
Evaluating the Robustness of Deep Learning Models on
Automated Program Repair

Yu Shi

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

January 2023

© Yu Shi, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Yu Shi

Entitled: Evaluating the Robustness of Deep Learning Models on Automated Pro-

gram Repair

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Nikolaos Tsantalis

External Examiner
Dr. Weiyi Shang

Examiner
Dr. Nikolaos Tsantalis

Supervisor
Dr. Jinqiu Yang

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

December 19, 2022
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

Evaluating the Robustness of Deep Learning Models on Automated Program Repair

Yu Shi

Automated Program Repair (APR) helps improve the efficiency of software development and

maintenance. In recent years, Deep Learning (DL) approaches have been applied to the APR field

and have shown promising potential in fixing software bugs automatically. The DL-based APR

models translate buggy code to correct code directly. Some recent works test the general perfor-

mance of various deep learning models on downstream tasks, e.g., code search and method name

prediction. However, there still needs to be a fair evaluation of the deep learning models on auto-

mated program repair.

This paper aims to quantitatively and comparatively evaluate the repair performance and robust-

ness of DL-based APR models. We first fine-tune seven pre-trained models and train two models

from scratch on the unified dataset for a fair comparison of repair performance. Then, we conduct

a robustness evaluation for nine trained models above against nine semantic-preserving code trans-

formations. Our experiments show that DL-based APR models with pre-training perform better

repair performance and robustness than those trained from scratch. Additionally, most APR models

fine-tuned on the concrete code datasets have better repair performance than those fine-tuned on the

abstract code datasets. Furthermore, most encoder-decoder-based and decoder-based APR models

have better repair accuracy than encoder-based ones. Finally, compared with renaming-related code

transformations, semantic-preserving transformations related to the change of syntactic structure

have a more significant impact on the repair robustness of DL-based APR models. The results

provide useful insights for achieving better DL-based APR approaches.

Index Terms–automated program repair, deep learning, robustness testing

iii

Acknowledgments

Foremost, I am extremely grateful to my supervisor Dr. Jinqiu Yang. I learned a lot from her,

including how to think critically about research, how to shape ideas, how to push forward projects,

and how to communicate with other people and put myself in others’ shoes. What I learned from

Dr. Yang will benefit my future research career.

I sincerely thank my thesis examiners: Dr. Weiyi Shang and Dr. Nikolaos Tsantalis, for spend-

ing their valuable time reviewing my thesis and providing constructive suggestions. Their valuable

comments make this thesis better.

Furthermore, I thank my friends and lab mates: Bo Yang, Junjie Li, Fazle Rabbi, and Triet

Pham, for their help in my difficult times and for happy memories of funs together. I also thank my

friends Zishuo Ding, Zehao Wang, Hetong Dai, Yunqi Xu, Yiwen Heng, and Kunyi Wang for their

help and funs together. I learned a lot from you.

Last but not least, I would like to express my thanks to my families: my parents, my brothers,

and my sister for their continuous encouragements. They unconditionally support me in pursuing

my dream. Special thanks to my twin brother, who is always with me.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Related Work 7

2.1 Automated Program Repair . 7

2.1.1 Generate-and-Validate-based Automated Program Repair 7

2.1.2 Deep Learning-based Automated Program Repair 8

2.2 Pre-trained Models . 9

2.2.1 Pre-trained Models on Software Engineering 9

2.2.2 Pre-trained Models on Automated Program Repair 10

2.3 Robustness Testing for Code Models . 11

3 Experiment Setup 13

3.1 Fine-tuning Pre-trained Models on Program Repair 15

3.1.1 Subject Models . 15

3.1.2 Hyper-parameter Settings in Fine-tuning 19

3.1.3 Datasets . 19

3.1.4 Metrics . 21

3.2 Repair Robustness of DL-based APR Models against Semantic-preserving Code

Transformations . 23

v

3.2.1 Semantic-preserving Code Transformations 23

3.2.2 Dataset Construction . 31

4 Experiment Results and Analysis 33

4.1 RQ1: What Is the Repair Performance of Different DL-based APR Models? 33

4.1.1 Motivation . 33

4.1.2 Approach . 34

4.1.3 Results and Discussion . 34

4.2 RQ2: What Is the Repair Robustness of Different DL-based APR Models against

Different Semantic-preserving Code Transformations? 39

4.2.1 Motivation . 39

4.2.2 Approach . 40

4.2.3 Results and Discussion . 40

5 Threats To Validity 48

5.1 Internal Validity . 48

5.2 External Validity . 49

5.3 Construct Validity . 49

6 Conclusion and Future Work 51

6.1 Summary of the Thesis . 51

6.2 Future Work . 52

6.2.1 Constructing a Better Benchmark Dataset for DL-based APR Approaches . 52

6.2.2 Designing a Full-automatic Code Transformations Tool for Partial Code

Snippet . 53

6.2.3 Investigating Effectively Apply Code Transformations on Training Dataset

Augmentation for Better DL-based APR Approaches 53

Bibliography 54

vi

List of Figures

Figure 1.1 An example of program repair of original code and transformed code by

GraphCodeBERT (Guo et al., 2020). 3

Figure 3.1 An overview of the experimental process. 14

Figure 4.1 The repair accuracy of subject models on abstract BFPs and concrete BFPs. 36

Figure 4.2 The repair accuracy comparison of subject models on abstract BFPs and

concrete BFPs. 37

Figure 4.3 The repair accuracy distribution of subject models against different semantic-

preserving code transformations. 41

Figure 4.4 The repair accuracy distribution of semantic-preserving code transforma-

tions on subject models. 42

vii

List of Tables

Table 3.1 Statistics of subject models (1). 17

Table 3.2 Statistics of subject models (2). Following pre-training tasks are listed in

the table: Masked Language Modeling (MLM), Replaced Token Detection (RTD),

Edge Prediction (EP), Node Alignment (NA), Causal Language Modeling (CLM),

Masked Span Prediction (MSP), Identifier Tagging (IT), Masked Identifier Predic-

tion (MIP), Code-AST Prediction (CAP), Masked Sequence to Sequence (MASS),

Method Name Generation (MNG), Denoising Autoencoding (DAE). 18

Table 3.3 Fine-tuning configuration of subject models (1). 18

Table 3.4 Fine-tuning configuration of subject models (2). 19

Table 3.5 An example of abstract BFPs and concrete BFPs. The code snippet of con-

crete BFPs is raw source code, and that of abstract BFPs is a code template extracted

by (Tufano et al., 2019). 20

Table 3.6 Statistics of fine-tuning datasets. Train#, Valid#, and Test# stand for the num-

ber of the training, validation, and testing datasets. As concrete BPFs are slightly

processed by (Chakraborty & Ray, 2021) based on abstract BFPs, the size of con-

crete BPFs is slightly less than abstract BFPs. 21

Table 3.7 Examples of semantic-preserving code transformations of local variable re-

naming, method renaming, parameter renaming, insert log statement and insert try

catch. 29

Table 3.8 Examples of semantic-preserving code transformation of boolean exchange,

loop exchange, convert switch to if and reorder condition. 30

viii

Table 3.9 Statistics of transformed datasets and corresponding original datasets. Each

transformed code snippet corresponds to the original code snippet, so the number

of each type of the transformed dataset and the corresponding original dataset is the

same. 32

Table 4.1 Repair performance of subject models fine-tuned on concrete BFPs and ab-

stract BFPs. “acc” stands for Accuracy@1(%) and “codebleu” stands for Code-

BLEU(%). 35

Table 4.2 Fine-tuned models against different semantic-preserving code transforma-

tions on BFPs-small. “acc” stands for Accuracy@1(%) and “codebleu” stands for

CodeBLEU(%). 44

Table 4.3 Fine-tuned models against different semantic-preserving code transforma-

tions on BFPs-medium. “acc” stands for Accuracy@1(%) and “codebleu” stands

for CodeBLEU(%). 45

Table 4.4 Accuracy reduction on BFPs-small (%). 46

Table 4.5 Accuracy reduction on BFPs-medium (%). 47

ix

Chapter 1

Introduction

Automated program repair (APR) has become a hot intersection topic of software engineer-

ing and artificial intelligence, which aims to ensure software quality by automatically fixing bugs

without human intervention. Over the last decade, the most popular APR approaches are generate-

and-validate (G&V) methods (Hua, Zhang, Wang, & Khurshid, 2018; J. Jiang, Xiong, Zhang, Gao,

& Chen, 2018; Kim, Nam, Song, & Kim, 2013; Le, Lo, & Le Goues, 2016a; Le Goues, Nguyen,

Forrest, & Weimer, 2012; C. Liu, Yang, Tan, & Hafiz, 2013; Long & Rinard, 2015; Saha, Lyu,

Yoshida, & Prasad, 2017; Wen, Chen, Wu, Hao, & Cheung, 2018; Xuan et al., 2016; B. Yang &

Yang, 2020; J. Yang, Zhikhartsev, Liu, & Tan, 2017). These approaches first continuously generate

the candidate patches for a buggy program, then utilize the test suites as the specification to validate

each candidate patch until a correct patch meets the expectation. However, there is often a need for

test cases in practice, and the quality of available test cases is usually far from the expectation of a

repair specification.

In recent years, the advances in deep learning (DL) have allowed researchers to start applying

DL to various source code processing tasks, including code completion (Li, Wang, Lyu, & King,

2017), code search (Cambronero, Li, Kim, Sen, & Chandra, 2019), code summarization (Wan et

al., 2018), code comment generation (Hu, Li, Xia, Lo, & Jin, 2018), code clone detection (H. Wei

& Li, 2017), and logging text generation (Ding, Li, & Shang, 2022). Most of these approaches

train the models based on big source code datasets mined from open-source software repositories,

1

which showed promising performance. Particularly, Neural Machine Translation (NMT) based ap-

proaches have been applied in the APR field (Berabi, He, Raychev, & Vechev, 2021; Chakraborty,

Ding, Allamanis, & Ray, 2020; Chakraborty & Ray, 2021; Z. Chen et al., 2019; Gupta, Pal, Kanade,

& Shevade, 2017; N. Jiang, Lutellier, & Tan, 2021; Lutellier et al., 2020; Tufano et al., 2019; Ye,

Martinez, & Monperrus, 2022; Zhu et al., 2021), and this end-to-end approach showed great poten-

tial without the test suites specifications. The NMT-based models formulate a code repair process

as a translation task from buggy code to correct code, similar to the translation task in the natural

language processing (NLP) field (e.g., translation from English to Chinese). The core architecture

of these approaches consists of an encoder and a decoder. The encoder treats the input as a sequence

of tokens and outputs the intermediate representation. Then, the decoder leverages the output of the

encoder to generate the token sequence. We will call all such models as DL-based APR models

because these models are trained on multiple source code datasets for fixed bugs automatically.

Nevertheless, deep learning models are known to suffer from non-robust issues and can be easily

fooled by small perturbations. Recent works have been conducted on testing the performance of

code models. Ramakrishnan et al. (Ramakrishnan et al., 2020) investigate the robustness of source-

code models by applying k-transformation on inputs. They utilize a Bi-LSTM seq2seq model and a

code2seq model as subject models and evaluate them on code summarization. Rabin et al. (Rabin et

al., 2021) test the generalizability of code2vec, code2seq, and GGNN models on predicting method

names. Bielik et al. (Bielik & Vechev, 2020) verify that, similar to other domains, neural code

models are vulnerable to adversarial attacks, and they find that only some parts of the input program

are relevant to the model’s prediction. So they abstract the rest of the programs, which makes the

adversarial training more effective. Wei et al. (M. Wei, Huang, Yang, Wang, & Wang, 2021) present

a coverage-based fuzzing framework to test the robustness and generalizability of code models.

Pour et al. (Pour, Li, Ma, & Hemmati, 2021) present a search-based framework for testing the

performance of code embedding models. Zhang et al. (H. Zhang et al., 2020) propose Metropolis-

Hastings Modifier (MHM) identifier renaming technique to generate adversarial examples for code

models. Following this, Yang et al. (Z. Yang, Shi, He, & Lo, 2022) also use variable renaming for

adversarial examples generation to attack code models.

2

Figure 1.1: An example of program repair of original code and transformed code by GraphCode-
BERT (Guo et al., 2020).

However, to the best of our knowledge, there needs to be a fair evaluation of different DL-

based APR models regarding repair performance and robustness. Figure 1.1 presents an example

of program repair by GraphCodeBERT (Guo et al., 2020). The bug uses an incorrect variable

parameter temp++, and the expected fixed code uses temp+1 instead of temp++. We first fine-tune

GraphCodeBERT on concrete BFPs (Section 3.1 will detail the fine-tuning process), then we feed

the buggy code to the fine-tuned GraphCodeBERT. The fixed code predicted by GraphCodeBERT is

correct. As mentioned before, deep learning models are known to suffer from robustness problems,

and we want to know the predicted fixed code if we apply a slight change to the original buggy

code. So we use a substitutive name count to replace the original variable temp. Finally, we found

that GraphCodeBERT predicts an incorrect fixed code for the transformed buggy code. This simple

example offers a straightforward observation: Even just renaming a variable’s name for the buggy

3

input code, the predicted fixed code by GraphCodeBERT will change.

This observation intuitively verifies that DL-based APR models may suffer from non-robust

issues, as previous research mentioned. We wonder what the things will be for other DL-based APR

models, such as whether the CodeT5 (Y. Wang, Wang, Joty, & Hoi, 2021) model can fix this buggy,

and if so, whether it will also not fix the transformed buggy code by renaming a local variable.

Furthermore, we wonder whether other code-preserving transformations can fool DL-based APR

models. If so, which types of transformations can fool the models most? For example, if such

models exactly suffer from non-robust issues, what is the distribution of repair performance of DL-

based APR models against different code-preserving transformations? In a word, we will investigate

the following research questions based on the observations above:

• RQ1: What is the repair performance of different DL-based APR models?

• RQ2: What is the repair robustness of different DL-based APR models against different

semantic-preserving code transformations?

We design two experiments for answering two research questions above. Firstly, we follow the

current popular pre-training and fine-tuning paradigm for fine-tuning all subject models on program

repair. Note that recent works have started applying large pre-trained models on APR. However,

they either use the abstract BFPs dataset proposed by (Tufano et al., 2019) or the corresponding

concrete BFPs dataset supplemented by (Chakraborty & Ray, 2021). For example, experiment

results in (Lu et al., 2021) show that CodeBERT achieves a good repair result in abstract BFPs, and

the following GraphCodeBERT (Guo et al., 2020) achieves a better repair result than CodeBERT

because of the additional consideration of code structure information in the pre-training stage. The

following PLBART (Ahmad, Chakraborty, Ray, & Chang, 2021) fine-tuned on abstract BFPs and

MODIT (Chakraborty & Ray, 2021) fine-tuned on concrete BFPs achieve better repair performance

thanks to the encoder-decoder architecture. The latest pre-trained models (e.g., CodeT5 (Y. Wang

et al., 2021), SPT-Code (Niu et al., 2022), CoditT5 (J. Zhang, Panthaplackel, Nie, Li, & Gligoric,

2022) and NatGen (Chakraborty, Ahmed, Ding, Devanbu, & Ray, 2022), etc.) report better results

on program repair. All of these latest works leverage abstract BFPs as their benchmark dataset.

