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Abstract

A Study of Spatio-Temporal Learning Approaches Using Echocardiograms for Risk
Assessment of Thoracic Aortic Aneurysms

Sandi Alakhras

Aortic dissection and rupture are fatal complications that happen when the aortic tissue’s

integrity is compromised, leading to fatal consequences. Once an aortic dissection takes place, 41%

of patients do not even make it to the hospital. Unfortunately, the diagnostic outlook is not much

brighter. It is estimated that 40% of patients presenting with aortic dissection do not meet the current

diagnostic criteria.

This thesis aims to assess the risk levels of thoracic aortic aneurysms’ dissection and rupture

from patients’ echocardiograms. To do this, we study the effects of spatial and temporal learning

of the heart’s movement in the echocardiograms. We investigate the pure visual learning from still

2D images extracted from the echocardiogram’s sequence, then assess the temporal learning across

frames in the echocardiogram video by incorporating 3D convolutions over the whole sequence,

and in terms of aggregating the visually learned content of each frame in the echocardiogram over

the sequence length. We also experiment with implementing a visual attention mechanism to filter

out the visual context. Finally, we study the effect of adding a tabular data learning stream to

our architecture that learns from the patient’s tabular data information and incorporates it into the

best-performing model. The results of this thesis - although not conclusive- suggest that temporal

dependencies are present between echocardiogram frames throughout the video, which points out

the diagnostic importance of analyzing the movement of the beating heart tissue through time.
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Chapter 1

Introduction

1.1 Introduction and Motivation

An aneurysm is a balloon-like bulge in the wall of blood vessels or arteries. It begins as a weak

spot in the blood vessel wall, which balloons out of shape over time by the force of the pumping

blood [36]. A representation of an aortic aneurysm can be seen in figure 1.1a. As a result of aortic

aneurysms, and due to the constant force exerted by the pumping blood, the mechanical properties

of the aortic wall weaken over time thus making the valve prone to dissections and ruptures.

Aortic dissection is a separation between the inner and middle layers of the aortic artery wall[22].

An aortic dissection happens when a tear occurs in the inner layer of the aortic valve and blood

floods through the tear, causing the inner and middle layers of the aorta to separate [22]. As a result,

normal blood flow to the body might be slowed, hampered, or may result in a complete rupture of

the aortic valve, bursting blood through the hole into the surrounding body cavity.

Aortic dissection is a life-threatening condition, as reports suggest that only 41% of patients

experiencing a dissection make it to the hospital [27]. For those who actually do make it to the

hospital, the mortality rates for the non-elective ascending aortic replacement surgeries are 15%-

24% [42] [53]. With acute dissection and rupture being fatal complications, prevention is only

possible with surgical intervention by correctly diagnosing and assessing the risk before these deadly

complications happen.

Currently, most societies (including the American Heart Association and endorsed by the North
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(a) Normal versus aneurysmal
aortic tissue [36]

(b) An illustration of an aneurysm rupture[25]

American Society for Cardiovascular Imaging) utilize the maximum aortic diameter as the selective

criterion of elective surgical prevention. [22]. Alarmingly, approximately 40% of patients who

present with dissection have aortic diameters below diagnostic criteria [39]. We, therefore, perceive

the urgent need for novel criteria to identify and diagnose patients at risk of such fatal complications.

With ultrasound imaging being one of the safest, cheapest and most available medical imaging

modalities [35], its deep learning applications and research are critical. Echocardiography (ECHO)

– is the use of ultrasound to examine the heart. It is a safe and non-invasive technique [35]. In this

thesis, we aspire to solve the diagnostic problem mentioned above by assessing the risk level of the

occurrence of an aortic dissection from echocardiogram images.

1.2 Visual Sequence Learning

Echocardiography is one of many medical imaging modalities that produce sequential imaging

or video-like output. Therefore, since echocardiograms are sequence-like images, we focused on

leveraging and exploring different types of learning that would process visual sequence learning.

However, we find that the trends in deep learning in medical applications, when it comes to

dealing with these sequences, tend to rely on processing their image frames as separate, independent
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dataset entities rather than using the sequence as a whole, and therefore end up losing all temporal

context and dependencies between those frames.

While applications of image recognition, classification, segmentation and detection have seen

state-of-the-art research and application in the last decade, little attention has been shown to similar

video applications. Some reasons might be attributed to the fact that video datasets are more difficult

to attain, or due to the fact that separate frames 2D image convolutional models are potent enough

to be achieving remarkable close performance when compared to specific video-based models.

However, when it comes to problems relating to heart-related diagnostics, the behaviour and

the movement of the beating heart through the full cardiac cycle (from one beat to another) is a

medically major visual diagnostic factor.

A common source of inspiration for Machine learning systems comes from humans’ natural way

of learning or observing, or from types of learning observed in nature. Take, for example, reinforce-

ment, transfer, and multi-task learning, which were all derived from natural systems humans use to

learn and perform tasks. The task of video classification follows a similar logic. Yes, it is evident

that humans look mainly at the content of individual frames of the video to identify its content, but

they also look at the change per frame of the video to process the change of visual context through

time.

1.3 My Contributions

Through the course of this research, we can summarize the contributions and objectives of this

thesis into two folds. Firstly, research the best sequential data representation to capture both the

spatial features of still frames and the temporal data from the movement between frames. Sec-

ondly, explore a hybrid model architecture to combine patients’ tabular information to the video

classification task.

(1) We investigate the best visual learning convolutional architecture in terms of different data

input forms and dimensions.

(2) We then follow to present different approaches for capturing the temporal aspect of the

echocardiograms in terms of capturing sequence dependencies between the frames through

3



a third dimension of temporal Convolutions, Recurrent Neural Networks (RNN) or pooling

over the time steps.

(3) We finally add a dense stream of multilayer perceptron to our architecture to process the

patients’ tabular information and sum everything up to a novel end-to-end trainable ensemble

deep learning model which processes the frames of the mini-clips separately, then pools over

them in time and combines a separate stream of Tabular patient information with the outputs.

1.4 Thesis Outline

The remainder of this research is organized as follows:

In Chapter 2, we present the literature review and background work related to the concepts explored

in this thesis including the biological aspect of heart imaging, the bases of visual learning and se-

quential learning that are going to be used throughout this thesis, and a brief introduction into the

common practices in video classification.

In Chapter 3, We start by describing our echocardiogram dataset’s input and labels, and its pre-

processing steps. We then present and analyze the different sequential visual frameworks along with

their respective experiments and results on our echocardiogram dataset.

In Chapter 4, we introduce our complimentary patients’ meta-data dataset. We then present our

hybrid ensemble model, which processes the patients’ echocardiograms as well as their meta-data,

and displays its respective experiments and results.

In Chapter 5, we conclude by summarizing and analyzing our experiments’ results. We also

provide some insight into the possibility of future work.
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Chapter 2

Background

In this chapter, we will cover the related background information and literature which lead to

the inspiration of this thesis. First, we will start with the general modalities of medical and cardiac

imaging. After that, we will dive closer into the visual and sequential aspects of deep learning

followed by shedding some attention on visual sequence learning. We finally will cover some

characteristics of tabular data processing and its applications in deep learning.

2.1 Cardiac Imaging Modalities

As the underlying technologies progressed, the field of medical imaging took a turn into new

dimensions and the dream of imaging a beating heart became one of the routinely performed prac-

tices. Cardiac imaging, also known as cardiovascular imaging, has become one of the most essential

practices in modern medicine not only for its cardiac-related diagnostic and prognostic purposes but

also for its importance in the guidance of other invasive procedures [33]. With the advancement of

the field of cardiac imaging in the past decades, different imaging modalities have appeared that

not only allowed anatomic evaluation of the heart but also functional evaluation. These imaging

modalities include but are not limited to cardiovascular computed tomography (CCT), cardiovascu-

lar Magnetic resonance imaging (MRI), and Echocardiography.
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Computed tomography

A computed tomography (CT) scan is a medical imaging modality that is composed of a series

of X-ray images taken from various angles around the target organ. It uses computer processing

(tomographic reconstruction algorithms) to create cross-sectional (tomographic) images or slices of

the body. Since its development in the 1970s, CT imaging has proven to be one of the most essential

and versatile medical imaging techniques [33].

Cardio Vascular CT, which can be thought of as a special application of CT, was first introduced as

an electron-beam CT (EBCT) which, although is not a very practical method for imaging a moving

organ, remains one of the most used methods for coronary calcification diagnosis. Another critical

application of cardiac CT is coronary CT angiography (CCTA) which is a cardiac imaging test that

determines if the coronary arteries have plaque buildup, causing them to narrow and decrease the

blood supply to the heart. This high negative predictive value and specificity test have become an

essential assessment in accident and emergency departments to rule out significant coronary artery

disease in patients with chest pain [33]. An example of CCTA is shown in 2.1.

