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Abstract

Tackling Distribution Shift - Detection and Mitigation

Laya Rafiee Sevyeri, Ph.D.

Concordia University, 2023

One of the biggest challenges of employing supervised deep learning approaches is their inabil-

ity to perform as well beyond standardized datasets in real-world applications. Therefore, abrupt

changes in the form of an outlier or overall changes in data distribution after model deployment

result in a performance drop. Owing to these changes that induce distributional shifts, we pro-

pose two methodologies; the first is the detection of these shifts, and the second is adapting the

model to overcome the low predictive performance due to these shifts. The former usually refers

to anomaly detection, the process of finding patterns in the data that do not resemble the expected

behavior. Understanding the behavior of data by capturing their distribution might help us to find

those rare and uncommon samples without the need for annotated data. In this thesis, we exploit the

ability of generative adversarial networks (GANs) in capturing the latent representation to design a

model that differentiates the expected behavior from deviated samples. Furthermore, we integrate

self-supervision into generative adversarial networks to improve the predictive performance of our

proposed anomaly detection model. In addition, to shift detection, we propose an ensemble ap-

proach to adapt a model under varied distributional shifts using domain adaptation. In summary,

this thesis focuses on detecting shifts under the umbrella of anomaly detection as well as mitigating

the effect of several distributional shifts by adapting deep learning models using a Bayesian and

information theory approach.
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Chapter 1

Introduction

1.1 Motivation

Access to large-scale datasets is the pillar of the rapid growth of deep neural networks. In this

regard, the necessity of proper data annotation limits supervised learning and makes unsupervised

and self-supervised learning more in-demand. On the other hand, discriminative deep learning

models are predictive models only limited to a decision boundary. Despite their success in many

practical applications, uncovering the distribution of data is beyond the purpose of these models. In

addition, inevitable discrepancies between training and test data in real-world applications, known

as distribution shifts, hurt the generalizability of deep learning models. Performance drop and lower

generalizability are even more drastic in applications in medical imaging, where data acquisition and

annotation are often very expensive. The disparity between training and test sets’ distribution might

be either a sudden and unusual change in the distribution associated with few examples (out-of-

distribution also known as OOD) or a permanent change in the distribution visible in the entire test

set. Hence, the path to address each of these types of shifts can be defined differently.

The issues mentioned above are the inspirations for creating fundamental tools for machine

learning systems. Unsupervised learning and, in particular, generative models open new doors to

discovering the underlying structure of the data, i.e., data distribution. While unsupervised learning

mitigates the problem of costly annotated data, generative models, that are mostly unsupervised,

focus on sample generation via the learned distribution (Goodfellow et al., 2014; Kingma, Salimans,

1



& Welling, 2015; Salakhutdinov & Hinton, 2009).

The problem of identifying changes in parts of the test set defines anomaly detection (AD), i.e.,

finding those samples which do not fit the training data distribution (Chandola, Banerjee, & Kumar,

2007). While the idea of anomaly detection spreads to different research areas, arising generative

models help in learning the distribution of normal data; due to limited labeled data and insufficient

knowledge of known anomalies in disease detection, unsupervised anomaly detection becomes an

exciting tool in medical imaging (Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, & Langs, 2017).

Chapter 4 and 5 of this thesis will focus on detecting anomalies in different and challenging do-

mains. Particularly, as one of our studies, we want to investigate the feasibility of anomaly detection

on small medical datasets, which are relatively common in medical imaging. In addition to a medical

dataset, we experiment with more complex and larger datasets. Among various generative models,

we explore the benefit and difficulties of the generative adversarial network (GAN) (Goodfellow

et al., 2014) on anomaly detection. Although GANs have proven to be effective, several obstacles

make their training difficult and, therefore, lower performance compared with non-generative state-

of-the-art approaches. Similar to other deep neural networks, generative models also suffer from

catastrophic forgetting, i.e., a problem when the model forgets about previous tasks/classes when

dealing with a new one. Furthermore, we conduct an investigation into possible remedies for these

models’ limitations, mainly catastrophic forgetting and mode collapse, and introduce a generative

model that benefits from self-supervision to address these issues.

Even though identifying shifts in the test distribution and pointing out those samples that show

signs of divergence from training distribution is important, anomaly detection models still need

strategies to further indicate where shifts originate and how to adapt the model under the presence of

shifts. Besides, changes between the training and test distributions can easily happen. For instance,

a minor alteration in the distribution of labels between two domains, i.e., a change in the proportion

of a single class between source and target domains in a classification task, may decrease the perfor-

mance and reduce the generalizability. Considering p(X,Y ) as the joint distribution of a domain,

where X and Y define the input and the output respectively, any changes in the input, the output,

or both in the target domain introduce shift. Consequently, domain adaptation was introduced as a

tool to help the models adapt themselves to various shifts.

2



In Chapter 6 of this thesis, we focus on mitigating the distribution shifts rather than detecting

them. Specifically, we try to mitigate two major sources of shift: covariate shift (drift in the input)

and label distribution shift. This study inspects multiple medical, natural, and synthetic datasets

under distributional shifts. Unlike many domain adaptation approaches, our solution addresses

shifts while mitigating privacy and storage concerns typical to domain adaptation.

1.2 Distribution Shifts

Generally, machine learning (ML) models, under the i.i.d. assumption that states random vari-

ables are independent and identically distributed, rely on a large set of examples drawn from the

same distribution to solve a learning task. Given a set of labeled examples (x, y) ∈ X,Y drawn

from the training distribution p and (x′, y′) ∈ X ′, Y ′ from the test distribution q, the i.i.d. assump-

tion implies p and q to have the same distribution (stationary environment), i.e., p = q. The training

and test sets can be referred to as source and target distributions in this definition.

While under this assumption, ML models flourish and unprecedented breakthroughs happened

in various fields, the disparity in the source and target distribution is inevitable. Difference between

distributions, refer to as distribution shift, degrades the performance and hurt the generalizability of

ML models. The joint distribution between data points and their corresponding labels of the two

domains varies by different sources. In the following, we introduce trivial shifts generally known as

distribution shifts (Quiñonero-Candela, Sugiyama, Schwaighofer, & Lawrence, 2008).

Covariate Shift

From the statistical point of view, the joint distribution p(x, y) can be decomposed in p(x, y) =

p(x)p(y | x), where p(x) defines marginal distribution and p(y | x) defines the conditional label

distribution.

Covariate shift refers to the changes in the covariate x between source and target, p(x) ̸= q(x),

while the conditional distribution remains fixed, i.e., p(y | x) = q(y | x). Therefore, the joint

distribution of source and target changes, i.e., p(x, y) ̸= q(x, y).

Label Distribution Shift

The joint distribution also defines as p(x, y) = p(y)p(x | y). Label distribution shift which is also
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called as target shift or prior probability shift indicates changes over label y between source and

target domains, p(y) ̸= q(y), while the conditional covariate distribution is invariant, p(x | y) =

q(x | y). Similarly, this change leads to a shift in the joint distribution of the two domains.

Concept Drfit

Concept drift refers to shifts where the changes stem from conditional distributions rather than

marginals. Particularly when either conditional distribution over covariate or label changes, i.e.,

p(x | y) ̸= q(x | y) or p(y | x) ̸= q(y | x), while the marginals remain fixed, i.e., p(x) = q(x) and

p(y) = q(y), concept drift happens.

In addition to the aforementioned shifts, there are other types of shifts that are less investigated

in the literature. Before explaining the necessity of detecting shifts and different approaches for

them, we briefly introduce the primary reasons for the emergence of shifts.

The two common causes of shifts between the source and target distribution are i) sample se-

lection bias and ii) non-stationary environments. The former is related to the discrepancy in the

distribution, which is due to the data acquisition and annotation biases. The biases might cause

misrepresentation of the environment. The latter originates from real-world non-stationary environ-

ments. This feature is associated with the fact that real world phenomena continuously vary from

both temporal and spatial perspectives.

1.2.1 Anomaly Detection

The process of finding patterns in the data which do NOT resemble the expected behavior is

known as anomaly detection (AD). Particularly, the problem of detecting distribution shift can be

reduced to whether a sample comes from the same distribution as the training data, which has

been widely studied under the name of anomaly detection in the literature (Chandola, Banerjee, &

Kumar, 2009). Despite the fact that anomaly detection approaches are only limited to identifying

shifts between two domains rather than detecting specific types of shifts, they are well-established

for different machine learning tasks.

Anomaly detection, which is often also referred to as out-of-distribution (OOD) detection, can

explore two main approaches; novelty or outlier detection. Even though the names frequently have

been used interchangeably in the literature, there is a narrow line separating the two. Novelty
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detection mostly involves a detection model where the training dataset only contains a particular

distribution, and no abnormalities are present. In comparison, outlier detection denotes a learning

model where the training dataset may include abnormalities.

Anomaly detection approaches have evolved over time from classical approaches such as one-

class support vector machines (Schölkopf et al., 1999), density estimation (Breunig, Kriegel, Ng,

& Sander, 2000), and isolation forest (F. T. Liu, Ting, & Zhou, 2008), to deep learning based

approaches (Golan & El-Yaniv, 2018) and GANs (Schlegl et al., 2017).

1.2.2 Transfer Learning

As stated earlier, one of the primary keys to the advancement of ML models is access to abun-

dant annotated data, which is sometimes very expensive and time-consuming. These models often

assume the training and test samples to be drawn from the same distribution, also known as the i.i.d.

assumption. Despite the unprecedented success of machine learning in many practical applications,

these limitations become obstacles in real-world applications and deteriorate the performance of ML

models. To fill the performance gap between training and test, transfer learning (TL) approaches

are proposed.

Given a source domain Ds and learning task TS , a target domain Dt and learning task TT ,

transfer learning aims to improve the learning of the target predictive function ft(.) in Dt using the

knowledge in Ds and TS , where Ds ̸= Dt, or TS ̸= TT (Pan & Yang, 2009).

Considering the learning task as learning a joint distribution P (x, y), then transfer learning

can be defined as a process of adapting a model trained on one joint distribution to another joint

distribution. Explicitly, in transfer learning a model that is developed for a task will be reused as

a starting point for a second task. However, in domain adaptation which is a branch of transfer

learning, retraining the model might be necessary for the adaptation.

Various types of transfer learning are defined based on the similarity of the task between source

and target domains and the availability of labeled data in the target domain (Pan & Yang, 2009).

Inductive transfer learning refers to a learning method where the task between source and target

domains are different. This category includes previous work based on reweighting strategy, also

known as instance-based transfer learning (Jiang & Zhai, 2007; Sugiyama, Nakajima, Kashima,
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Buenau, & Kawanabe, 2007). Whereas in transductive transfer learning, the task remains fixed

while the domains are different like (Argyriou, Evgeniou, & Pontil, 2006; Raina, Battle, Lee, Packer,

& Ng, 2007). Unsupervised transfer learning is similar to the inductive approach in the sense that

the target task varies from the source, but unlike inductive transfer learning, which has access to

a set of labeled samples in the target domain, no labeled data is available in unsupervised transfer

learning. Similarly, transductive transfer learning only has access to unlabeled target data. From the

definition, domain adaptation is a type of transductive transfer learning.

1.3 Problem statement

This research study focuses on distribution shifts and investigates novel approaches for detecting

and mitigating them.

Anomaly detection has been explored broadly in various areas of machine learning (see Chap-

ter 3). Similar to distribution shift detection, anomaly detection models investigate and reveal devi-

ations from the source domain (training set). Such an approach can be utilized to train models that

are able to distinguish one class among the others (cats versus other pets) as well as a tool to cap-

ture unknown anomalies, e.g., within the process of disease detection, benefiting the lack of known

anomalies and limited labeled data.

Anomaly detection approaches, however, are bounded only to detecting shifts. Hence further in-

formation concerning the types of shifts and approaches to mitigate them requires other techniques.

In many applications, distribution shift detection is not a priority. In these cases, we prefer an

existing model that can maintain its performance under possible shifts. Therefore, transfer learning

techniques should be used to address these problems.

1.4 Research Objectives

The problem of limited labeled data, limited known anomalies, and unbalanced data are more

severe in medical imaging. As a result, a model that built upon these limitations might perform

poorly given possible shifts. We conduct research on using anomaly detection-based approaches

for shift detection. We deploy adversarial training to propose a simple model to detect anomalies
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in multiple domains. We further examine the negative impact of mode collapse and catastrophic

forgetting in our adversarial training and investigate the effect of integrating self-supervised learning

in our proposed adversarial model to improve the performance of our detection model.

As stated earlier, in some cases, mitigating the effect of distribution shifts might have a higher

priority than detecting them. In our last research, we focus on deploying a model that can perform

under different distributional shifts.

Our main research questions are as follows:

(1) How can an adversarial training approach help us detect shift while overcoming the

problem of limited labeled data and unknown anomalies?

(2) How does integrating self-supervised learning into adversarial learning help to improve

performance while mitigating mode collapse and catastrophic forgetting of our generative

adversarial network-based model?

(3) How to propose a model that maintains its performance under covariate and label dis-

tribution shifts?

(4) How does ensemble training improve the performance of a domain adaptation model

under different distributional shifts when the source data is not available during the adaptation

phase?

Based on these research questions, the major parts of our research focus on identifying devia-

tions in the target/test data where shift detection transforms into the problem of detecting anomalies

without any labeled data. On the other hand, our second research direction involves transfer learning

to design a model to perform under various shifts. Our answer to the first question is an unsuper-

vised model targeted at identifying samples that are not coming from the training distribution in the

context of natural and medical images. This research evaluates different scoring functions to distin-

guish normal samples from abnormal samples. In the next study and to answer the second question,

we introduce a similar adversarial model which benefits from self-supervised learning to address the

two major limitations of GANs. This research focuses on different natural image benchmarks. In

the last research study, we address the last two questions simultaneously. We propose an ensemble
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model with more diverse members and a weighted regularization approach in a source-free domain

adaptation model to mitigate the effect of covariate and label distribution shifts. Besides the natural

and synthetic images, our solution also evaluates on a medical dataset under two major distribution

shifts.

1.5 Contributions

In this research study, we focus on applying new methods in detecting and mitigating different

types of distributional shifts in various domains.

The key advantage of using deep models over the classical machine learning approaches is their

ability to grasp the hidden information that lies in the data without further feature engineering. This

property is obtained mainly from very large-scale data. In supervised learning tasks, having a large

amount of data with their corresponding ground truth labels is not always accessible, especially

in medical imaging, where data acquisition and annotation are often costly and time-consuming.

Given the limitations of supervised learning, considering unsupervised training seems promising.

In all of our research studies, given an unsupervised setting, we explore the difficulty and pos-

sibilities of different deep learning approaches in the presence of various distributional shifts.

• The first study proposes a new unsupervised deep generative model accompanied by a new

anomaly score function to identify anomalies in the context of images. To further investi-

gate the effectiveness of our model, we evaluate it on two benchmark datasets as well as a

public medical dataset. The proposed model achieved the highest performance among ex-

isting approaches. We show experimentally that our proposed model can perform well even

on a small-sized dataset which is not very appealing in many deep learning tasks. The result

of this study was published at 29th International Conference on Artificial Neural Networks

(ICANN2020).

◦ This work was also presented as a poster at Montréal AI Symposium (MAIS) in Septem-

ber 2020.
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• The second study introduces a new unsupervised anomaly detection model inspired by con-

trastive learning to mitigate the two common issues of generative adversarial networks. Our

model simultaneously addresses mode collapse and catastrophic forgetting and significantly

improves the performance of GAN-based anomaly detection models. We conduct various ex-

periments on multiple benchmark datasets with different dataset sizes. This research was pub-

lished at the 21st International Conference of Image Analysis and Processing (ICIAP2021)

and received an ”NVIDIA Winner Prize”.

◦ Accepted as a poster in Bayesian Deep Learning NeurIPS workshop (NeurIPS 2021)

• The last research introduces an effective domain adaptation model based on ensemble learning

with a weighted regularization scheme in the presence of covariate and label distribution

shifts. In this setting, unlike most domain adaptation approaches, access to the source data

is only limited to a model induced from them. Extensive experiments on multiple domains

of natural, synthetic, and medical demonstrate the effectiveness of our model. This work is

currently under review in the Machine Learning journal.

List of other contributions as a coauthor in chronological order:

• The Concordia NLG Surface Realizer

◦ Farahnak, F., Rafiee, L., Kosseim, L., Fevens, T. ”The Concordia NLG Surface Realizer

at SRST 2019.” Proceedings of the 2nd Workshop on Multilingual Surface Realisation

(MSR 2019). 2019.

• Surface Realization Using Pretrained Language Models

◦ Farahnak, F., Rafiee, L., Kosseim, L., Fevens, T. ”Surface realization using pretrained

language models.” Proceedings of the Third Workshop on Multilingual Surface Reali-

sation. 2020.

• AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estimation
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◦ Varno, F., Saghayi, M., Rafiee Sevyeri, L., Gupta, S., Matwin, S., Havaei, M. (2022).

”AdaBest: Minimizing Client Drift in Federated Learning via Adaptive Bias Estima-

tion.” European Conference on Computer Vision. Springer, Cham, 2022.

• Learning from Uncertain Concepts via Test Time Interventions

◦ Sheth, I., Abdul Rahman, A. , Rafiee Sevyeri, L., Havaei, M., Ebrahimi Kahou, S.

”Learning from uncertain concepts via test time interventions.” Trustworthy and So-

cially Responsible Machine Learning, NeurIPS 2022
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Chapter 2

Background

In this Chapter and to follow this research study, some preliminary definitions of machine learn-

ing (ML) and deep learning (DL), as well as several well-known deep generative models, will be

reviewed.

2.1 Supervised Learning versus Unsupervised Learning

A machine learning algorithm refers to the types of algorithms that are able to learn from their

experience. One of the best definitions of learning is proposed by Mitchell (1997):

”A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at task T , which is measured

by P , improves with experiences E.”

The learning process can be done in different ways. Considering the data and types of informa-

tion it provides, three major learning paradigms can be defined: i) supervised, ii) unsupervised, and

iii) semi-supervised learning.

Supervised learning is a class of machine learning tasks where a model trained on a training

dataset consists of a set of samples (xi ∈ X) with their corresponding ground-truth labels (yi ∈ Y ),

and the task is to learn a mapping function yi = f(xi) from the input to the output. The goal is

to approximate the mapping function with minimum error, therefore given a new input data (xj),
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the model can predict the corresponding output variables (yj) using the mapping function (Bishop,

2006).

It is called supervised learning because the whole process of an ML algorithm which is learning

from the training dataset, can be thought of as a teacher supervising the learning process. In this kind

of learning procedure, we have the correct answers to the training data, so the algorithm iteratively

makes predictions on the training data and is corrected by the teacher. Learning stops when the

algorithm achieves an acceptable level of performance. Supervised learning problems are further

grouped into regression and classification problems.

• Classification: The output variable in a classification problem is a category, such as “red” or

“blue” or “disease” and “no disease”.

• Regression: The output variable in a regression problem is a real value, such as “dollars” or

“weight”.

On the other hand, an unsupervised learning task only has access to the input variables, and

their corresponding ground-truth are not available. The goal of unsupervised learning is to model

the underlying structure or distribution of the data in order to learn more about the data. Unlike

supervised learning, there is no supervision for the given training data. Unsupervised learning

problems can be further grouped into clustering and association problems (Bishop, 2006).

• Clustering: A clustering problem is where you want to discover the inherent groupings in the

data, such as grouping customers by their purchasing behavior.

• Association: An association rule learning problem is where you want to discover rules that

describe large portions of your data, such as people that buy x also tend to buy z.

However, the two categories mentioned earlier are rather old, and the latest and more ad-

vanced approaches for unsupervised learning do not fit into them. Dimensionality reduction models

such as Principal component analysis (also known as PCA) (Pearson, 1901; Wold, Esbensen, &

Geladi, 1987) and generative models like autoencoder (Ballard, 1987) and generative adversarial

networks (Goodfellow et al., 2014) are as such unsupervised approaches beyond the category of

clustering and association.
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Rather than supervised and unsupervised learning, there is an intermediate level of learning

which is called semi-supervised learning, where the ground-truth labels are available only for usu-

ally small portions of the dataset.

Recently, a new sub-category was added to the existing learning paradigms called self-supervised

learning. In the self-supervised learning paradigm, often an auxiliary task, also known as surrogate

or pretext, defines where labels are readily extractable from the data without any human interven-

tion. The strong supervision signals within the surrogate tasks enable the model to leverage the

objective function similar to the way it is done in supervised learning.

2.2 Deep Learning

Machine learning technology powers many aspects of modern society, from web searches and

content filtering on social networks (Chau & Chen, 2008; Vanetti, Binaghi, Carminati, Carullo, &

Ferrari, 2010) to recommendations on e-commerce websites (Zhao, Zhang, Friedman, & Tan, 2015),

and it is increasingly present in consumer products such as cameras and smartphones. Machine

learning systems are used to identify objects in images (Dalal & Triggs, 2005; Lowe, 1999; Viola

& Jones, 2001), transcribe speech into text (Ganapathiraju, Hamaker, & Picone, 2000; Woodland &

Povey, 2002), match news items, posts or products with users’ interests, and select relevant results

of search (Joachims, 2002; Mohan, Chen, & Weinberger, 2011). Increasingly, these applications

often use a class of techniques called deep learning.

Conventional machine learning techniques are limited in their ability to process natural data in

their raw form. For decades, constructing a pattern recognition or machine learning system required

careful engineering and considerable domain expertise to design a feature extractor that transformed

the raw data (such as the pixel values of an image) into a suitable internal representation or feature

vector from which the learning subsystem, often a classifier, could detect or classify patterns in the

input.