However, no existing works notice that these two different versions of datasets have an impact on

4

repair results. Here, we design the first experiment for fine-tuning all subject models on unified

datasets (i.e., both abstract BFPs and concrete BFPs) for a thorough and fair comparison of the

repair performance.

Secondly, we design another experiment that employs the fine-tuned models in the first experi-

ment to evaluate their repair robustness against semantic-preserving code transformations. We first

define nine semantic-preserving code transformations, including local variable renaming, method

renaming, parameter renaming, boolean exchange, convert switch to if, insert log statement, insert

try catch, loop exchange, and reorder condition. Mainly, we apply the same renaming substitu-

tion strategy (Z. Yang et al., 2022) for renaming local variables, methods, and parameters. Then,

we apply each code transformation on the test dataset of concrete BFPs to generate the applicable

transformed dataset and corresponding original dataset. Furthermore, we feed the buggy code of

each dataset to models and compare the top-1 predicted fix code with the corresponding expected

fix code. Finally, we perform large-scale experiments on the current three types of representative

code models, including encoder-based models: CodeBERT (Feng et al., 2020) and GraphCode-

BERT (Guo et al., 2020); the decoder-based model CodeGPT (Lu et al., 2021); encoder-decoder-

based BART-style models: PLBART (Ahmad et al., 2021) and SPT-Code (Niu et al., 2022), and

the encoder-decoder-based T5-style models CodeT5 (Y. Wang et al., 2021), including two versions:

CodeT5-small and CodeT5-base. We also choose two models trained from scratch (i.e., LSTM-

based NMT model and Transformer-based NMT model). We evaluate the results based on two

metrics: Accuracy@1 and CodeBLEU (Ren et al., 2020).

Based on our fair evaluation of the repair performance and robustness of different DL-based

APR models, we find that: (1). Most encoder-decoder-based APR models and the decoder-based

APR model have better repair accuracy than encoder-based APR models. (2). Most DL-based

APR models fine-tuned on concrete code datasets have better repair performance than those fine-

tuned on abstract code datasets. (3). All subject DL-based APR models with pre-training show

better repair accuracy results than those trained from scratch. (4). DL-based APR models exactly

suffer from non-robust issues. (5). The semantic-preserving transformations related to the change

of syntactic structure have a more significant impact on the repair robustness of DL-based APR

models compared with renaming-related transformations. (6). DL-based APR models trained from

5

scratch show more significant robustness issues than the models with pre-training. Our findings and

the lessons we learned from experiments provide important insights for future research.

In a word, the main contributions of this thesis include:

• This thesis conducts a fair evaluation to quantify the repair performance of different DL-based

APR models.

• This thesis focuses on comparatively and quantitatively analyzing the robustness of DL-based

APR models.

• This is the first work noticing that those DL-based APR models with pre-training show better

repair effects on the concrete BFPs dataset than the current mainstream abstract BFPs dataset.

• We provide a summary of the findings and lessons we learned in our experiments. Such

insights are valuable for achieving better DL-based APR approaches.

The rest of this paper is organized as follows. Chapter 2 presents the closely related works of

this thesis. Chapter 3 presents the setup of our experiments. Chapter 4 details the experiment results

and analysis of our research questions. Chapter 5 discusses the threats to validity of this work.

Finally, chapter 6 concludes this thesis and presents the potential future works.

Artifacts are available (APR-Models-Performance, n.d.).

6

Chapter 2

Related Work

The works presented here are built on top of three active research areas: automated program

repair (APR), pre-trained models, and robustness testing of code models. Specifically, we first

present the research on generate-and-validate-based (G&V-based) APR and deep learning-based

(DL-based) APR. Secondly, a recent new line of DL-based APR employs large pre-trained models

on program repair. So, we briefly present recent pre-trained models and their applications on APR.

Finally, we present the recent robustness testing works on large pre-trained models.

2.1 Automated Program Repair

We discuss two areas of related research on APR in this section: G&V-based APR and DL-based

APR.

2.1.1 Generate-and-Validate-based Automated Program Repair

Automated program repair has been a well-researched field over the past decade, which aims to

automatically fix bugs without human intervention. There are mainly two directions in automated

program repair: G&V-based APR approach and synthesis-based APR approach. G&V-based APR

approaches (Hua et al., 2018; J. Jiang et al., 2018; Kim et al., 2013; Le et al., 2016a; Le, Lo, &

Le Goues, 2016b; Le Goues, Dewey-Vogt, Forrest, & Weimer, 2012; Le Goues, Nguyen, et al.,

2012; C. Liu et al., 2013; Long & Rinard, 2015; Mechtaev, Yi, & Roychoudhury, 2015; Qi, Long,

7

Achour, & Rinard, 2015; Saha et al., 2017; Wen et al., 2018; Xuan et al., 2016; J. Yang et al.,

2017; Ye et al., 2022) dominate the APR research and become the most popular methods. Such

approaches first continuously generate the candidate patches for a buggy program, then utilize the

test suites as the specification to validate each candidate patch until a correct patch meets the expec-

tation. However, the main challenges are that there is often a need for test cases in practice, and the

quality of available test cases is often far from expectation as a repair specification. Additionally,

identifying the correct patches in a search space takes much time and effort. Specifically, (B. Yang

& Yang, 2020) investigates the difference between runtime behaviors modified by plausible patches

and correct patches. (Gao, Mechtaev, & Roychoudhury, 2019) proposes an approach to identify

correct patches by filtering out over-fitted patches. (J. Yang, Tan, Peyton, & Duer, 2019) proposes

an approach to help developers better utilize static application security testing techniques for im-

proving software quality. (Liang et al., 2021) proposes an interactive patch filtering approach to

help developers filter out incorrect patches effectively.

2.1.2 Deep Learning-based Automated Program Repair

In recent years, many works started to employ end-to-end deep learning techniques on program

repair, which opens up a new APR method: the DL-based APR approach. Most DL-based APR

approaches (Ahmad et al., 2021; Berabi et al., 2021; Chakraborty et al., 2022, 2020; Chakraborty &

Ray, 2021; Z. Chen et al., 2019; Guo et al., 2020; Gupta et al., 2017; N. Jiang et al., 2021; Lu et al.,

2021; Lutellier et al., 2020; Niu et al., 2022; Tufano et al., 2019; Y. Wang et al., 2021; J. Zhang et

al., 2022; Zhu et al., 2021) are based on Neural Machine Translation (NMT) architecture. A typical

NMT system is formulated as the components of encoder-decoder and attention. These approaches

formulate the process of bug repair as a translation mechanism, i.e., translating buggy code to fixed

code as translating English to French in natural language processing (NLP). In this field, some

works focus on training a repair model from scratch (Chakraborty et al., 2020; Z. Chen et al., 2019;

Gupta et al., 2017; Lutellier et al., 2020; Tufano et al., 2019), i.e., they collect a training dataset

to train the model with designed training objectives on program repair. Another research line of

DL-based APR approaches focuses on leveraging pre-trained models for program repair (Ahmad

et al., 2021; Chakraborty et al., 2022; Chakraborty & Ray, 2021; Guo et al., 2020; N. Jiang et al.,

8

2021; Lu et al., 2021; Niu et al., 2022; Y. Wang et al., 2021; J. Zhang et al., 2022). To be specific,

different from the previous approaches that are training the APR models from scratch, these APR

models instead are first pre-trained to build the ability of general code understanding and generation

with large pre-training datasets. Then, it is further fine-tuned on repair-specific datasets for program

repair. Our work mainly focuses on the APR models of the second research line, i.e., we conduct

fair and thorough experiments to evaluate the repair performance and robustness of DL-based APR

models. The following section further details the recent works on this line of APR research.

2.2 Pre-trained Models

We discuss the related research of pre-trained models in two aspects: pre-trained models on

Software Engineering (SE) and pre-trained models on APR.

2.2.1 Pre-trained Models on Software Engineering

In recent years, three types of large pre-trained models have been proposed: encoder-based

models (e.g., BERT (Devlin, Chang, Lee, & Toutanova, 2018)), decoder-based models (e.g., GPT-2

(Radford et al., 2019)), and encoder-decoder-based models (e.g., T5 (Raffel et al., 2020) and BART

(Lewis et al., 2019)), and they achieve great success in a variety of NLP tasks. These pre-trained

models are mainly built on Transformer (Vaswani et al., 2017). They are commonly first pre-trained

on large text corpora by various self-supervised training objectives to build the capacity of either

sequence understanding or sequence generation, or both. Then the pre-trained models can be fine-

tuned on a wide range of task-specific datasets and applied to corresponding downstream tasks.

This NLP paradigm has also been utilized to solve various problems in programming language

processing (PLP) (Ahmad et al., 2021; Chakraborty et al., 2022; M. Chen et al., 2021; Feng et al.,

2020; Guo et al., 2020; Lu et al., 2021; Niu et al., 2022; D. Wang et al., 2022; Y. Wang et al., 2021;

Z. Zhang, Zhang, Shen, & Gu, 2022) (e.g., code generation, code search, code translation, and clone

detection).

The three types of pre-trained models have all been adapted to PLP and outperformed the previ-

ous state-of-the-art approaches. The encoder-based code models (Feng et al., 2020; Guo et al., 2020)

9

are mainly based on BERT, a bidirectional Transformer-based encoder, which is better at sequence

understanding tasks (e.g., code search). An additional decoder is needed for encoder-based models

when performing generation tasks. Generally, this decoder is trained from scratch in task-specific

fine-tuning stages. The decoder-based models (Lu et al., 2021) are mainly based on GPT-2, which is

more suitable for sequence generation tasks (e.g., code generation). However, it can still be applied

in code understanding tasks even though it may be a sub-optimal option. The encoder-decoder-

based code models work on both code understanding and generation tasks. There are mainly two

branches: one branch (Ahmad et al., 2021; Chakraborty & Ray, 2021; Niu et al., 2022) is based on

BART, and the other branch (Chakraborty et al., 2022; Y. Wang et al., 2021; J. Zhang et al., 2022)

is based on T5.

2.2.2 Pre-trained Models on Automated Program Repair

Many recent works apply pre-trained models trained on massive code corpora on APR. The

dataset named bug-fix pairs (BFPs) proposed by Tufano et al. (Tufano et al., 2019) has been utilized

as a benchmark for many following works. Each case in this dataset is an abstract code template

processed from the raw source code dataset. (Chakraborty & Ray, 2021) summarize the raw source

code of BFPs and release the raw BFPs dataset. We call the first abstract BFPs and the latter

concrete BFPs. Experiment results in (Lu et al., 2021) show that CodeBERT achieves a good fix

result in abstract BFPs, and the following GraphCodeBERT (Guo et al., 2020) achieves a better

fix result than CodeBERT because of the additional consideration of code structure information in

the pre-training stage. PLBART (Ahmad et al., 2021) and MODIT (Chakraborty & Ray, 2021)

achieve better performance on BFPs. The main reason is that the model’s sequence understanding

and generation capacities are trained jointly because of the encoder-decoder architecture. However,

the slight difference is that MODIT employs the concrete BFPs dataset instead of the abstract BFPs

dataset. The latest pre-trained models (e.g., CodeT5 (Y. Wang et al., 2021), SPT-Code (Niu et

al., 2022), CoditT5 (J. Zhang et al., 2022) and NatGen (Chakraborty et al., 2022), etc.) show better

results on code repair and all of these latest works leverage abstract BFPs as their benchmark dataset.

Unlike previous works, we fine-tune all pre-trained models mentioned above on both abstract

BFPs and concrete BFPs considering a thorough and fair comparison.

10

Note that most G&V-based APR approaches utilize unified benchmark datasets such as De-

fects4J (Just, Jalali, & Ernst, 2014) and QuixBugs (Lin, Koppel, Chen, & Solar-Lezama, 2017) for

evaluation, while the DL-based APR models in this paper are evaluated on concrete BFPs and ab-

stract BFPs. As we are not aiming to propose a new APR tool or compare the repair performance

between G&V-based APR approaches and DL-based APR approaches such as CoCoNut (Lutellier

et al., 2020) or CURE (N. Jiang et al., 2021), instead we focus on evaluating the performance of

DL-based APR models.

2.3 Robustness Testing for Code Models

Recent efforts in NLP have shown that deep neural networks (DNNs) are vulnerable to input

with small perturbations (W. E. Zhang, Sheng, Alhazmi, & Li, 2020). In the domain of deep neural

networks for source code, there is a substantial line in the robustness testing of neural code models.

Ramakrishnan et al. (Ramakrishnan et al., 2020) investigate the robustness of source-code models

by applying k-transformation on inputs. They utilize a Bi-LSTM seq2seq model and a code2seq

model as subject models and evaluate them on code summarization. They find that adversarial

training with a small k can improve robustness against a stronger adversary, such as when k =1 and

k=5. Rabin et al. Bielik et al. (Bielik & Vechev, 2020) verify that, similar to other domains, neural

code models are vulnerable to adversarial attacks, and they find that only some parts of the input

program are relevant to the model’s prediction. So they abstract the rest of the programs, which

makes the adversarial training more effective. Wei et al. (M. Wei et al., 2021) present a coverage-

based fuzzing framework to test the robustness and generalizability of code models, where they

utilize NeuralCodeSum, CODE2SEQ, and CODE2VEC as their subject models. Also, they use a

random string with a fixed length to replace a variable. (Rabin et al., 2021) test the generalizability

of code2vec, code2seq, and GGNN models on predicting method names. They find that these

code models often fail to generalize their performance even with small semantically preserving

program changes. They further find that models based on data and control dependencies in programs

generalize better than neural program models based only on abstract syntax trees (ASTs). In their

experiment, they design a fixed format for renaming a variable, e.g., using var1 to replace the first

11

variable and using var2 and varn to replace the following corresponding variables given a code

snippet. Zhang et al. (H. Zhang et al., 2020) propose Metropolis-Hastings Modifier (MHM), a

Metropolis-Hastings sampling-based identifier renaming approach. Instead of using a random string

or fixed format for renaming a variable, as in the previous works above, MHM first pre-defines a

large collection of variable names and chooses randomly from it to replace a variable. They use this

identifier renaming technique to generate adversarial examples for code models. Pour et al. (Pour et

al., 2021) present a search-based framework for testing the performance of code embedding models:

Code2vec, Code2seq, and CodeBERT on downstream tasks. They use a synonym from the python

library nltk.corpus.wordnet to replace the target word. However, all of the above strategies did not

consider the natural context of an identifier. Following MHM (H. Zhang et al., 2020), Yang et al.

(Z. Yang et al., 2022) focus on producing more natural variable substitutions for adversarial example

generation. In our experiments, considering transformed code should be natural to humans and deep

learning models, we apply the same strategy as (Z. Yang et al., 2022) for generating natural code

transformations when renaming an identifier. We will detail how we adopt their renaming strategy

in section 3.2.1.