Figure 2.1: A coronary CT angiography [33]

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality that is used to

generate three-dimensional detailed anatomical images of organs. It is comprised of a sophisticated

system of strong magnetic fields, magnetic field gradients and radio waves in a manner that excites
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and detects the change in the direction of the rotational axis of protons found in the water that

make up living tissues [6]. MRI is commonly used in hospitals around the world for diagnostic and

prognostic purposes. In addition, MRI imaging provides better contrast in soft-tissue images when

compared to CT imaging.

Cardiovascular Magnetic Resonance (CMR) is a cardiac application of MRI targeted to specifi-

cally image the heart organ. It mostly gained popularity in hospitals with the introduction of ECG-

gated imaging in 1983 which greatly improved the field of dynamic cardiac imaging. CMR can be

used to assess the structural and functional properties of the heart and is used in the diagnosis of

several cardiac diseases such as myocardial ischemia and viability, cardiomyopathy, myocarditis,

iron overload, vascular diseases, and congenital heart disease [37]. an Example of a CMR can be

seen in figure 2.2.

Figure 2.2: CMR imaging in a single-chamber [34]

Echocardiograms

Echocardiography is a non-invasive medical imaging technique and one of the most frequently

used cardiovascular diagnostic practices after electrocardiography [35]. An echocardiogram is an

application of the Doppler ultrasound tool which works by emitting sound waves that bounce off

the heart’s chambers and structures, therefore, creating a detailed but foggy image of the vascular

cardiac structure. Generally speaking, the two most performed echocardiograms are transthoracic

echocardiograms (TTE) and transesophageal echocardiograms (TEE) [35]. TTE remains the corner-

stone of echocardiogram diagnosis due to its ease of operation that can take place in many settings

including clinics, inpatient rooms and emergency situations and does not usually take more than 30

min to perform. A typical TTE Examination involves externally applying an echo probe perpendic-

ularly to the patient’s skin at various angles and positions to get the respective imaging of the heart
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structure. While TTE has numerous indications such as Heart failure, Heart murmur, Congenital

heart disease, Endocarditis and others it falls inherently limited in its image quality and diagnostic

accuracy in certain cases. Its main limitation comes from the fact that the skin and body fat act

as barrier mediums that absorb their share of the ultrasound waves before they reach the heart. In

Contrast, in a TEE the imaging probe is inserted directly through the left atrium in the esophagus

where the ultrasound waves have far fewer structures to penetrate thus offering a far superior imag-

ing quality. An example of long and short-axis TEE images of the ascending thoracic aortic valve

can be seen in figure 2.3.

(a) Short Axis ascending aortic valve TEE (b) Long Axis ascending aortic valve TEE

Figure 2.3: Example of input data

2.2 Visual Learning

2.2.1 Image Classification and Convolutional Neural Networks

Image classification is one of the most active research tasks in the world of deep learning and

its challenges and applications have shaped the industry and led the innovation of computer vision

research to the levels we know today[17]. Interest in the field sparks not only because of its countless

applications but also from the perplexing fact that this essential vision task can be almost effortless

to humans and other animals but constitutes the most challenging topic in the world of machine

learning.
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The task of classification in its non-data science terms relies on assigning categorical labels to

input entities from a range of predefined labels. Image classification follows the same logic: given

an image and a predefined set of classes, decide which class this image belongs to (e.g. classifying

digits images, determining if a picture is a cat or dog).

One clear Example of the progression of computer vision and image classification specifically

can be seen when examining the winning models of the ImageNet Large Scale Visual Recognition

Challenge. Traditionally most machine learning algorithms used in the computer vision field relied

on hand-crafted features and engineered filters to determine the relationship between structures in

images algorithmically. However, with hardware units advancements, more specifically graphical

processing units (GPU), came a drastic shift of improvement pace that established Convolutional

neural networks’ place in the world of deep learning.

RESNET

As trends in deep learning proved over time that deeper and deeper networks added expressiveness

to the model, it also created the notorious problem of vanishing gradients that caused the model’s

performance to get saturated or even start degrading rapidly.

ResNet [21] was specifically designed to overcome the mentioned problem. ResNet introduced

the novel idea of “identity shortcut connection” with its core idea of introducing residual blocks

designed to let connections skip one or more layers as in figure 2.4. The authors of [21] hypothesize

that if multiple stacked layers can fit a function F(x) then it is equivalent to assume that those layers

can fit the residual function F(x) - x and then add the output to the identity mapping x. This not

only added ease of computation but also helped the deep models’ degradation problem by creating

identity mapping shortcuts that prevent vanishing gradients down the deeper layers.

The remarkable results that ResNets and the liberty the authors chose of having the pre-trained

weights available for public use have reshaped the industry of deep learning.
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Figure 2.4: Residual Block [21]

2.3 Sequential Learning

2.3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of deep learning models that have evolved

through the years to claim their standing in the sequential learning field [17] and have particularly

gained popularity in the natural language field due to their ability to model variable length inputs.

RNNs utilize an important form of parameter sharing in deep neural networks that allows them to

extend and generalize the learning process through different positions across different lengths in the

input sequence.

RNNs present the concept of ”memory” (referred to as state) that keeps track of past and future

time steps in the input sequence by implementing a constant feed-forward operation between the

input time steps. To form their memory through the sequence, they are expressed as a recursive

function that applies a transformation A at every time step t that incorporates the input x and the

state from the previous time-step t-1. The state (or hidden state) at time t can be seen below.

st = A(st−1, xt, θ) (1)

Therefore, by sharing a function A, and parameters θ an RNN can be thought of as a network

made up of multiple smaller copies of the same network, each passing its learned information to

its successor. This chain representation that RNNs possess is the natural reason that relates them to

sequence and text modelling.

As an unrolled network, when it comes to training, RNNs are trained as vanilla feed-forward
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Figure 2.5: Un-Rolling RNNs [38]

neural networks where the gradients would be calculated through back-propagation and the trans-

formation A adjusted per the optimizer of choice.

Long Short Term Memory

As the input sequences grew longer, RNNs displayed difficulty maintaining the learned features

[5]. The main reason goes back to a problem labelled as vanishing gradients. As the gradients

are backpropagated through the long sequence network time-steps t, the gradients tend to shrink,

decreasing in value until they reach near-zero numbers. This causes the weights of the earlier

time steps to remain practically the same. Similarly to how ResNet introduces skip connections

between the earlier and deeper layers to mitigate the vanishing gradients problem, Long Short Term

Memory (LSTM) networks present gated connections to overcome the long-term dependency in

RNNs. LSTM design relies on the concept of cells that are characterized by forget, input and output

gates. The forget gates choose whether the information coming from the previous time state is

to be discarded or remembered. In the input gates, the cell updates its information to learn new

patterns and then passes the updated information to the output gate which outputs the cell context

to the succeeding time step. A similar approach has been implemented in other variations of gated

recurrent networks (GRU Networks [9]) that cuts down on the complexity by only utilizing two

gated connections.

2.4 Video Recognition and Classification

Video recognition and classification are one of the main cornerstones in computer vision prob-

lems and applications. However, it may be argued that the video recognition domain has not yet seen
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the state-of-the-art uprising that the image classification world has seen during the last decade [49].

This domain oversight might be attributed to the perplexing fact that, until recently, image-based 2D

CNNs operating on individual video frames could achieve results that are extremely close to those

of state-of-the-art video classification models [49]. We note, however, that with the advancement

of deep learning and specifically sequence learning, more and more modern research efforts have

been made to model videos not just as a collection of images but as a visual sequence representation

which produced remarkable results over traditional, individual frames 2D CNNs models.

Therefore, When it comes to the world of action recognition and video classification, the current

approaches tend to analyze the visual input with either 2D convolutional filters over individual

frames or aggregated frames of the whole video with pooling or recurrent analysis of the resulted

feature maps,2 streams (visual and temporal) architecture inputs, 3D convolutional filters or, more

recently, transformer architecture. We will be discussing the most popular architectures below.

2.4.1 3D Convolutional Based Models

R3D

Following the successful path that [30] achieved by evaluating different types of visual and

temporal dimensions’ connections, and the practical implementation presented in [48] of utilizing

3D Convolutional filters and pooling layers in the context of large-scale action recognition and

classification, the field of 3D ConvNets started a state of rapid growth.

The authors of [19] proposed the R3D architecture which is based on the ResNets [21] model’s

structure to ease the training process of 3D Convolutional deep models that hold huge numbers

of parameters. To achieve that, they utilized the same shortcut connection concepts presented in

ResNets 2.4 to bypass the signal from one layer to another deeper layer down the architecture. A

representation illustrating the R3D layers architecture can be seen in figure 3.6.

