
Proactive Security Policy Enforcement for Containers

Hugo Kermabon-Bobinnec

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Applied Science (Information Systems Security) at

Concordia University

Montréal, Québec, Canada

December 2022

© Hugo Kermabon-Bobinnec, 2022

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Hugo Kermabon-Bobinnec
Entitled: Proactive Security Policy Enforcement for Containers

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Mohammad Mannan
Chair and Examiner

Dr. Arash Mohammadi
Examiner

Dr. Lingyu Wang
Thesis Supervisor

Dr. Suryadipta Majumdar
Co-supervisor

Approved by
Dr. Zachary Patterson, Graduate Program Director

Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Proactive Security Policy Enforcement for Containers

Hugo Kermabon-Bobinnec

By providing lightweight and portable support for cloud native applications, container en-

vironments have recently gained significant momentum. A container orchestrator, such

as Kubernetes, can enable the automatic deployment and maintenance of a large number

of containerized applications. However, due to its critical role, a container orchestrator

also attracts a wide range of security threats exploiting misconfigurations or implementa-

tion flaws. Moreover, enforcing security policies at runtime against such security threats

becomes far more challenging, as the large scale of container environments implies high

complexity, while the high dynamicity demands a short response time. In this thesis, we

tackle this key security challenge to container environments through a novel proactive ap-

proach. Our proposed approach leverages learning-based prediction to conduct the compu-

tationally intensive steps (e.g., security verification) in advance, while keeping the runtime

steps (e.g., policy enforcement) lightweight. Consequently, this approach can ensure a

practical response time (e.g., less than 10 ms in contrast to 600 ms with one of the most

popular existing approaches) for large container environments (e.g., up to 800 Pods). We

demonstrate its deployability by integrating our solution with Kubernetes, one of the most

popular container orchestrators.

iii

Acknowledgments

I would like to express my deepest appreciation to my thesis co-supervisors, Dr. Suryadipta

Majumdar and Dr. Lingyu Wang. Their endless support is in for a big part of this journey

and I could not have done it without their help.

I would like to extend my sincere appreciations to my labmates Sima Bagheri and Mah-

mood Gholipourchoubeh. Their enthusiastic company inside and outside the lab has made

this whole journey quite enjoyable. Special thanks to Dr. Yosr Jarraya for her precious

pieces of advice.

My deepest thanks to my parents and my brother, for their unconditional support, and

to Gilles, for accompanying me in this transatlantic journey.

I dedicate this thesis to my dear friend Florian. Repose en paix.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Context and Problem Statement . 1

1.2 Thesis Contribution . 3

1.3 Research Gap . 3

1.4 Related Publications . 4

1.5 Authors’ Contribution . 4

1.6 Outline . 5

2 Background and Motivation 6

2.1 Background . 6

2.2 Motivation . 8

2.3 Threat Model . 12

3 Related Work 13

3.1 Container Security . 13

3.2 Security Policy Enforcement . 17

v

4 ProSPEC: Proactive Security Policy Enforcement for Containers 19

4.1 Methodology . 19

4.1.1 The Offline Phase . 19

4.1.2 The Runtime Phase . 26

4.2 Implementation and Integration . 28

4.2.1 ProSPEC Implementation . 29

4.2.2 ProSPEC Integration with Kubernetes 33

4.2.3 Challenges . 37

4.3 Experimental Evaluation . 40

4.3.1 Experimental Settings . 40

4.3.2 Experimental Results . 41

5 Extensions 48

5.1 Predictive Model Learning . 48

5.1.1 Introduction . 48

5.1.2 Background and Motivation . 48

5.1.3 Approach . 50

5.1.4 Implementation and Results . 54

5.2 Rule Proactivization Priority . 57

5.2.1 Introduction . 57

5.2.2 Background and Motivation . 58

5.2.3 Approach . 61

5.2.4 Preliminary Results . 68

5.2.5 System Design and Integration . 69

6 Deployments and Implementations 71

6.1 Kubernetes Cluster . 71

vi

6.1.1 Background . 72

6.1.2 Topology . 73

6.1.3 Deployment Steps . 74

6.2 5G Core on Kubernetes . 75

6.2.1 Background . 76

6.2.2 Topology . 77

6.2.3 Deployment Steps . 78

6.3 Usage in Security Research Works . 79

6.4 Vulnerability Discovery . 80

7 Conclusion 81

Bibliography 83

Appendix A List of Abbreviations 90

Appendix B Vagrant configuration file 91

vii

List of Figures

1 The ETSI architecture of a container environment [26] 7

2 An example of predictive model . 8

3 Policy bypass due to data replication delay 11

4 Overview of the ProSPEC approach . 21

5 An excerpt of event dependencies in Kubernetes 22

6 ProSPEC predictive models . 24

7 An example of offline learning . 25

8 ProSPEC preventing CVE-2020-8554 . 28

9 The architecture of our ProSPEC implementation 30

10 Showing both (a) high-level overview and (b) detailed view of the integra-

tion of ProSPEC with Kubernetes . 36

11 Impact of the size of cluster and wrong predictions rate on the response time 42

12 Impact of threshold (dashed vertical lines show the minimum (0.62) and

maximum (0.8) transition probabilities to a critical event in the predictive

model) with 200 Pods and enforcing Policy 1 45

13 Sample data extracted from our dataset . 50

14 A classic LSTM cell as used for the LSTM model 54

15 Architecture of our LSTM network . 55

16 OPA/Gatekeeper deployment in the Kubernetes environment [72] 58

viii

17 Sample policy file for OPA/Gatekeeper written in Rego, a declarative lan-

guage [71] . 59

18 Overview of our approach to gather new and existing security policies,

evaluate and rank them from the most expensive to the less expensive and

present the end user with results . 62

19 An example of our approach . 67

20 Distribution of execution time on five policies 68

21 Integration of our solution in the OPA/Gatekeeper environment 69

22 Quick-kubernetes automates the deployment of a complete Kubernetes cluster 73

23 Kubernetes-free5gc automates the deployment of 5G core in Kubernetes . . 77

ix

List of Tables

1 An excerpt of Kubernetes events . 34

2 An excerpt of equivalent terminologies and concepts among three main

container orchestrators . 37

3 An example of the count and prediction tables of a 2-gram after training . . 52

4 An example of the count and prediction tables of a 3-gram after training . . 52

5 Comparison of different predictive model learning approaches 57

6 Distribution of execution time for each line of code of an OPA policy 61

x

Chapter 1

Introduction

1.1 Context and Problem Statement

Container environments are becoming increasingly popular for delivering microservices

with increased scalability, reliability and observability [89]. In such environments, con-

tainer orchestrators (e.g., Kubernetes [44]) are typically employed to ease the deployment

and maintenance of large amounts of containerized applications.1 However, the central

role of such orchestrators also renders them attractive to various security threats that ex-

ploit misconfigurations or vulnerabilities to cause breaches of security policies. Further-

more, security is typically an afterthought in the deployment of containerized applications

and security policy breaches are usually detected after the fact, which could result in irre-

versible damages (e.g., denial of service or information leakage) [5, 16].

To that end, enforcing security policy at runtime (i.e., verifying user requests against

a given security policy and denying those requests causing a breach) can prevent such ir-

reversible damages caused by attacks. However, runtime security policy enforcement can

be challenging for container environments due to their sheer scale (which implies high

complexity) combined with the very short life cycle of containers (which demands short

1A study shows 91% of respondents use Kubernetes and 83% of them in production [12].

1

response times). Evidently, applying Open Policy Agent (OPA)/Gatekeeper [64] (the for-

mer is an open-source policy engine, and the latter the go-to solution for using OPA for

Kubernetes admission control [44]) for runtime security policy enforcement in large con-

tainer environments may face some practical challenges as follows.

• First, such tools may cause prohibitive runtime delay for a relatively large container

environment (e.g., OPA/Gatekeeper can cause up to 600 ms delay in a Kubernetes

cluster of 800 Pods, as further demonstrated through experiments in Section 4.3.2).

• Second, the reactive nature of those solutions (i.e., all the efforts are only started after

a user request is already received) implies a fundamental bottleneck that leaves little

room for further performance improvement to keep up with the ever-increasing size

and complexity of container environments.

• Third, existing proactive approaches to reduce response time, such as verifying repli-

cated states [64] (instead of actual system states) may cause severe security issues.

Specifically, the small delay in replicating the states can cause a temporary inconsis-

tency between the actual and replicated states, which can be exploited by a malicious

user to bypass security policies, as shown through an example in Section 2.2.

In this thesis, we tackle those key challenges through a proactive approach, namely,

ProSPEC. Our key idea is to perform computationally intensive verification steps in ad-

vance (i.e., before the actual events occur) to keep the runtime enforcement steps lightweight

with a practical response time. Specifically, we first learn a predictive model from historical

data (i.e., logs of past events) to enable the prediction of future events. Then, we utilize this

model to predict imminent critical events (which may violate a security policy) and proac-

tively start the verification of that policy based on those hypothetical events. Finally, once

the actual events occur, we enforce the security policy based on the pre-computed verifi-

cation results through efficient operations, such as list searching. Consequently, ProSPEC

2

can make runtime decisions with negligible delay even for large container environments.

1.2 Thesis Contribution

In summary, the main contributions of this thesis are as follows:

• To the best of our knowledge, this is the first work offering proactive security policy

enforcement at runtime for containers. ProSPEC can ensure security policy enforce-

ment for large container environments with a more practical response time (e.g., less

than 10 ms for 800 Pods in contrast to 600 ms with OPA/Gatekeeper [64], one of

the most popular existing approaches), making it suitable for low latency appications

such as 5G’s Ultra Reliable and Low Latency Communications [84].

• We study the dependency relationships among container management events and

build the first predictive model for container events. Such a model may enable other

proactive security solutions (beyond security policy enforcement).

• In the design of ProSPEC, the verification step is deliberately decoupled from the

enforcement step to enable easy integration with legacy policy enforcement engines.

• ProSPEC is integrated with the de facto standard orchestrator, Kubernetes [44], with

the provision of porting it to other orchestrators (e.g., Docker Swarm [22], Open-

Shift [66]) with limited effort.

1.3 Research Gap

In summary, ProSPEC mainly differs from the state-of-the-art works as follows. First,

many existing solutions leverage Linux Security Features or Linux Security Modules to

address issues specific to the operating system (e.g., lack of process isolation, co-residency

3

detection, container escape) while leaving aside more generic security policies. ProSPEC

provides a proactive security policy enforcement solution that prevents security compliance

breaches. Second, there exists solutions that enhance security for specific orchestrator

(e.g., Kubernetes) or container runtimes (e.g., Docker). ProSPEC instead embraces a larger

range of concerns by focusing on technology-agnostic security policy enforcement (e.g.,

OPA) while still proving the possibility of integration with Kubernetes. Finally, many

existing works on proactive security and policy enforcement were designed with VM-based

cloud infrastructure (e.g., OpenStack) and are not designed to tackle the dynamicity and

complexity of container-based environments. Instead, ProSPEC brings proactive security

policy enforcement to container environments.

1.4 Related Publications

Conference Paper. Our work for proactive security policy enforcement for containers has

been published as an article in a peer-reviewed conference’s proceedings:

ProSPEC: Proactive Security Policy Enforcement for Containers. Hugo Kermabon-

Bobinnec, Mahmood Gholipourchoubeh, Sima Bagheri, Suryadipta Majum-

dar, Yosr Jarraya, Makan Pourzandi and Lingyu Wang. Proceedings of the

Twelveth ACM Conference on Data and Application Security and Privacy (CO-

DASPY’22), Apr 25-27, 2022, Baltimore-Washington DC Area, USA. (Accep-

tance ratio 30/111≈27%)

1.5 Authors’ Contribution

The student co-authors’contributions to the aforementioned article are as follows: Hugo

Kermabon–Bobinnec contributed to the motivation, approach and design, implementation

4

as well as experiments on the impact of cluster size, threshold and predictions on response

time. Mahmood Gholipourchoubeh contributed to the experiments on learning time and

model accuracy (whose corresponding sections have been excluded from this thesis).

1.6 Outline

The rest of this thesis is organized as follows: Chapter 2 provides the necessary background

for this dissertation. Chapter 3 covers the literature related to this thesis. We present

our solution for proactive security policy enforcement for containers in Chapter 4, while

Chapter 5 presents extensions related to predictive model learning and rule proactivization

priority. In Chapter 6, we present two actively used deployments that emerged from this

thesis. We conclude in Chapter 7.

5

Chapter 2

Background and Motivation

This chapter provides a background on containerization and security policy compliance,

presents the motivation, and defines our threat model.

2.1 Background

Containerization. Cloud computing environments present numerous advantages includ-

ing scalability, reliability and observability for application deployment. Frameworks such

as OpenStack [67] allow companies to deploy their own cloud infrastructure over virtual

machines (VMs) [89]. However, due to the lack of portability and the significant overhead

imposed by VMs (the operating system), containerization has recently become a preferred

option for dynamic and quickly evolving environments.

As demonstrated in the ETSI container environment [26] shown in Fig. 1, a container

is a bundle of applications and their dependencies running through operating system (OS)

level virtualization. Unlike VMs, containers do not require hardware virtualization and

run directly at the OS level, thus resulting in much faster deployments and less resource

consumption. As a hypervisor manages resources and VMs in hardware virtualization, a

container orchestrator (e.g., Kubernetes) indirectly manages containers (i.e., via a container

6

runtime environment such as Docker) through their entire life cycle, including scheduling,

deployment, patch and deletion. Depending on the orchestrator, containers can be managed

and gathered in group (e.g., in Pods, in the case of Kubernetes).

Security Policy Compliance. In a container environment, security policy compliance

means to first verify the requests that are placed to the orchestrator against a set of se-

curity policies, and then enforce the decision based on the verification result (i.e., allow or

deny). As shown in Fig. 1, a policy compliance tool ensures the security by verifying the

requests and enforcing the decisions.

Figure 1: The ETSI architecture of a container environment [26]

Predictive Model.

Predictive models are used to predict future events by analyzing or mining patterns from

historical data [31]. It relies on the assumption that events happening in an environment

are correlated, meaning that given the past events in a system, different events are more or

less likely to happen in the future. Fig. 2 shows an example of predictive model based on

four arbitrary events and probability. For instance, after the door is closed, it will be locked

7

90% of the time (i.e., there is 90% chance the door will be locked after it is closed). On the

other hand, there is a 5% chance the door will be reopened after it is closed.

Figure 2: An example of predictive model

2.2 Motivation

To make our discussion more concrete, our motivating example will be based on Kuber-

netes [44] as the container orchestrator and OPA/Gatekeeper [64] as the policy compliance

tool. A key limitation of OPA/Gatekeeper lies in its reactive nature, i.e., it can only start the

data collection and policy verification after a user request has already been received. Con-

sequently, a user would have to experience both the Data Collection Delay (which grows

linearly in the amount of data required) and the Policy Verification Delay (which depends

on the number of policies and their complexity), which could become prohibitive for large

container environments.

As a remedy for such undesirable delays, OPA/Gatekeeper employs data replication

by monitoring resource changes in the Kubernetes cluster and keeping its own copy of

the cluster state for faster data collection and verification. However, the data replication

causes an unavoidable delay that can lead to inconsistencies between the actual state of a

Kubernetes cluster and the state replicated by OPA/Gatekeeper. As we will show next, such

inconsistencies can be exploited by adversaries to bypass security policies.

8

Specifically, our attack scenario is based on a real-world vulnerability in Kubernetes,

CVE-2020-8554 [16]. This vulnerability allows an adversary to set the externalIP field of

a newly created Kubernetes Service to be identical to the IP address of an existing resource

such as a Pod (normally, OPA/Gatekeeper would only allow a new Service to be set to

an IP address not already used in the Kubernetes cluster). The attacker can then employ

this Service to intercept the traffic directed to that resource (e.g., to eavesdrop sensitive

information).