Representation learning refers to a set of methods that allows a machine to be fed with raw data

and to automatically discover the representations needed for detection or classification. Deep learn-

ing methods are accounted as representation learning methods with multiple levels of representation,
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obtained by composing simple but non-linear modules that each transform the representation at one

level (starting with the raw input) into a representation at a higher, slightly more abstract level. With

the composition of enough such transformations, very complex functions can be learned (Goodfel-

low, Bengio, & Courville, 2016).

The emergence of deep learning models was back to the introduction of AlexNet (Krizhevsky,

Sutskever, & Hinton, 2012), a convolutional neural network (CNN) (LeCun, Haffner, Bottou, &

Bengio, 1999) model and the winner of ImageNet challenge (J. Deng et al., 2009) in 2012. After

2012, the field witnessed a handful of research on discovering the ability of deep models in speech

recognition (Chan, Jaitly, Le, & Vinyals, 2016), visual object recognition (He, Zhang, Ren, & Sun,

2015), object detection (Girshick, Donahue, Darrell, & Malik, 2014; Redmon, Divvala, Girshick,

& Farhadi, 2016), and many other domains such as drug discovery (H. Chen, Engkvist, Wang,

Olivecrona, & Blaschke, 2018) and genomics (Park & Kellis, 2015; Quang & Xie, 2016) ended to

dramatically improved the state-of-the-art. With the help of the backpropagation algorithm (Rumel-

hart, Hinton, & Williams, 1986), neural networks are able to compute the gradient and, therefore

deep learning models to uncover complex structures in large datasets. Optimization algorithms like

stochastic gradient descent (SGD) use the gradient to facilitate changes in a neural network’s inter-

nal parameters to increase the predictive model accuracy by decreasing a surrogate loss function.

2.3 Generative versus Discriminative Models

There are two main approaches to doing a machine learning task from the statistical machine

learning point of view: generative and discriminative approaches.

Assuming an input variable x and its corresponding output y from input space X and out-

put space Y respectively, a generative approach attempts to learn the joint probability distribution

p(x, y) (Ng & Jordan, 2002). A more common definition would be a model which describes how

data is generated in terms of a probabilistic model. Whereas the discriminative approach tries to

find the conditional probability of the target variable y given an input x; p(y | x = x). Discrim-

inative models, also known as conditional models, are a class of models used in machine learning

for modeling the dependence of unobserved variables, i.e. target, on observed variables, i.e. input.
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Within a probabilistic framework, this is done by modeling the conditional probability distribution.

If the primary goal is prediction, then discriminative models, which directly estimate p(y|x), are

found to be empirically superior because they attack the problem directly. However, discriminative

models tend to gain little understanding of the data.

Discriminative models do not allow one to generate samples from the joint distribution of ob-

served and target variables, i.e., p(x, y), as opposed to generative models. However, for predictive

tasks such as classification and regression that do not require the joint distribution, discriminative

models can yield superior performance because they have fewer variables to compute.

The most compelling successes of deep learning came from the discriminative models, where

they map a high dimensional input into a target label (Dosovitskiy et al., 2021; He, Zhang, Ren, &

Sun, 2016; Tan, Pang, & Le, 2020). On the other hand, generative models that have to deal with

the data distribution didn’t gain much success until recently (Goodfellow et al., 2014; J. Ho, Jain, &

Abbeel, 2020; Keller & Welling, 2021; Vaswani et al., 2017; Zhu, Park, Isola, & Efros, 2017).

In generative models that utilize joint distribution, they can either directly use the joint distribu-

tion of the data, i.e., p(x, y), or follow the Bayes theorem (Eq. 1):

p(Ci|x) =
p(x|Ci)p(Ci)

p(X)
(1)

where Ci is the label of the i-th class, x is the input, p(Ci) is the prior which is the probability of

class Ci, and p(x|Ci) is the likelihood of input x belongs to class Ci. By having the data distribution,

we are able to generate synthetic data in the input space. Due to the difficulty of approximating the

joint distribution, there was not much progress in generative-based approaches as we witnessed in

the discriminative approaches until earlier (Goodfellow et al., 2014; Kingma & Welling, 2013).

However, we have to notice that even if the model knows the true probability distribution that

generates the data, it may still incur some errors on some inputs. This happens due to the inherent

noise in the data distribution which is referred to as Bayes error in the literature (Fukunaga, 1990).

Unsupervised learning is a very broad term that encompasses many different ways of finding

structure in unlabeled data. Generative modeling means building a model that can generate new

examples that come from the same distribution as the training data or look at an input example and
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report the likelihood of it being generated by that distribution. This means generative modeling is

a kind of unsupervised learning alongside other kinds of unsupervised learning like clustering and

dimensionality reduction approaches.

A generative model can be designed to generate images, text, and voice. Parts of this research

study will mainly focus on generative models in the context of images. Some of the more com-

mon generative approaches which have been broadly used in the literature in each context will be

reviewed in chapter 3.

2.4 Deep Generative Models

Advancements in generative models following the emergence of deep learning rapidly increased.

In this section, we briefly introduce a few famous deep generative models that have been the focus

of our research. Since reviewing ongoing research on generative models is beyond the scope of this

research, we encourage the readers to read more about recent works in literature, e.g., Diffusion

models (J. Ho et al., 2020) and GFlowNets (Bengio, Jain, Korablyov, Precup, & Bengio, 2021).

Autoencoder (Ballard, 1987) is an unsupervised learning technique that leverages artificial neu-

ral network (ANN) to learn a representation for a set of data where the task can be dimensionality

reduction, feature learning, and recently learning generative models of data.

The simplest form of an autoencoder is a feed-forward neural network similar to a multilayer

perceptron (MLP) but considering the fact that the output layer should have the same number of

nodes as the input layer to reconstruct its own inputs (instead of predicting the target value y given

inputs x).

An autoencoder consists of a hidden layer h, often called the bottleneck. A bottleneck forces

the model to learn compressed representations of the input data by limiting the amount of infor-

mation that can pass over the network. The network may be viewed as two different components:

an encoder function h = f(x) to map the input to a condensed representation (encoded) and a

decoder function r = g(h) that generate a reconstructed sample from the encoded representation

(see Fig. 2.1). These kinds of networks are usually restricted in ways that only allow them to copy

the features that resemble the training data, pushing towards learning more useful properties of the
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data (Goodfellow et al., 2016).

Figure 2.1: Autoencoder architecture; given a sample x, autoencoder tries to learn an encoded representation
to reconstruct the input.

In order to train these types of generative models, a loss function defined as L(x, g(f(x)))

will be minimized throughout learning. The loss function is known as reconstruction error which

measures the differences between the original input and the resulting reconstructed output. The

reconstruction error function varies based on the type of input data. In the case of binary inputs, the

loss function can be the cross-entropy loss:

L(x, g(f(x))) = −
n∑
i=1

(xi log(g(f(xi))) + (1− xi) log(1− g(f(xi)))) (2)

or it can be defined as mean squared error (MSE) in the case of real-valued input:

L(x, g(f(x))) =
1

n

n∑
i=1

(xi − g(f(xi)))
2 (3)

Rather than limiting the dimension of the bottleneck, regularized autoencoders use a regularized

loss function that encourages the model to have other properties besides the ability to copy its

input to the output. Sparse autoencoders, Denoising autoencoders (Vincent, Larochelle, Bengio, &

Manzagol, 2008), and Contractive autoencoders (Rifai, Vincent, Muller, Glorot, & Bengio, 2011)

are families of regularized autoencoders.

Among several variations of autoencoder, Variational Autoencoder (VAE) (Kingma & Welling,
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2013) is a probabilistic model that, unlike the vanilla autoencoder, generates a probability distribu-

tion over the latent attributes.

Generative Adversarial network (GAN) (Goodfellow et al., 2014) is a two-player minimax

game defined by its two competing models; a generator G and a discriminator D. In this frame-

work, two models are trained simultaneously. The discriminator is trained to discriminate between

the samples coming from true data distribution and the generator distribution. In contrast, the gen-

erator tries to decrease the probability of being fake by approximating the data distribution from

a much simpler distribution, e.g., a Gaussian or Uniform distribution. That is to say, during the

training, the generator trains in a way to lead the discriminator to make more mistakes. Whereas the

discriminator trains to maximize the probability of predicting the true labels, where the labels are

either real or fake.

The competition between these two adversaries drives them to improve their methods. By def-

inition, the ideal stopping point is when G captures the distribution of the training data, and D can

not distinguish between the generated data and training data anymore, i.e., returning the probability

of 1
2 for each sample.

Even though there is no limitation on the types of the generator or the discriminator mod-

els, Goodfellow et al. (2014) suggested that both G and D be multilayer perceptrons so they can be

trained using the backpropagation technique.

The primary purpose of GAN is to mimic the distribution of training data and, therefore, the

ability to generate samples drawn from the learned distribution. Samples are generated from a ran-

dom noise drawn from simpler distributions than the training data, typically a Gaussian or uniform

(a schematic view of the architecture of a GAN model is shown in Fig. 2.2).

Figure 2.2: GAN architecture, where z is the noise sampled from a Gaussian distribution, G(z) is the
generated image from noise z, and x is a training sample drawn from pdata distribution.
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Given G and D as two neural networks, the training of GANs can be formulated in this way. In

this framework, the generator G tries to learn the distribution over data x and a prior on input noise

variable, which is defined as pz(z). G(z; θg) is the mapping function where G is a neural network

parameterized by θg. On the other side, D(x; θd) defines the mapping function for the discriminator

D. Here pg and pdata represent the generated and the training data distribution respectively. The

discriminator’s result is a single scalar representing the label of the input data, i.e., D(x) defines the

probability of x belonging to training data distribution rather than pg. While D trains to maximize

the probability of assigning the true labels, both to the samples that come from the training data or

the generated samples, G trains to minimize log(1 −D(G(z))). Hence, D and G play a minimax

game to optimize the following objective function:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))] (4)

Since a discrimination task is much easier than the generation, this objective function might end

up with a poor generator. Goodfellow et al. (2014) suggested to reformulate Eq. 4 by replacing

minimizing log(1−D(G(z))) with maximizing log(D(G(z))).

As mentioned earlier, the training procedure of the GAN is very similar to the minimax game,

where both competitors try to improve their models to beat each other. From the game theory, the

model converges when the discriminator and the generator reach a Nash equilibrium (Osborne &

Rubinstein, 1994). In this adversarial training, the global optimum is pg = pdata, where the gener-

ator can capture the data distribution, and it is achievable if both D and G have enough capacity.

Even though GAN has gained quite a lot of success in many different areas (T. Chen, Zhai, Rit-

ter, Lucic, & Houlsby, 2019; Ledig et al., 2017; Mahapatra, Bozorgtabar, & Garnavi, 2019; Schlegl

et al., 2017; H. Zhang et al., 2017), it still suffers from unstable and hard training procedure (Lucic,

Kurach, Michalski, Gelly, & Bousquet, 2018), mode collapse (failure of GANs to capture important

features of a target distribution) (Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017), di-

minished gradient (meaning that the discriminator gets too successful that the generator’s gradient

vanishes and learns nothing), catastrophic forgetting (Kemker, McClure, Abitino, Hayes, & Kanan,

2018), and its highly sensible behavior to the choice of hyperparameters (Lucic et al., 2018).
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2.5 Calibration and Uncertainty in Neural Network

Assuming a supervised classification task and a given input X ∈ X , a label Y ∈ Y , and

ϕ(X; θ) = (Ŷ , P̂ ) a neural network parameterized by θ, Ŷ represent the predicted class by ϕ and P̂

defines the confidence associated to the class prediction (C. Guo, Pleiss, Sun, & Weinberger, 2017).

In this setting, we wish that P̂ to be well-calibrated. In other words, if the estimated confidence

represents the true probability, it is then calibrated. For instance, given 100 examples and a pre-

dictive model with the confidence of 0.95 for each sample, the expectation is that 95 samples to be

correctly classified.

Uncertainty in neural networks is closely related to the confidence of these models. C. Guo et

al. (2017) showed that even though current large-scale neural networks like ResNet110 (He et al.,

2016) achieve higher accuracy compared with shallow networks, they tend to be overconfident on

incorrectly labeled, noisy, or unseen data and therefore less well-calibrated. Uncertainty in neural

networks has two types; aleatoric uncertainty and epistemic uncertainty. The former, which is also

referred to as data uncertainty, is an inherent property of the data distribution, e.g., noise or pertur-

bation in the input data. On the contrary, epistemic uncertainty, also refers to as model/knowledge

uncertainty, occurs due to inadequate knowledge.

Brier Score (BS) (Brier et al., 1950), Expected Calibration Error (ECE), and Maximum Calibra-

tion Error (MCE) (Naeini, Cooper, & Hauskrecht, 2015) are standard evaluation metrics to measure

the calibration capability of a predictive model. Considering a dataset D = {(xn, yn)}Nn=1, yn and

p(y | xn, θ) define the ground truth and the predicted probability, Brier score measures the accuracy

of predicted probabilities (Eq. 5):

BS =
1

|Y|
∑
y∈Y

[p(y | xn, θ)− δ(y − yn)]
2. (5)

Expected Calibration Error (ECE), shown in Eq. 6, measures the difference between predicted

probabilities and accuracy.

ECE =
B∑
b=1

sb
N

|acc(b)− conf(b)| =
B∑
b=1

sb
N

∣∣∣∣∣∑
n∈b

((yn = ŷn)− (p(ŷn | xn, θ)))

∣∣∣∣∣ (6)
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Figure 2.3: An abstract overview of an ensemble approach.

where B defines the number of bins, N total number of samples, sb indicates the number of sam-

ples in bin b, and ŷn = argmaxyp(y | xn, θ). The accuracy acc(b) =
∑

n∈b
(yn=ŷn)

sb
is also called

“observed relative frequency”, while the confidence conf(b) =
∑

n∈b
p(ŷn|xn,θ)

sb
refers to “average

predicted frequency”. Maximum Calibration Error (MCE) measures the maximum difference be-

tween predicted probabilities and accuracy among the bins. In addition to these three metrics, there

are several other scores to estimate the calibration of a model.

2.6 Ensemble Learning

Ensemble learning is a learning approach that seeks better predictive performance by combining

the predictions from multiple models (Opitz & Maclin, 1999; Rokach, 2010) (see Fig. 2.3). Classical

ensemble models include Bagging (Breiman, 1996), Stacking (Wolpert, 1992), and Boosting (Fre-

und, Schapire, et al., 1996). Bagging averages the predictions of multiple decision trees on different

samples of the same dataset, while stacking uses another model to learn the best approach to aggre-

gate the ensemble members’ predictions. Unlike the other two, boosting improves the predictions

of the previous members and outputs a weighted average of the predictions.

Rather than traditional approaches, ensembles have also been introduced in deep learning via

deep ensemble (Lakshminarayanan, Pritzel, & Blundell, 2017). Deep ensemble, with the support of

experiments and theoretical analyses, showed that ensemble mitigates calibration and uncertainties

in neural networks.
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2.7 Evaluation Metrics

This section will briefly present evaluation metrics used in this research study.

The effectiveness of a binary classification model usually measures with some defined metrics

known in the literature. In a medical imaging task, a binary classification model has two classes

of benign, i.e., healthy, and malignant, i.e., unhealthy. The positive outcome defines the unhealthy

class, whereas the negative outcome represents the healthy class. Considering these two classes, the

true/false positive/negative can be defined this way.

True positive (tp) refers to correctly identified malignant samples, and true negative (tn) refers

to samples that are correctly classified as benign. On the other hand, a false positive (fp) denotes

samples incorrectly identified as malignant, while a false negative (fn) denotes samples incorrectly

classified as benign.

Therefore, in order to measure the performance of a binary classification model, the following

metrics will be calculated.

• Sensitivity, also called recall, measures how well the model detects the unhealthy (malignant)

samples; tp
tp+fn

• Specificity measures how well the model detects the healthy (benign) samples; tn
tn+fp

• Precision defines the fraction of actual unhealthy (malignant) samples among all of those

predicted as unhealthy; tp
tp+fp

• F1-measure is the harmonic mean of precision and sensitivity

• Accuracy measures how well the model detects both classes; tp+tn
tp+tn+fp+fn

• AUC or the area under the Receiver Operating Characteristic (ROC) curve is a measure of

how well a parameter can distinguish between healthy and unhealthy classes, where the di-

agnostic performance of a test or the accuracy of a test to discriminate unhealthy cases from

healthy cases is evaluated using ROC curve analysis.
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Chapter 3

Literature Review

3.1 The History of AI and the Deep Learning Emergence

The emergence of artificial neural networks (ANN) dates back to the introduction of the per-

ceptron in 1958 (Rosenblatt, 1958). Upon the emergence of perceptrons, many believed they could

solve all the problems until 1969, where Minsky and Papert (1969) proved only linearly separable

functions could be presented by perceptron, and they can not even solve a simple XOR problem.

The research halted for almost 20 years until when the multilayer perceptron with nonlinear activa-

tion function and backpropagation algorithm (Rumelhart, Hinton, & Williams, 1988) was coupled

to propose a general trainable model not only limited to linearly separable problems. The effective

training using backpropagation made the usage of neural networks applicable to train sequential data

using recurrent neural networks (Rumelhart et al., 1986) as well as digit recognition in computer

vision (LeCun, Bottou, Bengio, & Haffner, 1998).

The emergence of graphical processing units (GPU) in 1999 and their ability to speed up the

computation of huge matrices led to the first large neural network called AlexNet (Krizhevsky et

al., 2012) in the field. After 2012, the area witnessed plenty of successful models under the rise of

deep models, from beating human performance on the task of object recognition (He et al., 2016)

using a large CNN model, success in medical image segmentation (Ronneberger, Fischer, & Brox,

2015) to conquering the world champion in the game of Go using reinforcement learning (Silver et

al., 2017).
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3.2 Arising of GANs

In addition to the success of discriminative approaches, generative approaches in both contexts

of text and image also received attention. After introducing GAN in 2014, many studies considered

using GAN instead of other familiar generative models at the time. Unlike most previous generative

models, no Markov chains and inference is needed for GANs, which makes them very popular for

various applications.

In the original paper of GAN, Goodfellow et al. (2014) used the idea of adversarial training to

create realistic images. Two years later, Radford, Metz, and Chintala (2016) addressed the instabil-

ity problem of GANs by introducing DCGAN and not only improved the quality of the generated

images but also showed that GANs can learn meaningful representations and interpolating them can

generate similar images in the current manifold. To further increase the quality of created images,

Karras, Laine, and Aila (2019) proposed StyleGAN, a new generator model different from vanilla

GAN by mapping the input noise to a new intermediate latent space and then passing it along with

the initial noise through a gate to each convolution layer of the generator. Aside from generating

realistic natural images, Han et al. (2018) utilized DCGAN and Wasserstein GAN (WGAN) (Ar-

jovsky, Chintala, & Bottou, 2017) for medical image generation.

GANs were not limited to image generation and have been investigated for various applications.

Isola, Zhu, Zhou, and Efros (2017) introduced Pix2Pix to propose an image to image translation

using conditional GAN (Mirza & Osindero, 2014). While Zhu et al. (2017) proposed CycleGAN,

an image-to-image translation model to go from a source domain to a target domain and vice versa.

In another work, Choi et al. (2018) proposed StarGAN, a multi-domain image-to-image translation

framework, by reconstructing the original image from the fake image. Aside from image-to-image

translation models, there was a great deal of work considering GAN for text-to-image translation.

In one of the first works, S. Reed et al. (2016) utilized a DCGAN conditioned on an embedded text

description to generate pixels from characters. S. E. Reed et al. (2016) in the same year, introduced

GAWWN to generate images with pre-defined content in a location it is asked for given textual

instruction. In another work, H. Zhang et al. (2017) introduced StackGAN, a double-stage GAN

model, to generate photo-realistic images conditioned on text descriptions. Dash, Gamboa, Ahmed,
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Liwicki, and Afzal (2017) suggested that using class conditional information would generate more

diverse images in text-to-image translation tasks.

Rather than translating from one domain to another domain using adversarial training, GANs

have been used in many other interesting applications. Antipov, Baccouche, and Dugelay (2017)

proposed Age-cGAN conditioned on a required age category with a latent vector optimization ap-

proach to reconstruct an input face image preserving the original person’s identity. Z. Zhang, Song,

and Qi (2017) used a conditional adversarial autoencoder (CAAE) to smoothly get the progression

and regression of the given image. Ledig et al. (2017) used GAN with the generator equipped with

residual blocks for single image super-resolution (SISR) task. In another interesting work based on

the idea of adversarial training, Pathak, Krahenbuhl, Donahue, Darrell, and Efros (2016) proposed

an autoencoder training based on adversarial loss grasped from GAN’s idea for photo inpainting.

Yeh et al. (2017) introduced a semantic photo inpainting model based on a trained GAN on realistic

images and then finding the missing part of the image by iteratively updating z to find the closest

mapping on the latent image manifold. In (Vondrick, Pirsiavash, & Torralba, 2016), a GAN model

with two generative paths of foreground and background along with a mask of motion pathway was

used for video prediction. In 2016, Wu, Zhang, Xue, Freeman, and Tenenbaum (2016) proposed

3D-GAN to generate 3D objects. Gadelha, Maji, and Wang (2017) introduced PrGAN, a 3D GAN

with a projection module, to generate 2D images from 3D shapes.

In addition to possible applications of GANs, they gained attention in medical imaging tasks.

Nie et al. (2017) suggested an adversarial model to generate MRI images from CT images. Wolterink,

Leiner, Viergever, and Išgum (2017) proposed an adversarial model by training two separate gen-

erators with two different losses and combining them to reduce the noise in low-dose CT images.