R(2+1)D

With the success 3D ConvNets achieved, problems regarding the huge number of parameters

and complexity inherently followed. With that in mind, the authors of [49] presented R(2+1)D as a
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Figure 2.6: R3D Network Architecture [19]

hybrid model which could utilize the depth that 3D convolutions possessed in processing temporal

dimensions and the compactness of training that 2D and 1D convolutions present. Its architecture

explicitly factorizes or decomposes the 3D convolution into 2 parts pertaining to a 2D spatial con-

volution which is followed by a 1D temporal convolution. A representation of this convolutional

decomposition as well as a structural comparison between R(2+1)D and R3D can be seen in figure

2.7. We note that in part 2.7b, the 3D convolution (on the left) is implemented using a t × d × d

filter size, where t denotes the temporal sequence length and d is the visual input’s respective width

and height. In the factorized version (on the right), the convolutional computation is split into a 2D

convolution with a filter size of 1 × d × d followed by a 1D convolution of a t × 1 × 1 filter size. Mi

represents the number of 2D filters and is adjusted so the number of parameters of the (2+1)D block

matches that of the 3D block

By doing so, the authors achieved an extra non-linear operation (between the separated 2D and

1D convolutions) that renders the model more robust in representing complex non-linear patterns. In

addition, according to the authors, the separation of the 2D visual and 1D temporal convolutions also
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eases and improves the optimization process yielding considerable improvement over traditional 3D

ConvNets(R3D) for interchangeable experimentation between the two.

(a) Similarities in terms of structure between the R3D
and R(2+1)D architecture

(b) 3D convolutions(left) compared to decomposed 2D
and 1D convolutions(right)

Figure 2.7: R(2+1)D Structure [49]

2.4.2 2D Convolutional based Models

Following the success that 2D CNNs displayed in image classification applications, many efforts

went into attempting to leverage that success into the action recognition field. Research in this field

aims at incorporating pre-trained 2D CNNs that have already proved their efficacy, and utilize them

to classify images at the frame level. These can be mainly split into still frame classifications,

aggregated frames visual extraction with temporal pooling or recurrent processing, and two-stream

networks.

In the case of 2D still frame processing, the video is simply taken as a set of pictures and dataset

entities are presented by an independent frame and its corresponding label. Although one might

think that the network would fail to learn essential temporal patterns, [30] shows how powerful 2D

CNNs can be even when operating on independent still frames of the video.

On the other hand, feature map aggregation (which will be discussed in detail in chapter 3),

keeps the integrity of the video as a series of closely related images. In its applications, CNNs are

trained on video frames (2D images) to get the extracted feature maps, and then perform temporal

integration through a form higher dimensional feature encoding [16] [56] or recurrent processing of
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the feature maps [10] [47] [4].

Another research path when stumbling upon 2D ConvNets that incorporate the temporal domain

is the two-stream architectures. In this case, the network processes two different streams of input,

the spatial stream input which consists of the series of static RGB coloured frame images and the

temporal stream input being dense optical flow images extracted by applying filters to the corre-

sponding image frame to indicate the motion information explicitly and then fusing the two streams

together [46]. We note, however, that this method can only explicitly capture motion patterns be-

tween consecutive frames and thus fails to capture long-period temporal dependencies and has no

considerations for frame order in the frame sequence [14].

2.5 Tabular Data in Deep Learning

Despite tabular data being the most abundant type of data that is easily acquirable in the real

world, we find its application yet weakly explored in deep learning literature [28]. With the mas-

sive success that deep learning had achieved in complex data domains such as images, audio and

language [17] recent interest has been growing to apply this success to tabular data. Such emerg-

ing research can be generally architecturally divided into differentiable decision trees [20] [40],

Attention-based models [2][3], and modelling of multiplicative interactions [41].

The motivation for tabular data deep learning applications stems not only to seek higher per-

formance in the separate tabular data application but also to incorporate tabular data learning as a

pipeline for hybrid multi-modal learning problems. In such multi-modal models, tabular data learn-

ing is incorporated as a pipeline with other data input types such as images, audio, text or other

input types that deep learning has proven effective for [18]. In these models, tabular data points are

stored as heterogeneous scaled feature vectors, and the models are usually trained end-to-end via

classic gradient back-propagation and optimization.

Unfortunately, unlike the established benchmarks seen in computer vision (ImageNet Large

Scale Visual Recognition Challenge (ILSVRC)[44]) or in natural language processing (General

Language Understanding Evaluation (GLUE)[51]) there exists little comparison between the per-

formances of tabular data deep learning models due to the fact that different papers assess their
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models on different datasets. In addition, due to the absence of such benchmarks and the ease of

access and implementation of traditional current state-of-the-art ”shallow” machine learning net-

works, models such as gradient boosted decision trees (GBDT)[13], XGBoost [8], and others have

become the ”go to” architectures for popular tabular learning tasks while basic Multi-Layer Percep-

trons (MLPs) remain the deep learning baseline models [18].
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Chapter 3

Visual Data Description and Extraction

We will start this Chapter with a description of the dataset’s inputs and labels along with their

cleaning and preprocessing steps followed by the proposed frameworks, experiments, and results

for visual data processing.

Going through this and the following chapters’ experiments, we will adopt a narrative approach

that would display the frameworks and architectures designed in the order we chronologically rea-

soned through them according to our previous experiments’ results and established trends and prac-

tices in machine learning.

Each suggested framework is initiated by an introduction of the visual sequence learning method-

ology and its motivation followed by the corresponding experimental setup and its respective results.

3.1 Dataset

As mentioned in the introduction, this project is based on the dataset that was provided to us by

McGill University’s Leask Laboratory team and if it wasn’t for their constant support and follow-

ups, this work would have been possible.

3.1.1 Original Dataset Description

In collaboration with the Department of Chemical Engineering( McGill University, Montreal,

Quebec, Canada), Department of Surgery of Royal Victoria Hospital( McGill University, Montreal,

17



Quebec, Canada), Division of Cardiology of Royal Victoria Hospital, (McGill University, Montreal,

Quebec, Canada), Research Centre of Montreal Heart Institute(Montreal, Quebec, Canada) and in

compliance with the Canadian tri-council policy statement on ethical conduct for research involving

humans, informed consent for anonymous data collection was obtained from a cohort of 32 distinct

patients undergoing elective aortic valve repair or replacement surgery.

According to the Leask lab’s previous work, [12], the Collected information consisted of:

(1) Short axis Transesophageal Echocardiogram (TEE) Images: The TEE imaging probe was

inserted through the esophagus to the level of the aorta in order to take an image of the

maximum aortic valve diameter. At least 1 non-truncated heart cycle was captured in the

imaging video. This process was operated using the GE Vivid 7 echocardiographic unit [15].

(2) Ex Vivo Physical Tensile Analysis: A specimen of the aortic ring was obtained for each pa-

tient immediately after resection, clipped for anatomic orientation, and stored in physiologic

saline at 4◦C until further processing and testing. The maximum aortic diameter was mea-

sured for each ring before sectioning four 1.5 × 1.5 cm2 testing squares, equally distributed

around the circumference of the aorta representing the 1-anterolateral wall, 2-posterolateral

wall, and the 3-inner and 4-outer curvature. Five unique thickness measurements were taken

for each testing square using a Mitutoyo Litematic VL-50A constant force digital micro-

meter (Mitutoyo Corp, Kanagawa, Japan). The testing squares were then connected to an

EnduraTEC ELF 3200 planar biaxial tensile tester (Bose, Eden Prairie, Minn) using hooked

4-0 silk sutures in a 37◦C bath of Ringer’s lactate solution. The testing squares were oriented

for equibiaxial stretching along their circumferential and longitudinal axes. Each sample was

preconditioned for 7 cycles (ie, stretch and relaxation) followed by 3 cycles of data acquisition

at a constant displacement rate of 0.1 mm/s in the range of 0% to 60% strain. Circumferential

ex vivo energy loss and stiffness were calculated from the circumferential engineering stress-

strain relation. Energy loss is the percentage of elastic energy needed to stretch the testing

square that is dissipated when the tissue is relaxed. The physiologic interpretation of energy

loss is the percent loss of elastic recoil energy in the tissue that is not returned to blood flow

(ie, maintaining normal Windkessel function). Its physical definition is the ratio of the area
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Figure 3.1: Leak’s Lab Risk Label Margins[32]

between the loading and unloading curve over the area under the loading curve. Because aor-

tic tissue has a nonlinear stress-strain curve, stiffness is defined as the slope of a line tangent

to the stress-strain loading curve.

Labels

Regarding the ground truth used for labelling the input, categorical risk labels were provided to

us by the Leask Lab which consisted of 3 discrete classes pertaining to low risk, average risk,

and high risk. Each risk label is assigned to its distinct patient’s echocardiogram video with the

risk calculation being based on calculations performed by the Leask Lab based on the Ex Vivo

Physical Tensile Energy Loss measurement (see number 2 above), age, diameter and BSA [32].