As shown in Fig. 3, a Create Pod request (1) is made to the Kube-API server. The

Kubernetes admission webhook receives the request and forwards it to the admission con-

troller (i.e., OPA/Gatekeeper) for verification (2). OPA/Gatekeeper compares the request

against its pre-defined security policy and allows the Create Pod request (3). In (4),

the Pod is created in the Kubernetes cluster with the IP address 192.168.1.1. Shortly

after, while OPA/Gatekeeper is replicating the cluster state, the malicious user makes a

Create Service request to the Kube-API server (5) after α time which is less than the

data replication delay (i.e., β). Therefore, OPA/Gatekeeper’s replicated cluster state is not

yet updated with the freshly created Pod. When processing (6), OPA/Gatekeeper does not

detect any policy breach and allows the Service creation with an externalIP equal to the

existing IP address 192.168.1.1 (7). As a result, in the actual cluster, a Service exists

with the same externalIP address as a Pod, giving it the ability to intercept that Pod’s traffic

(8). Due to this vulnerability (CVE-2021-43979 [17], which was discovered by us), the

data replication delay leads to security policy bypass and represents a critical security issue

in the Kubernetes cluster.

In summary, the reactive nature of OPA/Gatekeeper can imply significant runtime de-

lays for normal users, whereas the data replication solution used by OPA/Gatekeeper to

reduce such delays could lead to severe security breaches, such as policy bypass. Those

9

limitations motivate us to depart from such a reactive solution and propose instead a proac-

tive approach that performs the data collection and verification before user requests arrive.

10

Fi
gu

re
3:

Po
lic

y
by

pa
ss

du
e

to
da

ta
re

pl
ic

at
io

n
de

la
y

11

2.3 Threat Model

In-scope Threats. The in-scope threats include both external attackers and malicious in-

siders (such as co-located users in a cluster). We assume that the container environment

may have implementation flaws, misconfigurations, or vulnerabilities that may allow such

adversaries to violate given security policies. As ProSPEC focuses on Kubernetes API re-

quests, we limit our scope to attacks that involve sequences of operations directed through

the Kubernetes API server interface. Like most existing works on security verification

(e.g, [57, 83]), we assume the integrity of ProSPEC and the Kubernetes system (with its

API requests, events, audit logs, and database records), protected with existing trusted com-

puting techniques such as remote attestation [6, 49].

Out-of-scope Threats. As ProSPEC focuses on providing security compliance at the front

line of the cluster, i.e., Kubernetes control plane, other related issues such as Docker con-

tainer security and detecting specific attacks or intrusions are out of the scope of this thesis.

The out-of-scope threats also include attacks that can completely bypass the Kubernetes

API server interface, and attacks that do not involve any Kubernetes API requests. More-

over, as with most works on security verification (e.g, [57, 83]), we do not consider at-

tackers who can tamper with (either through attacks or by using insider privileges) the

Kubernetes system or the ProSPEC solution itself. We are not interested in detecting spe-

cific attacks; we focus instead on policy breaches that can result from various causes (e.g.,

attacks, misconfigurations, vulnerabilities, etc.).

12

Chapter 3

Related Work

In this section, we review the literature on container security and security policy compli-

ance.

3.1 Container Security

Linux-based Solutions. Container security use cases are: i) attacks from applications

to containers, ii) attacks from one container to another, iii) attacks from a container to

the host and iv) attacks from the host to a container. The researches regarding container

security take advantage of Linux security features (LSF), Linux security modules (LSM),

and Hardware-based solutions [75] to protect containers against attacks.

The authors in [42, 30] take advantage of the LSFs Namespace and CGroup to prevent

escape attack and power attack. Particularly, authors in [42] use namespace inspection to

look for differences between the namespace of a container and the namespace of a pro-

gram it spawned. They detail two ways processes can escape their original container: by

exploiting arbitrary kernel code execution and mounting the init process filesystem in

the container, then switching the container process to the host namespaces, or by modi-

fying the virtual dynamic shared object (vDSO) through exploit such as CVE-2016-5195

13

(a.k.a, DirtyCow). In both cases, the resulting process namespace will be different from

the container’s it has spawned from. To detect such hints of container escape attacks, the

authors enumerate processes in the system using the pstree command then compare the

namespace ID of each container’s init process with the ID of their spawned processes.

The authors in [30] present side-channels that adversaries could use to launch a power

attack on a cloud infrastructure and propose an two-steps approach to mask the side chan-

nels and reinforce the container isolation model, thwarting such attacks. Particularly, they

look for Linux pseudo-files that might not have been namespaced properly (and thus might

leak kernel data from the host to the container) by comparing their versions accessed by

both a containerized process and a host process. Authors then use this information to deter-

mine whether or not different containers are hosted in the same host and target co-resident

container to effectively launch a power attack.

The LSF Seccomp is used by the authors in [33, 48, 20, 34, 23, 70] to limit the number

of system calls used by the container in order to reduce the attack surface. Specifically,

[33, 20, 34] use static code analysis on the application to build a list of necessary system

calls and block the others, while [23, 70] aim for the same goal using dynamic code anal-

ysis. Seccomp is used in the Docker context (using --security-opt seccomp) to

whitelist and/or blacklist system call in selected containers. Also, [48] divides the appli-

cation runtime in two steps and restricts different system calls in both steps, reducing the

attack surface even more. Authors make the difference between a container’s boot phase

and runtime (long-term) phase by analyzing the usage of system call over time. Therefore,

they create two different Seccomp profiles, one for each phase. At runtime, Seccomp is

updated with the second profile using a loadable kernel module. Even though they prevent

the use of system calls that are not needed by the container applications, these approaches

still leave a large number of frequent system calls needed by the application available to a

potential attacker.

14

The authors in [76] use the LSM AppArmor and propose security namespace to iso-

late the security profile for each single container and independently define its own secu-

rity policies. Precisely, instead of leveraging kernel security frameworks (AppArmor and

IMA) policies system-wide (as it is by default), they introduce their usage in containers

as autonomous entities. This way, each container can manage and use its own security

framework for processes it hosts. Conflicts between system-wide and container-specific

policies are handled by an Policy Engine specifically developed for that application. Dock-

erSec [54] is based on AppArmor and enforces different policies to protect both the Docker

engine and the containers. It leverages static analysis and runtime behaviour analysis to

construct AppArmor profiles specific to each container, in addition to a profile for the runC

process and the Docker engine (a.k.a, Docker daemon).

Use cases i, ii, iii rely on LSFs and LSMs. Hardware-based solutions such as Intel SGX

and virtual TPM are used for use case iv [38]. ProSPEC differs from these approaches as it

focuses on improving specific policies enforcement and does not leverage LSF, LSM, nor

acts at the hardware level.

Container Security Verification. The Container Security Verification Standard (CSVS) is

a framework established by OWASP [68] to formulate the security requirements for devel-

oping containerized applications. There are several works (e.g., [1, 19, 55]) on container

security, particularly aiming at verifying the security of container images (e.g., [1]) and

checking their integrity (e.g., [19, 55]). However, those works focus on a single security as-

pect such as developing vulnerability-free container images or integrity attestation, and do

not propose a solution for the verification and enforcement of security polices at runtime.

For instance, [1] is a vulnerability-centric approach to identify and assess vulnerabilities

in Docker containers images and proposes an OWASP aligned checklist of security use

cases, compliant with the NIST [61] guidelines. It firsts verifies the integrity and content

15

of the container base images, performs some safety checks on the Docker image configu-

ration files, then perform authentication and authorization checks on the image itself. Both

[19, 55] propose solutions for containers integrity attestation covering the entire life cycle

of the containers and their underlying images. By using Trusted Platform Module (TPM),

[19] can verify all three host machine, container engine and the running containers, ad-

ditionally offering the capability to detect which container is compromised. On the other

hand, [55] preserves the privacy of the containers and the host from a remote untrusted

integrity verifier. While these solutions aim at ensuring the containers and their images are

safe, ProSPEC instead focuses on mitigating the potential impact of unsafe containers by

leveraging policy enforcement.

Kubernetes Security. There are several research initiatives proposing different solutions

addressing different security aspects in Kubernetes. According to authors in [74], the secu-

rity best practices for Kubernetes are as follows: (i) API-based authentication and autho-

rization request through authentication plugins and policies. (ii) Network-specific and Pod-

specific policies, restricting network communications and applying least privilege context

to Pods, respectively. (iii) Continuous security patches for the cluster, to keep it updated

with latest security fixes. (iv) Logging/monitoring of the cluster. (v) Continuous security

compliance. ProSPEC subscribes to the latter by proposing a proactive and efficient secu-

rity compliance solution for container environments. In contrast, most of the existing works

(e.g., [77, 27, 78]) propose reactive solutions that can only detect security policy violations

after they occur, which may expose the system to large attack windows and thus higher se-

curity risks. For example, Sysdig [77] provides a system-call level security attack detection

approach while Falco [27] offers an online anomaly detection tool for containerized appli-

cations. The latter uses a kernel module to intercept system calls and matches them against

user-defined rules to generate alerts. KubAnomaly [78] is a learning-based anomaly detec-

tion system, providing runtime monitoring capabilities in Kubernetes. Also, OPA [64] is a

16

security policy engine and, Gatekeeper as its sidecar, is an enforcement tool designed for

Kubernetes. ProSPEC differs from those works as it proactively prevents policy violations

which better protects the security of the container environment.

Additionally, some works focus on container runtime security. Aqua Security [4] pro-

vides comprehensive security detection and protection solutions to improve the overall se-

curity of Kubernetes and containers. Its products include container runtime security, risk

evaluation, automatic CIS benchmarking, penetration testing tools as well as resources

admission control by leveraging OPA. Authors in [86] proposed an analysis of three ex-

isting Kubernetes container runtimes (i.e., runC, gVisor, Kata) and evaluated the security-

performance trade-off. Results show that the default runtime runC outperforms security-

enhanced solutions gVisor and Kata thus demonstrate the need to propose other efficient

security solutions for Kubernetes. The scope of ProSPEC is different: we assume the in-

tegrity of the container runtime (i.e., the container engine) and instead focus on the security

compliance across the entire container environment.

3.2 Security Policy Enforcement

There are several proactive security compliance verification works (e.g., [9, 67, 57, 56]) for

non-containerized virtual environments (e.g., IaaS such as OpenStack [67]).

For instance, Weatherman [9] and Congress [67] verify security policies in clouds using

graph-based and Datalog-based models, respectively. Moreover, in [89], a proactive pro-

tection approach for potential security breaches in cloud is proposed. Unlike our automated

learning of predictive model, those works rely on manual inputs of future plans. LeaPS [57]

and Proactivizer [58] are proactive security auditing solutions for cloud environments. In

contrast to our work, those works are not specifically designed to tackle the complexity and

challenges of container environments such as supporting container-specific events, captur-

ing dependencies among diverse types of resources, and deriving a predictive model from

17

those dependencies. Authors in [28] propose an algebra for anomaly-free firewall policies

for OpenStack. Many state-based formal models (e.g., [73, 51, 52, 24]) are proposed for

program monitoring. All those approaches are not specifically designed to tackle problems

specific to containerized environments.

18

Chapter 4

ProSPEC: Proactive Security Policy

Enforcement for Containers

4.1 Methodology

Fig. 4 shows an overview of our approach, which contains two major phases: offline and

runtime. During the offline phase, ProSPEC builds a predictive model that captures the

(probabilistic) dependency relationships among events in the container environment to en-

able prediction of future events. During the runtime phase, ProSPEC first conducts proac-

tive verification against security policies (provided by ProSPEC users, such as adminis-

trators) for predicted future events by utilizing the built models, and then enforces those

proactive verification results when actual events occur. In the following, we elaborate on

both phases.

4.1.1 The Offline Phase

In this section, we first informally define our predictive model and then describe how

ProSPEC builds this model.

19

Defining Predictive Model. Our predictive model is to capture the probabilistic depen-

dencies among management events in a container environment; which will be used in sub-

sequent steps of the ProSPEC approach. We assume that the historical data is sound and

represents the behaviour of the environment correctly, and we will evaluate our solution

when this is not the case in Section 4.3. This model is represented as a directed graph

where nodes indicate container events, edges indicate their transitions, and labels on edges

indicate the probabilities of a transition. This model includes two types of dependencies be-

tween events in a container environment: (i) inter-resource dependency: the dependencies

among its different resources, and (ii) intra-resource dependency: the dependencies within

one resource. For example, Fig. 5a shows an example of inter-resource dependency rela-

tionship in Kubernetes [44], a major container orchestrator, where a Pod resource cannot be

created unless a Namespace resource exists, and Fig. 5b shows an example of intra-resource

dependency relationship where, for instance, a delete event on a Pod resource can only

be performed after that Pod is created. Note that similar management events and their de-

pendencies also exist for other container environments beyond Kubernetes, as discussed in

Section 4.2.2.

Building Predictive Models. To learn the aforementioned dependencies and build pre-

dictive models, ProSPEC first collects and processes historical container events (e.g., event

logs) from the orchestrator (e.g., Kubernetes [44]), and then leverages probabilistic learning

methods (e.g., Bayesian network) to build the predictive models. Those steps are detailed

in the following and Algorithm 1 summarizes how we build the predictive model.

Collecting and Processing Logs. This step is to collect and process logs from a con-

tainer environment and prepare the inputs for learning predictive models (in the next step).

First, ProSPEC collects event logs at the orchestrator level (e.g., from Kubernetes). To that

end, based on the available sources of logs in the orchestrator, ProSPEC collects those logs.

20

Figure 4: Overview of the ProSPEC approach

Second, to enable learning from collected logs, ProSPEC processes the log entries, identi-

fies the event types and extracts meaningful sequences of events (line 4 to line 8). To that

end, it may need separating and removing system-initiated events from management events,

and identifying event types and resources from API calls, as detailed in Section 4.2.2 for

Kubernetes.

Learning Predictive Models. This step is to learn predictive models (including their

nodes, edges, and labels of edges) from the sequences of events to enable proactive security

policy enforcement during the runtime phase. Each predictive model is built in three steps:

• First, ProSPEC identifies the nodes and edges of the model from the sequences of

events. To that end, it extracts the unique event types from the sequences and iden-

tifies them as the nodes of the model (line 9). Afterwards, it extracts all immediate

transitions between event-pairs from sequences and identifies them as edges between

those event nodes (line 9). For instance, Fig. 6a shows an excerpt of the output with

such nodes and edges for Kubernetes.

21

(a) Inter-resource

(b) Intra-resource

Figure 5: An excerpt of event dependencies in Kubernetes

• Subsequently, to further include the non-immediate transitions (i.e., transitions from

one event to another through one or more intermediate transitions), ProSPEC utilizes

a Breadth-First Search (BFS) algorithm [15] to determine each node’s ability to reach

non-adjacent nodes and if so, includes these transitions as additional edges in the

model obtained from the previous step (line 10 to line 16). Fig. 6b shows an example

of such model with its additional edges.

• Finally, ProSPEC learns the labels of the edges from the sequences of events (line

17). To that end, it establishes probabilistic dependencies by leveraging existing

Bayesian network learning techniques [60] where the conditional probabilities indi-

cate the likelihood for a (immediate or non-immediate) transition to occur, and those

probabilities are used as the labels of the corresponding edges representing the tran-

sitions in our model. In the end, ProSPEC builds the predictive model that will be

utilized during the runtime phase (in Section 4.1.2), as demonstrated in Fig. 6b.