Image super-resolution using GANs has also been investigated in medical images (Mahapatra et al.,

2019; Sood, Topiwala, Choutagunta, Sood, & Rusu, 2018). The first model for anomaly detection

using GAN was proposed by (Schlegl et al., 2017) with a similar idea as (Yeh et al., 2017).
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3.3 Distribution Shift

Detecting and addressing different types of distribution shifts has a long history and spans from

anomaly detection to domain adaptation. Domain adaptation approaches directly adapt to specific

shifts, focusing more on covariate shift. On the other hand, anomaly detection makes a strong

connection to distribution shifts, indicating a deviation from the expected norm. Unlike domain

adaptation, where a model is tailored to recognize the type of shifts and further tackle them, anomaly

detection only indicates a deviation in the observed data without specifying the shift.

3.3.1 Anomaly Detection

Detecting distribution shift can be simplified to anomaly detection, the task of identifying

whether a single sample comes from the same distribution as the seen data.

Anomaly detection (AD) or, in general, out-of-distribution (OOD) detection has a long history

in machine learning. It has been widely investigated in many applications, from network intrusion

to medical diagnostics. AD approaches can be grouped according to three major paradigms.

Distributional-based approaches: The methods in this category try to build a probabilistic

model on the distribution of normal data. They rely on the idea that the anomalous samples would

act differently than the normal data. They expect that the anomalous samples receive a lower like-

lihood under the probabilistic model than the normal samples. The difference in these models is in

the choice of their probabilistic model and their feature representation approach. Gaussian mixture

models (Parzen, 1962), which only work if the data can be modeled with the probabilistic assump-

tions of the model, and kernel density estimation (KDE) (Latecki, Lazarevic, & Pokrajac, 2007)

methods are among traditional methods. Some recent approaches use deep learning to represent

the features, for instance, Zhou and Paffenroth (2017) introduced an autoencoder model based on

robust principal component analysis (RPCA) to detect anomalies, and B. Yang, Fu, Sidiropoulos,

and Hong (2017) proposed a combination of a deep neural network as dimensionality reduction and

an SVM to cluster the data. To alleviate the limitation that the probabilistic assumption imposes,

recent studies suggested learning a probabilistic model on the features extracted by the deep models

such as DAGMM, which applies a Gaussian mixture model on input representations obtained from
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a deep autoencoder (Zong et al., 2018).

Classification-based approaches: One-Class SVM (OC-SVM) (Schölkopf et al., 1999) and

support vector data description (SVDD) (Tax & Duin, 2004) are among the first works in this cat-

egory. They used the idea of separating the normal data from the anomalous data based on their

feature spaces. While the former is a kernel-based method (typically RBF kernels) trying to learn

different sets forming the input space, the latter indicates anomalies by creating a spherically shaped

boundary around the training data, then those residing outside these sets/boundaries are identified

as anomalies. In the long history of the studies of this paradigm, different approaches, from ker-

nel methods to deep learning approaches such as Deep-SVDD (Ruff et al., 2018) have been used.

However, these approaches may suffer from the insufficient and biased representations the feature

learning methods can provide. One remedy for this issue is using self-supervised learning meth-

ods. Various surrogate tasks such as image colorization (R. Zhang, Isola, & Efros, 2016), video

frame prediction (Mathieu, Couprie, & LeCun, 2016), and localization (C. Yang, Wu, Zhou, &

Lin, 2021) are among those that provide high-quality feature representations for downstream tasks.

In 2018, Golan and El-Yaniv (2018) proposed geometric transformation classification (GEOM) to

predict different geometric image transformations as their surrogate task for anomaly detection.

Following that, Bergman and Hoshen (2020) introduced GOAD, a unified method of one-class clas-

sification and transformation-based classification methods. Most recently, Sohn, Li, Yoon, Jin, and

Pfister (2021) presented a two-stage framework with a self-supervised model to obtain high-level

data representations as the first stage, followed by a one-class classifier, such as OC-SVM or KDE,

on top of the representations of the first stage.

Reconstruction-based approaches: Another approach to targeting anomalies is reconstruction-

based methods. Instead of relying on the lower likelihood of the distributional-based methods,

these approaches rely on the idea that normal samples should receive smaller reconstruction loss

rather than anomalous samples. Different loss and reconstruction basis functions vary in each of

these approaches. Previous studies have shown the advantages of both traditional machine learning

models and deep neural networks as the basis reconstruction function, e.g. K-means in (Jianliang,

Haikun, & Ling, 2009) and variational autoencoder in (An & Cho, 2015). In the class of deep

neural networks, generative models such as GANs (Schlegl et al., 2017) and autoencoder (Zhou &
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Paffenroth, 2017) are used to learn the reconstruction basis functions. Following the presentation

of AnoGAN (Schlegl et al., 2017) as the first anomaly detection model based on GAN, several

other studies used similar ideas with modifications on their basis functions and losses (Deecke,

Vandermeulen, Ruff, Mandt, & Kloft, 2018; Rafiee & Fevens, 2020; Zenati, Foo, Lecouat, Manek,

& Chandrasekhar, 2018; Zenati, Romain, Foo, Lecouat, & Chandrasekhar, 2018) to increase the

performance of anomaly detection models based on GANs. Despite the increasing popularity of

generative models, especially GANs, as the basis functions for anomaly detection, they are limited

mainly by the two major issues of GANs, mode-collapse and catastrophic forgetting, putting their

performance far behind classification-based approaches.

3.3.2 Domain Adaptation

Neglecting the existence of distribution shift under the i.i.d. assumption impacts many machine

learning models, lowering their performance. Knowledge transfer from one domain to another under

the possibility of changes in the domain emerged to address this issue. From the family of transfer

learning approaches, domain adaptation is widely used to investigate and tackle different types of

shifts.

Given various criteria, transfer learning approaches can be divided into different categories.

Considering the importance of source data in the transfer mechanism as the main criterion, one can

divide them into two categories, i.e. data-driven and model-driven approaches. Instance weight-

ing models that assign weights to the source domain instances to reduce the marginal distribution

differences between source and target domains introduce classical data-driven approaches (Bickel,

Brückner, & Scheffer, 2007; Zadrozny, 2004). Deep adaptive network (DAN) (Long, Cao, Wang,

& Jordan, 2015) was the first to use a convolutional neural network (CNN) with multi-kernel MMD

(maximum mean discrepancy) for domain adaptation. Later, Ganin and Lempitsky (2015) pro-

posed a domain adversarial neural network (DANN), a new domain adaptation model based on

adversarial training. Recently, Y. Zhang, Liu, Long, and Jordan (2019) suggests margin disparity

discrepancy(MDD) to measure the distribution discrepancy between domains. Despite the differ-

ences, all of these models have one thing in common, i.e. they all assume to have direct access to

the source data during the knowledge transfer. To mitigate transfer learning models’ privacy and
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storage concerns, source-free domain adaptation (SFDA) approaches (also known as model-driven

or hypothesis transfer learning) are proposed. SFDA is a transfer learning strategy where a model

trained on the source domain incorporates the learning procedure of the target domain. It was first

introduced by Kuzborskij and Orabona (2013) where the access to the source domain was only lim-

ited to a set of hypotheses induced from it, unlike domain adaptation, where both source and target

domains are used to adapt the source hypothesis to the target domain.

Source-free Domain Adaptation: In vision applications, Source-free Domain Adaptation (SFDA)

has emerged as a learning strategy to adapt the knowledge learned from one dataset (source domain)

to a query dataset (target domain) and has shown superior performance to more conventional do-

main adaptation methods. To this day, SFDA has mostly been experimented with covariate shift

and assumes similar class distributions between source and target domains, i.e. no label distribu-

tion shift. Kuzborskij and Orabona (2013) introduced the idea of SFDA, also known as hypothesis

transfer learning (HTL), and provided theoretical supports for its application under regularized least

squares. Following that, Kuzborskij and Orabona (2017); X. Wang and Schneider (2015) studied

the possibility of applying SFDA to other ML algorithms. Beyond theoretical analyses of SFDA,

few studies focused on more general frameworks. Fernandes and Cardoso (2019) suggested a regu-

larization approach to minimize the structural distance between source and target models. Although

these works alleviate privacy and storage concerns related to typical domain adaptation approaches,

they all assume access to a set of labeled data in the target domain. Liang, Hu, and Feng (2020)

present SHOT, the first SFDA model with access to unlabeled target data. SHOT trained using mu-

tual information maximization between the target hypothesis and the target data. In order to account

for unlabeled data in the target domain, they suggested using a pseudo-labeling strategy. Similarly,

Lao, Jiang, and Havaei (2021) proposed a new SFDA method with multiple hypotheses in source

and target with a similar assumption as SHOT.

In contrast to covariate shift that has been largely investigated under the umbrella of domain

adaptation and SFDA, label distribution shift between domains which is a common phenomenon

in many real-world applications such as medical imaging has only been scarcely studied in the lit-

erature. Among the limited attempts at tackling label shift, either estimating the ratio between the
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two marginals, i.e. pS(y)/pT (y), or the label proportions become the dominant strategy (Azizzade-

nesheli, Liu, Yang, & Anandkumar, 2019; Li, Murias, Major, Dawson, & Carlson, 2019; Lipton,

Wang, & Smola, 2018; Redko, Courty, Flamary, & Tuia, 2019). K. Zhang, Schölkopf, Muandet, and

Wang (2013) was one of the first to address target shift via a kernel mean matching method. Yet,

their approach is not computationally applicable to larger datasets. Lipton et al. (2018) introduced

Black Box Shift Estimation (BBSE) to estimate the importance weights using the confusion matrix.

Recent practices estimate the ratio or proportions using optimal transport (OT), exploring the space

of transport functions from source to target domain to find one with a minimum cost. MARS (Rako-

tomamonjy et al., 2022) relies on optimal transport to learn domain-invariant representations with

sample re-weighting. In 2022, Kirchmeyer, Rakotomamonjy, Bezenac, and gallinari (2022) pro-

posed OSTAR, a reweighing model which maps pretrained representations using optimal transport.

Despite the effectiveness of these works, they have either one or both of the following assumptions;

i) access to the source data during knowledge transfer, ii) their access to a set of labeled target set.

Therefore, they are not feasible for source-free domain adaptation models.

Transfer Learning Application in Medicine: Transfer learning has been widely used in the

medical field. Various studies suggested using pre-trained models on large natural image datasets

such as ImageNet for medical imaging tasks; chest X-ray classification (Abbas, Abdelsamea, &

Gaber, 2020) and brain tumor classification (Swati et al., 2019). The benefits of using ImageNet

pre-trained models on medical imaging tasks have been inconclusive (Raghu, Zhang, Kleinberg, &

Bengio, 2019). It has been shown to help in very small data regimes (Esteva et al., 2017; Raghu et al.,

2019) but could hurt in case of datasets with ample data examples (Raghu et al., 2019). Moreover,

the features learned by pre-training on ImageNet are not rich enough for 3D medical images (Litjens

et al., 2017). Recent studies applied domain adaptation approaches to mitigate the distribution shift

while benefiting the existing medical data. Among the works on medical imaging, several studies

considered working on MR images as the source domain and CT images as the target domain using

adversarial training to generate synthetic CT images (Abbas et al., 2020; Ouyang, Kamnitsas, Biffi,

Duan, & Rueckert, 2019), cardiac structure segmentation (Dou, Ouyang, Chen, Chen, & Heng,

2018), and image registration (Mahapatra & Ge, 2020). One of the limitations in domain adaptation

models, either supervised or unsupervised, is their necessity to access the source and target domain
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simultaneously, which is not always applicable in medical imaging tasks. To this end, recent studies

investigate the application of hypothesis transfer learning in the medical imaging domain. Yu et

al. (2020) proposed to utilize supervised SFDA to transfer knowledge from the source hypothesis

to the target domain under knowledge distillation settings. Whereas in (X. Guo et al., 2020), SFDA

has been applied to a federated learning setting to preserve patient privacy in diabetes prediction.

X. Liu, Xing, Yang, El Fakhri, and Woo (2021) proposed one of the very first unsupervised SFDA

models in the medical domain based on adaptive batch-wise normalization.

Ensemble Models: The idea of ensemble models goes back to (Dasarathy & Sheela, 1979) that

divided the feature space with few classifiers. However, Schapire (1990) was the first who introduce

ensemble models into machine learning through boosting. Ensemble in terms of majority voting

among the prediction of several models as decision trees introduced in random forest (T. K. Ho,

1995). Ensemble learning made its way into many practical applications and machine learning

competitions (Ayerdi, Savio, & Graña, 2013; Louzada & Ara, 2012; Mu, Lu, Watta, & Hassoun,

2009; Sill, Takács, Mackey, & Lin, 2009).

Beyond the overall improvement, ensembles have also been influential in neural network cali-

bration. Lakshminarayanan et al. (2017) conducted a series of experiments on ensemble models in

neural networks and showed that deep ensembles are the best-calibrated uncertainty estimators. An

ensemble model, by definition, is the ability to correct the mistakes of its members. However, the

most important factor in the success of an ensemble model lies in the diversity of its members. After

all, if all members provided the same output, correcting a possible mistake would not be possible.

Ensemble diversity has been widely investigated in the literature (Brown, 2004; Y. Liu & Yao, 1999).

Improving diversity in neural network ensembles has become a focus in recent work. Stickland and

Murray (2020) suggest augmenting each member of an ensemble with a different set of augmented

input to increase the diversity among members. While a few recent studies propose deep ensemble

models based on different neural network architectures to ensure diversity (Antorán, Allingham, &

Hernández-Lobato, 2020; Zaidi et al., 2020). Recently Pagliardini, Jaggi, Fleuret, and Karimireddy

(2022) suggest that encouraging diversity between the ensemble predictions helps to generalize in

the OOD setting by increasing disagreements and uncertainties over out-of-distribution samples.

Y. Lee, Yao, and Finn (2022) introduced an ensemble of multiple hypotheses with shared feature
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extractors and separate classifier heads to generalize in the presence of spurious features. They pro-

posed to increase diversity among the classifiers through mutual information minimization over the

hypotheses’ predictions on unlabeled target data.
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Chapter 4

Unsupervised Anomaly Detection with a

GAN Augmented Autoencoder

In this chapter, we focus on detecting distribution shifts through anomaly detection. Specifically,

we study the effect of generative adversarial networks on identifying anomalies. In order to facilitate

detection with lower inference time, we investigate combining an autoencoder with a generative

adversarial network.

4.1 Introduction

Anomaly detection (AD), or sometimes novelty detection, outlier detection, or in a broad de-

scription out-of-distribution detection, is an interesting and well-known research topic that is widely

studied in many fields such as network intrusion (Leung & Leckie, 2005), fraud detection (Fawcett

& Provost, 1997), and computer vision (Mahadevan, Li, Bhalodia, & Vasconcelos, 2010). The

problem focuses on identifying samples that deviate from other observations on data, indicating

variability in measurement, experimental errors, or a novelty. In other words, finding those samples

that do not fit the training data distribution is known as anomaly detection. This can be helpful to

identify unknown anomalies in the medical domain where finding an appropriate annotated dataset

is always a concern. This approach is also applicable in cases where the knowledge regarding the

type of anomalies is limited.
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A generative adversarial network (GAN) (Goodfellow et al., 2014) has two components, a gen-

erator and a discriminator, with a multi-objective optimization which forms a zero-sum game be-

tween these two components leading to rich representations of the training data where these rep-

resentations can be further utilized for downstream tasks. Generating realistic images of natural

images (Karras et al., 2021, 2019, 2020; Radford et al., 2016) and medical images (Han et al.,

2018), image-to-image translation (Isola et al., 2017; Zhu et al., 2017), and text-to-image transla-

tion (Dash et al., 2017; Lao et al., 2019; S. E. Reed et al., 2016; H. Zhang et al., 2017) are some of

the recent practices that achieved state-of-the-art performance using the idea of GAN. Aside from

the fact that GANs can model the training distribution, using them to identify anomalies requires

the corresponding latent representation of a given test image which is not obtained easily. Previous

studies suggested either optimizing the input noise to the GANs (Schlegl et al., 2017) or using an-

other module trained alongside the GAN (Zenati, Foo, et al., 2018; Zenati, Romain, et al., 2018) to

obtain the desired representation.

Following the importance of detecting anomalies in both natural and medical images, we present

a simple and effective model based on GANs. In this model, a GAN and an autoencoder train

simultaneously to learn the desired representations of the normal samples, which further will be

used to indicate anomalies. In this work, anomalies are detected based on a new scoring function–a

modification on previous anomaly score by considering multiple representations of a single image

obtained from a GAN and an autoencoder. The experimental results on various domains; natural

images (MNIST, CIFAR10, and SVHN), and medical imaging (Acute Lymphoblastic Leukemia

(ALL) Labati, Piuri, and Scotti (2011)) datasets demonstrate that our suggested generative model is

capable of identifying anomalous (out-of-distribution) samples in different settings. Our model not

only improved all the existing models in all the experiments but also showed that even if it trained

on a very small dataset, the representations are rich enough to target anomalies.

4.2 Related Work

There are numerous different approaches in the literature to identify anomalies in various do-

mains. In the context of images, these studies can be divided into three sub-categories. 1) The
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first category of research considers classical machine learning (ML) approaches such as one-class

support vector machines (SVMs) (Tax & Duin, 2004) and clustering (Xiong, Póczos, & Schneider,

2011) to detect anomalies. 2) The second type of work, also known as hybrid models, combine

the classical ML and deep learning models; e.g., a one-class SVM on top of deep belief networks

(DBNs) (Erfani, Rajasegarar, Karunasekera, & Leckie, 2016) or an autoencoder with a k-means

clustering on top (Aytekin, Ni, Cricri, & Aksu, 2018). 3) The last category includes recent develops

in deep learning and designed purely based on the representations they provide. Variational autoen-

coders (An & Cho, 2015) and autoencoders (Zhou & Paffenroth, 2017) showcase the power of deep

models for detecting anomalies.

In the last category, there is a series of work that has been leveraging GANs to obtain the

desired representations for the purpose of detecting anomalies. However, finding meaningful rep-

resentations of the distribution of the normal images is a challenging task. In one of the very first

works, Schlegl et al. (2017) proposed AnoGAN, a vanilla GAN accompanied with an optimization

process on latent representation during inference procedure, to detect anomalies in the medical do-

main. A year later, Zenati, Foo, et al. (2018); Zenati, Romain, et al. (2018) proposed two different

models based on BiGAN (Donahue, Krähenbühl, & Darrell, 2017), the recently proposed feature

learning model, for the task of anomaly detection with a significant improvement on the inference

time.

Following the recent successes using GANs and their variations on AD tasks, we introduce an

unsupervised model based on GAN. Our model contains two generative models, a GAN and an

autoencoder, to obtain the desired representation of a given image with two purposes, improving the

performance of existing unsupervised AD models, and decreasing the detection time.

4.3 Anomaly Detection

The idea of using a GAN to find anomalies can be divided into two steps; learning the cor-

responding latent representation of a given image and a distance metric on how far the generated

output is from the given image.

Previous studies each took advantage of GANs differently with a tailored distance metric for
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their proposed model to identify anomalies. In the next section, the similarities and differences of

each of these two steps in the previous GAN-based models will be briefly described. Later on, the

details of our AD model will be explained.

4.3.1 GANs for Anomaly Detection

Following the success of GANs and their application in various domains, Schlegl et al. (2017)

introduced the first anomaly detection model based on GANs called AnoGAN. A GAN was trained

on training data to learn the distribution of normal medical images which later can be used to target

anomalous samples. To do so, an optimization process on the random noise to find the closest gen-

erated image to the input test image was proposed. They defined a distance metric to measure how

well a given test sample is generated as a way to discriminate anomalies. Albeit the model showed

that a vanilla GAN could discriminate normal images from anomalous, it imposed considerable

computation on the model leading to a very slow inference process.

A year later, Zenati, Foo, et al. (2018) presented an unsupervised model based on a bidirectional

generative adversarial network (BiGAN) model (Donahue et al., 2017; Dumoulin et al., 2017) with

a similar scoring function as Schlegl et al. (2017) to accelerate the inference procedure1.

Following the previous work, Zenati et al. proposed Adversarially Learned Anomaly Detection

(ALAD) (Zenati, Romain, et al., 2018), a modification of their previous work, to detect anomalies.

Their model contains three discriminators each receiving an input pair–one for handling the latent

representations (Dzz), one for the input image x (Dxx), and Dxz which is similar to the discrimina-

tor used in BiGAN. For the inference, the L1 reconstruction error in the feature space was used as

the anomaly score:

A(x) = ∥fxx(x, x)− fxx(x,G(E(x)))∥1 (7)

where fxx is the activation of the layer before the logits in the Dxx network, E(x) is the representa-

tion obtained from the encoder E for the given image x, and G(E(x)) is the output of the generator

G given E(x).

1For simplicity, we refer it as Efficient-GAN in the experiments and results section.
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Figure 4.1: The GAN and autoencoder used in our model; encoder and discriminator have similar architec-
ture except in their last layers, and the generator and the decoder share their weights.

4.3.2 Our Anomaly Detection Model

Similar to the previous AD models based on GANs, we suggest using adversarial training to

identify anomalies. We present a generative model, a combination of a GAN and an autoencoder

(see Fig. 4.1). In this setting, we use parameter sharing (also known as weight sharing) between

the GAN’s generator and autoencoder’s decoder to keep their distribution as close as possible. This

will benefit the inference process by helping the encoder to generate representations within the

distribution of the GAN. Our AD model trains on Dind = {x1, x2, ..., xk ∼ Pind} where Pind

defines normal (in-distribution) training samples. Therefore, the generated outputs of the GAN

and the encoded representation of the encoder will be close to Pind. During the inference, the

model tests on Dmix = {x1, x2, ..., xk ∼ Pind or Pood} where Pood defines anomalous (out-of-

distribution) samples. Hence, the expected outputs of the GAN and the encoded representation

of the autoencoder for an anomalous sample will be far from the actual test image and in other

words close to Pind. As a result, the dissimilarity between a given test sample and its corresponding

generated output can be defined as our distance metric to target anomalous samples.

We train the GAN with relativistic standard GAN (RSGAN) (Jolicoeur-Martineau, 2019) loss.

