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Abstract

Title: Catastrophe Insurance: Estimation of the Generalized Tail Distortion Risk

Measure and Earthquake and Wildfire Insurance Risk Modeling

Roba Bairakdar, Ph.D.

Concordia University, 2023

In this thesis, we focus on catastrophic events in the context of insurance and risk

management.

Insurance risk arising from catastrophes such as earthquakes is one of the components of the

Minimum Capital Test for federally regulated property and casualty insurance companies.

Given the spatial heterogeneity of earthquakes, the ability to assess whether the fits are

adequate in certain locations is crucial in obtaining usable models. Accordingly, we extend

the use of Voronoi residuals to calculate deviance Voronoi residuals. We also create a

simulation-based approach, in which losses and insurance claim payments are calculated by

relying on earthquake hazard maps of Canada. As an alternative to the current guidelines

of OSFI, a formula to calculate the country-wide minimum capital test is proposed based on

the correlation between the provinces. Finally, an interactive web application is provided

which allows the user to simulate earthquake financial losses.

Homeowners’ insurance in wildfire-prone areas can be a very risky business that some

insurers may not be willing to undertake. We create an actuarial spatial model for the

likelihood of wildfire occurrence over a fine grid map of North America. Several models

are used, such as generalized linear models and tree-based machine learning algorithms.

A detailed analysis and comparison of the models show a best fit using random forests.

Sensitivity tests help in assessing the effect of future changes in the covariates of the model.

A downscaling exercise is performed, focusing on some high-risk states and provinces. The
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model provides the foundation for actuaries to price, reserve, and manage the financial risk

from severe wildfires.

We explore the first and second-order asymptotic expansions of the generalized tail

distortion risk measure for extreme risks. We propose to use the first-order asymptotic

expansion to provide an estimator for this risk measure. The asymptotic normality of the

estimator at intermediate and extreme confidence levels are shown, separately.

Additionally, we provide bias-corrected estimators, where we focus on the case where the

tail index γ is estimated by the Hill estimator. We perform a simulation study to assess

the performances of the proposed estimators proposed and we compare them with other

estimators in the literature. Finally, we showcase out estimator on several real-life

actuarial data sets.
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Chapter 1

Introduction

Catastrophic events are events that cause great and unexpected damage. In the insurance

context, they are categorized as events that have low probability of occurrence and high

claim amounts. Managing catastrophic risks includes identifying and quantifying the

insurance risk from such events, pricing and underwriting insurance products based on

the risk profile of the insureds, deciding on the risk tolerance level of the organization,

diversifying the portfolio, sharing the risk with reinsurers, and setting sufficient capital or

reserves to ensure the company’s readiness against such extreme events. A thorough and

complete understanding of the insurance risk associated with catastrophes guarantees

that the charged premiums are adequate and that the reinsurance contracts and capital

are sufficient, and hence minimizes the risks of insufficient funds to cover possible risks.

Catastrophic events may include natural disasters such as earthquakes, wildfires ignited

due to lightnings, floods, and hurricanes and also man-made disasters such as terrorist

attacks, riots, and wildfires ignited by human-kind. Such events may be excluded from a

standard homeowners insurance policy, depending on the regulation and policy conditions

set by each insurer and reinsurer. Typically, the insurer sets its definition of a

catastrophe based on an event exceeding at least one of several thresholds for loss, such

as the total insured loss amount or the number of casualties, etc. For example, Canada’s
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loss and exposure indices provider, Catastrophe Indices and Quantification Inc. (CatIQ),

define a catastrophe as an event that causes more than CAD $25m of insured damage

(CatIQ 2021). Since 2014, CatIQ has collected over 130 events in their database,

corresponding to CAD $21b of insured losses.

1.1 Insurance Risk Models

Predictive modeling for property and casualty (P&C) insurance companies usually

requires considering the frequency and severity of the claims, separately. Pricing

actuaries traditionally used generalized linear models (GLMs) to develop insurance

pricing models; see, for example, De Jong, Heller, et al. (2008), Ohlsson and Johansson

(2010), Anderson et al. (2004), and Haberman and Renshaw (1996). In recent years,

machine learning algorithms are becoming more popular, and accordingly predictive

modeling is gradually changing. Machine learning techniques in the actuarial literature

are still limited. Wüthrich (2018) and Wüthrich and Buser (2020) use tree-based

algorithms to model claim frequencies, while Schelldorfer and Wüthrich (2019) use neural

networks. Guelman (2012) uses gradient boosting trees for modeling and predicting auto

insurance loss costs. Henckaerts et al. (2021) use decision trees to develop pricing plans

built from the frequency and severity of claims. Gabrielli, Richman, and Wüthrich (2020)

embed a classical actuarial regression model into a neural network architecture for

reserving purposes.

In the previously mentioned models, which cover non-catastrophic insurance products, the

actuaries are responsible of measuring the risk by relying on the historical claim experience

of the insurance company. This requires the availability of enough data points to capture

a wide range of possible probabilistic scenarios, in addition to proper on-levelling of the

claims data, i.e. manipulating the data to ensure that the historical risk is comparable to
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the current level of risk, by for example accounting for inflation, or an increase in exposure.

This method could be difficult for catastrophe risk due to the unavailability of a sufficient

number of data points because, by definition, catastrophes are extreme events and they

have very long return periods, i.e. low probability of occurrence and high claim amounts.

Accordingly, losses in recent years may not be indicative of future losses. It is highly

improbable that an insurance company at the current time has a complete database of

extreme losses, such as the loss that occurs at a rate of 1-in-500 years, and even if they

have 500 years worth of data, using the data could be impractical due to the possible

changes that could have happened in 500 years, such as climate change, urbanization,

building codes, building material, etc.

Accordingly, it is more appropriate to consider a risk decomposition approach for

catastrophe modeling, i.e. identify the hazard, vulnerability and exposure; see

Mitchell-Wallace et al. (2017) for details. There is catastrophe risk at the intersection of

those three components, such that a vulnerable property is subject to wildfire risk, for

example, due to its location and characteristics. Firstly, the hazard portion of the model

indicates the intensity of the risk, such as the frequency or rate of wildfire occurrence or

peak ground acceleration for an earthquake, which are both examples of a hazard that

varies spatially. Secondly, vulnerability assessment helps in quantifying the relationship

between the hazard and the damage by means of a metric, such as damage ratios, which

quantifies the expected damage as a percentage of the replacement cost of the building.

This provides a tool to estimate the relative damage given the intensity of the hazard.

For catastrophic events, the lack of sufficient data points may pose a hurdle in the

creation of vulnerability functions and relations. In these cases, the help of civil engineers

may be required to analyze the characteristics of the properties and estimate the

vulnerability relations to the hazard in question. Thirdly, collection of exposure requires

the valuation of properties and/or infrastructures at risk. This is usually represented in

terms of the cost of building replacement. The values are usually divided into buildings
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and contents exposure, and can be divided further into building occupational classes,

such as residential and non-residential, and building construction type, such as wooden,

concrete, steel, masonry, etc, and year of built. In earthquake modeling, for example,

such information are major factors that explain the extent of damage caused by an

earthquake and its subsequent events. For example, an earthquake in Häıti in 2010

resulted in almost 250,000 fatalities, however an earthquake in New Zealand in 2010, of

comparable intensity, did not cause any fatalities. A result attributed to New Zealand’s

advanced building code and readiness to earthquakes (Wallemacq and House 2017).

Industry exposure database could also be outsourced from external providers, such as

CatIQ. Finally, a typical catastrophe model uses the previous components to calculate

the total losses at the predetermined aggregation level, in addition to claim values, which

are calculated after the application of insurance policy terms, such as deductibles and

policy limits. Very small claim amounts that are associated with internal expenses may

be obsolete for an insurance company to cover because the price of the policy will be

unreasonable. Accordingly, some insurance policies may have a deductible, which is the

amount that the insured will have to cover before getting a claim payment from the

insurer. For very large claim values, the insurer may wish to cover the damage up to a

predetermined policy limit. Deductibles and limits can vary by coverage and can be set

as fixed values, or a proportion of the exposure or the total loss.

Given that catastrophes are usually geographically correlated risks, assuming complete

independence between the individual risks is unrealistic in practice. For example,

consider a wildfire flaming in a highly populated area. It is highly probable that

neighboring properties may experience damage from that wildfire at the same time, which

means that one could have spatial dependence in between the risks in this event.

Conditional on a set of spatially dependent variables, one could achieve spatial

independence. It is also realistic to assume spatial heterogeneity, which means that

observations are not identically distributed. Spatial modeling in the actuarial literature
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usually focuses on claims data; see, for example Shi and Shi (2017) for spatial frequency

and severity modeling of auto-insurance claims. However, as discussed earlier, one may

not always have sufficient claims data that covers the geographical region of interest,

especially for natural catastrophes. Accordingly, a catastrophe decomposition approach is

to be pursued, as we demonstrate in Chapter 4.

Spatio-Temporal Point Processes (STPP) can be used to model data of the location and

time of occurrence of events. Assessment of the adequacy of the fit of STPP models has

witnessed considerable progress in recent years. For example, Schorlemmer and

Gerstenberger (2007) developed methods such as the Number test, which compares the

total estimated and observed count of events with the observed, the Likelihood test,

which assesses the overall likelihood of the fitted model, and the Likelihood-ratio test,

which compares the relative performance of two fitted models, see Schorlemmer and

Gerstenberger (2007), Zechar, Gerstenberger, and Rhoades (2010), and Rhoades

et al. (2011). Those methods are successful in assessing the overall fit of the model,

however, they are incapable of identifying locations or time periods where the fit is poor.

Recent progress in measuring the goodness-of-fit and comparing spatio-temporal models

include pixel-based residual methods, in which the spatial region is divided into a

predetermined regular grid and the residual is computed for each pixel, see Baddeley

et al. (2005) and Zhuang (2006). For models where the expected number of events in a

pixel is close to zero, some problems may arise because of the heavy skewness of the

distribution of the residual for the given pixel. Bray et al. (2014) proposed to compare

the expected and observed count of events over Voronoi polygons generated by the

observed spatio-temporal point pattern.
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1.2 Risk Measures

Risk management is essential for regulators, insurance companies and financial institutions

for several reasons, such as pricing insurance products and assessing the risk exposure

of the entity to determine the minimum required capital that needs to be held to cover

unexpected losses. For example, the Office of the Superintendent of Financial Institutions

(OSFI) in Canada sets guidelines for the recommended assessment of insurers’ catastrophe

risk management and calculation of probable maximum loss (PML), the threshold dollar

value of losses beyond which losses are unlikely. The insurance risk arising from earthquakes

is one of the components of the Minimum Capital Test (MCT) for federally regulated P&C

insurance companies and it is calculated in terms of the PML that occurs at a rate of

1-in-500 years, representing the 99.8th percentile of the distribution of the annual maxima.

Risk measures can also be used in pricing insurance products and in capital allocation per

line of business. It helps the organizations manage the risks that emerge from adverse

scenarios, especially those that are highly unlikely. They are typically used to explain the

tail behavior of the loss distributions. Various risk measures have been proposed in the

literature, such as Value-at-Risk (VaR), Tail Value-at-Risk (TVaR), Range Value-at-Risk

(RVaR), distortion risk measure, etc. VaR is the most commonly known risk measure, and

it represents the maximum loss amount which is not exceeded with a given high confidence

level p. By definition, the VaR does not provide any information about the behavior of the

loss random variable X beyond its p-level quantile, which is one of the disadvantages of

using VaR as a risk measure. Additionally, it lacks the subadditivity property for coherent

risk measures; see Artzner et al. (1999) and McNeil, Frey, and Embrechts (2015) for further

details and properties of risk measures. Thus, TVaR was proposed as an alternative to

VaR and it is usually superior because it is subadditive and it considers losses beyond the

VaR. For a continuous random variable, TVaR is simply defined as the expected loss in

the event that VaR at confidence level p is exceeded. TVaR is sometimes referred to as
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the Expected Shortfall. RVaR is a general case that combines both VaR and TVaR. It is

defined as the expected loss in the event that VaR at confidence level p1 is exceeded, but

still below VaR at confidence level p2, for p1 ≤ p2.

Definition 1.2.1. For a continuous random variable X with cumulative distribution function

FX , the Range Value-at-Risk at level range (p1, p2), with 0 ≤ p1 ≤ p2 ≤ 1 is defined as

RVaRp1,p2(X) = E [X|VaRp1(X) ≤ X ≤ VaRp2(X)] =





1
p2−p1

∫ p2
p1

VaRu(X)du, if p1 < p2

VaRp1(X), if p1 = p2,

where

VaRp(X) = inf {x ∈ R : FX(x) ≥ p}

is the Value-at-Risk at level p ∈ [0, 1].

For p1 = p2, RVaR simplifies to VaR. For p1 < p2 < 1, RVaR is well defined for any random

variable. For p1 < p2 = 1, RVaR simplifies to TVaR, which is well defined only for the

set of random variables with finite means. Even though VaR fails to give any information

beyond the level p, RVaR quantifies the magnitude of the loss of the worst 100(1 − p1)%

to 100(1 − p2)% cases. VaR and TVaR can be expressed in terms of Choquet Integrals

(Denneberg 1994).

Definition 1.2.2. Let g(·) : [0, 1] → [0, 1] be a non-decreasing function with g(0) = 0 and

g(1) = 1. For a non-negative continuous random variable X with cumulative distribution

function FX and survival function FX , the Choquet integral is defined as follows:

ρg(X) =

∫ ∞

0

g
(
FX(x)

)
dx. (1.2.1)

This function is a distortion function, and given that X is a loss random variable, then it

is also called a distortion risk measure.
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Let gVaR(x) = 1x>1−p and gTVaR(x) = min{x/(1− p), 1}, then it can be easily shown that

VaRp(X) =

∫ ∞

0

gVaR
(
FX(x)

)
dx

TVaRp(X) =

∫ ∞

0

gTVaR

(
FX(x)

)
dx.

Denneberg (1990) proposed using distortion functions as premium principles and they have

been developed further afterwards, see for example S. S. Wang (2000). Denote by q the

quantile function of X. By applying some change of variables and integration by parts, an

alternative representation of Eq. (1.2.1) can be provided,

ρg(X) =

∫ 1

0

g(u)dq(1− u) =
∫ 1

0

q(1− u)dg(u).

To study the asymptotic behavior of distortion risk measures, Zhu and Li (2012)

introduced tail distortion risk measures, which represent the expected losses under a

scenario probability measure that is deformed on the tail loss distribution.

Definition 1.2.3. Let g(·) : [0, 1] → [0, 1] be a non-decreasing function with g(0) = 0

and g(1) = 1. For a non-negative continuous random variable X, the tail distortion risk

measure is defined as follows:

ρg(X|X > VaRp(X)) = ρg,p(X) =

∫ ∞

0

g
(
FX|X>VaRp(X)(x)

)
dx, (1.2.2)

where FX|X>t(x) = P (X > x|X > t).

With a distortion function g(·), introduce gp(·) with 0 < p < 1 as

gp(u) = min{u/(1− p), 1} =





g
(

u
1−p

)
, 0 ≤ u < 1− p,

1, 1− p ≤ u ≤ 1,
(1.2.3)

which again is a distortion function. By combining Eq. (1.2.2) and Eq. (1.2.3), the tail

distortion risk measure at confidence level p of a loss random variable X can be re-written
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as

ρg,p(X) =

∫ ∞

0

gp
(
F (x)

)
dx.

For the special case where g(x) = x, the tail distortion risk measure becomes TVaR. El

Methni and Stupfler (2017) propose a more general risk, called the extreme Wang distortion

risk measure.

ρg,p(h(X)) =

∫ 1

0

h ◦ q(1− u)dgp(u).

where h : [0,∞) → [0,∞) is a strictly increasing, continuously differentiable function.

This generalized tail distortion risk measure covers many well known risk measures. For

example, if g(x) = x and h(x) = xα, then

ρg,p(X) = E [Xα|X > VaRp(X)] ,

which is the Conditional Tail Moment (CTM) of order α of the loss random variable X.

1.3 Contributions

In Chapter 2, we explore the first and second-order asymptotic expansions of the generalized

tail distortion risk measure for extreme risks. We propose to use the first-order asymptotic

expansion to provide an estimator for this risk measure. El Methni and Stupfler (2017)

had proposed estimator based on the asymptotic expansions but under the assumption

that h(x) = xα. Alternatively, we give a complete treatment of the estimator for general

h. We also prove the asymptotic normality of the estimator at intermediate and extreme

confidence levels, separately. Additionally, we provide bias-corrected estimators, where we

focus on the case where the tail index γ is estimated by the Hill estimator. We perform
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a simulation study to assess the performances of the proposed estimators proposed and

we compare them with other estimators in the literature, such as the ones introduced in

El Methni and Stupfler (2017, 2018). Finally, we showcase out estimator on several real-life

actuarial data sets.

In Chapter 3, we prepare a catastrophe model for earthquakes, in which the distribution

of losses and insurance claim payments are estimated for a set of simulated earthquakes.

We also analyze the earthquake insurance risk in Canada by creating an open-source and

reproducible simulation-based approach. We start by fitting multiple STPP models, which

require testing to confirm their adequacy and model comparison techniques to choose the

best fit model. We propose to extend the Voronoi residual methods by calculating the

Pearson Voronoi residuals, which have mean 0 and variance approximately equal to 1, in

analogy with Pearson residuals for generalized linear models. For comparison of competing

models, we also propose to extend the definition of pixel-based deviance residuals to Voronoi

Polygons. In analogy with linear models, the resulting residuals may be called Deviance

Voronoi residuals. Those methods are used to measure the goodness-of-fit of fitted spatio-

temporal models for the significant Canadian earthquakes point pattern. The best fit model

is used to simulate a large number of earthquakes. The simulation algorithm relies on

publicly available data, such as earthquake hazard maps of Canada and population census

data. For each earthquake, we estimate its location, magnitude, intensity and the affected

properties. Building occupancy classifications and their respective damage probability

matrices are combined with the earthquake insurance market penetration and policy terms

to calculate the earthquake risk for each Canadian municipality. This models allows us to

extend earthquake losses beyond past events into probable occurrences in the future and

provide a methodology to quantify the insured losses from earthquake occurrences. An

interactive web application allowing the user to simulate a significant earthquake based

on any chosen location is provided. Additionally, we review OSFI’s MCT formula for

earthquake insurance risk in P&C companies and provide a possible alternative.
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In Chapter 4, we create an actuarial spatial model for the likelihood of wildfire

occurrence over a fine grid map of North America. The wildfire risk model is specifically

tailored for USA and Canada, separately, and is split for each cause of ignition:

man-made and natural. The model takes into account multiple types of wildfire risk

features: continuous variables, categorical variables, and geographical coordinates.

Several models are used, such as generalized linear models and tree-based machine

learning algorithms, see Friedman, Hastie, Tibshirani, et al. (2001). Combining numerous

decision trees in an ensemble, such as a random forest, provides high predictive

performance with an ability to discover interaction effects between the predictors.

Tree-based machine learning models offer strong predictive capabilities, in addition to

their interpretability and ease of explanation of the importance of the predictors, unlike

neural networks. They can also implicitly handle variable correlation, capture variable

interactions and non-linear relationships between the predictors. Given the lack of

publicly available wildfire claims data for each location in North America, we instead

focus on modeling the annual burn probabilities by relying on publicly-available historical

wildfire data. The goal of the article is to provide an interpretable model that predicts

the annual burn probabilities for any location in North America and to compare how

random forest models perform compared to more commonly used actuarial modeling

techniques, such as GLMs. The comparison focuses on the statistical accuracy and

interpretability of the models. The best fit model is used in a downscaling exercise where

we predict the annual burn probabilities at a high resolution for some high-risk statues

and provinces. The model provides the foundation for actuaries to price, reserve, and

manage the financial risk from severe wildfires.

At the end of the thesis, we provide an appendix that supplements the chapters of the

thesis. It contains some definitions, additional details, algorithms and results that are

mentioned within the text. Throughout the text, references are given to alert the reader if

they wish to visit the appendix.
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Chapter 2

Estimation of the Generalized Tail

Distortion Risk Measure

2.1 Introduction

Risk measures are now well established statistics, which are used in several fields such as

environment, biomedical, actuarial science and enterprise risk management. The

objective is always to represent specific characteristics of a risk, respecting the users’

preferences and risk appetite. The risk measure for a loss random variable is the amount

of additional capital requirement that a financial institution needs to invest as a buffer

against unexpected future losses, such that the resulting position is satisfactory to

internal or external risk parties. Distortion risk measures represent expected losses under

a scenario probability measure, which may represent a stakeholder’s preference. They

were first explored in the actuarial literature by Denneberg (1994) and S. Wang (1995).

Denneberg (1990) proposed using distortion functions as premium principles and they

have been developed further afterwards, see for example S. S. Wang (2000).

Definition 2.1.1. Let g(·) : [0, 1]→ [0, 1] be a distortion function, namely a non-decreasing

function with g(0) = 0 and g(1) = 1. For a random variable X with cumulative distribution
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function FX and survival function FX , the distortion risk measure of X is defined as

follows:

ρg(X) =

∫ 0

−∞

[
g
(
FX(x)

)
− 1
]
dx+

∫ ∞

0

g
(
FX(x)

)
dx.

For a non-negative and continuous risk variable X, the first term in the equation above

cancels, and hence it coincides with Definition 1.2.2.

Some of the most common risk measures are in fact special cases of distortion risk measures.

For example, the Value-at-Risk (VaR) and the Tail Value-at-Risk (TVaR) of a non-negative

loss random variable can be expressed as distortion risk measures for g(x) = 1{x>1−p} and

g(x) = min{x/(1 − p), 1}, respectively. The distortion risk measure ρg satisfies several

properties, which are listed below.

Lemma 2.1.1. Let g(·) : [0, 1] → [0, 1] be a distortion function, and X be a continuous

random variable. Then the distortion risk measure ρg satisfies the following properties:

1. (Translation invariance) Consider the scalar c ∈ R. Then ρg(X + c) = ρg(X) + c.

2. (Positive homogeneity) Consider the scalar c ∈ R. Then ρg(cX) = cρg(X).

3. (Monotonicity) Consider the continuous random variable Y , such that X ≤ Y almost

surely. Then ρg(X) ≤ ρg(Y ).

4. (Subadditivity) Consider the scalars c, x, y ∈ [0, 1], such that g (cx+ (1− c)y) ≥
cg(x) + (1 − c)g(y), i.e. g is concave, and let Y be a continuous random variable.

Then ρg(X + Y ) ≤ ρg(X) + ρg(Y ).

5. (Superadditivity) Consider the scalars c, x, y ∈ [0, 1], such that g (cx+ (1− c)y) ≤
cg(x) + (1 − c)g(y), i.e. g is convex, and let Y be a continuous random variable.

Then ρg(X + Y ) ≥ ρg(X) + ρg(Y ).

Note that a risk measure is coherent if it satisfies properties 1-4 in Lemma 2.1.1 (Artzner

et al. 1999) and not all distortion risk measures are coherent, such as the VaR, which does
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not satisfy the subadditivity property. The relationship between coherent and distortion

risk measures were introduced by Schmeidler (1986, 1989).

Zhu and Li (2012) study the asymptotic behavior of distortion risk measures focusing on

the right tail of a heavy-tailed loss distribution. They introduce the tail distortion risk

measure, which represents the expected losses under a scenario probability measure that

is deformed on the tail loss distribution.

Definition 2.1.2. With a distortion function g(·), introduce gp(·) with 0 < p < 1 as

gp(u) =





g
(

u
1−p

)
, 0 ≤ u < 1− p,

1, 1− p ≤ u ≤ 1,

which again is a distortion function. Then for a random variable X with cumulative

distribution function FX and survival function FX , the tail distortion risk measure of X

at level p is defined as follows:

Tp[X] =

∫ 0

−∞

[
gp
(
F (x)

)
− 1
]
dx+

∫ ∞

0

gp
(
F (x)

)
dx

This definition differs from the one given by Zhu and Li (2012), but they are identical when

the risk variable X is non-negative and continuous, as it is expected to be in the context

of insurance.

Clearly, if g(·) is concave, then gp(·) is concave as well, which leads to the coherence of

the tail distortion risk measure. For the special case with g(x) = x and a continuous

risk variable X, for p > F (0) the tail distortion risk measure becomes the well-known the

expected shortfall, Tp[X] = E [X|X > F←(p)], where, and throughout the paper,

F←(p) = inf{x : F (x) ≥ p}

is the VaR of X or the quantile of F with the usual convention that inf ∅ =∞.
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Define the function U(·) as the quantile function of 1/F , namely,

U(t) =

(
1

F

)←
(t) = F←

(
1− 1

t

)
, t ≥ 1.

We assume g(·) and gp(·) to be left continuous, then we can rewrite Tp[X] as

Tp[X] =

∫ 1

0

F←(1− q)dgp(q) =
∫ 1

0

U

(
1

q(1− p)

)
dg(q). (2.1.1)

In El Methni and Stupfler (2017), a more general risk, called extreme Wang distortion risk

measure, is proposed

ρp[X] =

∫ 1

0

h ◦ U
(

1

q(1− p)

)
dg(q) (2.1.2)

where h : [0,∞) → [0,∞) is a strictly increasing, continuously differentiable function.

Various estimation methods of ρp[X] are studied by El Methni and Stupfler (2017, 2018).

This generalized tail distortion risk measure covers many well known risk measure. For

example, if g(x) = x and h(x) = xα, then

ρp(X) = E [Xα|X > F←(p)] ,

known as the Conditional Tail Moment (CTM) of order α of the loss random variable X.

This article is divided as follows. In Section 2.2 we explore the first and second-order

asymptotic expansions of the generalized tail distortion risk measure for extreme risks. In

Section 2.3, we provide estimators for the generalized tail distortion risk measures and we

prove their asymptotic normality at intermediate and extreme confidence levels p,

separately. El Methni and Stupfler (2017) had proposed estimator based on the

asymptotic expansions but under the assumption that h(x) = xα. Alternatively, we give a

complete treatment of the estimator for general h. Additionally, we provide

bias-corrected estimators, where we focus on the case where the tail index γ is estimated
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by the Hill estimator. In Section 2.4, we perform a simulation study to assess the

performances of the proposed estimators proposed and we compare them with other

estimators in the literature, such as the ones introduced in El Methni and Stupfler (2017,

2018). In Section 2.6, we showcase our estimator on several real-life actuarial data sets.

