
Control of Multi-agent Reinforcement Learning

Systems Under Adversarial Attacks

Neshat Elhami Fard

A Thesis

in the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

November 2022

© Neshat Elhami Fard, 2022

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Neshat Elhami Fard

Entitled: Control of Multi-agent Reinforcement Learning Systems Under

Adversarial Attacks

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair
Dr. Yuhong Yan

External Examiner
Dr. Aditya Mahajan

External to Program
Dr. Youmin Zhang

Examiner
Dr. Amir Aghdam

Examiner
Dr. Shahin Hashtrudi Zad

Supervisor
Dr. Rastko R. Selmic

Approved by
Dr. Jun Cai, Graduate Program Director

11/28/2022
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Control of Multi-agent Reinforcement Learning Systems Under Adversarial Attacks

Neshat Elhami Fard, Ph.D.

Concordia University, 2022

This Ph.D. dissertation studies the control of multi-agent reinforcement learning (MARL) and

multi-agent deep reinforcement learning (MADRL) systems under adversarial attacks. Various

attacks are investigated, and several defence algorithms (mitigation approaches) are proposed to

assist the consensus control and proper data transmission.

We studied the consensus problem of a leaderless, homogeneous MARL system using actor-critic

algorithms, with and without malicious agents. We considered various distance-based immediate

reward functions to improve the system’s performance. In addition to proposing four different

immediate reward functions based on Euclidean, n-norm, and Chebyshev distances, we rigorously

demonstrated which reward function performs better based on a cumulative reward for each agent

and the entire team of agents. The claims have been proven theoretically, and the simulation

confirmed theoretical findings.

We examined whether modifying the malicious agent’s neural network (NN) structure, as well

as providing a compatible combination of the mean squared error (MSE) loss function and the

sigmoid activation function can mitigate the destructive effects of the malicious agent on the lead-

erless, homogeneous, MARL system performance. In addition to the theoretical support, the sim-

ulation confirmed the findings of the theory.

iii

We studied the gradient-based adversarial attacks on cluster-based, heterogeneous MADRL sys-

tems with time-delayed data transmission using deep Q-network (DQN) algorithms. We intro-

duced two novel observations, termed on-time and time-delay observations, considered when the

data transmission channel is idle and the data is transmitted on-time or time-delayed. By con-

sidering the distance between the neighbouring agents, we presented a novel immediate reward

function that appends a distance-based reward to the previously utilized reward to improve the

MADRL system performance. We considered three types of gradient-based attacks to investigate

the robustness of the proposed system data transmission. Two defence methods were proposed

to reduce the effects of the discussed malicious attacks. The theoretical results are illustrated and

verified with simulation examples.

We also investigated the data transmission robustness between agents of a cluster-based, hetero-

geneous MADRL system under a gradient-based adversarial attack. An algorithm using a DQN

approach and a proportional feedback controller to defend against the fast gradient sign method

(FGSM) attack and improve the DQN agent performance was proposed. Simulation results are

included to verify the presented results.

iv

Acknowledgments

My deepest pleasure is to extend my sincere gratitude to my supervisor, Prof. Rastko R. Selmic,

for his invaluable advice, constant support, and patience while I pursued my Ph.D. program. I have

always been inspired by his immense knowledge and great experience in my academic research

and daily life. Without his unwavering support, I would not have been able to complete this work.

In appreciation of their time and feedback, I would like to thank my committee members, Dr.

Aghdam, Dr. Hashtrudi Zad, Dr. Zhang, and Dr. Mahajan.

I also appreciate all the support I received from my family, especially my parents, who gave me

the encouragement I needed throughout this process.