Unlike the standard GAN (SGAN) objective function which measures the probability that the input

data is real, Relativistic GAN measures the probability that the real data is more realistic than the
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generated data (or vice versa).

LRSGAND = −E(xr,xf )∼(P,Q)[log(sigmoid(C(xr)− C(xf )))]

LRSGANG = −E(xr,xf )∼(P,Q)[log(sigmoid(C(xf )− C(xr)))]

(8)

where G and D are the generator and discriminator of the GAN, P is the distribution of the real

data, Q is the distribution of the fake data, xr and xf are real and fake data, and C is the critic.

The autoencoder AE was trained using the mean squared error (MSE) reconstruction loss func-

tion, LAE = ∥x−G(E(x))∥2, where E(x) is the encoded representation of an input image x

produced by encoder E.

The anomaly score presented in this work modifies the previous scoring function presented

in (Schlegl et al., 2017).

A(x) = λLD(x) + (1− λ)LR(x) (9)

As it is shown in Eq. 9, in (Schlegl et al., 2017), the anomaly score of image x, A(x), includes

two terms–discrimination loss, LD(x), and residual loss, LR(x). These two terms compute the

difference between the actual test image and its corresponding generated output from two different

perspectives. LD(x) relies on the discriminator’s intermediate representations (fD(·)) for them

(Eq. 10), while the LR(x) computes their visual dissimilarity (Eq. 11).

LD(x) =
∑

|fD(x)− fD(G(E(x)))| (10)

LR(x) =
∑

|x−G(E(x))| (11)

As stated earlier, we consider multiple representations of a single image to identify anomalies.

Therefore, rather than discrimination loss and residual loss, we suggest using the encoded represen-

tation of the encoder as the latent loss, LL (shown in Eq. 12). For a given image x, LL(x) computes

how far the encoded representation of x, E(x), is from the encoded representation of its generated

output given E(x).

LL(x) =
∑

|E(x)− E(G(E(x)))| (12)
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By adding the latent loss to Eq. 9, we present a new anomaly score function, given in Eq. 13. The

effect of latent loss in our scoring function is controlled by the hyperparameter β.

A(x) = λLD(x) + (1− λ)LR(x) + βLL(x) (13)

Given the anomaly score presented here, once the model learns the true distribution of normal

(in-distribution) samples, Pind, it will identify anomalous (out-of-distribution) samples, Pood, by a

higher anomaly score assigned to them as opposed to the score for the normal samples.

4.4 Datasets

To evaluate the performance of our model on AD tasks, in comparison with recent GAN-based

models, we considered two types of datasets–natural images and medical images. MNIST (LeCun

et al., 1998), CIFAR10 (Krizhevsky, 2009), and SVHN (Netzer et al., 2011) as three benchmarks

for natural images were chosen. For the medical dataset, we considered the Acute Lymphoblas-

tic Leukemia (ALL) dataset (Labati et al., 2011) with only 260 images to evaluate our model’s

capability to perform under a limited data regime, which is quite common in the medical domain.

Unlike the medical dataset, which provides normal and anomalous classes, each of the natural

datasets has 10 classes. Therefore each of those classes/labels separately can be defined as either

normal or anomalous for our AD task. To this end, two new strategies to form the new datasets from

the natural image datasets have been introduced here: 1) we define 1 versus 9 where one out of 10

classes is chosen to be anomalous while the rest form normal class, and 2) 9 versus 1 where nine

classes form the anomalous class and the remaining one form the normal class. These two strategies

create 20 different datasets for each of the natural datasets, with a total of 60 datasets.

In the experiments on natural images, only normal images are considered for the training, while

anomalous images and test data are used for the inference. In these experiments, a small proportion

of samples is used as the validation sets. In order to evaluate the model on another domain with

a fewer number of samples, the Acute Lymphoblastic Leukemia (ALL) dataset, with 260 samples

and an equal number of normal and anomalous samples for each class, is considered. From Dind,

100 samples are used for training, 20 samples for validation, and the remaining 140 samples from
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Dmix, are considered for evaluation.

4.5 Experiments and Results

The proposed model’s performance was evaluated on natural (MNIST, CIFAR10, and SVHN)

and medical (ALL) images. To be able to determine our model’s benefits as well as its weaknesses,

a comparison has been made on similar GAN-based AD models, Efficient-GAN (Zenati, Foo, et al.,

2018), ALAD (Zenati, Romain, et al., 2018), and AnoGAN (Schlegl et al., 2017). Except for the

AnoGAN, which suffers from a very long inference procedure (see Sec. 4.5.2), all the other models

were evaluated on all four datasets.

The detailed information of the choices of hyperparameters for our model on each of the ex-

periments is indicated in Table 5.1. For the medical domain, similar hyperparameters are used for

all the GAN-based models compared in this study, while for the natural images, we used similar

hyperparameters as presented in (Zenati, Foo, et al., 2018; Zenati, Romain, et al., 2018). In the

case of the SVHN dataset, we compared our model with AnoGAN and ALAD following similar

hyperparameters as (Zenati, Romain, et al., 2018).

For the experiment on the medical dataset, we trained each model for 1000 epochs on Dind

with a learning rate of 1e−4, batch size of 16, latent size of 200, and dropout ratio of 0.2 for the

encoder and discriminator. The models trained on natural image datasets for at most 85 epochs,

batch size of 64, and learning rate of 1e−4. The latent sizes of 100 for MNIST and CIFAR10,

Table 4.1: The architecture and hyperparameters of our model for the experiments on the MNIST, CIFAR10,
SVHN and ALL datasets; the generator of the GAN and decoder of autoencoder use weight sharing. We used
i = 0, 0, 0, 1, j = 3, 4, 4, 8, k = 2, 0, 0, 0, l = 3, 3, 3, 6, m = 2, 1, 1, 1, p = 3, 4, 4, 6, and q = 1, 0, 0, 1 for
MNIST, CIFAR10, SVHN and ALL dataset respectively.

Our model architecture

Module #Layers Activation fn Dropout

G(z) i × Conv2d, j × Trans.Conv2d, k × Linear ReLU ×

D(x) l × Conv2d, m × Linear LeakyReLU 0.2

E(x) p × Conv2d, q × Linear LeakyReLU 0.2

Learning rate LrGAN : 1× 10−4, LrAE : 1× 10−4

Optimizer AdamW(β1 = 0.5, β2 = 0.999)
Batch Size 64 (except ALL with 16)
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Figure 4.2: In the left, the performance of Efficient-GAN, AnoGAN, and Ours for different contributions of
discrimination and residual losses under coefficient λ are depicted. In the middle and right, the performance
of our model on three runs with their ROC curves along with the anomaly score distribution of our best
models out of three runs are shown.

and 200 for SVHN were used, respectively. In all the experiments, models are optimized using the

AdamW (Loshchilov & Hutter, 2019) optimizer. During the inference, different values of β were

used for each dataset. These values were determined experimentally and defined the contribution

of the latent loss in the new anomaly score. Specifically, β = 1 for CIFAR10, SVHN, and ALL

datasets and β = 0.5 for MNIST dataset were used. λ = 0.8 was chosen experimentally for all the

experiments.

4.5.1 Experimental Setup

The impact of λ

One of the key factors in the performance of the recent GAN-based models is the effectiveness

of their scoring function. In (Schlegl et al., 2017; Zenati, Foo, et al., 2018) as well as our model,

different contributions of the learned features of the critic (discrimination loss) and the visual dis-

similarity of the generated samples and actual test samples (residual loss) in the final scoring can

have a huge impact on the performance of each of these models. In a small experiment on the ALL

dataset, the effect of different values of λ in the range of [0, 1] on the performance of Efficient-GAN,

AnoGAN, and our model was investigated. These models were compared based on their area under

the ROC (receiver operating characteristic) curve (AUC). For the experiment on our modified scor-

ing function, we used a fixed value of 1 for β. It can be observed from Fig. 4.2 that all these models

perform better with larger λ, indicating a higher contribution of the discrimination loss.

Since the residual loss is more sensitive to the artifacts in the generated output, comparing
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Table 4.2: The AUC (%) comparison on the ALL dataset for AnoGAN, Efficient-GAN, and our model with
0.8, 0.9, and 0.8 for coefficient λ for each method, respectively. In this and the following tables, the results
obtained from our implementation are represented by the † sign. (± std. dev.)

Model Sensitivity Specificity f1-measure Accuracy AUC
AnoGAN† (Schlegl et al., 2017) 73.08 ± 0.254 74.44 ± 0.164 79.19 ± 0.203 73.34 ± 0.236 75.71 ± 0.241
Efficient-GAN† Zenati, Foo, et al. (2018) 71.54 ± 0.229 98.89 ± 0.016 81.07 ± 0.165 76.67 ± 0.183 87.23 ± 0.137
ALAD† (Zenati, Romain, et al., 2018) 94.61 ± 0.016 75.0 ± 0.057 88.52 ± 0.016 86.09 ± 0.022 79.88 ± 0.048

Ours 98.72 ± 0.004 84.44 ± 0.016 97.73 ± 0.001 96.04 ± 0.003 97.31 ± 0.009

the internal representation of a given image might ignore those visual differences and focus on

more abstract features. More detail on the effectiveness and challenges of using these two losses is

explained in the analysis section (Sec 4.5.2).

Stabilizing Training

One of the biggest challenges in training GANs is their instability. Slight changes in model’s

hyperparameters, running on different machines, and even random initialization can affect their per-

formance more than any other deep models (Lucic et al., 2018). Therefore to reduce the instability

of our model during training, spectral normalization (Miyato, Kataoka, Koyama, & Yoshida, 2018)

was used for the critic. To compare the model’s performance independent of its random initial-

ization, the model was trained three times with different random initializations. All of the results

reported in this study were computed as an average on the three runs from these different random

initializations.

4.5.2 Experimental Results

Medical Imaging Dataset

The detailed performance of all four GAN-based models on our medical imaging dataset is

summarized in Table 4.2. As illustrated in the table, our method showed a high capability to detect

anomalies from various performance metrics. Ours outperformed the existing approaches on AUC

with a large margin (increased by 10%). In terms of specificity, the best performance is acquired by

Efficient-GAN with ours as the second best.

The observation on the range of standard deviation from multiple runs showed that AnoGAN
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had the least stability. In comparison, the highest stability is achieved by ours, which can be inferred

from both ROC curves of ours on three runs (Fig. 4.2, middle plot) and the results from Table 4.2.

We also showed that our model could effectively discriminate normal and anomalous samples even

on a very small dataset (Fig. 4.2, third plot from the left).

Figure 4.3: Individual performance of each label on MNIST and CIFAR10.

Natural Images

For our experiments on natural images, we considered the aforementioned 9 versus 1 and 1

versus 9 strategies and compared the performance of our model with Efficient-GAN (Zenati, Foo, et

al., 2018) and ALAD (Zenati, Romain, et al., 2018). Table 4.3 summarizes the AUC of each model

within each of these strategies, which are averaged over three runs on all the classes of MNIST and

CIFAR10. As the results reveal, our model outperformed the other two GAN-based models on all

the experiments by a large margin. The detailed results of all three compared models on each of the

classes of MNIST and CIFAR10 are also depicted in Fig. 4.3.
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Table 4.3: The AUC (%) comparison on MNIST and CIFAR10 datasets with one-vs-all and all-vs-one
strategies. Results from the original papers are indicated by the ⋆ symbol. (± std. dev.)

all-vs-one one-vs-all

Model MNIST CIFAR10 MNIST CIFAR10

Efficient-GAN† (Zenati, Foo, et al., 2018) 50.9 ± 0.116 51.5 ± 0.064 60.4 ± 0.096 50.6 ± 0.053
ALAD† Zenati, Romain, et al. (2018) 57.2 ± 0.140 51.6 ± 0.086 60.7 ± 0.112 60.7 ± 0.120⋆

Ours 62.5 ± 0.093 58.2 ± 0.060 71.6 ± 0.096 62.6 ± 0.061

Table 4.4: The AUC (%) of AnoGAN, ALAD and our model on SVHN dataset with all-vs-one and one-vs-
all strategies.

Model all-vs-one one-vs-all

AnoGAN (Schlegl et al., 2017) 46.6 ± 1.3 54.1 ± 0.019
ALAD (Zenati, Romain, et al., 2018) 51.6 ± 0.09 57.5⋆± 0.027

Ours 56.8 ± 0.007 58.1 ± 0.014

On the SVHN dataset, we evaluated the performance of our model on both 9 versus 1 and 1

versus 9 strategies. As shown in Table 4.4, our model outperformed its two other rivals on 1 versus

9 strategy with at least 5% improvement on AUC. The results however indicate a slight improvement

(less than 1%) in the performance of our model on 9 versus 1 in comparison with ALAD.

Output Analysis

A thorough analysis of the generated outputs of our model on different datasets revealed that in

the case of 9 versus 1 when only one of the labels form the normal class, the model is better able

to capture the distribution of the normal data which is reasonable considering the model is learning

an easier pattern. Even though this is the case for almost all the datasets (Fig. 4.4 (a) right; 9 versus

1 on CIFAR10), the model has difficulty when training on the SVHN dataset even when it should

learn the distribution of just a single label representing the normal class. This is mostly due to the

nature of this dataset where the classes are not completely separated, i.e., the samples of the class

zero can contain other digits in their image (Fig. 4.4 (a) left) which makes it hard for the model to

learn the true distribution of the digit zero. This phenomenon can affect the performance, especially

during inference time where the visual dissimilarity of the generated image and the actual test image

can have a direct impact on identifying anomalous samples. The model can easily fail and even if

the model is able to generate the test digit, there can be often visual artifacts causing high residual
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loss.

We also observed that, in the cases where digits with similar patterns are considered as the

normal class (with 9 versus 1 strategy), the model may fail to identify the anomalous image when

the corresponding test image has a similar pattern. For instance, when considering digit 3 as the

normal sample, the model can fail when the actual test image is digit 8, hence, receiving lower

residual and discrimination losses and therefore will be recognized as a normal sample.

Considering 1 versus 9 strategy where 9 classes form the normal training data, mode collapse

was the major issue in training the model for our anomaly detection purpose. As an example, in

Fig. 4.4 (b), the model is more focused on learning the distribution of cars and planes in CIFAR10

dataset and digit seven and digit one while training on MNIST dataset and ignores the other classes.

As the result, it may fail to learn the whole distribution while focusing on only a subset of the

training distribution, therefore leading to high anomaly scores for the samples actually coming from

the normal training distribution.

(a) Outputs of 9 versus 1 strategy on SVHN and CIFAR10 datasets

(b) Outputs of 1 versus 9 strategy on MNIST and CIFAR10 datasets

Figure 4.4: The generated outputs of our model on SVHN, CIFAR10, and MNIST datasets using 9 versus
1 and 1 versus 9 strategies. The top rows of each sub-figure (a) and (b) show the training images, and the
second rows are the generated images by the GAN.

Inference Time Comparison

One of the major challenges in training a vanilla GAN for anomaly detection is its long infer-

ence process which negatively affects required time and computational resources for performance.

Therefore, we modified the GAN by adding an autoencoder to help the model improve the existing
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Table 4.5: Inference time comparison on the ALL dataset on images of shape (3, 220, 220) with a (200, 1)
vector of noise randomized from a Gaussian distribution.

Models
# of parameters in each module

Inference time (ms)
Encoder Decoder/Generator Critic

AnoGAN† (Schlegl et al., 2017) - 2,450,307 5,159,170 13110.47
Efficient-GAN† (Zenati, Foo, et al., 2018) 5,874,352 1,906,240 7,024,929 3.33
ALAD† Zenati, Romain, et al. (2018) 5,771,752 1,906,240 7,814,915 3.85

Ours 8,716,888 2,450,307 5,159,170 2.90

results while reducing the inference time. A comparison on all the GAN-based models studied in

this work on the ALL dataset with 160 test images is shown in Table 4.5. As observed from the Ta-

ble, Ours slightly improved the inference time compared to (Zenati, Foo, et al., 2018) and (Zenati,

Romain, et al., 2018), while the improvement is more notable compared to (Schlegl et al., 2017).

Python 3.7 with the PyTorch (Paszke et al., 2019) library on a GeForce GTX 1080 Ti GPU was used

for these experiments. We considered 500 iterations for AnoGAN to optimize the random noise z

for each given test image.

4.5.3 Ablation Study

Latent Loss Impact

The new anomaly score presented in this work is a modification of an existing scoring func-

tion (Schlegl et al., 2017; Zenati, Foo, et al., 2018) where we try to leverage the learned features of

the autoencoder. Therefore to show the effectiveness of the new anomaly score, a comparison on the

natural images using the new and original anomaly score was conducted. The results on Table 4.6

demonstrate the benefit of the added latent loss in the new anomaly score.

Table 4.6: The effect of latent loss in the new anomaly score. The comparison were done on natural images.
In the experiments using latent loss, 0.5 and 1 were used as β for MNIST and CIFAR10 respectively. (±
std. dev.)

1 versus 9 9 versus 1
Model MNIST CIFAR10 MNIST CIFAR10
without latent loss (β = 0) 54.7 ± 0.099 50.2 ± 0.084 67.0 ± 0.114 56.9 ± 0.107
with latent loss (β ̸= 0) 62.5 ± 0.093 58.2 ± 0.060 71.6 ± 0.096 62.6 ± 0.061
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GAN Objective

To have a better understanding of the effectiveness of Relativistic GAN loss for our model, two

different losses for GAN have been considered. Precisely, RSGAN and SGAN objective functions

were compared on the natural datasets experimented on in this study. In all of the experiments,

using RSGAN increased the performance of our model (see Table 4.7).

Table 4.7: The effect of using different GAN objective functions on the performance of our model. (±
std. dev.)

1 versus 9 9 versus 1
GAN objective fn. MNIST CIFAR10 MNIST CIFAR10
Standard GAN (SGAN) 55.7 ± 0.075 55.5 ± 0.082 69.3 ± 0.129 61.1 ± 0.088
Relativistic GAN (SRGAN) 62.5 ± 0.093 58.2 ± 0.060 71.6 ± 0.096 62.6 ± 0.061

4.6 Conclusion and Future Work

In this work, we suggested using a simple and effective generative model to identify anomalies.

The model contains a GAN and an autoencoder, which train simultaneously on the normal train-

ing data. To detect anomalies during inference time, we introduced a new anomaly score function

comprising multiple representations obtained from the autoencoder and the GAN. We further eval-

uated our model on MNIST, CIFAR10, SVHN, and a public Acute Lymphoblastic Leukemia (ALL)

datasets. Our model proved its performance in all of the experiments with a large improvement

over the existing GAN-based models with lower inference time. We also showed that our model

could perform quite well even on small-sized datasets. Despite the effectiveness of our model on

identifying anomalies, mitigating the challenges in training GANs and learning more complicated

distribution seem to be necessary. To this end, in our future work, we tend to study the effect of us-

ing contrastive learning in training GANs to learn more discriminative representations of the images

while investigating different scoring functions to fill this gap.
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Chapter 5

AD-CGAN: Contrastive Generative

Adversarial Network for Anomaly

Detection

In this chapter, we continue our former research on using the generative adversarial network

for anomaly detection. We investigate how integrating contrastive learning with the generative ad-

versarial network benefits their ability for anomaly detection. This approach mitigates catastrophic

forgetting and mode collapse of GANs simultaneously, hence, improving their performance in iden-

tifying anomalous data.

5.1 Introduction

Anomaly detection (AD), also known as out-of-distribution detection, has a long history in ar-

tificial intelligence. Anomaly detection refers to identifying those samples that do not come from

the expected distribution. Supervised learning models address AD using classification approaches

such as outlier exposure (Hendrycks, Mazeika, & Dietterich, 2019). On the other hand, unsuper-

vised learning approaches, such as reconstruction-based methods (Schlegl et al., 2017; Zhou &

Paffenroth, 2017), mitigate the problem of limited labeled data and unknown anomalies. In these
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approaches, the model learns the distribution of the normal training data and then a reconstruc-

tion loss targets anomalies. AnoGAN (Schlegl et al., 2017) proposes using generative adversarial

networks (GANs) to find anomalies in the medical domain. AnoGAN suffers from its lengthy in-

ference procedure to find the inverse mapping of an image in a low-dimensional representation.

Several studies tried to overcome the limitations of AnoGAN (Rafiee & Fevens, 2020; Zenati, Foo,

et al., 2018; Zenati, Romain, et al., 2018). However, intrinsic problems of GANs, such as mode

collapse (Heusel et al., 2017), catastrophic forgetting (L. Chen et al., 2019; Kemker et al., 2018),

unstable training, and difficulty in convergence (Lucic et al., 2018), limit the ability of these models

to learn a suitable representation for the task of AD.

K. S. Lee, Tran, and Cheung (2021) showed that adding contrastive learning on the generator

side in training GANs while maximizing mutual information on the discriminator side increases the

quality of generated images by simultaneously mitigating mode collapse and catastrophic forget-

ting of the generator and the discriminator respectively. Contrastive learning (T. Chen, Kornblith,

Norouzi, & Hinton, 2020; Hadsell, Chopra, & LeCun, 2006) is a self-supervised approach that

learns representations of the data in such a way that similar samples stay close to each other while

dissimilar samples remain at a distance. Considering K. S. Lee et al. (2021), we investigate the

incorporation of a contrastive GAN for anomaly detection.

In this work, we propose a reconstruction-based Anomaly Detection approach using Contrastive

Generative Adversarial Network (AD-CGAN). The proposed model contains three main sub-modules:

a contrastive GAN, an autoencoder, and a second discriminator (different from the discriminator in

GAN) on the latent representations. We train all modules simultaneously on the normal data to learn

a discriminative representation for each image while keeping each image’s local and global features

as close as possible. The second discriminator trains on the hidden representations of two different

reconstruction-based models, i.e., GAN and autoencoder, to provide more discriminative represen-

tations. We show that having a contrastive GAN while maximizing the mutual information be-

tween local and global features of an image provides more semantic and discriminative features for

anomaly detection. Experimental results show that the representations obtained by the contrastive

GAN in our anomaly detection model greatly increase the performance of reconstruction-based AD

approaches. To the best of our knowledge, our work is the first to investigate using contrastive
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generative adversarial networks for anomaly detection.