Unlike the related work mentioned above, we are the first to focus on evaluating the performance

and robustness of pre-trained models on APR. Additionally, most previous works only utilize two

to three subject models. However, we consider those subject models with different architectures

or pre-training objectives may have different results on robustness, so we perform a large-scale

evaluation on three types of representative models: encoder-based models (e.g., CodeBERT (Feng

et al., 2020) and GraphCodeBERT (Guo et al., 2020)), decoder-based models (e.g., CodeGPT (Lu

et al., 2021)) and encoder-decoder-based models (e.g., CodeT5 (Y. Wang et al., 2021), PLBART

(Ahmad et al., 2021) and SPT-Code (Niu et al., 2022)). Lastly, compared with previous works,

we think that code transformation should be semantic-preserving and natural to humans and deep

learning models. For example, substitutive identifiers for transformed code should not be random

strings or synonyms judged only by humans. It should consider the context information before and

after the substitutive identifier in the code snippet.

12

Chapter 3

Experiment Setup

This chapter details two experiments we designed to investigate the corresponding two re-

search questions mentioned before. Figure 3.1 shows the experimental process. The first exper-

iment (named “Exeriment1” in Figure 3.1) is designed to fairly evaluate the repair performance of

DL-based APR models. So we fine-tune subject models for program repair based on two unified

datasets: abstract BFPs and concrete BFPs. The details of these two datasets are presented in the

previous section 2.2.2. Then, based on the fine-tuned models on the concrete BFPs dataset in the

first experiment, the second experiment (named “Exeriment2” in Figure 3.1) further quantifies and

evaluates the fine-tuned model’s performance change (i.e., robustness) against different semantic-

preserving transformations. Given the test dataset of concrete BFPs, we first check whether it can be

parsed to an AST for each code item. Then, we check whether each code snippet is applicable for a

code transformation (e.g., a code snippet without any local variables is not applicable to be changed

the name of local variables). Finally, the code snippets applicable to the current code transformation

are extracted for each type of code transformation to construct the original dataset. The transformed

code snippets will construct the second dataset, named the transformed dataset. Section 3.2.2 will

detail these two datasets’ construction.

13

Figure 3.1: An overview of the experimental process.

14

3.1 Fine-tuning Pre-trained Models on Program Repair

This section presents the first experiment. We detail the subject models, hyper-parameter set-

tings, fine-tuning datasets, and metrics we used.

3.1.1 Subject Models

We choose seven current pre-trained models as our subject models. From the perspective of

three different architectures, we choose two BERT-style encoder-based models: CodeBERT (Feng

et al., 2020) and GraphCodeBERT (Guo et al., 2020); a GPT-style decoder-based model CodeGPT

(Lu et al., 2021); two BART-style encoder-decoder-based models: PLBART (Ahmad et al., 2021)

and SPT-Code (Niu et al., 2022); and two versions of T5-style encoder-decoder-based models

CodeT5 (Y. Wang et al., 2021), including CodeT5-small and CodeT5-base.

CodeBERT (Feng et al., 2020) is a bi-modal pre-trained model for programming languages

(PL) and natural languages (NL). Following BERT (Devlin et al., 2018) and RoBERTa (Y. Liu et

al., 2019), CodeBERT is developed with the multi-layer Transformer and trained on CodeSearchNet

dataset (Husain, Wu, Gazit, Allamanis, & Brockschmidt, 2019). The training dataset contains 2.4M

functions for six programming languages (Python, Java, JavaScript, Php, Ruby, and Go) along

with natural language document pairs. CodeBERT is trained by two training objectives: masked

language modeling (MLM) and replaced token detection (RTD). The first objective aims to predict

the original tokens masked out given an NL-PL pair, and the second objective aims to determine

which tokens in a given NL-PL pair are replaced. Experiment results introduced in CodeXGLUE

(Lu et al., 2021) have shown that CodeBERT achieves good performances on various downstream

tasks such as code search and clone detection. In our experiment, we fine-tune the pre-trained

CodeBERT for program repair on the BFPs dataset.

GraphCodeBERT (Guo et al., 2020) has the same architecture and pre-training dataset as

CodeBERT. The difference is that GraphCodeBERT also considers the inherent structure of code

and utilizes the data flow in the pre-training stage. Besides using the task of masked language

modeling (MLM), it introduces two structure-aware pre-training tasks: edge prediction and node

alignment. The first is to predict code structure edges, and the other is to align representations

15

between source code and code structure. Experiment results introduced in CodeXGLUE (Lu et

al., 2021) have shown that GraphCodeBERT performs better than CodeBERT on four downstream

tasks, i.e., code search, clone detection, code translation, and code refinement. In our experiment,

we first fine-tune it on the BFPs dataset, and then we use the fine-tuned GraphCodeBERT to infer

the fix prediction given the buggy code.

CodeGPT (Lu et al., 2021) is a pre-trained programming language model for sequence-to-

sequence code generation tasks. It has the same model architecture (i.e., a single left-to-right de-

coder) and training objectives of GPT-2 (Radford et al., 2019), which consists of twelve layers of

Transformer decoders. CodeGPT is trained on Python and Java corpora from the CodeSearchNet

dataset (Husain et al., 2019), which includes 1.1M Python functions and 1.6M Java methods. Recent

work done by Jiang et al. (N. Jiang et al., 2021) showed the effectiveness of GPT for the program

repair task. In our experiment of program repair, we fine-tune the pre-trained CodeGPT for program

repair on the BFPs dataset.

CodeT5 (Y. Wang et al., 2021), based on T5 (Raffel et al., 2020), is an encoder-decoder pre-

trained model. Its pre-training datasets contain CodeSearchNet and C/CSharp datasets from Big-

Query (BigQuery, n.d.), totaling 8.35 million instances. For the pre-training tasks, besides Masked

Span Prediction (MSP), which is similar to T5, CodeT5 adds two additional code-specific tasks,

i.e., Identifier Tagging (IT) and Maksed Identifier Prediction (MIP), to complement the denoising

sequence-to-sequence pre-training. CodeT5 has shown promising performance on code-related un-

derstanding and generation tasks such as code summarization, code generation, and clone detection.

Our experiment will use the CodeT5-small and CodeT5-base as subject models for program repair.

PLBART (Ahmad et al., 2021), is an encoder-decoder pre-trained model based on BART (Lewis

et al., 2019). The pre-training dataset contains 470M Java and 210M Python functions collected

from GitHub and 47M posts in natural language descriptions (English) collected from Stack Over-

flow. The pre-training objective is to reconstruct the original input sequence given an input sequence

that is corrupted by a noise function. Their experimental results show that PLBART performs better

than both CodeBERT and GraphCodeBERT on four downstream tasks, including code summariza-

tion, code generation, and code translation. In our experiments, we utilize their pre-trained PLBART

and fine-tune it for program repair on the BFPs dataset.

16

SPT-Code (Niu et al., 2022) is also an encoder-decoder pre-trained model based on BART. It

is pre-trained on the CodeSearchNet dataset. The pre-training tasks include the Masked Sequence-

to-Sequence prediction, new-designed Code-AST Prediction (CAP), and Method Name Generation

(MNG). SPT-Code’s input contains three components: code tokens, linearized AST, and natural

language extracted only from code (i.e., method name and API call sequence). SPT-Code achieves

promising performances on five downstream tasks, including code summarization, code completion,

code translation, code search, and code repair. The results show that SPT-Code achieves the SOTA

performance compared with CodeBERT and GraphCodeBERT on the five tasks mentioned above.

We employ the pre-trained SPT-Code in our experiments and fine-tune it for program repair on the

BFPs dataset. We further compare its repair performance and robustness with other subject models,

which is never conducted in previous works.

Besides the pre-trained models above, we also configure two models trained from scratch for

comparison: LSTM-based NMT model (Bahdanau, Cho, & Bengio, 2014), and Transformer-

based NMT model (Vaswani et al., 2017). The former LSTM-based NMT model is configured

with a relatively simple architecture. It contains one encoder layer and one decoder layer with an

attention module. The latter Transformer-based NMT model is configured with similar architecture

as most of the pre-trained models above, which are twelve encoder layers and twelve decoder layers.

Both of them are trained from scratch based on our datasets. Table 3.1 and 3.2 illustrate the training

settings for all subject models.

Table 3.1: Statistics of subject models (1).

Group Models Architecture Number of Number of Attention
Parameters Layers Heads

BERT-style
CodeBERT (2020) Encoder 125 M 12 12

GraphCodeBERT (2020) Encoder 125 M 12 12

GPT-style CodeGPT (2021) Decoder 124 M 12 12

T5-style
CodeT5-small (2021) Encoder-Decoder 60 M 6 8
CodeT5-base (2021) Encoder-Decoder 220 M 12 12

BART-style
PLBART (2021) Encoder-Decoder 140 M 6 12
SPT-Code (2022) Encoder-Decoder 262 M 12 12

Training from Scratch
LSTM-based Encoder-Decoder 82 M 1 1

Transformer-based Encoder-Decoder 406 M 12 12

17

Table 3.2: Statistics of subject models (2). Following pre-training tasks are listed in the table:
Masked Language Modeling (MLM), Replaced Token Detection (RTD), Edge Prediction (EP),
Node Alignment (NA), Causal Language Modeling (CLM), Masked Span Prediction (MSP), Iden-
tifier Tagging (IT), Masked Identifier Prediction (MIP), Code-AST Prediction (CAP), Masked Se-
quence to Sequence (MASS), Method Name Generation (MNG), Denoising Autoencoding (DAE).

Group Models Pre-training Pre-training
Dataset Tasks

BERT-style
CodeBERT (2020) CodeSearchNet MLM, RTD

GraphCodeBERT (2020) CodeSearchNet MLM, EP, NA

GPT-style CodeGPT (2021) CodeSearchNet CLM

T5-style
CodeT5-small (2021)

CodeSearchNet and
MSP, IT, MIP

C/CSharp from BigQuery

CodeT5-base (2021)
CodeSearchNet and

MSP, IT, MIP
C/CSharp from BigQuery

BART-style PLBART (2021)
Java/Python from GitHub and

DAE
Posts from Stack Overflow

SPT-Code (2022) CodeSearchNet CAP, MASS, MNG

Table 3.3: Fine-tuning configuration of subject models (1).

Group Models Optimizer Tokenizer Maximum Epoch Maximum Length

BERT-style
CodeBERT (2020) AdamW BPE 30 256

GraphCodeBERT (2020) AdamW BPE 30 256

GPT-style CodeGPT (2021) AdamW BPE 30 512

T5-style
CodeT5-small (2021) AdamW BPE 50 130
CodeT5-base (2021) AdamW BPE 50 130

BART-style
PLBART (2021) Adam SentencePiece 30 512
SPT-Code (2022) AdamW BPE 50 256

Training from Scratch
LSTM-based NMT Adam SentencePiece 30 500

Transformer-based NMT Adam SentencePiece 30 500

18

Table 3.4: Fine-tuning configuration of subject models (2).

Group Models Learning Rate Batch Size (Training) Beam Size

BERT-style
CodeBERT (2020) 5e-5 16 5

GraphCodeBERT (2020) 5e-5 16 5

GPT-style CodeGPT (2021) 5e-5 16 5

T5-style
CodeT5-small (2021) 5e-5 32 10
CodeT5-base (2021) 5e-5 32 10

BART-style
PLBART (2021) 5e-5 16 5
SPT-Code (2022) 5e-5 64 5

Training from Scratch
LSTM-based NMT 1e-3 32 5

Transformer-based NMT 5e-5 32 5

3.1.2 Hyper-parameter Settings in Fine-tuning

Considering the best hyper-parameter settings for each model, for CodeBERT, GraphCode-

BERT, CodeGPT, and PLBART, we employ the same hyper-parameter settings in (Chakraborty

& Ray, 2021). Specifically, we use Label Smoothed Cross Entropy (Müller, Kornblith, & Hinton,

2019) as the loss function. We set the learning rate to 5e-5 with Adam optimizer. We set the number

of maximum training epochs as 30. For CodeT5 and SPT-Code, we employ the hyper-parameter

settings of original works (Niu et al., 2022; Y. Wang et al., 2021) respectively. Table 3.3 and 3.4 list

the detailed hyper-parameter configuration of all subject models. Note that we try to keep the same

hyper-parameter settings with the corresponding original works unless we meet limitations, as such

settings have experimented well. Finally, we consider such settings suitable for fine-tuning models

(e.g., GPU memory limitation discussed in section 5.1).

We employ 1×Nvidia Tesla V100 GPU with 32GB memory for all fine-tuning infrastructure.

3.1.3 Datasets

There exist two different versions of the datasets mainly used in most of the recent DL-based

APR models (Ahmad et al., 2021; Chakraborty et al., 2022; Chakraborty & Ray, 2021; Niu et al.,

2022; Y. Wang et al., 2021; J. Zhang et al., 2022), called BFPs (bug-fix pairs) initially proposed

by (Tufano et al., 2019) in their program repair work. Each pair in BFPs is composed of a tuple

(mb, mf), where mb presents a buggy code component, mf presents the corresponding fixed code.

The two existing versions of BFPs are abstract BFPs and concrete BFPs. Table 3.5 provides an

19

example of these two different datasets versions. Both datasets contain method-level pairs of a

buggy and corresponding fixed code extracted from bug-fixing commits in thousands of GitHub

Java repositories. The abstract BFPs are used originally in (Tufano et al., 2019)’s experiment, and

all the code is abstracted from the raw source code to the abstract template code. The concrete BFPs

are initially from Tufano’s work and further slightly processed by (Chakraborty & Ray, 2021). Both

datasets contain two sub-datasets: B2Fs-small and B2Fs-medium; the difference is that in the former

dataset, the maximum token length of methods is 50, and in the latter dataset, the methods are no

longer than 100 tokens in length. Specifically, MODIT employs concrete BFPs for evaluation, while

PLBART, SPT-Code, and Code-T5 employ abstract BFPs for evaluation.

Table 3.5: An example of abstract BFPs and concrete BFPs. The code snippet of concrete BFPs is
raw source code, and that of abstract BFPs is a code template extracted by (Tufano et al., 2019).

abstract BFPs concrete BFPs

1 p u b l i c vo id METHOD 1 () {
2 VAR 1 . METHOD 2(VAR 2) ;
3 VAR 2 = n u l l ;
4 }

1 p u b l i c vo id u n r e g i s t e r N S D S e r v i c e () {
2 mNsdManager . u n r e g i s t e r S e r v i c e (

n e t w o r k R e g i s t r a t i o n L i s t e n e r
) ;

3 n e t w o r k R e g i s t r a t i o n L i s t e n e r =
n u l l ;

4 }

As our motivation here is to evaluate the repair performance of different models, considering a

fair experiment on the comparison, we choose abstract BFPs and concrete BFPs as the unified repair

dataset to fine-tune all the pre-trained models. For abstract BFPs, we use the original split as used

in (Tufano et al., 2019), and for concrete BFPs, we reuse the same split as used in (Chakraborty &

Ray, 2021). Both abstract BFPs and concrete BFPs are split into three parts: training, validation, and

testing datasets. Training and validation datasets are used in fine-tuning, and the testing dataset is

used for evaluation. Note that in the following experiment 3.2, we will only focus on concrete BFPs;

the consideration behind this is that we believe deep learning-based repair approaches should be

end-to-end and try to avoid adding additional manual efforts as much as possible (i.e., transforming

20

raw source code to abstract version for model’s input, then transforming the output abstract code to

raw source code). Table 3.6 provides the statistics of fine-tuning datasets.