Example 1. Fig. 7 shows an example of applying ProSPEC’s offline phase on a sub-

set of logs. In step (1) and step (2), the log collection and processing module collects

22

Algorithm 1 ProSPEC offline phase
1: Input: Raw event logs
2: Output: Predictive model
3: procedure BUILDMODEL(RawEventLogs)
4: for each line ∈ RawEventLogs do
5: Parse the line;
6: Extract fields and type the event accordingly;
7: end for
8: Build the event sequences;
9: Build structure from the event sequences;

10: for each node ∈ structure do
11: for each other node do
12: if other node is reachable from node then
13: Add the transition to structure;
14: end if
15: end for
16: end for
17: Run Bayesian Learning on structure with event sequences;
18: end procedure

and extracts the events "Create Pod, Delete Pod, Create Service, Create

Pod, Create Pod, Create Service, Patch Service, Create Pod, Patch

Service". Then, in step (3), it identifies three sequences: "Create Pod, Delete

Pod, Create Service", "Create Pod, Create Service, Patch Service"

and "Create Pod, Patch Service". Next, sequences are built in step (4), and

in step (5), ProSPEC identifies the unique four nodes of the model: Create Pod,

Delete Pod, Create Service, and Patch Service. In step (6), it iden-

tifies five edges from the immediate transitions: (Create Pod, Delete Pod),

(Delete Pod, Create Service), (Create Pod, Create Service), (Create

Service, Patch Service), and (Create Pod, Patch Service). In step (7),

using the BFS algorithm, it finds a non-immediate transition: Delete Pod to Patch

Service (through Create Service), and adds an additional edge: (Delete Pod,

Patch Service). Finally, in step (8), it learns the conditional probabilities for transi-

tions given the event sequences identified in step (4).

23

(a) Structure based on immediate transi-
tions

(b) Final predictive model based on both
immediate and non-immediate transitions

Figure 6: ProSPEC predictive models

24

Fi
gu

re
7:

A
n

ex
am

pl
e

of
of

fli
ne

le
ar

ni
ng

25

4.1.2 The Runtime Phase

This section describes how ProSPEC intercepts events, conducts proactive verification, and

enforces security policies at runtime. Those steps are detailed in the following, and Algo-

rithm 2 summarizes the runtime phase of ProSPEC.

Interception. ProSPEC intercepts runtime events requested by users when such events

are sent to a container orchestrator (e.g., Kubernetes), and provides the details of those

events to the following runtime steps. To that end, it initially blocks the execution of

an event to determine if the requested event is critical (which may potentially breach a

security policy). If the event is critical, then ProSPEC keeps the blocking till it completes

the policy enforcement step (line 5). If the event is not critical, then ProSPEC releases

the blocking to allow Kubernetes to execute the event, and then ProSPEC conducts the

proactive verification step for this non-critical event (line 8 to line 11).

Proactive Verification. ProSPEC conducts proactive verification for future events that

are predicted based on the intercepted event. Precisely, it first identifies the highly probable

(which have a prediction probability higher than a chosen threshold) future critical events

from the current event using the predictive model (line 8 and line 9). Second, for such

predicted events, it collects the existing resource data related to each security policy from

the orchestrator (line 10). Finally, it builds a watchlist (e.g., a blacklist of parameters that

may lead to a policy breach) by verifying the collected resource data against each policy

(line 10). As ProSPEC blocks critical events until pre-computation is over (which still

causes less delay to users than an intercept-and-check solution, as our experiments show in

Section 4.3), it can eliminate the kind of attack windows demonstrated in Section 2.2.

Policy Enforcement. ProSPEC enforces security policies at runtime based on the watch-

lists built in the previous step. To that end, if an intercepted event is determined to be

critical with respect to a security policy, then ProSPEC first checks the requested parame-

ter(s) of that critical event against the watchlist(s) of the policy. Second, based on whether

26

the requested parameters are present in or absent from the watchlist(s), ProSPEC takes the

enforcement decision of allow or deny, according to the watchlist rule (e.g., whitelist or

blacklist). Note that in cases where the watchlist is not correctly built for an event (e.g.,

wrong event prediction, incomplete predictive model, etc.), ProSPEC would simply fall

back to the intercept-and-check mode (i.e., it will perform verification and enforcement

after the event has arrived) whose impact will be evaluated through experiments in Sec-

tion 4.3.

Algorithm 2 ProSPEC runtime phase
1: Input: Intercepted request;
2: procedure RUNTIME(Request)
3: Parse the request;
4: Extract the relevant fields and type the event accordingly;
5: if event is critical then
6: Verify the watchlist and return a decision;
7: else
8: Get the probability of critical event from the model;
9: if probability > policy threshold then

10: Start pre-computation;
11: end if
12: end if
13: end procedure

Example 2. Fig. 8 shows an example of our runtime phase. For this example, we con-

sider the same scenario as in Section 2.2, where CVE-2020-8554 [16] can be exploited

to perform a man-in-the-middle attack and data theft. To prevent the threat before the

vulnerability can be patched, suppose a security policy is specified as: creating/patching

Services should not be allowed to use an externalIP address identical to any existing IPs.

The critical events for this policy are: Create Service and Patch Service. The

probabilistic predictive model is built offline and is the same as shown in Fig. 6b.

At runtime, for the first intercepted event Create Podwith its IP address, 192.168-

.1.1, ProSPEC predicts the next critical event, Create Service, using the predictive

model, and adds the IP address 192.168.1.1 to the watchlist (blacklist) as it is now

27

Figure 8: ProSPEC preventing CVE-2020-8554

used for the Pod. For the second intercepted event, Create Service with an exter-

nalIP, 192.168.1.1, ProSPEC denies the request as this requested IP is in the watch-

list (a policy breach). Similarly, the third event will be allowed as its Service externalIP,

192.168.0.8, is not in the watchlist, whereas the fourth event will be denied as it mod-

ifies the externalIP to 192.168.1.1, IP that is in the watchlist. Note that ProSPEC

avoids inconsistencies between the watchlist and the actual state of the cluster (as shown in

Section 2.2) since the second request is blocked until the pre-computation is done.

4.2 Implementation and Integration

This section first details the implementation of ProSPEC, then describes its integration with

Kubernetes, and finally discusses the challenges tackled during these steps.

28

4.2.1 ProSPEC Implementation

Fig. 9 shows the high-level architecture of ProSPEC illustrating how it manages its inputs,

and the two major modules: offline learning and runtime enforcement. We elaborate on

those in the following.

Management of the ProSPEC Inputs. ProSPEC takes several inputs (e.g., configurations,

logs, policies, critical events, threshold values, and watchlists definitions) from a container

environment as well as its administrators. To manage those inputs, ProSPEC maintains

a database using SQLite [36] for its portability and simplicity with four different tables,

PolicySettings, PolicyThreshold, PolicyWatchlist, and Model as fol-

lows.

• The PolicySettings table stores the configuration of each policy and contains a

policy description attribute, the corresponding action attribute (e.g., deny, warn, and

allow), as well as a Boolean proactive attribute for enabling or disabling the proactive

feature for that policy.

• The PolicyThreshold table stores the critical events and their threshold defined

for each policy, and contains a policy foreign key referring to the Policy primary

key of the PolicySettings table, a critical event attribute containing an event

considered critical for that policy, and a threshold attribute containing the threshold

value for that critical event.

• The PolicyWatchlist table stores the actual watchlists content pre-computed

by ProSPEC for each policy, and contains a policy foreign key referring to the Policy

primary key of the PolicySettings table.

• Finally, the Model table stores the predictive models for each policy, and contains

a policy foreign key referring to the Policy primary key of the PolicySettings

29

Figure 9: The architecture of our ProSPEC implementation

table, pairs (current event, future event) representing a possible transition, as well as

the probability of that transition.

Implementation of the Offline Learning Module. The three main components of

this module include log collector, log processor, and predictive model

learner, as detailed below.

• The log collector and log processor components are responsible for col-

lecting event logs from a container environment and preparing them for the learning

tool. To that purpose, ProSPEC first enables the Kubernetes audit logs feature (see

Section 4.2.2). Afterwards, to process the audit log file and extract only the required

information from the raw JSON audit logs, it leverages Logstash [53], a popular

log processor. Moreover, it extracts the fields receivedRequestTimestamp,

user[username], objectRef[resource] and verb from the logs and

stores them in a CSV file, where each line represents a log entry. Furthermore, using

the Python data analysis toolkit pandas v1.2.4 [88] and our own code, it processes

30

each of those lines with event typing that maps the pair (verb, resource) to a string

verb_resource (event type). Finally, ProSPEC splits events into sequences in

a way that it avoids any cycle (or repeated events in a sequence) and ends with a

critical event (if any in that sequence), as the predictive model is a directed acyclic

graph. More precisely, it ensures each sequence always begins with a non-critical

event and cuts the current sequence after it sees one or more critical events in a row,

or a repetition of the existing events.

• The predictive model learner component is to learn the predictive model,

which is represented as a Bayesian network. The event sequences are used as de-

scribed in Section 4.1.1. ProSPEC follows a standard iterative implementation [15]

of the BFS algorithm using a queue to check the reachability of nodes. It also lever-

ages the BayesianModel and MaximumLikelihood classes of the Python li-

brary for learning and inference in Bayesian networks, pgmpy v0.1.14 [2], to learn

the probabilities. The obtained model is stored in the Model table in our database.

Implementation of the Runtime Phase. The three main components of this module in-

clude interceptor, proactive verifier, and policy enforcer, as detailed

below.

• The interceptor component aims at intercepting runtime event requests to a

container orchestrator (e.g., Kubernetes). To that end, ProSPEC leverages the Ku-

bernetes admission controller mechanism to intercept the requests sent to the Kube-

API server. The choice to use an admission controller ensures the portability of our

solution and its independence from a specific orchestrator, since equivalent mecha-

nisms are implemented in other orchestrators (as discussed in Section 4.2.2). The

interceptor component runs as a local web server using the micro web frame-

work Flask [35], and is registered as an admission controller in Kubernetes. The

31

so-built webhook receives requests from the Kubernetes API server, processes them

to extract useful data and places the events in a FIFO queue.

• The proactive verifier component is to incrementally build the watchlist for

a security policy. Particularly, it takes the first intercepted event in the FIFO queue

and queries in the ProSPEC database as follows:

SELECT Policy FROM PolicyThreshold INNER JOIN Model ON

Model.FutureEvent = PolicyThreshold.CriticalEvent WHERE

((Model.CurrentEvent = CurrentEvent) AND (Model. Probability >=

PolicyThreshold.Threshold)).

For the policies that are selected in this way, this component collects the needed

data to build or update the watchlist. For each event that requires pre-computation,

the component receives the corresponding policy(ies) and starts collecting the re-

quired data defined with the policies using HTTP(S) requests to the cluster. For in-

stance, to gather the IP addresses of Pods required in Section 4.1.2, the proactive

verifier component would query the API server with the following URI:

https://localhost:6443/api/v1/pods (following the Kubernetes API

reference [45]). Collected data in the JSON format is further processed to extract the

interesting features (e.g., Pods IP addresses). Then the proactive verifier

component writes the collected features to the PolicyWatchlist table.

• The policy enforcer component is for watchlist verification and decision en-

forcement; which integrates OPA/Gatekeeper [64] and will be detailed in the next

section. Note that it is always possible to implement ProSPEC independently from

OPA/Gatekeeper, as a registered admission controller that verifies the watchlists and

enforces the policies. However, integrating ProSPEC with OPA/Gatekeeper presents

several advantages, including preserving the features offered by OPA/Gatekeeper

32

https://localhost:6443/api/v1/pods

while bringing advantages of a proactive solution to existing policies.

4.2.2 ProSPEC Integration with Kubernetes

We first present background information about Kubernetes and then detail the integration

of ProSPEC with Kubernetes.

Kubernetes Background. In the following, we provide a background on Kubernetes (in-

cluding its basics, its admission controller mechanism and event logs), which will later be

necessary in discussing ProSPEC integration.

• Kubernetes Basics. Kubernetes [44] is a container orchestrator that runs, manages,

and coordinates the deployments of containerized applications. In Kubernetes, a

cluster contains a master Node responsible for controlling and managing a set of

worker Nodes containing multiple Pods that run the applications. Any operation

on the cluster that queries or modifies the state of Kubernetes resources (e.g., Pods,

Services, etc.) is first received by the Kube-API server, which applies them by com-

municating with the worker Nodes. In the following, we describe the admission

controller mechanism and the event logs in Kubernetes, which will later be utilized

in the integration of ProSPEC.

• Admission Controller. An admission controller in Kubernetes aims at intercepting

the requests to the Kube-API server and performing validation, mutation, or both in

order to protect clusters against malicious user activities. Particularly, OPA/Gate-

keeper [64] is a cloud-native project that leverages an admission controller (namely,

Gatekeeper) and the Open Policy Agent (OPA) (a general-purpose policy engine that

decouples decision-making from policy enforcement) to validate user requests to the

Kube-API server with respect to pre-defined policies. When a request is made to the

Kube-API server, Gatekeeper uses OPA as a library to verify the intercepted request

33

against a set of pre-defined policies. Based on the response from OPA, Gatekeeper

enforces the decision (i.e., allows or denies the request).

• Event Logs. There are three different sources for capturing Kubernetes event logs:

(i) management operation (e.g., Kubernetes command-line interface (CLI) history),

(ii) event object (e.g., kubectl get events command) with the life span of

one hour, and (iii) audit logs containing detailed events and attributes (e.g., resource-

name, resource-type, operation, etc.). There are 71 types of resources in Kubernetes

v1.20.2, and for each of them there are up to eight possible operations. Table 1 shows

an example of Kubernetes events for three sample resources.

Kubernetes resources Operations
Namespace create, delete, get, list, patch, update,

watch
Pod create, delete, delete collection, get, list,

patch, update, watch
Service create, delete, delete collection, get, list,

patch, update, watch

Table 1: An excerpt of Kubernetes events

Integration with Kubernetes. Fig. 10 illustrates the integration of ProSPEC with Kuber-

netes. Particularly, Fig. 10a provides a high-level overview of the integration including

the deployment of a Kubernetes testbed, and Fig. 10b highlights the key integration aspects

including how particularly ProSPEC is integrated with the Kube-API server and OPA/Gate-

keeper, as detailed below.

• First, Fig. 10a shows the deployment of the Kubernetes testbed with ProSPEC. The

physical hardware of our cloud is composed of one physical rack-mount server with

2x Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz and 128GB of DDR4-2933 running

Debian 10. On top of that, VirtualBox6.1 is running as a Type-2 hypervisor. The

container environment is deployed over 11 VMs where one VM (eight vCPUs and

34

32GB RAM) is hosting the Kubernetes master Node, and ten other VMs (four vCPUs

and 8GB RAM each) are used as worker Nodes. Each VM is running Lubuntu 20.04

and we use Python 3.8 for all programming tasks. Additionally, we use Kubernetes

v1.20.2 through the kubectl CLI and the kubeadm tool for creating the cluster.

The standard and recommended installation steps [40] are followed to deploy the

cluster, including disabling swap partitions. The container environment is Docker

v20.10.

• Second, Fig. 10b shows the integration of ProSPEC with OPA/Gatekeeper on the Ku-

bernetes deployment. ProSPEC collects necessary data as well as intercepts current

runtime events with the help of the Kube-API server. Afterwards, based on the watch-

list contents, ProSPEC creates a constraint parameter for OPA/Gatekeeper. Addition-

ally, the policy template is defined and applied in advance. The proper enforcement

is performed through ProSPEC by applying a policy constraint including the watch-

list content. This choice of integration presents several advantages: (i) Different

policies can be quickly leveraged/removed by applying/deleting the corresponding

constraints. (ii) Widely-used OPA/Gatekeeper’s features are preserved while bring-

ing ProSPEC’s proactive advantages. (iii) ProSPEC remains as much decoupled as

possible from Kubernetes.