More specifically, the Leask lab plotted the patients’ measured ex-vivo tensile energy loss value

against their corresponding Age and Diameter/BSA and considered the patients with values that fall

between +1 and -1 standard deviation(SD) from the population average to be labelled as average

risk. All values below -1 SD were labelled as low risk and all values greater than +1 SD were

labelled as high risk. A representation of this calculation can be seen in figure 3.1. Note no duplicate

measurements (two different measurements for the same patient) are present in the dataset.

As a summary, for the purpose of this section, each patient is represented by an input of: An

echocardiogram in the format of a .avi video and a ground truth categorical risk label.
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3.1.2 Data Manipulation and preprocessing

A considerable challenge in this research was the gathering, balancing, organizing, cleaning,

and pre-processing of the echocardiogram videos, particularly because they were optimized to be

rather practical for medical use rather than consistent for deep learning purposes.

The original videos provided to us included annotations such as the image’s date, patient code

and imaging axis orientation that are perhaps useful for a medical practitioner to view, but make deep

learning applications unreliable and distort the learning process. Therefore, we made the decision

to black them out to match the rest of the echocardiogram’s background. An example of an input

video frame is displayed in figure 3.2.

(a) Original Annotated Video frames plus the heart rate
monitoring (b) cleaned data

Figure 3.2: Example of input data

Cleaning the data involved applying a black mask as a top layer on each frame which covered

the upper two corners’ annotations. We then proceeded to extract the echocardiogram’s top pixel

starting point, calculated the semi-circle radius, and blacked out everything beyond that radius, with

the top pixel being the circle center point.

Following the radius blacking-out procedure mentioned above, the heart rate readings were

occasionally found to still appear on top of the main echocardiogram image. For this reason, it was

decided to marginally crop the bottom section of the images’ frames. The marginal trim applied

to the images did not result in a considerable compromise of the echocardiogram images as they
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consist of an arch-shaped lower part.

3.1.3 Data Representation

A scope of research in this project was exploring different ways networks behave when given

different data representations and analyzing the temporal learning effect when comparing still im-

ages vs full long sequences vs short sequences. Regarding our choice for the short sequence

(cropped clips) length, we choose a mini-clip length of 16 time-frames based on previous work

trends that would achieve the balance of capturing temporal dependencies while keeping the length

short thus allowing for creating more clips and not adding complexity overload. Therefore, through-

out the experiments presented in Chapter 3, we will be referring to and experimenting with different

data representations including:

(A) Independent 2D frame images

(B) The full-length videos (consisting of 48 consecutive frames)

(C) Cropped 16 consecutive frames clips/sequences augmented from the full videos

3.1.4 Class Balancing

Class imbalance is a major obstacle in machine learning in general and can be specifically

abundant in most medical imaging datasets due to the natural distribution of case diagnosis and the

natural tendency humans have to get tested when a disease has displayed certain symptoms. The

problem underlies in the fact that most machine learning models learn to fit their function based on

the presented data distribution and with the case of imbalanced datasets, the model learns to perform

well on the majority class due to the abundance of its training entities but fails to correctly learn the

patterns identifying the minority classes. However, it is usually, and almost certainly in medical

data applications, the case that the minority classes are the most important to classify correctly.

In our case, when studying the risk of aortic dissection and rupture, classifying the high-risk

cases accurately is a crucial task, and failure to do so renders the model clinically unreliable. Ac-

cording to our ex vivo physical tensile labelling, our dataset only presents with 4 high and 4 low-risk
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patients (compared to 24 average-risk patients) creating a major class imbalance problem especially

because of the limited size of the dataset, to begin with. Details regarding data distribution between

classes can be seen in table 3.1.

Dataset Total Low Risk Average Risk High Risk

Full Echocardiogram videos 32 4 24 4

Table 3.1: Details Regarding Echocardiograms Original Data Labels

We, therefore, started this project knowing that any architectural experiment to be implemented

needs to be paired with data balancing techniques for any learning to take place. We began explor-

ing different methods including over-sampling, under-sampling, weighted loss and the perspective

of synthetic data generation which can be seen in appendix A which we didn’t proceed with for

unreliability purposes. We tested multiple approaches throughout the experiments which are to be

presented below and we got the best results when we used the weighted sampling approach.

3.2 Independent Frame Images

We started this work and series of experiments following the trends in medical imaging where

most applications tend to divide the imaging sequence into individual frames and use each frame

as an independent dataset entry. This practice significantly augments the dataset size (compared

to using the entire videos) which is usually required in practice, particularly when using scarce and

expensive medical imaging datasets. However, by treating each individual frame as a separate entity,

all temporal dependencies between the frames in the sequence are lost.

When implementing the simple single-image classification, we used a ResNet18 as our back-

bone model due to its powerful performance yet compact design and parameters which were desired

qualifications due to our limited dataset size. Using the principles of transfer learning, we preloaded

the PyTorch ImageNet [44] ResNet18 weights and froze all the layers except the final fully con-

nected layer which was finetuned to fit our frame dataset. A representation of this architecture can

be seen in figure 3.3.
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Figure 3.3: single 2D frame input architecture

3.2.1 Experiment Setup

2D Images were extracted by slicing every frame in the echocardiogram video and resized

through the PyTorch resize transform to 256×256 and randomly horizontally flipped or mirrored to

add randomness. A training/ testing folds split was taken at 80% and one-dimensional test fold ac-

curacy was applied. Details regarding the original( before applying the weighted sampler) training

and testing data-class distribution can be seen in table 3.3.

The ResNet18 was pre-trained on ImageNet dataset [44] and its weights were retrieved and

loaded into our model through the PyTorch vision library. Cross Entropy Loss and Adam Optimizer

were used with a 0.001 learning rate and a scheduled decay of 0.1 with a step size of 15. A summary

of these parameters can be found in table 3.2.
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Batch Size Single Input Entity Shape Loss Optimizer Learning Rate

16 3× 256× 256 Cross Entropy Adam 0.001

Table 3.2: Independent frames as inputs experiment’s details.

Low Risk Frames Average Risk Frames High Risk Frames

Train Fold 4822 581 632
Test Fold 848 125 112
Total 5670 706 744

Table 3.3: Details Independent Frames Data Class Distribution

3.2.2 Results

For assessing the success of the model, we treated this problem as a classical multi-class image

classification problem and used the single test-fold (as displayed in table 3.3) classification accuracy

as the assessment metric. One drawback of dealing with private medical datasets is the lack of

different benchmarks or evaluation metrics for comparison. Therefore, the accuracy, confusion

matrix 3.4, and visual inspection of the mal-classified entities were utilized as the main assessment

criteria.

This experiment resulted in an 80.74 % classification accuracy which meant the model learned

some features through the static 2D frames. We note, however, the odd results from the confusion

matrix 3.4 where none of the low-risk frames were correctly classified as well as an alarming 34

high-risk videos that were classified as low-risk.

We used this experiment as a base case for static 2D frame entity input which ignores all tem-

poral data between frames and started on a series of coming experiments which utilize the temporal

connections between frames.

3.3 3D CNN

Three dimensional convolutional neural networks (3D CNNs) are named as such because they

utilize 3D convolutional filters to process the networks’ input rather than the conventional 2d convo-

lutional filters which are usually used for processing 2D images. The idea behind 3D convolutions is
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Figure 3.4: Separate 2D Image Frames Confusion Matrix

that a 3-dimensional filter is applied to the input data where the filter moves in the 3 axis directions

(x,y,z) and therefore processes the whole sequence input as one 3D entity and outputs 3D volume

space (refer to figure 3.5).

Figure 3.5: 3D Convolutions [29]

Compared to 2D ConvNets, 3D ConvNets - grace to the 3D convolutions and 3D pooling op-

erations - have the capacity to process a third dimension and therefore process the input sequence

spatio-temporally, while in 2D ConvNets, only spatial processing takes place. [48] As a result, 3D
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ConvNets became rather popular in the field of video classification and action recognition [49] [19].

An Example of how 3D ConvNets processes the input volume can be seen in figure 3.6

Figure 3.6: 3D ConvNets Processes the image sequence as a whole entity

Therefore, as a start to our video (image sequence) processing series of experiments, we thought

of experimenting with 3D ConvNets base models, to compare our findings with still 2d frame experi-

ment and see the effect of how convolving in the third dimension might impact the learning process.

We implemented 2 famous 3D convolutional models R3D [19], R(2+1)D [49], (refer to sections

2.4.1 and 2.4.1 for further models’ details). We chose these two 3D Conv models specifically be-

cause they both utilize ResNet18 as their backbone model, which we want to keep as constant when

comparing visual learning methods.