Table 3.6: Statistics of fine-tuning datasets. Train#, Valid#, and Test# stand for the number of the
training, validation, and testing datasets. As concrete BPFs are slightly processed by (Chakraborty
& Ray, 2021) based on abstract BFPs, the size of concrete BPFs is slightly less than abstract BFPs.

Group Dataset Train# Valid# Test#

Concrete BPFs
BFPs-small 46628 5828 5831

BFPs-medium 53324 6542 6538

Abstract BPFs
BFPs-small 46680 5835 5835

BFPs-medium 52364 6546 6545

3.1.4 Metrics

We choose Accuracy@1 and CodeBLEU to evaluate the correctness of DL-based APR predic-

tions.

Accuracy@1

Following previous works (Ahmad et al., 2021; Chakraborty et al., 2022; Chakraborty & Ray,

2021; Guo et al., 2020; Lu et al., 2021; Niu et al., 2022; Y. Wang et al., 2021; J. Zhang et al.,

2022), we also use Accuracy@1 (Acc@1) as the primary metric for our experiments. Specifically,

in the model’s inference stage, if the generated candidate (i.e., the predicted fixed code) with the

highest probability (i.e., the model will generate a descending ranked list of candidates code based

on probability, we choose the top one) is identical to the goal sentence (i.e., the expected fixed code),

we consider it correct, otherwise incorrect.

CodeBLEU

BLEU (Papineni, Roukos, Ward, & Zhu, 2002) (bilingual evaluation understudy) is an algorithm

for evaluating the quality of a machine-translated text from the text, which is used in the natural lan-

guage processing field. CodeBLEU (Ren et al., 2020) is a popular metric for code processing-related

21

tasks as it can consider not only the text similarity (i.e., n-gram match in NLP) but also the similarity

of code syntax and data flow. This value indicates how similar the prediction code is to the ground

truth, the more values closer to one, the more similar they are. The following formula calculates

CodeBLEU: CodeBLEU = alpha * ngram match score + beta * weighted ngram match score +

gamma * syntax match score + theta * dataflow match score, where alpha, beta, gamma, and theta

are all 0.25. We reuse the implementation of CodeBLEU calculation in (Lu et al., 2021).

22

3.2 Repair Robustness of DL-based APR Models against Semantic-

preserving Code Transformations

This section presents the second experiment. We detail the design of semantic-preserving code

transformations and how we construct our datasets for repair robustness evaluation on DL-based

APR models.

3.2.1 Semantic-preserving Code Transformations

Previous works study code refactoring in practice (Golubev, Kurbatova, AlOmar, Bryksin, &

Mkaouer, 2021; Negara, Chen, Vakilian, Johnson, & Dig, 2013; Negara, Vakilian, Chen, Johnson, &

Dig, 2012; Tsantalis, Ketkar, & Dig, 2020). However, the semantic-preserving code transformations

in this thesis are not code refactorings. Recent studies (Pour et al., 2021; M. Wei et al., 2021;

Z. Yang et al., 2022) utilize code transformations for robustness testing or adversarial attack of code

models, while code refactorings are mainly employed for optimizing code in the practice of software

development. We leave how code refactoring impacts the performance of DL-based APR models as

future work.

We totally choose nine types of different semantic-preserving code transformations.

• Local variable renaming is a semantic-preserving transformation that renames all the occur-

rences of the first local variable. The new name of the variable is generated by the pre-trained

model. The details will be presented in the following paragraphs.

• Method renaming is a semantic-preserving transformation that renames the method. The

new name is generated by the same strategy as local variable renaming.

• Parameter renaming is a semantic-preserving transformation that renames the parameter.

The new name is generated by the same strategy as local variable renaming.

• Insert log statement is a semantic-preserving transformation that adds System.out.println(”log”);

as the first code statement in a method-level code snippet.

23

• Insert try catch is a semantic-preserving transformation that adds a try-catch in code state-

ments.

• Boolean exchange is a semantic-preserving transformation that swaps true with false and

vice versa.

• Loop exchange is a semantic-preserving transformation that replace for with while and vice

versa.

• Convert switch to if is a semantic-preserving transformation that replace if-else statements

with switch-case statements and vice versa.

• Reorder condition is a semantic-preserving transformation that swaps the conditions before

and after == and !=.

There are several alternative strategies for the renaming transformation, and we describe these

in detail in section 2.3. In this section, we will detail why we adopt (Z. Yang et al., 2022) for our

renaming transformations and how we implement it in our experiment. As mentioned in the related

work chapter 2.3, M. Wei et al. (2021) use a random string with a fixed length to replace a variable;

Rabin et al. (2021) design a fixed format for renaming a variable; H. Zhang et al. (2020) propose

Metropolis-Hastings Modifier (MHM) to rename an identifier; Pour et al. (2021) use a synonym

from the python library nltk.corpus.wordnet to replace the target word. However, all of the above

strategies did not consider the natural context of an identifier. Renaming by random string or fixed

format does not comply with common code conventions in the real world, and developers may

reject the transformed unnatural code. When it comes to pre-trained models, their knowledge is

based on pre-training on large human code repositories, which means they also follow the common

code conventions in the real world. Additionally, suppose we feed a buggy code with extremely

long string variables or common variable names to the model, and its tokenizer may tokenize them

to completely different sub-tokens, which will impact the model’s prediction. Finally, we adopt the

recent naturalness-aware substitution algorithm proposed by (Z. Yang et al., 2022). They aim to

generate a variable substitution natural to developers and models, to support their adversarial attack

in their experiment. We thank this work for its open-source experiment code.

24

Algorithm 1 introduces how we employ the naturalness-aware substitution algorithm (Z. Yang

et al., 2022) for our renaming strategy. First, we extract the first variable (var) by an input source

code (Line 1). Then, given a code snippet with the masked token (var), the masked language predic-

tion function (mask lang pred()) can predict a list of substitutions (subs) based on the input context

(Line 3). Then, it leverages the contextualized embedding function (embedding()) to compute the

embedding of the original masked token (embedding var) and corresponding substitutive tokens

(embedding sub) in the substitution list (Line 4-7). Next, it computes the Cosine similarity (co-

sine var subs) of the embedding of the original token with each substitution in its substitutions list

(Line 8-9). Then, it sorts all the substitutions in descending order through the Cosine similarity

value (Line 11). Finally, we select the top one substitution to replace the variable in all occurrences

of a code snippet and return the transformed code snippet (c’) (Line 11-14).

Algorithm 1: Naturalness Aware Substitution for Renaming-related Transformations
Input: c: input source code, M: pre-trained model

Output: c′: transformed code

1 var ← extract(c);

2 # extract(c) returns the first variable (same as the parameter, method) in code c

3 subs← mask lang pred(var, c,M);

4 embedding var ← embedding(var,M);

5 cosine var and subs← ∅;

6 for sub in subs do

7 embedding sub← embedding(sub,M);

8 cosine var sub← cosine similarity(embedding var, embedding sub);

9 cosine var subs.add(cosine var sub);

10 end

11 var sub top← sort(cosine var subs).top one;

12 c′ ← replace(var sub top, var.occurrences, c);

13 # var.occurrences returns all occurrences of var

14 return c′;

This algorithm leverages two functions of CodeBERT or GraphCodeBERT: masked language

25

prediction and contextualized embedding. Given a code snippet with masked tokens, the masked

language prediction function can predict a list of potential substitutions based on the input context.

Then, it leverages the contextualized embedding function to compute the embedding of the original

masked tokens and corresponding substitutive tokens in the substitution list. Next, it computes the

Cosine similarity of the embedding of the original token with each substitution in its substitutions

list. Finally, it sorts all the substitutions in descending order through the Cosine similarity value.

We utilize tree-sitter (tree-sitter, n.d.) to parse java code and identify the target position for

renaming an identifier. We utilize this algorithm only for generating renaming substitutions for

an identifier. Note that we apply this algorithm not only on local variable renaming but also on

parameter and method renaming. Considering the complexity, we only rename one variable and

one parameter if there are multiple ones in a code snippet. As different code snippets have different

numbers of variables, the number of renamed variables for different code snippets may introduce

bias for our experiment. We leave it as future work about investigating how the different number of

renamed identifiers impact the repair effect of DL-based APR models. We only choose the top one

substitution of a variable, parameter, or method from the ranked substitution list, as this substitute

is what pre-trained models think can fit the code context best. Different from the previous work

(Z. Yang et al., 2022), which generates top-k (k=60 in their experiment) ranked substitutions for

each variable. They iterate these substitutions to attack the model until one adversarial sample is

generated.

List 1 gives an example of substitutes generated by GraphCodeBERT for a code snippet. Given

a code snippet, we first locate that the local variable’s name is temp, the method’s name is incremen-

tKey, and the parameter’s name is key. Next, we provide the top five substitutes for each name of

a local variable, method, and parameter. We can find that the top one substitute of incrementKey is

“incrementalIndex”, which are semantically close to each other. However, the top one substitute of

key is “is”, and that of temp is “count”, both are not semantically close to the original tokens. It ver-

ifies that the pre-trained models generate the masked tokens by all the context information instead of

only one original token in a code snippet. We can find the words in both pairs of (key, is) and (temp,

count) are not semantically similar, as the substitutions are predicted by the variable-surrounded

context instead of the variable itself.

26

Table 3.7 gives examples of the original code snippet and the corresponding renamed code snip-

pet. For the local variable renaming, method renaming, and parameter renaming, we apply the top-1

substitution as shown in List 1 to replace the corresponding variable and parameter occurrences. For

example, for renaming a local variable, after we replace the temp by “count” in the code statement

int count = keys.get(key);, the following code statements which using temp will also be changed, i.e.,

changing keys.set(key, (temp++)); to keys.set(key, (count++));. For renaming a parameter, the logic

is the same as renaming a local variable. While for renaming a method, we only need to change

once as all items in our dataset are a single method-level code snippet, and each code snippet only

contains one method.

Note that we only rename the first variable or parameter and all of their occurrences in a method-

level code for renaming a variable or parameter. We leave transformations about renaming multiple

variables and parameters as future work.

For the other six types of semantic-preserving code transformations, we thank the work (Rabin,

Wang, & Alipour, 2019) that open source their code, and we adopt their tool to generate our six

types of semantic-preserving code transformations. However, as their tool only accepts Java files

as input, we first convert each method-level code snippet in the testing dataset to one Java file. So

the number of Java files is the same as the size of the converted dataset. Then, we directly use their

tool to generate six types of semantic-preserving transformation files for each Java file. Finally,

we gather transformed Java files to the dataset file, i.e., each Java file is used as one line of code

to construct transformation datasets. Note that (Rabin et al., 2019) is based on Javaparser to build

AST for code, while Javaparser is not suitable for parsing a partial code snippet, so the tool adds a

Class T {} head to each method-level code snippet before applying transformations, and convert it

to its original code snippet (i.e., delete Class T {} head) after transformations.

Table 3.7 and 3.8 provide examples of these six code transformations. For the examples of insert

log statement and insert try catch, we add a statement System.out.println(”log”); in the first line and

add try-catch in the code statement; For the example of boolean exchange, we change boolean res

= false; to boolean res = true;, also change return res; to return !(res); to ensure the semantic

equivalence; For the example of loop exchange, we use while to replace for and add int i = 1; in line

2 to keep the semantic equivalence; For the example of convert switch to if, we use if-else to replace

27

{

"code":

"public void incrementKey(int key) {

int temp = keys.get(key);

keys.set(key, (temp++));

}",

"substitutes":{

"incrementKey":[

"incrementalIndex",

"increaseKey",

"IncreaseInt",

"IncreaseKey",

"IncreaseIndex",

......

],

"key":[

"is",

"primary",

"ey",

"table",

"y",

......

],

"temp":[

"count",

"max",

"pre",

"partial",

"random",

......

]

}

}

Listing 1: An example of substitutes generated by GraphCodeBERT for local variables, methods,
and parameters.

28

switch-case; For the example of reorder condition, we swap the order of conditions, i.e., changing

(this.parent)==null to null==(this.parent).

Table 3.7: Examples of semantic-preserving code transformations of local variable renaming,
method renaming, parameter renaming, insert log statement and insert try catch.

original code local variable renaming

1 public void incrementKey (int

key) {

2 int temp = keys.get(key);

3 keys.set(key , (temp ++));

4 }

1 public void incrementKey(int key
) {

2 int count = keys.get(key);
3 keys.set(key, (count ++));
4 }

method renaming parameter renaming

1 public void incrementalIndex (int
key) {

2 int temp = keys.get(key);
3 keys.set(key, (temp++));
4 }

1 public void incrementKey(int

is) {

2 int temp = iss.get(is);

3 iss.set(is , (temp++));
4 }

insert log statement insert try catch

1 public void incrementKey(int key
) {

2 System.out.println("log");

3 int temp = keys.get(key);
4 keys.set(key, (temp++));
5 }

1 public void incrementKey(int key
) {

2 int temp = keys.get(key);
3 try {

4 keys.set(key, (temp++));

5 } catch (Exception ex) {
6 ex.printStackTrace();

7 }
8 }

29

Table 3.8: Examples of semantic-preserving code transformation of boolean exchange, loop ex-
change, convert switch to if and reorder condition.

original code boolean exchange

1 public boolean contains(int ID) {
2 E e = getElementByID(ID);

3 boolean res = false ;
4 if (e != null) {
5 res = true ;
6 }
7 return res;
8 }

1 public boolean contains(int ID) {
2 E e = getElementByID(ID);
3 boolean res = true ;
4 if (e != null) {

5 res = false ;
6 }

7 return !(res) ;

8 }

original code loop exchange

1 private void fillTower(int N) {

2 for (int i = 1; i <= N; i++)
{

3 towers.get(0).push(i);
4 }
5 }

1 private void fillTower(int N) {

2 int i = 1;

3 while (i <= N) {
4 towers.get(0).push(i);

5 i++;

6 }
7 }

original code convert switch to if

1 public void onClick(View view) {

2 switch (view.getId()) {
3 case R.id.signInButton:

4 signIn(); break;

5 case R.id.signOutButton:

6 signOut(); break;

7 }
8 }

1 public void onClick(View view) {

2 if (view.getId() == R.id.
signInButton) {

3 signIn();

4 } else if (view.getId() == R
.id.signOutButton) {

5 signOut();
6 }
7 }

original code reorder condition

1 public boolean hasParent() {

2 return (this.parent)==null ?

false : true;
3 }

1 public boolean hasParent() {

2 return null==(this.parent) ?

false : true;
3 }

30

3.2.2 Dataset Construction

In this experiment, we only use concrete BFPs for performing code transformations, as code

snippets in abstract BFPs are abstract code templates instead of raw source code, which is unsuitable

for transformations. Table 3.5 gives an example of abstract code and the corresponding concrete

code. We can find all variables, methods, and parameters are converted to the fixed format such

as VAR 1, METHOD 1, and PARAMETER 1. Such transformations are not semantically natural to

developers in the real world. We only choose concrete BFPs for performing semantic-preserving

code transformations as the code snippets in this dataset are raw and natural source code. Also, the

transformed code snippets for concrete BFPs are more natural than that for abstract BFPs, which is

more meaningful for the robustness evaluation of models.