Finally, Section 2.7 concludes the article.

2.2 Asymptotic Analysis

In this section, we explore the asymptotic expansions of the generalized tail distortion risk

measure for extreme risks. For a random variable X with distribution function F , we say

that X is regularly varying with extreme value index γ > 0 if its survival function, F , is

regularly varying with index −1/γ. This is also denoted by X ∈ RV−1/γ, where γ index

follows from Definition 2.2.1.

Definition 2.2.1. An eventually non-negative measurable function f(·) is said to be regularly

varying at ∞ with index γ ∈ R, if for all x > 0,

lim
t→∞

f(tx)

f(t)
= xγ. (2.2.1)

This is denoted by f(·) ∈ RVγ.

The second-order regular variation is needed for analyzing the asymptotic normality of the

estimator.

Definition 2.2.2. A regularly varying function f(·) is said to be second-order regularly

varying at ∞ with first-order index γ ∈ R and second-order index ρ ≤ 0, if there exists a

measurable function A(·), which does not change sign eventually and converges to 0, such

that

lim
t→∞

f(tx)/f(t)− xγ
A(t)

= xγ
xρ − 1

ρ
=: Jγ,ρ(x). (2.2.2)

This is denoted by f(·) ∈ 2RVγ,ρ and A is called (second-order) auxiliary function.
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When ρ = 0, Jγ,ρ(x) is understood as xγ log x.

When the survival function F is assumed to be RV or 2RV, it is equivalent to assume

that the tail quantile function U is RV or 2RV. To be more specific, Theorem 1.1.6 and

Corollary 1.2.10 of Haan and Ferreira (2006) show that for γ < 0, U(·) ∈ RVγ if and only if

F (·) ∈ RV−1/γ. Further, Theorem 2.3.9 of Haan and Ferreira (2006) shows that for γ > 0

and ρ ≤ 0, U(·) ∈ 2RVγ,ρ with an auxiliary function A(·) if and only if F (·) ∈ 2RV−1/γ,ρ/γ

with an auxiliary function A(1/F (·)). In this case, necessarily A(·) ∈ RVρ.

Let a random variable Y have the tail quantile function V (t) = h ◦ U(t) and denote

its distribution function by G. Then by the definition of generalized tail distortion risk

measure in Eq. (2.1.2), it is equivalent to have

ρp(X) =

∫ 1

0

V

(
1

q(1− p)

)
dg(q) = Tp(Y ).

That is the generalized tail distortion risk measure of X is equivalent to the tail distortion

risk measure of Y . Then with the following regular variation result on the tail quantile

function V , the asymptotic expansions of ρp(X) can be obtained directly from Yang (2015).

Lemma 2.2.1. 1. (Lemma 2.4 (i) of Lv, Mao, and Hu (2012)) If U ∈ RVγ with γ > 0

and h ∈ RVα with α > 0, then V = h ◦ U ∈ RVξ with ξ = αγ.

2. (Proposition 2.9 of Lv, Mao, and Hu (2012)) Assume that U ∈ 2RVγ,ρ with γ > 0,

ρ < 0, and auxiliary function A(t), and h ∈ 2RVα,β with α > 0, β < 0 and auxiliary

function B(t). Then V = h◦U ∈ 2RVξ,η with auxiliary function C(t), where ξ = αγ,

η = max{ρ, βγ}, and C(t) = αA(t) + γB ◦ U(t).

2.2.1 First-order Asymptotics

Now we are ready to show the first-order asymptotic expansions of the generalized tail

distortion risk measure, which is by Corollary 3.1(a) of Yang (2015).
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Theorem 2.2.1. Assume that U ∈ RVγ with γ > 0 and h ∈ RVα with α > 0. Further

assume that
∫∞
1
g
(
x−1/(αγ+δ)

)
dx <∞ for some δ > 0. Then

ρp[X] ∼ λγh (F
←(p)) , (2.2.3)

where λγ = 1 +
∫∞
1
g
(
x−1/(αγ)

)
dx.

2.2.2 Second-order Asymptotics

Next, we show the second-order asymptotic expansions of the generalized tail distortion

risk measure, which is by Corollary 4.1(a) of Yang (2015).

Theorem 2.2.2. Assume that U ∈ 2RVγ,ρ with γ > 0, ρ < 0, and auxiliary function

A(t), and h ∈ 2RVα,β with α > 0, β < 0 and auxiliary function B(t). Suppose that
∫∞
1
g(x−1/(αγ+δ))dx <∞ for some δ > 0. Then

ρp[X] = λγh (F
←(p))

(
1 + Iγ,ρC

(
1

1− p

)
(1 + o(1))

)
,

where λγ = 1 +
∫∞
1
g
(
x−1/(αγ)

)
dx, C(t) = αA(t) + γB ◦ U(t), η = max{ρ, βγ}, and

Iγ,ρ =




− 1
λγη

(∫ 1

0
g
(
x−1/(αγ+η)

)
dx+

∫∞
1
g
(
x−1/(αγ)

)
dx
)
, αγ ≤ |η| ,

1
λγη

∫∞
1

(
g
(
x−1/(αγ+η)

)
− g

(
x−1/(αγ)

))
dx, αγ > |η| .

2.3 Estimations

In this section, we discuss the estimation of the generalized tail distortion risk measure

based on the first-order asymptotic expansion in Theorem 2.2.1. That is we propose to

estimate ρpn(X) by

ρ̂pn(X) = λ̂γh ◦ F̂←(pn), (2.3.1)
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where F̂← is the estimator for the quantile function and λ̂γ =
(
1 +

∫∞
1
g
(
x−1/(αγ̂)

)
dx
)
for γ̂

being the estimator for the tail index γ. pn can be assumed to be an intermediate sequence

or an extreme sequence. We investigate the asymptotic normality of the estimator ρ̂pn(X)

for each case separately.

Note that El Methni and Stupfler (2017) also proposed an estimator based on the

asymptotic expansions but under the assumption that h(x) = xα. In this paper, we give a

complete treatment of the estimator in Eq. (2.3.1) for general h.

2.3.1 Intermediate level

In this subsection, we study the estimator in Eq. (2.3.1) at the intermediate level. Let qn

be an intermediate level sequence, that is a sequence satisfying that as n → ∞, qn → 1

and n(1− qn)→∞. We study the property of ρ̂qn(X).

At the intermediate level, the quantile function is estimated as

F̂←(qn) = Xn−⌊n(1−qn)⌋,n.

The tail index γ can be estimated by the Hill estimator, the moment estimator and other

commonly used estimator for γ. Then we have the intermediate level estimator for the

generalized tail distortion risk measure as

ρ̂qn(X) = λ̂γh
(
Xn−⌊n(1−qn)⌋,n

)
, (2.3.2)

where

λ̂γ = 1 +

∫ ∞

1

g
(
x−1/(αγ̂)

)
dx.

The next theorem shows the asymptotic normality of ρ̂qn(X).

Theorem 2.3.1. Under the conditions of Theorem 2.2.2, if qn ↑ 1, n(1 − qn) → ∞, and
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√
n(1− qn)C

(
1

1−qn

)
→ ζ ∈ R, and we assume further that

√
n(1− qn)

(
γ̂ − γ, F̂

←(qn)

F←(qn)
− 1

)
d−→ (Γ,Θ)

for some distributions (Γ,Θ), then as n→∞, we have

√
n(1− qn)

(
ρ̂qn(X)

ρqn(X)
− 1

)
d−→ m(γ)Γ + αΘ− ζIγ,ρ,

where

m(γ) =

∫∞
1
g′
(
x−1/(αγ)

)
x−1/(αγ) ln x dx

αγ2λγ
.

Proof. By the definition of ρ̂qn(X) and Theorem 2.2.2, we have

ρ̂qn(X)

ρqn(X)
=

λ̂γh
(
F̂←(qn)

)

λγh (F←(qn))
(
1 + Iγ,ρC

(
1

1−qn

)
(1 + o(1))

)

=
h
(
F̂←(qn)

)

h (F←(qn))
× 1 +

∫∞
1
g
(
x−1/(αγ̂)

)
dx

1 +
∫∞
1
g (x−1/(αγ)) dx

× 1

1 + Iγ,ρC
(

1
1−qn

)
(1 + o(1))

.

By taking log on both sides, we obtain

log
ρ̂qn(X)

ρqn(X)
= log

h
(
F̂←(qn)

)

h (F←(qn))
+

(
log

(
1 +

∫ ∞

1

g
(
x−1/(αγ̂)

)
dx

)
− log

(
1 +

∫ ∞

1

g
(
x−1/(αγ)

)
dx

))

− log

(
1 + Iγ,ρC

(
1

1− qn

)
(1 + o(1))

)
:= I1 + I2 − I3.

For I1, noting that h ∈ 2RVα,β, we rewrite the 2RV definition as

lim
t→∞

x−α h(tx)
h(t)
− 1

B(t)
=
xβ − 1

β
, x > 0. (2.3.3)

Since limt→∞B(t) = 0, Eq. (2.3.3) is equivalent to

lim
t→∞

log h(tx)− log h(t)− α log x

B(t)
=
xβ − 1

β
.
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By Theorem 2.3.9 of Haan and Ferreira (2006), there exists B0(t) ∼ B(t) such that for any

ε > 0, there exists t0 > 0 such that for all t ≥ t0, x ≥ 1,

∣∣∣∣
log h(tx)− log h(t)− α log x

B0(t)
− xβ − 1

β

∣∣∣∣ ≤ εxβ+ε. (2.3.4)

Since F̂←(qn) = Xn−⌊n(1−qn)⌋,n as n→∞, and by letting t = F←(qn) and x = F̂←(qn)
F←(qn)

,

log
h
(
F̂←(qn)

)

h (F←(qn))
= α log

F̂←(qn)

F←(qn)
+B0(F

←(qn))

(
F̂←(qn)
F←(qn)

)β
− 1

β
+oP (1)B0(F

←(qn))

(
F̂←(qn)

F←(qn)

)β+ε

.

By the assumption that

√
n(1− qn)

(
F̂←(qn)

F←(qn)
− 1

)
d−→ Θ,

we obtain as n→∞
√
n(1− qn) log

F̂←(qn)

F←(qn)

d−→ Θ,

and (
F̂←(qn)
F←(qn)

)β
− 1

β

P→ 0,

(
F̂←(qn)

F←(qn)

)β+ε

P→ 1.

Lastly, since
√
n(1− qn)C

(
1

1−qn

)
→ ζ, it follows that

√
n(1− qn)B0(F

←(qn)) → ζ̃ ∈ R.

Thus,
√
n(1− qn)I1 d−→ αΘ.

For I2, note that

d

dt
log

(
1 +

∫ ∞

1

g
(
x−1/(αt)

)
dx

)
=

∫∞
1
g′
(
x−1/(αγ)

)
x−1/(αγ) ln x dx

αγ2λγ
.

By the delta-method as n→∞, it follows that

√
n(1− qn)I2 d−→

∫∞
1
g′
(
x−1/(αγ)

)
x−1/(αγ) ln x dx

αγ2λγ
Γ.
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For I3, note that as n→∞, C
(

1
1−qn

)
→ 0 and

I3 = Iγ,ρC

(
1

1− qn

)
(1 + o(1)) .

Then,
√
n(1− qn)I3 d−→ ζIγ,ρ.

Combining all the terms above yields

√
n(1− qn) log

ρ̂qn(X)

ρqn(X)

d−→ αΘ+

∫∞
1
g′
(
x−1/(αγ)

)
x−1/(αγ) ln x dx

αγ2λγ
Γ− ζIγ,ρ.

In particular, when γ is estimated by the Hill estimator with k = ⌊n(1− qn)⌋, i.e.

γ̂H =
1

k

k−1∑

i=0

logXn−i,n − logXn−k,n,

we denote the estimator of the generalized tail distortion risk measure by ρ̂Hqn(X). Then

by Theorems 2.4.1 and 3.2.5, and Lemma 3.2.3 of Haan and Ferreira (2006),

√
n(1− qn)

(
γ̂H − γ,

Xn−⌊n(1−qn)⌋,n

F←(qn)
− 1

)
d−→ (Γ,Θ) ,

where Γ = N
(

ζ
1−ρ

, γ2
)
is independent of Θ = N (0, γ2). We have the following simpler

asymptotic normality of ρ̂qn(X).

Corollary 2.3.1. Under the conditions of Theorem 2.2.2, if qn ↑ 1, n(1 − qn) → ∞, and
√
n(1− qn)C

(
1

1−qn

)
→ ζ ∈ R, then we have the following as n→∞:

√
n(1− qn)

(
ρ̂Hqn(X)

ρqn(X)
− 1

)
d−→ N

(
m(γ)ζ

1− ρ − ζIγ,ρ,
(
(m(γ))2 + α2

)
γ2
)
.
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2.3.2 Extreme level

In this subsection, we study the estimator in Eq. (2.3.1) at the extreme level. Let τn be

an extreme level sequence, that is a sequence satisfying n→∞, τn ↑ 1 and n(1− τn)→ c

for some c <∞. We study the property of ρ̂τn(X).

Let {τn, n ∈ N} and {qn, n ∈ N} be two sequences of levels satisfying τn, qn ↑ 1, n(1−qn)→

∞, and n(1 − τn) → c < ∞. Then, by the assumption that U ∈ RVγ and h ∈ RVα, we

have h ◦ F←
(
1− 1

·

)
∈ RVαγ and hence

ρτn(X)

ρqn(X)
∼ h ◦ F←(τn)
h ◦ F←(qn)

∼
(
1− τn
1− qn

)−αγ
, n→∞.

Thus we propose to estimate ρτn(X) as

ρ̂∗τn(X) =

(
1− τn
1− qn

)−αγ̂
ρ̂qn(X). (2.3.5)

Theorem 2.3.2. Under the conditions of Theorem 2.2.2, if τn, qn ↑ 1, n(1− qn) → ∞, and

n(1− τn)→ c <∞ and we assume further that

√
n(1− qn)

(
ρ̂qn(X)

ρqn(X)
− 1

)
d−→ ∆ and

√
n(1− qn)(γ̂ − γ) d−→ Γ

with
√
n(1− qn)C((1− qn)−1)→ ζ ∈ R and

√
n(1− qn)/ log[(1− qn)/(1− τn)]→∞, then

√
n(1− qn)

log[(1− qn)/(1− τn)]

(
ρ̂∗τn(X)

ρτn(X)
− 1

)
d−→ αΓ.

Proof. By the definition of ρ̂∗τn(X), it follows that

log
ρ̂∗τn(X)

ρτn(X)
= log




(
1−τn
1−qn

)−αγ̂
ρ̂qn(X)

ρτn(X)
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= log




(
1−τn
1−qn

)−αγ̂
h
(
F̂←(qn)

)

h (F←(τn))


+ log

ρ̂qn(X)

ρqn(X)
+ log

ρqn(X)

h (F←(qn))

− log
h
(
F̂←(qn)

)

h (F←(qn))
− log

ρτn(X)

h (F←(τn))
. (2.3.6)

We only need to analyze the first term in Eq. (2.3.6) as the other terms follow the similar

arguments in the proof of Theorem 3.4 of Zhao, Mao, and Yang (2021).

First note the rewriting,

(
1−τn
1−qn

)−αγ̂
h
(
F̂←(qn)

)

h (F←(τn))
=

(
1− τn
1− qn

)−αγ̂ h
(
F̂←(qn)

)

h

((
1−τn
1−qn

)−γ̂
F̂←(qn)

)
h

((
1−τn
1−qn

)−γ̂
F̂←(qn)

)

h (F←(τn))
.

Since h ∈ 2RVα,β, by Eq. (2.3.4), we have

log




(
1−τn
1−qn

)−αγ̂
h
(
F̂←(qn)

)

h (F←(τn))


 = α log




(
1−τn
1−qn

)−γ̂
F̂←(qn)

F←(τn)


+B0(F

←(τn))

(
( 1−τn
1−qn

)
−γ̂
F̂←(qn)

F←(τn)

)β
− 1

β

+ op(1)B0(F
←(τn))




(
1−τn
1−qn

)−γ̂
F̂←(qn)

F←(τn)




(β+ε)

− B0(F̂
←(qn))

(
1−τn
1−qn

)−γ̂β
− 1

β
+ op(1)B0(F̂

←(qn))

(
1− τn
1− qn

)−γ̂(β+ε)
.

By Theorem 4.3.8 of Haan and Ferreira (2006), we obtain

√
n(1− qn)

log[(1− qn)/(1− τn)]
log




(
1−τn
1−qn

)−γ̂
F̂←(qn)

F←(τn)


 d−→ Γ,
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and (
( 1−τn
1−qn

)
−γ̂
F̂←(qn)

F←(τn)

)β
− 1

β

P→ 0,




(
1−τn
1−qn

)−γ̂
F̂←(qn)

F←(τn)




(β+ε)

P→ 1.

Note that 1−τn
1−qn

→ 0. Then by B0 ∈ RVβ with β < 0 and U ∈ RVγ, it follows that as

n→∞,
B0(F

←(τn))

B0(F←(qn))
∼
(
1− τn
1− qn

)−γβ
→ 0,

and
B0(F̂

←(qn))

B0(F←(qn))

P→ 1.

Finally, by noting that
√
n(1− qn)B0(F

←(qn)) → ζ̃, which yields√
n(1−qn)

log[(1−qn)/(1−τn)]
B0(F

←(qn))→ 0, we have

√
n(1− qn)

log[(1− qn)/(1− τn)]
log




(
1−τn
1−qn

)−αγ̂
h
(
F̂←(qn)

)

h (F←(τn))


 d−→ αΓ.

Similarly, when γ is estimated by the Hill estimator γ̂H , we denote the extreme level

estimator of the generalized tail distortion risk measure as ρ̂∗Hτn (X). Then we have the

following simpler asymptotic normality of ρ̂∗Hτn (X).

Corollary 2.3.2. Under the conditions of Theorem 2.2.2, if τn, qn ↑ 1, n(1− qn)→∞, and

n(1− τn)→ c <∞, and we further assume that

√
n(1− qn)

(
ρ̂qn(X)

ρqn(X)
− 1

)
d−→ ∆

with
√
n(1− qn)C((1− qn)−1)→ ζ ∈ R and

√
n(1− qn)/ log[(1− qn)/(1− τn)]→∞, then

we have the following as n→∞
√
n(1− qn)

log[(1− qn)/(1− τn)]

(
ρ̂∗Hτn (X)

ρqn(X)
− 1

)
d−→ N

(
αζ

1− ρ, α
2γ2
)
.
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2.3.3 Bias-corrected estimations

In this subsection, we consider bias-corrected estimation at both the intermediate and

extreme levels. Here we focus on the case that the tail index γ is estimated by the Hill

estimator.

Due to Corollary 2.3.1, we propose the bias-corrected estimator at the intermediate level

as

ρ̂HBqn (X) =
ρ̂Hqn(X)

1 + ε̂H
,

where

ε̂H =

(
m(γ̂H)

1− ρ̂ − Iγ̂H ,ρ̂
)
Ĉ

(
1

1− qn

)
.

Since C(t) = αA(t) + γB ◦ U(t), we can estimate C(t) as

Ĉ

(
1

1− qn

)
= αÂ

(
1

1− qn

)
+ γ̂HB̂

(
F̂←(qn)

)
.

Suppose Â, B̂ and ρ̂ are consistent estimators of A, B and ρ, for example, A and B can

be estimated using the formulation in Haouas, Necir, and Brahimi (2019) and ρ can be

estimated using Eq. (12) in Troop, Godin, and Yu (2021). To be more specific, we estimate

ρ as

ρ̂ = min



0,

3
(
T

(τ)
n,k − 1

)

T
(τ)
n,k − 3



 ,

where

T
(τ)
n,k =

(
M

(1)
n,k

)τ
−
(
M

(2)
n,k/2

)τ/2

(
M

(2)
n,k/2

)τ/2
−
(
M

(3)
n,k/6

)τ/3 , τ ∈ R,

and

M
(j)
n,k =

1

k

k−1∑

i=0

(logXn−i,n − logXn−k,n)
j , j > 0.
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The auxiliary function A(t) is estimated as

Â(t) =

(1− ρ̂)2
(
M

(2)
n,k − 2

(
M

(1)
n,k

)2)

2ρ̂M
(1)
n,k

.

The next theorem shows that ρ̂HBqn (X) is asymptotically unbiased.

Theorem 2.3.3. Under the conditions of Corollary 2.3.1, we further assume that as n→∞,

Â

A(n/k)

P→ 1,
B̂

B(n/k)

P→ 1, ρ̂
P→ ρ.

Then we have as n→∞,

√
n(1− qn)

(
ρ̂HBqn (X)

ρqn(X)
− 1

)
d−→ N

(
0,
(
(m(γ))2 + α2

)
γ2
)
.

Proof. Note that

√
n(1− qn)

(
ρ̂HBqn (X)

ρqn(X)
− 1

)
=
√
n(1− qn)

(
ρ̂Hqn(X)

ρqn(X)
− 1

)
−
√
n(1− qn)ε̂H

ρ̂Hqn(X)

ρqn(X)
.

Since ρ̂Hqn(X), γ̂H , Â, B̂ and ρ̂ are consistent and
√
n(1− qn)C

(
1

1−qn

)
→ ζ, we have

√
n(1− qn)ε̂H

ρ̂Hqn(X)

ρqn(X)

P→ m(γ)ζ

1− ρ − ζIγ,ρ.

Thus, ρ̂HBqn (X) is asymptotically unbiased.

At the extreme level, due to Corollary 2.3.2, we propose the following bias-corrected

estimator

ρ̂∗HBτn (X) =
ρ̂∗Hτn (X)

(1 + ε̂∗H)
,
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where

ε̂∗H =
αĈ
(

1
1−qn

)

1− ρ̂ log

(
1− qn
1− τn

)
.

Similarly we can show that ρ̂∗HBτn (X) is asymptotically unbiased.

Theorem 2.3.4. Under the conditions of Corollary 2.3.1, we further assume that as n→∞,

Â

A(n/k)

P→ 1,
B̂

B(n/k)

P→ 1, ρ̂
P→ ρ.

Then we have as n→∞,

√
n(1− qn)

log[(1− qn)/(1− τn)]

(
ρ̂∗HBτn (X)

ρqn(X)
− 1

)
d−→ N

(
0, α2γ2

)
.

2.4 Simulations

In this section, we explore the performances of the estimators proposed in the last section.

We compare our estimators with the ones in the literature. That is we compare ρ̂Hqn(X) with

R̂PL
qn and R̂Wins

qn (ψn), in (El Methni and Stupfler 2017, 2018), respectively. We also compare

ρ̂∗Hτn (X) with R̂PL
τn and R̂Wins

τn (ψn), in El Methni and Stupfler (2017, 2018), respectively. The

empirical quantile functions give rise to PL estimator (R̂PL
qn ) if ψn(s) = 1 − (1 − qn)s and

Wins-PL estimator (R̂Wins
qn ) if ψn(s) = min(tn, 1 − (1 − qn)s). Thus, the estimators we

compare against are

R̂PL
qn (h(X)) :=

∫ 1

0

h ◦ F̂←(1− (1− qn)s)dg(s),

R̂Wins
qn (h(X)) :=

∫ 1

0

h ◦ F̂←(min(tn, 1− (1− qn)s))dg(s),

R̂PL
τn (h(X)) :=

(
1− τn
1− qn

)−αγ̂
R̂PL
qn (h(X)) ,

R̂Wins
τn (h(X)) :=

(
1− τn
1− qn

)−αγ̂
R̂Wins
qn (h(X)) ,

28



where the tn = 0.995

Consider Pareto(1/γ) distribution with distribution function given by

F (x) = 1−
(

1

x+ 1

)1/γ

, x > 0,

for some γ > 0. One can verify that the tail quantile function of the Pareto(1/γ)

distribution satisfies that U(t) ∈ 2RVγ,−γ with auxiliary function A(t) = γt−γ.

In order to compare with the estimators in El Methni and Stupfler (2017, 2018), let h(t) =

tα for some α > 0. Thus, h ∈ 2RVα,−∞ with an auxiliary function B(t) = 0. In addition,

let g(x) = x.

2.4.1 Intermediate level

We simulate 1000 replications of random samples from the Pareto(1/γ) distribution. All

the experiments use sample sizes of n = 1000, 5000, 20000 and 50000 and the true index of

the Pareto distribution γ = 1/3, 1/5. Moreover, we pick the α = 1.2. The choices of γ and

α satisfy α < 1/γ. It is well known that choosing the value of k is always challenging in

the field of extreme value statistics and there is a bias-variance trade-off. Hence, we use a

common method in extreme value statistics by choose k from the first stable region of Hill

estimator. By the Hill plot, we take qn = 1−k/n with k values that correspond to qn = 0.96

and 0.97. In Table 2.1, we report the mean, sample standard deviation and relative mean

squared errors (MSEs) of the ratio of the estimator to its true value, where we conclude

that he lighter the tail of the distribution, the better the estimators. In Figure 2.1, we plot

the MSEs and the sample standard deviations against different qn levels, for samples of

size 20000. We also explore the effect of α in the distortion function h(t) = tα. In Figure

2.2, we plot them against difference values of α, for samples of size 20000, respectively.

Our estimator outperforms the Wins-PL estimator and approaches the accuracy of the PL
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estimator for larger values of qn and smaller values of α.