35

Fi
gu

re
10

:S
ho

w
in

g
bo

th
(a

)h
ig

h-
le

ve
lo

ve
rv

ie
w

an
d

(b
)d

et
ai

le
d

vi
ew

of
th

e
in

te
gr

at
io

n
of

Pr
oS

PE
C

w
ith

K
ub

er
ne

te
s

36

Adapting with Other Container Orchestrators. Although our implementation is to fit

with Kubernetes, ProSPEC can be adapted to other container orchestrators (e.g., Docker

Swarm [22], OpenShift [66]). The container-specific concepts on which ProSPEC relies

on are not too specific to Kubernetes and are also implemented in Docker Swarm and

OpenShift. Table 2 gives examples of similitude between different container orchestrator

concepts. Even though the concept of admission control is partially absent from Docker

Swarm, it is still possible to enable fine-grain control by leveraging a third-party solution

such as OPA [21]. The usage of API in all these orchestrators greatly facilitates the access

to in-cluster resources. Therefore, the adaption to those orchestrators can be possible with

a minimal effort (that will be explored in future work).

Kubernetes [44] Docker Swarm [22] OpenShift [66]
Cluster Swarm Cluster
Pod Task Pod
Event (Docker) Event (OpenShift) Event
Namespace Stack Project
Admission Control Third-party Plug-in Admission Plug-in

Table 2: An excerpt of equivalent terminologies and concepts among three main container
orchestrators

4.2.3 Challenges

We describe various challenges that were encountered and addressed during our implemen-

tation and integration of ProSPEC as follows.

Enabling Kubernetes Audit Logs for Model Learning. After exploring all available op-

tions of event logs in Kubernetes (as discussed in Section 4.2.2), we choose Kubernetes au-

dit logs to train our model and learn dependencies among events. Those audit logs represent

the best source of information for monitoring the events in the cluster since they provide

enough granularity and details for us to obtain the information needed for some policies

(e.g., the relationship between a Pod and the Service exposing it). However, working with

37

Kubernetes audit logs requires some efforts as follows. First, the audit log option is dis-

abled by default in Kubernetes, and enabling it requires setting the -audit-log-path

flag in the kube-apiserver.yaml file. Second, a directory with sufficient write per-

missions must also be specified. Third, as audit logs are verbose by default, to limit the

logging to specific resources (e.g., Pods, Services) and verbs (e.g., Create, Delete, Patch,

Update), we need to enable audit log filtering by specifying an audit policy file. Finally,

the cluster must be restarted after enabling the audit logs and then Kubernetes will start to

append all the received requests to a log file in JSON format in the specified folder. More

details on Kubernetes audit logs can be found in [46].

Accessing Kubernetes API. The Kubernetes API can only be accessed from inside the

cluster network, or by the kubectl CLI. However, as OPA/Gatekeeper is running inside

a container and ProSPEC is running outside the cluster, both have no direct access to the

Kubernetes API and must be given another way to reach it in order to read the cluster state

for policy verification. To overcome that issue, we modify the OPA/Gatekeeper container

image and deploy a sidecar container running a Kubernetes API proxy, kube-proxy.

Similarly, we run kube-proxy in the master VM to give ProSPEC an access to the Ku-

bernetes API.

Intercepting Events at Runtime. As ProSPEC aims at reducing the policy verification

and enforcement time, we need to find a solution to minimize the delay between the time

when user requests made to the cluster reach the Kubernetes API and the time when those

requests can be intercepted. To that end, we register ProSPEC as a Kubernetes admission

controller such that it can intercept the requests as early as other admission controllers such

as OPA/Gatekeeper. As Kubernetes admission controllers must use the TLS protocol in

their communication, we sign ProSPEC certificate using the Kubernetes root certificate.

More details on admission controller registration in Kubernetes are found in [25].

Feeding Watchlist Contents to OPA/Gatekeeper Constraints. We use OPA/Gatekeeper

38

for watchlist verification and policy enforcement in our implementation (as discussed in

Section 4.2.2). However, OPA/Gatekeeper does not offer the possibility to simply pass

policy parameters (e.g., watchlist content) as inputs. To overcome that issue, we develop

a method for encoding the ProSPEC watchlist content in the YAML format of a standard

constraint file of OPA/Gatekeeper. We can then feed such encoded watchlists to OPA/-

Gatekeeper through a Custom Resource Definition (CRD) pre-defined by OPA/Gatekeeper

(e.g., command kubectl apply -f constraint.yaml).

Learning Model Structure. To learn the structure of our predictive model, we first in-

vestigated regular Directed Acyclic Graph (DAG) structure learning approaches such as

MMHC [81] or Constraint-Based estimation [60]. However, they could not serve our

purpose, as they are not able to capture the chronological order between events in se-

quences and subsequently led to wrong edge direction problem. To overcome this chal-

lenge, ProSPEC performs structure learning by first deriving the direct (immediate) depen-

dencies between two events from the audit logs per sequence, then applying a Breadth-first

search (BFS) algorithm to derive the conditional edge between nodes, and finally using

the Maximum Likelihood Estimation (MLE) for parameter learning with the conditional

predictive model (as shown in Fig. 6b).

Measuring Response Time. In our experiments, the response time measurement is per-

formed at the admission controller level (i.e., OPA/Gatekeeper) to avoid external biases, as

discussed in Section 4.3. However, as OPA/Gatekeeper runs in a container, it is impractical

to access the process and attach a debugger from outside the cluster. To overcome this

challenge and ensure the accuracy of our measurement, we modify the OPA/Gatekeeper

source code (note such modification is only needed for our experiments and not required

for deploying ProSPEC) to include a metrics logging feature and we rebuild the container

image. This way, the response time is available in the easily accessible container logs.

Minimizing Other Networking Effects in Efficiency Measurement. As one of the main

39

objectives of our experiments is to measure the response time, we want to avoid any per-

turbations that would affect these measures, such as network congestion. To that end, the

physical network between Nodes is simulated through VirtualBox internal network inter-

faces. In Kubernetes, the network model is managed through a Container Network Interface

(CNI) plugin. We select Calico [10] for our Kubernetes cluster as it is referred as one of

the best network overlays in terms of performances [7]. The recommended deployment

for the cluster with 50 Nodes or less is applied as specified in the documentation except

that we set the IP_AUTODETECTION_METHOD parameter to match the internal network

interface, to avoid BGP failure.

Avoiding Inconsistencies among Cgroups. Control groups (cgroups) is a Linux Kernel

feature that allows control and isolation of hardware resources used by processes, typ-

ically used for containers. However, inconsistencies might arise between Docker con-

tainers cgroups and Kubernetes cgroups [14]. As a solution, we set up the Docker

cgroups-driver to systemd as recommended in Kubernetes documentation [47].

4.3 Experimental Evaluation

4.3.1 Experimental Settings

Environment. The experimental environment is set up on our Kubernetes testbed de-

scribed in Section 4.2.2. For all the experiments, ProSPEC is running on the master VM

and OPA/Gatekeeper inside a container on a worker Node. To simulate real-world envi-

ronments [13], the size of the Kubernetes cluster is varied for different experiments with

up to 800 Pods and 800 Ingress rules, and the size of the input requests varies between a

single critical resource and a set of 100 critical resources in a batch (here resources mean

Kubernetes Services for our sample policies, as discussed later).

40

Security Policies. For our experiments, we use two sample security policies based on real-

world use-cases [16, 79]: Policy 1 (presented in our motivating example in Section 2.2)

is inspired by a real-world vulnerability CVE-2020-8554 [16], and Policy 2 is designed to

prevent common misconfigurations in Kubernetes [79].

• Policy 1. This policy prevents a malicious user from intercepting traffic to other

resources by creating Services with an externalIP identical to the IP address of an

existing Pod in the cluster. To enforce this policy, ProSPEC dynamically maintains a

blacklist containing the IPs of all existing Pods in the cluster, and prevents Services

from exposing such existing IPs.

• Policy 2. This policy prevents a common Kubernetes misconfiguration called Ingress

rules conflicts [79] in which deploying multiple Ingress rules to manage external

access to Services can potentially lead to service failure and/or data exposure. To

enforce this policy, ProSPEC dynamically maintains a blacklist containing all Ingress

hostname rules in the cluster to prevent any Ingress rules conflict from happening.

4.3.2 Experimental Results

In the following, we evaluate the performance of ProSPEC in terms of response time, im-

pact of wrong predictions, impact of threshold, offline learning time and rate of correct

predictions.

Impact of Cluster Size on Response Time. The first set of experiments shown in Fig. 11

measures the response time of ProSPEC. The response time is measured as the duration

between the time ProSPEC receives a critical request and the time ProSPEC returns an

enforcement decision to Kubernetes.

As specified in Section 4.2.3, the response time is measured directly at the decision

engine level (i.e., OPA/Gatekeeper) to avoid any overhead due to external factors.

41

(a) Impact of # of Pods on Policy 1 (b) Impact of # of Ingress rules on Policy 2

(c) Impact of wrong predictions on Policy 1

Figure 11: Impact of the size of cluster and wrong predictions rate on the response time

Particularly, Fig. 11a shows the comparison of the response time between ProSPEC and

OPA/Gatekeeper to enforce Policy 1 when we vary the size of the cluster (# of Pods) for

both a single request of one resource and a batch request of 100 resources. As shown in the

figure, for ProSPEC, we observe a near-constant response time (lower than 15 ms). On the

other hand, it can be seen that the response time for OPA/Gatekeeper grows almost linearly

in the size of the cluster. This is mostly due to the reactive nature of OPA/Gatekeeper, i.e.,

it performs the time-consuming operation of gathering the IP addresses of all the existing

42

Pods at runtime. For the largest size of cluster and for one resource, OPA/Gatekeeper takes

up to 580 ms, whereas ProSPEC takes only 15 ms (which is close to 40 times faster).

The zoomed inset shows the ProSPEC response times on a more precise scale for a single

request and a batch request, measured at 7 ms and 10 ms, respectively.

Fig. 11b shows the comparison of the response time between ProSPEC and OPA/Gate-

keeper to enforce Policy 2 when we vary the size of the cluster (# of Ingress rules, as

dictated by this policy) for both a single resource and a batch request of 100 resources.

Although the response times of both ProSPEC and OPA/Gatekeeper grow almost linearly,

ProSPEC still outperforms OPA/Gatekeeper in all cases (e.g., for the largest cluster, 15 ms

by ProSPEC vs. 29 ms by OPA/Gatekeeper). Additionally, as discussed in Section 2.2, the

delay caused by OPA/Gatekeeper (mainly due to its replication step) leads to inconsisten-

cies between the replicated state and the actual state of the cluster (which may be exploited

for security policy bypass). Whereas, ProSPEC not only reduces the delay by up to 50%

but also avoids the need for state replication and its security implications. Note that the

response time for Policy 1 is relatively longer than that for Policy 2, because Pod objects

are much more complex and their Kubernetes descriptions contain more details.

Those figures also show the impact of the type of the requests (either a single request

for one resource, or a batch request for 100 resources) on the response time. In the case

of Policy 1, the additional delay induced by the batch request is negligible with respect to

the response time. In the case of Policy 2, the additional 4 ms delay to the response time

due to processing the batch request represents an overhead of about 50%. In both cases, we

can see that the impact of batch request on OPA/Gatekeeper and ProSPEC is similar, and

ProSPEC outperforms OPA/Gatekeeper for both types of requests.

Impact of Wrong Predictions on Response Time. The second set of experiments is to

measure the impact of wrong predictions by our predictive model on the response time

of ProSPEC. Even though we assume that the historical data is sound and events can be

43

predicted correctly, wrong predictions can happen for different reasons, such as (i) an ad-

versary purposefully introducing abnormal behaviour in the historical data to bias the pre-

dictive model (ii) a sudden change of behaviour in the environment due to updates (iii) a

complex environment where it might be difficult to learn trends, or (iv) the lack of training

data For this purpose, we consider the case where a critical event occurs without being pre-

dicted by ProSPEC, which has an impact on the response time as ProSPEC would fall back

to the intercept-and-check mode in this case (as described in Section 4.1). We measure

the overall response time (which includes both the pre-computation time measured from

ProSPEC and the verification time measured from OPA/Gatekeeper).

For this experiment, we vary the rates of wrong predictions in the model and use Policy

1 for enforcement. We simulate 10,000 correctly predicted events and vary the rate of

wrong predictions from 5% to 40% (note a rate of wrong predictions of more than 40% is

unlikely in practice) by injecting unexpected events randomly into the event sequences.

Fig. 11c shows the average overall response time (incurred in pre-computation as well

as in verification by ProSPEC for enforcing Policy 1) in case of different (simulated) wrong

predictions rates. As a baseline, in Fig. 11a (without simulated errors), the response time

is around 12 ms for 800 Pods. In contrast, Fig. 11c shows that, even with a 40% error rate,

the response time of ProSPEC still stays below 140 ms for 800 Pods, which is better than

the performance of OPA/Gatekeeper in the same environment (580 ms, see Fig. 11a). As

the error rate is likely much lower in reality, we can conclude that wrong predictions will

not significantly affect the effectiveness of ProSPEC.

Impact of Threshold on Response Time. The third set of experiments is to measure the

impact of different threshold values (as described in Section 4.1) on the response time as

well as on the pre-computation efficiency of ProSPEC. For this experiment, we vary the

value of the critical events threshold from 0 to 1 to measure its impact on enforcing Policy

1 for 200 Pods and single requests (i.e., one resource per request).

44

(a) Impact of threshold on response time (b) Impact of threshold on pre-computation
efficiency

Figure 12: Impact of threshold (dashed vertical lines show the minimum (0.62) and maxi-
mum (0.8) transition probabilities to a critical event in the predictive model) with 200 Pods
and enforcing Policy 1

The pre-compute usefulness is measured as the ratio of the number of pre-computations

that are useful (in the sense that the predicted events eventually happen) to the total number

of pre-computations. The no pre-compute usefulness is the ratio of the number of times we

make the correct decision to not pre-compute (in the sense that the event eventually does

not happen) over the total number of times we do not pre-compute. In this experiment, we

deliberately avoid traditional accuracy metrics (e.g., precision, recall), as use of those met-

rics might be misinterpreted as the accuracy of ProSPEC security; whereas this experiment

measures the usefulness of its pre-computation step.

Fig. 12a and Fig. 12b show the response time of ProSPEC and the aforementioned use-

fulness metrics as functions of the threshold. Fig. 12a shows the average response time

stays almost constant for threshold values below 0.62 or above 0.8, respectively (0.62 and

0.8 are the lowest and highest transition probabilities to a critical event existing in the used

model, as in Fig. 6b). For threshold values above 0.8, the average response time is the

45

highest at more than 200 ms, since we never pre-compute and have to perform the verifica-

tion at runtime under such threshold values. For threshold values below 0.62, the response

time peaks at more than 100 ms, since we always pre-compute but often unnecessarily (for

non-critical events). Between threshold values of 0.62 and 0.8, we observe the lowest re-

sponse time as we only pre-compute for events that are most likely to happen. Precisely, a

threshold value between 0.65 and 0.78 reduces the average response to a minimum of 27

ms.

Fig. 12b shows the pre-computation efficiency under different threshold values. For

the threshold values below 0.62, the usefulness of pre-computation decreases to around

40%, because that range of threshold values will always trigger pre-computation for every

event (the lowest transition probability in the used model is 0.62, as shown in Fig. 6b).

On the other hand, the no pre-compute usefulness stays at 0% as we always pre-compute.