3.3.1 Experiment Setup

In our sequence Experiments, we tested both types of data representation B and C, mentioned

in subsection 3.1.3 to see the effect of using the full video echocardiograms and gaining long-term
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temporal dependencies on the cost of fewer videos vs augmenting the number of videos (by dividing

them to short clips) used on the cost of cropping the full echocardiogram videos and thus losing long

term temporal dependencies. Details regarding the original(before applying the weighted sampler)

training and testing data-class distribution can be seen in table 3.5. Four Experiments were run in

total:

(1) Full length videos on R3D model

(2) Full length videos on R(2+1)D model

(3) Short augmented video clips run on R3D model

(4) Short augmented video clips run on the R(2+1)D model

3D short 16 frames clips and full length videos were extracted with their corresponding frames being

cleaned, normalized and resized to o 256× 256. The base models were pre-trained on the Kinetics

[31] datasets for action recognition. The model’s weights were retrieved and loaded through the

PyTorch computer vision library. Cross Entropy loss and Adam optimizer were used with a 0.001

learning rate and a scheduled decay of 0.1 with a step size of 15. In addition, due to the higher

models’ complexity, we could not run the training script with the same batch number we used in the

2D still frames experiment, so we gradually decreased the batch size but could only run our scripts

with a batch size of 1. A summary of the parameters can be found in table 3.4.

Experiment Batch Size Single Input Entity Shape Loss Optimizer Learning Rate

1 1 3× 40× 256× 256 (full video) Cross Entropy Adam 0.001

2 1 3× 40× 256× 256 (full video) Cross Entropy Adam 0.001

3 1 3× 16× 256× 256 (cropped clip) Cross Entropy Adam 0.001

4 1 3× 16× 256× 256 (cropped clip) Cross Entropy Adam 0.001

Table 3.4: 3D ConvNets experiments’ details.

3.3.2 Results and Analysis

Again for assessing the success of the following architectures and understanding and analyz-

ing the results, we used the single-test fold (as displayed in table 3.5) classification accuracy as
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Full Videos Cropped Clips

Low Risk Avg Risk High Risk Low Risk Avg Risk High Risk

Train Fold 3 19 3 38 295 35
Test Fold 1 5 1 7 52 7
Total 4 24 4 45 347 42

Table 3.5: Details of Full vs Clipped Video Class Distribution

the assessment metric. It was generally noted that the mini-cropped-video clips resulted in an en-

hanced performance compared to the full-uncropped videos. Our rationale behind this result is that

providing the model with more entities to learn from, led to the learning of classifications of more

meaningful patterns while still retaining temporal information that the mini clips presented. It was

additionally noted that the use of 3D ConvNets at experiments 1, 2, and 3 gave a lower classification

accuracy compared to the still 2D frames experiment in 3.2.

When analyzing these results 3.6, we wondered whether these results were due to the still 2D

frames having enough visual context to capture the function mapping with the temporal aspect

playing a smaller role or due to the fact that the 3D ConvNets have enormous numbers of parameters

that ended up overfitting our majority class distributions regardless of the efforts we made to balance

it out. Another thought on 3D ConvNets is that perhaps convolving in the third dimension with

the aim of capturing the temporal data might have ended up being too noisy to capture any motion

patterns. In addition, we note in figure 3.7 a similar trend to the one we saw in the previous confusion

matrix 3.4, where the correct classification of the average-risk inputs is superior compared to those

of the low and high-risk inputs. This might be attributed to the fact that despite our efforts to

balance the training class distribution, the model was still learning the abundant class patterns more

dominantly.

To ponder more on these ideas we moved on to section 3.4 where we tried to minimize the

3D convolutional noise by separating the video classification process into 2D visual extraction and

sequential processing steps.
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Figure 3.7: Cropped Clips-R3D Model Confusion Matrix (Best Performing 3D Conv Combination)

Experiment Input Type Model Accuracy

1 Full Video R3D 71.43 %

2 Full Video R2+1D 71.43%

3 Cropped Clips R3D 83.33%

4 Cropped Clips R2+1D 78.79%

Table 3.6: 3D ConvNets experiments’ Results.

3.4 Aggregated 2D Frames Feature Maps

After Noting the modest results of our 2D still picture frame experiments and the overloaded

complexity that the 3D ConvNets introduced, we initiated the investigation of a middle-ground

architectural point that could perhaps visually process each of the video’s frame images separately

and then aggregate over the extracted feature maps output in a sequential manner.

The architectural structure of Aggregating 2D frames in a video consists of a visual backbone

network to purely capture the spatial patterns in each frame separately, as each frame is processed

in the visual network as a separate entity. Following that, the outputted feature maps are grouped

again to be processed as a series of sequence-length time steps. An illustration of this representation

can be seen in figure 3.8.

In accordance, we start the following section of this work where we explore hybrid frameworks

that utilize the 2D frame aggregation and sequential assessment architectural approach. Throughout

the following 2 subsections (3.4.1 and 3.4.2), we will be logically dividing our model into two
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Figure 3.8: 2D convolutional processing of frames sequence

subsections: visual extraction and temporal sequential assessment.

3.4.1 LRCN

As videos in nature are comprised of consecutive visual information over time and with recur-

rent neural networks(RNN)s being a family of deep learning models specifically associated with

modelling temporal dynamics, they consequently were a natural decision to process the outputs of

the convolutional feature map.

More specifically, LSTMs, among other RNN variants, have shown to be effective in modelling

long-term temporal dependencies and have been applied in various literature in incorporating se-

quential learning in computer vision ranging from caption generation [57], to unsupervised learning

of video representations [47] and action recognition and classification [54] [10].

Specifically, we chose to implement and build our framework similar to the LRCN model pre-

sented [10]. Unlike the authors in [10] who utilized a combination of CaffeNet[26] and a unidirec-

tional LSTM, we utilized the ResNet18 as our choice of visual features backbone to extract spatial
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patterns in our architecture and fed the resulting feature maps to a bi-directional LSTM structure to

capture the temporal dynamics between the frames. We also chose to employ a bi-directional LSTM

since the nature of our problem can utilize the bi-directional learning process.

In addition, we compared the above architecture with the baseline of averagely pooling the

collected feature maps to establish if the LSTM blocks present any added sequential learning effect.

An illustration of the architecture can be seen in figure 3.9.

Figure 3.9: LRCN architecture

Experiment Setup

Regarding the inputs of this series of experiments, we also compared learning outcomes between

types B and C mentioned in 3.1.3 to formulate a conclusive result on whether the short augment

clips are a superior form of input compared to the full videos. We utilized the same training and

single-testing folds mentioned in table 3.5. As mentioned above, we also tested the variability of

the sequential data processing section in the model in terms of average pooling (which we will be

referring to as ResNet18+AvgPooling model) and using LSTM blocks (which we will be referring
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to as LRCN) so in total 4 experiments were run which can be summarized as:

(1) Full length videos on LRCN model

(2) Full length videos on ResNet18+AvgPooling model

(3) Short augmented video clips run on LRCN model

(4) Short augmented video clips run on the ResNet18+AvgPooling model

For consistency in terms of spatial feature extraction, PyTorch pre-trained ResNet18 was kept

as the visual extraction backbone with its layers frozen, except for the last, fully connected layer.

To simulate the process of separately processing each frame and aggregating the sequence later in

given a video length T, we reshaped the Data Input from shape N × T × C × H × W to shape

(N ×T )×C×H ×W . This N ×T frame series was then fed to the ResNet as a separate series of

2D images which results in an aggregated feature map. Finally, we followed to reshape the extracted

feature maps to N × T × latentDimension(LD) representing the T time steps, with LD = 512

based on previous trends [10], and fed the T time steps feature maps to the LSTM.

We selected similar training hyperparameters to our previously conducted experiments’ param-

eters in terms of Cross Entropy Loss, Adam Optimizer with a learning rate of 0.001 and a scheduled

decay of 0.1 with a step size of 15. In addition, unlike the computational overloads in the 3D Con-

vNets experiments which did not allow for increased batch size, we set our training batch size to 16.

A summary of this section’s experimental parameters can be seen in table 3.7.

Experiment Batch Size Single Input Entity Shape Loss Optimizer Learning Rate

1 16 40× 3× 256× 256 (full video) Cross Entropy Adam 0.001

2 16 40× 3× 256× 256 (full video) Cross Entropy Adam 0.001

3 16 16× 3× 256× 256 (cropped clip) Cross Entropy Adam 0.001

4 16 16× 3× 256× 256 (cropped clip) Cross Entropy Adam 0.001

Table 3.7: Aggregated 2D LSTM and Pooling experiments’ details.
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Results and Analysis

We observe in table 3.8 that (similarly to the results achieved in the 3D ConvNets experiments)

the mini-cropped-video clips performed better than the full un-cropped videos (a 17.96% increase

in the LRCN experiments and a 14.96% increase in the pooling experiments). We reason the logic

behind these results in a similar manner in terms of the model having augmented dataset entities

to learn from while keeping the sequence long enough to capture temporal dependencies. We thus

conclude our cropped clips as the superior data representation format for the following sections.

In terms of the differences in accuracy based on the architectural difference (pooling vs lstm),

we interestingly note only a small 2% gap between the results from experiments 3 and 4. We reason

that the ResNet is potent enough to capture still visual patterns while the pooling operation, even if

it is trivially temporally processing the frames, is sufficient to compare to the LRCN performance.

