013), who obtained an overall 

mining accuracy of 92.5% (93% producer accuracy, 92% user accuracy). Using the same approach, 

Elmes et al. (2014) revealed an accuracy of 70% (71% producer accuracy, 69% user accuracy), 

while Caballero Espejo (2018), when using CLASLITE alone, recorded an accuracy of 67.5% 

(80% producer accuracy, 55% user accuracy), which improved to 79.5% (81% producer, 78% user 

accuracy) once their automated GFC-fusion re-classification approach was applied. In the first 

attempt at cloud processing for mining detection, Lobo et al. (2018) recorded an accuracy of 74.5% 

(80% producer accuracy, 69% user accuracy). Despite the speed at which cloud processing can 

classify images, Lobo et al. (2018) relied heavily on manual reclassification to improve the final 

accuracy, much like Asner (2013) and Elmes (2014) with the CLASLITE approach. On the other 

hand, the automated approach developed by Caballero Espejo (2018) still relied on downloading 

and subsequent offline image processing, which significantly slows down the classification 

process compared to cloud processing, which can process images that take hours when using 

traditional software in a matter of seconds to minutes (Lobo et al. 2018).  

For the future of mining detection, the cloud processing approach is clearly advantageous, but can 

only be unlocked to its full potential when combined with automated re-classification, otherwise 

the gains in faster processing times are lost with the extensive step of manual reclassification. This 

study is therefore proposing a pioneer method that leverages on-the-cloud machine learning with 

semi-automated reclassification to ensure rapid and highly accurate mining detection. As the first 

documented method to integrate both cloud processing and an semi-automated re-classification 

model, this approach combines the advantages of the previous methods while also addressing their 
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shortcomings. The 89.5% accuracy achieved by the model compares favourably to the two most 

advanced recent methods by Caballero Espejo et al. (2018) and their CLASLITE + GFC Fusion 

method (79.5% accuracy), and by Lobo et al. (2018) and their cloud processing + manual 

reclassification approach (74.5% accuracy). This highlights that the advantage of speed gained by 

this proposed method is also coupled with highly accurate and reliable detection.  

For small study areas the use of spectral unmixing by Asner (2013) remains the most accurate and 

reliable form of mining detection with a 92.5% mining accuracy; however, the lack of both 

automation and cloud processing means that this approach is not easily transferable to very large 

study areas due to the length of time the processing and manual reclassification steps would take. 

The speed and accuracy of the GEE+ semi-automated reclassification approach proposed in this 

study ensures that it is a more suitable option for large study areas. 

Additionally, the model also addresses another notable gap in the previous methodologies, as it is 

the first to be tested in an urban setting. With other methods opting for various combinations of 

mining, water, agriculture, forest, and clear-cut land as LULC classes, there is a noticeable absence 

of an urban class. The high spatial diversity and spectral variability of urban areas imply that these 

areas are notoriously tricky to classify (Mitraka et al. 2016), and when coupled with the similarly 

high spectral variability of mining regions, creates a cocktail that results in frequent 

misclassifications between the two classes. While the spectral unmixing algorithms used by 

previous studies have proved useful in classifying urban areas (Mitraka et al. 2016), their 

performance in accurately distinguishing between mines and urban areas is yet to be determined. 

The proposed method in this paper, in contrast, is capable of classifying mines in a highly 

urbanised setting, which may prove necessary in the future as urban growth and projected mining 

expansion will increase the possibilities of more frequent intersections between these two classes. 

Another advantage of the model is the flexibility of its design. As a reclassification model designed 

to identify patterns in the spatial distribution of pixels post classification, there is a potential for it 

to be combined with different classification algorithms. For example, spectral unmixing can be 

used instead of the CART algorithm for the initial classification which is then used as an input to 

the model.  The model’s flexibility also allows it to be deconstructed for other uses, as its ability 

to reclassify misclassified mining pixels in urban areas (improving the urban accuracy by 14 

percentage points) highlights its ability to be used as a standalone urban reclassification model. 
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The mining class can theoretically be swapped with another to reclassify the occurrence of those 

pixels in urban areas. This step would require some knowledge of the spatial patterns exhibited by 

the pixels of the other class post classification, along with some adjustment of the parameters. The 

urban reclassification portion of the model can also be removed if mining detection in remote areas 

is desired where an urban class doesn’t exist. 