(n, 1/γ, k) qn ρqn
ρ̂Hqn
ρqn

R̂PL
qn

ρqn

R̂Wins
qn

ρqn
MSE(H) MSE(PL) MSE(Wins)

(1000, 3, 30) 0.9700 5.1921 1.0972 (0.2618) 1.0043 (0.2241) 0.8279 (0.1148) 0.0779 0.0502 0.0428
(1000, 3, 40) 0.9600 4.4899 1.1006 (0.2184) 1.0048 (0.1998) 0.8518 (0.1084) 0.0577 0.0399 0.0337
(1000, 5, 30) 0.9700 1.6819 1.0482 (0.1453) 0.9997 (0.1265) 0.8949 (0.0942) 0.0234 0.0160 0.0199
(1000, 5, 40) 0.9600 1.4985 1.0547 (0.1301) 1.0006 (0.1138) 0.9123 (0.0884) 0.0199 0.0129 0.0155
(5000, 3, 150) 0.9700 5.1921 1.0670 (0.1000) 1.0074 (0.1135) 0.8288 (0.0520) 0.0145 0.0129 0.0320
(5000, 3, 200) 0.9600 4.4899 1.0760 (0.0915) 1.0068 (0.1007) 0.8519 (0.0491) 0.0141 0.0102 0.0244
(5000, 5, 150) 0.9700 1.6819 1.0411 (0.0629) 1.0035 (0.0566) 0.8972 (0.0430) 0.0056 0.0032 0.0124
(5000, 5, 200) 0.9600 1.4985 1.0475 (0.0579) 1.0033 (0.0511) 0.9138 (0.0403) 0.0056 0.0026 0.0091
(20000, 3, 600) 0.9700 5.1921 1.0547 (0.0470) 0.9989 (0.0483) 0.8254 (0.0251) 0.0052 0.0023 0.0311
(20000, 3, 800) 0.9600 4.4899 1.0665(0.0439) 0.9991 (0.0430) 0.8486 (0.0237) 0.0064 0.0019 0.0235
(20000, 5, 600) 0.9700 1.6819 1.0351 (0.0300) 0.9992 (0.0272) 0.8948 (0.0208) 0.0021 0.0007 0.0115
(20000, 5, 800) 0.9600 1.4985 1.0428 (0.0281) 0.9994 (0.0246) 0.9115 (0.0195) 0.0026 0.0006 0.0082
(50000, 3, 1500) 0.9700 5.1921 1.0550 (0.0311) 1.0007 (0.0317) 0.8263 (0.0164) 0.0040 0.0010 0.0305
(50000, 3, 2000) 0.9600 4.4899 1.0674 (0.0285) 1.0006 (0.0282) 0.8493 (0.0155) 0.0054 0.0008 0.0229
(50000, 5, 1500) 0.9700 1.6819 1.0356 (0.0198) 1.0003 (0.0178) 0.8956 (0.0136) 0.0017 0.0003 0.0111
(50000, 5, 2000) 0.9600 1.4985 1.0435 (0.0182) 1.0002 (0.0160) 0.9121 (0.0127) 0.0022 0.0003 0.0079

Table 2.1: Based on the sample of size n = 1000, 5000, 20000 and 50000 from the
Pareto(1/γ) distribution, the true values of the extreme Wang distortion risk measure

ρqn and the sample means, sample standard deviations and MSEs of
ρ̂Hqn
ρqn

,
R̂PL

qn

ρqn
,
R̂Wins

qn

ρqn
are

presented for various values of k.

2.4.2 Extreme level

We simulate 1000 replications of random samples from the Pareto(1/γ) distribution. All

the experiments use sample sizes of n = 1000, 5000, 20000 and 50000 and the true index

of the Pareto distribution γ = 1/3, 1/5. Moreover, we pick the α = 1.2, the extreme level

τ = 0.9995 and the same qn satisfy
√
n(1− qn)C((1 − qn)

−1) → ζ ∈ R. In Table 2.2,

we report the mean, sample standard deviation and MSEs of the ratio of the estimator

to its true value. In Figure 2.3, we plot the MSEs and the sample standard deviations

against different qn levels for samples of size 20000, respectively. The Wins-PL is the best

performing estimator for the extreme level, our estimator is a close contender to the PL

estimator
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Figure 2.1: The MSEs (a,c) and sample standard deviations (b,d) of
ρ̂Hqn
ρqn

(solid line) ,
R̂PL

qn

ρqn

(dashed line),
R̂Wins

qn

ρqn
(dash-dotted line) are plotted against qn based on 1000 repetitions

sampling 20000 times from the Pareto(3) and Pareto(5). The (a) and (b) are MSE and
sample standard deviations of Pareto (3) and the (c) and (d) are MSE and sample standard
deviations of Pareto(5).
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Figure 2.2: The MSEs (a,c) and sample standard deviations (b,d) of
ρ̂Hqn
ρqn

(solid line) ,
R̂PL

qn

ρqn

(dashed line),
R̂Wins

qn

ρqn
(dash-dotted line) are plotted against α based on 1000 repetitions

sampling 20000 times from the Pareto(3) and Pareto(5). The (a) and (b) are MSE and
sample standard deviations of Pareto(3) and the (c) and (d) are MSE and sample standard
deviations of Pareto(5).
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Figure 2.3: The MSEs (a,c) and sample standard deviations (b,d) of
ρ̂∗Hτn
ρτn

(solid line) ,
R̂PL

τn

ρτn

(dashed line),
R̂Wins

τn

ρτn
(dash-dotted line) are plotted against qn based on 1000 repetitions

sampling 20000 times from the Pareto(3) and Pareto(5). The (a) and (b) are MSE and
sample standard deviations of Pareto (3) and the (c) and (d) are MSE and sample standard
deviations of Pareto(5).
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(n, 1/γ, k) qn ρτn
ρ̂∗Hτn
ρτn

R̂PL
τn

ρτn

R̂Wins
τn

ρτn
MSE(H) MSE(PL) MSE(Wins)

(1000, 3, 30) 0.9700 32.7333 1.7438 (1.2840) 1.5512 (0.9589) 1.2495 (0.6447) 2.2003 1.2225 0.4775
(1000, 3, 40) 0.9600 32.7333 1.8345 (1.0530) 1.6454 (0.8650) 1.3740 (0.6160) 1.8040 1.1640 0.5190
(1000, 5, 30) 0.9700 6.4934 1.6003 (0.7143) 1.5128 (0.6155) 1.3441 (0.5052) 0.8701 0.6415 0.3733
(1000, 5, 40) 0.9600 6.4934 1.7371 (0.6666) 1.6367 (0.5828) 1.4855 (0.4981) 0.9872 0.7447 0.4835
(5000, 3, 150) 0.9700 32.7333 1.5032 (0.3798) 1.4148 (0.3479) 1.1596 (0.2410) 0.3974 0.2929 0.0835
(5000, 3, 200) 0.9600 32.7333 1.6273 (0.3875) 1.5175 (0.3431) 1.2808 (0.2543) 0.5435 0.3854 0.1435
(5000, 5, 150) 0.9700 6.4934 1.5021 (0.2644) 1.4459 (0.2405) 1.2913 (0.2014) 0.3220 0.2566 0.1253
(5000, 5, 200) 0.9600 6.4934 1.6372 (0.2763) 1.5659 (0.2473) 1.4251 (0.2147) 0.4822 0.3814 0.2268
(20000, 3, 600) 0.9700 32.7333 1.4411 (0.1749) 1.3641 (0.1601) 1.1260 (0.1142) 0.2251 0.1582 0.0289
(20000, 3, 800) 0.9600 32.7333 1.5772 (0.1833) 1.4764 (0.1623) 1.2531 (0.1228) 0.3667 0.2533 0.0791
(20000, 5, 600) 0.9700 6.4934 1.4663 (0.1266) 1.4152 (0.1162) 1.2669 (0.0973) 0.2335 0.1858 0.0807
(20000, 5, 800) 0.9600 6.4934 1.6094 (0.1346) 1.5419 (0.1214) 1.4060 (0.1053) 0.3895 0.3084 0.1759
(50000, 3, 1500) 0.9700 32.7333 1.4384 (0.1159) 1.3640 (0.1066) 1.1258 (0.0760) 0.2056 0.1439 0.0216
(50000, 3, 2000) 0.9600 32.7333 1.5792 (0.1178) 1.4798 (0.1057) 1.2558 (0.0793) 0.3493 0.2414 0.0717
(50000, 5, 1500) 0.9700 6.4934 1.4657 (0.0840) 1.4155 (0.0772) 1.2672 (0.0647) 0.2239 0.1786 0.0756
(50000, 5, 2000) 0.9600 6.4934 1.6124 (0.0866) 1.5452 (0.0784) 1.4090 (0.0679) 0.3825 0.3034 0.1719

Table 2.2: Based on the sample of size n = 1000, 5000, 20000 and 50000 from the
Pareto(1/γ) distribution with τ = 0.9995, the true values of the extreme Wang distortion

risk measure ρτn and the sample means, sample standard deviations of
ρ̂∗Hτn
ρτn

,
R̂PL

τn

ρτn
,
R̂Wins

τn

ρτn
and

MSEs are presented for various values of k.

2.4.3 Bias-corrected level

We simulate 1000 replications of random samples from the Pareto(1/γ) distribution. All

the experiments use sample sizes of n = 1000, 5000, 20000 and 50000 and the true index

of the Pareto distribution γ = 1/3, 1/5. Moreover, we pick the α = 1.2. The choices of

γ and α satisfy α < 1/γ. In Table 2.3, we report the mean, sample standard deviation

and MSEs of the ratio of the estimator to its true value. In Figure 2.4, we plot the MSEs

and the sample standard deviations against different qn levels for samples of size 20000.

Our estimator’s accuracy is very close to the reduced bias version of the Wins-PL for small

values of n, and it outperforms its results for large sample sizes.

2.5 TD as a Reinsurance Premium Principle

We define the following generalized tail distortion reinsurance premium principle

ρRp (X) =

∫ 1

0

h

(
U

(
1

q(1− p)

)
− U

(
1

(1− p)

))
dg(q).
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Figure 2.4: The MSEs (a,c) and sample standard deviations (b,d) of
ρ̂Hqn
ρqn

(solid line), R̃qn

ρqn

(dash-dotted line) are plotted against qn based on 1000 repetitions sampling 20000 times
from the Pareto(3) and Pareto(5). The (a) and (b) are MSE and sample standard deviations
of Pareto (3) and the (c) and (d) are MSE and sample standard deviations of Pareto(5).
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(n, 1/γ, k) qn ρqn
ρ̂HB
qn

ρqn

ρ̂Hqn
ρqn

MSE(HB) MSE(H)

(1000, 3, 30) 0.9700 5.1921 0.3982 (14.4275) 1.0972 (0.2618) 208.3081 0.0779
(1000, 3, 40) 0.9600 4.4899 0.9735 (0.7792) 1.1006 (0.2184) 0.6072 0.0577
(1000, 5, 30) 0.9700 1.6819 0.9256 (0.6197) 1.0482 (0.1453) 0.3892 0.0234
(1000, 5, 40) 0.9600 1.4985 0.8940 (0.2061) 1.0547 (0.1301) 0.0537 0.0199
(5000, 3, 150) 0.9700 5.1921 0.9553 (0.1308) 1.0670 (0.1000) 0.0191 0.0145
(5000, 3, 200) 0.9600 4.4899 0.9446 (0.1150) 1.0760 (0.0915) 0.0163 0.0141
(5000, 5, 150) 0.9700 1.6819 0.9298 (0.0877) 1.0411 (0.0629) 0.0126 0.0056
(5000, 5, 200) 0.9600 1.4985 0.9200 (0.0822) 1.0475 (0.0579) 0.0132 0.0056
(20000, 3, 600) 0.9700 5.1921 0.9431 (0.0599) 1.0547 (0.0470) 0.0068 0.0052
(20000, 3, 800) 0.9600 4.4899 0.9326 (0.0531) 1.0665(0.0439) 0.0074 0.0064
(20000, 5, 600) 0.9700 1.6819 0.9400 (0.0413) 1.0351 (0.0300) 0.0053 0.0021
(20000, 5, 800) 0.9600 1.4985 0.9307 (0.0387) 1.0428 (0.0281) 0.0063 0.0026
(50000, 3, 1500) 0.9700 5.1921 0.9429 (0.0381) 1.0550 (0.0311) 0.0047 0.0040
(50000, 3, 2000) 0.9600 4.4899 0.9309 (0.0347) 1.0674 (0.0285) 0.0060 0.0054
(50000, 5, 1500) 0.9700 1.6819 0.9450 (0.0237) 1.0356 (0.0198) 0.0036 0.0017
(50000, 5, 2000) 0.9600 1.4985 0.9352 (0.0223) 1.0435 (0.0182) 0.0047 0.0022

Table 2.3: Based on the sample of size n = 1000, 5000, 20000 and 50000 from the
Pareto(1/γ) distribution, the true values of the extreme Wang distortion risk measure

ρqn and the sample means, sample standard deviations and MSEs of
ρ̂HB
qn

ρqn
,
ρ̂Hqn
ρqn

, are presented

for various values of k.

When g(x) = x and h(x) = xα, we have

ρRp (X) = E[(X − VaRp(X))α |X > VaRp(X)].

Similar to Theorem 2.2.1, we can show the first-order expansion of ρRp (X) as follows.

Theorem 2.5.1. Assume that U ∈ RVγ with γ > 0 and h ∈ RVα with α > 0. Further

assume that
∫∞
1
g
(
x−1/(αγ+δ)

)
dx <∞ for some δ > 0. Then

ρRp [X] ∼ λRγ h (F
←(p)) , (2.5.1)

where λRγ =
∫∞
1
g
((
x1/α + 1

)−1/γ)
dx.

Proof. Note that

lim
p→1

h
(
U
(

1
q(1−p)

)
− U

(
1

(1−p)

))

h
(
γU
(

1
(1−p)

)) =

(
q−γ − 1

γ

)α
.

By following the similar arguments in Theorem 3.1 of Yang 2015 and by applying the
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dominated convergence theorem, we can show that

lim
p→1

∫ 1

0

h
(
U
(

1
q(1−p)

)
− U

(
1

(1−p)

))

h
(
γU
(

1
(1−p)

)) dg(q) =

∫ 1

0

(
q−γ − 1

γ

)α
dg(q).

Further noting that

h

(
γU

(
1

(1− p)

))
∼ γαh

(
U

(
1

(1− p)

))
.

The desired result follows.

The estimation of ρRp (X) at the intermediate level qn is

ρ̂Rqn(X) = λ̂Rγ h
(
Xn−⌊n(1−qn)⌋,n

)

where

λ̂Rγ =

∫ ∞

1

g
((
x1/α + 1

)−1/γ̂)
dx.

The extreme level estimator at level τn is

ρ̂R∗τn (X) =

(
1− τn
1− qn

)−αγ̂
ρ̂Rqn(X).

The second-order expansion of ρRp (X) and the asymptotic normality of ρ̂Rqn(X) and ρ̂R∗τn (X)

can be shown similarly as Theorems 2.2.2, 2.3.1, 2.3.2. For the sake of simplicity, we omit

these results.

2.6 Application

In this section, we explore the use of the generalized tail distortion risk measure in practice.

In order to compare with results from other research studies and other risk measures, we
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choose g(x) = x and h(t) = tα for some α > 0. We also compare the estimates of the risk

measure with the VaR and ES for single risks, as such:

• compare single risk with VaR

ρp(X)

VaRp(X)

• compare single risk with ES

ρp(X)

ESp(X)

2.6.1 Analysis of automobile claims, the Secura Belgian Re actuarial

data set

The Secura Belgian Re data set consists of 371 automobile claims from 1988 until 2011,

collected from several European insurance companies. It was first introduced in Beirlant

et al. (2004) and further studied in Vandewalle and Beirlant (2006) and El Methni and

Stupfler (2017) for reinsurance premium pricing. All claim amounts were corrected for

inflation and the smallest amount is 1.2 million euros. The data set was originally analyzed

to provide the participating reinsurance companies with statistical tools to assist in pricing

the unlimited excess-loss layer above a high retention level R. We aim to re-examine the

data set and show that our estimator can provide results that are comparable to those

explored in the literature.

We choose k from the first stable region of the Hill plot and accordingly estimate the

tail index γ by the Hill estimator, shown in Figure 2.5. Thus, we have that qn = 0.830

and γ̂ = 0.280. Estimates of the tail distortion risk measure for the intermediate level

ρ̂Hqn(X) are shown in Table 2.4, calculated for several values of α. We also estimate the

risk measure ρ̂∗Hτn (X) for several extreme levels τn = 0.98, 0.99, 0.995, 0.999. Finally, we

compare the estimates of ρ̂Hqn(X) and ρ̂∗Hτn (X) to two of the most well-known risk measures,

the VaR and the ES. From the results, we can confirm numerically that when g(x) = x
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and h(x) = xα, for α = 1, the tail distortion risk measure becomes equivalent to the

ES. However, as the value of τn increases, ρ̂∗Hτn (X) increases more than ESτn(X), which

is explained by the fact that the empirical estimators of the traditional risk measures are

not consistent at extreme levels when the chosen level exceeds the range covered by the

available data.
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Figure 2.5: The Hill plot for the Secura Belgian Re data set. The red lines are the 95%
confidence bands, the vertical dashed line is our chosen k and the vertical dotted line
corresponds to the k used in El Methni and Stupfler (2017). Threshold values are in
thousands of Euros.

The purpose of the analysis in Vandewalle and Beirlant (2006) and El Methni and Stupfler

(2017) was to calculate the reinsurance premium for an excess-of-loss reinsurance policy

by considering the net premium principle (NP). For g(x) = x and h(t) = t, one has that

NP (VaRp(X)) = (1− p) (ρp(X)− VaRp(X)) .

El Methni and Stupfler (2017) estimated the tail index by the median of the Hill estimator

and some of its bias-reduced versions, yielding γ̂ = 0.261 and qn = 0.792. Estimates of

ρ̂∗Hτn (X) at this risk level are provided in Table 2.5, indicating slightly higher estimates for
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α τn ρ̂Hqn (X)
ρ̂Hqn

(X)

VaRqn (X)

ρ̂Hqn
(X)

ESqn (X)
ρ̂∗Hτn (X)

ρ̂∗Hτn
(X)

VaRτn (X)

ρ̂∗Hτn
(X)

ESτn (X)

1

0.98

3,797 1.32 0.98

6907 1.31 1.04
0.99 8,384 1.24 1.12

0.995 10,179 1.37 1.32
0.999 15,967 2.06 2.02

1.2

0.98

19,958 6.97 5.07

40,921 7.78 6.18
0.99 51,641 7.64 6.95

0.995 65,169 8.80 8.47
0.999 111,857 14.43 14.16

1.4

0.98

105,425 36.82 26.77

243,629 46.34 36.84
0.99 319,608 47.29 43.04

0.995 419,281 56.62 54.50
0.999 787,467 101.65 99.69

Table 2.4: Secura Belgian Re data set: Tail distortion risk measure estimated at qn = 0.83
for the intermediate level and at τn = 0.98, 0.99, 0.995, 0.999 for the extreme level, by using
the estimators in Eqs. (2.3.2) and (2.3.5), respectively. The estimates are calculated for
α = 1, 1.2, 1.4 and qn = 0.830, and are compared against the VaR and ES for single risks.
Estimates are in thousands of Euros.

ρ̂∗Hτn (X) compared to R̂PL
τn , especially for larger values of τn. The estimates are compared

against the ones calculated by El Methni and Stupfler (2017). The values are smaller than

those provided in Table 2.4, which is explained by the smaller choices of qn and γ̂.

Set the retention level R = 5 million Euros, which corresponds to VaR0.98(X) (i.e. τn = p =

0.98). The reinsurance premium for the excess-of-loss reinsurance policy is 38,142 Euros (if

γ is estimated by the Hill estimator) or 36,764 (if γ is estimated by a bias-reduced version

of the Hill estimator). Those results are in line with the 36,000 Euros and 41,798 that

El Methni and Stupfler (2017) and Vandewalle and Beirlant (2006) estimated, respectively.

The smaller net premium values are due to the using the bias-reduced estimate of the tail

index γ compared to the Hill estimator.

τn ρ̂∗Hτn (X) R̂PL
τn

(El Methni and Stupfler 2017)

0.98 6,838 6,864
0.99 8,293 8,224

0.995 10,059 9,854
0.999 15,745 14,993

Table 2.5: Secura Belgian Re data set: Comparison between the Tail distortion risk measure
ρ̂∗Hτn (X) and El Methni and Stupfler (2017)’s R̂PL

τn estimated for α = 1 at qn = 0.792 for
the extreme levels τn = 0.98, 0.99, 0.995, 0.999.

When g(x) = x and h(x) = xα, we have following reinsurance premium principles
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• Π1 = (1− p)(ρp,1(X)− V aRp(X)) = (1− p)ρRp,1(X).

• Π2 = (1− p) (ρp,α(X)− V aRp(X)) = (1− p) (E [Xα|X > V aRp(X)]− V aRp(X))

• Π3 = (1− p)ρRp,α(X) = (1− p)E [(X − V aRp(X))α |X > V aRp(X)]

For the above three premium principles, we divide the data set into a training and testing

data sets, composed of 300 and 71 observations, respectively. The training data set is

used to estimate γ and calculate the reinsurance premium, based on multiple retention

levels. Table 2.6 summarizes the average of the reinsurance premium values over 100

cross-validation repetitions of the analysis. For α = 1, Π1 is equivalent to Π3. Given the

reinsurance arrangement, the average premium amount decreases as the retention level

increases.

α p Π1 Π2 Π3

1
0.950 59,965 61,994 59,965
0.990 17,614 22,253 17,614
0.995 10,392 6,321 10,392

1.2
0.950 1,205,431 284,056
0.990 390,861 90,107
0.995 232,593 54,954

Table 2.6: Secura Belgian Re data set: Reinsurance premium based on 100 cross-validation
repetitions of sampling of 300 observations.

With a reinsurance arrangement, the insured loss under a premium principle Πi for the

testing data sets is
∑

j (Πi +min{Xj, R}), for i = 1, . . . , 3, and j = 1, . . . , 71. While

without reinsurance, the uninsured loss is total loss amounts
∑

j X, for j = 1, . . . , 71.

Table 2.7 provides the summary statistics of the insured and unisured losses, based on the

testing samples of 71 observations. The insured losses have lower variability, and hence

offer better management of the tail risk.
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α (Un)Insured p Mean Standard deviation VaR0.9 VaR0.95 VaR0.99

Uninsured 2,391 1,248 4,017 5,446 6,757

1

Π1

0.950 2,266 765 3,841 3,841 3,841
0.990 2,347 1,060 4,035 5,167 5,167
0.995 2,401 1,248 4,028 5,456 6,767

Π2

0.950 2,268 765 3,843 3,843 3,843
0.990 2,351 1,060 4,040 5,172 5,172
0.995 2,397 1,248 4,024 5,452 6,763

Π3

0.950 2,266 765 3,841 3,841 3,841
0.990 2,347 1,060 4,035 5,167 5,167
0.995 2,401 1,248 4,028 5,456 6,767

1
.2

Π2

0.950 3,411 765 4,987 4,987 4,987
0.990 2,720 1,060 4,408 5,540 5,540
0.995 2,623 1,248 4,250 5,678 6,989

Π3

0.950 2,490 765 4,065 4,065 4,065
0.990 2,419 1,060 4,108 5,240 5,240
0.995 2,446 1,248 4,072 5,500 6,812

Table 2.7: Secura Belgian Re data set: Summary statistics of the insured and uninsured
losses, based on 100 cross-validation testing samples of 71 observations. Estimates are in
thousands of Euros.

2.7 Conclusion

In this paper, we have focused on the generalized tail distortion risk measure for extreme

risks, which is used to assess tail risks of excess losses modeled by the right tails of loss

distributions. We derive an estimator for the risk measure by using its asymptotic

expansions. This estimator is asymptotically normal at the intermediate and extreme

confidence levels. Additionally, by using the Hill estimator, we provide bias-corrected

estimators. We perform a simulation study to assess the accuracy of the estimator over a

range of confidence levels and distortion factor α, in which we confirm that our estimator

provides good results, especially for larger sample sizes. Finally, we conclude this paper

by illustrating an application on a real-life actuarial data set and we compare our

estimators to the traditional risk measures, VaR and ES, which, unlike our estimator,

their empirical estimators are not consistent at extreme levels when the chosen confidence

level exceeds the range covered by the observed data. We also propose a reinsurance

premium principle based on the generalized tail distortion risk, which provides better

management of the tail risk for an insurance company.
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Chapter 3

Goodness-of-fit tests for Space-time Point

Process Models: An Application to

Earthquake Insurance Risk

3.1 Introduction

Catastrophic losses from earthquakes occurring in densely populated areas may cause a

serious threat to the financial and economic stability of Property and Casualty (P&C)

insurance and reinsurance companies. Earthquakes happen randomly and without any

reliable means of predicting their exact location or time of occurrence (U.S. Geological

Survey 2022a). Unlike most meteorological disasters, earthquakes have very long return

periods and accordingly small losses in recent years may not be indicative of future losses.

Around half a million earthquakes are detected annually around the globe, with only 100

of them being strong enough to cause damage (U.S. Geological Survey 2021). The

infrastructure of buildings, their design and material are major factors that explain the

extent of damage caused by an earthquake and its subsequent events.

In Canada, earthquakes occur every year at a very high frequency, but on average, only
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one earthquake per week is large enough to be felt by residents (NRC 2019). Earthquakes

that are strong enough to cause material damage occur decades apart and they usually

strike offshore or in locations that are not populated. Canada’s west coast falls in the

Circum-Pacific seismic belt, also known as the “the Ring of Fire”, where 81% of the world’s

largest earthquakes occur (U.S. Geological Survey 2022b). On the other hand, seismic

activity in Eastern Canada is attributed to regional stress fields and strong earthquakes

occur at a relatively lower rate.

According to the United States Geological Survey, earthquakes in Eastern North America

can be felt at much further distances than earthquakes in Western North America of

comparable size. Geologists attribute such differences to the nature of the underlying

tectonic plates in the regions, and the size and age of buildings. Eastern North America has

rocks that have been formed billions of years before the rocks in Western North America.

These old rock formations are currently harder and denser due to their exposure to extreme

pressures and temperatures and the faults have had more time to heal. Hence, seismic waves

travel longer, compared to the younger faults in the west which absorb a lot of the seismic

wave energy and minimize its spread (U.S. Geological Survey 2018).