The LRCN superior performance, however, which it offers due to its advantageous LSTMs powerful

sequence learning blocks, suggests the presence of temporal dependencies in the input. In addition,

we note in figure 3.11 the same trend we saw in the previous experiments of failure to correctly

classify low-risk inputs compared to high-risk and average-risk ones. Along with our initial analysis

of the model overfitting to the majority class distribution, we also reason this case to the imaging

view disparities between our given low-risk echocardiogram videos.

Finally, we also tried looking deeper into the model’s interpretability aspect. We implemented

a saliency map visualization of where the model’s neurons were being activated by visualizing

the gradients through the image channels. Saliency maps can be thought of as a small section of

attribution methods of interpretability. Attribution methods as described by [37] study what sections

of the input ( in our case pixels of the image) are responsible for the model to act in a certain way.

Therefore, saliency maps can be thought of as visual heatmaps indications that highlight pixels of

the input image that mostly influenced the classification decision.

In order to implement the gradient-based saliency maps, we filtered the maximum values’ in-

dices of the raw output of our network and took the raw output at these indices which we called

the score vector. We then followed to backpropagate through the score vector to obtain the weights

values which represent the most influential pixel locations in the input image. Finally, we took the
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maximum values across the channels of the weights vector to end up with a single-channel saliency

map. A representation of our saliency maps across different frames can be seen in figure 3.10. As

we noted in figure 3.10, the model seemed to mainly focus on the content inside the aortic ring, with

the exception of the noise present around the image edges.

Due to the recent research which examined the validity of saliency maps [1], we took the inter-

pretation presented in this work with caution as a mere simple interpretation of noise being present

in the learning process.

Figure 3.10: Sample echocardiograms frames Saliency Maps

Experiment Input Type Model Accuracy

1 Full Video LRCN 71.43%

2 Full Video Average pooling 71.43%

3 Cropped Clips LRCN 89.39%

4 Cropped Clips Average pooling 86.39%

Table 3.8: 2D aggregated frames experiments’ Results.

3.4.2 Attention Mechanism

Studies in visual cognition have shown that humans naturally focus on various specific features

in a visual image rather than compressing the whole scene altogether [43]. This is probably related

to the fact that while images contain beneficial information for the visual recognition and assess-

ment task, they also contain a lot of clutter and irrelevant noise. With the advancement of deeper

networks and the rise in interest of the seek in interpretability, attention-based models are getting

more and more popular and are achieving promising results in challenging visual tasks including
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Figure 3.11: cropped clips with LRCN (best performing) model

image captioning [55], object detection [59] and action recognition [45].

When discussing self-attention mechanisms, it is worth mentioning the recently emerged field of

transformers that, after being initially introduced in the natural language processing field [50], have

proved their robustness and efficacy in the world of computer vision [11] and have revolutionized

the indisputable standing that CNNs possessed in the Large Scale Visual Recognition Challenge

(ILSVRC). We perceive, however, that with the robustness that vision transformers introduced,

came their ”data-hungry” training dependency that rendered vision transformers not as successful

as CNNs if not given sufficient amounts of data to train on. Due to the mentioned reasons, and given

our extremely small dataset, we chose to experiment with incorporating self-attention mechanisms

into our model rather than experimenting with a pure-based transformer backbone network.

To do that, we chose to utilize the non-local neural network presented in [52] which is based

on the non-local operation originally presented in [7] to capture long-range dependencies and de-

noising the visual input to our network. In its essence, the generic non-local operation can be

thought of as a method to capture context directly between any two positions in the visual content,

regardless of their spatial proximity.

yi =
1

C(X)

∑
∀j

f(Xi, Xj)g(Xj). (2)

To compute a more meaningful, spatially aware signal, the non-local operation is comprised of

a combination of A) A pairwise function f to compute the spatial relationships of all position j
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compared to position i in the input image X and B) A unary function g to represent an embedding

representation of X at j. As presented in equation 2, yi represents the non-local operation’s output

signal, which has the same size as the input image X and C(X) points to the normalizing scaling

factor.

In our implementation, we went with the standard choice of g being g(Xj) = WgXj with Wj

as the weights matrix to be learned through a 1× 1convolutions. For the decision of the choices for

the pairwise function f, we chose the embedded Gaussian function presented in 3. We note that with

f being the Gaussian embedding function, y turns into the generic module of self-attention [50]. As

for the normalization factor, C was set as per the original paper to C((X) =
∑

∀j f(Xi, Xj). An

illustration of the non-local block can be seen in 3.12 which is an adaptation of the figure in [52]

where the authors chose to temporally pool the resulting visual feature maps.

f(Xi, Xj) = eθ(Xi)
Tϕ(Xj) (3)

Where

θ(Xi) = WθXi ϕ(Xj) = WϕXj

Figure 3.12: spatial non-local block

36



Experiments Setup

We wrapped up our architecture by inserting the non-local block right after layer 2 in our original

ResNet18 model. we chose the location right after the second layer to insert our non-local block

based on the results of [52] that showed that the experiments with the attention units inserted in the

earlier layers showed better outcomes than the ones with the blocks inserted in the later layers.

Since we chose to implement the non-local blocks as a method of spatial attention only, we also

kept our LSTM as the second step to process the feature maps of the ConvNet output. In addition,

We also kept the ConvNet base as the ResNet18 and utilized the same cropped clips training and

single-testing folds as the previous sections mentioned in table 3.5 under the mini cropped clips

category.

Therefore, our model consisted of a visual extraction section which takes as input image se-

quences of shape (N × T )× C ×H ×W , feeds it to a ResNet18 with a non-local attention block

between its second and third layers and finally output the visual feature maps of shape T × 512 We

then proceeded to feed the LSTM the input sequence of T timesteps just like we did in section 3.4.1.

In addition, we also selected similar training hyperparameters to our previously conducted ex-

periments’ parameters in terms of Cross Entropy Loss, Adam Optimizer with a learning rate of

0.001 and a scheduled decay of 0.1 with a step size of 15. However, due to the computational over-

load of the non-local blocks, we had to downgrade the image size to 128× 128 and use a batch size

of 1.

Batch Size Single Input Entity Shape Loss Optimizer Learning Rate

1 16× 3× 128× 128 (cropped clip) Cross Entropy Adam 0.001

Table 3.9: 2D aggregated frames with attention blocks experiment details.

Results and Analysis

As conducted previously, the assessment of success and the interpretation of the result depended

primarily on the test single-fold classification accuracy as the assessment metric. Surprisingly, the

achieved results 3.10 were lower than those achieved by our LRCN model. While this might be

caused by the input images quality being downgraded to 128 × 128 while training on batches of 1,
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we also reason that, due to our small dataset, the attention map did not have enough training entities

to learn from and ended up learning irrelevant noises which distorted the learning process rather

than fine-tuning it.

Input Type Model Accuracy

Cropped Clips Attention-LRCN 78.79 %

Table 3.10: 2D aggregated frames with attention blocks experiments’ results.
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Chapter 4

Textual Data Fusion

Towards the later stages of writing this dissertation, McGill University’s Leask Laboratory team

presented to us an additional dataset consisting of tabular or textual information which has the pa-

tients cohort we dealt with in Chapter 3 as a subset of its cohort. We were therefore intrigued to

compare the echocardiograms learning process against pure statistical machine learning approaches

and aimed to incorporate the echocardiograms’ learning and the tabular data learning streams. In

this chapter, we will start by describing the additional patients’ information dataset, followed by in-

troducing our hybrid model which combines the visual, sequence, and tabular data learning streams.

We will also be basing some of the feature selection and tabular model decisions on previous work

on the subject conducted by the Leask Laboratory’s graduate students [32] which has assessed the

statistical approach of the project.

4.1 Dataset

4.1.1 Original Dataset Description

Grace to the McGill Leask Labs, and in compliance with the Canadian tri-council policy state-

ment on ethical conduct for research involving humans, informed consent for anonymous data col-

lection was obtained from a cohort of 66 distinct patients undergoing elective aortic valve repair

or replacement surgery. The cohort of patients’ echocardiogram videos presented in Chapter 3 is a

subset of this cohort.
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Various patient information categories were collected including: patient demographic informa-

tion, comorbidities, lifestyle information, aortic geometries, and genetic information. A detail of all

the collected information can be viewed in table 4.1.