5.2 Related Work

Anomaly detection or, in general, out-of-distribution detection approaches can be grouped ac-

cording to the following paradigms.

Distributional-based approaches try to build a probabilistic model on the distribution of nor-

mal data. They expect that the anomalous samples receive a lower likelihood under the probabilistic

model than the normal samples. Gaussian mixture models (Parzen, 1962) and kernel density esti-

mation (KDE) (Latecki et al., 2007) from traditional models and RDA (Zhou & Paffenroth, 2017)

and deep autoencoding Gaussian mixture model (DAGMM) (Zong et al., 2018) from deep models

are among these approaches.

Classification-based approaches such as One-Class SVM (OC-SVM) (Schölkopf et al., 1999)

and support vector data description (SVDD) (Tax & Duin, 2004) use the idea of separating the

normal data from the anomalous data based on their feature spaces. These approaches suffer from

the insufficient and biased representations the feature learning methods can provide. One remedy

for this issue is to use self-supervised learning methods. GEOM (Golan & El-Yaniv, 2018) and

GOAD (Bergman & Hoshen, 2020) are classification-based AD models that use surrogate tasks for

anomaly detection.

Reconstruction-based approaches rely on the idea that normal samples should receive smaller

reconstruction loss rather than anomalous samples. Various loss and reconstruction basis func-

tions are used in each of these approaches. K-means is used as an early basis reconstruction func-

tion (Jianliang et al., 2009) while An and Cho (2015) proposed using deep neural networks as the

basis functions. In the class of deep neural networks, generative models such as GANs (Schlegl

et al., 2017) and autoencoder (Zhou & Paffenroth, 2017) are used to learn the reconstruction basis

functions. Following the presentation of AnoGAN (Schlegl et al., 2017), several other studies used

similar ideas with modifications on their basis functions and losses (Deecke et al., 2018; Rafiee

& Fevens, 2020; Zenati, Foo, et al., 2018; Zenati, Romain, et al., 2018) to increase the perfor-

mance of anomaly detection models based on GANs. One major issue in using generative models,
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especially GANs as the reconstruction basis function, is their difficulty to recover the entire data

distribution (also known as mode-collapse in GANs), leading to lower performance in compari-

son with classification-based approaches. Our model falls in the category of reconstruction-based

approaches, combining adversarial training with contrastive learning to mitigate the challenges of

reconstruction-based approaches.

5.3 Background

Unsupervised anomaly detection models only have access to the normal training data.

Reconstruction-based models are unsupervised approaches that rely on the reconstruction loss of

samples, where a high reconstruction loss implies an anomalous sample. Our model uses a GAN

and an autoencoder as its reconstruction methods.

Generative adversarial network (GAN) (Goodfellow et al., 2014) is a generative model that for-

mulates the process of learning in a two-player minimax game between two learning components;

i.e., generator and discriminator. One of the obstacles in using GANs for tasks such as anomaly

detection is related to the catastrophic forgetting (neural network forgetting prior tasks while work-

ing on the current task) of the discriminator (T. Chen et al., 2019; Kemker et al., 2018) which can

negatively affect the AD performance. Another barrier is known as mode collapse where the gen-

erator only learns a small subset of modes in the training data. Recently self-supervised learning

has gained attention in generative models such as GANs (T. Chen et al., 2019; Tran, Tran, Nguyen,

Yang, & Cheung, 2019). While these approaches try to mitigate the catastrophic forgetting, they

do not diminish the mode collapse (Tran et al., 2019). On the other hand, maximizing mutual in-

formation on the discriminator side and contrastive learning on the generator side seems a way to

overcome these two issues simultaneously (K. S. Lee et al., 2021). Therefore, we consider the idea

of using a contrastive GAN in our AD model to detect anomalous samples with the purpose of

increasing the performance of reconstruction-based models.
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Figure 5.1: Different components and losses of AD-CGAN.

5.4 Proposed Approach

In this work, we propose AD-CGAN, a reconstruction model based on Contrastive Generative

Adversarial Network to find anomalies in images (see Fig. 5.1). In this approach, a contrastive GAN

module learns to generate normal samples. An autoencoder module, which shares its decoder with

the GAN’s generator, learns to reconstruct normal samples from their latent representations. We

also use a discriminator module on top of the autoencoder and the input random noise to the GAN

as a regularizer. Since the model only trained on normal samples, we expect that during inference,

it cannot reconstruct samples from any distribution other than training distribution. As a result, the

dissimilarity between a given test sample and its corresponding generated output can be defined

as our distance metric to target anomalous samples. Therefore, we define a normality score based

on the reconstruction loss of the input sample during inference to find anomalous samples. In the

following sections, we discuss all the modules and the normality score in more detail.

5.4.1 Contrastive GAN

Formal Definition: The training set Dtrain = {x1, x2, ..., xk ∼ Pind} contains samples drawn

from Pind, normal distribution. To evaluate our model, we use a test set Dtest = {x̄1, x̄2, ..., x̄n ∼

Pind ∪ Pood} including both normal and anomalous samples drawn from Pind and the anomalous

distribution (Pood), respectively.
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The contrastive GAN module which we refer to as CGAN contains a generator G and a dis-

criminator Dcgan. Training the CGAN incorporates two losses: a contrastive loss Lcgan (See

Eq. 14) and an adversarial loss Ladv (See Eq. 15).

In conventional contrastive learning, each image is contrasted with other samples, while in

AD-CGAN, each image is contrasted with its own local feature maps to create positive/negative

sets. Given an image x ∈ X , we consider the penultimate and ultimate representations of

Dcgan as local (Cψ(x)) and global (Eψ(x)) features of x. We pass Eψ(x) through a dense layer

ϕθ. Then, ϕθ(Eψ(x)) and Cψ(x) go to the contrastive pairing phase to create positive/negative

sets for the contrastive learning. For a given image x, the set of positive samples is the pair

(C
(i)
ψ (x), ϕθ(Eψ(x))) for i ∈ A = {0, 1, ...,M2 − 1} of a M × M local feature map. Besides

the local feature map of other images x′ ∈ X in the same mini-batch, we also consider the pairs

(C
(j)
ψ (x), ϕθ(Eψ(x))) j ∈ A, j ̸= i, from the same image x as the negative set. The contrastive

loss of AD-CGAN, shown in Eq. 14, follows the loss presented in K. S. Lee et al. (2021) with a

slight modification to fit the architectural design of our model:

Lcgan(X) = −E(x∈X)E(i∈A)[log p(C
(i)
ψ (x), Eψ(x)|X)]

= −E(x∈X)E(i∈A)

log exp(gθ(C
(i)
ψ (x), Eψ(x)))∑

(x′,i)∈X×A exp(gθ(C
(i)
ψ (x′), Eψ(x)))

 (14)

Here the function gθ(C
(i)
ψ (x), Eψ(x)) = C

(i)
ψ (x)Tϕθ(Eψ(x)) maps the local/global features with K

dimensions to a scalar score. For the adversarial loss, we used relativistic loss (Jolicoeur-Martineau,

2019):

LadvD = −E(xr∈Xr, xf∈Xf )∼(P,Q)[log(σ(C(xr)− C(xf )))]

LadvG = −E(xr∈Xr, xf∈Xf )∼(P,Q)[log(σ(C(xf )− C(xr)))]

(15)

where LadvG and LadvD are the losses of the generator and the discriminator of the CGAN, σ is the

sigmoid function, Xr and Xf represent sets of real and fake images respectively, P is the distribution

of the real data, Q is the distribution of the fake data, and C is the critic.

In order to stabilize training, we constrained the discriminator Dcgan and the generator to learn
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only from the contrastive loss of real image and fake image features, respectively, as suggested

in (K. S. Lee et al., 2021). The final loss of the generator and the discriminator of our CGAN is a

combination of its adversarial and contrastive losses where α and β control the contribution of the

contrastive loss:

LG = LadvG + αLcgan(Xf )

LDcgan = LadvD + βLcgan(Xr)

(16)

5.4.2 Autoencoder

The autoencoder AE trains with the mean squared error (MSE) reconstruction loss function,

LAE = ∥x−G(E(x))∥2, where G(E(x)) is the output of AE and G and E are the decoder

(generator) and the encoder of AE. We use weights sharing for the decoder of AE and the generator

of CGAN. In this way, we are using both training signals from GAN and AE to train the generator.

5.4.3 Latent Space Discriminator

We further apply a discriminator Dz on top of the encoded space of encoder, E(x), and the

random noise, z. The adversarial loss Ldz (Eq. 17) forces the encoder to encode images within the

distribution of random noise. In this way, we decrease the instability of GAN by keeping its two

input representations close to each other. This regularizer helps the model to better discriminate

normal and anomalous samples (See Section 5.5.4).

Ldz = Ez∼Pz [logDz(z, z)] + Ez∼Pz ,x∈X [1− logDz(z, E(x))] (17)

5.4.4 Normality Score

AD-CGAN relies on the reconstruction loss of each sample to find anomalies during inference.

To see how far a generated image is from the actual test image, we present a normality score, a

combination of multiple components. A well-trained AD-CGAN should only be able to generate

samples belonging to the normal distribution seen during training. Hence, the normality score,

which is defined based on the reconstruction loss, should be lower for normal samples and higher
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for anomalous samples. Our normality score contains two reconstruction losses: the generation re-

construction loss LGr, which involves the scores obtained from the trained CGAN , and the feature

reconstruction loss LFr, which incorporates the scores obtained from latent representations of a

given image. The normality score NS(x) for a given image x ∈ Dtest is defined as the summation

of these two losses (Eq. 18).

NS(x) = LGr + LFr (18)

where the generation and feature reconstruction losses are defined as

LGr = λLGD(x) + (1− λ)LGR(x), LFr = ρLFE(x) + (1− ρ)LFL(z) (19)

Here, LGr includes discrimination loss, LGD(x) =
∑

|fD(x) − fD(G(E(x)))| with intermediate

representation of a given image x from Dcgan as fD(x), and residual loss, LGR(x) =
∑

|x −

G(E(x))|, similar to the losses presented in (Schlegl et al., 2017). It should be noted that fD(x)

refers to the internal representation of image x obtained from the penultimate layer of the Dcgan.

LFr contains encoded LFE and latent LFL feature reconstruction losses (Eq. 20).

LFE(x) =
∑

|E(x)− E(G(E(x)))|

LFL(z) = ∥Dz(E(G(z)), z)−Dz(E(x), E(G(z)))∥1
(20)

where E(x) is the encoded representation of x from the encoder E, z is the input random noise to

the generator G of CGAN, and G(z) is the output of G.

5.5 Experimental Results

We perform extensive experiments on several benchmark image datasets to evaluate our method.

The detailed hyperparameters of AD-CGAN are shown in Table 5.1.

5.5.1 Datasets

We considered four benchmark datasets in our experiments: CIFAR-10 (Krizhevsky, 2009),

FashionMNIST (fMNIST) (Xiao, Rasul, & Vollgraf, 2017), MNIST (LeCun et al., 1998), and
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Table 5.1: AD-CGAN architecture and hyperparameters for the experiments on all datasets. Batch-size of 32
for all, m = 2, 2, 3, 2, n = 4, 4, 4, 5, j = 4, 4, 6, 6, and k = 2, 2, 2, 2 for MNIST, FashionMNIST, CIFAR10
and CatsVsDogs dataset respectively.

AD-CGAN architecture AD-CGAN hyper-parameters

Module #Layers Activation fn. Dropout Latent dimension 100 (except CatsVsDogs with 200)

G(z) m × Conv2d, n × Trans.Conv2d PReLU × Learning rate LrCGAN : 3× 10−4, LrAE : 2× 10−4

Dcgan(x) j × Conv2d, k × Linear LeakyReLU 0.2 Optimizer Adam(β1 = 0.5, β2 = 0.999)

E(x) 5 × Conv2d LeakyReLU 0.2 Lcgan α = 0.3, β = 0.3

Lz(z, z) 3 × Linear LeakyReLU × NS(x) λ = 0.1, ρ = 0.5

CatsVsDogs (Elson, Douceur, Howell, & Saul, 2007). All of the datasets except CatsVsDogs in-

clude 10 classes. In order to evaluate AD-CGAN on AD tasks, we employ two different schemes.

We introduce soft and hard anomaly detection experiments. In the soft experiments, we consider

one-vs-all scheme. In this scheme, a dataset with C classes will lead to C different anomaly de-

tection experiments. A given class cind, 1 ≤ cind ≤ C, is considered as the normal class, while

cood defines anomalous class of the rest of C − 1 classes. We introduced the hard scheme mainly

to show how anomaly detection models based on GANs fail when the inlier class includes multiple

distributions. In the hard AD scheme, we introduce all-vs-one scheme. Similar to the soft scheme,

each dataset with C classes will lead to C different experiments. However, in contrast with the soft

scheme, 1 ≤ cood ≤ C includes only a single class while cind contains the remaining C− 1 classes.

Considering that CatsVsDogs has only two classes, each class was treated as normal in a separate

experiment.

5.5.2 Baseline Methods

We compare the performance of our model with multiple AD models. DAGMM (Zong et

al., 2018), OC-SVM (Schölkopf et al., 1999), TIAE (Cheng, Zhu, Wang, Zhang, & Li, 2021),

ALAD (Zenati, Romain, et al., 2018), ADGAN (Deecke et al., 2018), and AE-GAN (Rafiee &

Fevens, 2020) are the baselines where the last three models are based on GANs. DAGMM is an

autoencoder-based model, which generates a low-dimensional representation of the training data,

and leverages a Gaussian mixture model to perform density estimation on the low-dimensional

representations. OC-SVM is a kernel-based method that typically uses an RBF kernel to learn a

collection of closed sets in the input space. Samples that fall outside of these sets are assumed to
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Table 5.2: ROC-AUC (%) comparison of AD models with one-vs-all scheme. The symbol † represents
results reported from our implementations. All of the results from our implementations are averaged over
three different runs.

DAGMM OC-CVM ALAD AE-GAN ADGAN TIAE AD-CGAN
Datasets (Zong et al., 2018) (Schölkopf et al., 1999) (Zenati, Romain, et al., 2018) (Rafiee & Fevens, 2020) (Deecke et al., 2018) (Cheng et al., 2021)

CIFAR-10 58.7† 62.0† 60.7 61.1 60.6 71.2± 1.44 86.0± 0.04

fMNIST 51.8† 92.8† 78.1± 0.12† 69.0± 0.16† 75.4† 86.8± 0.55 93.9± 0.02

MNIST 50.4† 91.7† 62.4± 0.09† 69.3 91.5 85.2± 0.81 92.3± 0.03

CatsVsDogs 50.6† 51.6† 53.4† 51.6† 49.0† 51.4† 89.8± 0.04

be anomalous. TIAE uses a transformation invariant autoencoder with an additional training signal

based on the most confident inlier samples to find anomalies. ALAD trains a modified bidirectional

GAN (Donahue et al., 2017) with multiple discriminators on normal samples and uses an L1 recon-

struction error on the feature space to find anomalies. AE-GAN trains on a mixed model of GAN

and autoencoder and uses several scoring components to separate normal and anomalous samples.

Unlike the former GAN-based approaches which benefit from a fast inference procedure, ADGAN

uses gradient descent to find an inverse mapping of an image to a low-dimensional seed with a GAN

trained on normal samples to generate a sample, which makes its inference very slow. ADGAN later

uses an L2 distance between the generated image and the original image to target anomalies.

In this work, we aim to address the difficulties of anomaly detection models based on GANs via

introducing a contrastive GAN. Therefore, apart from the comparison with other anomaly detection

models, we mainly focus on those AD models which use GANs in their approach. For each of the

experiments, if available, we reported their results from their original papers. For AD baselines

based on GANs, we also ran their models on all of the datasets within the hard experiments. It

should be noted that, due to the long inference process of ADGAN, we ran it only once using their

implementation.

5.5.3 Results

The performance of AD-CGAN is summarized in Table 5.2. The Area Under the Curve (AUC)

of the Receiver Operating Characteristics (ROC) measures the performance of a classifier under

various threshold settings. In the context of this study, the ROC-AUC is a measurement of how well

the classifier can distinguish between normal and anomalous samples. As illustrated in Table 5.2,

AD-CGAN outperforms all the baselines in terms of ROC-AUC. The improvement is more notable
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on CatsVsDogs, with a large improvement for AD-CGAN, and CIFAR-10 by a minimum of 15%

improvement on the soft scheme.

The detailed performance of each of the GAN-based models, in soft and hard schemes, for each

of the classes of cind/cood is presented in Table 5.3. As the table shows, AD-CGAN surpasses all

the baselines in each of the individual classes of cind/cood except c1 on the MNIST dataset for both

soft and hard schemes. We argue that AD-CGAN performs consistently in all classes of MNIST

within both soft and hard schemes, while the performance of ADGAN in the hard scheme is not

consistent across classes and their higher performance on c1 could be related to the specific pattern

of this class. This is in contrast with their competitive performance to AD-CGAN in the soft scheme

on the MNIST dataset.

Our contrastive GAN without training on any pretext tasks was able to improve the current

reconstruction-based anomaly detection models’ performance by at least 7% improvement in several

experiments. As expected, the performance in the hard scheme is lower compared with the soft

scheme since the normal class contains multiple labels, each having a different distribution. This

is more notable in FashionMNIST and MNIST datasets with around 7% drop in the performance.

We argue that given the similar pattern in several labels of these two datasets, even AD-CGAN with

its discriminative representations obtained by the contrastive loss may have difficulty in the hard

scheme.

5.5.4 Ablation Study

AD-CGAN is comprised of several training components as well as multiple normality score

components. Each of the training components is critical in the models’ performance. This can be

inferred by comparing the performance of AD-CGAN with each of AE-GAN (Rafiee & Fevens,

2020) and ALAD (Zenati, Romain, et al., 2018) where adding contrastive learning to GAN showed

a notable performance gain on the anomaly detection performance. We also argue that the autoen-

coder is a key element in AD-CGAN where it removes the extensive and time-consuming inference

procedure (as stated in the experiments in (Rafiee & Fevens, 2020)). In order to have a better under-

standing of the effect of each of the components in the proposed normality score, we measure their

effects in different anomaly detection settings (see Table 5.4).
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Table 5.3: ROC-AUC (%) comparison of GAN-based models on all four datasets with one-vs-all and all-vs-
one schemes. In the one-vs-all scheme, the class number defines cind, while in all-vs-one, it refers to cood.
The results are averaged over three different runs. λ = 0.1 and ρ = 0.5 are used for all the experiments. The
symbol ⋆ represents results reported from the original paper, and it includes the average over the individual
classes as well as each individual class. For simplicity, for each of the classes of CIFAR-10 and fMNIST, we
use ordinal numbers instead of their label.

all-vs-one one-vs-all

Datasets Class ALAD ADGAN AE-GAN Ours ALAD ADGAN AE-GAN Ours

0 61.2± 0.02 44.3 63 89.8± 0.12 67 62.7 67 83.8± 0.04
1 61.1± 0.02 39.6 63 89.5± 0.13 46 54.6 49 87.2± 0.03
2 40.7± 0.00 58.2 60 84.7± 0.06 64 56.1 63 80.1± 0.10
3 48.8± 0.01 44.7 54 78.6± 0.09 63 59.5 56 86.0± 0.07

CIFAR-10 4 35.5± 0.01 66.1 35 81.7± 0.14 66 58.6 73 85.4± 0.04
5 53.5± 0.02 44.5 52 72.8± 0.01 53 62.8 52 81.6± 0.02
6 47.8± 0.01 61.5 60 87.6± 0.06 78 60.4 72 94.6± 0.03
7 49.7± 0.01 47.4 51 90.7± 0.03 52 62.3 63 81.7± 0.04
8 52.9± 0.03 45.7 54 82.6± 0.02 75 70.2 68 89.3± 0.06
9 59.4± 0.01 31.3 63 86.9± 0.02 43 59.1 48 90.7± 0.04

Average 51.1± 0.08 48.3 55.5⋆ 84.5± 0.05 60.7⋆ 60.6⋆ 61.1⋆ 86.0± 0.04

0 54.0± 0.02 48.4 45.3± 0.09 89.5± 0.06 79.4± 0.02 74.1 74.4± 0.03 93.3± 0.04
1 68.2± 0.04 63.7 32.8± 0.12 85.8± 0.03 94.1± 0.04 92.3 92.3± 0.01 95.9± 0.04
2 55.5± 0.03 40.4 57.9± 0.08 90.4± 0.07 60.6± 0.09 71.1 67.7± 0.03 94.0± 0.06
3 47.9± 0.04 60.5 23.0± 0.05 81.7± 0.10 79.5± 0.05 81.6 80.0± 0.03 93.7± 0.03

fMNIST 4 60.3± 0.13 47.8 34.9± 0.07 81.4± 0.02 76.4± 0.06 73.6 82.5± 0.01 93.1± 0.02
5 22.2± 0.01 66.9 80.4± 0.02 93.8± 0.04 85.5± 0.01 77.3 36.5± 0.06 93.5± 0.02
6 45.1± 0.01 34.5 52.1± 0.06 92.1± 0.02 61.2± 0.08 70.0 55.1± 0.04 91.7± 0.03
7 44.1± 0.05 67.1 55.5± 0.09 87.0± 0.09 94.9± 0.02 91.0 77.9± 0.07 98.5± 0.01
8 50.2± 0.09 54.1 76.0± 0.02 83.8± 0.01 62.6± 0.03 50.3 49.9± 0.06 91.6± 0.08
9 60.7± 0.07 56.6 63.6± 0.09 91.1± 0.06 86.5± 0.13 73.2 73.4± 0.13 93.7± 0.07

Average 50.8± 0.12 54.0 52.2± 0.18 87.7± 0.04 78.1± 0.12 75.4 69.0± 0.16 93.9± 0.02

0 61.0± 0.05 42.7 73 94.6± 0.07 74.7± 0.12 97.2 85 97.1± 0.02
1 87.1± 0.03 93.1 56 85.8± 0.11 69.8± 0.16 99.7 98 95.7± 0.02
2 44.5± 0.04 39.7 61 91.6± 0.05 50.4± 0.09 87.4 54 92.1± 0.03
3 47.7± 0.05 61.2 55 86.6± 0.08 65.7± 0.05 84.8 69 91.2± 0.03

MNIST 4 56.7± 0.05 70.2 49 77.4± 0.04 63.6± 0.06 91.0 72 95.5± 0.01
5 50.1± 0.06 53.1 49 82.8± 0.03 56.1± 0.04 91.6 54 87.8± 0.02
6 51.8± 0.11 59.8 55 86.9± 0.08 53.0± 0.08 95.7 60 88.6± 0.06
7 56.4± 0.09 75.2 44 76.1± 0.02 49.6± 0.01 93.7 68 92.5± 0.01
8 41.2± 0.08 58.5 59 83.9± 0.02 75.3± 0.07 81.6 69 87.2± 0.05
9 42.4± 0.02 71.1 56 84.5± 0.06 65.2± 0.09 92.4 64 95.2± 0.02

Average 53.9± 0.13 62.5 55.7⋆ 85.0± 0.05 62.4± 0.09 91.5⋆ 69.3⋆ 92.3± 0.03

Cats - - - - 52.6 53.1 51.7 92.7± 0.03
CatsVsDogs Dogs - - - - 54.1 44.9 52.1 86.9± 0.05

Average - - - - 53.4 49.0 51.6 89.8± 0.04

Feature reconstruction loss is added to the normality score to measure how discriminative the

latent representations of the two reconstruction models are. Several experiments on MNIST and

FashionMNIST on soft and hard AD schemes showed that adding Dz leads to more discrimina-

tive latent representation, which affects the normality scores obtained by the feature reconstruction

loss. We defined four distinct models of AD-CGAN based on the normality score components they

59



Table 5.4: Ablation studies on MNIST and FashionMNIST given different normality score components of
AD-CGAN. We used λ = 0.1 where the generation reconstruction loss had been used. We set ρ = 1 and
ρ = 0 for AD-CGANLFE and AD-CGANLFL, respectively. The ROC-AUC (%) results are averaged over
three different runs.