Once the threshold values pass 0.62, we can observe a sharp increase in both the pre-

compute usefulness and no pre-compute usefulness. The pre-compute usefulness increases

as pre-computation is mostly for the probable next events under such threshold values. The

no pre-compute usefulness increases more sharply as we do not pre-compute for events

with low transition probabilities under such threshold values. For the specific model and

policy used in this experiment, a threshold value of 0.8 allows us to reach 100% usefulness,

meaning we neither waste nor miss any pre-computation operation. Above the threshold

value of 0.8, the pre-compute usefulness drops to 0% as in the given model there is no

transition with higher probabilities and hence no pre-computation is triggered.

On the other hand, the no pre-compute usefulness drops to around 20% as we miss nec-

essary pre-computations under such threshold values. Finally, we can identify an optimal

threshold value of 0.78 under which Fig. 12a shows the lowest response time, and Fig. 12b

shows the maximum overall efficiency (in terms of both the pre-compute usefulness and no

pre-compute usefulness). Thus, an optimal threshold value can be determined based on the

46

given policy and training data.

More experiments on offline learning time and rate of correct predictions at runtime can

be found in [43].

47

Chapter 5

Extensions

5.1 Predictive Model Learning

5.1.1 Introduction

Predictive model learning is a critical step in the ProSPEC methodology (as presented

in Section 4.1). Previously, we only explored Bayesian network for this model. In this

section, we further investigate two additional learning models (i.e., LSTM and n-gram)

and compare their performance with the model obtained from Section 4.1.1 to find the best

choice for this purpose.

5.1.2 Background and Motivation

In this section, we give a background about Kubernetes events and two different approaches

to event prediction, namely, n-grams and Long Short-Term Memory (LSTM) network.

Predictive models are introduced in Section 2.1.

Kubernetes Events. Kubernetes events are record of actions performed at the Kubernetes

cluster level. Generally, a Kubernetes event is composed of a verb (such as create, delete,

update, get, etc.) and a resource (such as a user account, a deployment, a configuration, a

48

service, etc.). A list of all existing events can be built using the Kubernetes API documen-

tation [45] that refers all resources and their associated verbs. For instance, Kubernetes

hosts are referred as Nodes in the API, and actions can be performed on them using the

verbs Create, Patch, Replace, Delete, Read, List and Watch. By knowing the verb and the

resource used in a request made to the Kubernetes API, one can deduct the corresponding

event verb_resource.

n-grams. n-gram is an NLP technique to predict the occurrence of a word based on the

previous n− 1 words [41]. In other words, n-gram models are used to compute the likeli-

hood of an item xi to immediately follow a sequence of n−1 items xi−1, xi−2, ..., xi−(n−1).

In spite of its typical usage in predicting the next word in a sentence, n-gram models can

also be used to predict the next event in a sequence. Therefore, in this thesis, we explore

n-gram as a potential predictive model learner.

LSTM. Long Short Term Memory (LSTM) is a deep learning based technique that is

widely applied in various applications (including security solutions) [37]. While tradi-

tional neural networks assumed that inputs are independent from each other (e.g., a cat/dog

image binary classifier might independently be presented pictures of cats and dogs), recur-

rent neural networks (RNN) are to keep "memory" of previously inferred data on which

depend the output (e.g., in a text corpus, the word "day" is more likely to be observed than

"people" following the sequence of words "have", "a", "good", even though both the words

"day" and "people" have approximately the same frequency in English language). Particu-

larly, LSTM networks feature a long-term memory cell in order to deal with the vanishing

gradient problem. Praised for their ability to recognize non-contiguous patterns (i.e., pre-

dicting future events based on relevant past events by ignoring unrelated events that occur

in between), LSTMs are well-used for NLP applications and more generally to make pre-

dictions based on time series data. Therefore, we explore LSTM as a potential predictive

model learner.

49

1 patch_pod,delete_pod
2 delete_pod,create_service,patch_service
3 patch_service
4 create_service
5 delete_pod
6 create_service,patch_service
7 create_pod,patch_pod,delete_pod,create_service,patch_service
8 delete_pod
9 create_service,patch_service

10 create_service,patch_service
11 patch_pod,create_service,patch_service
12 patch_service
13 create_service,patch_service
14 create_pod,delete_pod,create_service
15 delete_pod,create_service,patch_service
16 delete_pod,create_service,patch_service
17 delete_pod,create_service,patch_service
18 patch_service
19

Figure 13: Sample data extracted from our dataset

5.1.3 Approach

In this section, we describe the approach that is employed to prepare the Kubernetes logs

for learning and train those models using n-gram and LSTM.

Data Preparation. The dataset consists of Kubernetes event logs that are used for ProSPEC’s

Bayesian model learning in Section 4.1.1. As no Kubernetes dataset exists, 10,000 se-

quences of Kubernetes events were generated synthetically based on a dataset collected at

a smaller scale. Each sequences contains between 1 and 5 Kubernetes events. The dataset

generation is detailed in [43]. Fig. 13 depicts a sample of dataset used for training and

testing our different models. For each model, 80% of the dataset is used for training and

the remaining 20% are used for testing the model properties.

N -grams Training. We choose to implement both a 2-gram and a 3-gram, i.e. the former

will use very latest historical event to predict the next one, while the latter will use the

latest two events to predict the next one. First, the training dataset is splitted into chunks of

sub-sequences of 1 or 2 events (for 2-gram and 3-gram, respectively) followed by the next

50

event (the ground truth, or label). The n-gram models then keeps the absolute count of how

many times they encountered each event after different inputs, then compute their relative

probability of appearance.

We give here an example of 2-gram training. Given the training sequence

(create_pod, delete_pod, create_pod, delete_pod, create_service),

we first extract four input samples: create_pod → delete_pod, delete_pod

→ create_pod, create_pod → delete_pod, and delete_pod →

create_service. The 2-gram’s count table is represented in Table 3. The rela-

tive probabilities as calculated after the end of training are also given in the right part of

the table.

Additionally, we give an example of 3-gram training. Given the same training sequence,

we first extract three input samples: (create_pod, delete_pod) → create_pod,

(delete_pod, create_pod) → delete_pod and (create_pod, delete_pod)

→ create_service. The 3-gram’s count table is represented in Table 4. The relative

probabilities as calculated after the end of training are also given in the right part of the

table.

51

In
pu

t
C

ou
nt

Pr
ob

ab
ili

ty
of

pr
ed

ic
tio

n
c
r
e
_
p
o
d

d
e
l
_
p
o
d

c
r
e
_
s
e
r
v
i
c
e

c
r
e
_
p
o
d

d
e
l
_
p
o
d

c
r
e
_
s
e
r
v
i
c
e

c
r
e
_
p
o
d

0
2

0
0

1.
0

0
d
e
l
_
p
o
d

1
0

1
0.

5
0

0.
5

c
r
e
_
s
e
r
v
i
c
e

0
0

0
0

0
0

Ta
bl

e
3:

A
n

ex
am

pl
e

of
th

e
co

un
ta

nd
pr

ed
ic

tio
n

ta
bl

es
of

a
2-

gr
am

af
te

rt
ra

in
in

g

In
pu

t
C

ou
nt

Pr
ob

ab
ili

ty
of

pr
ed

ic
tio

n
c
r
e
_
p
o
d

d
e
l
_
p
o
d

c
r
e
_
s
e
r
v
i
c
e

c
r
e
_
p
o
d

d
e
l
_
p
o
d

c
r
e
_
s
e
r
v
i
c
e

c
r
e
_
p
o
d

,d
e
l
_
p
o
d

1
0

1
0.

5
0

0.
5

c
r
e
_
p
o
d

,c
r
e
_
s
e
r
v
i
c
e

0
0

0
0

0
0

d
e
l
_
p
o
d

,c
r
e
_
p
o
d

0
1

0
0

1.
0

0
d
e
l
_
p
o
d

,c
r
e
_
s
e
r
v
i
c
e

0
0

0
0

0
0

c
r
e
_
s
e
r
v
i
c
e

,c
r
e
_
p
o
d

0
0

0
0

0
0

c
r
e
_
s
e
r
v
i
c
e

,d
e
l
_
p
o
d

0
0

0
0

0
0

Ta
bl

e
4:

A
n

ex
am

pl
e

of
th

e
co

un
ta

nd
pr

ed
ic

tio
n

ta
bl

es
of

a
3-

gr
am

af
te

rt
ra

in
in

g

52

LSTM Training. Similarly to n-gram, LSTM can take as input sub-sequences of different

sizes. Given the relatively small length of sequences in our dataset, we choose to exper-

iment with two different window sizes of 1 event and 2 events. Results are presented in

Section 5.1.4. The data is prepared in the same way that for n-grams, i.e., we extract sub-

sequences of 1 (or 2) events, while the next event is being used as ground truth to correct

the model. We consider a classic LSTM cell architecture as shown in Fig. 14, where xt is

the input information (e.g., a representation of the current event in the sequence), ht is the

output information (e.g., a representation of the next event in the sequence) and Ct is the

state of the cell. U f , U i, U g, U o and W f ,W i,W g,W o are the weights of the LSTM cells.

The equations describing the behaviour of the LSTM cell are defined as follows [32]:

• ft = σ(xtU
f + ht−1W

f) describing what information to keep and what information

to forget in the cell state

• it = σ(xtU
i + ht−1W

i) describing what information to update in the cell state;

• ˆ︁Ct = tanh(xtU
g+ht−1W

g) describing what new information to update the cell state

with;

• Ct = ftCt−1 + it ˆ︁Ct describing the new state of the cell after forgetting and updating

the information;

• ot = σ(xtU
o + ht−1W

o) describing what information to output; and

• ht = ot ∗ tanh(Ct) describing the output of the LSTM cell as a filtered version of the

cell state Ct.

Multiple cells that are put in a row are able to learn from historical data. During training,

data is inferred in the network and a representation of the validity of the model (i.e., the

loss function) is calculated as the distance between the LSTM predictions and the ground

truth. After a certain amount of data is passed through the network (i.e., a batch), weights

53

from different layers are updated in order to minimize the loss. The accuracy of the model

can then be tested quickly to get an idea of the progress of the training. After multiple

iterations (i.e., epochs), the model is considered as trained. We then infer the testing dataset

to measure the final accuracy.

Figure 14: A classic LSTM cell as used for the LSTM model

5.1.4 Implementation and Results

In this section, we detail the implementation of those two predictive models and report

experiment results. In order to compare the results, we test these models in similar fashion

as in ProSPEC [43]. We focus our interest on three different metrics, i.e., model accuracy,

time needed for learning (offline learning time), and time needed for prediction at runtime

(runtime inference time). The accuracy is defined as the count of correct prediction over the

count of total prediction. Note that, in the context of ProSPEC, as Bayesian learning does

not only learn immediate transition but more generally transitions happening in the future,

a prediction is considered correct if the predicted event is present anywhere in the sequence

54

after the current event. The same accuracy calculation method has been employed for

the three models in order to ensure the consistency of the results. In the following, we first

describe the implementation of n-gram, then discuss an implementation of LSTM network,

and finally present results.

N -gram. The n-gram models are implemented in Python using a dictionary data structure.

The keys of the dictionary are the input sub-sequences represented as a single string in the

case of 2-gram and as a 2-tuple in the case of 3-gram. The values of that dictionary are also

dictionaries representing the probability of each event to happen (keys are predicted events

and values are probability). Events in the dataset are first tokenized (i.e., we map an integer

value with each event) using the nltk (Natural Language ToolKit) Python library [8].

LSTM. The LSTM models are implemented in Python using the Keras framework [11].

Our model architecture, described in Fig. 15, consists of three layers sequentially orga-

nized:

• an LSTM layer of depth 256, with recurring dropout with rate 0.2;

• a second LSTM layer of depth 128, with recurring dropout with rate 0.2; and

• a dense layer with a softmax activation.

Figure 15: Architecture of our LSTM network

55

We choose an architecture with relatively small depth (two LSTM units) as we are

dealing with relatively short sequences of events (maximum five). Also, as the vocabulary

is composed of only five different events, we choose a relatively small width of LSTM (256

for the first cell and 128 for the second). Experiments not presented here have shown that,

in our case, increasing both the width and the depth of the network did not help reach better

accuracy. We use Dropout directly in the LSTM cell with a rate of 20%. Dropout layers

randomly assign a percentage of input values to 0 in order to prevent the model overfitting.

It is to be noted that the Dropout layers are only enabled during the training phase and are

disabled during the testing phase. The last layer is a dense layer, i.e., a fully connected

layer, used with a softmax activation function as we are considering multiple potential

events for prediction (for binary classification, a sigmoid function would have been used).

Finally, as the output of the LSTM model returns a probability of appearance for each event

in the vocabulary, we choose the one with highest probability as the predicted event using

the argmax function. We train the model using a batch size of 256 samples over 30 epochs.

The associated loss function is the categorical cross-entropy. We use the Adam optimizer

with Keras’s default parameters during our training.

Results. The results of these experiments are reported in Table 5. Overall, both LSTMs

and n-grams present a better prediction accuracy than the Bayesian approach. Particularly,

the LSTM models with a window size of one event and two events both score more than

90% accuracy, with the drawback of larger learning time (24 s for the LSTM with a window

size of event compared to 4.3 s for the Bayesian network and 10 ms for the corresponding

n-gram). They both additionally experience a larger inference time of around 60 ms while

other models typically take less than one millisecond. On the other hand, the n-gram

approach with n = 3 (i.e., a window size of 2 events) proves particularly efficient both

from the accuracy and the timing point of view. However, results should be extended to a

larger vocabulary size (i.e., more different types of event) to complete the comparison.

56

Approach Size of
Window Accuracy Offline

Learning Time
Runtime

Inference Time
Bayesian Network

(ProSPEC)
N/A 79.7% 4.29 s 1e-4 s

LSTM
1 92.3% 24.01 s 0.06 s
2 97.6% 32.75 s 0.07 s

n-grams
1 88.2% 0.01 s 1e-4 s
2 97.3% 0.07 s 2e-4 s

Table 5: Comparison of different predictive model learning approaches

5.2 Rule Proactivization Priority

5.2.1 Introduction

In Section 4.1, we propose and detail an approach to proactively prepare security policy for

verification in containerized environment, such as Kubernetes. Security policies can man-

ually be proactivized by security administrators using ProSPEC in a small and well-known

environment, i.e., an environment where the watchlist content can easily be identified and

where rules are precisely known in advance by the security administrator. However, over-

whelming manual effort can be required in large-scaled deployments as many aspects of

security are managed by security policies (e.g., Role-Based Access Control, network rout-

ing policy, authentications, intrusion detection, etc.). In that case, knowing where to fo-

cus efforts in order to reduce the overall response time of security enforcement can be a

bottleneck. In this section, we propose to extend ProSPEC capabilities by introducing a

methodology to benchmark and rank security policies rules according to different factors.

This way, we offer an adaptable solution to help the security administrator gradually and

efficiently improve the overall policy enforcement performance.

57

5.2.2 Background and Motivation

OPA/Gatekeeper [64] is a policy enforcement solution for Kubernetes. At its core, Open

Policy Agent (OPA) is running in a container as a verification engine. Fig. 16 depicts

the architecture of OPA/Gatekeeper as used in a Kubernetes cluster. OPA by itself can be

used as a library directly embedded in a software or as a service directly on the host (e.g.,

Linux daemon). In the case of Gatekeeper, OPA is deployed as a library in a container

alongside the necessary interface to make it queryable from the Kubernetes API through

a webhook. Policies can be deployed directly in the Kubernetes cluster scope using two

Custom Resource Definitions (CRD): a Templates and a Constraint. Policies are defined by

first specifying a Template containing the Policy-as-Code (PaC) and some parameters, then

by fixing the parameters using the Constraint CRD. Gatekeeper periodically queries the

Kubernetes cluster to look for new Template and Constraints, which it internally transforms

into regular OPA policies.

Fig. 17 depicts an example of policy file for OPA written in the Rego language.