We construct two datasets for each type of semantic-preserving code transformation: the orig-

inal dataset and the transformed dataset. Specifically, the original dataset of each transformation

is extracted from the test dataset of concrete BFPs before applying the code transformation be-

cause not each code transformation is applicable for each code snippet. Note that we only use the

testing dataset from concrete BFPs for this experiment. The training and validation datasets are

used in the fine-tuning stage. For instance, for renaming a local variable in the iteration stage of

all items in the test dataset of concrete BFPs, if the current code snippet does not contain any lo-

cal variable, which means this code snippet is not suitable for being applied the variable renaming

transformation, so we skip it. Otherwise, we extract this code item and add it to the original dataset,

then add its transformed code to the corresponding transformed dataset. Finally, we generate nine

datasets groups. For both BFPs-small and BFPs-medium (section 3.1.3 explains their difference),

each group contains one type of transformed dataset and the corresponding original dataset. In each

group, the number of code items in the original and transformed datasets is the same. Table 3.9 lists

the statistics of nine groups of constructed datasets.

31

Table 3.9: Statistics of transformed datasets and corresponding original datasets. Each transformed
code snippet corresponds to the original code snippet, so the number of each type of the transformed
dataset and the corresponding original dataset is the same.

Transformations BFPs-small BFPs-medium
local variable renaming 251 1099

method renaming 5674 6217
parameter renaming 3444 4302
boolean exchange 32 146

convert switch to if 44 166
insert log statement 5608 6384

insert try catch 3321 5073
loop exchange 65 708

reorder condition 1125 3578

32

Chapter 4

Experiment Results and Analysis

4.1 RQ1: What Is the Repair Performance of Different DL-based

APR Models?

4.1.1 Motivation

There are mainly three types of pre-trained models from the architectural perspective: BERT-

style encoder-based models, GPT-style decoder-based models, and T5-style and BART-style encoder-

decoder-based models. We aim to investigate their repair performance based on a fair comparison

experiment. Note that previous works have adopted pre-trained models on program repair. While

some models employ abstract BFPs dataset, others use concrete BFPs dataset. Some also utilize

the dataset extracted by themselves from big software repositories. However, a fair study is needed

to compare the repair performance of all the representative models based on unified datasets. The

motivation is that we try to reveal quantitatively which representative models perform better for

APR. For example, SPT-Code and Code-T5 evaluate the model’s capacity of program repair only

on abstract BFPs. To the best of our knowledge, no existing works evaluate these models on con-

crete BFPs. The concrete BFPs contains the raw source code instead of the abstract code template in

abstract BFPs. We argue that fine-tuning models on raw code datasets are better than abstract code

datasets because such fine-tuned models can directly infer fixed code for a buggy code. While the

33

models fine-tuned on abstract code datasets need a set of manual efforts. Such manual efforts con-

tain pre-processing from raw code to abstract code when feeding it to models and post-processing

from abstract code to raw code after obtaining the models’ output. Also, there needs to be more

work comparing the repair performance of DL-based APR models on abstract BFPs and concrete

BFPs.

Additionally, these models leverage program repair as one of the downstream tasks to evaluate

the model’s understanding and generation capability. However, we focus on one task-specific com-

parison from the perspective of program repair, i.e., which models have better repair performance.

Compared with previous works, we use more representative models and evaluate them uniformly

on both concrete BFPs and abstract BFPs instead of either of them.

Lastly, given one model, we wonder which type of code format (i.e., abstract or concrete source

code) is more suitable for DL-based APR models.

4.1.2 Approach

We conducted our first experiment to answer this research question. Section 3.1 describes the

experiment setup. We first download all the pre-trained checkpoints of all subject models. Note that

at this stage, these pre-trained models have the understanding and generation capacity of natural

language or programming language (i.e., source code), and their task-specific capability needs to

be fine-tuned on the corresponding dataset. We respectively employ concrete BFPs and abstract

BFPs for fine-tuning all subject models. Table 3.3 and 3.4 detail the fine-tuning setups for hyper-

parameters of all subject models. Table 4.1 shows our detailed result for different fine-tuned models

on concrete BFPs and abstract BFPs. Section 3.1.3 details the evaluation datasets, and Table 3.6 lists

the statistics of split datasets for both abstract BFPs and concrete BFPs (i.e., training, validation, and

testing datasets).

4.1.3 Results and Discussion

Most encoder-decoder-based APR models (SPT-Code, CodeT5, and PLBART) and the

decoder-based APR model (CodeGPT) have better repair accuracy than encoder-based APR

models (CodeBERT and GraphCodeBERT) on both abstract BFPs and concrete BFPs. Only

34

T a
bl

e
4.

1:
R

ep
ai

rp
er

fo
rm

an
ce

of
su

bj
ec

tm
od

el
s

fin
e-

tu
ne

d
on

co
nc

re
te

B
FP

s
an

d
ab

st
ra

ct
B

FP
s.

“a
cc

”
st

an
ds

fo
rA

cc
ur

ac
y@

1(
%

)a
nd

“c
od

eb
le

u”
st

an
ds

fo
rC

od
eB

L
E

U
(%

).

G
r o

up
M

od
el

s
D

at
as

et
A

bs
tr

ac
tB

FP
s

C
on

cr
et

e
B

FP
s

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

B
E

R
T-

st
yl

e
C

od
eB

E
R

T
B

FP
s-

sm
al

l
15

.3
2

78
.2

6
16

.6
8

80
.5

1
B

FP
s-

m
ed

iu
m

3.
00

91
.2

7
8.

88
87

.7
2

G
ra

ph
C

od
eB

E
R

T
B

FP
s-

sm
al

l
14

.8
2

78
.7

7
17

.6
2

79
.6

4
B

FP
s-

m
ed

iu
m

3.
85

91
.1

9
6.

65
87

.2
0

G
PT

-s
ty

le
C

od
eG

PT
B

FP
s-

sm
al

l
19

.6
1

74
.3

0
22

.2
0

80
.0

8
B

FP
s-

m
ed

iu
m

12
.2

5
84

.6
3

11
.5

3
86

.6
6

T
5-

st
yl

e
co

de
T

5-
ba

se
B

FP
s-

sm
al

l
21

.6
1

77
.8

4
25

.2
9

79
.7

3
B

FP
s-

m
ed

iu
m

13
.2

3
89

.7
2

15
.4

9
87

.7
8

co
de

T
5-

sm
al

l
B

FP
s-

sm
al

l
20

.3
4

77
.9

2
21

.7
6

78
.1

0
B

FP
s-

m
ed

iu
m

11
.8

2
89

.4
2

12
.9

2
86

.2
9

B
A

R
T-

st
yl

e
SP

T-
C

od
e

B
FP

s-
sm

al
l

17
.0

6
73

.1
4

22
.7

9
82

.5
9

B
FP

s-
m

ed
iu

m
11

.3
4

88
.1

6
20

.5
6

89
.1

9

PL
B

A
R

T
B

FP
s-

sm
al

l
17

.6
0

77
.4

9
18

.4
0

77
.6

4
B

FP
s-

m
ed

iu
m

8.
71

87
.6

1
6.

13
87

.1
5

L
ST

M
-b

as
ed

B
FP

s-
sm

al
l

6.
24

74
.4

4
2.

44
49

.7
5

Tr
ai

ni
ng

fr
om

B
FP

s-
m

ed
iu

m
2.

15
86

.8
7

0.
69

77
.3

6
Sc

ra
tc

h
T r

an
sf

or
m

er
-b

as
ed

B
FP

s-
sm

al
l

12
.0

0
73

.6
6

5.
61

62
.5

5
B

FP
s-

m
ed

iu
m

5.
99

84
.5

0
2.

00
73

.8
0

35

on BFPs-medium of concrete BFPs, PLBART (6.13%) is slightly lower than GraphCodeBERT

(6.65%). From Table 4.1 and Figure 4.1, when we compare different models’ performance on con-

crete BFPs, we find the best repair effect on BFPs-small is generated by the CodeT5-base model,

which is 25.29%. The following SPT-Code (22.79%), CodeT5-small (21.76%), and PLBART

(18.40%) also show good performance. Additionally, CodeGPT’s result (22.20%) is close to SPT-

Code, while other encoder-based models (CodeBERT and GraphCodeBERT) are all lower than

20%. Regarding BFPs-medium, the best repair effect is from SPT-Code (20.56%). The following

models’ results are significantly lower than SPT-Code, which are 12.92%, 11.53%, 8.88%, 6.65%,

and 6.13% for CodeT5-small, CodeGPT, CodeBERT, GraphCodeBERT, and PLBART respectively.

Overall, most encoder-decoder-based APR models and the decoder-based APR model have better

repair accuracy than encoder-based APR models.

Figure 4.1: The repair accuracy of subject models on abstract BFPs and concrete BFPs.

The reason is, for the encoder-decoder-based models, the encoder and decoder components

can learn jointly and build the capability of both code understanding and generation from their

pre-training stages. However, in an encoder-based model such as CodeBERT, even if a decoder

is attached, this decoder is actually trained from scratch in the fine-tuning stage. So it needs to

36

gain knowledge from a more general and larger pre-training dataset based on different pre-training

objectives due to the lack of the pre-training stage. The decoder-based model is better than encoder-

based models because its natural architecture is designed for sequence generation tasks (e.g., code

repair and code generation) instead of sequence understanding tasks (e.g., code search).

Most DL-based APR models fine-tuned on the concrete BFPs have better repair perfor-

mance than those fine-tuned on the abstract BFPs. However, in models trained from scratch,

this result is reversed. Only for CodeGPT and PLBART on concrete BFPs-medium, the accuracy is

both slightly lower than them on abstract BFPs-medium (Figure 4.2). Particularly, we can see from

Table 4.1 and Figure 4.2, the repair accuracy of SPT-Code on concrete BFPs is 20.56%, while that

on abstract BFPs is 11.34%. Similarly, CodeBERT, GraphCodeBERT, CodeT5, and PLBART show

better repair results on concrete BFPs than on abstract BFPs. While CodeGPT’s and PLBART’s

repair accuracy on concrete BFPs-medium (11.53% and 6.13%, respectively) are not better than

that on abstract BFPs-medium (12.25% and 8.71%, respectively), the gap is small. However, for

the LSTM-based NMT model and the Transformed-based model, their repair accuracy on abstract

BFPs is better than that on concrete BFPs.

Figure 4.2: The repair accuracy comparison of subject models on abstract BFPs and concrete BFPs.

37

To explain these results, we can think about the pre-training datasets such as CodeSearchNet

(Husain et al., 2019), all the cases in the training dataset are concrete source code instead of abstract

source code, which means the models only learn the general knowledge on concrete source code

in the pre-training stage. While the results on the LSTM-based NMT model and the Transformed-

based model indicate that the model only trained on abstract code may have better repair results than

that only trained on concrete code. What would things be like if we processed and transformed all

concrete source code to an abstract version for the pre-training dataset? However, the deep learning-

based approaches should be end-to-end and try to avoid adding additional manual efforts as much

as possible (i.e., transforming a bug-fix pair code to an abstract template version). We will not dive

into more about that in this work and leave it as future work.

Other findings. We find that on concrete BFPs, all DL-based APR models with pre-training

show better repair accuracy results than models trained from scratch (LSTM-based NMT model

and Transformer-based NMT model). On abstract BFPs, the trend is almost the same. Particu-

larly, the Transformer-based NMT model (5.61% and 2.00% on BFPs-small and BFPs-medium,

respectively) shows better than the LSTM-based NMT model (2.44% and 0.69% on BFPs-small

and BFPs-medium, respectively). The reason is apparent: the pre-trained models benefit from the

pre-training stage, while models trained from scratch lack this pre-training stage. Additionally,

we find all subject DL-based APR models show better repair accuracy results on BFPs-small than

BFPs-medium on both abstract BFPs and concrete BFPs. This phenomenon indicates that DL-based

APR models perform better on short-sequence code snippets than on long-sequence code snippets.

However, from the perspective of CodeBLEU, we find all subject models show higher CodeBLEU

results on BFPs-medium than BFPs-small on both abstract BFPs and concrete BFPs. As discussed

in section 3.1.4, we use Accuracy@1 as the primary metric for evaluation because it can directly

show the percentage of fixed bugs.

38

Summary for RQ1 and other findings:

(1). Most encoder-decoder-based APR models and the decoder-based APR model have better

repair accuracy than encoder-based APR models.

(2). Most DL-based APR models fine-tuned on concrete code datasets have better repair

performance than those fine-tuned on abstract code datasets. However, in models trained

from scratch, this result is reversed.

(3). All DL-based APR models with pre-training show better repair accuracy results than

those trained from scratch.

(4). All subject DL-based models show better repair accuracy results on short-sequence code

snippets than long-sequence code snippets.

4.2 RQ2: What Is the Repair Robustness of Different DL-based APR

Models against Different Semantic-preserving Code Transforma-

tions?

4.2.1 Motivation

Previous works mention that deep neural networks are vulnerable to small perturbations. How-

ever, to the best of our knowledge, there needs to be more evaluation on the repair robustness of

DL-based APR models against semantic-preserving code transformations. Specifically, we want

to quantify APR models’ performance change (i.e., robustness) in the repair-specific domain. Fur-

thermore, there are many semantic-preserving code transformations, so we wonder which types

significantly impact the repair robustness of DL-based APR models. Lastly, we want to investigate

and verify one of our intuitions: whether DL-based APR models with pre-training have better repair

robustness than models trained from scratch. If so, we want to quantify this question. This intuition

is because pre-trained models (e.g., CodeBERT, GraphCodeBERT, CodeGPT, PLBART, SPT-Code,

and CodeT5) have learned general code representation in the pre-training stage, which may build

its capability of capturing the code syntax and semantics. In the fine-tuning stage, it further fine-

tunes its inner parameters to be adapted to the code repair task. However, the models trained from

39

scratch (e.g., LSTM-based NMT model and Transformer-based NMT model) are only trained on

repair-specific datasets and lack the pre-training stage.