Variable Name

Female(0/1) age (yr)
height (m) Weight (kg)
bsa bmi
Systolic Pressure (mmHg) Diastolic pressure (mmHg)
Bicuspid Aortic Valve History of smoking
Dyslipidemia Coronary Artery Disease)
History of Hypertension Diabetes (I/II)
Aortic diameter/BSA family history of aortic disease
Energy Loss (mean of both axis) Non-Marfan Genetic Disorder

Tensile Measured Energy loss (short axis)
Tensile Measured Energy loss (long axis)
Severity based on Diameter/BSA and Age

Presents with NYHA Heart Failure Symptoms
Aortic valve stenosis (1=mild, 2=mod, 3=severe)

Aortic Valve Insufficiency (1=mild, 2=mod, 3=severe)
History of Alcohol Use (7 drinks a week or more)

Reported Aortic Diameter (Based on CT, MRI, or echo) (mm)
Ascending diameter (measured from surgical TEE) (mm)

Sinus ofa Valsalva diameter (measured from surgical TEE) (mm)
Ascending Aortic Surface Area (measured from surgical TEE) (cm2)

Genetic Variant of Unknown Significance
Marfan Syndrome (0=none, FBN VUS =1, positive=2)

Table 4.1: Patients collected tabular information.

4.1.2 Data Manipulation and Preprocessing

In general, Machine learning models learn whatever we feed into them. Feeding noise will

categorically produce noisy predictions and the curse of dimensionality is a complication that has

intrigued research in the field of data science over the past decades. In addition, especially given

our very small dataset, increasing the dimensionality would exponentially increase the number of

parameters which would probably lead our model to over-fit more than it already is.

Therefore, when presented with a 31 features dataset corresponding to patients’ information,

we went back to the work presented by the Leask Laboratory where the author implemented input
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ranking selection of all the patients metadata features.

Figure 4.1 displays the work of the Leask Lab in terms of assessing feature importance and its

influence on the classification label in terms of the F-score and Independent Importance methods.

Based on this, we decided to only include the top-score features in our tabular dataset. We also

eliminated the ascending diameter/BSA feature for redundancy and correlation purposes as their

significance is already present in the Ascending Diameter and BSA separate features. A figure of

feature correlation before and after eliminating the diameter/BSA feature can be seen in figures 4.2

and 4.3. We also noticed negative correlation between the female feature and the BSA and History

of Hypertension features which make sense since females tend to have smaller body surface areas

compared to men as well as having a lower statistical chance of developing hypertension. We choose

to keep these features due to their medical diagnostic importance.

Figure 4.1: Feature Importance [32]

4.1.3 Data Representation

Seeing the nature of our tabular data, and since we took the decision to incorporate the patients’

meta data learning as a dense stream in our deep learning model, we had to encode the discrete

data as feature vectors. For the female, Bicuspid Aortic Valve and History of Hypertension features
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we chose a one-hot binary encoding to represent True/False representation. As for the rest of the

numerical features, we went with the representation of a single numerical float value for each. We

also applied the min - max scaling approach to the numerical value entities to decrease the noise

and stabilize the learning process.

4.2 LRCN-Tab

Echocardiograms and their deduced measurements play a vital role for pathologists to distin-

guish high-risk aortic aneurysms. However, even when provided with near-conclusive imaging

results, clinicians and pathologists traditionally rely on patient-specific data to support their diag-

nostic decision. Clinical data such as the patient’s age, gender, the existence of congenital defects,

and history of the disease in the family are all factors that are usually attributed great weight within

the clinical diagnostic process, especially for diagnoses relating to cardiovascular diseases. For ex-

ample, the pathologist risk assessment will greatly differ given a case of a 4cm ascending aortic

valve measurement of a 5 yr old compared to that of an 80-year-old patient.

We, therefore, decided, given our specific cardiac risk assessment task, that incorporating such

information would add significant clinical value to our diagnostic risk assessment model. To get the

best performance possible, we sought to incorporate the tabular data learning stream with our so far

best-performing model from section 3.4.2.

Since we wanted to create an ensemble end-to-end trainable model, we decided on processing

the tabular information in a dense separate stream through consecutive fully connected layers that

will accomplish the job of extracting the meaningful patterns in the tabular data. The challenge,

however, was deciding on a fusion method to combine the two streams. We were inspired by

[23] techniques regarding different streams fusion models and decided on experimenting with two

approaches:

(1) Simple concatenation approach: concatenating the two feature vectors from the visual-sequential

and the tabular dense learning streams right before the last fully connected layer.

(2) Squeeze-and-Excitation (SE) [24]: The tabular learning stream is used to scale the visual-

sequential learning feature vector in an SE approach followed by a fully connected layer.
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An overview of the general model architecture, which does not specify a specific stream fusion

method, can be viewed in figure 4.4.

The simple concatenation technique, with a data loader of batch size B, would follow the logic

of concatenating the visual sequence stream coming from the bidirectional LSTM last hidden states’

outputs(lstm out) of shape B × (2 × lstm out) with the tabular learning stream output(meta-out)

of shape B × meta out . Therefore, simply concatenating the two outputs on the first dimension

would results in the final stream of shape B × (2× lstm out+meta out)

On the other hand, the squeeze and excitation fusion method is slightly more complex. SE

blocks were developed as complementary blocks to CNNs to improve channel interdependencies

at a trivial computational cost. SE blocks work by adding weighted content or relevancy to each

channel. The squeeze operation is achieved by using global average pooling to generate channel-

wise statistics. Given an input image U of dimensions H ×W × C, per channel c, the output z of

the global averaging layer is generated by shrinking U through its spatial dimensions H × W, such

that the c-th element is calculated by:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (4)

resulting in a vector z of shape 1× 1× C representing the context of each channel c which is then

fed into two consecutive fully connected layers along with their activation functions to add non-

linearity representations. Finally, the resulting channel-wise feature maps are multiplied with the

original image U as a scaling factor to present an output capable of exploiting channel dependencies.

In our case, since we are not squeezing and exciting the same input but rather two different

streams, we will use the tabular data stream output to act as the scaling excitation stream z in

equation 4 and give context to the sequential visual output stream coming from the LSTM which is

represented as the image U in the original description.

4.2.1 Experiments Setup

As discussed we will be taking our so-far best-performing model and incorporating the tabular

learning stream into it. To incorporate the two streams, we experimented with two different tabular
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data fusion techniques, as discussed in the section above, to test the effect of the addition of our

patient information on our imaging deep learning model.

We kept the same visual sequence learning base from our best performing model 3.9 which

consisted of the same pre-trained 2D ResNet18 visual processing backbone, a bidirectional LSTM

which took the visual feature maps outputs and processed them as a T time steps sequence (with

T corresponding to the video sequence length of 16 frames) and a final fully connected network.

We also utilized the same cropped clips training and single-testing folds as the previous sections

mentioned in table 3.5 under the mini cropped clips category.

Therefore to distinguish the two fusion techniques, 2 experiments were run:

(1) The LRCN-Tab model with the concatenation fusion method

(2) The LRCN-Tab model with the SE fusion method

The same remaining training parameters used for the previous experiments were utilized again in-

cluding: Cross Entropy Loss and Adam Optimizer with a 0.001 learning rate and a scheduled decay

of 0.1 with a step size of 15. The inputs were loaded through the PyTorch data loaders and consisted

of two parts, the visual extraction input of shape (N × T )×C ×H ×W and the tabular data input

of shape N ×meta categ corresponding to the number of features in the patient’s tabular features.

Experiment Batch Size Single Input Entity Shape Fusion Method

1 16 16× 3× 128× 128, 16× 6 Concatenation
2 16 16× 3× 128× 128, 16× 6 SE

Table 4.2: LRCN Tab params

4.2.2 Results and Analysis

We continued to use the test single-fold classification accuracy as an assessment of the success of

our model and analyze the results of its experiments. As seen in the results table 3.8, to our surprise,

the simple concatenation fusion method model achieved the exact results our LRCN model did, and

the SE fusion method model achieved much lower results. We reason that the tabular data input

somehow distorted the learning process rather than enhancing it and with the SE fusion method
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reinforcing the weight of the tabular learning stream, it actually contributed more to degrade the

performance.

Interestingly, we note the same confusion matrix in our experiment(seen in figure 4.5) as the

one in Chapter 3 with the LRCN model’s confusion matrix 3.11. This is probably due to the fact

that the two models have the same corresponding test fold classification accuracy. This also might

suggest that the LRCN-Tab model applies more weight to its visual learning stream rather than the

tabular learning stream in its classification decision process.

In light of the results above and with the performance of the LRCN and LRCN-Tab models

being extremely similar, we tried re-running their respective experiments with a cross-validation

approach with k = 4 folds. Running cross-validation in a video classification application where we

are considering cropped clips was a challenging task that had to be dealt with attentively. The reason

goes to the fact that although each cropped clip (video segment) is a separate training entity with its

corresponding label, it is still semantically a part of the original video pertaining to the same patient.

Therefore, grouping these clips in one pool and performing traditional k-fold cross-validation will

very likely place clips pertaining to the same patient in both the training and testing folds. We thus,

made this train/test folds separation at the higher patient (full videos) level. However, given that

in our dataset some full videos are much shorter than the others (up to 7s difference and with the

videos having 30 frames per second (fps)) and having only four low-risk and four high-risk patients

meant that having a short full video in the training set will subsequently produce very little cropped

clips and therefore diminish the already small training dataset. As a result, we noticed the great

discrepancies between the results of each fold as presented in table 4.4 as the sub-samples from the

original videos changed.