Figure 16: OPA/Gatekeeper deployment in the Kubernetes environment [72]

Policy Performance. OPA offers a way to evaluate and detail the performance metrics

of a policy at runtime. To do so, the user can call the opa eval or the opa bench

commands. opa eval performs the profiling, where it measures the time needed to load

58

1 package kubernetes.validating.label
2

3 import future.keywords.contains
4 import future.keywords.if
5

6 deny contains msg if {
7 value := input.request.object.metadata.labels.costcenter
8 not startswith(value, "cccode-")
9 msg := sprintf("Costcenter code must start with ‘cccode-‘; found

‘%v‘", [value])
10 }
11

Figure 17: Sample policy file for OPA/Gatekeeper written in Rego, a declarative lan-
guage [71]

and compile the policy, and evaluate the query. It also displays the number of times each

line of code of the policy is evaluated, the number of times it is re-evaluated and the total

time spent on each line of code. opa bench will do benchmarking, i.e., it also provides

the same metrics but also extensively run the evaluation a great number of times to provide

statistical data. Both these commands allow the user to understand why a policy takes time

to evaluate and point out exactly where in the policy code the evaluation spends most time,

thus giving hints for optimization.

Motivation. OPA itself provides the end user with tools to evaluate policy performance.

However, multiple issues are faced when it comes to OPA/Gatekeeper:

• First, even though profiling and benchmarking are available in OPA, these commands

are not directly exposed to the Kubernetes users. More precisely, to evaluate the

performance of policies performance used in OPA/Gatekeeper, one must (i) translate

its OPA/Gatekeeper policies (i.e., Templates and Constraints) into a complete Rego

policy file and (ii) access the OPA/Gatekeeper container command line (e.g., using

either kubectl exec or docker exec commands) to use the opa eval or

opa bench commands.

Note that one can also choose to install OPA on his host machine and perform the

59

evaluation there, however this can greatly impact the evaluation results as perfor-

mance on a host and performance inside a container on that host can greatly differ.

• To the best of our knowledge, no options are available to practically evaluate an entire

fleet of policies at once. To do so, one must either compile all policies in one single

file and deal with the overwhelming evaluation report, or evaluate its policies one by

one, an operation that can be time-consuming in a large-scaled cluster.

• Knowing the performance profile of policies is one thing but in order to optimize

its policy enforcement tool overall response time, one might be interested in know-

ing the frequency of usage of each policies (e.g., a policy which profiling indicates

a large overhead might be considered negligible compared to a policy with smaller

overhead if the former is used much less frequently than the latter). Although OPA

does expose metrics regarding overall policy performance [63], these are not pre-

cise enough to determine which particular policies are queried the most and their

cumulative overhead.

• Finally, there is no automated options to compare policies performance between

them, i.e., one must manually go through multiple policies evaluation reports to pri-

oritize among them which one can be improved using proactivization.

To illustrate further our motivation, we measure the execution time for each line of code

of a sample OPA policy [62]. Results are displayed in Table 6. Bold values represent that

84.6% of the total execution time comes from only 15.4% of the total lines of code. Some

lines of code (e.g., #2, #4, #5, etc.) are not present because they are not executed at runtime

(e.g., they only serve for compilation). It can be observed that for this policy, the two most

expensive lines of code in terms of execution time (i.e., #24 and #23) together account

for almost 85% of the total execution time while accounting for only 15.4% of all lines of

code. As a result, we observe that by solely focusing on the very most time consuming and

60

Line of
Code

Execution
Time (ns)

% of Total
Execution

Time

Cumulative %
of Total

Execution Time

Cumulative &
of Total Lines of

Code
#24 2239736 77.4 77.4 7.7
#23 208192 7.2 84.6 15.4
#22 95771 3.3 87.9 23.1
#1 94510 3.3 91.2 30.8

#25 81162 2.8 94 38.5
#3 72793 2.5 96.5 46.2
#6 34616 1.2 97.7 53.8

#16 26690 0.9 98.6 61.6
#17 21366 0.7 99.3 69.2
#11 7359 0.3 99.6 76.9
#9 4359 0.2 99.8 84.6

#12 3919 0.1 99.9 92.3
#15 3315 0.1 100 100

Table 6: Distribution of execution time for each line of code of an OPA policy

resource consuming policies, one can largely impact the overall performance of the system.

5.2.3 Approach

This section presents our approach to gather new and existing security policies, evaluate

and rank them from the most expensive to the less expensive and present the end user with

results.

Overview. Fig. 18 shows an overview of our approach using four modules and a policy

registry. Our solution takes input from OPA and returns the list of the most expen-

sive policies in terms of resource consumption and response time. First, the policy

watcher module constantly monitors the presence of new policies (or update of previ-

ously known one) in the Kubernetes cluster. It stores information about the policies in

the policy registry. The profiler module does profiling of resource consump-

tion and response time of those policies.. To evaluate the policies performance profile, it

starts by taking as input a query from historical data (e.g., the latest query ran against a

61

Figure 18: Overview of our approach to gather new and existing security policies, evaluate
and rank them from the most expensive to the less expensive and present the end user with
results

particular policy) then it performs fuzzing on that input data in order to obtain a more di-

verse performance profile. The profiler then uses OPA to do profiling and stores the

performance results in the policy registry. Meanwhile, the counter module con-

tinuously tracks the usage frequency of each policy, in order to estimate their global time

and computation consumption (done by the analyzer). These numbers are also con-

tinuously updated in the policy registry. Finally, the analyzer module queries

the policy registry and ranks the policies by performance (from worst to best) ac-

cording to different parameters specified by the admin. It also provides hints about what

specific line of code can be improved (e.g., by using proactive computation [43]). In the

following, we detail each component of our solution.

Policy Registry. The policy registry is a database storing policies, the count of

their usage and their performance profiles. Its single Policy table contains seven different

columns:

62

• Policy_name is a key value and stores the name of the policy. Even though Rego files

can contain multiple policies per file, we consider here each policy independently

as they are compiled by the OPA engine. In the context of Kubernetes and OPA/-

Gatekeeper, we consider that one Constraint represent one independent policy (i.e.,

multiple Constraints associated with one same Template will be stored as multiple

policies).

• Count is a value tracking the number of time a Policy has been used.

• First_observed contains the timestamp at which the policy was added to the database.

This value is necessary in order to compute the frequency of usage of policies. It is

expressed as the Linux timestamp (i.e., the number of seconds spent since January 1st

1970) of the first deployment of the policy as observed by the policy watcher.

The age of the policy (i.e., the amount of seconds since its first deployment in the

cluster) is computed at runtime by the analyzermodule when ranking the policies.

• Response_ time is a value storing the response time value as reported by the

profiler module.

• Computation_resource is a value storing the amount of resource consumed reported

by the profiler module. It is measured as the average percentage of resource

used over the total amount of resource available for CPU and memory as reported by

htop [39] (e.g., if a policy benchmark reports a CPU usage of 14% and a memory

usage of 26%, the average value of 20% is considered).

• Profile_report contains a complete profiling evaluation report as provided by the

profiler module. This report is to be handed to the end-user alongside the list

of policies to help understand the result.

• Sample_data contains a sample of data used to verify against the policy, in json [69]

63

format. Practically, this usually correspond to the input data used in the first query

observed for the policy.

Policy Watcher. The policy watcher module continuously scans for policies de-

ployed in the Kubernetes cluster by querying the latter. For efficiency reasons, the policy

watcher only periodically queries the Kubernetes cluster. It keeps track of the exist-

ing policies present in the database. On one hand, if a completely new policy is added,

the policy watcher simply adds a new (policy_name, first_observed) entry to the

database. It initializes the count to 0 and leave other fields empty. On the other hand, if an

already existing policy has been updated, it resets its count to 0, updates the first_observed

timestamp and deletes the existing (response_time, computation_resource, profile_report,

sample_data) fields. This is because updated policies can have very different performance

profiles and use different input data, thus they should be re-evaluated.

Profiler. The profiler module takes care of performance profiles for each policy. First,

it periodically looks for policies in the policy registry that do not have a perfor-

mance profile yet. To do so, the profiler simply looks for the presence of a value in

the policy’s profile_report fields. Then, if no profile yet exists (e.g., the policy was recently

added or updated), it verifies if sample_data are available to run the profiling with. In that

case, it uses the policy_name and sample_data values to establish a policy profile using

opa eval command. The profiling process is described in Algorithm 3. The average

query response time, the average computation resources as well as the average complete

profile report are saved in the policy registry.

Counter. The counter module is responsible for incrementing the count field of a policy

upon its usage. As soon as a query is run against a policy, the counter receives a signal from

OPA containing the policy name as well as the data from the query. If the policy is queried

for the first time (i.e., the count value was equal to 0), the counter module also adds

the json data received from the query to the sample_data field. In any case, it increments

64

Algorithm 3 Profiling process
1: Input: PolicyName, SampleInputData
2: Output: ResponseTime, ComputationResource, CompleteProfileReport
3: procedure PROFILE(PolicyName, SampleInputData)
4: for Policy in PolicyRegistry do
5: if SampleData is not empty and CompleteProfileReport is empty then
6: Get the corresponding policy_file;
7: for i from i=0 to i=100 do
8: Fuzz the SampleInputData fields;
9: Run opa eval --data policy_file --data
SampleInputData --profile --metrics --count=10

10: Save output;
11: end for
12: Average profiling results;
13: Return ResponseTime, ComputationResource, CompleteProfileReport to

PolicyRegistry;
14: end if
15: end for
16: end procedure

the count field by 1 for that policy.

Analyzer. The analyzer module role is to return the end-user with a ranking of policies

for proactivization. It takes as input a configuration from the end-user that specifies whether

response time or computational resources (i.e., CPU/memory) should be taken as the main

criteria for ranking the policies. This configuration is of a parameter α ∈ [0, 1] expressing

the percentage of response time to be considered into the ranking. A second parameter

β ∈ [0, 1] = 1− α representing the percentage of computational resource to be considered

into the ranking is implicitly calculated.

To compute the consumption score of a policy, we use the following formula:

Score =
Count ∗ (α ∗ResponseT ime+ (1− α) ∗ ComputationResource)

(NowTime− FirstObserved)
(1)

Note that we do not simply consider the number of time a policy is used as even a

65

computationally lightweight policy can have more cumulative response time that a recently

enforced but inefficient policy. The latter should be prioritized for proactivization as it rep-

resents more computational effort and response time in the long term. Instead, we consider

the frequency at which policies are used, i.e., the count of their usage over the amount of

time they have been enforced.

Fig. 19 details an example using our approach. In step (1), the admin creates a new

policy named "Block CVE-2020-8554" using Kubernetes CRD Template and Constraint.

By querying the cluster, the policy watcher module detects this new policy in step

(2) and adds it the policy registry in step (3) (timestamp 1669329373). In step (4),

the new policy entry is initialized with a count of 0 and a timestamp corresponding to the

current time. Once the new policy has been used one, the profiler fuzzes the sample

input and uses the opa eval command to build a performance profile in step (5). It stores

the results in the policy registry in step (6).

After a while, in step (7) (timestamp 1669334850), the admin decides to optimize its

security policies performance, and privileges response time over resource usage by spec-

ifying a parameter α = 0.7 to the analyzer module. The latter calculates the score of

each policies in step (8). For instance, the policy named "Ingress conflicts" was used 12

times since its deployment at timestamp 1627266506. Its average response time is 62.7 ms

and its average resource usage is 26%. The analyzer module thus calculates a score

of 0.147 (note that this score has been scaled by a factor 10,000 for readability). It does

the same for the policy "Label existence" and calculates a score of 38.718. In step (9), the

admin knows that the policy "Label existence" should preferably be optimized first, as it

has a higher score than "Ingress conflicts".

66

Fi
gu

re
19

:A
n

ex
am

pl
e

of
ou

ra
pp

ro
ac

h

67

5.2.4 Preliminary Results

In this section, we present preliminary results on how much response time and resource

usage could be potentially gained by simply focusing on optimizing the right policies. To

do so, we extend our study to five more policies and observe the distribution of response

delay among the rules composing them.

For our study, we take five different policies from the Rego Playground [71] and obtain

their performance profile using the opa eval command. These five policies concern

RBAC, label existence on resources, label format on resources, container image safety

and ingress conflicts, respectively. We do not limit the amount of output generated in

order to get profiling for each single line of code executed. While results presented as

motivation in Table 6 focus on the distribution of execution time among one single policy,

these preliminary results instead focus on the distribution of performance among multiple

policies.

Lines of code0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
Ti

m
e

(n
s)

1e6

Policy 1
Policy 2
Policy 3
Policy 4
Policy 5

0

20

40

60

80

100

C
um

ul
at

iv
e

Ex
ec

ut
io

n
Ti

m
e

(%
)

Figure 20: Distribution of execution time on five policies

68

Results are presented in Fig. 20. The cumulative execution time of these policies loosely

follows a power law. More precisely, we observe that 20% of the policies’ lines of code are

responsible for 80% of the execution time, also known as Pareto’s principle (more precisely,

it follows a Pareto’s distribution with Pareto’s index α ≈ 1.16). We can conclude that, for

this particular example, making only 20% of the policies rules proactive would lead in 80%

savings in total execution time. To confirm this, more experiments should be ran on a large

scale of policies in a real-world environment in our future work.

5.2.5 System Design and Integration

Figure 21: Integration of our solution in the OPA/Gatekeeper environment

This section details the design of our system and its integration with existing solution

OPA/Gatekeeper. Our solution is deployed as a sidecar container in the same Pod as OPA/-

Gatekeeper. We use SQLite as a lightweight database for the policy registry. The

69

policy watcher module is developed in Python and uses HTTP requests to commu-

nicate with the Kubernetes API and keep track of the existing policies. The counter

module is an HTTP server implemented with Flask [35] that receives information about

a policy and the corresponding verified query each time a policy is used. To do so, the

OPA source code of the Rego.Eval() function (written in Go) is modified in order to

make an HTTP POST query to the counter when necessary. The profiler benefits

from the proximity of our solution with OPA/Gatekeeper to run the opa eval command

directly inside the OPA container and obtain results as precise as possible. Additionally,

it leverages Linux’s htop tool [39] to estimate CPU and memory usage during profiling.

Performance profiles are returned as text files and averaging is done by parsing the text

fields in Python arrays using numpy. Finally, the analyzer module performs mathemat-

ical operations with Python and returns policies ranking and performance profiles as text.

All database queries are done using Python and the sqlite3 library. Fuzzing is done

using open-source solution such as libFuzzer [50] (pyfuzzer in Python). Fig. 21 shows

our integration alongside the OPA/Gatekeeper environment.

70

Chapter 6

Deployments and Implementations

Many technical aspects of this thesis were documented and automated for the sake of re-

producibility and reusability. This chapter presents a background about the most important

works realized during our research, details their topology and provides guidelines for using

them. Finally, we highlight that the presented deployments have been utilized in several

other research works conducted by the members of our group.

6.1 Kubernetes Cluster

The central thread of this thesis remains containers and their deployment in clouds. How-

ever, as cloud environments are often composed of multiple nodes, the required manual

efforts to deploy, configure and maintain the environment are multiplied. Hence, the ability

to deploy Kubernetes testbeds reliably and quickly was a key to progress and improve the

research efficiency of anyone working on Kubernetes in our group. This section presents

quick-kubernetes, a framework to automate the deployment of a Kubernetes cluster over

virtual machines (VMs).

71

6.1.1 Background

This section provides backgrounds on technologies used in this deployment as follows.

• A container is a lightweight bundle of an application and its dependencies. By op-

position to VMs which virtualize the physical hardware and the operating system,

containers directly run at the operating system level, increasing portability and re-

ducing starting time. Containers on the operating system are managed by a Container

Runtime such as Docker, CRI-O or containerd.