Despite its many advantages, the model exhibited a tendency to overclassify mining. While 

accurately identifying and reclassifying pixels within mines and cities/towns, the presence of 

misclassified mining and urban pixels located adjacent to each other in other areas caused 

misattribution of these areas to either the mining or urban class. This was seen with sediment 

deposits on the shore of the lake which were misclassified as mines due to the mix of misclassified 

mine-urban pixels in this area. While this misclassification implied that the presence of a manual 

reclassification step was necessary to identify and remove overclassified areas, this step was very 

short as the overclassified areas were all sediment deposits located in one area on the banks of the 

lake, making them easily identifiable. In mining studies, the reclassification of overclassified areas 

is a faster and more efficient process than the issue of under classification faced by previous studies 

Asner et al. (2013), Elmes et al. (2014) and Lobo et al. (2018). Under-classification requires an 

extensive manual reclassification step to verify all mining regions and assign missed areas to the 

mining class. Semi-automated reclassification models such as the one proposed in this study, 

ensure that under classification of mining regions are eliminated in a highly accurate manner 

(89.5% accuracy of mining regions), implying that manual reclassification only needs to be done 

on large, easily identifiable areas of overclassification, such as the area of sediment deposits on 

the banks of the lake. Future research can improve this limitation of the model, by potentially 

creating a new class to identify and split sediment deposits from the mining and urban class, or 

through the use of a different classification algorithm which performs better in identifying 

sediment deposits as a separate class. The performance of the reclassification model is therefore 

inherently dependent on the accuracy of the initial classification, and through improvements in the 

performance of the initial classification, the re-classification model will perform even better. 

Alternatively, the manual reclassification of the lake shoreline sediments could be included in the 

automated reclassification model by buffering the lake areas and removing the buffered lake areas 

from the classified map. 
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While the method proposed in this paper has its limitations, it succeeds in providing a 

technologically advanced framework for mining detection in a highly adaptable and flexible 

format, providing significant potential for further research to combine this method with other, 

potentially more suitable classification algorithms than CART and improve it even further.   

 

 

 

7.2  MINING GROWTH, FOREST FRAGMENTATION AND PHENOLOGY 

Overall, the results all show a strong trend of artisanal mining causing more forest loss, leading to 

more fragmentation over time, and causing greater impacts on the health of the forested ecosystem. 

These impacts were all greater in the second time period (2009-2019).  This can be attributed to 

the 2008 global financial crisis which caused a 12.8% increase in gold prices the following year 

(Hergt 2013). This increase intensified well after the recession due to the role of gold as an 

economic stabilizer in extreme market conditions (Aruga and Kannan 2020). This increase in 

prices likely served as an incentive for increased mining exploration. This is corroborated by Asner 

(2013), who found that the annual rate of mining expansion in Peru tripled following 2008, while 

Caballero Espejo et al. (2018) also noted that in 2010, gold mining in Peru increased 3x the 

previous level. The forest loss associated with this growth highlighted an interesting pattern for 

artisanal mining, where regrowth on abandoned areas was 31x greater than for industrial mines. 

This finding demonstrates the dynamic nature of artisanal mines, which is due to the fact that 

miners “have been known to move up and down rivers at a high temporal frequency” (Asner 2013), 

routinely changing locations and abandoning former mines.  

In addition to forest loss, the growth of mining led to different patterns of forest fragmentation for 

artisanal and industrial mining. The concentrated, centralised pattern of fragmentation displayed 

by industrial mines can be attributed to the spatial restrictions imposed by mining concessions, 

where the government limits mining to a specific ore within a confined area (Perez 1970). Artisanal 

mining, in contrast, is often conducted without the authorisation by the government and is therefore 

not subjected to spatial constraints, enabling a more expansive pattern of growth and a less 

centralised pattern of fragmentation. Fragmentation for artisanal mining was caused by adjacent 
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mining regions connecting to each other, while the fragmentation caused by industrial mining was 

associated with the development of large road networks within the mine. This pattern was also 

noticed by Siqueria-Gray et al. (2020), who found that fragmentation due to mining occurs 

particularly through the establishment of secondary infrastructure to transport and process 

extracted materials. This separation and isolation of patches caused by mining induced 

fragmentation causes a multitude of impacts to biodiversity. According to Kumi et al. (2021), 

fragmentation makes the dispersal of native species from one patch to another more difficult and 

places harsh constraints on plant species near the edge of fragments, subsequently leading to 

elevated levels of plant species mortality and a reduction of plant species diversity. The creation 

of smaller fragments of forest caused by mining also impacts larger Amazonian fauna. According 

to Laurance et al. (2018), patches in the Amazon rainforest of less than 1 km² in size are unable to 

support viable populations of primates and larger herbivorous mammals. Additionally, smaller 

fragments also display elevated rates of species loss compared to larger fragments (Laurance et al. 

2018). 

In addition to these impacts, the results highlighted a clear decrease in the health of the forest, 

particularly for ASGM areas. The more pronounced decrease in peak greenness and vegetation 

health for ASGM can be attributed in large part due to the illegal use of mercury in these mines, 

which leaches into the surrounding soils and waterways near mines. According to Gworek et al. 