MNIST (%) fMNIST (%)

model all-vs-one one-vs-all all-vs-one one-vs-all

AD − CGANLG 56.8± 0.13 72.3± 0.12 68.7± 0.11 80.8± 0.11
AD − CGANLFE 66.6± 0.12 84.4± 0.11 70.4± 0.13 86.1± 0.08
AD − CGANLFL 73.2± 0.09 84.9± 0.05 74.5± 0.08 87.0± 0.05
AD − CGANGF 85.0± 0.05 92.3± 0.03 87.7± 0.04 93.9± 0.02

have access to: AD-CGANLG represents AD-CGAN with only generation reconstruction loss; AD-

CGANLFL with only latent feature reconstruction loss, LFL; AD-CGANLFE with only encoded

feature reconstruction loss, LFE ; and AD-CGANGF contains both LGr and LFr in its normality

score. It should be mentioned that in each of these models, generation reconstruction loss is consid-

ered as part of the normality score. As the results reveal, removing the feature reconstruction loss

(ignoring Dz) negatively affects the performance of AD-CGAN. The impact is more severe in the

case of the all-vs-one (hard) scheme. On the other hand, AD-CGANLFE that trains with Dz and

encoded feature reconstruction loss, significantly improved AD-CGANLG in both datasets. Similar

behavior is observed on the results on AD-CGANLFL. However, it is important to note that in all the

experiments, ignoring any training and/or normality score component results in lower performance.

The best results are achieved when all the components with the right amount of contributions are

considered, as it is shown in AD-CGANGF .

To further validate the effect of the contrastive loss, in another experiment, we found that ap-

plying contrastive loss to ADGAN (Deecke et al., 2018) improves the ROC-AUC by 3% and 9% on

CIFAR10 and FashionMNIST on all-vs-one, respectively.

5.6 Conclusion and Future Work

We presented a new reconstruction-based approach to tackle the problem of anomaly detection

(AD) in images. The proposed approach adds contrastive learning to an anomaly detection model

based on a generative adversarial network (GAN), AD-CGAN, to learn more discriminative and
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task agnostic features of normal data. AD-CGAN uses a normality score function including mul-

tiple components to further separate normal and anomalous samples. In this study, we considered

two different AD schemes, soft and hard, to evaluate the performance of AD-CGAN. AD-CGAN

was able to outperform all the previously reconstruction-based approaches on all four benchmark

datasets within both soft and hard schemes. These results may open a new path for reconstruction-

based anomaly detection models leading to more discriminative representations of normal data.

61



Chapter 6

Source-free Domain Adaptation

Requires Penalized Diversity

This chapter focuses on mitigating distribution shifts rather than detecting them. In this work,

assuming covariate and label distribution shifts are present, we study knowledge transfer between

different domains in the absence of source data. Since diversity in representation space can be vital

to a model’s adaptability in varied and difficult domains, we study the effect of increasing diversity

in an ensemble alongside a weighted regularizer to tackle covariate and label distribution shifts

simultaneously.

6.1 Introduction

In recent years, the field of machine learning (ML) has witnessed immense progress in computer

vision (He et al., 2016), natural language processing (Vaswani et al., 2017), and speech recogni-

tion (Bahdanau, Chorowski, Serdyuk, Brakel, & Bengio, 2016) due to the advances of deep neural

networks (DNNs). Despite the increasing popularity of DNNs, they often perform poorly on unseen

distributions (Geirhos et al., 2020), leading to overconfident and miscalibrated models. Combining

the predictions of several models seems to be a feasible way to improve the generalizability of these

models (Turner & Oza, 1999). On account of its simplicity and effectiveness, ensemble learning

became popular in many machine learning applications. Due to the i.i.d. assumption that training
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and test sets are drawn from the same distribution, calibration (Dawid, 1982) is introduced to the

traditional machine learning paradigm to elucidate the model uncertainty. Additionally, predictive

uncertainty is crucial under dataset shift–when confronted with a sample from a shifted distribution,

an ideal model should reflect increased uncertainty in its prediction.

Commonly, a dataset distribution shift can occur due to diverse sources (Quiñonero-Candela et

al., 2008): (i) domain shift, also known as covariate shift, is caused by hardware differences in data

acquisition devices; (ii) feature distribution disparity is caused by population-level differences (e.g.,

gender, ethnicity) across domains; (iii) label distribution shift, where the proportional prevalence of

labels in the source domain differs from that of the target domain. Due to the variety of distribution

shifts, models have failed in real-world applications with shifted domains, thus posing an important

threat to safety-critical applications.

Hypothesis transfer learning (HTL), also referred to as source-free domain adaptation (SFDA),

addresses distribution shift under the non-transductive setting by using knowledge encoded in a

model pretrained on the source domain to inform learning on the target domain. Unlike traditional

domain adaptation (DA) approaches, SFDA models do not have simultaneous access to the data

from both source and target domains. This assumption mitigates the privacy and storage concerns

arising in conventional DA methods.

Extending ensemble learning to DA frameworks and, in particular, SFDA methods can uncover

multiple modes within the source domain, improving the transferability of these models (Lao et

al., 2021). However, the performance gain of an ensemble model is largely related to the diversity

of its members. Particularly, averaging over identical networks or ensemble members with limited

diversity is not better than a single model (Rame & Cord, 2021).

In this work, we encourage diversity among ensemble members in an unsupervised source-

free domain adaptation setting where no labeled target data is available. While recent work in

unsupervised SFDA has shown promising results, it either relies on a unique feature extractor (Liang

et al., 2020), or one shared between an ensemble of source hypotheses (Lao et al., 2021), which leads

to limited diversity in the function space of the source domain (see Sec. 6.4.5 for analysis).

Diversity in ensemble leads to the best-calibrated uncertainty estimators (Lakshminarayanan et
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al., 2017), and therefore the performance benefits of feature diversity within ensembles in out-of-

distribution (OOD) settings (Pagliardini et al., 2022). Other recent works in DNN analysis also show

that different architectures tend to explore different representations (Antorán et al., 2020; Kornblith,

Norouzi, Lee, & Hinton, 2019; Nguyen, Raghu, & Kornblith, 2021; Zaidi et al., 2021). Inspired by

them , our work proposes to increase diversity by not only using separate feature extractors but also

by introducing Distinct Backbone Architectures (DBA) across hypotheses.

While a regularization approach to unconstrained mutual information (MI) maximization dur-

ing adaptation is promising in low diversity settings (Lao et al., 2021), enforcing similarity between

highly diverse hypotheses is insufficient to counteract the catastrophic impact of weak hypotheses

when they inevitably arise as outliers. Therefore, we highlight the necessity of a trade-off between

diversity and the amount of freedom each ensemble member can have. Hence, we introduce Penal-

ized Diversity (PD), a new unsupervised SFDA approach that maximizes diversity exploitation via

DBA while mitigating the negative impact of Weak Hypotheses through the Penalization (WHP)

of their contribution by regularization.

In many real-world applications, the uniform distribution assumption between source and target

does not hold. This assumption can negatively impact the performance of many current SFDA

models under label distribution shift (Lao et al., 2021; Liang et al., 2020) (Sec. 6.4.4, label shift

experiments). We further extend PD to address the label distribution shift by introducing a weighted

MI maximization based on estimation over target distribution. Extensive experiments on multiple

domain adaptation benchmarks (Office-31, Office-Home, and VisDA-C), medical, and digit datasets

under covariate and label distribution shifts exhibit the effectiveness of PD.

6.2 Related Work

Transfer learning approaches can be divided into data-driven and model-driven approaches.

Data-driven approaches such as instance weighting (Bickel et al., 2007; Zadrozny, 2004) and do-

main adaptation models such as DAN (Long et al., 2015), DANN (Ganin & Lempitsky, 2015) and

MDD (Y. Zhang et al., 2019) assume to have direct access to the source data during the knowledge

transfer. To mitigate transfer learning models’ privacy and storage concerns, source-free domain
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adaptation (SFDA) approaches (also known as model-driven or hypothesis transfer learning) are

proposed. SFDA is a transfer learning strategy where a model trained on the source domain in-

corporates the learning procedure of the target domain. It was first introduced by Kuzborskij and

Orabona (2013) where the access to the source domain was only limited to a set of hypotheses in-

duced from it, unlike domain adaptation, where both source and target domains are used to adapt

the source hypothesis to the target domain.

Source-free Domain Adaptation has been investigated from both practical and theoretical

points of view in computer vision applications. Several studies have analyzed the effectiveness of

SFDA on various specific ML algorithms (Kuzborskij & Orabona, 2013, 2017; X. Wang & Schnei-

der, 2015), while others proposed more generally applicable frameworks (Du, Koushik, Singh, &

Póczos, 2017; Fernandes & Cardoso, 2019). These studies can be divided based on the availability

of labeled data in the target domain. Most previous studies considered the supervised SFDA setting

(labeled target domain) (Du et al., 2017; Fernandes & Cardoso, 2019; Kuzborskij & Orabona, 2013,

2017; X. Wang & Schneider, 2015), while unsupervised SFDA (uSFDA) (unlabeled target domain)

has only recently gained interest (Lao et al., 2021; Liang et al., 2020). SFDA models mostly rely on

a single hypothesis to transfer knowledge to the target domain. Lao et al. (2021) showed that using

a single hypothesis for uSFDA is prone to overfitting the target domain and causes catastrophic for-

getting of the source domain. They were the first to propose using multiple hypotheses to mitigate

this effect. More recently (F. Wang, Han, Gong, & Yin, 2022) proposed a novel way to tackle the

SFDA problem by finding domain-invariant parameters rather than domain-invariant features in the

model.

Ensemble Models Recently, deep neural network calibration gained considerable attention in

the machine learning research community. Previous studies explored the effect of Monte Carlo

dropout (Gal & Ghahramani, 2016; Kingma et al., 2015) and variational inference methods (Mad-

dox, Izmailov, Garipov, Vetrov, & Wilson, 2019). However, it has been shown that the best-

calibrated uncertainty estimators can be achieved by neural network ensembles (Ashukha, Lyzhov,

Molchanov, & Vetrov, 2020; Lakshminarayanan et al., 2017; Ovadia et al., 2019). The importance

of well-calibrated models becomes more important under the presence of dataset shift. The success

of ensemble models is mainly related to the diversities present between their members. Ensemble
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diversity has been widely investigated in the literature (Brown, 2004; Y. Liu & Yao, 1999). Improv-

ing diversity in neural network ensembles has become a focus in recent work. Stickland and Murray

(2020) suggest augmenting each member of an ensemble with a different set of augmented inputs to

increase the diversity among members. While a few recent studies propose deep ensemble models

based on different neural network architectures to ensure diversity (Antorán et al., 2020; Zaidi et

al., 2020).

Recently Pagliardini et al. (2022) suggest that encouraging diversity between the ensemble pre-

dictions helps to generalize in the OOD setting by increasing disagreements and uncertainties over

out-of-distribution samples. Whereas Y. Lee et al. (2022) introduced an ensemble of multiple hy-

potheses with shared feature extractors and separate classifier heads to generalize in the presence of

spurious features. They proposed to increase diversity among the classifiers through mutual infor-

mation minimization over the hypotheses predictions on unlabeled target data. Our work is different

from (Y. Lee et al., 2022; Pagliardini et al., 2022) in a sense that (i) to increase diversity, PD does

not need a carefully selected set of target samples unlike both (Y. Lee et al., 2022; Pagliardini et

al., 2022), (ii) different from (Pagliardini et al., 2022) that limits the model to have a smaller or

equal number of hypotheses than the total number of classes, we have freedom over the number of

hypotheses in our model, and (iii) WHP mitigate weak hypotheses to improve overall performance

without requiring access to labeled target samples as opposed to the active query strategy presented

in (Y. Lee et al., 2022). Despite its performance, PD also has its own limitation. Its diversifica-

tion and penalization approaches force PD to be more effective with an ensemble of at least three

hypotheses.

Label Distribution Shift Many domain adaptation studies focus only on covariate shift. De-

spite the negative impact of label distribution shift in transferring knowledge, it has been mostly

neglected. Learning domain-invariant representations and using estimated class ratios between do-

mains as importance weights in the training loss became a dominant strategy for many recent prac-

tices (Gong et al., 2016; Shui et al., 2021; Tachet des Combes, Zhao, Wang, & Gordon, 2020).

Rakotomamonjy et al. (2022) proposed MARS to learn domain-invariant representations with sam-

ple re-weighting. Several studies attempt to benefit from optimal transport (OT) to find a transport

function from source to target with a minimum cost. Kirchmeyer et al. (2022) proposed a reweighing
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model which maps pretrained representations using OT. The key difference between these models

and our modified MI solution is that they all assume accessing the source data during adaptation

and their reweighing strategies are mainly based on source and target ratios.

6.3 Approach

6.3.1 Preliminaries

Assuming X indicates the input space and Y represents the output space, in an unsuper-

vised source-free domain adaptation (uSFDA) setting, we denote the source domain as Ds =

{(xSi , ySi )}
Ns
i=1, where xSi ∈ X S and ySi ∈ YS . The unlabeled target domain is denoted as

Dt = {(xTi )}
Nt
i=1, where xTi ∈ X T and X S ̸= X T . For now, we assume that the difference in

the joint distribution P (X ,Y) of source and target stems from the covariate shift only. Therefore,

this induces a domain shift between the source and target domains, (PS(X) ̸= PT (X)), whereas

the learning task remains the same, with YS = YT and PS(Y | X) = PT (Y | X). Given a hy-

pothesis space H, uSFDA learns a source hypothesis hs : X S −→ YS ∈ HS and a target hypothesis

ht : X T −→ YT ∈ HT , to predict the unobserved target labels Y ∗
t . From the Bayesian perspective,

the predictive posterior distribution can be written as:

p(Y ∗
t | Ds,Dt) =

∫
ht

p(Y ∗
t | Dt, ht)

∫
hs

p(ht | Dt, hs)p(hs | Ds)dhsdht (21)

Eq. 21 describes two learning phases; first, the posterior over the source hypothesis p(hs | Ds)

is learned using the source dataset Ds, and second, the posterior over the target hypothesis p(ht |

Dt, hs) is learned by marginalizing over samples of the source hypothesis adapted to the target

domain, which only contains unlabeled examples.

Liang et al. (2020) use a single model to estimate the distribution over the source hypothesis,

and by extension the distribution over the target hypothesis. Lao et al. (2021) improved this ap-

proximation by incorporating multiple hypotheses that share the same feature extraction backbone.

While the latter is considered an ensemble, by definition, it is constrained by learning shared ex-

tracted features. In this paper, we promote diversity by introducing the use of Distinct Backbone
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Architectures (DBA) across hypotheses. We argue and show empirically (Sec. 6.4.4) that this helps

us achieve a better approximation of p(ht | Dt, hs) with higher diversity in the representation space.

However, unconstrained MI maximization during adaptation is prone to the induction of weak

hypotheses due to error accumulation. The hypothesis disparity (HD) introduced by (Lao et al.,

2021) acts as a regularizer by enforcing similarity across hypotheses over the distribution of pre-

dicted labels. While this regularization showed promise in low diversity settings, enforcing simi-

larity between highly diverse hypotheses is insufficient, and weak hypotheses inevitably arise (see

Sec. 6.4.5 for experiments). Unfortunately, the very nature of how similarity is computed in HD

makes it highly vulnerable to weak hypotheses. We propose an approach that mitigates the negative

impact of Weak Hypotheses through the Penalization (WHP) of their contribution to the computa-

tion of HD when they arise as outliers (Sec. 6.4.4).

In the following sections, we describe three main components of our proposed model,

Penalized Diversity (PD).

6.3.2 Learning Diverse Source Hypotheses Using Distinct Backbone Architectures

To maximize the diversity of predictive features learned in the source domain, we propose re-

moving any weight sharing between the backbones of separate hypotheses by introducing the use

of distinct architectures. For example, on the LIDC dataset, our approach (DBA) is implemented

through the use of a mixture of ResNet10 and ResNet18 backbones.

We define the set of source hypotheses as {hSi : hSi = fSi ◦ gSi }Mi=1, where {fSi }Mi=1 and

{gSi ∈ ΨS}Mi=1 represent the set of classifiers and the set of feature extractors, respectively, and M

represents the number of hypotheses. We train each hypothesis using the cross entropy loss function

(CE):

LS = argmin
HS

E(x,y)∈XS×YS [CE(h(x), y)], ∀h ∈ {hSi }Mi=1 (22)

where h(x) = p(y | x;h) denotes the probability distribution of input x predicted by hypothesis h .
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6.3.3 Diversity Exploitation Through Weak Hypothesis Penalization

Assuming Dt = {(xTi )}
Nt
i=1 is a set of unlabeled target samples, our goal is to effectively adapt

the set of hypotheses trained on the source domain {hSi }Mi=1 into a set of target hypotheses {hTi }Mi=1.

Due to the absence of both source data and labeled target data during the adaptation phase, we

maximize the mutual information (MI) between the target data distribution (XT ) and the predictions

by the target hypotheses (Ŷ T ) (Liang et al., 2020) using Eq. 23.

max
ΨT

Ex∈XT [I(XT ;h(XT ))], ∀h ∈ {hTi }Mi=1 (23)

where MI is defined as I(XT ; Ŷ T ) = H(Ŷ T ) − H(Ŷ T | XT ) with H indicating entropy, Ŷ T is

the predicted output of h(XT ), and ΨT is the space of target feature extractors. Assuming that only

covariate shift is present, both the source and the target domains share the same label space, so we

keep the parameters for the classifiers fTi fixed while updating the feature extractors gTi ∈ ΨT .

Unconstrained unsupervised training of target hypothesis ensembles solely using MI maximiza-

tion results in undesirable target label prediction disagreements. We use the hypothesis disparity

(HD) regularization to marginalize out these disagreements (Lao et al., 2021). HD measures the

dissimilarity between the predicted label probability distributions among pairs of hypotheses over

the input space X :

HDhi,hj∈{hT },i ̸=j(hi, hj) =

∫
X
d(hi(x), hj(x))p(x)dx (24)

where d(.) defines the dissimilarity metric. Throughout this study, we use cross entropy to measure

dissimilarity.

In its original formulation, computing HD relies on randomly selecting a single hypothesis

that serves as an anchor (reference) for the pairwise disparity measures with the rest of the M−1

hypotheses. This selected anchor remains fixed throughout the training process. We note that this

method of choosing the anchor may potentially have a catastrophic impact; a weak performance

hypothesis chosen as the anchor could act as an attractor and collapse the model (See 6.4.5 and

Table 6.7).
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In order to address this issue, we redefine HD (Eq. 24) by proposing Weak Hypothesis mitigation

through Penalization (WHP), which constructs the anchor hypothesis (hwhp) as an ensemble where

the contribution of each hypothesis is weighted according to its cosine similarity to other hypotheses

(Eq. 25 to Eq. 28):

hwhp(X
T ) =

M∑
i=1

ŵihi(X
T ), (25)

where hi ∈ {hT }, and ŵi represents the normalized weight for each hypothesis and is computed as:

ŵi =
exp(wi)∑M
j=1 exp(wj)

(26)

wi = Ehj∈{hT },j ̸=i

[
hi(X

T ) · hj(XT )

|hi(XT )| · |hj(XT )|

]
, ∀i. (27)

HDhi∈{hT }(hi, hwhp) =

∫
X
d(hi(x), hwhp(x))p(x)dx (28)

In effect, the contribution to the ensemble anchor hwhp of a more distant hypothesis hi, based on its

marginal cosine similarity to other hypotheses, is penalized through the reduction of wi. Hence, we

improve performance by diminishing the probability of selecting a weak anchor. In Section 6.4.5,

we compare WHP to alternative strategies for anchor hypothesis selection and show its superior

performance.