v

Contents

List of Figures xii

List of Tables xix

List of Abbreviations xxiii

List of Publications xxv

1 Introduction 1

1.1 Literature Review . 1

1.1.1 Autonomous Systems . 2

1.1.2 Cybersecurity Using Artificial Intelligence and Reinforcement Learning

Algorithms . 11

1.1.3 Position Consensus of Multi-agent Reinforcement Learning Systems: The

Effect of Immediate Rewards . 21

1.1.4 Control of Multi-agent Reinforcement Learning Systems: The Effect of

Neural Network Structure . 23

1.1.5 Adversarial Attacks on Heterogeneous Multi-agent Deep Reinforcement

Learning System with Time-delayed Data Transmission 25

1.1.6 Data Transmission Robustness to Cyber-attacks on Heterogeneous Multi-

agent Deep Reinforcement Learning Systems 28

vi

1.2 Contributions . 29

1.3 Summary and Dissertation Outline . 32

1.4 Dissertation High-level Overview . 34

2 Background 35

2.1 Introduction . 35

2.2 Reinforcement Learning (RL) . 37

2.2.1 Reinforcement Learning-based Controller 40

2.3 Deep Reinforcement Learning (DRL) . 41

2.3.1 Deep Reinforcement Learning-based Controller 42

2.4 Markov Decision Process (MDP) . 42

2.4.1 Partially Observable Markov Decision Process (POMDP) 43

2.5 Multi-agent System (MAS) . 43

2.6 Consensus Decision-making . 45

2.6.1 Discrete-time Consensus Algorithms . 46

2.7 Adversarial Attacks . 46

2.8 Team Organization . 48

3 Average Position Consensus of Cluster-based Heterogeneous Multi-agent Systems 49

3.1 Introduction . 49

3.2 Methodology . 49

3.2.1 Condition for Position Consensus of Clusters with Various Goals 51

3.2.2 Condition for Position Consensus of Clusters with a Global Goal 56

3.3 Results and Discussion . 61

3.3.1 Reaching Position Consensus of Clusters with Various Goals in 2-D Space 61

3.3.2 Reaching Position Consensus of Clusters with Various Goals in 3-D Space 64

3.3.3 Reaching Position Consensus of Clusters with a Global Goal in 2-D Space 67

3.3.4 Reaching Position Consensus of Clusters with a Global Goal in 3-D Space 69

vii

3.4 Conclusions . 69

4 Position Consensus of Multi-agent Reinforcement Learning Systems: The Effect of

Immediate Rewards 70

4.1 Introduction . 70

4.2 Background . 71

4.3 Methodology . 71

4.3.1 Without Malicious Agents . 72

4.3.2 With Malicious Agents . 74

4.3.3 Reward Functions . 75

4.4 Results and Discussion . 82

4.4.1 Reaching Consensus . 84

4.4.2 Increasing the Cumulative Reward . 85

4.4.3 Modifying the Immediate Reward Function 87

4.4.4 The Immediate Rewards’ Comparison After Normalization 89

4.4.5 Reward Algorithm’s Complexity and Execution Time 90

4.5 Conclusions . 94

5 Control of Multi-agent Reinforcement Learning Systems: The Effect of Neural Net-

work Structure 96

5.1 Introduction . 96

5.2 Background . 97

5.3 Methodology . 99

5.3.1 Modifying the Neural Network Structure 99

5.4 Results and Discussion . 103

5.4.1 Consequences of Modifying the Neural Network Structure 104

5.5 Conclusions . 109

6 Adversarial Attacks on Heterogeneous Multi-agent Deep Reinforcement Learning

viii

System with Time-delayed Data Transmission 110

6.1 Introduction . 110

6.2 Background . 111

6.3 Methodology . 112

6.3.1 Leaderless and Leader-follower Topologies 112

6.3.2 Observation . 113

6.3.3 Action . 114

6.3.4 State . 115

6.3.5 Reward . 115

6.3.6 DQN Loss . 122

6.3.7 Adversarial Attacks . 123

6.3.8 First Adversarial Attack Defence . 126

6.3.9 Second Adversarial Attack Defence . 130

6.4 Results and Discussion . 130

6.4.1 Multi-agent Performance Analysis . 133

6.4.2 Performance Analysis of the Proposed MAS Under Adversarial Attacks . . 136

6.4.3 Performance Analysis of the Proposed MAS After Applying First Adver-

sarial Attack Defence . 138

6.4.4 Performance Analysis of the Proposed MAS After Applying Second Ad-

versarial Attack Defence . 139

6.4.5 Variety of Agents . 140

6.5 Conclusions . 141

7 Data Transmission Robustness to Cyber-attacks on Heterogeneous Multi-agent Deep

Reinforcement Learning Systems 143

7.1 Introduction . 143

7.2 Background . 144

7.2.1 DQN Algorithm . 144

ix

7.2.2 Linear Feedback Control System . 146

7.2.3 FGSM Adversarial Attack . 146

7.3 Methodology . 146

7.3.1 DQN Algorithm and a Linear Feedback Control System 147

7.3.2 Data Transmission Robustness Evaluation 152

7.4 Results and Discussion . 152

7.4.1 DQN Algorithm’s Robustness . 154

7.4.2 DQN Algorithm’s Robustness: Proportional Controller 157

7.5 Conclusions . 159

8 Summary and Future Works 160

8.1 Summary . 160

8.2 Future Work . 162

Bibliography 164

Appendix A Data Transmission in 2-D and 3-D Spaces: Various Activation Functions 190