Figure 3.1 provides a spatial representation of the historical seismicity of significant

earthquakes in Canada, for a total of 172 events for the period 1600− 2017 (Lamontagne

et al. 2018). An earthquake is considered significant if its moment magnitude exceeded 6,

and/or it had been reported as felt by residents at Modified Mercalli intensity (MMI) of

V or higher. The definitions of the MMI levels are available in Appendix I.1. Given the

actuarial nature of our study, we are interested only in significant earthquakes because

claims are more likely to occur due to them. The magnitude of an earthquake is a value

that describes its size, whereas the intensity is a measure of shaking, which varies across

locations, depending mostly on nearness to the epicenter. The MMI level assigned to a

location following an earthquake provides a more interpretable measure to
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non-seismologists than the magnitude because it quantifies the felt shaking. Initially, the

MMI was a subjective measure approximated from humans’ reports of felt ground

shaking, but now, instrumental intensity measures are used to estimate the MMI, such as

the ground motion-intensity relationship derived by Wald et al. (1999).

Figure 3.1: Significant Canadian earthquakes for the period 1600 − 2017. The size and
color of the circles are proportionate to the moment magnitude.

Earthquake losses are not covered by a standard home insurance policy. Earthquake

insurance usually applies a large deductible, and accordingly, the loss amount has to be

substantially high before the insurance payments can be made, which may discourage

homeowners from purchasing earthquake insurance coverage. British Columbia (BC) and
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the Ontario (ON) and Québec (QC) region are at risk due to their large population

density and elevated level of seismic activity. More than 70% of the population in QC

resides in seismic regions, yet only 3.4% of homeowners in the cities of Montréal and

Québec City hold earthquake insurance, compared to 65% market penetration in the

cities of Vancouver and Victoria (Swiss Re 2017).

The Office of the Superintendent of Financial Institutions (OSFI) is the Canadian

organisation which sets guidelines for the recommended assessment of insurers’

catastrophe risk management and calculation of probable maximum loss (PML), the

threshold dollar value of earthquake losses beyond which losses are unlikely. The

insurance risk arising from earthquakes is one of the components of the Minimum Capital

Test (MCT) for federally regulated P&C insurance companies. The formula for the

calculation of the earthquake reserve as set by OSFI (2019) is

Country-widePML1/500 =
(
East CanadaPML1.5

1/500 +West CanadaPML1.5
1/500

) 1
1.5 , (3.1.1)

where the earthquake PML is the gross PML, which is the PML amount after deductibles

but before any reinsurance deductions. PML1/500 is a 1-in-500 year event, representing the

99.8th percentile of the distribution of the annual maxima.

Due to the complexity of modeling seismic activity, Canadian insurers are expected to

use earthquake models to calculate their earthquake reserve. AIR prepared an earthquake

model for the insurance industry that provides estimates of the damages and economic

losses due to all earthquake-related events for Canada. Another Canadian earthquake

model is HazCan (Ulmi et al. 2014), the Canadian version of HazUS (FEMA 2013). These

models provide a comprehensive study of probabilistic loss scenarios by relying on an

inventory of population and building information as well as ground motion equations, but

they are usually complex, sold at a high price, not available for public use and difficult to

replicate.
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Spatio-temporal modeling of earthquakes has witnessed considerable progress, especially in

seismically active regions in North America. Such models include the Regional Earthquake

Likelihood Models (RELM) project (Field 2007) and the Collaboratory for the Study of

Earthquake Predictability (CSEP) (Jordan 2006), which focus on the known faults in

California. To assess the fitted models in the RELM project, Schorlemmer et al. (2007)

develop several numerical tests, such as the Number-test (or N-test), the Likelihood-test

(or L-test) and the Likelihood-ratio-test (R-test). The N-test compares the total estimated

and observed count of events, the L-test assesses the overall likelihood of the fitted model,

and the R-test compares the relative performance of two fitted models. Those methods are

successful in assessing the overall fit of the model, however, they are incapable of identifying

locations or time periods where the fit is poor. Recent progress in measuring the goodness-

of-fit and comparing spatio-temporal models include pixel-based residual methods, in which

the spatial region is divided into a predetermined regular grid and a residual is computed

for each pixel, see Baddeley et al. (2005) and Zhuang (2006). Pixel-based residual analysis,

such as raw residuals and Pearson residuals, show directly where the fitted models may be

improved, while deviance residuals rank the performance of two fitted models. For models

where the expected number of events at a pixel is close to zero, some problems may arise

because of the heavy skewness of the distribution of the residual for the given pixel. To

overcome these deficiencies, Bray et al. (2014) use Voronoi polygons, generated by the

observed spatio-temporal point pattern, which are adaptive to the inhomogeneity of the

process, to compare the expected and observed count of events.

Bray et al. (2014) noted that the standardization techniques and other residual methods

studied by Baddeley et al. (2005) and Clements, Schoenberg, and Veen (2012) may be

applied to Voronoi polygons. In this research project, we implement this note by

extending the Voronoi residual methods, i.e. we calculate the Pearson Voronoi residuals,

in analogy with Pearson residuals for generalized linear models. To compare competing

models, we extend the definition of pixel-based deviance residuals to Voronoi polygons.
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In analogy with linear models, the resulting residuals may be called deviance Voronoi

residuals. We use them to assess the goodness-of-fit of fitted spatio-temporal models for

the significant Canadian earthquakes point pattern. Having established a well-fitting

model, we analyze earthquake insurance risk by creating an open-source and reproducible

simulation-based approach. An interactive web application allowing the user to simulate

a significant earthquake based on any chosen location is also provided. Additionally, we

review OSFI’s MCT formula in eq. (3.1.1) and provide a possible alternative.

The remainder of the paper is organized as follows. Section 3.2 provides a brief summary

of spatio-temporal point processes, some of their properties and goodness-of-fit tests to

assess the adequacy of fitted spatio-temporal models. Section 3.3 explains the

methodology used to calculate the building and content exposure, simulate a location and

year of occurrence of an earthquake and estimate its financial impact. It also proposes an

alternative approach to calculate the MCT for earthquake risk in Canada. Section 3.4

compares our results with other results from simulated earthquakes in the literature,

summarizes the outcome of our methodology and compares OSFI’s MCT approach for

earthquake risk to our alternative proposal. Section 3.5 concludes the article. The unit of

currency throughout is the Canadian dollar, unless otherwise stated.

3.2 STPP and their Residuals

A Spatio-Temporal Point Process (STPP) is a stochastic process that models data of the

location and time of occurrence of events. Examples of processes that can be modeled

include spread of diseases and pandemics, natural disasters such as earthquakes, tsunamis

and volcanic eruptions. Point processes are studied thoroughly in time; see Cox and Isham

(1980) and Daley and Vere-Jones (2003) and in space; see Cressie (2015), Moller and

Waagepetersen (2003), and Diggle (2013). STPP are extensively used in seismology, but
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mainly to study earthquake aftershocks; see Ogata (1998) and Zhuang, Ogata, and Vere-

Jones (2002).

A STPP is defined as a random measure on a region S ⊆ R
2 × R

+ of space-time, where

the spatial component is located in two spatial coordinates: longitude and latitude. A

realization of a STPP is a spatio-temporal point pattern (stpp) consisting of location xi

(longitude and latitude) and a corresponding time of occurrence ti for an event, such that

{(xi, ti) : i = 1, . . . , n}, where (xi, ti) ∈ A × T for some known spatial region A and

temporal period T .

The first-order properties of a STPP are defined by its spatio-temporal intensity function

given by

λ(x, t) = lim
|dx|,|dt|→0

E [N(dx, dt)]

|dx||dt| ,

where dx represents a small spatial region around the location x such that |dx| is its area,

dt represents a small time interval containing the time point t such that |dt| is its length and

N(dx, dt) represents the number of events in dx × dt. Thus, λ(x, t) represents the mean

number of events per unit area per unit of time. For a homogeneous STPP, λ(x, t) = λ for

all (x, t) ∈ A× T . In practice, the STPP is observed on a finite space-time region A× T ,

such that the marginal spatial and temporal intensities can be defined as

λA(x) =

∫

T

λ(x, t)dt, and λT (t) =

∫

A

λ(x, t)dx,

respectively.

The N-test and the L-test are used to assess the adequacy of the fitted models (Schorlemmer

et al. 2007). For a fixed number s of simulated realizations from the fitted model, the N-

test requires computation of the fraction of simulations where the number of simulated

events is less than the number of observed events. If the fraction is close to 0 or 1, the

model is rejected. Similarly, the L-test requires computation of the fraction of simulated
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log-likelihoods that are less than the log-likelihood of the observed stpp. If the fraction

is close to 0, the model is rejected. The two methods only consider the overall fit of the

model and do not identify locations or time periods where the fit is poor.

To overcome these deficiencies, Baddeley et al. (2005) introduce pixel-based residual

analysis methods for spatial point processes and Zhuang (2006) extends to

spatio-temporal point processes. Consider a STPP with conditional intensity λ̂(x, t) at

any location x and time of occurrence t. The simplest residual form, namely the raw

residual, compares the total number of observed and estimated points within evenly

spaced pixels over a regular grid, i.e.

rR(Bi) = N(Bi)−
∫

Bi

λ̂(x, t)dtdx,

where N(Bi) is the number of points in bin Bi, which is a measurable set such that

Bi ⊂ A× T , for i = 1, . . . ,m, where m is the total number of pre-determined bins. Thus,

we can evaluate locations and time periods where the fitted intensity function fits poorly

compared to the observed stpp. The residuals within each pixel can be standardized in

numerous ways, which is important because otherwise residual plots can exaggerate the

deviation in the pixels where the raw residual value is large. For example, the Pearson

residuals are re-scaled raw residuals that have mean 0 and variance approximately equal

to 1, in analogy with Pearson residuals in linear models, i.e.

rP (Bi) =
∑

(tj ,xj)∈Bi

1√
λ̂(xj, tj)

−
∫

Bi

√
λ̂(x, t)dtdx,

for all λ̂(xi, ti) > 0. See Baddeley et al. (2005) for other methods of scaling the gridded

residuals and Baddeley, Møller, and Pakes (2008) for their properties. Analogous to

deviances for regression models, Wong and Schoenberg (2009) propose using deviance

residuals to differentiate model fits. Given two fitted intensity functions, λ̂1 and λ̂2, the
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deviance residual for pixel Bi is the difference between their log-likelihoods, i.e.

rD(Bi) =


 ∑

(tj ,xj)∈Bi

log(λ̂1(xj, tj))−
∫

Bi

λ̂1(x, t)dtdx




−


 ∑

(tj ,xj)∈Bi

log(λ̂2(xj, tj))−
∫

Bi

λ̂2(x, t)dtdx


 .

Despite the mentioned advantages of pixel-based residuals, they can be problematic when

the expected number of points at a pixel, based on a fitted model, is very small, causing

heavy skewness of the distribution of its residual. This is problematic for earthquake

occurrences modeling because the expected counts of events that are far from previous

seismicity are usually zero. A possible solution could be to increase the size of the pixels

such that the expected number of points in each pixel is large enough. However, this can

be problematic for inhomogeneous processes because it is difficult, or almost impossible,

to identify a one-size-fits-all pixel size. Accordingly, Bray et al. (2014) propose Voronoi

tessellations, which are adaptive to the inhomogeneity of the process. Consider a stpp

consisting of location xi and time ti for an event, such that {(xi, ti) : i = 1, . . . , n}. A

Voronoi tessellation is a partitioning of the spatial plane of interest into n convex polygons,

known as Voronoi polygons. Each polygon Ci consists of the region of all locations on

the spatial grid that are closer to xi than to any other point in the process, for all i =

1, 2, . . . , n. Figure 3.2 represents the Voronoi tessellations from Figure 3.1. For more details

on Voronoi tessellations and their properties, see Boots, Okabe, and Sugihara (1999). Given

a fitted intensity model, λ̂(x, t), raw Voronoi residuals are calculated by evaluating the raw

residuals over the Voronoi polygons instead of the pixels. By definition, each Voronoi

polygon contains exactly one observed point, i.e. N(Ci) = 1, ∀i = 1, 2, . . . , n. Accordingly,

the raw Voronoi residuals are defined by

rRV (Ci) = N(Ci)−
∫

Ci

λ̂(x, t)dtdx,
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Figure 3.2: Voronoi tessellation of the significant Canadian earthquakes, shown in Figure
3.1.

= 1−
∫

Ci

λ̂(x, t)dtdx.

Voronoi residual plots are constructed by shading each polygon according to the residual

value under the distribution function of the modified gamma distribution, which is the

approximate distribution of the raw residuals (Bray et al. 2014). Gordon et al. (2015)

use the Voronoi raw residuals of a homogeneous Poisson process model as a benchmark or

scale to assess the Voronoi raw residuals plots of alternative models. It was noted by Bray

et al. (2014) that the standardization techniques may be applied to Voronoi polygons.

In this research project, we implement this approach of extending the Voronoi residual

methods. Accordingly, we scale the raw Voronoi residuals to obtain the Pearson Voronoi

residuals, defined by

rPV (Ci) =
1√

λ̂(xi, ti)
−
∫

Ci

√
λ̂(x, t)dtdx.
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The fitted intensity must satisfy λ̂(xi, ti) > 0 for all xi and ti in order that the Pearson

Voronoi residuals be well-defined. Accordingly, this will yield residuals that have mean

0 and variance approximately equal to 1. Additionally, to compare competing models,

we extend the definition of pixel-based deviance residuals to Voronoi Polygons, i.e. to

calculate, in each Voronoi polygon, the difference between the log-likelihood for the two

models. In analogy with linear models, the resulting residuals may be called deviance

Voronoi residuals, defined by

rDV (Ci) =

(
log(λ̂1(xi, ti))−

∫

Ci

λ̂1(x, t)dtdx

)
−
(
log(λ̂2(xi, ti))−

∫

Ci

λ̂2(x, t)dtdx

)

(3.2.1)

Accordingly, we can see, for each polygon, where one model outperforms the other.

Polygons with a positive (negative) deviance Voronoi residual indicate that λ̂1 (λ̂2)

provides a better fit. Summing the deviance residuals, i.e.
∑

i r
D
V (Ci) yields a

log-likelihood ratio score. This score provides a general indication of the improvement in

fit provided by the best fitting model. Should one have more than two models, they can

be compared two at a time to rule out the worst models. In Section 3.3, we apply the

methods above to examine and compare several fitted spatio-temporal models to the

significant Canadian earthquakes stpp.

3.3 Earthquake Simulation Methodology

This section explains the methodology to calculate the building exposure and to simulate

earthquake financial losses. We also propose an alternative formula to eq. (3.1.1) for the

MCT for earthquake risk in P&C insurance companies.
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3.3.1 Calculating exposure and simulating earthquake damage

To estimate the seismic risk for a study area, we proceed with the following steps:

(i) Collecting building inventory and calculating exposure,

(ii) Simulating earthquakes in space and time,

(iii) Estimating ground shaking intensity,

(iv) Calculating damage rates, and

(v) Estimating seismic loss and insurance claim payments.

Parts (ii) - (v) of the methodology are summarized in Algorithms 1 and 2. To improve

precision, the resolution of the analysis is at the Census Subdivisions (CSD) level, the

municipalities used for statistical reporting purposes at Statistics Canada (Statistics

Canada, Government of Canada 2017). There are 5,162 CSD in Canada.

(i) Collecting building inventory and calculating exposure

For residential buildings, we calculate the total square footage by using the number of

buildings in each residential building classification from the 2016 Canadian Census

(Statistics Canada, Government of Canada 2016) and the average square footage for each

residential building from the Canadian Housing Statistics Program (Statistics Canada,

Government of Canada 2020a). For each building type, the building exposure is

calculated by multiplying the total square footage by the building replacement cost, in

dollar units. The assumptions for replacement costs are taken from HazCan (Ulmi

et al. 2014). The building construction price index (BCPI) provided by Statistics

Canada, Government of Canada (2020b) is used to inflate the construction costs to June

2021. To account for regional and embedded arbitrariness between construction
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companies, a random noise of ±10% is factored in the replacement cost. The building

content replacement value for residential dwellings is assumed to be at 50% of the

building replacement cost (Ulmi et al. 2014; FEMA 2013). The building exposure based

on the building types is then distributed based on the building construction material

(wood, concrete, steel, masonry, etc.) by using HAZUS’ general building scheme mapping

information provided in Table 5.1 in FEMA (2013).

Calculating the exposure of non-residential dwellings is not as straightforward because

Statistics Canada currently does not have a comprehensive dataset for non-residential

buildings. Accordingly, we rely on building permits data from Statistics Canada,

Government of Canada (2020c) and use the annual ratios of institutional and

governmental, commercial and industrial building permits to residential building permits.

Hence, the non-residential buildings exposure is calculated as a percentage of the

residential buildings exposure. Table 6.2 in Appendix I.2 provides the suggested

conversion of non-residential building types to HAZUS occupancy codes. As with

residential buildings, the exposure is classified based on the construction material (wood,

concrete, steel, masonry, etc.) by using HAZUS’ general building scheme mapping

information, provided in Table 5.1 in FEMA (2013). The building content replacement

value for non-residential dwellings is assumed to be a percentage of the building

replacement cost as suggested in FEMA (2013).

Figure 3.3 summarizes the computed residential and non-residential exposure values per

province. The values on the y-axis are omitted to maintain the confidentiality of CatIQ’s

(Canada’s Loss and Exposure Indices Provider) exposure data, see Section 3.4.1 for

details. Western Canada includes British Columbia (BC), Alberta (AB), Saskatchewan

(SK), Manitoba (MB), Northwest Territories (NT) and Yukon (YT), while Eastern

Canada includes Newfoundland and Labrador (NL), Nova Scotia (NS), Prince Edward

Island (PE), New Brunswick (NB), Québec (QC), Ontario (ON) and Nunavut (NU).
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Figure 3.3: Total exposure per province (left) and for Eastern and Western Canada (right).
The vertical dashed line splits Eastern and Western provinces.

Figure 3.4 provides a spatial representation of our calculated total exposure, including

residential and non-residential building exposure and building contents exposure, per km2

for each CSD.

(ii) Simulating earthquakes in space and time

By using the geographical coordinates and frequency of occurrence of the significant

earthquakes dataset gathered by Lamontagne et al. (2018), a spatio-temporal point

pattern dataset is created. We choose earthquakes that occurred after the year 1900

because older data are not complete and hence can highly affect the temporal component

of the STPP. There are 137 significant earthquakes for the period between 1900-2017. We

assume that the space on which the events are realized is continuous and the temporal

component is discrete because earthquake events are identified annually. We follow a

non-parametric approach to estimate the spatio-temporal intensity function, λ̂(x, t), by

using kernel functions, as suggested by Diggle (1985). We also follow a practical approach
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Figure 3.4: The calculated total exposure (building exposure and building contents
exposure) of residential and non-residential buildings per km2 for each CSD in Canada.

and assume that the STPP is separable 1 such that λ(x, t) can be factorized following

λ(x, t) = λX(x)λT (t), (3.3.1)

for all (x, t) ∈ A×T. Given our interest in the PML1/500, see eq. (3.1.1), which is a 1-in-500

year event, for earthquake damages, we are not interested in the exact time of occurrence

of events, but rather the location of the epicenter and the affected communities. Hence,

the separability assumption is valid for our project. Moreover, we will focus more on the

spatial component, λX(x) and perform the proposed Voronoi residual analysis methods on

it. Spatial modeling and simulations are performed using the splancs, spatstat, deldir,

and stpp packages in R (Rowlingson and Diggle 2022; Baddeley and Turner 2005; Turner

1. The assumption is validated using Ghorbani et al. (2021)’s χ
2 test for first-order separability of

spatio-temporal point patterns.
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2021; Gabriel et al. 2022; R Core Team 2022), in addition to our functions for calculating

the Voronoi residuals.

The temporal intensity function λT (t) if estimated by using a Gaussian kernel with a

bandwidth hT that follows Silverman’s rule-of-thumb (Silverman 1986), i.e.

hT = 0.9An−1/5,

where A = min{sample standard deviation, sample interquartile range/1.34}. As for the

spatial intensity function λX(x), we choose the quartic kernel (Diggle 2013). The choice

of the spatial bandwidth h determines the extent to which the intensity function will

be smoothed, where larger bandwidths provide more smoothing. This choice involves a

trade-off between bias and variance, such that larger bandwidths cause an increase in

bias and a decrease in variance. The bias occurs because the estimator of the intensity

function estimates a smoothed version of it rather than the intensity function itself. A large

bandwidth requires a large number of points for estimation, thus reduces the estimation

variance. The choice of a bandwidth is a controversial topic. We fit two different models

for the spatial intensity function: both have the same kernel but with different bandwidths.

The first bandwidth h1 minimizes the estimated mean-square error of λ̂X(x). The second

bandwidth h2 is based on cross-validation. Define the cross-validation likelihood by

LCV (h2) =
∑

l

log(λ−l(xl))−
∫

A

λ(u)du,

where λ−l(xl) is the leave-one-out kernel-smoothing estimate of the intensity at xl with

smoothing bandwidth h2, λ(u) is the kernel-smoothing estimate of the intensity at a spatial

location u with smoothing bandwidth h2 and A is the spatial window of observation.

Baddeley, Rubak, and Turner (2015) observe that selecting a bandwidth by maximizing the

LCV tends to choose more reasonable bandwidth values when the point pattern resembles
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tight clusters, such as our earthquake data.

We assess the goodness-of-fit of the two fitted models, which we will call models H1 and

H2, for the fitted quartic kernel with bandwidths h1 and h2, respectively. We also fit a

homogeneous Poisson process, named model P , to the significant Canadian earthquakes

spatial data set, where λ(x) = λ for all x ∈ A. Model P will be used as a benchmark or

scale to assess the Voronoi raw residuals plots of models H1 and H2.

(a)

(c)

(b)
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Figure 3.5: Raw Voronoi residuals of models P (a), H1 (b), and H2 (c).

Figure 3.5 shows the raw Voronoi residual plots on the same color scale for all fitted

models. An accepted model is one that has raw Voronoi residuals close to 0. By definition,

the raw Voronoi residuals cannot exceed 1, however, they can be negative as the model

can overestimate. Model P is underestimating the expected count of earthquakes in the

high-risk zones in Eastern and Western Canada, while it is overestimating the expected

count in low-risk zones. We can expect a constant intensity function to perform poorly in
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such data sets because the events are clustered in the known faults and they are rare in

other areas. Based on the color scale for models H1 and H2, both outperform model P , in

fact, the raw residuals are close to 0 in almost all polygons. However, the better of the two

models is unclear. Focusing on the high-risk zones, the fit of model H2 is slightly poorer

than model H1, as shown in Figures 6.1 and 6.2 in Appendix I.3. A similar conclusion is

obtained from the visual inspection of Pearson Voronoi residual plots, see Figures 6.3, 6.4

and 6.5 in Appendix I.3.

(a)

(b) (c)
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Figure 3.6: Deviance Voronoi residuals for modelH1 vsH2 for Canada (a), Western Canada
(b) and Eastern Canada (c).

To compare models H1 and H2, we use deviance Voronoi residuals, defined in eq. (3.2.1).

Figure 3.6 shows the deviance Voronoi residuals for model H1 versus model H2. Voronoi
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polygons with a positive (negative) deviance Voronoi residual indicate that model H1 (H2)

provides a better fit. Inspecting the residual plot, we identify that model H1 performs

better than model H2 in all polygons, and, in particular, model H1 is performing much

better than modelH2 in low-risk zones, such as Northern and Central Canada, where model

H2 tends to over-predict the frequency of occurrences. In both the Western and Eastern

clusters of historical seismicity, more specifically, the Queen Charlotte fault (west) and the

St. Lawrence paleo-rift faults (east), model H1 is slightly outperforming model H2. The

polygon with the largest deviance residual is located in the Queen Charlotte fault, shown

in Figure 3.6(b). There are no regions where model H2 fits better than model H1, in fact,

the smallest difference in the log-likelihood is 0.341, which is also located in the Queen

Charlotte fault. Overall, the log-likelihood ratio score for Canada is 210.67, implying a

large improvement for model H1 compared to model H2. The log-likelihood ratio scores for

Canada for model H1 versus P is 586.56 and for model H2 versus P is 375.89, indicating

that both H1 and H2 models provide considerably more accurate estimations.

The estimated spatial intensity function λ̂X(x) for model H1 and the temporal intensity

λ̂T (t) are multiplied to obtain the fitted spatio-temporal intensity function λ̂(x, t), as

given in eq. (3.3.1). We follow the simulation algorithm in the stpp package in R to

simulate a large number of years of significant earthquakes. For more details on the

spatio-temporal simulation algorithm, see Gabriel et al. (2022).

(iii) Estimation of ground shaking intensity

Earthquake hazard across Canada is evaluated by seismologists and geophysicists and

the nation’s seismic hazard maps are updated regularly. The National Building Code

is subsequently revised to minimize the seismic risk on new infrastructures. Calculation

of seismic risk requires the estimation of the ground shaking intensity, which can

be defined by attenuation relationships of a given ground motion index, such as
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the peak ground acceleration (PGA), peak ground velocity, or spectral acceleration.

The Geological Survey of Canada (GSC) provides seismic hazard values for a grid

extending over Canada and surrounding areas for the 2015 National Building Code of

Canada (NBCC) (Halchuk, Adams, and Allen 2015). We use the mean PGA, which

is available on firm soil sites, evaluated at the following probabilities of exceedance:

0.02, 0.01375, 0.0100, 0.00445, 0.0021, 0.0010, 0.0005 and 0.000404 per annum. For each grid

point, a Generalized Pareto Distribution (GPD) is fitted such that the given quantiles

represent the return levels that are exceeded every 50−2475 years. The quantile of a GPD

is shown in eq. (I.1) in Appendix I.4.