6.3.4 Target Distribution Estimation Via Pseudo-Labels

We take one step further and refine our assumption on possible shifts in the joint distribution of

source and target. Instead of assuming that the changes only stemmed from the difference in their

marginal (P (X)), we also allow shifts in their prior, i.e. PS(Y ) ̸= PT (Y ), namely label distribution

shift. For PD to be able to perform under label distribution shift, we suggested weighted mutual

information (MI) based on the proportion of target classes. Since the exact proportion of target

classes is not accessible in an unsupervised setting, an estimation using pseudo-labeling (Liang

et al., 2020) can be used. The label entropy for MI maximization is reweighted according to the
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estimated class proportions and reformulates the MI maximization as:

IW (XT ; Ŷ T ) = W ∗H(Ŷ T )−H(Ŷ T | XT ) (29)

where W = [w1, . . . , wC ] is an estimated class proportion from pseudo-labels, and wi =
nci∑C

j=1 ncj

,

where nci represents the number of samples in class ci and C is the total number of classes.

In summary, our full objective for target training is a combination of weighted mutual informa-

tion and hypothesis disparity regularization.

LT = αEh∈HT [−IW (XT ;h(XT ))] + βEh∈{hT }[HD(h, hwhp)] (30)

where α and β are hyperparameters indicating the contribution of each of MI and HD in the target

training.

6.4 Experiments and Results

6.4.1 Datasets

To validate our model under covariate shift, we consider natural and medical image datasets.

For the natural images, we consider domain adaptation benchmark datasets, namely Office-

31 (Saenko, Kulis, Fritz, & Darrell, 2010), Office-Home (Venkateswara, Eusebio, Chakraborty,

& Panchanathan, 2017), and VisDA-C (Peng et al., 2018). For the medical application, we evaluate

our model on the LIDC (Armato III et al., 2011) dataset. Office-31 dataset includes three domains

that share a set of 31 classes; Amazon (A), DSLR (D), and Webcam (W). Office-Home has four do-

mains, each having 65 classes; Artistic images (AR), Clip art (CL), Product images (PR), and Real-

World images (RW). VisDA-C has 12 classes with synthetic images in the source domain and real

images in the target domain. For our medical imaging experiment, we divided the LIDC dataset into

four domains based on the manufacturer of the data-capturing device: GE medical (G), Philips (P),

SIEMENS (S), and TOSHIBA (T). Each of these domains has two classes, healthy and unhealthy.
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We validate the existence of covariate shift across LIDC domains, from both statistical and exper-

imental perspectives. A detailed statistical analysis is provided in the supplementary material 6.6.

For the experiments on label shift, we consider synthetic digit datasets–MNIST (M) (LeCun et al.,

1998), MNIST-M (N) (Ganin et al., 2016), and USPS (U) (Hull, 1994).

6.4.2 Baselines

Unsupervised transfer learning approaches can be categorized as either unsupervised domain

adaptation (UDA) or SFDA, depending on whether or not they require access to the source data

during the adaptation phase. We consider baselines from both sets. For UDA, we compare PD

to DANN (Ganin & Lempitsky, 2015), DAN (Long et al., 2015), CDAN (Long, Cao, Wang, &

Jordan, 2018), SAFN+ENT (Xu, Li, Yang, & Lin, 2019), rRevGrad+CAT (Z. Deng, Luo, & Zhu,

2019), MDD (Y. Zhang et al., 2019), and MCC (Jin, Wang, Long, & Wang, 2020). For SFDA,

we use AdaBN (Li, Wang, Shi, Liu, & Hou, 2016), Tent (D. Wang, Shelhamer, Liu, Olshausen,

& Darrell, 2021), SHOT (Liang et al., 2020), HDMI (Lao et al., 2021), and NRC (S. Yang, van de

Weijer, Herranz, Jui, et al., 2021). We also consider the performance of source hypotheses at directly

predicting target labels as a Source-only model, and MI-ensemble as a model with three hypotheses

with only MI maximization and no regularizer.

For label distribution shift experiments, aside from comparing with two SFDA models namely

SHOT and HDMI, we compare PD with MARS (Rakotomamonjy et al., 2022) and OSTAR (Kirch-

meyer et al., 2022), the two recent state-of-the-art models for label distribution shift. MARS (Rako-

tomamonjy et al., 2022) proposed based on two estimating proportion strategies, where hierarchical

clustering defines MARSc and Gaussian mixtures indicates MARSg. In nearly all our experiments,

MARSc outperforms MARSg, therefore we only report the performance of MARSc while referring

to it as MARS.

6.4.3 Experimental Setup

In the experiments presented in this paper, we consider both covariate shift and label distribution

shift between source and target domains. We simply instill diversity in DBA using different depths

of a given architecture (Antorán et al., 2020; Zaidi et al., 2021). The code base of PD is built upon
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SHOT.

For the medical dataset, we used different depths of 3D-ResNet as the hypothesis backbone,

mainly ResNet10 and ResNet18. Each backbone {ϕi}Mi=1 is then followed by a set of fully connected

layers, Batch-Norm, ReLU activation function, and Dropout referred to as the bottleneck layer. We

used 512 as the dimension of extracted features. For the classifier {fi}Mi=1, we used a shallow neural

network with two fully connected layers, followed by a ReLU activation function, and Dropout.

Each model trained for 200 iterations with batch size 32 and learning rate 1e − 4 and AdamW

optimizer on the source domain. We used the same configuration for the target training except the

learning rate was decreased to 1e − 5. For the experiments with 3 hypotheses, we used ResNet

{10, 18, 10}, indicating the depth of each feature extractor. For the baselines, we used the same

configuration with ResNet18 as their backbone whether they have single or multiple hypotheses.

α = 0.3 and β = 0.5 are used for the target training.

For natural images datasets, we use different depths of ResNet (He et al., 2016) pre-trained on

ImageNet (Russakovsky et al., 2015) as the backbone of our feature extractors. Specifically, ResNet

of depths {34, 50, 34} for Office-31 and Office-Home and ResNet of depths {50, 101, 110} for

VisDA-C are chosen as the depths of {gi}Mi=1 for M = 3 hypotheses. The same bottleneck layer as

our experiments on medical data is used for the experiments on natural images. We followed similar

hyperparameters as (Liang et al., 2020) for synthetic digit datasets with different depths on PD. For

both natural and synthetic datasets, we trained the source hypotheses for 5k iterations, with learning

rate 3e− 4 and batch size of 64. Target hypotheses are trained for 20k iterations with learning rate

3e − 4 and batch size of 64. We used SGD optimizer for both source and target training. We used

α = 1 and β = 0.5 for the target training objective function.

For the experiments on digit datasets, we used p = 0.1 as the probability value of changing the

chosen class, i.e. a class with 1000 samples in the target domain will be reduced to 100 samples in

the new shifted domain.

6.4.4 Results

In this section, we present the performance of our model in comparison with the baselines in

each benchmark dataset under different distributional shifts.
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Table 6.1: Target accuracy (%) on Office-31 under covariate shift (source → target). In this and all the
following tables, † represents results reported from our implementations.

Method Source-free A→D A→W D→A D→W W→A W→D Avg.

Source-only† ✕ 78.6 80.5 63.6 97.1 62.8 99.6 80.4
DAN (Long et al., 2015) ✕ 78.6 80.5 63.6 97.1 62.8 99.6 80.4
DANN (Ganin & Lempitsky, 2015) ✕ 79.7 82.0 68.2 96.9 67.4 99.1 82.2
SAFN+ENT (Xu et al., 2019) ✕ 90.7 90.1 73.0 98.6 70.2 99.8 87.1
rRevGrad+CAT (Z. Deng et al., 2019) 90.8 94.4 72.2 98.0 70.2 100. 87.6
MDD (Y. Zhang et al., 2019) ✕ 93.5 94.5 74.6 98.4 72.2 100. 88.9
MCC (Jin et al., 2020) ✕ 95.5 98.6 100 94.4 72.9 74.9 89.4

MI-ensemble† ✓ 91.0 93.0 72.3 96.5 73.7 97.4 87.3
AdaBN (Li et al., 2016) ✓ 81.0 82.4 67.2 97.7 68.2 99.8 82.7
Tent (D. Wang et al., 2021) ✓ 82.1 85.1 68.8 97.5 63.0 99.8 82.7
SHOT (Liang et al., 2020) ✓ 93.1 90.9 74.5 98.8 74.8 99.9 88.7
HDMI (Lao et al., 2021) ✓ 94.4 94.0 73.7 98.9 75.9 99.8 89.5
NRC (S. Yang et al., 2021) ✓ 96.0 90.8 75.3 99.0 75.0 100. 89.4

PD ✓ 95.6 94.3 75.3 98.7 76.4 99.8 90.0

Table 6.2: Target accuracy (%) on Office-Home under covariate shift (source → target).

Method Source-free Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

Source-only† ✕ 45.6 69.2 76.5 55.3 64.4 67.4 55.1 41.6 74.4 66.0 46.3 79.4 61.8
DAN (Long et al., 2015) ✕ 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN (Ganin & Lempitsky, 2015) ✕ 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
SAFN (Xu et al., 2019) ✕ 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
MDD (Y. Zhang et al., 2019) ✕ 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

MI-ensemble† ✓ 55.2 71.9 80.2 62.6 76.8 77.8 63.2 53.8 81.1 67.9 58.3 81.4 69.2
AdaBN (Li et al., 2016) ✓ 50.9 63.1 72.3 53.2 62.0 63.4 52.2 49.8 71.5 66.1 56.1 77.1 61.5
Tent (D. Wang et al., 2021) ✓ 47.9 66.0 73.3 58.8 65.9 68.1 60.2 47.3 75.4 70.8 54.0 78.7 63.9
SHOT (Liang et al., 2020) ✓ 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
HDMI (Lao et al., 2021) ✓ 57.8 76.7 81.9 67.1 78.8 78.8 66.6 55.5 82.4 73.6 59.7 84.0 71.9
NRC (S. Yang et al., 2021) ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2

PD ✓ 58.9 78.0 80.9 69.3 76.7 76.9 69.6 56.5 83.4 75.1 59.9 84.5 72.5

Table 6.3: Target accuracy (%) on LIDC under covariate shift (source → target). The results are averaged
over five different runs.

Method Source-free G→P G→S G→T P→G P→S P→T S→G S→P S→T T→G T→P T→S Avg.

Source-only† ✕ 65.6 65.9 45.9 61.9 60.5 49.3 65.2 66.9 57.1 50.0 50.0 50.0 57.2
DAN (Long et al., 2015)† ✕ 59.3 65.8 33.9 61.1 59.7 30.7 56.9 58.6 40.2 48.7 45.9 47.6 50.7
MDD (Y. Zhang et al., 2019)† ✕ 64.1 63.6 57.7 54.7 59.8 47.7 67.2 63.4 59.1 50.0 50.3 50.0 57.3

MI-ensemble† ✓ 67.1 63.4 66.6 62.9 63.2 52.1 65.1 64.9 55.2 60.8 58.6 58.2 61.5
SHOT (Liang et al., 2020)† ✓ 67.0 67.1 61.6 59.9 56.9 53.2 66.8 69.0 66.1 60.4 61.0 54.9 61.9
HDMI (Lao et al., 2021)† ✓ 67.1 66.6 64.6 65.4 64.2 54.6 66.2 65.1 54.6 60.7 60.0 58.7 62.3

PD ✓ 68.9 65.9 60.9 65.6 65.6 54.8 65.8 66.9 66.6 61.2 59.6 59.6 63.5

Natural Images

The performance of our model alongside the baselines on Office-31, Office-Home, and VisDA-

C under covariate shift are presented in Table 6.1, 6.2, and 6.4 respectively, where it can be observed

that our Penalized Diversity (PD) approach outperforms all UDA and SFDA baselines.
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Table 6.4: Target accuracy (%) on VisDA-C under covariate shift.

Method Source-free Avg. per-class accuracy

Source-only† ✕ 44.6
DAN (Long et al., 2015) ✕ 61.1
CDAN (Long et al., 2018) ✕ 70.0
MDD (Y. Zhang et al., 2019) ✕ 74.6
MCC (Jin et al., 2020) ✕ 78.8

Tent (D. Wang et al., 2021) ✓ 65.7
SHOT (Liang et al., 2020) ✓ 79.6
HDMI (Lao et al., 2021) ✓ 82.4

PD ✓ 83.8

Medical Dataset

The experimental results on the LIDC dataset, given four different domains, are depicted in

Table 6.3. The results indicate the effectiveness of PD in comparison with other baselines. Using

DBA with WHP increases the performance from 62.3% to 63.5%.

Digit Dataset

The effect of using weighted label entropy in our modified MI maximization objective in the

experiments on digit datasets is presented in Table 6.5. Following (Azizzadenesheli et al., 2019),

we used two strategies, namely Tweak-One shift and Minority-Class shift with a probability value

of p to create a label distribution shift in each of the datasets. In Tweak-One shift (Lt), one of

the classes is randomly selected whereas, in Minority-Class shift (Lm), a subset of classes (in our

experiments, 5 out of 10 classes) is chosen randomly. Then the proportion of the chosen class(es)

in the target domain changes by value p, i.e. keeping only p% of the samples in the chosen class

(see Fig. 6.3 (b) and (c) for the distribution of labels in each dataset). As demonstrated in Table 6.5,

using an estimation of target label distribution as weights in MI objective mitigates the impact of

label shift. The improvement is more notable in Lm experiment (more than 8% improvement over

OSTAR). In these experiments, covariate shift is also present.
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Table 6.5: Target accuracy (%) on digit datasets with no label shift (Nl), tweak-one (Lt), and minority-class
(Lm) label distribution shift with p = 0.1 (source → target).

Method Strategy Source-free M→U M→N U→M U→N N→M N→U Avg.

OSTAR (Kirchmeyer et al., 2022)† ✕ 96.5 33.2 98.4 34.0 98.4 90.3 75.1
MARS (Rakotomamonjy et al., 2022)† ✕ 92.3 40.1 96.8 38.6 95.4 88.2 75.2
SHOT (Liang et al., 2020)† Nl ✓ 88.9 45.9 93.2 29.7 95.4 88.5 73.6
HDMI (Lao et al., 2021)† ✓ 95.2 49.6 95.0 26.5 96.2 93.1 75.9
PD ✓ 96.9 50.1 95.6 26.4 96.6 97.6 77.2

OSTAR (Kirchmeyer et al., 2022)† ✕ 94.6 37.9 98.3 27.1 97.4 85.6 73.5
MARS (Rakotomamonjy et al., 2022)† ✕ 97.4 44.4 96.2 44.6 90.9 89.0 77.0
SHOT Liang et al. (2020)† Lt ✓ 84.5 46.2 89.3 30.6 89.5 83.6 70.6
HDMI (Lao et al., 2021)† ✓ 89.9 48.7 89.6 27.3 90.5 87.2 72.2
PD ✓ 97.6 49.1 92.9 29.1 96.4 97.0 77.0

OSTAR (Kirchmeyer et al., 2022)† ✕ 58.6 37.1 96.5 23.1 84.1 67.4 61.1
MARS Rakotomamonjy et al. (2022)† ✕ 59.9 23.3 92.6 35.3 80.0 69.3 60.1
SHOT (Liang et al., 2020)† Lm ✓ 57.1 43.9 58.2 28.7 60.9 56.7 50.9
HDMI (Lao et al., 2021)† ✓ 62.4 46.0 60.1 25.2 62.6 58.9 52.5
PD ✓ 87.5 47.7 84.3 31.8 85.0 78.6 69.2

Table 6.6: Ablation study on anchor selection under covariate shift: target accuracy (%) on LIDC dataset
with DBA under different anchor selection strategies (source → target). 3H represents models with 3 hy-
potheses. The results are averaged over five different runs.

Method G→P G→S G→T P→G P→S P→T S→G S→P S→T T→G T→P T→S Avg.

3H-Fixed 68.1 66.5 60.7 64.5 64.2 55.5 65.4 67.8 58.6 59.7 58.5 59.1 62.4
3H-Random 69.3 65.7 64.5 64.9 64.3 55.6 66.4 66.8 57.3 60.4 58.5 59.9 62.8
3H-Ensemble 69.2 66.2 59.3 65.3 64.7 54.2 65.9 67.1 56.9 61.0 59.9 59.9 62.6
3H-WHP 68.9 65.9 60.9 65.6 65.6 54.8 65.8 66.9 66.6 61.2 59.6 59.6 63.5

6.4.5 Analysis

DBA increases the diversity of source hypotheses

In order to investigate the relative impact on the diversity of introducing separate source

hypothesis backbones with the same architecture and using distinct backbone architectures, we

follow (Fort, Hu, & Lakshminarayanan, 2019) and measure the source hypotheses’ disagree-

ment in function space. More specifically, given a set of target samples X , we compute

1
N

∑M
i=1

∑M
j=1[f(X; θi) ̸= f(X; θj)], where N is the total number of target samples, M defines

the number of hypotheses, and f(.) indicates the predicted class. Note that in this experiment, we

analyze the diversity of the source hypotheses and no adaptation to the target dataset is made. We

consider three ways of constructing the ensemble: 1) shared feature extractors, referred to as Shared

Backbone (ShB), 2) hypotheses that are given separate feature extractors with the same backbone

architecture, referred to as Separate Backbone (SeB), and 3) Our proposed model, DBA, which
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Table 6.7: Ablation study on anchor selection under covariate shift: target accuracy (%) on Office-31 dataset
with DBA (3 hypotheses) under different anchor selection strategies (source → target).

Method A→D A→W D→A D→W W→A W→D Avg.

Fixed 94.2 93.8 71.1 98.5 71.0 99.8 88.1
Random 94.0 94.1 70.3 98.5 70.4 99.8 87.9
Ensemble 95.4 94.2 71.5 98.5 71.1 99.8 88.4
WHP 95.6 94.3 75.3 98.7 76.4 99.8 90.0

has separate feature extractors. Figure 6.1 shows that simply introducing separate feature extractors

for each hypothesis (SeB) leads to a marked increase in diversity compared to sharing a feature

extractor (ShB), as in HDMI. However, the largest diversity increase comes from the introduction

of DBA.

To further examine the diversity of different ways of constructing the ensemble in the target

adaption phase, we show one learning curve example for each model using fixed anchor selection

(HDMI objective) in Figure 6.2. As expected, ShB leads to the lowest diversity. Introducing separate

backbones (SeB and DBA) induces diversity that leads to an increase in performance. Furthermore,

adding a regularizer as the combination of DBA and WHP seems to enable one of the hypotheses

to find its way out of a local minimum, underscoring the synergistic impact of Penalized Diversity.

WHP mitigates the negative influence of weak hypotheses

We studied the effect of anchor selection in the target hypothesis disparity regularization. As-

suming source and target hypotheses have separate backbones, the performance of our model under

fixed, random, ensemble (average), and WHP anchor selection strategies are presented in Table 6.6.

It can be observed from Table 6.6 in several experiments, such as S → T, in the presence of weak

performing hypothesis, while an ensemble anchor without WHP is subject to convergence towards

weak hypotheses, random anchor selection might mitigate this issue partially. However, our re-

sults suggest that WHP, through the penalization of outlier hypotheses, provides the most efficient

protection against the negative impact of weak hypotheses by assigning them lower weights in the

ensemble anchor.

Results on Office-31 dataset with three hypotheses indicate similar findings (see Table 6.7).
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G
→

P
S
→

T
A
→

D

(a) ShB (b) SeB (c) DBA

Figure 6.1: Diversity of the source hypotheses based on the choice of feature extraction backbone on G →
P (first row) and S → T (second row) from LIDC, and A → D from Office-31 datasets using disagreement
of predictions between three hypotheses. Left plot: three hypotheses with shared features extractors (ShB).
Middle plot: three hypotheses with separate feature extractors (no weight sharing) (SeB). Right plot: three
hypotheses with distinct backbone (DBA). All the models were trained with the same random initialization.

(a) ShB (b) SeB (c) DBA (d) DBA + WHP

Figure 6.2: Diversity of the target hypotheses during adaptation based on the choice of feature extraction
backbone on S → T (LIDC). (a): three hypotheses that share feature extractor (ShB). (b): three hypotheses
with separate feature extractors (SeB). (c): DBA with three independent hypotheses. (d): PD = DBA +
WHP with three independent hypotheses (DBA).
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Given three hypotheses, in all of the fixed, random, and ensemble anchor selection strategies, the

impact of a weak hypothesis is inevitable in the overall performance. The results also indicate the

instability of random strategy. For instance, in A → W, randomly choosing an anchor improved

the performance in comparison with fixed selection, while in D → A, the model seems to converge

toward the weak hypothesis. Our results on both natural and medical domains state that using WHP

helps to mitigate the effects of weak hypotheses.

Table 6.8: Ablation study on different components of PD = DBA + WHP under covariate shift. Target
accuracy (%) on LIDC dataset using three hypotheses (source → target). The results are averaged over five
different runs.

Method G→P G→S G→T P→G P→S P→T S→G S→P S→T T→G T→P T→S Avg.