4.2.2 Approach

We conducted the second experiment to answer this research question. Section 3.2 details the

experiment setup. We first define nine types of semantic-preserving code transformations, including

local variable renaming, method renaming, parameter renaming, boolean exchange, convert switch

to if, insert log statement, insert try catch, loop exchange, and reorder condition. Then, we apply

each transformation to the test dataset of concrete BFPs. In this experiment, we only employ con-

crete BFPs instead of abstract BFPs. Another thing is that we find that not all code snippets are

suitable for any code transformation. For example, given a method code, if there are no parameters,

we cannot apply parameter renaming transformation on it. Considering the motivation of this re-

search question, we want to compare the models’ repair performance performed on an original code

with that on its transformed code. So when applying each code transformation on the test dataset

of concrete BFPs, we first extract the items applicable for this transformation, name the original

dataset, and then generate the transformed dataset. Finally, we generate nine original datasets and

nine corresponding transformed datasets. Table 3.9 shows the statistics of these datasets.

We employ the fine-tuned models on the previous experiment 3.1. From a high-level perspec-

tive, we classify our fine-tuned models as models with pre-training and models trained from scratch.

We follow the same hyper-parameter setting for each model as Table 3.1 and 3.2. We evaluate its

repair Accuracy@1 and CodeBLEU on each transformed dataset type and its original dataset. Note

that we mainly use Accuracy@1 to detail our results because it can accurately present the fixed

percentage of bugs. Finally, we summarize our detailed results in Table 4.2 and Table 4.3. Table 4.4

and Table 4.5 summarize the percentage of accuracy reduction.

4.2.3 Results and Discussion

All DL-based APR models meet performance reduction after applying each semantic-

preserving transformation. Based on the experiment results in Table 4.2, Table 4.3, and Figure

40

4.3, we find that all DL-based APR models with pre-training perform worse regarding repair ac-

curacy on transformed datasets than on original datasets for both BFPs-small and BFPs-medium.

From the perspective of CodeBLEU, this trend keeps the same as Accuracy@1. This finding verifies

that current DL-based APR models exactly suffer from non-robust issues.

Figure 4.3: The repair accuracy distribution of subject models against different semantic-preserving
code transformations.

Renaming-related transformations have a relatively small impact on the repair robustness

of DL-based APR models. From Figure 4.4, We find that local variable renaming, method renam-

ing, and parameter renaming have relatively small impacts on models’ repair performance among

nine transformations. Notably, the SPT-Code shows the best robustness on renaming transformation

from Table 4.2. For example, in original and transformed datasets by local variable renaming on

BFPs-small, SPT-Code shows 17.02% and 16.27% repair accuracy, respectively; when it comes to

method renaming and parameter renaming, SPT-Code shows 20.42% and 20.34% repair accuracy

and 21.21% and 20.88% repair accuracy, respectively. Although these three code transformations

reduce the repair performance, the pre-trained models show stable robustness.

To explain this phenomenon, we can consider the renaming strategies we present in section

3.2.1. It is because we choose the renaming substitutions based on the masked language prediction

41

function of the pre-trained model (i.e., GraphCodeBERT), which considers the context of the code

snippet. Imagining that if we choose a random and extremely long string for renaming a local

variable, it will be tokenized to an entirely different embedding by pre-trained models, which will

impact the model’s prediction. However, we consider that renaming should comply with standard

coding conventions in the real world and consider the natural context of token-surrounded code

snippets.

Transformations related to changing the syntactic structure of code have a relatively sig-

nificant impact on the repair robustness of DL-based APR models. From Figure 4.4, we find

that on BFPs-small, insert a log statement, insert try catch, boolean exchange, and loop exchange

have a more significant impact on the model’s repair performance. Particularly, loop exchange per-

forms all 0% (Table 4.2) repair accuracy on the transformed datasets. While recorder condition

and convert switch to if are a little better than the former four, they also introduce a big robustness

problem of these pre-trained models. However, we also find that on BFPs-small, SPT-Code shows

relatively better robustness than other models, particularly in convert switch to if transformation,

which is 20.45% and 18.18% on the original dataset and transformed dataset, respectively.

Figure 4.4: The repair accuracy distribution of semantic-preserving code transformations on subject
models.

42

DL-based APR models trained from scratch show more significant non-robust issues than

models with pre-training. From Table 4.2, 4.3, 4.4 and 4.5, we find the LSTM-based NMT model

and the Transformer-based NMT model keep a lower repair accuracy no matter what on the original

datasets and transformed dataset. We cannot compare them with other pre-trained models by perfor-

mance reduction only because if they perform the same 0% and 0% on both original and transformed

datasets, we cannot conclude they have stable robustness. However, in high-level and whole-data

analysis, DL-based APR models trained from scratch show worse repair robustness than pre-trained

APR models. For example, for insert a log statement, insert try catch, convert switch to if, boolean

exchange, and loop exchange, both the LSTM-based NMT model and the Transformer-based NMT

model perform 0% repair accuracy on the corresponding transformed datasets. The reason behind

this is apparent, the pre-trained models benefit from the pre-training stage for building an initial

general capability of code understanding and generation, while APR models trained from scratch

lack this stage.

Summary for RQ2 and other findings:

(1). All DL-based APR models meet performance reduction (i.e., robustness) after applying

a semantic-preserving transformation.

(2). Renaming-related transformations (i.e., local variable renaming, method renaming, and

parameter renaming) have a relatively small impact on the repair robustness of DL-based

APR models.

(3). Transformations related to changing the syntactic structure of code have a relatively

significant impact on the repair robustness of DL-based APR models.

(4). DL-based APR Models trained from scratch show more considerable performance re-

duction (i.e., robustness) than models with pre-training.

43

Ta
bl

e
4.

2:
Fi

ne
-t

un
ed

m
od

el
s

ag
ai

ns
td

iff
er

en
ts

em
an

tic
-p

re
se

rv
in

g
co

de
tr

an
sf

or
m

at
io

ns
on

B
FP

s-
sm

al
l.

“a
cc

”
st

an
ds

fo
rA

cc
ur

ac
y@

1(
%

)a
nd

“c
od

eb
le

u”
st

an
ds

fo
rC

od
eB

L
E

U
(%

).

lo
ca

lv
ar

ia
bl

e
re

na
m

in
g

m
et

ho
d

re
na

m
in

g
pa

ra
m

et
er

re
na

m
in

g

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

C
od

eB
E

R
T

13
.1

5
80

.6
0

9.
96

79
.7

6
16

.7
6

80
.5

6
15

.4
2

80
.0

9
17

.5
1

81
.5

5
13

.1
2

80
.3

9
G

ra
ph

C
od

eB
er

t
13

.9
4

80
.5

8
11

.9
5

79
.9

4
17

.6
8

79
.6

2
16

.0
9

79
.2

6
18

.6
7

80
.6

7
14

.0
5

79
.5

0
C

od
eG

PT
17

.5
3

79
.3

7
13

.1
5

79
.7

9
22

.2
1

79
.7

0
17

.3
4

79
.0

9
22

.7
4

80
.7

0
16

.4
3

79
.5

8
C

od
eT

5-
ba

se
23

.9
0

82
.4

0
21

.5
1

82
.9

8
25

.2
4

80
.7

6
20

.2
9

80
.4

7
25

.7
3

81
.5

9
20

.3
3

80
.4

3
C

od
eT

5-
sm

al
l

17
.9

3
80

.7
0

13
.1

5
80

.3
8

21
.8

0
79

.2
8

16
.9

5
79

.1
5

22
.4

4
80

.2
2

17
.0

7
79

.7
1

SP
T-

C
od

e
17

.6
0

82
.2

1
17

.2
0

81
.8

7
22

.7
7

83
.4

8
21

.3
8

83
.4

0
24

.9
8

85
.1

7
23

.5
0

84
.7

9
PL

B
A

R
T

13
.1

5
81

.3
4

10
.3

6
80

.9
2

18
.4

0
77

.6
4

13
.3

1
77

.7
9

18
.4

1
79

.3
3

12
.9

2
79

.2
1

L
ST

M
-b

as
ed

1.
20

49
.6

3
1.

59
44

.1
4

2.
24

49
.8

7
1.

23
49

.8
6

1.
92

51
.9

8
0.

55
44

.4
1

Tr
an

sf
or

m
er

-b
as

ed
5.

58
59

.8
4

2.
79

56
.3

5
5.

59
62

.6
0

4.
07

60
.8

8
5.

46
63

.4
9

1.
74

55
.0

4

bo
ol

ea
n

ex
ch

an
ge

lo
op

ex
ch

an
ge

re
or

de
r

co
nd

iti
on

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

C
od

eB
E

R
T

15
.6

2
80

.2
5

0.
00

78
.9

1
12

.3
1

76
.7

8
0.

00
69

.2
8

11
.3

8
79

.1
0

3.
56

74
.1

0
G

ra
ph

C
od

eB
er

t
12

.5
0

84
.4

5
0.

00
77

.7
1

7.
69

82
.7

8
0.

00
69

.8
0

12
.1

8
79

.3
6

3.
02

74
.2

1
C

od
eG

PT
21

.8
8

81
.8

0
0.

00
68

.8
9

10
.7

7
80

.3
9

0.
00

68
.5

7
16

.1
8

77
.6

6
2.

49
70

.6
7

C
od

eT
5-

ba
se

25
.0

0
86

.0
4

0.
00

75
.4

9
18

.4
6

84
.8

5
0.

00
70

.1
8

20
.0

0
79

.7
3

2.
93

72
.0

8
C

od
eT

5-
sm

al
l

15
.6

3
80

.5
1

3.
13

75
.0

2
12

.3
1

82
.8

0
0.

00
74

.8
2

16
.8

0
77

.8
9

3.
64

72
.3

1
SP

T-
C

od
e

21
.8

8
85

.8
0

12
.5

0
84

.9
7

10
.9

4
80

.2
0

0.
00

74
.3

5
19

.3
8

83
.4

8
14

.3
8

81
.5

7
PL

B
A

R
T

18
.7

5
80

.7
5

0.
00

77
.0

0
12

.3
1

80
.8

8
0.

00
72

.6
0

11
.5

6
74

.8
9

3.
73

71
.8

7
L

ST
M

-b
as

ed
3.

12
45

.6
6

0.
00

39
.6

3
1.

54
55

.7
7

0.
00

27
.1

3
0.

18
51

.8
0

0.
09

41
.5

7
Tr

an
sf

or
m

er
-b

as
ed

0.
00

55
.9

7
0.

00
34

.0
6

1.
54

66
.8

7
0.

00
34

.4
5

3.
56

61
.3

9
0.

18
41

.7
3

co
nv

er
t

sw
itc

h
to

if
in

se
rt

lo
g

st
at

em
en

t
in

se
rt

tr
y

ca
tc

h

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

C
od

eB
E

R
T

15
.9

1
83

.5
8

4.
55

76
.4

2
16

.3
7

80
.4

6
0.

00
68

.0
4

14
.8

1
80

.9
2

1.
75

74
.1

8
G

ra
ph

C
od

eB
er

t
9.

09
81

.0
2

4.
55

74
.5

0
17

.3
3

79
.5

9
0.

02
67

.6
4

16
.1

1
79

.6
6

2.
08

71
.3

5
C

od
eG

PT
15

.9
1

87
.1

0
2.

27
73

.7
7

21
.8

1
79

.5
3

0.
14

66
.6

0
20

.2
3

79
.6

8
2.

26
69

.4
2

C
od

eT
5-

ba
se

9.
09

84
.1

4
2.

27
76

.7
1

25
.0

0
80

.8
3

0.
00

67
.6

5
22

.6
1

80
.9

9
2.

02
67

.2
0

C
od

eT
5-

sm
al

l
13

.6
4

85
.3

9
0.

00
73

.6
1

21
.3

8
79

.3
3

0.
05

68
.6

5
19

.6
9

79
.5

4
2.

08
67

.2
6

SP
T-

C
od

e
20

.4
5

86
.6

8
18

.1
8

81
.8

3
22

.9
1

83
.4

3
5.

75
75

.2
4

22
.6

5
83

.3
7

12
.3

9
78

.2
3

PL
B

A
R

T
11

.3
6

80
.1

5
4.

55
69

.7
7

18
.2

6
77

.5
2

0.
07

68
.7

7
16

.6
5

77
.0

9
0.

63
64

.1
7

L
ST

M
-b

as
ed

0.
00

56
.0

9
0.

00
39

.4
1

2.
48

49
.5

8
0.

00
34

.3
1

1.
69

46
.6

1
0.

00
33

.0
1

Tr
an

sf
or

m
er

-b
as

ed
2.

27
68

.6
4

0.
00

46
.6

1
5.

33
62

.5
6

0.
00

38
.2

1
3.

85
62

.2
0

0.
00

40
.0

3

44

Ta
bl

e
4.

3:
Fi

ne
-t

un
ed

m
od

el
s

ag
ai

ns
td

iff
er

en
ts

em
an

tic
-p

re
se

rv
in

g
co

de
tr

an
sf

or
m

at
io

ns
on

B
FP

s-
m

ed
iu

m
.

“a
cc

”
st

an
ds

fo
rA

cc
ur

ac
y@

1(
%

)a
nd

“c
od

eb
le

u”
st

an
ds

fo
rC

od
eB

L
E

U
(%

).

lo
ca

lv
ar

ia
bl

e
re

na
m

in
g

m
et

ho
d

re
na

m
in

g
pa

ra
m

et
er

re
na

m
in

g

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

C
od

eB
E

R
T

9.
01

87
.1

2
5.

82
86

.8
8

8.
96

87
.6

8
8.

38
87

.6
3

8.
53

87
.6

7
5.

74
87

.2
3

G
ra

ph
C

od
eB

er
t

6.
01

86
.2

5
4.

91
86

.3
3

6.
74

87
.1

3
6.

50
87

.1
9

6.
21

87
.3

6
4.

81
86

.9
5

C
od

eG
PT

1.
64

87
.0

4
1.

27
86

.9
8

1.
91

87
.7

5
1.

75
87

.7
3

1.
81

87
.9

6
1.

56
87

.3
3

C
od

eT
5-

ba
se

7.
46

76
.2

6
7.

01
75

.7
8

6.
00

72
.0

8
4.

92
71

.8
0

5.
65

71
.5

2
4.

63
69

.6
6

C
od

eT
5-

sm
al

l
7.

28
75

.8
5

5.
82

75
.3

9
5.

47
71

.5
0

4.
55

71
.2

9
5.

14
71

.0
0

3.
74

69
.0

9
SP

T-
C

od
e

17
.0

2
89

.1
7

16
.2

7
89

.1
1

20
.4

2
90

.2
9

20
.3

4
90

.2
4

21
.2

1
90

.5
1

20
.8

8
90

.2
3

PL
B

A
R

T
5.

91
86

.6
7

4.
19

86
.3

3
6.

10
87

.0
7

4.
86

87
.0

1
5.

70
87

.5
5

4.
11

87
.2

8
L

ST
M

-b
as

ed
0.

09
76

.8
6

0.
09

73
.7

6
0.

71
77

.3
3

0.
71

77
.1

0
0.

63
77

.8
9

0.
51

74
.7

0
Tr

an
sf

or
m

er
-b

as
ed

2.
73

72
.8

0
0.

64
69

.9
8

1.
96

73
.7

8
1.