For a simulated earthquake location as in (ii), the GPD parameters of the grid point that

is nearest to the earthquake epicenter are used to simulate a PGA value. To match the

definition of significant earthquakes in Canada (Lamontagne et al. 2018), the PGA value

must have an associated moment magnitude M > 6. The corresponding MMI level is

calculated by using the relationship MMI = 3.66 log(PGA) − 1.66, with standard error

1.08, for PGA in cm/s2 (Wald et al. 1999). The corresponding moment magnitude M is

calculated following Bakun’s predicted distance attenuation equations,

• Eastern Canada (Bakun, Johnston, and Hopper 2003):

M =
1

1.68
(MMI− 1.41 + 0.00345d + 2.08 log10(d)) , (3.3.2)

• Western Canada (Bakun and Wentworth 1997):

M =
1

1.09
(MMI− 5.07 + 3.69 log10(d)) , (3.3.3)

where d is the distance in kilometers from the epicenter of the earthquake to its nearest

neighbor on the PGA grid. Even though an earthquake has a single magnitude, it has

multiple intensity values, depending on the location from the epicenter. Accordingly,
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Bakun’s predicted distance attenuation equations are used to produce isoseismal maps,

which are maps that identify areas of equally felt seismic intensity. These are estimated

by calculating the distance from the epicenter for each MMI level, based on eq. (3.3.2)

and eq. (3.3.3), and MMI circles with radii equivalent to the calculated distances are

graphed accordingly. The MMI levels are very important information that are required to

quantify the percentage of damage caused by an earthquake. We consider the uncertainty

in the estimation by applying random noise with the respective standard errors, obtained

from Bakun and Wentworth (1997), Bakun, Johnston, and Hopper (2003), and Wald

et al. (1999). The CSDs inside each MMI circle are identified and the percentage of their

affected areas are calculated for each seismic intensity level.

(iv) Calculating damage rates

Earthquake damage can result in financial losses, such as the cost of damage repair and

losses due to business interruptions, in addition to non-financial losses, such as fatalities and

injuries. Each category of losses is divided further into direct losses from the damage caused

by the ground shake and indirect losses from damage due to other hazards induced by the

earthquake, such as a tsunami, landslide, liquefaction and/or a fire. This distinction is of

interest to insurers to process claims depending on the coverage and policy conditions. In

this article, only the direct financial losses that occur due to earthquake damage to buildings

are considered. Building damage is split into structural damage and non-structural damage.

Structural damage is the damage to the skeleton of the building, such as the roof and

load-bearing walls. Non-structural damage can affect drift-sensitive components, such as

non-bearing walls/partitions, veneer and finishes, acceleration-sensitive components, such

as piping systems, elevators and lightning fixtures, and finally building contents, such as

bookcases, office equipment and furnishings.

The Applied Technology Council, ATC (1985), provides a benchmark study that relies on
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MMI to quantify the degree of ground shaking. Motion-damage relationships are developed,

where the probability of being in a defined damage state for different levels of MMI is

calculated. To quantify the damage due to an earthquake, MMI-based damage probability

matrices (DPMs) for structural and non-structural damage for each building classification

are required. These matrices provide for each building class the probability that a building

is in one of seven damage states, given the MMI at the location of the building. The

damage states and their corresponding damage factor range, which is the range of the

percentage of exposure value that is damaged, are shown in the first two columns of Table

3.1. Thibert (2008) developed DPMs for structural and non-structural damage in BC by

assuming that the buildings are nearly regular in shape, founded on firm ground, and are

designed based on a National Building Code prior to 1990. Table 3.1 provides an example

of a DPM.

Table 3.1: DPM for Structural Damage in Wood Light Frame Residential building
(Thibert 2008)

Damage state Damage factor range VI VII VIII IX X XI XII
No damage 0 0.08 0.04 0.01 *** *** *** ***
Slight damage 0− 1 0.75 0.28 0.06 0.01 *** *** ***
Light 1− 10 0.17 0.64 0.86 0.69 0.19 0.02 ***
Moderate 10− 30 *** 0.04 0.05 0.20 0.76 0.69 0.42
Heavy 30− 60 *** *** 0.02 0.10 0.12 0.25 0.50
Major 60− 100 *** *** *** *** 0.02 0.04 0.06
Destroyed 100 *** *** *** *** *** *** 0.02

*** represents very small probability values, almost 0.

The percentage of damage for each building classification is defined in terms of the mean

damage factor (MDF), which quantifies the expected damage as a percentage of exposure

value. The MDF is the expected value of the damage given an MMI level, and is calculated

by adding up the product of the damage factor by its corresponding probability. To embed

further variability in the simulations, the damage factor is randomly drawn from each

damage range. For each CSD in an MMI circle, the MDF for each damage type (structural

(S), acceleration-sensitive (AS) non-structural, drift-sensitive (DS) non-structural, and
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building contents (BldgC)) is estimated for each building class.

(v) Estimating seismic losses and insurance claim payments

The losses are calculated by summing the losses generated by S, DS, AS, and BldgC

damages. Following Onur, Ventura, and Finn (2005), we split the building exposure over

damage types following: 25% of the building exposure is for S, 37.5% is for DS and 37.5%

is for AS components. Accordingly, the losses for the jth CSD are simply the product of

the MDF for a given MMI level and the exposure of the CSD at that MMI level such that

Lj,k,S =
[
MDFS,k ×

(
0.25× building exposure at CSDj,k

)]
,

Lj,k,DS =
[
MDFDS,k ×

(
0.375× building exposure at CSDj,k

)]
,

Lj,k,AS =
[
MDFAS,k ×

(
0.375× building exposure at CSDj,k

)]
,

Lj,k,BldgC =
[
MDFBldgC,k × building contents exposure at CSDj,k

]
,

where k is an index for the kth building class. Thus,

Total Lossesj,k = Lj,k,S + Lj,k,DS + Lj,k,AS + Lj,k,BldgC .

Note that a CSD can be affected by multiple MMI levels, and accordingly the percentage

area affected at each MMI level is used to distribute the exposure of a CSD.

The insurance terms used in this article are based on the deductibles, policy limits and

insurance market penetration rates provided in AIR Worldwide (2013), which are displayed

in Table 3.2. AIR Worldwide have only given statistics for QC and BC, and hence, we

assume the smallest market penetration for the provinces for which we have no information.
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Insurance claims for the jth CSD are calculated following

ClaimPmtj,k =





0, Total Lossesj,k ≤ dj,k,

πj (Total Lossesj,k − dj,k) , dj,k < Total Lossesj,k ≤ uj,k,

πj (uj,k − dj,k) , Total Lossesj,k > uj,k,

where

πj = % earthquake insurance market penetration at CSDj,

dj,k = % deductiblej ×
∑

k

(
total exposure at CSDj,k

)
,

uj,k = % policy limitj ×
∑

k

(
total exposure at CSDj,k

)
,

where k is an index for the kth building class and total exposure for a CSD includes building

content exposure. Finally,

Total Lossesj =
∑

k

Total Lossesj,k,

ClaimPmtj =
∑

k

ClaimPmtj,k.

Appendix I.5 summarizes the methodology in two algorithms: Algorithm 1 includes the

steps required to simulate an earthquake and Algorithm 2 explains how to calculate the

losses and the insurance claims for each simulated earthquake.

3.3.2 MCT for earthquake risk

OSFI’s MCT formula in eq. (3.1.1) is a function of the PML in Eastern and Western

Canada. Actuaries define the PML as the worst case scenario of the losses. Let X1, . . . , Xn

be a sequence of independent random variables having a common distribution function
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Table 3.2: Assumptions for the earthquake insurance terms and market penetration
rates, as prescribed in AIR Worldwide (2013)

Property type Location Market penetration
rate

Deductible Limit

Residential

Vancouver Metro 55% 10% 100%
Victoria Metro 70% 8% 100%
Rest of BC 40% 8% 100%
Montréal Metro 5% 5% 100%
Québec Metro 2% 5% 100%
Rest of QC 2% 5% 100%
Vancouver Metro 85% 10% 80%
Victoria Metro 85% 7.5% 80%

Commercial / Rest of BC 85% 7.5% 80%
Industrial Montréal Metro 60% 5% 80%

Québec Metro 60% 5% 80%
Rest of QC 60% 5% 80%

Market penetration rates are percentages of the total exposure value.
Deductibles and policy limits are percentages of the insured exposure value.

F and consider Mn = max{X1, . . . , Xn}. There are several suggestions in the actuarial

literature to calculate the PML, such as (1+θ)E[Mn] or E[Mn]+θ
√
Var[Mn], as suggested

by Wilkinson (1982) and Kremer (1990, 1994), where θ is a chosen constant. The PML is

mathematically defined to be an extreme quantile of Mn such that

P(Mn ≤ PMLϵ) = 1− ϵ (3.3.4)

for some small ϵ > 0. Accordingly, the PML is the threshold dollar value of losses beyond

which losses are highly unlikely.

As explained in Appendix I.4, under some conditions, the distribution of the exceedances

over a high threshold u can be approximated by a GPD Gξ,σ and the number N of

exceedances over u follows a Poisson distribution with rate λ. The distribution of the

maximum of the N exceedances can be approximated by a Generalized Extreme Value

(GEV) distributionHξ,µ,ψ with µ = σ
ξ

(
λξ − 1

)
and ψ = σλξ (Cebrián, Denuit, and Lambert
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2003). Solving for the PML in eq. (3.3.4) yields

PMLϵ = u+
σ

ξ

[(
− λ

ln(1− ϵ)

)ξ
− 1

]
. (3.3.5)

See Section I.4 in Appendix I.4 for details.

Inspired by Solvency II, which guides the European standards for capital requirements,

we propose using the correlation of the insured losses between Canadian provinces and

territories to calculate the minimum capital requirements for earthquake risk in Canada.

The correlation coefficients should reflect the dependence between earthquake financial risks

in Canadian provinces and territories. The Solvency II capital requirements for earthquake

insurance risk adapted to Canada is

Country-widePML1/500 =

√∑

r,s

CorrEQr,s × PML1/500,r×PML1/500,s, (3.3.6)

where:

1. the sum includes all possible combinations (r, s) of Canadian provinces and territories.

2. CorrEQr,s denotes the correlation of the insured losses for earthquake risk for province

r and province s

3. PML1/500,r and PML1/500,s denote the Gross PML for province r and s respectively,

which is the PML amount after deductibles but before any reinsurance deductions.

The PML1/500 is calculated both empirically from the simulations by computing the

(1− 1/500) quantile of the annual maximum losses, which may be zero for years with

no earthquake damage and by substituting estimates of the parameters µ, σ, ξ, and λ

in eq. (3.3.5). The correlation matrix CorrEQ is created by calculating the pairwise

correlation of the simulated financial losses. We should have high correlation when
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provinces are affected concurrently with the same earthquake. Several correlation measures

were attempted: Pearson’s correlation coefficient, Kendall’s tau and Kendall’s tau for zero-

inflated continuous variables (Pimentel, Niewiadomska-Bugaj, and Wang 2015). The latter

was considered because of the nature of the data where a large number of observations

have no financial losses because earthquakes do not affect all provinces in Canada

simultaneously2.

3.4 Results

In this section we compare our results from the proposed methodology in Section 3.3 to

other sources and articles. Section 3.4.1 compares the building exposure values following

our methodology to the exposure values obtained from CatIQ, Canada’s insured loss and

exposure indices provider. Section 3.4.2 compares the financial losses and insurance claims

generated from our algorithm to another earthquake study in the literature; see Onur,

Ventura, and Finn (2005). Finally, Section 3.4.3 provides a detailed analysis of the

earthquake simulation results.

3.4.1 Comparison of exposure values

CatIQ collects values of exposure, insured losses and other related information to serve

the needs of insurers, reinsurers and other stakeholders through an online subscription-

based platform. Figure 3.7 compares the exposure values obtained from CatIQ for 2020 to

the insured exposure calculated by applying the earthquake insurance market penetration

rates from Table 3.2 to the cost of building replacement, as explained in Section 3.3.1. The

comparison is made in June 2021 dollar value. The values on the y-axis are removed to

2. As discussed in Denuit and Mesfioui (2017), there are bounds on Kendall’s tau for zero-inflated
continuous variables such that the correlation values are not between [−1, 1], but rather have a smaller
range. Accordingly smaller Canada-wide PML values will be obtained, compared to the other methods.
Hence, this correlation method was ultimately deemed inappropriate for the purpose of this article.
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maintain the confidentiality of CatIQ’s data, which represents aggregated exposure values

from a majority of Canadian insurers. Our methodology is based on estimations and several

assumptions, while CatIQ’s exposure values are an accurate representation of the insured

exposure for the insurers who submitted their data. Given that we intend to provide an

open-source earthquake insurance risk assessment tool that can be easily explained and

there are no publicly available exposure data, the insured exposure values for residential

buildings calculated with our methodology are deemed sufficient for this paper. The non-

residential exposure differs considerably, which is explained by the use of many assumptions

to estimate the values; see Section 3.3.1.

Figure 3.7: Calculated insured exposure, as explained in Section 3.3.1, vs the exposure
collected by CatIQ.

3.4.2 Comparison of the simulated financial losses with other

earthquake studies

In this section, we compare the results of the methodology explained in Section 3.3 to

calculate direct financial losses and insurance claims with those estimated in earthquake
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studies in the literature.

Conducted in 2001 and published in 2005, the study by Onur, Ventura, and Finn (2005)

estimates the financial losses for the City of Victoria and the City of Vancouver, subject

to an earthquake of MMI VIII affecting the entirety of the cities. Total monetary losses

of $430 million for the City of Victoria and $3.5 billion for the City of Vancouver, in 2001

Canadian dollars, are estimated. Inflated to June 2021 by using the BCPI from Statistics

Canada, Government of Canada (2020b), the values correspond to $835 million for the

City of Victoria and $6.8 billion for the City of Vancouver. Our methodology, under the

same MMI level assumption, produces losses of $941 million for the City of Victoria and

$5.73 billion for the City of Vancouver. The differences can be attributed to two factors:

the losses calculated by Onur, Ventura, and Finn (2005) excluded the losses resulting

from damage to building contents, and different sources in calculating the construction

costs where Onur, Ventura, and Finn (2005) used values provided by local construction

companies.

3.4.3 Simulation results

In this section, we give the results of our earthquake simulations. We also compare the

value of the Canada-wide PML for earthquake risk in P&C companies obtained from our

proposed method in eq. (3.3.6) to that computed from OSFI’s formula in eq. (3.1.1).

100,000 years of earthquake simulations are performed by relying on the procedure detailed

in Section 3.3. The number of years is chosen to be high enough to minimize the variance in

the results3. Table 3.3 summarizes the proportion of years that had a significant earthquake

and the proportion of years that had a damage-inducing significant earthquake.

Figure 3.8 shows the locations and moment magnitudes of a sample of 200 years from the

3. The results in this section are compared against another set of 100,000 years and minimal variations
were observed.
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Table 3.3: The proportion of years with a significant earthquake and the proportion of
years with a significant earthquake causing damage, based on 100,000 simulated years of
earthquakes.

Number of
earthquakes (n)

% of years with n
earthquakes

% of years with n earthquakes causing
damage

0 45.651 59.536
1 27.127 26.321
2 15.265 9.886
3 7.127 3.117
4 2.999 0.846
5 1.177 0.227
6 0.425 0.057
7 0.160 0.01
8 0.065 0
9 0.013 0
10 0.003 0
11 0.001 0
12+ 0 0

simulations. There is a great similarity with the historical seismicity shown in Figure 3.1

in terms of the locations and intensity of the earthquakes.

Following the methodology explained in Section 3.3.1 to calculate exposure and Algorithms

1 and 2, we obtain values for financial losses and insurance claims for each simulated

earthquake. Figure 3.9 illustrates the expected value of the size of the simulated financial

losses and insurance claims for each CSD, conditioning on the occurrence of an earthquake,

whereas Figures 3.10 and 3.11 compare the expected value per province. Some CSDs are

located in zones free of any seismic activities such that they do not witness any significant

earthquakes in the 100,000 simulated years and accordingly they observe no damage. The

expected value of financial losses, conditional on the occurrence of an earthquake, for

each province is relatively proportionate and consistent with the exposure values provided

in Figure 3.3. Locations with high value of exposure witness high values of financial

losses, however, insurance claims are affected by the insurance market penetration and the

insurance terms. Given the large proportion of earthquake insurance market penetration for
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Figure 3.8: 200 years of simulated earthquakes. The size and color of the circles are
proportionate to the moment magnitude.

non-residential buildings in Eastern Canada compared to residential buildings, we observe

a surge in the expected value of insurance claims for non-residential buildings. Larger losses

are seen in Eastern Canada due to the predicted distance attenuation formulas, presented

in eq. (3.3.2) and eq. (3.3.3). For an earthquake of moment magnitude 6, MMI VI can

be reached at a distance of 200 km from the epicenter in Eastern Canada, compared to a

distance of 33 km from the epicenter in Western Canada. As discussed in U.S. Geological

Survey (2018), seismic energy travels in Eastern North America much further than in

Western North America.
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(a) Average Simulated Losses (b) Average Simulated Claims

Figure 3.9: Average financial losses and insurance claims, conditional on the occurrence of
an earthquake, based on simulated 100,000 years.
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Figure 3.10: Average financial losses per province, conditional on the occurrence of an
earthquake, based on 100,000 simulated years. The vertical dashed line splits Eastern and
Western provinces.

In addition to the PML for the insurance claims, we estimate the Canada-wide PML for

financial losses, which include the insured and non-insured portions of the losses, to provide

a big picture of the damage. The correlation of the financial losses and insurance claims

between the provinces is required for eq. (3.3.6). Table 3.4 and Tables 6.3, 6.4 and 6.5

in Appendix I.6 provide Pearson’s correlation coefficients of the financial losses, Pearson’s

correlation coefficients of the insurance claims, Kendall’s tau of the financial losses and
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Figure 3.11: Average insurance claims per province, conditional on the occurrence of an
earthquake, based on 100,000 simulated years. The vertical dashed line splits Eastern and
Western provinces.

Kendall’s tau of the insurance claims, respectively.

Table 3.4: Pearson correlation of the simulated financial losses between Canadian provinces,
based on 100,000 years of simulated earthquakes.

NL PE NS NB QC ON MB SK BC YT NT AB NU
NL 1.00 0.38 0.32 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PE 0.38 1.00 0.81 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NS 0.32 0.81 1.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NB 0.31 0.91 0.82 1.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QC 0.00 0.00 0.00 0.03 1.00 0.69 0.64 0.00 0.00 0.00 0.00 0.00 0.00
ON 0.00 0.00 0.00 0.00 0.69 1.00 0.64 0.00 0.00 0.00 0.00 0.00 0.00
MB 0.00 0.00 0.00 0.00 0.64 0.64 1.00 0.03 0.00 0.03 0.02 0.00 0.02
SK 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.00 0.04 0.02 0.02 0.08 0.02
BC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1.00 0.66 0.53 0.80 0.55
YT 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.66 1.00 0.87 0.40 0.88
NT 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.53 0.87 1.00 0.32 0.97
AB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.80 0.40 0.32 1.00 0.35
NU 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.55 0.88 0.97 0.35 1.00

Table 3.5 shows the parameter estimates of the fitted marked homogeneous Poisson process

with rate λ, shape parameter ξ and scale parameter σ for the size of the excesses over a

high threshold u. The parameters and their standard errors (s.e.) are estimated from the
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simulated financial losses and insurance claims for each Canadian province, for Eastern

and Western Canada and for the whole country. The thresholds are chosen to be the 0.95

quantile of the simulated data, or the 0.9 quantile for provinces with a small number of

exceedances. Diagnostic plots (not shown) are used to confirm the adequacy of the fitted

GPD models.

Tables 3.6 and 3.7 summarize the PML1/x for x ∈ {100, 250, 500, 750, 1000} of the direct

financial losses and the insurance claims, respectively. Results are provided for each

province and for Eastern and Western Canada. The PML1/x are computed following

two methods: by calculating the appropriate quantiles from the simulated data for each

province (simulated), and by plugging in the parameter estimates from Table 3.5 in

eq. (3.3.5) (estimated). Additionally, Canada-wide PML1/x is calculated in three ways:

following OSFI’s formula in eq. (3.1.1), and the proposed formula in eq. (3.3.6) calculated

with Pearson’s correlation coefficient and Kendall’s tau. We observe that the simulated

and the estimated results are very similar, confirming the adequacy of the fitted models.

We also observe that the proposed MCT formula in eq. (3.3.6) produces values that are

comparable to OSFI’s current approach in eq. (3.1.1) and that results using Kendall’s

tau are more conservative than results using Pearson correlation. This is be explained by

the larger values for Kendall’s tau compared to Pearson Correlation in Eastern Canadian

provinces, more specifically for QC.

Figure 3.12 compares the Canada-wide PML1/x for x ∈ [100, 1000] by using eq. (3.1.1)

and eq. (3.3.6) with Pearson correlation and with Kendall’s tau. We observe that for

the financial losses, the proposed formula is more conservative than OSFI’s for any value

of x, where the difference gap increases as x increases, with Kendall’s tau producing

higher values than Pearson’s correlation coefficient. For PML1/500, eq. (3.3.6) with Pearson

correlation is $27 billion more than OSFI’s formula, compared to a $51 billion difference

when Kendall’s tau is used. This is explained by the fact that the proposed method
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captures the strong dependence between QC and ON, where both provinces are affected

concurrently by the same earthquakes due to the distance attenuation equations in Eastern

Canada producing larger isoseismal maps than Western Canada. However, for the PML1/x

of insurance claims, eq. (3.3.6) with Pearson correlation coefficient produces very similar

results to OSFI’s, while Kendall’s tau offers slightly higher values. In fact, for PML1/500,

eq. (3.3.6) with Kendall’s tau is higher by approximately $3 billion. Should Canadian P&C

insurance companies implement the proposed equation, especially with Pearson correlation

coefficient, the transition will be smooth due to the resemblance in the values between both

methods.
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Figure 3.12: Canada-wide PML1/x: OSFI vs eq. (3.3.6) with Pearson’s correlation
coefficient and Kendall’s tau
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Table 3.5: Estimates of the parameters of the fitted homogeneous Poisson process for the simulated financial losses and
insurance claims, based on 100,000 simulated years.

Province
Financial losses Insurance claims

σ (s.e.) ξ (s.e.) λ (s.e.) σ (s.e.) ξ (s.e.) λ (s.e.)

NL 0.0836 (0.0067) 0.0032 (0.0618) 0.0040 (0.0002) 0.0052 (0.0005) 0.3388 (0.0890) 0.0030 (0.0002)

PE 0.1832 (0.0197) -0.0637 (0.0794) 0.0019 (0.0001) 0.0254 (0.0025) 0.2751 (0.0836) 0.0036 (0.0002)

NS 1.5970 (0.1376) -0.2589 (0.0556) 0.0022 (0.0001) 0.1369 (0.0133) 0.0109 (0.0667) 0.0020 (0.0001)

NB 2.3892 (0.1197) -0.1398 (0.0337) 0.0072 (0.0003) 0.7719 (0.0424) -0.0566 (0.0399) 0.0070 (0.0003)

QC 31.5666 (1.2992) -0.1804 (0.0262) 0.0096 (0.0003) 11.1067 (0.4390) -0.2301 (0.0238) 0.0095 (0.0003)

ON 38.4570 (1.4825) -0.1784 (0.0197) 0.0088 (0.0003) 2.4030 (0.1313) 0.2751 (0.0437) 0.0086 (0.0003)

MB 0.4009 (0.0166) -0.3343 (0.0200) 0.0067 (0.0003) 0.1173 (0.0051) -0.3647 (0.0208) 0.0051 (0.0002)

SK 0.0801 (0.0107) 1.6201 (0.1526) 0.0030 (0.0002) 0.0042 (0.0005) 0.8859 (0.1369) 0.0017 (0.0001)

BC 2.8283 (0.0800) -0.1021 (0.0174) 0.0200 (0.0004) 0.1170 (0.0056) 0.6930 (0.0444) 0.0157 (0.0004)

YT 0.9433 (0.0620) -0.1498 (0.0434) 0.0040 (0.0002) 0.0903 (0.0118) 0.6248 (0.1217) 0.0026 (0.0002)

NT 6.8276 (0.5989) -0.0433 (0.0609) 0.0025 (0.0002) 1.4643 (0.1392) 0.2565 (0.0770) 0.0030 (0.0002)

AB 0.2505 (0.0207) 0.2880 (0.0638) 0.0033 (0.0002) 0.1236 (0.0128) -0.0426 (0.0764) 0.0020 (0.0001)

NU 2.0897 (0.1620) -0.1284 (0.0458) 0.0025 (0.0002) 0.0988 (0.0088) 0.7871 (0.0841) 0.0049 (0.0002)

East 38.9950 (1.4906) -0.0827 (0.0222) 0.0103 (0.0003) 11.9035 (0.4675) -0.1046 (0.0238) 0.0101 (0.0003)

West 11.8276 (0.4373) 0.0851 (0.0309) 0.0243 (0.0005) 0.1912 (0.0088) 0.9903 (0.0462) 0.0198 (0.0004)

Total 39.5434 (1.3060) -0.0752 (0.0206) 0.0149 (0.0004) 12.6883 (0.5151) -0.1385 (0.0194) 0.0077 (0.0003)
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Table 3.6: PML1/x values (in $ billions) for the financial losses, based on 100,000 simulated years.

x NL PE NS NB QC ON MB SK BC YT NT AB NU East West OSFI Pearson Kendall

S
im

u
la
te
d

100 0.1 0.9 2.6 10.4 135.0 53.4 0.8 0.0 4.0 0.9 9.7 0.4 1.3 180.1 14.9 182.9 177.9 193.6

250 0.1 1.4 4.3 12.6 164.6 87.3 1.1 0.1 6.2 1.7 19.5 0.7 3.8 214.2 28.1 221.0 236.8 258.2

500 0.2 1.6 5.6 13.6 180.5 108.6 1.2 0.1 7.7 2.4 25.7 0.9 5.4 234.4 38.1 244.6 271.6 296.0

750 0.2 1.7 6.2 14.2 185.7 115.4 1.3 0.2 8.5 2.7 28.5 1.0 6.3 248.4 42.3 259.9 283.1 308.8

1000 0.3 1.7 6.6 14.7 189.7 121.3 1.3 0.3 9.1 2.9 30.6 1.1 6.6 261.6 45.4 274.0 292.5 319.1

E
st
im

at
ed

100 0.1 1.3 2.5 10.3 134.4 52.7 0.7 0.0 3.9 0.8 14.4 0.5 1.6 179.9 13.9 182.4 177.2 192.7

250 0.1 1.5 4.4 12.5 161.4 86.1 1.0 0.1 6.2 1.7 20.9 0.7 3.8 214.3 26.1 220.4 232.9 254.0

500 0.2 1.6 5.6 13.9 179.0 107.9 1.2 0.1 7.9 2.4 25.7 0.9 5.3 238.7 36.0 247.9 269.6 294.2

750 0.2 1.7 6.2 14.7 188.3 119.5 1.3 0.2 8.7 2.7 28.4 1.0 6.1 252.3 42.0 263.6 289.2 315.6

1000 0.2 1.7 6.6 15.3 194.5 127.2 1.4 0.3 9.4 2.9 30.3 1.1 6.6 261.6 46.4 274.5 302.2 329.8

Simulated: calculated by solving for the appropriate quantiles in simulated data for each province.