A.1 Rectified Linear Unit (ReLU) Activation Function 191

A.1.1 2-D Space . 191

A.1.2 3-D Space . 191

A.2 Rectified Linear Unit 6 (ReLU6) Activation Function 192

A.2.1 2-D Space . 192

A.2.2 3-D Space . 192

A.3 Exponential Linear Unit (ELU) Activation Function 193

A.3.1 2-D Space . 193

A.3.2 3-D Space . 193

A.4 Scaled Exponential Linear Units (SELU) Activation Function 194

A.4.1 2-D Space . 194

A.4.2 3-D Space . 194

x

A.5 Swish Activation Function . 195

A.5.1 2-D space . 195

A.5.2 3-D space . 195

xi

List of Figures

Figure 1.1 The steps of converting automated systems to autonomous ones. 5

Figure 1.2 The defined relationships between AI, ML, RL, DL, and DRL [1]. 11

Figure 1.3 Structures of RL and DRL algorithms. 14

Figure 2.1 An illustration of the generic DRL structure of our heterogeneous MAS. At

each time step t, each agent performs action At based on the learned policy. At

time t +1, the environment returns a new state and reward to each agent. 36

Figure 2.2 RL agent taxonomy. 40

Figure 3.1 A generic illustration of the proposed cluster-based MAS structure, includ-

ing N agents and P clusters, which other forms can be extracted from this structure. 50

Figure 3.2 12 agents of four different clusters reach consensus on x−direction and

y−direction with random initial x and y during 10 seconds. 63

Figure 3.3 The cluster-based movement trajectory of 12 agents in four clusters on

xy−direction. 63

Figure 3.4 A simulation of 12 agents’ cluster-based motion at three various steps in

2-D space. 63

Figure 3.5 12 agents of four different clusters reach consensus on x−direction, y−direction,

and z−direction with random initial x, y, and z during 10 seconds. 65

Figure 3.6 12 agents’ cluster-based movement trajectory and motion simulation in four

clusters on xyz−direction. 65

xii

Figure 3.7 12 agents reach consensus on x−direction and y−direction with random

initial x and y during one second. 66

Figure 3.8 The movement trajectory of 12 agents on xy−direction. 66

Figure 3.9 A simulation of 12 agents’ motion at three various steps in 2-D space. . . . 66

Figure 3.10 12 agents reach consensus on x−direction, y−direction, and z−direction

with random initial x, y, and z during one second. 68

Figure 3.11 12 agents’ movement trajectory and motion simulation on xyz−direction. . . 68

Figure 4.1 Multi-agent actor-critic architecture with N agents. The green arrows indi-

cate transferring correct data between neighboring agents. 72

Figure 4.2 Multi-agent actor-critic architecture with N agents. The green arrows indi-

cate transferring correct data between neighboring agents, and the red arrow rep-

resents transmitting inaccurate data from malicious agent to neighboring agents. . . 75

Figure 4.3 The MARL system’s performance in reaching the position consensus with-

out a malicious agent at episodes 50, 100, 150, 200 on X-axis. 83

Figure 4.4 The MARL system’s performance in reaching the position consensus with

a malicious agent at episodes 50, 100, 150, 200 on X-axis. 83

Figure 4.5 A fully connected graph G is considered as the MARL system, including

N = 5 nodes. The malicious agent (red circle) refuses to update the parameters in

the consensus step. 84

Figure 4.6 Reward convergence using the Manhattan immediate reward function dur-

ing 200 episodes for N = 5 agents. 86

Figure 4.7 Reward convergence using the Euclidean immediate reward function during

200 episodes for N = 5 agents. 86

Figure 4.8 Reward convergence using the 5-norm immediate reward function during

200 episodes for N = 5 agents. 86

Figure 4.9 Reward convergence using the Chebyshev immediate reward function dur-

ing 200 episodes for N = 5 agents. 87

xiii

Figure 4.10 Reward convergence using the combined immediate reward including Man-

hattan, Euclidean, 5-norm, and Chebyshev immediate reward functions during 200

episodes for N = 5 agents. 87

Figure 4.11 Normalized reward convergence using the Manhattan immediate reward

function during 200 episodes for N = 5 agents. 91

Figure 4.12 Normalized reward convergence using the Euclidean immediate reward

function during 200 episodes for N = 5 agents. 91

Figure 4.13 Normalized reward convergence using the 5-norm immediate reward func-

tion during 200 episodes for N = 5 agents. 91

Figure 4.14 Normalized reward convergence using the Chebyshev immediate reward

function during 200 episodes for N = 5 agents. 92

Figure 4.15 Normalized reward convergence using the combined immediate reward in-

cluding Manhattan, Euclidean, 5-norm, and Chebyshev immediate reward func-

tions during 200 episodes for N = 5 agents. 92

Figure 4.16 Normalized average cumulative reward for each agent and a team of agents,

including N = 5 agents, using various immediate reward functions during 200

episodes. 92

Figure 5.1 An illustration of a multi-agent actor-critic architecture including a mali-

cious agent (red agent). The correct data between the neighboring agents are trans-