• Kubernetes [44] is a container orchestrator, its role is to manage containers spread

on multiple hosts (nodes). Particularly, Kubernetes ensures the maintenance and the

availability of the applications and services deployed as container by communicating

with multiple nodes and their local Container Runtime.

• VirtualBox [87] is a Type-2 hypervisor capable of managing multiple VMs. Partic-

ularly, VirtualBox provides virtualized physical layers (CPU, memory, network) on

which VM images can be executed.

• Vagrant [85] is an open-source software to build and automate virtualized environ-

ments, such as VMs. Particularly, Vagrant offers the option to leverage Ansible to

automate the software provisioning and configuration of those VMs.

• Ansible [3] is a provisioning and configuration tool that allows the automation of dif-

ferent steps of the deployment process, such as software installation and management

of configuration files. Particularly, given a list of software to install and commands

to execute, Ansible can connect to remote hosts and automatically perform all those

operations while ensuring their correct completion and handling potential errors.

72

Figure 22: Quick-kubernetes automates the deployment of a complete Kubernetes cluster

6.1.2 Topology

Fig. 22 describes the topology of the deployment created by quick-kubernetes. Quick-

kubernetes is a repository containing configuration files for Vagrant and Ansible [3] as well

as prerequisites and guidelines to use it. Kubernetes is deployed using Docker or containerd

as Container Runtime, upon the user’s choice. It creates two networks: one internal net-

work to support Kubernetes, allowing Nodes to directly reach others, and one host network

to allow the Nodes to reach Internet and to allow the user to remotely access them (us-

ing NAT). The IP addresses of the Nodes are automatically assigned on both network, and

can be customized. Quick-kubernetes provisions the Nodes with the necessary software to

make Kubernetes work (e.g., Docker, Kubeadm, Kubectl, Kubelet, OpenSSL, Linux head-

ers, Calico, etc.). More programs can easily be added in the configuration files if necessary.

73

Quick-kubernetes can create a Kubernetes cluster composed of one master Node and 10

worker Nodes hosted on VMs, ex nihilo and ready-to-go in less than 30 minutes.

6.1.3 Deployment Steps

Quick-kubernetes is hosted as a Git repository. Prerequisites are Ansible, VirtualBox and

Vagrant. We install Ansible, VirtualBox and Vagrant using:

$ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

$ python3 get-pip.py --user

$ python3 -m pip install ansible

$ wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- |

sudo apt-key add -

$ sudo add-apt-repository "deb [arch=amd64] http://download.virtualbox.

org/virtualbox/debian $(lsb_release -cs) contrib"

$ sudo apt update && sudo apt install virtualbox-6.1 -y

$ sudo apt install software-properties-common

$ curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key add -

$ sudo apt-add-repository "deb [arch=amd64] https://apt.releases.

hashicorp.com $(lsb_release -cs) main"

$ sudo apt update && sudo apt install vagrant

$ export VAGRANT_EXPERIMENTAL="dependency_provisioners"

A Vagrantfile contains configuration for VirtualBox VMs and Vagrant. An example

of Vagrantfile is given in Appendix B. Particularly:

• The parameter N is the number of Kubernetes worker nodes desired.

• master.vm.network "private_network", ip:

"192.168.61.10", nic_type: "Am79C973" defines the IP address

of the master Node, and node.vm.network "private_network", ip:

74

"192.168.61.#{i + 10}", nic_type: "82545EM" defines the IP

addresses of the N worker Nodes, respectively.

• The network interface controllers (NIC) are set to allow IP forwarding

(--nicpromisc: allow-all) as it is needed by the MACVLAN feature of

Multus (detailed in 6.2).

master-playbook.yaml and node-playbook.yaml contain Ansible instructions

for the master Node and worker Nodes provisioning, respectively. Particularly:

• Base packages (e.g., ca-certificates, curl, linux-headers,

software-properties-common) are installed using apt.

• As required by Kubernetes official installation guide, memory swap is disabled.

• Calico is deployed as Container Network Interface (CNI) plugin for Kubernetes.

Multus can be additionally installed as required in 6.2).

• Worker nodes automatically join the Kubernetes cluster upon creation. This is done

by exporting the join-command from the Master node to the host then by import-

ing it to each worker Nodes upon their creation.

Once configured as desired, the following command are executed:

$ vagrant up

$ vagrant ssh-config >> ~/.ssh/config

Kubernetes can then be accessed using $ ssh k8s-master and the kubectl

command-line interface.

6.2 5G Core on Kubernetes

There is a need for telecommunications-related scenario and applications. On one hand,

there exist open-source frameworks to emulate 5G environments such as Free5GC [29] or

75

Open5GS [65], providing 5G core applications. On the other hand, UERANSIM [82] is

a user endpoint (UE) and radio access network (RAN) simulator that aims at simulating

mobile devices registered in an operator’s RAN. In order to build a 5G-related deploy-

ment on Kubernetes, we inspire from these projects and from towards5Gs [80] (main-

tained by Orange) to provide kubernetes-free5gc, a ready-to-use repository to quickly de-

ploy a Free5GC/UERANSIM implementation on top of a Kubernetes cluster. Kubernetes-

free5gc is fully compatible with Kubernetes clusters created using quick-kubernetes (see

Section 6.1).

6.2.1 Background

This section quickly provides background about technology used in this deployment as

follows.

• Calico [10] is a Container Network Interface (CNI) plugin for Kubernetes that allows

Pods to communicate together, but also to specify network traffic rules for Pods and

Services.

• Multus [59] is also a CNI plugin used to provide additional network interfaces to

containers in a Kubernetes cluster. Particularly, Multus can use MACVLAN to create

multiple sub-networks inside Calico networks and thus connect containers through

different interfaces.

• Free5GC [29] is an open-source project offering a 5G core network functions (NF)

implementation as defined by 3GPP specifications. Specifically, Free5GC provides

source code and binaries for the following NFs: AMF, SMF, AUSF, UDR, NRF, PCF,

UDM and UPF. It also provides configuration files and many guidelines about how to

deploy and use a 5G core on top of VMs. It also provides hints on using UERANSIM

76

to simulate UEs and a RAN, and to perform tests to validate the behaviour of the 5G

core.

• UERANSIM [82] is an open source project offering a simulation of UE and RAN

(i.e., mobile phones and antennas/base stations connected to a 5G network). Users

have the possibility to emulate UE devices and perform actions such as registration,

deregistration, access to the data network (mobile data) and mobile roaming (i.e.,

moving from the area covered from one base station to another).

6.2.2 Topology

Figure 23: Kubernetes-free5gc automates the deployment of 5G core in Kubernetes

77

Fig. 23 details an example of topology of a 5G core and UE/RAN deployed over a Ku-

bernetes environment composed of 4 worker nodes (i.e., such as described in Section 6.1)

by kubernetes-free5gc. The 5G core NFs (namely, AMF, AUSF, NRF, PCF, SMF, UDM,

UDR and UPF) are running Free5GC binaries while the RAN and the UE are from UER-

ANSIM. We use Helm, a tool for configuring complex deployment in Kubernetes, to deploy

the applications and build the network interface between them. Particularly, Multus uses

MACVLAN on the Kubernetes network to create different network interfaces inside the

containers. For instance, on the UPF container, the N3 and N4 interfaces should be con-

nected to the Kubernetes network (in blue) while the N6 interface should be able to reach

the Data Network (i.e., the Internet) on the Host network using NAT (see Section 6.1).

Other interfaces between NFs are automatically created and IP are assigned inside the Ku-

bernetes network. Finally, UEs can register to the 5G network and reach the data network

through a tunnel, similarly to a scenario where a mobile user reaches out the Internet using

a smartphone and mobile data.

6.2.3 Deployment Steps

Kubernetes-free5gc is hosted as a Git repository. Pre-requisites are Helm, GTP5G and

Multus. To install them, following commands are executed:

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/

main/scripts/get-helm-3

$ chmod 700 get_helm.sh

$./get_helm.sh

$ git clone https://github.com/free5gc/gtp5g

$ make clean && make

$ sudo make install

78

$ curl -fsSL https://raw.githubusercontent.com/k8snetworkplumbingwg/

multus-cni/master/deployments/multus-daemonset.yml | kubectl apply -

f -

As Free5GC uses a database, we create a database folder on one of the worker nodes.

We then create a persistent volume and set a nodeAffinity to deploy the database

on the same node. One should make sure to configure the network interfaces correctly,

particularly:

• Interfaces N2, N3 and N4 should be on the Kubernetes network; and

• Interface N6 should be on a network reaching the Internet, e.g. the host network in

our case (see Section 6.1).

Once configured, the 5G core and UERANSIM can be deployed using Helm:

$ helm install free5gc -n free5gc free5gc/charts/free5gc

$ helm install ueransim -n free5gc free5gc/charts/ueransim

After registering the UE in the 5G core, we can validate the installation by trying to

reach the Internet from the UE container:

$ kubectl -n free5gc exec -it <ue_pod_name> -- ping -I uesimtun0 www.

google.com

The UE should be able to reach the Internet through the newly created mobile data interface

uesimtun0.

6.3 Usage in Security Research Works

Quick-kubernetes (see Section 6.1) was created to fill the need for a reliable, quick and

customizable way to deploy a Kubernetes cluster as a non-negligible part of research in the

department is shifting from the VMs environment (e.g., using OpenStack) to containerized

79

environments. Similarly, kubernetes-free5gc (see Section 6.2) was developed in order to

allow experiments and research on 5G environments. As a result, these projects are cur-

rently being used by ongoing research projects about federated learning on multi-cluster 5G

cores, Kubernetes cluster security evaluation, and netowkr function integrity verification of

5G core on Kubernetes.

6.4 Vulnerability Discovery

As mentioned in Section 2.2, this research lead to the discovery of CVE-2021-43979 [17].

Particularly, while experimenting with OPA/Gatekeeper, we found out that the data repli-

cation mechanism could lead to inconsistencies between resources existing in the cluster

and resources known to OPA/Gatekeeper. As a result, one could bypass certain security

policies enforced by OPA/Gatekeeper by concurrently performing multiple actions in the

cluster. A Proof-of-Concept has been made publicly available [18]. This vulnerability

has been reported to Styra, vendor of OPA/Gatekeeper; however it was not deemed rele-

vant by the company as "Kubernetes states are only eventually consistent". Furthermore,

Styra states that "the policy bypass would be detected afterwards by the audit feature of

OPA/Gatekeeper". The CVE has then been placed in a "disputed" state after we informed

MITRE of our discussion with OPA/Gatekeeper maintainers. Even considering that Kuber-

netes states, by design, reflect users’ actions with a slight delay, we still believe that users

should be aware of the policy bypass scenario and the behaviour of OPA/Gatekeeper data

replication mechanism so they can adapt. Our Proof-of-Concept details a simple example

depicting a policy bypass and teaches users about the reason behind such behaviour.

80

Chapter 7

Conclusion

In this thesis, we proposed a proactive security policy enforcement solution for container

environments. We leveraged learning techniques to derive a predictive model that cap-

tures dependencies among events in container environments. ProSPEC utilized this model

to predict future critical events and efficiently prevent security policy violations for large

container environments with a practical response time (e.g., less than 15 ms for 800 Pods

compared to 600 ms with one of the most popular existing approaches). Additionally, we

implemented ProSPEC and integrated it with Kubernetes, a popular container orchestrator.

We then extended our solution by exploring more predictive model learning techniques

(e.g., n-gram and LSTM) and proposed an approach to analyze and rank the performance of

security policies in order to facilitate their proactivization. We also contributed to improve

the research capabilities in the field of container security and 5G security by developing

two frameworks; one to automate the deployment of Kubernetes clusters, and the other to

deploy a 5G core on Kubernetes premises. Finally, we discovered and reported an official

vulnerability (CVE-2021-43979) in OPA/Gatekeeper, the de facto security policy enforce-

ment solution for Kubernetes.

Limitations and Future Work. There exist a few limitations in our work as follows.

First, ProSPEC does not retrain the model nor adjust the thresholds based on historical

81

compliance and changes in user behavior. Our future work will support dynamic online

learning of the predictive model. Second, in this thesis, identification of critical events,

security policies, as well as event typing are still manually performed. As future work, this

process can be automated by leveraging supervised machine learning approaches. Third,

currently our solution is integrated with Kubernetes. In the future, we plan to integrate it

with other container orchestrators, such as Docker Swarm [22] and OpenShift [66].

82

Bibliography

[1] W. S. S. Ahamed, P. Zavarsky, and B. Swar. Security Audit of Docker Container
Images in Cloud Architecture. In ICSCCC. IEEE, 2021.

[2] A. Ankan and A. Panda. pgmpy: Probabilistic graphical models using python. In
SCIPY. Citeseer, 2015.

[3] Red Hat Ansible, 2022. https://www.ansible.com/.

[4] Aqua: Aqua Container Security Platform, 2021. www.aquasec.com/aqua-
cloud-native-security-platform/.

[5] ’Azurescape’ Kubernetes Attack Allows Cross-Container Cloud Compromise,
2021. https://threatpost.com/azurescape-kubernetes-attack-
container-cloud-compromise/169319/.

[6] M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report,
Citeseer, 1997.

[7] Benchmark results of Kubernetes CNI over 10Gbit/s network, 2019. https:
//itnext.io/benchmark-results-of-kubernetes-network-
plugins-cni-over-10gbit-s-network-updated-august-2020-
6e1b757b9e49.

[8] Bird, Steven and Loper, Edward and Klein, Ewan. Natural Language Processing with
Python. O’Reilly Media, Inc., 2009.

[9] S. Bleikertz, C. Vogel, T. Groß, and S. Mödersheim. Proactive security analysis of
changes in virtualized infrastructures. In ACSAC, 2015.

[10] Calico: Open source networking solution for Kubernetes, 2020. https://docs.
projectcalico.org/.

[11] Chollet, Francois and others. Keras, 2015. https://keras.io.

[12] Cloud Native Computing Foundation 2020 Annual Report, 2020. www.cncf.io/
cncf-annual-report-2020/.

[13] Cloud Native Computing Foundation 2020 Survey Report, 2020. www.cncf.io/
wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf.

83

https://www.ansible.com/
www.aquasec.com/aqua-cloud-native-security-platform/
www.aquasec.com/aqua-cloud-native-security-platform/
https://threatpost.com/azurescape-kubernetes-attack-container-cloud-compromise/169319/
https://threatpost.com/azurescape-kubernetes-attack-container-cloud-compromise/169319/
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-august-2020-6e1b757b9e49
https://docs.projectcalico.org/
https://docs.projectcalico.org/
https://keras.io
www.cncf.io/cncf-annual-report-2020/
www.cncf.io/cncf-annual-report-2020/
www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf

[14] Container Runtimes, 2021. https://kubernetes.io/docs/setup/
production-environment/container-runtimes/#cgroup-
drivers.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2009.

[16] CVE-2020-8554: Man in the middle in Kubernetes, 2020. https://blog.
champtar.fr/K8S_MITM_LoadBalancer_ExternalIPs/.

[17] CVE-2021-43979, 2021. https://nvd.nist.gov/vuln/detail/CVE-
2021-43979.

[18] CVE-2021-43979 on GitHub, 2021. https://github.com/hkerma/opa-
gatekeeper-concurrency-issue.

[19] M. De Benedictis and A. Lioy. Integrity verification of Docker containers for a
lightweight cloud environment. Future Generation Computer Systems, 97:236–246,
2019.

[20] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis. Sysfilter:
Automated system call filtering for commodity software. In 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID 2020), pages 459–
474, 2020.

[21] Docker authorization with OPA, 2021. www.openpolicyagent.org/docs/
latest/docker-authorization/.