Estimated: calculated by plugging in the parameters estimates from Table 3.5 in eq. (3.3.5).
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Table 3.7: PML1/x values (in $ billions) for the insurance claims, based on 100,000 simulated years.

x NL PE NS NB QC ON MB SK BC YT NT AB NU East West OSFI Pearson Kendall

S
im

u
la
te
d

100 0.0 0.0 0.1 0.9 12.7 5.6 0.1 0.0 0.1 0.0 0.0 0.0 0.0 17.4 0.3 17.4 17.2 18.6

250 0.0 0.1 0.2 1.6 22.3 8.2 0.2 0.0 0.3 0.0 0.3 0.0 0.1 28.7 1.1 28.8 28.8 31.1

500 0.0 0.1 0.3 2.1 28.2 10.3 0.2 0.0 0.7 0.1 1.2 0.1 0.2 36.3 2.0 36.6 36.4 39.4

750 0.0 0.1 0.4 2.3 30.0 11.7 0.2 0.0 0.9 0.1 1.8 0.1 0.3 39.4 2.9 39.9 39.3 42.6

1000 0.0 0.1 0.4 2.5 31.1 12.7 0.2 0.0 1.2 0.2 2.6 0.1 0.4 40.9 3.4 41.6 41.3 44.9

E
st
im

at
ed

100 0.0 0.1 0.1 0.9 12.4 5.8 0.0 0.0 0.1 0.0 0.0 0.0 0.0 17.5 0.3 17.5 17.0 18.4

250 0.0 0.1 0.2 1.6 21.7 8.2 0.1 0.0 0.3 0.0 0.2 0.0 0.1 27.9 0.9 28.0 28.2 30.5

500 0.0 0.1 0.3 2.1 27.6 10.5 0.2 0.0 0.6 0.1 1.2 0.1 0.2 35.1 1.8 35.4 35.9 38.9

750 0.0 0.1 0.4 2.4 30.6 12.0 0.2 0.0 0.8 0.1 1.9 0.1 0.3 39.1 2.7 39.6 40.2 43.6

1000 0.0 0.1 0.4 2.6 32.5 13.2 0.3 0.0 1.0 0.2 2.5 0.1 0.4 41.9 3.6 42.6 43.2 46.9

Simulated: calculated by solving for the appropriate quantiles in simulated data for each province.

Estimated: calculated by plugging in the parameters estimates from Table 3.5 in eq. (3.3.5).
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3.5 Discussion

Canada has elevated seismic risk due to the presence of urban population in zones

with high seismic activities, such as in Eastern and Western Canada. Estimation of

the financial damage is relevant to insurance companies, governmental institutions and

homeowners. Assessment of the spatio-temporal models by means of goodness-of-fit tests

can be performed through residual analysis methods. In this paper, we fit two different

models to the spatio-temporal point pattern for significant Canadian earthquakes. We

extend the use of residual analysis on Voronoi polygons by calculating deviance Voronoi

residuals, which provide a very useful tool to compare fitted models and identify locations

where one model is superior to the other. We also create an earthquake financial losses

estimation tool for Canada by relying on building information, their replacement costs

and earthquake damage probability matrices. Additionally, insurance policy terms and

market information are used to estimate insurance claim values. A more interpretable

approach is suggested to calculate the county-wide PML by relying on the correlation

between neighboring provinces. A large simulation of 100,000 years of earthquakes is

performed, where we obtain parameter estimates for the tail behavior by using extreme

value theory techniques. The results displayed in this article can be improved further by

obtaining data on the non-residential buildings in Canada and more detailed information

on earthquake insurance penetration and policy terms in Canadian municipalities. Based

on our methodology and parameters, a significant earthquake that occurs at a rate of 1-in-

500 years in Québec can cause financial damages of around $180 billion. Yet, earthquake

insurance claims that occur at a rate of 1-in-500 years are only around $28 billion. Some

of the $152 billion in uncovered losses can be partially covered by homeowners, but the

government may have to intervene, especially to repair damages in infrastructure. This

represents considerable government expenditures, for example, it is nine-fold the budgeted

COVID-19 support and recovery measures for the years 2020-2024. Covering $152 billion
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would double the planned total expenditures for 2021-2022 (Gouvernement du Québec

2021) and lead to a major deficit. Analogous comparisons show that governments in

Ontario and other provinces are also ill-prepared for earthquake relief and that there is a

need for further insurance market penetration, especially in Eastern Canada.

Supplementary Material

An open-source interactive web application is provided in https://robabairakdar.shinyapps.

io/shiny/. The application allows the user to simulate multiple significant earthquakes,

with different random moment magnitudes, in a chosen geographical location in Canada.

The insurance market penetration and insurance terms are chosen by the user and their

resulting insurance claims are calculated. This web application can provide insurers with

a simulated value of the expected financial losses in case of an occurrence of a significant

earthquake in areas where they have exposure or plan to sell new earthquake policies. It

also provides the simulated isoseismal map, which contains information on the exposure

and losses for the affected CSDs.
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Chapter 4

Random Forests for Wildfire Insurance

Applications

4.1 Introduction

Wildfires burn around 423 million hectares of the global land surface annually, which

represents approximately 3% of the global vegetation land (Giglio et al. 2018). Under very

dry conditions, such as extreme heat combined with very low precipitations, a natural

spark or human activity can ignite a wildfire. The effect of climate on wildfire risk varies

depending on the location and time due to the spatial and temporal climate diversity,

spatial variation of vegetation, fire management and prevention policies, and the interaction

between these variables. The 2016 wildfires in Alberta (Fort McMurray) and the 2017-2021

wildfires in California generated billions of dollars in insured losses and alerted the public

and insurers to the threats caused by wildfires. Knowledge of the spatial likelihood of

burning and the potential financial impact of wildfires can provide a great tool for wildfire

risk management.

Although fire activity in North America fluctuates annually, recent years witnessed an
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increase in the annual number and size of forest fires in some locations compared to

the past few decades. In fact, the 2017 and 2018 wildfires in British Columbia are the

largest wildfires to be recorded in the area since the 1950s, with a total of 1.2 and 1.4

million hectares burned, respectively (Hanes et al. 2019). The Dixie fire in 2021 is the

second-largest wildfire in the history of California, with around 0.4 million hectares burned

(CALFIRE 2022).

Wildfire losses fluctuate considerably, depending on the location of events. Between 2000-

2019, 26% of the world’s wildfires and 69% of the economic losses due to wildfires occurred

in the United States of America (USA), with the most damage in California (Yaghmaei

2020). In California, numerous insurers have stopped writing homeowners’ insurance

policies in fire-prone areas, resulting in a transfer of the insurance business to expensive

specialty markets (Groom 2015). The Canadian Interagency Forest Fire Center (CIFFC)

reports 6,317 wildfires across Canada in 2021, with more than 4.2 million hectares of burned

land (CIFFC 2021). The International Disaster Database reports that North America

suffered from $68.8 billion in total damages (adjusted to inflation) due to wildfires over the

period between 2000-2019, with only 64% of those losses being insured (EM-DAT 2020).

Spatial wildfire risk assessment and fire spread models are growing fields with applications

in fire-related decision making. Simulation-based fire spread algorithms were introduced

to mitigate the damage caused by wildfires; see, for example, Van Wagtendonk (1996).

Spatial wildfire models in the literature usually focus on a limited geographical study area;

see, for example Finney et al. (2011) (continental USA), Atkinson et al. (2010) (Tasmania,

Australia), Chuvieco et al. (2010) (Spain), Massada et al. (2009) (Northwestern Wisconsin,

USA), and Van Wagtendonk (1996) (Sierra Nevada, USA), however, they are not created

for actuarial purposes. Adequate estimation and prediction of future wildfire insured losses

is challenging since it requires information on buildings. Moreover, constant developments

and improved construction in wildfire-prone areas may not be consistent with historical
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losses. As such, insurers are typically buying private complex wildfire insurance risk models,

which may provide results that are difficult to interpret and replicate. Spatial modeling in

the actuarial literature usually focuses on claims data; see, for example Shi and Shi (2017)

for spatial frequency and severity modeling of auto-insurance claims, however, one may

not always have sufficient claims data that covers the geographical region of interest. In

the context of natural catastrophic events, such as wildfires, it is more suitable to follow

a natural catastrophe risk modeling decomposition approach, i.e. identify the hazard,

vulnerability and exposure; see Mitchell-Wallace et al. (2017) for details. There is wildfire

risk at the intersection of those three components, such that a vulnerable property is subject

to wildfire risk due to its location and characteristics.

This article provides a quantitative approach that considers the spatial variation in climate,

land and demographic factors that drive wildfire occurrence in North America. We propose

a wildfire risk model specifically tailored for USA and Canada, separately, splitting for each

cause of ignition: man-made and natural. Our goal is to provide an open-source model, for

pricing and underwriting P&C insurance policies. The model takes into account multiple

types of wildfire risk features: continuous variables, categorical variables, and geographical

coordinates. Several modeling techniques are used, such as GLMs and statistical learning

algorithms that rely on decision trees. Combining numerous decision trees in an ensemble,

such as a random forest, provides high predictive performance with an ability to discover

interaction effects between the predictors. Tree-based machine learning models offer strong

predictive capabilities, in addition to their interpretability and ease of explanation of the

importance of the predictors, unlike neural network. They can also implicitly handle

variable correlation, capture variable interactions and non-linear relationships between the

predictors. Given the lack of publicly available wildfire claims data for each location in

North America, we instead focus on modeling the annual burn probabilities by relying

on publicly-available historical wildfire data. The goal of the article is to provide an

interpretable model that predicts the annual burn probabilities for any location in North
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America and to compare how random forest models perform compared to more commonly

used actuarial modeling techniques, such as GLMs. The best fit model is used in a

downscaling exercise where we predict the annual burn probabilities at a high resolution,

which is applicable for insurance purposes, such as pricing home insurance policies with

coverage against wildfires.

The remainder of the article is organized as follows. Section 4.2 explains the data used

in the model, such as the historical wildfires data, vegetation information and land use,

meteorological and population data. It also classifies the population of North America

depending on the wildfire risk. Section 4.3 provides details on the methods proposed to fit

the data. It also summarizes the results of the fitted models and compares their predictive

capabilities. Section 4.4 provides a detailed analysis of the effect of each input variable.

An insurance application is illustrated in Section 4.5 to underwrite and price insurance

policies. Finally, Section 4.6 concludes the article.

4.2 Data

In this section, we discuss the data used to build our model. We explain the historical

wildfires data and the wildfire risk factors such as climate, land cover, population census,

and lightning frequency.

4.2.1 Wildfire occurrence and intensity

The area burned and the frequency of wildfires are relevant metrics to identify trends in

wildfire risk and they are also of great importance to estimate insurance losses. Summaries

of the historical wildfires in North America are provided in Figure 4.1, where the data is

obtained from CFS (2019) and Short (2017). Data for Canadian wildfires range from 1975

until 2019. 2016 witnessed 1.3 million hectares burned - the Fort McMurray wildfire being
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responsible for 0.6 million. The last five years of data (2015-2019) had 29,000 wildfires

causing a total of 13 million hectares burned, with an average fire size of 450 hectares.

Data for the USA wildfires range from 1992 until 2015. The last five years of data (2011-

2015) had 370,000 wildfires resulting in a total of 15 million hectares burned, with an

average fire size of 40 hectares. The increase in the area burned can be attributed to

the lengthening of fire seasons due to the increase in spring and summer temperatures, as

explained by Westerling et al. (2006). Historical wildfires in the USA compared to Canada

contain a substantial number of wildfires that are small in size, however, Canadian wildfires

data contain relatively larger fires. This may be explained by the differences in reporting

of wildfires by the fire agencies.
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Figure 4.1: The annual number of wildfires (lines) and area burned (bars) in North America.
Each bar shows the split of the total area burned over the USA and Canada.

Lightning strikes are the leading cause of large wildfires, which is typically due to prolonged

dry conditions, high temperatures, and excessive dry fuel. However, in densely populated
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areas, man-made sparks can be responsible for a large number of ignitions due to human-

related activities, such as arson, campfires, equipment use, fireworks, smoking, etc. Figure

4.2 compares the annual number and size of wildfires of all sizes caused by lightning strikes

and human ignitions, where we observe that natural wildfires are significantly less frequent

compared to man-made wildfires, but they tend to burn more land and cause more damage.
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Figure 4.2: Annual number of wildfires (lines) and area burned (bars) by cause of wildfire
in North America. Each bar shows the split of the total area burned by the cause of the
wildfire; i.e. man-made vs. natural wildfires.

Numerous small wildfires may not necessarily result in a significant increase in the area

burned. Accordingly, it may be more appropriate to only consider large wildfires as they

are more likely to cause material damage. The Canadian large wildfire database includes

information on all wildfires larger than 200 hectares (Stocks et al. 2002). The large wildfires

in Canada represent 4% of the count of all wildfires in Canada and 98.8% of the total area

burned in the observed period. 84% of the Canadian large wildfires are ignited by lightning

strikes and they contribute to 91% of the total area burned by all large wildfires in Canada.

By applying the same threshold of 200 hectares, less than 1% of the count of wildfires in

the USA is considered large and they correspond to 88.8% of the total area burned. 44.6%

of the large wildfires in the USA are ignited by natural reasons and they contribute to

88



67.8% of the total area burned.

Figure 4.3 maps the historical annual burn probabilities for each cause per grid cell. The

chosen resolution is 0.1◦ × 0.1◦ where 1◦ is approximately 111 km at the Equator, which

is the resolution of the meteorological data. The count of wildfire origins that occurred in

each cell is calculated for the entire duration of each dataset, 45 years for Canada and 24

years for the USA. Each year is coded as binary because only a few grid cells have more

than one wildfire in a given year. The annual burn probability is obtained by dividing by

the number of years of data. Due to the different natures of the maps, we choose to split

our North American wildfire model by country and by cause. Wildfire risk is heterogeneous

in space, which means that observations are not identically distributed, i.e. in each grid

cell, there might be a different distribution. In addition, one could have spatial dependence

in between the random variables, i.e. if there is a claim in a grid cell, then it is highly

likely there is a claim in the neighbouring grid cell.

4.2.2 Predictors/Determinants of wildfires

Table 4.1 summarizes the wildfire risk predictors explained in this section and used

throughout this paper. All meteorological data is obtained from the Copernicus Climate

Change Service Climate Data Store (CDS) ERA5 reanalysis data at a spatial resolution

of 0.1◦ × 0.1◦ (CDS 2019). Monthly-mean averages for the observed period are obtained

for the following variables: (1) the air temperature at 2m above the surface of the Earth,

(2) the horizontal speed of air moving towards the east and the north at a height of 10m

above the surface of the Earth, and (3) the total precipitation from the accumulated liquid

and frozen water, including rain and snow that falls to the surface of the Earth. The data

is then averaged by fire season, where fire season is defined to be March to September for

the USA wildfires, May to September for Canada’s natural wildfires, and April to October

for Canada’s man-made wildfires. The fire seasons are obtained from the historical wildfire
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Figure 4.3: Observed annual burn probabilities per grid cell. The maps are split by country
and cause of wildfire.

data by observing the monthly seasonality for each wildfire cause. All other covariate

information are aggregated/re-scaled to 0.1◦ × 0.1◦ to unify the resolution and are stored

as raster images, which are pixel-based files that contain unique information per cell.

We use the 2015 North American Land Cover 30m dataset (NALCMS 2020), which explains

the material features of the Earth’s surface at a 30m spatial resolution based on Landsat-7

imagery. To unify the resolution with the other covariates, the percentage of each land type

is calculated for each 0.1◦×0.1◦ grid cell, hence, converting the 19 types of land cover from

a categorical variable to 19 continuous variables that range from 0 to 1. The world digital

elevation model, created from a digital database of land and sea-floor elevations on a 1◦/12
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resolution, is used as a predictor that represents elevation (NOAA 2016). The global map

of lightning frequency contains the number of strikes/km2/year on a 0.5◦ × 0.5◦ grid. In

North America, Florida has the highest annual lightning strike rate, with an average of 59

strikes/km2/year (Cecil, Buechler, and Blakeslee 2014).

Population count data is obtained from the fourth version of the Gridded Population of

the World collection, which provides a smoothed distribution of the human population

on a continuous global raster surface at a resolution of 1◦/120 × 1◦/120 ≈ 1 km ×1 km

(CIESIN 2017). The dataset is created from census data collected between 2005 and 2014

and then extrapolated to estimate the population count/density for the years 2000, 2005,

2010, 2015, and 2020. For this article, we use the raster for the population count in 2005

as a possible predictor and the population count in 2020 is used for predictions.

4.2.3 Population at risk

To analyze the population exposed to wildfire risk, we classify the population in each state

and province into low, medium or high risk based on the observed burn probabilities of

natural or man-made wildfires. We define low risk to be an annual likelihood < 10%,

medium risk is between 10 − 40% and high risk are for grid cells above 40%. Table 4.2

summarizes the results. Overall, 8% of Canadian residents are at high risk of man-made

wildfires, compared to 33% of US residents. While no Canadian residents are located in

high risk zones for natural wildfires, 5% of the USA population resides in zones that are

at high risk for natural wildfires.

4.3 Wildfire Occurrence Models

This section explains the models used in this paper and then provides the results of the

fitted models and compares their predictive capabilities. We are interested in modeling
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Table 4.1: Definitions of the modeling predictors.

Variable Definition
Longitude The longitude at the center of the grid cell
Latitude The latitude at the center of the grid cell
LandCover 1 Percentage of the grid cell land covered by temperate or sub-polar needleleaf forest
LandCover 2 Percentage of the grid cell land covered by sub-polar taiga needleleaf forest
LandCover 3 Percentage of the grid cell land covered by tropical or sub-tropical broadleaf evergreen forest
LandCover 4 Percentage of the grid cell land covered by tropical or sub-tropical broadleaf deciduous forest
LandCover 5 Percentage of the grid cell land covered by temperate or sub-polar broadleaf deciduous forest
LandCover 6 Percentage of the grid cell land covered by mixed forest
LandCover 7 Percentage of the grid cell land covered by tropical or sub-tropical shrubland
LandCover 8 Percentage of the grid cell land covered by temperate or sub-polar shrubland
LandCover 9 Percentage of the grid cell land covered by tropical or sub-tropical grassland
LandCover 10 Percentage of the grid cell land covered by temperate or sub-polar grassland
LandCover 11 Percentage of the grid cell land covered by sub-polar or polar shrubland-lichen-moss
LandCover 12 Percentage of the grid cell land covered by sub-polar or polar grassland-lichen-moss
LandCover 13 Percentage of the grid cell land covered by sub-polar or polar barren-lichen-moss
LandCover 14 Percentage of the grid cell land covered by wetland
LandCover 15 Percentage of the grid cell land covered by cropland
LandCover 16 Percentage of the grid cell land covered by barren lands
LandCover 17 Percentage of the grid cell land covered by urban
LandCover 18 Percentage of the grid cell land covered by water
LandCover 19 Percentage of the grid cell land covered by snow and ice
Elevation Height above sea level
Population Count of individuals who reside in the grid cell
LightningFrequency The annual frequency of lightning strikes per grid cell
Temperature FireSeason The average daily temperature during the fire season
Temperature NotFireSeason The average daily temperature in days falling outside the fire season
TotalPrecipitation FireSeason The average daily total precipitation during the fire season
TotalPrecipitation NotFireSeason The average daily total precipitation in days falling outside the fire season
EastwardWind FireSeason The average speed of air moving towards the east during the fire season
NorthwardWind FireSeason The average speed of air moving towards the north during the fire season
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Table 4.2: Wildfire risk classification by population. The states and provinces are ordered in descending order of their count
of wildfires. The top 5 provinces in Canada and the top 10 states in the USA are shown.

Man-made Natural
Province Number of

wildfires
(’000)

Low risk
(%)

Medium
risk (%)

High
risk (%)

Province Number of
wildfires
(’000)

Low risk
(%)

Medium
risk (%)

High
risk (%)

Canada 179 75 17 8 Canada 153 97 3 0
British Columbia 42 49 25 26 British Columbia 51 79 19 2
Ontario 30 93 5 2 Ontario 28 99 1 0
Alberta 28 92 4 4 Alberta 25 98 2 0
Québec 27 56 34 10 Saskatchewan 11 98 2 0
Saskatchewan 13 90 3 7 Québec 11 100 0 0
USA 1105 43 25 33 USA 274 85 10 5
Georgia 149 6 14 80 Oregon 32 84 10 5
California 97 27 33 40 Arizona 29 90 6 4
Texas 93 37 49 14 California 27 93 6 1
North Carolina 80 2 9 89 Florida 22 41 34 25
Mississippi 60 6 17 77 Idaho 21 83 15 1
Alabama 55 0 23 77 Colorado 20 80 15 5
Florida 54 12 17 70 New Mexico 18 70 26 4
South Carolina 49 1 12 87 Montana 18 66 28 6
Minnesota 37 59 17 24 Utah 17 64 30 6
Tennessee 29 40 34 26 Nevada 11 78 19 3
Low risk: annual likelihood < 10%, medium risk: annual likelihood 10 - 40%, and high risk: annual likelihood > 40%.
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N , the random number of wildfires for each location in North America over a grid of

0.1◦×0.1◦, over a time period t; 45 years for Canada and 24 years for the USA. Due to the

significant natural climate variability, we use as much available data over time as possible

to cover most possible climate scenarios. The annual burn probability per grid cell is N/t.

Following the discussion of determinants of wildfires in Section 4.2.2, the predictors of the

models are: geographical location, percentage coverage over a grid cell by each land type,

elevation, population count, lightning frequency, the mean temperature in fire season, the

mean temperature other than fire season, the mean precipitation in fire season, the mean

precipitation other than fire season, the mean eastward wind speed in fire season and

the mean northward wind speed in fire season. See Table 4.1 for the definitions of the

predictors.

Wildfire occurrence models are conditional on meteorological, topographical and

socioeconomic variables, as such, any trend in wildfire occurrence is implicitly captured

by the trend in the covariates.

4.3.1 Methodology

We compare GLMs (McCullagh 1984), regression decision trees (Breiman et al. 2001)

and random forests (Breiman 2001). Even though interpreting GLMs is quite simpler

than tree-based models, yet the latter can capture interactions easily and model non-

linear relationships between predictors. Decision trees provide predictions that are easily

interpreted, however they are known to have high variance, where small changes in the

data can generate different trees and hence different predictions for some observations.

This limitation is taken care of by using random forests, which relies on numerous decision

trees, thus minimizing the variance.

To fit the models and compare their predictive power, we first randomly partition the

data into train (90%) and hold-out test (10%) datasets. We apply repeated 10-fold
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cross-validation (CV) with 5 repetitions to train the candidate models and tune the

hyperparameters of the tree-based models. As a model validation technique, CV allows us

to assess how the performance of our models can generalize to other independent datasets.

In each iteration of the CV, we use 9 different folds out of the 10 folds to train our model,

and we test on the remaining fold. We evaluate the performance of the tree-based models

over an extensive grid search of possible values of the hyperparameters. The best set of

hyperparameters are the ones that minimize the root mean square error (RMSE); see Bruce

and Bruce (2017) for further details. The hold-out test dataset is later used to compare

predictions with the actual observed values. The Caret (Kuhn 2021) R package is used to

tune the hyperparameters, train the models and calculate variable importance.

In the next section, we present the details of the fitted models. First, we model the

occurrences of wildfires of any size, split by country and cause of wildfire. Then, we

consider large wildfires only and we model them by country.

4.3.2 Models for wildfires of any size

The wildfires are split by ignition cause; man-made or natural. Accordingly, we fit four

models to the following data sets:

(i) Canada man-made wildfires,

(ii) Canada natural wildfires,

(iii) USA man-made wildfires, and

(iv) USA natural wildfires.

Figure 4.4 displays the distribution of the response variable in each data set, representing

generally balanced datasets. Canada man-made wildfires had a maximum of 44 wildfires in

a grid cell over 45 years, i.e. almost a wildfire occurred in approximately the same location
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every year. However, Canada’s natural wildfires had a maximum of 32 wildfires in a grid

cell over 45 years. The USA man-made and natural wildfires each had a maximum of 24

wildfires over 24 years.
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Figure 4.4: The proportion of 0.1◦ × 0.1◦ grid cells with n wildfires of any size in 45 years
in Canada and 24 years in the USA.

We apply the algorithms discussed in Section 4.3.1 to train the data and tune the

hyperparameters of the tree-based models. To assess the predictive accuracy of the models,

we calculate the CV root mean squared prediction error and the CV mean absolute

prediction error (MAE). To facilitate the comparision between the models for Canada

and the USA, standardized versions of the RMSE and MAE, that account for the number

of years in each model, are calculated. Thus, both measures are presented in terms of the

annual burn probability. For model comparison purposes, we also compare the CV Pearson

correlation coefficient between the observed values and the predictions, and we compute

the RMSE on the hold-out test dataset. Additionally, we calculate the prediction error
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measures for a baseline model, which assumes that the country-wide mean is applied to all

grid cells. Table 4.3 summarizes the discussed measures. As expected, the random forest

models outperform the other fitted models. We also observe that the random forest models

show around half the prediction error of the baseline model.

Table 4.3: Cross-validation prediction errors and Pearson correlation coefficient and hold-
out RMSE of the attempted models for fitting wildfires of any size for each country and
cause. RMSE and MAE are presented in terms of the annual burn probability.