Experiment Fusion Method Accuracy

1 Concatenation 89.39%
2 SE 74.24%

Table 4.3: LRCN Tab params
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LRCN LRCN-Tab

Fold 1 89.39% 89.39%
Fold 2 87.88% 86.36%
Fold 3 65.63% 68.75%
Fold 4 72.5% 73.15%

Table 4.4: LRCN and LRCN-Tab cross-validation experiments

Figure 4.2: Feature correlation before eliminating diameter/Bsa
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Figure 4.3: Feature correlation after eliminating diameter/Bsa
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Figure 4.4: LRCN-Tab

Figure 4.5: Cropped clips with LRCN-Tab concatenation model
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we investigated different spatial, temporal, and tabular deep-learning approaches

to assess aneurysms’ risk in thoracic aortic tissue. We split this work into two logical sections per-

taining to the datasets dealt with throughout this thesis. In the first section, we explored the optimal

data representation in terms of the full echocardiogram videos as opposed to the clipped augmented

mini-clips and the independent still frames. While incorporating different data formats, we also

compared different sequential visual convolutional-base architectures that could learn spatial as

well as temporal features through the data inputs. In our second section, We followed to incorporate

a complementary tabular dataset pertaining to the patient’s tabular information by a separate tabular

data learning stream and then fused the visual and tabular streams together to create an ensemble

end-to-end trainable model.

Our results can be split per our experimental hypothesis: We first present the clipped augmented

video clips as a superior input data format, compared to inputting the full videos or the still frames.

We reason this is due to the fact that the augmented clipped videos(although less in training entities

than the still frames and shorter in sequence length than the full videos) achieved the balance of

creating enough training entities for the network to learn meaningful spatial patterns while attaining

the sequential length for temporal learning between the frames.

In terms of the optimal visual learning approach, we observed the efficiency that the aggregated

49



2D ConvNet grouped with a bidirectional LSTM presented in terms of the 2D ConvNet not present-

ing the complexity and the overfitting that the 3D ConvNets presented and still being potent enough

to capture the spatial patterns and the sequential learning properties that the LSTM leveraged to

learn dependencies between the frames’ feature maps. The superiority of a sequential learning ar-

chitecture also suggests the presence of temporal dependencies and patterns between the frames in

the echocardiograms.

5.2 Limitations

As mentioned in this work, the dataset itself represented a challenge which limited this work

in terms of: The size of the data: While we did achieve promising risk classification results, the

extremely small size of our dataset had left us wondering about the validity of our results and

analysis of every architecture applied.

The validity of the input’s labels: The discrete class labelling of low, average, and high risk in

itself is a debatable subject due to the lack of deterministic diagnostic properties. We note this is

especially applicable regarding the low-risk inputs since eventually all patients going through aortic

valve replacement surgery (the source of the data collection) will have some risk associated.

The Timeline of acquiring the dataset: The acquisition of this dataset came in a number of steps

in time, which was a major driving factor for the amount of work spent in each section in this thesis.

5.3 Future Work

Hopefully, the work presented in this thesis can be considered as a modest stepping stone in the

world of exploring Spatio-temporal learning approaches in ultrasound imaging. Below are some

future work directions on this topic which might be worth investigating.

Large scale Dataset Applications Application of this work on large-scale ultrasound datasets

(though an extension on the current dataset or perhaps in a multi-task learning approach on another

closely related task) would verify our results and analysis which would make it generalizable on

other sequential medical imaging modalities.

Generation of new data as a source of augmentation Another interesting approach to the
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case of small datasets is the generation of new input entities through generative models which have

gained vast popularity through the last decade. This topic was explored in Appendix A but was

stopped due to the need for medical verification of the generated (inputs/labels).

Different tabular learning and fusion streams While we have explored the simple MLP tab-

ular data learning and fusion through classic and squeeze and excitation methods, it would be in-

teresting for example to consider other gradient-differentiable tabular learning schemes and fusion

methods such as differentiable trees and weighted fusion techniques. Another point of view is even

treating the two problems as separate but closely related tasks and exploring multi-task learning

approaches.

Hand crafted and deep learning input image enhancement techniques Since echocardio-

grams are by nature fuzzy images characterized by dark-themed colours and shadows, an interesting

field to explore would be the possibility to enhance these inputs beyond vanilla normalization and

simple transformations.

Hard attention mechanism and temporal attention While we have investigated the use of soft

attention mechanism in terms of the visual non-local blocks in the Convolutional network, applying

hard attention mechanism (or an indirect form of it) might yield even better results due to the fuzzy

nature of echocardiograms distorting the soft attention mechanism calculations. In addition, it might

be worth exploring temporal attention as well to study the inter-frame effect and the weight each

frame presents to the final decision.

Variability in terms of model’s choice, loss functions, sequence length, attention blocks

location.. Throughout the course of this work, choices regarding the model’s architecture, loss

function, optimal sequence length, and feature maps’ latent dimensions were taken based on the

current trends and practices in the field. Exploring these variables more closely (especially the main

model’s architecture) might be of high value.
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Appendix A

Echocardiogram Cycle generative

adversarial networks (GANs)

This Appendix section will acknowledge a small side project that was implemented towards the

earlier stages of this thesis journey but was later discontinued for data unreliability purposes as well

as the Leask Labs providing us with additional data towards the end of this project.

When the Leask Lab team presented us with the original raw echocardiograms dataset men-

tioned in Chapter 3, they also provided its speckled video output version from General Electric

(GE) software. The way the GE software works is that it reads the original echocardiogram probe

output, then applies edge-detecting algorithms to detect the edge of the aorta and highlight them by

drawing colored speckles along the aortic wall.

An example of raw vs speckled video frames can be seen in figure A.1.

When we acquired the mentioned dataset, we had some patient references with just the raw echo

videos, some with just the speckled GE output videos, and some with both. We, therefore, sought

a method where we might generate the missing raw echocardiogram videos and augment the size

of our dataset. Cycle GANs for unpaired image-to-image translation [58] were an attractive option

that exactly fitted our needs.

Cycle GANs learn to translate unpaired images from source X to target Y and vice versa. There-

fore, they not only learn the mapping G: X → Y but also its corresponding inverse mapping F: Y →
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Figure A.1: Speckled GE software output videos(left) compared to raw echocardiogram
videos(right).

X. With this implementation, we could utilize the unspeckled raw videos and the speckled videos

and exploit the fact that we mostly didn’t have paired data entities between the two domains.

According to [58], the Architecture revolves around two generative mappings G: X → Y and F:

Y → X, two adversarial discriminators DX and DY . The full cycle GANs objective, as presented in

equation 5, can be summarised as minimizing the adversarial loss of the G: X → Y and F: Y → X

mappings as well as minimizing the cycle consistency losses between the two to prevent the learned

mappings from contradicting each other with λ being a flexible factor that controls the relative

importance of the two objectives.

L(G,F,DX , DY ) = LGAN (G,DY , X, Y ) + LGAN (F,DX , Y,X) + λLcyc(G,F ) (5)

For the implementation, we mostly relied on the authors’ PyTorch repository for the imple-

mentation details and hyperparameters. We started by loading the generative models’ pre-trained

weights from the official paper’s experiment on horse-zebra and zebra-horse image translation tasks.

We normalized and resized the input image frames to 256× 256 to be compatible with the model’s

parameters. We set both the adversarial losses, LGAN , to the mean squared error loss while using

the L1 loss for the cycle consistency loss. In addition, λ is set to 10, Adam optimizer is used with a

learning rate of 0.0002 and the model is set to train on 200 epochs.

As one would expect with GAN models, the images generated varied along the epochs. A

selection of the artificially generated images along epochs 12+ can be seen in figure A.2 as compared

to the original images of the corresponding speckled/unspeckled domains.
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We visually assessed the speckled imaging results to be of acceptable quality to the naked eye

with few unreliable images that could be manually filtered out. However, when it came to the

generated unspeckled images, almost half of them had unexpected colour variation filters applied

which was probably caused by the colored original speckled image input. Therefore, a high-quality

image search meant visually cherry-picking between the enormous project output. Moreover, we

noticed a trend of thick white edges around the artificially generated unspeckled images (probably

due to the GAN not exactly generating the original aortic wall because of the speckles position

obscuring it in the speckled image input). This thick aortic wall might cause the imaging input

along with its predefined risk label to be medically unreliable since a few millimeters in the aortic

diameter might critically alter the diagnostic risk decision.

In addition, towards the end of this project, we were provided with some of the missing videos

mentioned above, which caused the efforts and time to be further invested unnecessary.

Figure A.2: Artificially Generated speckled images(left) Artificially Generated unspeckled im-
ages(right).
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