(2020) out of all industrial emissions sources (factories, highways, smelters, etc) the highest soil 

mercury levels are consistently found near mining sites which use this chemical. This 

accumulation of mercury in the soil can have a toxic effect on trees, causing growth retardation 

even at low concentrations (Gworek et al. 2020). The sustained and consistent use of these 

chemicals near ASGM sites would therefore explain the difference in peak greenness and 

vegetation health between the ASGM and industrial mining sites. In contrast to this decrease, the 

natural sub-area which was used as a control, displayed a gradual increase in peak greenness. This 

can be attributed to the geography of the natural sub-area, as it was located in the Central Suriname 

Nature Reserve. In their study on the conservation efficiency of nature reserves on the Tibetan 

Plateau, Hua et al. (2022), found that nature reserves had a positive influence on vegetation 

greenness, cover and productivity, with over 40% of the study areas in nature reserves displaying 

a positive impact on vegetation growth. This could explain the increase in peak greenness found 

in the natural sub-area under undisturbed conditions. The significant difference (P-values <0.05) 
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found by this study between the increasing peak greenness in the natural site compared to the 

decreasing peak greenness for the ASGM and industrial mining sites highlights just how greatly 

mining (and likely the use of mercury in ASGM mines) impacts the health of the surrounding 

forest. This has potentially far-reaching implications on the global climate by affecting carbon 

fluxes in the Amazon, as a study by Asner et al. (2013) emphasized that ASGM induced forest 

degradation contributed greatly to carbon storage loss in the Peruvian Amazon.  

Overall, the negative impacts of mining are widespread and alarming, and the trend of remarkable 

mining growth after the global recession and gold price surge in 2008 is even more alarming when 

considering the additional 25% increase in gold prices in 2020 caused by the most recent global 

crisis, the COVID 19 pandemic (Galbraith and Kalamandeen 2020). Recent trends therefore show 

that future mining expansion is likely to continue, and would require a monumental effort at the 

policy level to abate the potentially catastrophic future environmental impacts.  
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8. CONCLUSION 

The objectives of this study were to analyse and quantify the progression of mining in Suriname 

over the last 2 decades, and how this has in turn impacted the health (phenology) and structure 

(fragmentation) of the forest. The study also improved existing classification techniques and 

developed a new method to classify mines utilising both cloud processing with Google Earth 

Engine and a semi-automated reclassification model. This was achieved with the proposed pioneer 

method that resulted in final mine maps with average overall accuracies of 89.5% (84% producer 

accuracy, 95% user accuracy). The approach outperformed many of the currently available 

methods used for mining detection, providing a technologically advanced approach, which 

highlights that speed and efficiency in mining detection can be coupled with reliable and highly 

accurate results. The results of the classification method highlighted that mining increased by 

362.2 km² from 69.4 km² in 1997 to 431.6 km² in 2019, an increase by over 522% over 22 years. 

Most of this growth (77%) came in the second time period between 2009 and 2019 and was 

dominated by a massive increase in artisanal mining. This growth led directly to 351.9km² of forest 

loss, 83% of which was due to artisanal mining. The results of the fragmentation analysis 

highlighted a similar story: While the concentrated nature of industrial mining may have caused 

greater fragmentation in the first time period, it was overtaken by the considerable increase in 

fragmentation caused by artisanal mining in the second time period as these mines began to 

connect to each other. Between 1997-2019, the effective mesh size decreased by 122.8 km² for the 

artisanal mine sub-area, compared to a decrease of 83 km² for the industrial mine sub-area. The 

results of the phenology study highlighted that mining in Suriname has led to a decline in the health 

of the surrounding forested ecosystem, and this decline was more pronounced for the artisanal 

mine sub-area, underscoring the clear trend of greater growth, more forest loss, greater 

fragmentation, and greater decline in the health of the forest from artisanal mining compared to 

industrial mining.   

In quantifying the growth of mining and assessing its impacts on the health and structure of the 

forest, this study has achieved its objectives. However, there are some limitations within the 

methods that can be further studied and improved upon in further research.  
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Firstly, this analysis is limited by the spatial resolution of the imagery, which is 30 m x 30 m. This 

means that changes or objects of interest smaller than 30 m x 30 m will not be identified. Future 

research should look into Sentinel data or the image fusion of Landsat panchromatic bands and 

multispectral bands. Secondly, cloud cover is a serious problem in the Amazon region, limiting 

the availability of data for continuous assessment and monitoring. Future research should explore 

the incorporation of microwave data such as Sentinel 1 into classification algorithms. Additionally, 

the use of a texture analysis to help distinguish mining regions from other classes, as well as 

exploring the possibility of image segmentation or object based classification for the identification 

of water bodies within mines, should be explored in future research as a way of improving the 

accuracy of mining detection. Lastly, the issue of overclassification with the areas of sediment 

deposits on the edge of the lake could be solved by incorporating a buffer around the lake and 

excluding all areas within a certain distance of the lake from the re-classification model. This 

would further reduce the manual reclassification step, bringing the model even closer to full 

automation.  
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