Fitted model
Canada USA

Man-made Natural Man-made Natural

C
V

R
M
S
E

Baseline 0.0706 0.0499 0.2586 0.1525
GLM - Poisson 0.0617 0.0377 0.2032 0.1178
GLM - Negative Binomial 0.0706 0.0399 0.2438 0.1264
Regression Decision Tree 0.0580 0.0435 0.2179 0.1244
Random Forest 0.0426 0.0267 0.1144 0.0722

C
V

M
A
E

Baseline 0.0343 0.0305 0.2036 0.0996
GLM - Poisson 0.0234 0.0199 0.1296 0.0681
GLM - Negative Binomial 0.0264 0.0201 0.1488 0.0702
Regression Decision Tree 0.0244 0.0252 0.1565 0.0755
Random Forest 0.0156 0.0148 0.0745 0.0407

C
V

C
or
re
la
ti
on GLM - Poisson 0.4985 0.6582 0.6212 0.6372

GLM - Negative Binomial 0.4555 0.6276 0.5219 0.6089
Regression Decision Tree 0.5689 0.4873 0.5387 0.5788
Random Forest 0.7988 0.8445 0.8980 0.8819

H
ol
d
-o
u
t

R
M
S
E

Baseline 0.0703 0.0501 0.2604 0.1525
GLM - Poisson 0.0597 0.0371 0.2082 0.1191
GLM - Negative Binomial 0.0721 0.0391 0.2524 0.1279
Regression Decision Tree 0.0598 0.0457 0.2223 0.1290
Random Forest 0.0416 0.0261 0.1154 0.0697

The random forest models have the strongest predictive power, and hence they are

chosen as the optimal models such that all the analysis thereafter is performed on them.

As a comparison tool against historical wildfire records, Figure 4.5 provides a visual

representation of the differences between the predictions of the random forest models and

the observed events for each grid cell to highlight zones where the model is lacking predictive

power. To facilitate the comparison between the four maps, the differences are computed
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in terms of the annual burn probability.
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Figure 4.5: Difference between the predicted and actual annual burn probabilities of
wildfires of any size.

Figure 4.6 displays the variable importance for each random forest model, which represents

the percentage increase in the mean square error of the random forest model when the data

for that variable are randomly permuted (Breiman et al. 2001). The analysis shows that for

man-made wildfires in Canada and the USA, the most important predictors are population,

urban land, water and northward wind speed. For natural wildfires, there are no common

important predictors between the countries.

Figure 4.7 compares the predicted annual burn probabilities to the observed burn

probabilities in the hold-out test dataset, where we notice a strong linear relationship close

to the 45◦ line, except for slight under prediction of high-risks. This is generally acceptable
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Figure 4.6: Variable importance (percentage mean decrease in accuracy) of the random
forest models for wildfires of any size for each country and cause.

due to the difficulty of any model in predicting outliers/extremes. For each observation,

prediction intervals are plotted, which represent 95% of the individual predictions from the

decision trees composing each random forest model. In fact, around 90% of the observed

burn probabilities for the USA wildfires and 95% of the observed burn probabilities for

Canadian wildfires fall within the 45th and 55th quantiles of the individual decision tree
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predictions.
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Figure 4.7: Predicted vs observed annual burn probabilities of wildfires of any size,
computed on the hold-out test datasets. The vertical bars are the prediction intervals.

4.3.3 Models for large wildfires

Even though large wildfires are small in number, they contribute significantly to the area

burned and economic damage. Figure 4.8 displays the distribution of the response variable

in each model. There was a maximum of 10 wildfires in a grid cell over 45 years in Canada,

compared to 15 large wildfires in the USA over 24 years. We fit two models:

(i) Canada large wildfires, and

(ii) USA large wildfires.
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Figure 4.8: The proportion of 0.1◦ × 0.1◦ grid cells with n large wildfires in 45 years in
Canada and 24 years in the USA.

See Table 4.1 for the predictors of the models. We apply the methods discussed in Section

4.3.1 to train the data and tune the hyperparameters. Table 4.4 provides the CV RMSE,

MAE and Pearson correlation coefficient of the fitted models, in addition to the RMSE

computed on the hold-out test dataset. Both RMSE and MAE are presented in terms of

the annual burn probability. Similar to the models in Section 4.3.2, the random forest

models outperform the GLM and decision tree models. It is observed that the Pearson

correlation coefficient of both models is low in comparison with the models for wildfires of

any size, discussed in Section 4.3.2, which is attributed to the difficulty in predicting the

large observation values.

As shown in Figure 4.8, where we have a large number of grids with no observed large

wildfires, it is easier for the model to predict the zeros. Accordingly, we consider hurdle

models, first introduced by Cragg (1971), which are pure mixtures of zero and non-zero

outcomes. A logistic GLM is responsible for the binary component of whether the outcome

is zero or positive. If the outcome is positive, the conditional distribution of the non-zeros is

modeled by a zero-truncated count distribution. We apply the same methodology by using

two-stages random forest model: the first stage is a classification model that categorizes

the observations into “no large fire” vs “large fire” occurrence, while the second stage is a

regression model to predict the number of occurrences should at least one large wildfire
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Table 4.4: Cross-validation prediction errors and Pearson correlation coefficient and hold-
out RMSE of the models for fitting large wildfires for each country. RMSE and MAE are
presented in terms of the annual burn probability.

Fitted model Canada USA

C
V

R
M
S
E

Baseline 0.0086 0.0244
GLM - Poisson 0.0082 0.0232
GLM - Negative Binomial 0.0082 0.0233
Regression Decision Tree 0.0084 0.0235
Random Forest 0.0079 0.0204

C
V

M
A
E

Baseline 0.0048 0.0136
GLM - Poisson 0.0044 0.0122
GLM - Negative Binomial 0.0044 0.0122
Regression Decision Tree 0.0046 0.0125
Random Forest 0.0042 0.0102

C
V

C
or
re
la
ti
on GLM - Poisson 0.2714 0.2972

GLM - Negative Binomial 0.2694 0.2956
Regression Decision Tree 0.2142 0.2657
Random Forest 0.3760 0.5471

H
ol
d
-o
u
t

R
M
S
E

Baseline 0.0082 0.0241
GLM - Poisson 0.0079 0.0229
GLM - Negative Binomial 0.0079 0.0229
Regression Decision Tree 0.0080 0.0234
Random Forest 0.0076 0.0198

happens. In the first stage, we apply larger weights on the observations with “large fire”

so that they have higher chances of selection in the bootstraps samples for the individual

decision trees.

We assess the predictive strength of each model component separately: the hurdle

component and the count component. For the hurdle component, we calculate the CV

area under the receiver operating characteristic curve (AUC) and accuracy, i.e. the ratio

of the correctly predicted observations to the total number of observations. While for the

count component, we calculate the CV RMSE and Pearson correlation coefficient of the

observed count of large wildfires and predicted count of large wildfires. The RMSE is

presented in terms of the annual burn probability. Finally, we compute the same measures

on the hold-out dataset. Table 4.5 summarizes the discussed measures. For the hurdle
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components, all attempted models perform similarly. By observing the AUC, the random

forest models are slightly better, however by comparing the accuracy of the models, the

GLM hurdle models seem to perform better. For the count components, the random forest

models outperform the GLM hurdle models that fail to predict values in the tail of the

distribution.

Overall, the two-stages random forest models have the strongest predictive power, and

hence they are chosen as the optimal models for the occurrence of large wildfires in Canada

and the USA. All the analysis thereafter for large wildfires is performed on the two-stages

random forest models. Figure 4.9 illustrates the difference between the predictions of the

random forest models for large wildfires and the observed events for each grid cell, where

we observe minimal errors, comparable to the small RMSE values shown in Table 4.5. The

values are computed in terms of the annual burn probability.
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Figure 4.9: Difference between predicted and actual burn probabilities of large wildfires.

Figure 4.10 displays the variable importance for each model in the two-stages random

forest models to help identify the most influential variables. The comparison between the

variables shows that climate variables are the main drivers behind wildfires becoming large

in size.
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Table 4.5: Cross-validation and hold-out AUC, Accuracy, RMSE and Pearson correlation
coefficient of the attempted hurdle models for fitting large wildfires for each country. RMSE
is presented in terms of the annual burn probability.

Fitted model Canada USA

H
u
rd
le

C
om

p
on

en
t

C
V

A
U
C

GLM - Poisson Hurdle 0.7632 0.7458

GLM - Negative Binomial Hurdle 0.7631 0.7459

Random Forest 0.8213 0.8525

C
V

A
cc
u
ra
cy GLM - Poisson Hurdle 0.8949 0.8685

GLM - Negative Binomial Hurdle 0.8949 0.8686

Random Forest 0.8757 0.8640

H
ol
d
-o
u
t

A
U
C

GLM - Poisson Hurdle 0.7494 0.7469

GLM - Negative Binomial Hurdle 0.7494 0.7469

Random Forest 0.8170 0.8539

H
ol
d
-o
u
t

A
cc
u
ra
cy GLM - Poisson Hurdle 0.8959 0.8685

GLM - Negative Binomial Hurdle 0.8960 0.8686

Random Forest 0.8749 0.8628

C
ou

n
t

C
om

p
on

en
t

C
V

R
M
S
E

GLM - Poisson Hurdle 0.0233 0.0592

GLM - Negative Binomial Hurdle 0.0234 0.0593

Random Forest 0.0098 0.0336

C
V

C
or
re
la
ti
on GLM - Poisson Hurdle 0.1323 0.2297

GLM - Negative Binomial Hurdle 0.1317 0.2249

Random Forest 0.2414 0.4659

H
ol
d
-o
u
t

R
M
S
E

GLM - Poisson Hurdle 0.0224 0.0581

GLM - Negative Binomial Hurdle 0.0224 0.0582

Random Forest 0.0052 0.0197

H
ol
d
-o
u
t

C
or
re
la
ti
on GLM - Poisson Hurdle 0.1264 0.2310

GLM - Negative Binomial Hurdle 0.1257 0.2264

Random Forest 0.8809 0.8977
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Figure 4.10: Variable importance (percentage mean decrease in accuracy) of the hurdle
and count components of the random forest models for large wildfires for each country.

4.4 Sensitivity Analysis

The wildfire random forest models have a large number of input variables, with their

importance ranked in Figures 4.6 and 4.10. Note that variable importance does not quantify
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Table 4.6: Definitions of the sensitivities.

Sensitivity Definition
Temp Inc Increase the mean temperature by 1◦.
Temp Dec Decrease the mean temperature by 1◦.
Precip Inc Increase the mean total precipitation by 10%.
Precip Dec Decrease the mean total precipitation by 10%.
Lightn Inc* Increase the annual frequency of lightning strikes per km2 by 1 strike.
Lightn Dec Decrease the annual frequency of lightning strikes per km2 by 1 strike.
Pop Inc Increase population count and percentage of urban land by 10%.
Pop Dec Decrease population count and percentage of urban land by 10%.

* An increase in the annual frequency of lightning strikes per km2 by 1 strike represents
an average increase of 103%, 40% and 84% in British Columbia, Alberta and California,
respectively.

the effect of changes in the predictors on wildfire risk. In this section, we compute that

effect by performing sensitivity tests on some of the predictors, while keeping all other

model components unchanged. Table 4.6 contains a list of the performed sensitivities. For

each sensitivity, a shock is applied to one (or more) predictor(s), and predictions of the

random forest models that are trained in Section 4.3 are calculated. The analyses are

evaluated over British Columbia, Alberta and California, which are chosen because of their

high level of wildfire risk.

Tables 4.7 and 4.8 provide some summary statistics of the predicted annual likelihood of a

wildfire of any size and of large wildfires for each sensitivity, to be compared with the base

scenario, where all predictors remain unchanged. The calculated statistics are the mean,

standard deviation and percentiles of the burn probabilities over all grid cells in each state

and province. More percentiles in the tail are provided for the sensitivities of large wildfires

to reflect the behavior in the table. The burn probability of wildfires of any size is the sum

of two components; the predicted likelihood of a wildfire due to natural causes multiplied

by the historical probability of lightning-caused wildfires and the predicted likelihood of a

fire due to man-made causes multiplied by the historical probability of man-made wildfires

for each grid cell. The predicted annual likelihood of a wildfire of any size for each cause
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is obtained from the random forest models presented in Section 4.3.2. The results of the

sensitivities are inline with the expectations; an increase in temperature, a decrease in

total precipitation, an increase in lightning activity and human population are all factors

that will increase the annual burn probabilities in the study regions. A change in the

mean temperature has a stronger effect on the burn probabilities in British Columbia and

Alberta compared to California. Even though a change in urban population affects the

annual burn probabilities of wildfires of any size, it has a negligible effect on large wildfires

because they are more commonly ignited from natural sparks.
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Figure 4.11: Probability density function of the predicted annual burn probabilities of
wildfires of any size for the sensitivity tests for the temperature predictors in British
Columbia, Alberta and California.

We perform additional sensitivities to compare the distribution of the predicted annual

burn probabilities of wildfires of any size over multiple scenarios of change in the mean

temperature: ±1◦ and ±2◦. Figure 4.11 compares the densities of the sensitivities

performed on the temperature predictor in the three chosen high-risk states and provinces.

This figure complements the results from Table 4.7 by providing the full distribution across

grid cells. One can see that across all study areas, an increase in temperature reduces the
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Table 4.7: Summary statistics of the predicted annual burn probabilities of wildfires of any size for the sensitivity tests.

State /
Province

Statistic Base Temp
Inc

Temp
Dec

Precip
Inc

Precip
Dec

Lightn
Inc

Lightn
Dec

Pop Inc Pop Dec

B
ri
ti
sh

C
ol
u
m
b
ia

5 percentile 0.0004 0.0014 0.0007 0.0004 0.0006 0.0025 0.0004 0.0004 0.0004
25 percentile 0.0037 0.0101 0.0050 0.0036 0.0055 0.0126 0.0036 0.0039 0.0037
Mean 0.0696 0.0783 0.0612 0.0691 0.0709 0.0757 0.0651 0.0703 0.0687
75 percentile 0.0907 0.1033 0.0795 0.0890 0.0926 0.0979 0.0866 0.0915 0.0900
95 percentile 0.2840 0.2929 0.2490 0.2791 0.2847 0.2849 0.2473 0.2843 0.2805
Standard deviation 0.0981 0.0998 0.0864 0.0952 0.0974 0.0956 0.0892 0.0983 0.0962

A
lb
er
ta

5 percentile 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
25 percentile 0.0049 0.0161 0.0042 0.0091 0.0120 0.0051 0.0041 0.0053 0.0048
Mean 0.0653 0.0709 0.0595 0.0654 0.0699 0.0679 0.0641 0.0659 0.0644
75 percentile 0.0981 0.1038 0.0854 0.0989 0.1055 0.0998 0.0914 0.0991 0.0974
95 percentile 0.1955 0.1978 0.1650 0.2008 0.1998 0.1976 0.1874 0.1960 0.1913
Standard deviation 0.0726 0.0655 0.0620 0.0676 0.0676 0.0723 0.0698 0.0724 0.0705

C
al
if
or
n
ia

5 percentile 0.0070 0.0107 0.0065 0.0068 0.0080 0.0081 0.0067 0.0072 0.0069
25 percentile 0.0949 0.1135 0.0908 0.0940 0.1000 0.0990 0.0933 0.1009 0.0948
Mean 0.3312 0.3364 0.3270 0.3358 0.3389 0.3334 0.3250 0.3333 0.3280
75 percentile 0.5206 0.5345 0.4991 0.5157 0.5274 0.5298 0.5013 0.5248 0.5125
95 percentile 0.8094 0.8113 0.7534 0.8003 0.8139 0.8099 0.8088 0.8091 0.8032
Standard deviation 0.2561 0.2373 0.2365 0.2482 0.2465 0.2551 0.2530 0.2544 0.2531
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Table 4.8: Summary statistics of the predicted annual burn probabilities of large wildfires for the sensitivity tests.

State /
Province

Statistic Base Temp
Inc

Temp
Dec

Precip
Inc

Precip
Dec

Lightn
Inc

Lightn
Dec

Pop Inc Pop Dec

B
ri
ti
sh

C
ol
u
m
b
ia

Mean 0.0022 0.0022 0.0020 0.0022 0.0022 0.0023 0.0021 0.0022 0.0022
90 percentile 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
95 percentile 0.0236 0.0244 0.0230 0.0233 0.0240 0.0243 0.0233 0.0241 0.0229
97.5 percentile 0.0248 0.0255 0.0241 0.0240 0.0257 0.0253 0.0243 0.0254 0.0242
99 percentile 0.0297 0.0311 0.0288 0.0294 0.0305 0.0308 0.0292 0.0310 0.0290
Standard deviation 0.0072 0.0073 0.0069 0.0072 0.0072 0.0073 0.0071 0.0072 0.0072

A
lb
er
ta

Mean 0.0027 0.0027 0.0027 0.0026 0.0027 0.0027 0.0027 0.0027 0.0027
75 percentile 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
90 percentile 0.0230 0.0234 0.0227 0.0226 0.0234 0.0233 0.0228 0.0231 0.0229
95 percentile 0.0244 0.0253 0.0240 0.0239 0.0253 0.0247 0.0241 0.0246 0.0243
97.5 percentile 0.0257 0.0264 0.0251 0.0253 0.0265 0.0260 0.0252 0.0258 0.0254
99 percentile 0.0338 0.0357 0.0315 0.0313 0.0345 0.0342 0.0313 0.0343 0.0331
Standard deviation 0.0081 0.0081 0.0081 0.0082 0.0081 0.0081 0.0080 0.0081 0.0081

C
al
if
or
n
ia

Mean 0.0172 0.0181 0.0169 0.0170 0.0173 0.0174 0.0171 0.0173 0.0170
75 percentile 0.0471 0.0495 0.0465 0.0468 0.0485 0.0482 0.0467 0.0473 0.0468
90 percentile 0.0603 0.0636 0.0586 0.0591 0.0620 0.0619 0.0586 0.0609 0.0591
95 percentile 0.0734 0.0742 0.0728 0.0723 0.0739 0.0743 0.0727 0.0741 0.0723
97.5 percentile 0.0865 0.0890 0.0844 0.0858 0.0883 0.0877 0.0842 0.0887 0.0846
99 percentile 0.1067 0.1120 0.1048 0.1034 0.1106 0.1104 0.1029 0.1118 0.1042
Standard deviation 0.0300 0.0301 0.0300 0.0301 0.0300 0.0300 0.0301 0.0300 0.0299
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number of grid cells that have small predicted annual burn probabilities and increases the

chances of medium and high wildfire risk, and vice versa. Additionally, higher volatility

can be observed in Alberta and California, compared to British Columbia.

4.5 Insurance Application

In this section, we aim to illustrate how we can use the models to price and underwrite

wildfire risk in an insurance portfolio. The goal is to estimate the expected losses due to

wildfire risk, based on the geographical location of the homeowner. A typical catastrophe

model is composed of hazard modeling, exposure collection, vulnerability assessment and

expected losses calculation; see Mitchell-Wallace et al. (2017) for details. In this article,

the hazard element is represented by the rate of wildfire occurrence, which varies across our

chosen geographic region. This is reflected in the models built in Section 4.3. Collection of

exposure requires the valuation of properties and/or infrastructures at risk. Vulnerability

assessment helps in quantifying the relationship between the hazard and the damage by

means of a metric, such as damage ratios. Finally, the annual pure premium is calculated

in terms of the expected losses in each geographical location.

4.5.1 Hazard

A grid cell of size 0.1◦ × 0.1◦ may be too large for some insurance applications, such as

pricing exercises, due to the need to understand the risk at a household level. As such, we

perform a downscaling exercise where we predict the burn probabilities of a wildfire in a

year at a much higher resolution. The chosen resolution is that of the Gridded Population

of the World dataset, i.e. 1◦/120×1◦/120 ≈ 1 km ×1 km grid cells, which is acceptable for

insurers’ purposes to accurately reflect the location of the insureds. A new high-resolution

dataset is created by changing the resolution of all predictors, defined in Table 4.1. For
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climate, elevation and lightning strikes predictors, all small grid cells of size 1◦/120×1◦/120

within a large grid cell of size 0.1◦× 0.1◦ are assigned the same value. While for land cover

predictors, the percentage of each land type is computed for each 1◦/120×1◦/120 grid cell.

The random forest models in Sections 4.3.2 and 4.3.3 are used to predict the annual burn

probabilities of wildfires of any size and of large wildfires per grid cell, by using the new

high-resolution dataset.

The left panel in Figure 4.12 shows the burn probabilities of wildfires for each location in

British Columbia by using the original dataset of resolution 0.1◦ × 0.1◦ and by using the

high-resolution dataset of size 1◦/120× 1◦/120. Smaller grid cells indicate less number of

predicted wildfires, and hence smaller burn probabilities. The annual burn probabilities

in the small grid cells are scaled such that the overall likelihood of a wildfire is equivalent

to that of the lower resolution model, while preserving the weights of the risk of the

small grid cells. The right panel in Figure 4.12 shows a zoomed-in map on Lytton Creek

and its surrounding region. As observed from the predictions of the original dataset

and the downscaling exercise, the region has elevated burn probabilities compared to its

surroundings and to other areas in British Columbia. This coincides with Lytton Creek’s

large wildfire that occurred in 2021 in that area, which caused two fatalities and destroyed

around 90% of Lytton village. The models were built on wildfires data up to the year 2019

in Canada, thus a 2021 wildfire is considered an out-of-sample prediction, hence confirming

the appropriateness of the predictions of the models.

4.5.2 Vulnerability and exposure

The average claim cost of a wildfire is highly volatile, depending on the location of

the wildfire, the construction material of the buildings affected, their location, the fire

mitigation measures and the availability of firefighters. Table 4.9 summarizes the average

claim cost of the most recent large wildfires that occurred in three high-risk regions, British
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Figure 4.12: Predicted annual burn probabilities of wildfires of any size in British Columbia
for the original (top) and high-resolution datasets (bottom), presented for the full province
(left) and Lytton Creek (right).

Columbia, Alberta and California. Thus, relying on such limited values to generalize over

the whole region can be problematic. The unit of currency throughout is the Canadian

dollar for Canadian wildfires and the US dollar for USA wildfires.

Vulnerability assessment for wildfire risk usually requires the help of civil engineers to

analyze the characteristics of the properties. Those details are not publicly available,

however, such information is typically provided by the customers to their insurers and

is used in the calculation of the insured exposure. In this article, we rely on insured

exposure data that is provided by CatIQ, Canada’s Loss And Exposure Indices Provider
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Table 4.9: Historical average claim cost for some memorable large wildfires (CatIQ 2021;
IBC 2021; CALFIRE 2021).

State/Province Wildfire Year Average Claim Cost

British Columbia

White Rock Lake 2021 $55k
Lytton Creek 2021 $253k
Williams Lake 2017 $15k
Elephant Hill 2017 $12k

Alberta
Fort McMurray 2016 $64k
Slave Lake 2011 $110k

California Multiple wildfires

2020 $826k
2019 $574k
2018 $178k
2017 $1, 116k
2016 $116k
2015 $958k
2014 $30k
2013 $60k
2012 $113k
2011 $52k

(CatIQ 2021). They release annual updates of the Canadian insurance industry exposure

database, which is developed from data from the Canadian P&C insurance companies. The

2020 year-end estimates of the personal properties sums insured and number of insured risks

against fires is available for each Canada Post Forward Sortation Area (FSA). Depending

on the population distribution in the FSA, the exposure value and the number of insured

households in an FSA is distributed over each grid cell of size 1◦/120×1◦/120. Accordingly,

the average exposure value per household is calculated for each grid cell.

4.5.3 Insurance premiums

Pure premium computation requires hazard, vulnerability and exposure calculations to be

performed at the homeowner’s level. This entails detailed information on the location of

the household, to determine its subjection to wildfire risk, in addition to property value

and characteristics to evaluate its vulnerability if a wildfire occurs. In this section, we
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illustrate how the model can be used in such process.

We rely on the downscaled annual burn probabilities, provided in Section 4.5.1, to be the

measure of hazard for each geographical location. With no access to vulnerability, we

assume complete destruction of buildings and infrastructure where a large wildfire occurs,

which will likely overestimate premiums. We choose to use the burn probabilities of large

wildfire because insurance claims are more likely to occur from wildfires that are large in

size, which cause complete destruction of the area. Hence, by using the CatIQ industry

exposure database, the annual pure premium for wildfire insurance can be computed as

the product of the annual burn probabilities of large wildfire by the cost of household

replacement.

As an illustration of the technique, we analyze the distribution of pure premiums over

British Colubmia. The predicted insurance pure premium to cover wildfire risk in British

Columbia is 0 for around 89% of the high resolution grid cells. This is because those cells

have predicted annual burn probability of 0. Table 4.10 summarizes the quantiles of the

insurance pure premium per household over all grid cells.

Table 4.10: Summary statistics of the distribution of the predicted insurance pure premium
per household in British Columbia.

Quantile level 90% 95% 97.5% 99% 99.5% 100%
Pure premium 30 59 208 1,147 1,753 7,980

4.6 Discussion

Wildfire risk in North America is of great significance and over the past decade, insurers

have been suffering annually from billions of dollars in losses. This article proposes a

transparent and simple, yet powerful model that relies on random forests. It can be used

by actuaries to price, reserve or manage the financial risk from wildfires. Unlike wildfire
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models that were designed for a specific region, the models presented in this article cover

a wide geographic area. They have high predictive capabilities with strong ability to

classify locations into high/low risk zones. The random forest models are characterised

by their ability to capture non-linearity and interaction in the model inputs. Occurrence

of wildfire can be devastating, thus it is of utmost importance to measure wildfire risk

by calculating the burn probabilities of wildfires in high-risk areas with densely populated

communities. With sufficient property characteristics data obtained at the underwriting

stage, our model can be used to compute the loss costs necessary for premium calculation,

accordingly, complementing vendor catastrophe-loss models.

Calculating insurance premiums is a very important task for actuaries, and it is a complex

endeavor for emerging risks such as wildfires. The approach described in Section 5 along

with the Leaflet maps provided (see Supplementary Material) can be used as a baseline

description of the wildfire hazard. With extensive property characteristics data obtained

at the underwriting stage and appropriate vulnerability curves, actuaries can therefore

compute the loss costs necessary for premium determination and accurate underwriting.