ShB + Fixed 67.1 66.6 64.6 65.4 64.2 54.6 66.2 65.1 54.6 60.7 60.0 58.7 62.3
SeB + Fixed 66.7 64.4 57.3 64.5 63.3 53.2 65.2 66.4 55.5 60.4 59.9 57.8 61.2
DBA + Fixed 68.1 66.5 60.7 64.5 64.2 55.5 65.4 67.8 58.6 59.7 58.5 59.1 62.4

DBA +WHP 68.9 65.9 60.9 65.6 65.6 54.8 65.8 66.9 66.6 61.2 59.6 59.6 63.5

Penalized Diversity relies on the synergy of DBA and WHP

We ablate different components of the proposed Penalized Diversity (PD) for test-time adap-

tation performance on the LIDC dataset in Table 6.8. Table 6.8 shows that using a Fixed anchor

selection, as done in HDMI, can lead to catastrophic failure cases due to error accumulation to-

wards a weak hypothesis, which deems Fixed a poor choice for anchor selection. It is important

to note that the increase in diversity seen in SeB and DBA (Fig. 6.1) results in worse performance

when proper regularization is lacking (SeB + Fixed and DBA + Fixed). It is only when WHP is

introduced that we can mitigate the probability of convergence towards weak hypotheses.

Weighted MI mitigates label distribution shift

From Table 6.5, we observe that the performance of SHOT and HDMI dropped by more than

20% in Lm experiment in comparison with the covariate shift only experiment (Nl) indicating the

incapability of these models to perform under label distribution shift. Similarly, OSTAR and MARS

which both designed to tackle label shift and unlike PD have access to the source data during

adaptation, had more than 14% drop in their performance in Lm experiment. While our target

estimation obtained from pseudo-labels is prone to errors, it significantly mitigates the catastrophic
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Table 6.9: Target accuracy (%) on digit datasets with minority-class (Lm) label distribution shift with p =
0.1 (source → target). In these experiments, PD-NWMI refers to PD without the weighted MI maimization,
and PD-T refers to PD with the true target class proportions as compared to class proportion generated via
pseudo-labels.

Method M→U M→N U→M U→N N→M N→U Avg.

PD-NWMI 65.9 46.5 61.3 25.3 68.5 62.7 55.0
PD 87.5 47.7 84.3 31.8 85.0 78.6 69.2
PD-T 92.4 52.4 85.1 31.8 87.1 80.7 71.6

impact of label distribution shift by only 8% performance drop. The effect of our modified MI

maximization is remarkable in Lt experiment where there is only 0.2% drop in the performance of

PD in comparison with no label shift (Nl). It should be noted that our earlier experiments showed

that applying W to both label entropy, H(Ŷ T ), and conditional entropy, H(Ŷ T | XT ), of MI

maximization is no better than applying it solely to the label entropy.

Estimated class proportions via pseudo-labels closely represent true class proportions in UDA

To evaluate the effect of weighted MI maximization in the performance of PD under label

distribution shift, we compare the performance of PD with and without weighted MI maximization

(PD-NWMI) on Minority-Class shift experiment. In this experiment, we choose 5 classes out of 10

in the target domain and changed their proportions by p = 0.1. Table 6.9 demonstrates a significant

improvement (%14) on using estimated target class proportions under label distribution shift.

We further experiment on Minority-Class shift with the actual target class proportions. It can

be observed from Table 6.9 that the performance of PD using the estimated target class proportions

(PD) is close to true target class proportions (PD-T) implying the effectiveness of pseudo-labeling.

6.4.6 Calibration Analysis

It has been shown that diverse ensemble models lead to the best-calibrated uncertainty estima-

tors (Lakshminarayanan et al., 2017). To evaluate the effect of diversity in PD from the calibration

perspective, we compute the uncertainty and calibration of PD with Brier score (Brier et al., 1950)

and Expected Calibration Error (ECE) (Naeini et al., 2015) and compare it with two other unsuper-

vised SFDA models.
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For this experiment, we consider natural and synthetic datasets under covariate and label dis-

tribution shifts. It can be observed from Table 6.10, that PD performs well in terms of calibration

metrics under covariate shift in natural dataset. We also compare the performance of SFDA models

on digit datasets with covariate shift only and with both covariate and label distribution shifts. For

the experiment with both covariate and label shifts, we compute the calibration metrics in Minority-

Class Shift with p = 0.1. As seen from Table 6.10, changing the proportion of classes in the target

domain not only negatively impacts the transferability of the other two unsupervised SFDA mod-

els but also worsens these models’ calibration. However, PD with a weighted MI maximization

performs significantly better in terms of both performance and calibration after the introduction of

label shift.

Table 6.10: Calibration estimations for source-free domain adaptation models on the target domains A →
D, Office-31, and M → U from digit dataset. Here Nl and Lm represent covariate shift only and covariate
shift plus label distribution shift respectively. For the label distribution shift, we consider Minority-Class shift
with p = 0.1. ∗ indicates calibration results reported from the original paper.

Model Dataset Shift Target acc. Brier Score ↓ ECE ↓

SHOT (Liang et al., 2020)
A → D

93.1 0.1246 0.0039
HDMI (Lao et al., 2021)∗ Nl 94.4 0.0961 0.0031
PD 95.6 0.0771 0.0024

SHOT (Liang et al., 2020)
M → U

88.9 0.2170 0.0072
HDMI (Lao et al., 2021) Nl 95.2 0.0926 0.0030
PD 96.9 0.0567 0.0011

SHOT (Liang et al., 2020)
M → U

57.1 0.8432 0.0279
HDMI (Lao et al., 2021) Lm 62.4 0.7417 0.0246
PD 87.5 0.2467 0.0082

6.4.7 Sensitivity Analysis

WHP is robust to hyper-parameter selection

To investigate the sensitivity of our model to the hyperparameter β, we conduct a set of exper-

iments on A→D (Office-31) and G→P (LIDC) with three hypotheses and summarize the results in

Fig. 6.3. For this experiment, we fix α = 0.3 for LIDC and α = 1 for Office-31. Setting β = 0

reduces to solely maximizing mutual information. Fig 6.3 (a) and (b) show that introducing target
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training with WHP improved the performance in comparison with mutual information maximiza-

tion (β = 0). It is seen from the figure that despite the difference between the two domains (natural

and medical), increasing the WHP contribution in target training improves the performance.

(a) Model sens. (LIDC) (b) Model sens. (Office-31) (c) USPS class dist. (d) MNIST class dist.

Figure 6.3: The two left plots show β sensitivity in G→P (LIDC) and A→D (Office-31) with three hy-
potheses. The two right plots indicate class distribution in USPS and MNIST datasets. Note that the class
distribution of MNIST-M is the same as MNIST.

6.4.8 Ablation Study

Choice of Different Architectures on PD

We study the effects of different architectural designs on the performance of PD as well as the

diversity of the hypotheses. We compare two different choices of architectures for DBA. In this

study, we simply consider different depths of a network as different backbones of PD (refers as

A1). However, to investigate the performance of PD under totally different architectures, we con-

sider a combination of SqueezeNet (Iandola et al., 2016) and ResNet in PD (refers as A2) with three

hypotheses on LIDC. From Figure 6.4, we can observe that three hypotheses with entirely different

architectures also improve the diversity. However, DBA without a proper regularizer creates uncon-

trolled diversity as shown in Figure 6.4(c). The experimental results presented in Table 6.11 show

that imposing diversity on the model through entirely different architectural designs (i.e. A2) also

leads to improvement in comparison with ShB with similar backbone architectures (from 62.3% to

62.8%).
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(a) DBA (A1) (b) PD (A1) (c) DBA (A2) (d) PD (A2)

Figure 6.4: Diversity of the target hypotheses during adaptation using various architecture choices
on T → G from LIDC dataset. A1 represents the first choice of different backbone architectures including
different depths of ResNet {10, 18, 10}. A2 represents the second choice of different backbone architectures
including ResNet10, ResNet18, and SqueezeNet1.0. (a): DBA with three hypotheses and fixed anchor on
the first architecture (A1). (b): PD with three hypotheses on the first architecture (A1). (c): DBA with three
hypotheses and fixed anchor on the second architecture (A2). (d): PD with three hypotheses on the second
architecture (A2).

Table 6.11: Ablation study on different architectural choices. Target accuracy (%) on LIDC dataset (source
→ target) under covariate shift with two different choices of architectures; A1 and A2. The results are
averaged over five different runs.

Method G→P G→S G→T P→G P→S P→T S→G S→P S→T T→G T→P T→S Avg.

PD (A1) 68.9 65.9 60.9 65.6 65.6 54.8 65.8 66.9 66.6 61.2 59.6 59.6 63.5
PD (A2) 66.2 65.3 64.3 63.6 65.2 59.1 64.7 66.9 61.1 60.6 58.4 58.2 62.8

6.5 Conclusion

This chapter shows the benefits of increasing diversity in unsupervised source-free domain adap-

tation. We increased diversity by introducing separate feature extractors with Distinct Backbone

Architectures (DBA) across hypotheses. With the support of experiments on various domains, we

show that diversification must be accompanied by proper Weak Hypothesis mitigation through Pe-

nalization (WHP). Our proposed Penalized Diversity (PD) stems from the synergy of DBA and

WHP. We further modified MI maximization in the objective of PD to account for the label shift

problem. Our experiments on natural, synthetic, and medical benchmarks demonstrate how it im-

proves upon the relevant baselines. As for future work, we would like to investigate other ways to

promote diversity in the feature space of SFDA models.
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6.6 Supplementary Material

6.6.1 Statistical Analysis on LIDC Covariate Shift

The Lung Image Database Consortium (LIDC) (Armato III et al., 2011) consists of diagnostic

and lung cancer screening thoracic computed tomography (CT) scans. The images are captured in

multiple institutions with imaging devices produced by four different manufacturers. It has been

shown that images from different institutions as well as hardware differences in data acquisition

devices are susceptible to domain shift (also known as covariate shift) (Guan & Liu, 2021; Karani,

Chaitanya, Baumgartner, & Konukoglu, 2018; Stacke, Eilertsen, Unger, & Lundström, 2019). We

suggested dividing the LIDC dataset into four sub-datasets based on the imaging device manu-

facturer. Each of these sub-datasets introduces one domain. Aside from the results presented in

Table 6.3 of the paper (Sec. 6.4.4, results on LIDC under covariate shift) obtained by the Source-

only model, this section provides a statistical argument for the existence of a covariate shift in our

suggested approach.

Assuming that each of the sub-datasets (i.e. domain) is different from the others introducing

a comparative observational study or experiment, we assess the difference between proportions or

means of each two experiments.

Given the performance of the Source-only model on each domain within five different runs, we

computed the confidence interval (CI) between each two population proportions using Eq. 31.

CI = P difference ± SE for Difference (31)

and

P difference = prd1
− prd2

SE for Difference =
√
(SEp1

)2 + (SEp2
)2

(32)

where SE for proportion pi defines standard error and it is computed as follows:

SEpi =

√
prdi

(1− prdi
)

Npi

where Npi
indicates the total number of samples in each proportion/domain, and prdi

is the accuracy of
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Table 6.12: The confidence interval (CI) on each domain using the Source-only model on LIDC dataset with
covariate shift.

Source Run G P S T

S1 – (-0.09, 2.95) (-5.66, -0.20) (17.63, 21.69)
S2 – (-4.96, -1.98) (-1.71, 3.85) (12.53, 16.59)

G S3 – (0.67, 3.73) (-5.53, -0.05) (18.18, 22.24)
S4 – (0.36, 3.40) (-6.15, -0.73) (18.10, 22.15)
S5 – (3.85, 6.95) (1.22, 6.90) (19.10, 23.14)

S1 (-2.10, 0.14) – (-3.32, 0.74) (6.10, 12.62)
S2 (3.15, 6.15) – (6.50, 10.48) (15.25, 21.73)

P S3 (0.76, 3.82) – (1.89, 5.89) (11.13, 17.63)
S4 (-3.53, -0.51) – (-1.26, 2.70) (12.27, 18.77)
S5 (3.33, 6.45) – (1.53, 5.57) (10.21, 16.72)

S1 (-3.17, -3.13) (-0.00, 5.70) – (2.39, 8.85)
S2 (1.07, 4.11) (-7.61, -2.27) – (5.57, 12.01)

S S3 (1.25, 4.27) (-6.39, -1.05) – (9.05, 15.51)
S4 (-6.10, -3.05) (-10.85, -5.45) – (5.05, 11.55)
S5 (-5.42, -2.36) (-5.72, -0.12) – (-5.33, 0.97)

S1 (18.93, 21.97) (17.57, 23.33) (18.44, 22.46) –
S2 (18.93, 21.97) (71.57, 23.33) (18.44, 22.46) –

T S3 (22.36, 25.36) (21.0, 26.72) (21.87, 25.85) –
S4 (17.79, 20.85) (16.44, 22.20) (17.31, 21.33) –
S5 (17.79, 20.85) (16.44, 22.20) (17.31, 21.33) –

Source-only model trained on the proportion pi.

If two CIs do not overlap, then it can be said that there is a statistically significant difference between the

two populations. In another word, if the confidence interval for the difference does not contain zero, we can

confirm the existence of covariate shift between two domains.

The highlighted values in Table 6.12 indicate overlaps between two domains on a particular run. As

seen from Table 6.12, the highest domain shift is observed between T and the other domains. These findings

are also aligned with the results reported in the paper on the LIDC dataset, where the lowest performance

is obtained where T is either source or target domain (see Table 6.3). Since in nearly all the experiments,

at least four out of five experiments show no overlaps, we conclude that our suggested approach to creating

sub-datasets indeed maintains domain shift.
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Chapter 7

Conclusion

Inspired by the importance of model generalizability and non-stationary environments of real-world prob-

lems that directly impact the generalizability of predictive models, the ability to detect data distribution drift

after model deployment and adapting them to perform under these changes become two popular research

topics in the machine and deep learning. In this thesis, we address several problems in medical, natural, and

synthetic domains from the perspective of distribution shifts, with an emphasis on detecting and addressing

them. In the detection phase, the assumption is that the distribution of the data should remain intact, e.g.,

the process remains fixed in the production line for a specific product, and hence, any sudden change in the

distribution returns a red flag, i.e., either a problem in the production line in a factory or an unknown disease

in medical diagnosis. Since many of these changes/shifts are non-deterministic and do not follow a specific

pattern, i.e., they are either unspecified or have indefinite varieties, having a training set including a set of

labeled examples of them is somehow impractical. Thus, we focus on a system to grasp the underlying data

structure with no shift; hence, any sample with a different distribution will be the anomaly, and a shift will

be detected. Among existing generative models specialized for understanding data distribution, we use the

generative adversarial network (GAN) with a scoring function to measure how far each test/target sample

can be from the training distribution to be indicated as an anomaly. Inspired by self-supervision, we further

focus on designing a GAN to learn from its internal representations using contrastive learning to mitigate

catastrophic forgetting and mode collapse.

On the other hand, in many cases, the distribution of the data might change after deployment leading to

a performance drop, e.g., a medical diagnosis tool that is trained on a set of examples dominated by a gender

might not perform well if the dominant gender after model deployment becomes the minority. Since these

types of changes are not anomalies, the model needs to be adapted. Rather than shifts, over-confident neural
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networks also decay their generalizability. Motivated by ensemble learning that is proven to improve neural

network calibration, we study the effect of an ensemble domain adaptation model. We also tend to increase

the diversity among ensemble members since an ensemble model with similar members is no better than a

single model. Our domain adaptation model mitigates two significant types of shifts, namely covariate and

label distribution shifts, under two major assumptions. First, to maintain data privacy and decrease the storage

concern, we consider a source-free domain adaptation (SFDA), and second, no annotated data is accessible

in the target domain.

Limitations

Chapter 4 Although the proposed model was able to lower the inference time compared with other

anomaly detection models based on GAN, it has difficulty learning training distribution with multiple modes.

Chapter 5 In this work, we proposed a model to tackle the problem of learning multiple modes in training

distribution from previous work. However, introducing contrastive learning to GANs slightly increases both

the training and inference time of the model.

Chapter 6 One of the limitations of this work is that the WHP regularizer performs better when the

number of ensemble members is at least three. Besides, diversity in an ensemble model with different archi-

tectures needs a proper search in the space of architectures.

Future Perspectives

Reasoning the Shift The problem of explaining the decisions of an anomaly detector, in general, out-

of-distribution (OOD) detector, remains largely unexplored. Most current studies focus on improving their

performance on their OOD detectors while exploring the explainability, i.e., the reason behind the learner’s

decision to identify a sample as anomaly/OOD remains neglected. Therefore, one direction for future research

is to go beyond shift detection and investigate a human-understandable interpretation method for anomaly

detectors.

Diversity in SFDA In this thesis, the diversity in the ensemble has been brought by different architectures

of neural networks. Even though this trivial approach is effective, it poses a few questions. How to search for

possible architectures? What are the criteria for selecting a particular architecture? Therefore, as future work,

we would like to explore other ways, such as contrastive learning to increasing diversities in an ensemble.
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Code Availability

All the conducted experiments and the code related to our first research project can be found here. The

codes of AD-CGAN and all the related experiments, including the baselines, are available here.
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Chapter 8

Appendix

In this chapter, we review the details of each dataset used for experiments on anomaly detection and

domain adaptation in Chapter 4, 5, and 6.

8.1 Dataset

In this thesis, several natural, synthetic, and medical dataset has been used. Table 8.1 presents the training

and test sizes of all the natural datasets for the task of anomaly detection. We also present the sizes of all the

datasets for the domain adaptation task in Table 8.2.

Table 8.1: Training and test sizes of all the natural datasets for our anomaly detection experiments.

Samples MNIST FashionMNIST CIFAR10 CatsVsDogs

Train 60,000 60,000 50,000 20,000

Test 10,000 10,000 10,000 5,000

The images of the USPS dataset are grayscale images of (16, 16, 1). MNIST and FashionMNIST (fM-

NIST) are grayscale images of (28, 28, 1). MNIST M is a colored MNIST of images of the same size.

CIFAR10 icludes RGB images of (32, 32, 3). CatsVsDogs has RGB images of different sizes where we

scaled all the images to (64, 64, 3).

VisDA-C has 12 classes with 152,397 Synthetic images in the source domain and 55,388 Real images in

the target domain.

For our anomaly detection experiments, we also considered a medical imaging dataset. Acute Lym-

phoblastic Leukemia (ALL) dataset (Labati et al., 2011) has 260 images with the size (257, 257, 3). Each
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Table 8.2: Training and test sizes of all the natural and synthetic datasets for our domain adaptation experi-
ments.

Dataset MNIST MNIST M USPS Office-31 Office-Home VisDa-C

Total sizes 70,000 70,000 9,298 4,652 15,500 207,785

normal and anomalous class has 130 images.

We considered the Lung Image Database Consortium (LIDC) (Armato III et al., 2011) as a medical

dataset in our domain adaptation experiments. We divided the LIDC dataset into four domains based on the

manufacturer of the data-capturing device: GE medical (G), Philips (P), SIEMENS (S), and TOSHIBA (T)

with 1976, 346, 838, and 266 samples, respectively. Each of these domains has two classes, healthy and

unhealthy.
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Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., & Lawrence, N. D. (2008). Dataset shift

103



in machine learning. Mit Press.

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised representation learning with deep

convolutional generative adversarial networks. In Proc. of iclr.

Rafiee, L., & Fevens, T. (2020). Unsupervised anomaly detection with a gan augmented autoen-

coder. In International conference on artificial neural networks (pp. 479–490).

Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019). Transfusion: Understanding transfer

learning for medical imaging. Advances in neural information processing systems, 32.

Raina, R., Battle, A., Lee, H., Packer, B., & Ng, A. Y. (2007). Self-taught learning: transfer learning

from unlabeled data. In Proceedings of the 24th international conference on machine learning

(pp. 759–766).

Rakotomamonjy, A., Flamary, R., Gasso, G., Alaya, M. E., Berar, M., & Courty, N. (2022). Optimal

transport for conditional domain matching and label shift. Machine Learning, 111(5), 1651–

1670.

Rame, A., & Cord, M. (2021). DICE: Diversity in deep ensembles via conditional redundancy

adversarial estimation. In International conference on learning representations.

Redko, I., Courty, N., Flamary, R., & Tuia, D. (2019). Optimal transport for multi-source domain

adaptation under target shift. In The 22nd international conference on artificial intelligence

and statistics (pp. 849–858).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-

time object detection. In Proceedings of the ieee conference on computer vision and pattern

recognition (pp. 779–788).

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., & Lee, H. (2016). Generative adversarial

text to image synthesis. In Proceedings of the 33rd international conference on international

conference on machine learning - volume 48 (p. 1060–1069). JMLR.org.

Reed, S. E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., & Lee, H. (2016). Learning what and

where to draw. In Proc. of nips (pp. 217–225).

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders:

Explicit invariance during feature extraction. In Proceedings of the 28th international con-

ference on international conference on machine learning (p. 833–840). Madison, WI, USA:

104



Omnipress.

Rokach, L. (2010). Ensemble-based classifiers. Artificial intelligence review, 33(1), 1–39.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical

image segmentation. In International conference on medical image computing and computer-

assisted intervention (pp. 234–241).

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organiza-

tion in the brain. Psychological review, 65(6), 386.

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., . . . Kloft, M.

(2018). Deep one-class classification. In International conference on machine learning (pp.

4393–4402).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. nature, 323(6088), 533–536.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning internal representations by

error propagation. In Neurocomputing: Foundations of research (p. 673–695). Cambridge,

MA, USA: MIT Press.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . others (2015). Imagenet

large scale visual recognition challenge. International journal of computer vision, 115(3),

211–252.

Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new

domains. In European conference on computer vision (pp. 213–226).

Salakhutdinov, R., & Hinton, G. (2009, 16–18 Apr). Deep boltzmann machines. In D. van Dyk

& M. Welling (Eds.), Proceedings of the twelth international conference on artificial intel-

ligence and statistics (Vol. 5, pp. 448–455). Hilton Clearwater Beach Resort, Clearwater

Beach, Florida USA: PMLR.

Schapire, R. E. (1990). The strength of weak learnability. Machine learning, 5(2), 197–227.
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