35
73

.1
5

1.
88

74
.0

4
0.

79
69

.0
4

bo
ol

ea
n

ex
ch

an
ge

lo
op

ex
ch

an
ge

re
or

de
r

co
nd

iti
on

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

C
od

eB
E

R
T

8.
90

88
.8

8
0.

00
77

.5
7

9.
04

87
.2

9
0.

14
76

.4
3

7.
91

86
.9

9
0.

75
79

.2
2

G
ra

ph
C

od
eB

er
t

6.
16

88
.3

9
3.

42
79

.3
9

6.
78

86
.3

0
0.

28
76

.9
6

5.
87

86
.4

0
1.

15
80

.3
7

C
od

eG
PT

2.
05

87
.0

7
0.

68
79

.5
1

3.
81

87
.7

9
0.

28
77

.5
5

1.
87

87
.4

3
0.

22
80

.5
0

C
od

eT
5-

ba
se

6.
16

72
.3

5
0.

68
66

.3
8

9.
60

79
.5

9
0.

57
70

.8
8

6.
62

74
.2

6
0.

64
69

.2
1

C
od

eT
5-

sm
al

l
6.

16
71

.5
5

0.
68

65
.9

3
8.

47
78

.7
3

0.
28

71
.2

5
5.

95
73

.6
1

0.
64

69
.6

2
SP

T-
C

od
e

27
.9

7
90

.8
9

23
.0

8
90

.5
3

14
.3

7
88

.6
1

7.
92

87
.0

0
17

.6
1

89
.8

6
15

.8
9

89
.3

0
PL

B
A

R
T

9.
59

88
.0

3
1.

37
82

.8
4

6.
07

86
.6

2
0.

42
81

.8
5

5.
28

86
.2

4
0.

92
82

.9
2

L
ST

M
-b

as
ed

0.
00

78
.8

3
0.

00
64

.3
5

0.
85

78
.2

8
0.

00
52

.7
3

0.
61

76
.9

5
0.

11
64

.0
2

Tr
an

sf
or

m
er

-b
as

ed
1.

37
73

.2
6

0.
00

46
.9

5
2.

68
75

.8
0

0.
00

45
.1

3
1.

73
73

.0
8

0.
00

48
.0

7

co
nv

er
t

sw
itc

h
to

if
in

se
rt

lo
g

st
at

em
en

t
in

se
rt

tr
y

ca
tc

h

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

or
ig

in
al

tr
an

sf
or

m
ed

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

ac
c

co
de

bl
eu

C
od

eB
E

R
T

9.
04

89
.6

8
2.

41
78

.1
1

8.
91

87
.7

0
0.

02
76

.0
0

8.
89

87
.6

3
0.

47
79

.3
6

G
ra

ph
C

od
eB

er
t

9.
64

89
.5

3
1.

81
76

.0
9

6.
67

87
.1

7
0.

00
76

.0
8

6.
88

87
.0

4
0.

67
79

.5
1

C
od

eG
PT

1.
81

90
.2

3
0.

60
75

.9
0

1.
93

87
.7

5
0.

00
74

.7
9

2.
01

87
.7

3
0.

20
80

.6
4

C
od

eT
5-

ba
se

3.
61

72
.7

5
0.

60
65

.9
8

6.
00

71
.8

6
0.

03
63

.9
2

5.
99

71
.9

9
0.

24
61

.1
2

C
od

eT
5-

sm
al

l
4.

82
72

.0
9

1.
81

66
.2

6
5.

44
71

.2
6

0.
02

64
.4

2
5.

28
71

.3
5

0.
37

62
.0

2
SP

T-
C

od
e

21
.3

4
90

.9
3

19
.5

1
89

.0
7

20
.5

6
90

.3
1

5.
56

85
.4

6
20

.6
5

90
.3

7
13

.8
6

87
.7

6
PL

B
A

R
T

6.
02

88
.9

7
0.

60
84

.0
2

6.
16

87
.1

4
0.

03
80

.3
1

6.
21

86
.9

8
0.

14
81

.6
3

L
ST

M
-b

as
ed

0.
60

76
.1

4
0.

00
60

.7
5

0.
70

77
.2

9
0.

00
62

.3
0

0.
77

77
.0

7
0.

00
61

.7
5

Tr
an

sf
or

m
er

-b
as

ed
1.

20
74

.3
4

0.
00

48
.6

7
1.

99
73

.8
2

0.
00

46
.5

7
1.

89
73

.4
0

0.
00

47
.1

8

45

Table 4.4: Accuracy reduction on BFPs-small (%).

local variable renaming method renaming parameter renaming

CodeBERT 24.26 8.00 25.07
GraphCodeBert 14.28 8.99 24.75

CodeGPT 24.99 21.93 27.75
CodeT5-base 10.00 19.62 20.99
CodeT5-small 26.67 22.23 23.93

SPT-Code 2.27 6.10 5.92
PLBART 21.22 27.66 29.82

LSTM-based -32.50 45.09 71.35
Transformer-based 50.00 27.19 68.13

boolean exchange loop exchange reorder condition

CodeBERT 100.00 100.00 68.72
GraphCodeBert 100.00 100.00 75.21

CodeGPT 100.00 100.00 84.61
CodeT5-base 100.00 100.00 85.33
CodeT5-small 80.00 100.00 78.31

SPT-Code 42.87 100.00 25.80
PLBART 100.00 100.00 67.73

LSTM-based 100.00 100.00 50.00
Transformer-based 0.00 100.00 94.94

convert switch to if insert log statement insert try catch

CodeBERT 71.40 100.00 88.18
GraphCodeBert 49.94 99.88 87.09

CodeGPT 85.73 99.36 88.83
CodeT5-base 75.00 100.00 91.08
CodeT5-small 100.00 99.75 89.45

SPT-Code 11.10 74.90 45.30
PLBART 59.95 99.62 96.22

LSTM-based 0.00 100.00 100.00
Transformer-based 100.00 100.00 100.00

46

Table 4.5: Accuracy reduction on BFPs-medium (%).

local variable renaming method renaming parameter renaming

CodeBERT 35.41 6.47 32.71
GraphCodeBert 18.30 3.56 22.54

CodeGPT 22.56 8.38 13.81
CodeT5-base 6.10 17.96 18.11
CodeT5-small 20.00 16.77 27.15

SPT-Code 4.41 0.39 1.56
PLBART 29.10 20.33 27.89

LSTM-based 0.00 0.00 19.05
Transformer-based 76.56 31.12 57.98

boolean exchange loop exchange reorder condition

CodeBERT 100.00 98.45 90.52
GraphCodeBert 44.48 95.87 80.41

CodeGPT 66.83 92.65 88.24
CodeT5-base 88.89 94.12 90.30
CodeT5-small 88.89 96.67 89.20

SPT-Code 17.48 44.89 9.77
PLBART 85.71 93.08 82.58

LSTM-based 0.00 100.00 81.97
Transformer-based 100.00 100.00 100.00

convert switch to if insert log statement insert try catch

CodeBERT 73.34 99.78 94.71
GraphCodeBert 81.22 100.00 90.26

CodeGPT 66.85 100.00 90.05
CodeT5-base 83.33 99.48 96.05
CodeT5-small 62.50 99.71 92.91

SPT-Code 8.58 72.96 32.88
PLBART 90.03 99.51 97.75

LSTM-based 100.00 100.00 100.00
Transformer-based 100.00 100.00 100.00

47

Chapter 5

Threats To Validity

In this chapter, we discuss the threats to validity of this thesis.

5.1 Internal Validity

For fine-tuning pre-trained models on RQ1, an essential factor that may impact the repair result

is the hyper-parameter setting. Any changes, such as learning rate and training batch size, may

impact the fine-tuned model slightly. We use the same hyper-parameter settings as in previous

works to experiment fairly. However, due to the limit of GPU memory, we meet problems such as

“CUDA out of memory” in fine-tuning. It is because the loaded data and the vast number of model

parameters occupy too much memory of the GPU. In such cases, we reduce the training batch

size, e.g., reducing the batch size from 64 to 32 for runnable fine-tuning. We also meet gradients

exploring problems, and we reduce the initial learning rate gradually and slightly for runnable fine-

tuning. Finally, Table 3.3 and 3.4 list our hyper-parameter settings. At a high level, we keep most

of the same settings with previous works to avoid potential biases.

For substitutions generated for renaming local variable names, methods, and parameters on

RQ2, we only use pre-trained GraphCodeBERT’s masked language prediction function to generate

the substitutions. However, other pre-trained models, such as CodeT5 and SPT-Code, also have

alternative functions to predict masked tokens. In particular, CodeT5 designs a masked identifier

prediction objective, and SPT-Code designs a method name generation objective in their pre-training

48

stage, which is helpful for us to generate renaming substitutions. However, most of these pre-

trained models rely on the same pre-training dataset, such as CodeSearchNet (Husain et al., 2019),

so predicted masked tokens by different pre-trained models may be closed in the semantic context.

For the semantic-preserving transformations we chose in the section 3.2.1, some of them may

be rejected by compilers and developers in practice. For example, the original code should have a

throw in the method declaration when we insert a try-catch block to a method-level code snippet.

However, as we perform code transformations for robustness testing instead of code refactoring in

this paper, we consider that such biases should be minor. We leave how code refactoring impacts

the performance of DL-based APR models as future work.

5.2 External Validity

Although we chose nine models as subject models, our experiment result may not be general-

ized to other latest models. As in the field of code intelligence, various powerful large code models

have been designed in recent three years. Even with the same training dataset and same model archi-

tecture, the new-designed and different pre-training objectives may significantly impact the model’s

result. Therefore, we try to choose SOTAs and representative models to increase the generalization

of our experiment results. Finally, three types of popular pre-trained models are included in our

subject models.

Additionally, we define nine semantic-preserving code transformations in RQ2, but their result

on different models cannot represent other undefined types of transformations. Therefore, we leave

this as future work.

5.3 Construct Validity

We choose Accuracy@1 (i.e., top one predicted code) as our metric to evaluate whether the

generated fixed code is the same as expected. Although almost all recent works utilize this metric

for code repair evaluation, it may introduce biases. For example, even if the generated fixed code

differs from the expected fixed code in syntactic structure, it may still be the correct one. However,

in the field of DL-based APR, most models do not employ test suites to validate the generated fixed

49

code candidates due to the lack of test cases. To relieve this problem, we introduce the CodeBLEU

as the supplementary metric for evaluation.

50

Chapter 6

Conclusion and Future Work

This chapter summarizes our insights and contributions based on our experiments conducted in

this thesis. Additionally, we present the potential future works that may enhance the experiments in

this thesis for better DL-based APR approaches.

6.1 Summary of the Thesis

In this thesis, we mainly investigate the repair performance of current DL-based APR models

and the repair robustness of DL-based APR models against semantic-preserving code transforma-

tions. We design two experiments to answer the corresponding two research questions. The first

experiment is to fine-tune all subject models on unified datasets for a thorough and fair comparison

of the repair performance. Further, the second experiment employs the fine-tuned models in the first

experiment to evaluate their robustness against nine semantic-preserving code transformations. In

the first experiment, our main findings are: (1). Most encoder-decoder-based APR models and the

decoder-based APR model have better repair accuracy than encoder-based APR models; (2). Most

DL-based APR models fine-tuned on the concrete code datasets have better repair performance than

those fine-tuned on the abstract code dataset; (3). All subject DL-based APR models with pre-

training show better repair accuracy results than models trained from scratch. Our main findings

in the second experiment are: (4). DL-based APR models suffer from non-robust issues; (5). The

51

semantic-preserving transformations related to the change of syntactic structure have a more sig-

nificant impact on the repair robustness of DL-based APR models compared with renaming-related

transformations; (6). DL-based APR models trained from scratch show more significant non-robust

issues (i.e., robustness) than models with pre-training.

Our findings provide insights for the following research: (1). Encoder-decoder architecture is a

better choice for designing program repair models; (2). The concrete BFPs benchmark is a better

choice for evaluating the program repair capability of DL-based APR models instead of abstract

BFPs; (3). The paradigm of pre-training and fine-tuning is better than the paradigm of training from

scratch on the robustness of DL-based APR models; (4). Investigation about how to effectively

apply semantic-preserving code transformations to boost the repair performance and robustness of

DL-based APR models is needed.

6.2 Future Work

One of the contributions of this thesis is to quantify the repair robustness of DL-based APR

models against semantic-preserving transformations. However, there is an urgent lack of work on

a better benchmark dataset, a full-automatic code refactoring tool, and how to effectively apply

semantic-preserving code transformations to boost the models’ repair performance and robustness.

Lastly, we leave the investigation of how code refactoring impacts the robustness of DL-based APR

models as future work.

6.2.1 Constructing a Better Benchmark Dataset for DL-based APR Approaches

The datasets we used are from (Tufano et al., 2019) published in 2019, and the maximum length

of each code case is lower than 100. However, different DL-based APR models are developed

and released quickly. These datasets may not satisfy current evaluation requirements for repair

performance and robustness of DL-based APR models. Firstly, the current dataset only offers one

fixed code for each buggy code. Most of the previous work used Accuracy@1 as the primary

metric, so any correct candidates with different formats are judged as incorrect. Therefore, it is

necessary to introduce more semantic-preserving code transformations for the expected fixed code

52

to solve this problem or to introduce test cases for evaluating the correctness of predicted fixed code.

Additionally, the length of code snippets can be expanded because of the improvement of DL-based

APR models. Furthermore, small code snippets exactly restrict the applicable semantic-preserving

code transformations, which further limits the robustness evaluation of DL-based APR models.

6.2.2 Designing a Full-automatic Code Transformations Tool for Partial Code Snip-

pet

When we perform the semantic-preserving code transformations on experiments, we find most

of the current refactoring tools are semi-automatic, e.g., users need to provide a method name for

renaming a method. Furthermore, they are designed for complete code, e.g., project-level or java-

file level, instead of the partial code snippet. However, it is necessary to design a full-automatic

code transformations tool for partial code snippets in the fields such as robustness testing and adver-

sarial attack for code models. Such a tool will definitely boost the research of the DL-based APR

community.

6.2.3 Investigating Effectively Apply Code Transformations on Training Dataset Aug-

mentation for Better DL-based APR Approaches

Fine-tuning a large pre-trained model on current datasets may need several days for one GPU

with 32 GB memory. However, when we want to apply many semantic-preserving code transfor-

mations on a training dataset for data augmentation, it may take several weeks on our experiment

device. Considering our GPU resource limitation, we leave this as future work. However, how to

effectively apply code transformations on training dataset augmentation for better DL-based APR

models is still needed. For example, how to use a relatively small training dataset but offer rich

diversity for effectively training a better DL-based APR model.

53

References

Ahmad, W. U., Chakraborty, S., Ray, B., & Chang, K.-W. (2021). Unified pre-training for program

understanding and generation. arXiv preprint arXiv:2103.06333.