[22] Docker Swarm, 2021. https://docs.docker.com/engine/swarm/.

[23] DockerSlim, 2022. https://github.com/docker-slim/docker-slim.

[24] E. Dolzhenko, J. Ligatti, and S. Reddy. Modeling runtime enforcement with manda-
tory results automata. International Journal of Information Security, 14(1):47–60,
2015.

[25] Dynamic Admission Control, 2021. https://kubernetes.io/docs/
reference/access-authn-authz/extensible-admission-
controllers/.

[26] ETSI. Report on the Enhancements of the NFV architecture towards "Cloud-native"
and "PaaS", ETSI GR NFV-IFA 029. Technical report, ETSI, 2019.

[27] Falco, 2018. https://falco.org/.

[28] S. N. Foley and U. Neville. A firewall algebra for openstack. In 2015 IEEE Confer-
ence on Communications and Network Security (CNS), pages 541–549. IEEE, 2015.

84

https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cgroup-drivers
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cgroup-drivers
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cgroup-drivers
https://blog.champtar.fr/K8S_MITM_LoadBalancer_ExternalIPs/
https://blog.champtar.fr/K8S_MITM_LoadBalancer_ExternalIPs/
https://nvd.nist.gov/vuln/detail/CVE-2021-43979
https://nvd.nist.gov/vuln/detail/CVE-2021-43979
https://github.com/hkerma/opa-gatekeeper-concurrency-issue
https://github.com/hkerma/opa-gatekeeper-concurrency-issue
www.openpolicyagent.org/docs/latest/docker-authorization/
www.openpolicyagent.org/docs/latest/docker-authorization/
https://docs.docker.com/engine/swarm/
https://github.com/docker-slim/docker-slim
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://falco.org/

[29] Free5GC, 2022. https://www.free5gc.org/.

[30] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang. Containerleaks: Emerging
security threats of information leakages in container clouds. In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 237–248. IEEE, 2017.

[31] S. Geisser. Predictive Inference. Chapman & Hall/CRC Monographs on Statistics &
Applied Probability. Taylor & Francis, 1993.

[32] Gers, Felix A. and Schmidhuber, Jürgen and Cummins, Fred. Learning to Forget:
Continual Prediction with LSTM. Neural Computation, 12(10):2451–2471, 10 2000.

[33] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis. Confine: Automated
system call policy generation for container attack surface reduction. In RAID, 2020.

[34] S. Ghavamnia, T. Palit, and M. Polychronakis. C2C: Fine-grained Configuration-
driven System Call Filtering. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 1243–1257, 2022.

[35] Grinberg, Miguel. Flask web development: developing web applications with Python.
" O’Reilly Media, Inc.", 2018.

[36] R. D. Hipp. SQLite, 2020. https://www.sqlite.org/index.html.

[37] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[38] S. Hosseinzadeh, S. Laurén, and V. Leppänen. Security in container-based virtual-
ization through vTPM. In Proceedings of the 9th International Conference on Utility
and Cloud Computing, pages 214–219, 2016.

[39] Linux’s htop, 2020. https://www.man7.org/linux/man-pages/man1/
htop.1.html.

[40] Installing Kubeadm, 2021. https://kubernetes.io/docs/setup/
production-environment/tools/kubeadm/install-kubeadm/.

[41] M. Jardino. Multilingual stochastic n-gram class language models. In 1996 IEEE
International Conference on Acoustics, Speech, and Signal Processing Conference
Proceedings, volume 1, pages 161–163. IEEE, 1996.

[42] Z. Jian and L. Chen. A defense method against docker escape attack. In Proceedings
of the 2017 International Conference on Cryptography, Security and Privacy, pages
142–146, 2017.

85

https://www.free5gc.org/
https://www.sqlite.org/index.html
https://www.man7.org/linux/man-pages/man1/htop.1.html
https://www.man7.org/linux/man-pages/man1/htop.1.html
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

[43] H. Kermabon-Bobinnec, M. Gholipourchoubeh, S. Bagheri, S. Majumdar, Y. Jarraya,
M. Pourzandi, and L. Wang. ProSPEC: Proactive Security Policy Enforcement for
Containers. In Proceedings of the Twelveth ACM Conference on Data and Application
Security and Privacy, pages 155–166, 2022.

[44] Kubernetes, 2021. https://kubernetes.io.

[45] Kubernetes API Reference, 2021. https://v1-18.docs.kubernetes.io/
docs/reference/.

[46] Kubernetes Audit Logs, 2021. https://kubernetes.io/docs/tasks/
debug-application-cluster/audit/.

[47] Kubernetes: Configuring a cgroup driver, 2022. https://kubernetes.io/
docs/tasks/administer-cluster/kubeadm/configure-cgroup-
driver/.

[48] L. Lei, J. Sun, K. Sun, C. Shenefiel, R. Ma, Y. Wang, and Q. Li. SPEAKER: Split-
phase execution of application containers. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 230–251. Springer,
2017.

[49] M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. MyCloud: supporting user-configured
privacy protection in cloud computing. In ACSAC, 2013.

[50] LLVM libFuzzer, 2022. https://llvm.org/docs/LibFuzzer.html.

[51] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM
Transactions on Information and System Security (TISSEC), 12(3):1–41, 2009.

[52] J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In European
Symposium on Research in Computer Security, pages 87–100. Springer, 2010.

[53] Logstash, 2021. www.elastic.co/logstash/.

[54] F. Loukidis-Andreou, I. Giannakopoulos, K. Doka, and N. Koziris. Docker-sec: A
fully automated container security enhancement mechanism. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS), pages 1561–
1564. IEEE, 2018.

[55] W. Luo, Q. Shen, Y. Xia, and Z. Wu. Container-IMA: a privacy-preserving integrity
measurement architecture for containers. In RAID, 2019.

[56] S. Majumdar, Y. Jarraya, T. Madi, A. Alimohammadifar, M. Pourzandi, L. Wang,
and M. Debbabi. Proactive verification of security compliance for clouds through
pre-computation: Application to openstack. In ESORICS. Springer, 2016.

86

https://kubernetes.io
https://v1-18.docs.kubernetes.io/docs/reference/
https://v1-18.docs.kubernetes.io/docs/reference/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/
https://llvm.org/docs/LibFuzzer.html
www.elastic.co/logstash/

[57] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar, M. Pourzandi, L. Wang,
and M. Debbabi. LeaPS: Learning-based proactive security auditing for clouds. In
ESORICS. Springer, 2017.

[58] S. Majumdar, A. Tabiban, M. Mohammady, A. Oqaily, Y. Jarraya, M. Pourzandi,
L. Wang, and M. Debbabi. Proactivizer: Transforming existing verification tools into
efficient solutions for runtime security enforcement. In ESORICS. Springer, 2019.

[59] Multus CNI, 2022. https://github.com/k8snetworkplumbingwg/
multus-cni.

[60] R. E. Neapolitan et al. Learning Bayesian networks, volume 38. Pearson Prentice
Hall Upper Saddle River, NJ, 2004.

[61] NIST: National Institute of Standards and Technology. www.nist.gov/.

[62] OPA Example Policy, 2022. https://www.openpolicyagent.org/docs/
latest/#putting-it-together.

[63] OPA/Gatekeeper Metrics, 2022. https://open-policy-agent.github.
io/gatekeeper/website/docs/metrics/.

[64] Open Policy Agent/Gatekeeper, 2019. https://open-policy-agent.
github.io/gatekeeper/.

[65] Open5GS, 2022. https://open5gs.org/.

[66] OpenShift, 2021. https://docs.openshift.com/.

[67] OpenStack Congress, 2015. https://wiki.openstack.org/wiki/
Congress/.

[68] OWASP: The Open Web Application Security Project, 2001. https://owasp.
org/.

[69] Pezoa, Felipe and Reutter, Juan L and Suarez, Fernando and Ugarte, Martín and Vr-
goč, Domagoj. Foundations of JSON schema. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, pages 263–273. International World Wide Web
Conferences Steering Committee, 2016.

[70] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel. Cimplifier: auto-
matically debloating containers. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 476–486, 2017.

[71] Rego Playground, 2022. https://play.openpolicyagent.org/.

87

https://github.com/k8snetworkplumbingwg/multus-cni
https://github.com/k8snetworkplumbingwg/multus-cni
www.nist.gov/
https://www.openpolicyagent.org/docs/latest/#putting-it-together
https://www.openpolicyagent.org/docs/latest/#putting-it-together
https://open-policy-agent.github.io/gatekeeper/website/docs/metrics/
https://open-policy-agent.github.io/gatekeeper/website/docs/metrics/
https://open-policy-agent.github.io/gatekeeper/
https://open-policy-agent.github.io/gatekeeper/
https://open5gs.org/
https://docs.openshift.com/
https://wiki.openstack.org/wiki/Congress/
https://wiki.openstack.org/wiki/Congress/
https://owasp.org/
https://owasp.org/
https://play.openpolicyagent.org/

[72] Rita Zhang, Max Smythe, Craig Hooper, Tim Hinrichs, Lachie Even-
son, Torin Sandall. OPA Gatekeeper: Policy and Governance for Ku-
bernetes, 2022. https://kubernetes.io/blog/2019/08/06/opa-
gatekeeper-policy-and-governance-for-kubernetes/.

[73] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security (TISSEC), 3(1):30–50, 2000.

[74] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman. XI Commandments of Kubernetes
Security: A Systematization of Knowledge Related to Kubernetes Security Practices.
In SecDev. IEEE, 2020.

[75] S. Sultan, I. Ahmad, and T. Dimitriou. Container security: Issues, challenges, and the
road ahead. IEEE Access, 7:52976–52996, 2019.

[76] Y. Sun, D. Safford, M. Zohar, D. Pendarakis, Z. Gu, and T. Jaeger. Security names-
pace: making Linux security frameworks available to containers. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 1423–1439, 2018.

[77] Sysdig, 2018. https://sysdig.com/.

[78] C.-W. Tien, T.-Y. Huang, C.-W. Tien, T.-C. Huang, and S.-Y. Kuo. KubAnomaly:
Anomaly detection for the Docker orchestration platform with neural network ap-
proaches. Engineering Reports, 1(5):e12080, 2019.

[79] Torin Sandall. OPA: Top 5 Kubernetes Admission Control Policies, 2020.
https://thenewstack.io/open-policy-agent-the-top-5-
kubernetes-admission-control-policies/.

[80] Towards5GS, 2022. https://github.com/Orange-OpenSource/
towards5gs-helm.

[81] I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine learning, 65(1):31–78, 2006.

[82] UERANSIM, 2022. https://github.com/aligungr/UERANSIM.

[83] K. W. Ullah, A. S. Ahmed, and J. Ylitalo. Towards Building an Automated Security
Compliance Tool for the Cloud. In 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, pages 1587–1593,
2013.

[84] Ultra Reliable and Low Latency Communications, 2022. https://www.3gpp.
org/technologies/urlcc-2022.

[85] HashiCorp Vagrant, 2022. https://www.vagrantup.com/.

88

https://kubernetes.io/blog/2019/08/06/opa-gatekeeper-policy-and-governance-for-kubernetes/
https://kubernetes.io/blog/2019/08/06/opa-gatekeeper-policy-and-governance-for-kubernetes/
https://sysdig.com/
https://thenewstack.io/open-policy-agent-the-top-5-kubernetes-admission-control-policies/
https://thenewstack.io/open-policy-agent-the-top-5-kubernetes-admission-control-policies/
https://github.com/Orange-OpenSource/towards5gs-helm
https://github.com/Orange-OpenSource/towards5gs-helm
https://github.com/aligungr/UERANSIM
https://www.3gpp.org/technologies/urlcc-2022
https://www.3gpp.org/technologies/urlcc-2022
https://www.vagrantup.com/

[86] W. Viktorsson, C. Klein, and J. Tordsson. Security-Performance Trade-offs of Ku-
bernetes Container Runtimes. In 2020 28th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 1–4. IEEE, 2020.

[87] Oracle VM VirtualBox, 2022. https://www.virtualbox.org/.

[88] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, SCIPY, 2010.

[89] S. S. Yau, A. B. Buduru, and V. Nagaraja. Protecting critical cloud infrastructures
with predictive capability. In CLOUD. IEEE, 2015.

89

https://www.virtualbox.org/

Appendix A

List of Abbreviations

3GPP Third-Generation Partnership Project
5G Fifth Generation of broadband cellular network
API Application Programming Interface
BFS Breadth-First Search
CLI Command Line Interface
CNI Container Network Interface
(v)CPU (virtual) Central Processing Unit
CRD Custom Resource Definition
CRI Container Runtime Interface
CVE Common Vulnerability and Exposure
DAG Directed Acyclic Graph
ETSI European Telecommunications Standards Institute
LSTM Long Short-Term Memory
MACVLAN MAC Virtual Local Area Network
NAT Network Address Translation
NF Network Function
NIC Network Interface Controller
OPA Open Policy Agent
RAN Radio Access Network
RNN Recurrent Neural Network
UE User Equipment
VM Virtual Machine

90

Appendix B

Vagrant configuration file

IMAGE_NAME = "bento/ubuntu-20.04"
N = 2

Vagrant.configure("2") do |config|
config.ssh.insert_key = false

config.vm.define "k8s-master" do |master|
master.vm.box = IMAGE_NAME
master.vm.network "private_network", ip: "192.168.61.10",

nic_type: "Am79C973"
master.vm.hostname = "k8s-master"
master.vm.provision "ansible" do |ansible|

ansible.playbook = "playbooks/master-base-playbook.yaml"
ansible.extra_vars = {

node_ip: "192.168.61.10",
}

end
master.vm.provider "virtualbox" do |v|

v.memory = 8192
v.cpus = 4
v.customize ["modifyvm", :id, "--nicpromisc1", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]
v.default_nic_type = "Am79C973"

end
end

(1..N).each do |i|
config.vm.define "k8s-node-#{i}" do |node|

node.vm.box = IMAGE_NAME
node.vm.network "private_network", ip: "192.168.61.#{i +

10}", nic_type: "82545EM"
node.vm.hostname = "k8s-node-#{i}"
node.vm.provision "ansible" do |ansible|

ansible.playbook = "playbooks/node-base-playbook.yaml"
ansible.extra_vars = {

node_ip: "192.168.61.#{i + 10}",

91

}
end
node.vm.provider "virtualbox" do |v|

v.linked_clone = true
v.memory = 8192
v.cpus = 4
v.customize ["modifyvm", :id, "--nicpromisc1", "allow-

all"]
v.customize ["modifyvm", :id, "--nicpromisc2", "allow-

all"]
v.default_nic_type = "Am79C973"

end
end

end
end

92

	List of Figures
	List of Tables
	Introduction
	Context and Problem Statement
	Thesis Contribution
	Research Gap
	Related Publications
	Authors' Contribution
	Outline

	Background and Motivation
	Background
	Motivation
	Threat Model

	Related Work
	Container Security
	Security Policy Enforcement

	ProSPEC: Proactive Security Policy Enforcement for Containers
	Methodology
	The Offline Phase
	The Runtime Phase

	Implementation and Integration
	ProSPEC Implementation
	ProSPEC Integration with Kubernetes
	Challenges

	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Extensions
	Predictive Model Learning
	Introduction
	Background and Motivation
	Approach
	Implementation and Results

	Rule Proactivization Priority
	Introduction
	Background and Motivation
	Approach
	Preliminary Results
	System Design and Integration

	Deployments and Implementations
	Kubernetes Cluster
	Background
	Topology
	Deployment Steps

	5G Core on Kubernetes
	Background
	Topology
	Deployment Steps

	Usage in Security Research Works
	Vulnerability Discovery

	Conclusion
	Bibliography
	Appendix List of Abbreviations
	Appendix Vagrant configuration file