Moreover, some actuarial applications such as reserving or capital requirements might

require a representation of spatial dependence. By construction, the wildfire models

presented in Section 4.3 link occurrence to a set of covariates, and as such, borrows spatial

dependence from e.g., temperature and precipitation dynamics. The actuary shall therefore

make sure the inputs to the wildfire model are spatially consistent over the desired time

horizon for the aforementioned applications.

Supplementary Material

Leaflet maps for the annual burn probabilities of wildfires of any size and of large

wildfires are available in https://robabairakdar.shinyapps.io/WildfireLikelihood/, and
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https://robabairakdar.shinyapps.io/LargeWildfireLikelihood/, respectively. The maps are

available for the three high-risk states and provinces: Alberta, British Columbia and

California. They are desktop and mobile friendly interactive maps that provide the user

with the flexibility to zoom on a certain location on a map. The leaflets can be used by

insurers to obtain the burn probabilities for any location in the selected high-risk states

and provinces.
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Chapter 5

Conclusion

This Chapter concludes the thesis. Three manuscripts that focus on catastrophic risks and

extreme events were provided.

In the first manuscript, we focus on the generalized tail distortion risk measure for extreme

risks, which is used to assess tail risks of excess losses modeled by the right tails of loss

distributions. We explore its asymptotic expansions, and rely on them to provide an

estimator for this risk measure. We prove the asymptotic normality of the estimator at

intermediate and extreme confidence levels. We also provide bias-corrected estimators that

use the Hill estimator to estimate the tail index. Based on the results of the simulation

study, we can confirm that our estimators provide good results, especially for larger sample

sizes. The application section showcases the usage of the estimators on real-life actuarial

data sets.

In the second manuscript, we extend the methods available in the literature to assess the

goodness-of-fit of spatio-temporal models through residual analysis methods. Specifically,

we define and implement deviance Voronoi residuals, which provide a very useful tool to

compare fitted models and identify locations where one model is superior to the other.

We also create an earthquake financial losses estimation tool for Canada by relying on
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building information, their replacement costs and earthquake damage probability matrices.

Additionally, insurance policy terms and market information are used to estimate insurance

claim values. A more interpretable approach is suggested to calculate the county-wide

PML by relying on the correlation between neighboring provinces. A large simulation of

earthquakes is performed which concluded that some Canadian provinces are ill-prepared

for earthquake relief and that there is a need for further insurance market penetration,

especially in Eastern Canada. Our simulation-based approach can inform policymakers on

disaster resilience and help the public improve their risk awareness and perhaps increase

insurance uptake. We also provide an open-source interactive web application that allows

the users to simulate multiple significant earthquakes, with different random moment

magnitudes, in a chosen geographical location in Canada. The insurance policy terms

can be set by the user to calculate insurance claims. This web application can provide

insurers with a simulated value of the expected financial losses in case of an occurrence of

a significant earthquake in areas where they have exposure or plan to sell new earthquake

policies.

In the third manuscript, we propose a transparent and simple, yet powerful model that

utilizes random forest regression to model the occurrences of wildfires in North America.

Occurrence of wildfire can be devastating, thus it is of utmost importance to measure

wildfire risk by calculating the burn probabilities of wildfires in high-risk areas with

densely populated communities. Unlike wildfire models that were designed for a specific

region, the models presented in this article cover a wide geographic area. They have high

predictive capabilities with strong ability to classify locations into high/low risk zones.

Calculating insurance premiums is a very important task for actuaries, and it is a complex

endeavor for emerging risks such as wildfires. The catastrophe risk decomposition approach

described along with the Leaflet maps provided can be used as a baseline description of the

wildfire hazard. With extensive property characteristics data obtained at the underwriting

stage and appropriate vulnerability curves, actuaries can therefore compute the loss costs
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necessary for premium determination and accurate underwriting. Additionally, the model

can provide regulators with a more uniform and transparent tool with which to assess

insurer solvency risk. Moreover, some actuarial applications such as reserving or capital

requirements might require a representation of spatial dependence. By construction, the

wildfire models presented in Chapter 4 link occurrence to a set of covariates, and as

such, borrows spatial dependence from e.g., temperature and precipitation dynamics. The

actuary shall therefore make sure the inputs to the wildfire model are spatially consistent

over the desired time horizon for the aforementioned applications. Possible future research

includes modeling the size of the wildfire. This can be performed by using propagation

models that rely on meteorological and topographical information to explain the direction

and speed of spread of wildfires. It is also important to consider fire control measures and

proximity to water.
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Chapter 6

Appendices

This appendix supplements the chapters of this thesis. This includes additional details,

definitions, algorithms and results that are mentioned within the text.

I Deviance Voronoi Residuals for Space-time Point Process

Models: An Application to Earthquake Insurance Risk

I.1 Modified Mercalli Intensity Definitions

Table 6.1: Modified Mercalli Intensity Definitions (Wood and Neumann 1931)

Intensity Shaking Description

I Not felt Not felt except by very few under especially favorable

conditions.

II Weak Felt only by a few people at rest, especially on upper floors of

buildings. Delicately suspended objects may swing.
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III Weak Felt quite noticeably by people indoors, especially on upper

floors of buildings: Many people do not recognize it as an

earthquake. Standing motor cars may rock slightly. Vibrations

are similar to the passing of a truck.

IV Light Felt indoors by many, outdoors by few during the day: At night,

some are awakened. Dishes, windows, and doors are disturbed;

walls make cracking sounds. Sensations are like a heavy truck

striking a building. Standing motor cars are rocked noticeably.

V Moderate Felt by nearly everyone; many awakened: Some dishes and

windows are broken. Unstable objects are overturned.

VI Strong Felt by all, and many are frightened. Some heavy furniture is

moved; a few instances of fallen plaster occur. Damage is slight.

VII Very

strong

Damage is negligible in buildings of good design and

construction; but slight to moderate in well-built ordinary

structures; damage is considerable in poorly built or badly

designed structures; some chimneys are broken. Noticed by

people in driving motor cars.

VIII Severe Damage slight in specially designed structures; considerable

damage in ordinary substantial buildings with partial collapse.

Damage great in poorly built structures. Fall of chimneys,

factory stacks, columns, monuments, walls. Heavy furniture

overturned. Sand and mud ejected in small amounts. Changes

in well water. People in driving motor cars are disturbed.
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IX Violent Damage is considerable in specially designed structures; well-

designed frame structures are thrown out of plumb. Damage is

great in substantial buildings, with partial collapse. Buildings

are shifted off foundations. Liquefaction occurs. Underground

pipes are broken.

X Extreme Some well-built wooden structures are destroyed; most masonry

and frame structures are destroyed with foundations. Rails are

bent. Landslides considerable from river banks and steep slopes.

Shifted sand and mud. Water splashed over banks.

XI Extreme Few, if any, (masonry) structures remain standing. Bridges are

destroyed. Broad fissures erupt in the ground. Underground

pipelines are rendered completely out of service. Earth slumps

and land slips in soft ground. Rails are bent greatly.

XII Extreme Damage is total. Waves are seen on ground surfaces. Lines of

sight and level are distorted. Objects are thrown upward into

the air.

I.2 Collection of building inventory and calculation of exposure

We define:

• Total square footage = # units in a building type × average square footage of that

type of unit

• Building exposure = Total square footage × Mean replacement cost

• Building content exposure = Building exposure × % contents value.

Now we explain the sources of the building inventory data as well as the repair and
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replacement cost information.

Residential Dwellings

Information on the number of buildings for each residential building classification

is obtained from Statistics Canada, Government of Canada (2016). The building

classifications (single-detached houses, row houses, etc.) are transformed into HAZUS’

occupancy codes as per Table C.4 in Ulmi et al. (2014). The Canadian Housing Statistics

Program contains comprehensive data on the average total living area in square feet for

each residential building class in each CSD (Statistics Canada, Government of Canada

2020a). The data are currently available for BC, ON, NS and NB. For CSDs that have

missing square footage values, we use the square footage of the CSD in the same province

that has the closest household median income value, obtained from Statistics Canada,

Government of Canada (2016). For CSDs that have missing square footage values and

missing household median income value, we use the weighted average square footage of

the province, where the weights are the number of houses in each CSD. For the provinces

that do not have square footage values, we use the values of a CSD that has the nearest

household income values, where the provinces are matched as follows:

• ON square footage is used for for QC, MB, and NU.

• NB square footage is used for NL and PE.

• BC square footage is used for SK, AB, YT, and NT.

For dwelling types that do not have square footage information, we assume that an “other

single-attached” house has the same square footage as a “single-detached” house and an

“apartment or flat in a duplex” has the same square footage as a “Semi-detached” house.

We use the values suggested in Ulmi et al. (2014) for the remaining dwelling types that do

not have information on square footage.
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The building replacement cost, in dollar units, for each HAZUS occupancy code are

obtained from HAZUS Ulmi et al. (2014), which was originally obtained from the RSMeans.

The building construction price index is used to inflate the construction costs to June 2021

(Statistics Canada, Government of Canada 2020b). The BCPI is available for eleven census

metropolitan areas, thus we generalize the inflation rate to each area’s respective province.

Some provinces/territories were not included in the data and thus we assumed that NL,

NU, NT, YT, PE, SK and MB will follow the smallest inflation value, which is that of

Edmonton, AB. We also assumed that NB will follow the inflation trend of Halifax, NS.

The building content replacement value for residential dwellings is assumed to be at 50%

of the building replacement cost as suggested in Ulmi et al. (2014) and FEMA (2013). The

building exposure for each HAZUS code is converted to construction types (wood, concrete,

steel, masonry, etc.) by using HAZUS’ general building scheme mapping information,

available in Table 5.1 in FEMA (2013).

Non-residential Dwellings

Statistics Canada currently does not have a comprehensive dataset for non-residential

buildings, thus, we will rely on their building permits data, available in Statistics

Canada, Government of Canada (2020c). The average annual ratios of institutional

and governmental, commercial and industrial building permits to residential building

permits are calculated over the years 2011 to 2019. Accordingly, the exposure of non-

residential buildings is calculated as a percentage of the residential buildings total exposure.

Additionally, a detailed split of each building category is available in Statistics Canada,

Government of Canada (2020c). Table 6.2 provides the suggested conversion of non-

residential building types to HAZUS occupancy codes.

Similar to residential buildings, the exposure by HAZUS dwelling type is converted to

construction types (wood, concrete, steel, masonry, etc.), following Table 5.1 in FEMA

(2013). The building content replacement value for non-residential dwellings is assumed to
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be a percentage of the building replacement cost, as suggested by FEMA (2013).

Table 6.2: Conversion from Statistics Canada classification to HAZUS occupancy codes
for non-residential buildings

Statistics Canada Building Permits Label HAZUS

Occupancy

Code

Description

Institutional and governmental

Elementary school, kindergarten EDU1 Grade Schools

Secondary school, high school, junior high

school

EDU1 Grade Schools

Post-secondary institution and technical

institute

EDU2 Colleges/Universities

University EDU2 Colleges/Universities

Library, museum, art gallery, aquarium,

botanical garden, scientific center

COM8 Entertainment, recreation

General hospital COM6 Hospital

Clinic, out-patient clinic, first aid station COM7 Medical Office/Clinic

Welfare, home RES5 Institutional dormitory

Churches, religion REL1 Church/Non-Profit

Government legislative and

administration building, city hall, court

of justice, embassy, parliament and senate

building

GOV1 General services

Other government building - police

station, prison, fire station, military

building

GOV2 Emergency response
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Industrial

Maintenance building IND1 Heavy factory

Plant for manufacturing, processing and

assembling goods

IND1 Heavy factory

Communication building IND1 Heavy factory

Transportation terminal IND1 Heavy factory

Utility building IND1 Heavy factory

Mining building IND4 Metals/minerals processing

Agriculture AGR1 Agriculture

Commercial

Trade and services COM1 Retail trade

Warehouses COM2 Wholesale trade

Service stations COM3 Personal and repair services

Office buildings COM4 Professional/technical

services

Theatre and performing art center, movie

theatre, concert hall, opera house, cultural

center

COM9 Theaters

Indoor recreational building, sports

complex, tennis court and squash,

community center, arena, curling club,

swimming pool

COM8 Entertainment, recreation

Outdoor recreational building, country

club, golf club campground facilities,

outdoor skating rink, outdoor swimming

pool

COM8 Entertainment, recreation
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Convention center, exhibition building COM4 Professional/technical

services

Hotel, hotel and motel, motor hotel RES4 Temporary lodging

Motel, cabin for tourism RES4 Temporary lodging

Student’s residence, boarding house,

religious residence, hostel, dormitory

RES5 Institutional dormitory

Restaurant, bar, night club, diner COM8 Entertainment, recreation

Laboratories COM7 Medical Office/Clinic

I.3 Residual Analysis of the Fitted STPP Models

(a)

(c)

(b)

−3 −1.5 0 0.5 1

Figure 6.1: Focusing on Western Canada, raw Voronoi residuals of models P (a), H1 (b),
H2 (c).
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(a)

(c)

(b)

−3.1 −1.55 0 0.5 1

Figure 6.2: Focusing on Eastern Canada, raw Voronoi residuals of models P (a), H1 (b),
and H2 (c).
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(a)

(c)

(b)

−88 −44 0 2.85 5.7

Figure 6.3: Pearson Voronoi residuals of models P (a), H1 (b), and H2 (c).
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(a)

(c)

(b)

−5.7 −2.85 0 2.85 5.7

Figure 6.4: Focusing on Western Canada, Pearson Voronoi residuals of models P (a), H1

(b), and H2 (c).
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(a)

(c)

(b)

−17.5 −8.75 0 2.75 5.5

Figure 6.5: Focusing on Eastern Canada, Pearson Voronoi residuals of models P (a), H1

(b), and H2 (c).

I.4 Extreme Value Theory

Extreme value analysis is a branch in statistics that is focused on the behavior of the tail

of the distribution (Coles 2001). There are two principle models for extreme values: the

block maxima model and the peaks-over-threshold model. The block maxima approach is

used to model the largest observations from samples of identically distributed observations

in successive blocks. The peaks-over-threshold is used to model all large observations that

exceed a given high threshold value, denoted u.

Distribution Of The Maxima

The limiting distribution of block maxima is given in the following theorem:
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Theorem I.1. Fisher and Tippet theorem (Fisher and Tippett 1928)

Let X1, . . . , Xn be a sequence of independent random variables having a common

distribution function F and consider Mn = max{X1, . . . , Xn}. If there exists norming

constants (an) and (bn), where an ∈ R and bn > 0 for all n ∈ N and some non-degenerate

distribution function H such that

Mn − an
bn

d−→ H,

then H belongs to one of the following three classes of distributions (up to location and

scaling):

Fréchet: Φα(x) =




0, x ≤ 0,

exp {−x−α} , x > 0,

α > 0

Gumbel: Λ(x) = exp {− exp{−x}} , x ∈ R,

Weibull: Ψα(x) =




exp {−(−x)α} , x ≤ 0,

1, x > 0,

α > 0

Results by Von Mises (1954) and Jenkinson (1955) provide a generalization of Theorem

I.1. Set ξ = α−1 for the Fréchet distribution, ξ = −α−1 for the Weibull distribution and

interpret the Gumbel distribution as a limiting case as ξ → 0, then we obtain the following

definition.

Definition I.1. Generalized Extreme Value Distribution.

The distribution function of a GEV is given by

Hξ(x) =




exp

{
− (1 + ξx)−

1
ξ

}
, ξ ̸= 0,

exp {− exp(−x)} , ξ = 0,

where 1 + ξx > 0. A three-parameter family is obtained by defining Hξ,µ,σ := Hξ

(
x−µ
σ

)
for
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a location parameter µ ∈ R, a scale parameter σ > 0, and a shape parameter ξ ∈ R.

Distribution Of The Exceedances

Instead of considering only the maximum from a block, the peaks-over-threshold method

rather considers all the exceedances over some high threshold value u.

Definition I.2. Excess Distribution over threshold u.

Let X be a random variable with distribution function F and an upper end-point xF ≤ ∞,

then the excess distribution over the threshold u is defined as

Fu(x) = Pr(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u) , 0 ≤ x < xF − u.

Theorem I.2. (Pickands III 1975; Balkema and De Haan 1974)

If F is a distribution function that belongs to the maximum domain attraction of a GEV

distribution Hξ,µ,σ, i.e. if F satistifies the conditions of Theorem I.1, then

lim
u→xF

sup
0≤x<xF−u

|Fu(x)−Gξ,σ(x)| = 0,

where

Gξ,σ(x) =




1−

(
1 + ξ x

σ

)− 1
ξ , ξ ̸= 0,

1− exp
(
−x
σ

)
, ξ = 0,

for σ > 0, and x ≥ 0 when ξ ≥ 0, while 0 ≤ x ≤ −σ/ξ when ξ < 0. The parameters ξ and

σ are referred to, respectively, as the shape and scale parameters.

We assume Fu ≈ Gξ,σ for a high threshold u, where Gξ,σ is called the Generalized Pareto

Distribution (GPD).

A large quantile is defined as the return level xm that is exceeded on average once every
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m observations provided that m is large enough and satisfying xm > u, where

Pr(X > xm) = Pr(X > u) ·
[
1 + ξ

(
xm − u
σ

)]−1/ξ
=

1

m
.

By solving for xm,

xm = u+
σ

ξ

[
(m · Pr(X > u))ξ − 1

]
. (I.1)

Poisson Approximation of the Number of Excesses over a High Threshold

Theorem I.3. Let X1, . . . , Xn be a sequence of independent random variables satisfying the

conditions in Theorem I.2, and let Nn be the number of excesses over a threshold un. If

the sequence of threshold (un) satisfies

lim
n→∞

n(1− F (un)) = λ,

then, for k = 0, 1, 2, . . . ,

lim
n→∞

P(Nn ≤ k) =
k∑

s=0

e−λλs

s!
.

Thus, assuming a high threshold u, the number of exceedances can be modelled as a

marked homogeneous Poisson process with rate λ and the size of the excesses is the limiting

GPD. Accordingly, the point process model requires the estimation of the rate λ of the

homogeneous Poisson process and the parameters of the GPD.

Distribution Of The Maximum Of Homogeneous Poisson Process With GPD Marks

Let N be a Poisson random variable with mean λ and let X1, . . . , XN be a sequence

of N independent and identically distributed random variables with common cumulative

distribution function Gξ,σ. Let MN = max{X1, . . . , XN}, then Cebrián, Denuit, and
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Lambert (2003) indicates that

P(MN ≤ x) = Hξ,µ,ψ(x),

with µ = σ/ξ
(
λξ − 1

)
and ψ = σλξ.
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I.5 Algorithms

Algorithm 1: Earthquake losses and claims simulation

Result: PML1/ϵ of Eastern and Western Canada earthquake losses and claims

1 n← 100000

2 SpatioTemporalSim← n years of simulated earthquakes from a spatio-temporal

point process

3 for i← 1 to length(SpatioTemporalSim) do

4 SimEQi ← coordinates of the ith earthquake in SpatioTemporalSim

5 Ei ← 1(Longitude of SimEQi>−100)

6 Gridi ← coordinates of the nearest neighbor from the PGA Grid to SimEQi

7 PGAi ← a simulated PGA value from a fitted GPD, whose parameters are

estimated from the 8 PGA quantiles in Gridi. PGAi must be corresponding

to a moment magnitude > 6.

8 MMIi ← 3.66 log(PGAi)− 1.66, for PGAi in cm/s2

9 di ← distance in km between SimEQi and Gridi.

10 if Ei == 1 then

11 Magnitudei = (MMIi − 1.41 + 2.08 log10(di) + 0.00345di) /1.68,

else

12 Magnitudei = (MMIi − 5.07 + 3.69 log10(di))/1.09,

13 RadiusMMIi ← the radii of MMI circles centered at SimEQi for MMI levels

from MMIi to VI, for a given value Magnitudei.

14 for j ← 1 to length(RadiusMMIi) do

15 CSDi,j ← list of CSDs that intersect MMI circle of radius RadiusMMIi,j

16 CSDAreaPrcnti,j ← the percentage of land of each CSD that intersects the

MMI circle of radius RadiusMMIi,j

17 CalculateLossesandClaims (MMIi-[j-1],CSDi,j,CSDAreaPrcnti,j)
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Algorithm 2: Calculate Losses and Claims Function

Input : MMI of earthquake (MMI), list of CSDs (CSD), percentage affected for

each CSD (CSDAreaPrcnt)

Output: Losses and Claims

1 foreach CSD C ∈ CSD do

2 All steps are done for CSD C, but the subscript is removed for readability.

3 Let Losst,B be the losses for building type B and damage type t, for

t ∈ {S,AS,DS,BldgC}.

4 Let Exposuret,B be the building and/or building contents exposure for building

type B and damage type t, for t ∈ {S,AS,DS,BldgC}.

5 Let DamageRanget,B,i be the damage range associated with damage state i,

building type B, and damage type t, for t ∈ {S,AS,DS,BldgC} for a given

MMI level. Let pDamageRanget,B,i be its associated probability.

6 Let MDFt,B,i be the mean damage factor associated with damage state i for

building type B and damage type t, for t ∈ {S,AS,DS,BldgC}.

7 Let DedPrcnt be the percentage deductible

8 Let LmtPrcnt be the percentage policy limit

9 Let InsPrcnt be the percentage of insurance market penetration

10 foreach Building type B do

11 Let BldgCostUncertainty be the uncertainty associated to the cost of

building replacement.

12 BldgCostUncertainty← U(0.9, 1.1)

13 DedB ←

CSDAreaPrcnt×DedPrcnt×∑t Exposuret,B × BldgCostUncertainty

14 LmtB ←

CSDAreaPrcnt× LmtPrcnt×
∑

t Exposuret,B × BldgCostUncertainty
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15 foreach Damage type t ∈ {S, AS, DS, BldgC} do

16 MDFt,B,i ←
[
sample from U

(
DamageRanget,B,i

)]
× pDamageRanget,B,i

17 MDFt,B ←
∑

iMDFt,B,i

18 Losst,B ← Exposuret,B×BldgCostUncertainty×MDFt,B×CSDAreaPrcnt

19 LOSSB ←
∑

t Losst,B

20 CLAIMB ← InsPrcnt×max{0,min{LOSSB −DedB,LmtB −DedB}}

21 LOSS =
∑

B LOSSB

22 CLAIM =
∑

B CLAIMB

23 return
∑

C LOSS,
∑

C CLAIM

I.6 Correlation of losses and claims

Table 6.3: Pearson correlation coefficient of the simulated insurance claims between
Canadian provinces, based on 100,000 years of simulated earthquakes.

NL PE NS NB QC ON MB SK BC YT NT AB NU
NL 1.00 0.29 0.23 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PE 0.29 1.00 0.77 0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NS 0.23 0.77 1.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NB 0.23 0.89 0.87 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QC 0.00 0.00 0.00 0.02 1.00 0.69 0.48 0.00 0.00 0.00 0.00 0.00 0.00
ON 0.00 0.00 0.00 0.00 0.69 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00
MB 0.00 0.00 0.00 0.00 0.48 0.60 1.00 0.01 0.00 0.00 0.03 0.00 0.03
SK 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 0.01 0.02 0.09 0.01 0.07
BC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 0.16 0.08 0.63 0.11
YT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.16 1.00 0.39 0.06 0.34
NT 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09 0.08 0.39 1.00 0.04 0.82
AB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.63 0.06 0.04 1.00 0.07
NU 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.11 0.34 0.82 0.07 1.00
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Table 6.4: Kendall’s tau of the simulated financial losses between Canadian provinces,
based on 100,000 years of simulated earthquakes.

NL PE NS NB QC ON MB SK BC YT NT AB NU
NL 1.00 0.73 0.75 0.39 0.22 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PE 0.73 1.00 0.78 0.52 0.33 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NS 0.75 0.78 1.00 0.53 0.33 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NB 0.39 0.52 0.53 1.00 0.74 0.65 0.19 0.00 0.00 0.00 0.00 0.00 0.00
QC 0.22 0.33 0.33 0.74 1.00 0.88 0.43 0.00 0.00 0.00 0.00 0.00 0.00
ON 0.09 0.19 0.19 0.65 0.88 1.00 0.51 0.01 0.00 0.00 0.00 0.00 0.00
MB 0.00 0.00 0.00 0.19 0.43 0.51 1.00 0.30 0.02 0.27 0.27 0.09 0.30
SK 0.00 0.00 0.00 0.00 0.00 0.01 0.30 1.00 0.20 0.57 0.61 0.44 0.43
BC 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.20 1.00 0.34 0.27 0.39 0.36
YT 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.57 0.34 1.00 0.79 0.55 0.65
NT 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.61 0.27 0.79 1.00 0.45 0.70
AB 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.44 0.39 0.55 0.45 1.00 0.36
NU 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.43 0.36 0.65 0.70 0.36 1.00

Table 6.5: Kendall’s tau of the simulated insurance claims between Canadian provinces,
based on 100,000 years of simulated earthquakes.

NL PE NS NB QC ON MB SK BC YT NT AB NU
NL 1.00 0.69 0.70 0.36 0.21 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PE 0.69 1.00 0.82 0.51 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NS 0.70 0.82 1.00 0.52 0.34 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NB 0.36 0.51 0.52 1.00 0.75 0.65 0.20 0.00 0.00 0.00 0.00 0.00 0.00
QC 0.21 0.33 0.34 0.75 1.00 0.87 0.46 0.00 0.00 0.00 0.00 0.00 0.00
ON 0.08 0.17 0.17 0.65 0.87 1.00 0.55 0.04 0.00 0.00 0.00 0.00 0.00
MB 0.00 0.00 0.00 0.20 0.46 0.55 1.00 0.22 0.00 0.15 0.15 0.00 0.19
SK 0.00 0.00 0.00 0.00 0.00 0.04 0.22 1.00 0.11 0.36 0.50 0.21 0.30
BC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 1.00 0.27 0.21 0.33 0.30
YT 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.36 0.27 1.00 0.71 0.34 0.57
NT 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.50 0.21 0.71 1.00 0.23 0.59
AB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.33 0.34 0.23 1.00 0.23
NU 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.30 0.30 0.57 0.59 0.23 1.00

139



Bibliography

AIR Worldwide. 2013. Study of Impact and the Insurance and Economic Cost of a Major

Earthquake in British Columbia and Ontario/Québec. Insurance Bureau of Canada
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