Apr-models-performance. (n.d.). https://github.com/ThomasShiyu/APR-Models

-Performance.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

Berabi, B., He, J., Raychev, V., & Vechev, M. (2021). Tfix: Learning to fix coding errors with a

text-to-text transformer. In International conference on machine learning (pp. 780–791).

Bielik, P., & Vechev, M. (2020). Adversarial robustness for code. In International conference on

machine learning (pp. 896–907).

Bigquery. (n.d.). https://console.cloud.google.com/marketplace/details/

github/github-repos.

Cambronero, J., Li, H., Kim, S., Sen, K., & Chandra, S. (2019). When deep learning met code

search. In Proceedings of the 2019 27th acm joint meeting on european software engineering

conference and symposium on the foundations of software engineering (pp. 964–974).

Chakraborty, S., Ahmed, T., Ding, Y., Devanbu, P., & Ray, B. (2022). Natgen: Generative pre-

training by” naturalizing” source code. arXiv preprint arXiv:2206.07585.

Chakraborty, S., Ding, Y., Allamanis, M., & Ray, B. (2020). Codit: Code editing with tree-based

neural models. IEEE Transactions on Software Engineering.

Chakraborty, S., & Ray, B. (2021). On multi-modal learning of editing source code. In 2021 36th

ieee/acm international conference on automated software engineering (ase) (pp. 443–455).

54

https://github.com/ThomasShiyu/APR-Models-Performance
https://github.com/ThomasShiyu/APR-Models-Performance
https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., . . . others (2021). Evaluating

large language models trained on code. arXiv preprint arXiv:2107.03374.

Chen, Z., Kommrusch, S., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., & Monperrus, M. (2019).

Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions

on Software Engineering, 47(9), 1943–1959.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ding, Z., Li, H., & Shang, W. (2022). Logentext: Automatically generating logging texts using

neural machine translation. SANER. IEEE.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., . . . others (2020). Codebert: A pre-

trained model for programming and natural languages. arXiv preprint arXiv:2002.08155.

Gao, X., Mechtaev, S., & Roychoudhury, A. (2019). Crash-avoiding program repair. In Proceedings

of the 28th acm sigsoft international symposium on software testing and analysis (pp. 8–18).

Golubev, Y., Kurbatova, Z., AlOmar, E. A., Bryksin, T., & Mkaouer, M. W. (2021). One thou-

sand and one stories: a large-scale survey of software refactoring. In Proceedings of the

29th acm joint meeting on european software engineering conference and symposium on the

foundations of software engineering (pp. 1303–1313).

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., . . . others (2020). Graphcodebert: Pre-training

code representations with data flow. arXiv preprint arXiv:2009.08366.

Gupta, R., Pal, S., Kanade, A., & Shevade, S. (2017). Deepfix: Fixing common c language errors

by deep learning. In Thirty-first aaai conference on artificial intelligence.

Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2018). Deep code comment generation. In 2018 ieee/acm

26th international conference on program comprehension (icpc) (pp. 200–20010).

Hua, J., Zhang, M., Wang, K., & Khurshid, S. (2018). Sketchfix: A tool for automated program

repair approach using lazy candidate generation. In Proceedings of the 2018 26th acm joint

meeting on european software engineering conference and symposium on the foundations of

software engineering (pp. 888–891).

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2019). Codesearchnet

challenge: Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436.

55

Jiang, J., Xiong, Y., Zhang, H., Gao, Q., & Chen, X. (2018). Shaping program repair space

with existing patches and similar code. In Proceedings of the 27th acm sigsoft international

symposium on software testing and analysis (pp. 298–309).

Jiang, N., Lutellier, T., & Tan, L. (2021). Cure: Code-aware neural machine translation for auto-

matic program repair. In 2021 ieee/acm 43rd international conference on software engineer-

ing (icse) (pp. 1161–1173).

Just, R., Jalali, D., & Ernst, M. D. (2014). Defects4j: A database of existing faults to enable con-

trolled testing studies for java programs. In Proceedings of the 2014 international symposium

on software testing and analysis (pp. 437–440).

Kim, D., Nam, J., Song, J., & Kim, S. (2013). Automatic patch generation learned from human-

written patches. In 2013 35th international conference on software engineering (icse) (pp.

802–811).

Le, X. B. D., Lo, D., & Le Goues, C. (2016a). History driven program repair. In 2016 ieee 23rd

international conference on software analysis, evolution, and reengineering (saner) (Vol. 1,

p. 213-224). doi: 10.1109/SANER.2016.76

Le, X. B. D., Lo, D., & Le Goues, C. (2016b). History driven program repair. In 2016 ieee 23rd

international conference on software analysis, evolution, and reengineering (saner) (Vol. 1,

pp. 213–224).

Le Goues, C., Dewey-Vogt, M., Forrest, S., & Weimer, W. (2012). A systematic study of automated

program repair: Fixing 55 out of 105 bugs for $8 each. In 2012 34th international conference

on software engineering (icse) (pp. 3–13).

Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W. (2012). Genprog: A generic method for

automatic software repair. IEEE Transactions on Software Engineering, 38(1), 54-72. doi:

10.1109/TSE.2011.104

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., . . . Zettlemoyer, L.

(2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation,

translation, and comprehension. arXiv preprint arXiv:1910.13461.

Li, J., Wang, Y., Lyu, M. R., & King, I. (2017). Code completion with neural attention and pointer

networks. arXiv preprint arXiv:1711.09573.

56

Liang, J., Ji, R., Jiang, J., Zhou, S., Lou, Y., Xiong, Y., & Huang, G. (2021). Interactive patch

filtering as debugging aid. In 2021 ieee international conference on software maintenance

and evolution (icsme) (pp. 239–250).

Lin, D., Koppel, J., Chen, A., & Solar-Lezama, A. (2017). Quixbugs: A multi-lingual program

repair benchmark set based on the quixey challenge. In Proceedings companion of the 2017

acm sigplan international conference on systems, programming, languages, and applications:

software for humanity (pp. 55–56).

Liu, C., Yang, J., Tan, L., & Hafiz, M. (2013). R2fix: Automatically generating bug fixes from

bug reports. In 2013 ieee sixth international conference on software testing, verification and

validation (pp. 282–291).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., . . . Stoyanov, V. (2019). Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Long, F., & Rinard, M. (2015). Staged program repair with condition synthesis. In Proceedings of

the 2015 10th joint meeting on foundations of software engineering (pp. 166–178).

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., . . . others (2021). Codexglue: A

machine learning benchmark dataset for code understanding and generation. arXiv preprint

arXiv:2102.04664.

Lutellier, T., Pham, H. V., Pang, L., Li, Y., Wei, M., & Tan, L. (2020). Coconut: combining context-

aware neural translation models using ensemble for program repair. In Proceedings of the

29th acm sigsoft international symposium on software testing and analysis (pp. 101–114).

Mechtaev, S., Yi, J., & Roychoudhury, A. (2015). Directfix: Looking for simple program repairs.

In 2015 ieee/acm 37th ieee international conference on software engineering (Vol. 1, pp.

448–458).

Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help? Advances in

neural information processing systems, 32.

Negara, S., Chen, N., Vakilian, M., Johnson, R. E., & Dig, D. (2013). A comparative study of

manual and automated refactorings. In European conference on object-oriented programming

(pp. 552–576).

Negara, S., Vakilian, M., Chen, N., Johnson, R. E., & Dig, D. (2012). Is it dangerous to use version

57

control histories to study source code evolution? In European conference on object-oriented

programming (pp. 79–103).

Niu, C., Li, C., Ng, V., Ge, J., Huang, L., & Luo, B. (2022). Spt-code: sequence-to-sequence pre-

training for learning source code representations. In Proceedings of the 44th international

conference on software engineering (pp. 2006–2018).

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic evaluation

of machine translation. In Proceedings of the 40th annual meeting of the association for

computational linguistics (pp. 311–318).

Pour, M. V., Li, Z., Ma, L., & Hemmati, H. (2021). A search-based testing framework for deep

neural networks of source code embedding. In 2021 14th ieee conference on software testing,

verification and validation (icst) (pp. 36–46).

Qi, Z., Long, F., Achour, S., & Rinard, M. (2015). An analysis of patch plausibility and correctness

for generate-and-validate patch generation systems. In Proceedings of the 2015 international

symposium on software testing and analysis (pp. 24–36).

Rabin, M. R. I., Bui, N. D., Wang, K., Yu, Y., Jiang, L., & Alipour, M. A. (2021). On the general-

izability of neural program models with respect to semantic-preserving program transforma-

tions. Information and Software Technology, 135, 106552.

Rabin, M. R. I., Wang, K., & Alipour, M. A. (2019). Testing neural program analyzers. arXiv

preprint arXiv:1908.10711.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models

are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., . . . others (2020). Exploring

the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.,

21(140), 1–67.

Ramakrishnan, G., Henkel, J., Wang, Z., Albarghouthi, A., Jha, S., & Reps, T. (2020). Semantic

robustness of models of source code. arXiv preprint arXiv:2002.03043.

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., . . . Ma, S. (2020). Codebleu: a method for

automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297.

Saha, R. K., Lyu, Y., Yoshida, H., & Prasad, M. R. (2017). Elixir: Effective object-oriented program

58

repair. In 2017 32nd ieee/acm international conference on automated software engineering

(ase) (pp. 648–659).

tree-sitter. (n.d.). https://github.com/tree-sitter/tree-sitter.

Tsantalis, N., Ketkar, A., & Dig, D. (2020). Refactoringminer 2.0. IEEE Transactions on Software

Engineering.

Tufano, M., Watson, C., Bavota, G., Penta, M. D., White, M., & Poshyvanyk, D. (2019). An

empirical study on learning bug-fixing patches in the wild via neural machine translation.

ACM Transactions on Software Engineering and Methodology (TOSEM), 28(4), 1–29.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.

(2017). Attention is all you need. Advances in neural information processing systems, 30.

Wan, Y., Zhao, Z., Yang, M., Xu, G., Ying, H., Wu, J., & Yu, P. S. (2018). Improving automatic

source code summarization via deep reinforcement learning. In Proceedings of the 33rd

acm/ieee international conference on automated software engineering (pp. 397–407).

Wang, D., Jia, Z., Li, S., Yu, Y., Xiong, Y., Dong, W., & Liao, X. (2022). Bridging pre-trained

models and downstream tasks for source code understanding. In Proceedings of the 44th

international conference on software engineering (pp. 287–298).

Wang, Y., Wang, W., Joty, S., & Hoi, S. C. (2021). Codet5: Identifier-aware unified pre-

trained encoder-decoder models for code understanding and generation. arXiv preprint

arXiv:2109.00859.

Wei, H., & Li, M. (2017). Supervised deep features for software functional clone detection by

exploiting lexical and syntactical information in source code. In Ijcai (pp. 3034–3040).

Wei, M., Huang, Y., Yang, J., Wang, J., & Wang, S. (2021). Cocofuzzing: Testing neural code

models with coverage-guided fuzzing. arXiv preprint arXiv:2106.09242.

Wen, M., Chen, J., Wu, R., Hao, D., & Cheung, S.-C. (2018). Context-aware patch generation for

better automated program repair. In 2018 ieee/acm 40th international conference on software

engineering (icse) (pp. 1–11).

Xuan, J., Martinez, M., Demarco, F., Clement, M., Marcote, S. L., Durieux, T., . . . Monperrus,

M. (2016). Nopol: Automatic repair of conditional statement bugs in java programs. IEEE

Transactions on Software Engineering, 43(1), 34–55.

59

https://github.com/tree-sitter/tree-sitter

Yang, B., & Yang, J. (2020). Exploring the differences between plausible and correct patches at

fine-grained level. In 2020 ieee 2nd international workshop on intelligent bug fixing (ibf) (pp.

1–8).

Yang, J., Tan, L., Peyton, J., & Duer, K. A. (2019). Towards better utilizing static application

security testing. In 2019 ieee/acm 41st international conference on software engineering:

Software engineering in practice (icse-seip) (pp. 51–60).

Yang, J., Zhikhartsev, A., Liu, Y., & Tan, L. (2017). Better test cases for better automated program

repair. In Proceedings of the 2017 11th joint meeting on foundations of software engineering

(pp. 831–841).

Yang, Z., Shi, J., He, J., & Lo, D. (2022). Natural attack for pre-trained models of code. arXiv

preprint arXiv:2201.08698.

Ye, H., Martinez, M., & Monperrus, M. (2022). Neural program repair with execution-based back-

propagation. In Proceedings of the 44th international conference on software engineering

(pp. 1506–1518).

Zhang, H., Li, Z., Li, G., Ma, L., Liu, Y., & Jin, Z. (2020). Generating adversarial examples for

holding robustness of source code processing models. In Proceedings of the aaai conference

on artificial intelligence (Vol. 34, pp. 1169–1176).

Zhang, J., Panthaplackel, S., Nie, P., Li, J. J., & Gligoric, M. (2022). Coditt5: Pretraining for source

code and natural language editing. arXiv preprint arXiv:2208.05446.

Zhang, W. E., Sheng, Q. Z., Alhazmi, A., & Li, C. (2020). Adversarial attacks on deep-learning

models in natural language processing: A survey. ACM Transactions on Intelligent Systems

and Technology (TIST), 11(3), 1–41.

Zhang, Z., Zhang, H., Shen, B., & Gu, X. (2022). Diet code is healthy: Simplifying programs for

pre-trained models of code. In Proceedings of the 30th acm joint european software engineer-

ing conference and symposium on the foundations of software engineering (pp. 1073–1084).

Zhu, Q., Sun, Z., Xiao, Y.-a., Zhang, W., Yuan, K., Xiong, Y., & Zhang, L. (2021). A syntax-

guided edit decoder for neural program repair. In Proceedings of the 29th acm joint meeting

on european software engineering conference and symposium on the foundations of software

engineering (pp. 341–353).

60

	List of Figures
	List of Tables
	Introduction
	Related Work
	Automated Program Repair
	Generate-and-Validate-based Automated Program Repair
	Deep Learning-based Automated Program Repair

	Pre-trained Models
	Pre-trained Models on Software Engineering
	Pre-trained Models on Automated Program Repair

	Robustness Testing for Code Models

	Experiment Setup
	Fine-tuning Pre-trained Models on Program Repair
	Subject Models
	Hyper-parameter Settings in Fine-tuning
	Datasets
	Metrics

	Repair Robustness of DL-based APR Models against Semantic-preserving Code Transformations
	Semantic-preserving Code Transformations
	Dataset Construction

	Experiment Results and Analysis
	RQ1: What Is the Repair Performance of Different DL-based APR Models?
	Motivation
	Approach
	Results and Discussion

	RQ2: What Is the Repair Robustness of Different DL-based APR Models against Different Semantic-preserving Code Transformations?
	Motivation
	Approach
	Results and Discussion

	Threats To Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion and Future Work
	Summary of the Thesis
	Future Work
	Constructing a Better Benchmark Dataset for DL-based APR Approaches
	Designing a Full-automatic Code Transformations Tool for Partial Code Snippet
	Investigating Effectively Apply Code Transformations on Training Dataset Augmentation for Better DL-based APR Approaches

	Bibliography