ferred via green arrows, and inaccurate data from the adverse agent is transmitted

to neighboring agents through the red arrow. 99

Figure 5.2 The gradient of MSE loss function with respect to linear activation function

and sigmoid activation function for n = 30 neurons in the range of [−20,20] and

[−0.6,0.6], respectively. 104

Figure 5.3 Average loss and reward convergence for N = 5 agents, including a mali-

cious agent (Agent#1), during 100 episodes and 1000 time-steps. 105

xiv

Figure 5.4 Average loss and reward convergence for N = 5 agents, including a mali-

cious agent, during 100 episodes and 1000 time-steps. 107

Figure 5.5 Loss and reward for each agent and a team of agents 2-5, including N = 5

agents, using linear and sigmoid activation functions during 100 episodes and 1000

time-steps. 108

Figure 6.1 An illustration of the MADRL system topology, including N static, hetero-

geneous agents and P clusters. 112

Figure 6.2 A DQN agent’s structure affected by an adversarial attack. 123

Figure 6.3 A DQN agent’s structure affected by an adversarial attack and defence al-

gorithm. 126

Figure 6.4 Two heterogeneous MAS, including N = 5 agents in P = 3 different clusters. 131

Figure 6.5 Reward convergence of a heterogeneous MAS, including N = 5 agents in

P = 3 different clusters, during 20000 time steps. 134

Figure 6.6 Loss convergence of the DQN algorithm in a heterogeneous MAS, includ-

ing N = 5 agents in P = 3 different clusters, during 20000 time steps. 134

Figure 6.7 Reward convergence of a heterogeneous MAS, including N = 5 agents in

P= 3 different clusters, during 20000 time steps by considering the novel distance-

based reward. 134

Figure 6.8 Loss convergence of the DQN algorithm in a heterogeneous MAS, includ-

ing N = 5 agents in P= 3 different clusters, during 20000 time steps by considering

the novel distance-based reward. 134

Figure 6.9 Reward convergence of a heterogeneous leader-follower MAS, including

N = 5 agents in P = 3 different clusters, during 30000 time steps by considering

time-delay and distance-based reward under FGSM, FGM, and BIM adversarial

attacks. 137

xv

Figure 6.10 Loss convergence of the DQN algorithm in a heterogeneous leader-follower

MAS, including N = 5 agents in P = 3 different clusters, during 30000 time steps

by considering time-delay and distance-based reward under FGSM, FGM, and

BIM adversarial attacks. 137

Figure 6.11 Reward convergence of a heterogeneous leader-follower MAS, including

N = 5 agents in P = 3 different clusters, during 30000 time steps by considering

time-delay and distance-based reward after adversarial attack defence Algorithm 6.1.138

Figure 6.12 Loss convergence of the DQN algorithm in a heterogeneous leader-follower

MAS, including N = 5 agents in P = 3 different clusters, during 30000 time steps

by considering time-delay and distance-based reward after adversarial attack de-

fence Algorithm 6.1. 138

Figure 6.13 Reward convergence of a heterogeneous leader-follower MAS, including

N = 5 agents in P = 3 different clusters, during 30000 time steps by considering

time-delay and distance-based reward after adversarial attack defence Algorithm 6.2.140

Figure 6.14 Loss convergence of the DQN algorithm in a heterogeneous leader-follower

MAS, including N = 5 agents in P = 3 different clusters, during 30000 time steps

by considering time-delay and distance-based reward after adversarial attack de-

fence Algorithm 6.2. 140

Figure 6.15 Team reward and DQN loss before and after using defence Algorithm 6.1

against various adversarial attacks, during 30000 time steps. 141

Figure 6.16 Team reward and DQN loss before and after using defence Algorithm 6.2

against various adversarial attacks, during 30000 time steps. 141

Figure 7.1 A feedback control system is used on the DQN learning process to assist

the DRL system against the FGSM adversarial attack. 148

Figure 7.2 Leaderless and leader-follower heterogeneous MAS, including DQN, ALOHA,

and TDMA structures, affected by a cyber-attack. 152

xvi

Figure 7.3 Reward convergence of N = 5 agents in a cluster-based MADRL system,

including P = 3 various clusters, before FGSM cyber-attack during 10000 time steps.156

Figure 7.4 Loss convergence of the DQN algorithm in a cluster-based MADRL sys-

tem, including P = 3 various clusters, before FGSM cyber-attack during 10000

time steps. 156

Figure 7.5 Reward convergence of N = 5 agents in a cluster-based MADRL system,

including P = 3 various clusters, under FGSM cyber-attack during 10000 time

steps with ε = 0.6. 156

Figure 7.6 Loss convergence of the DQN algorithm in a cluster-based MADRL sys-

tem, including P= 3 various clusters, under FGSM cyber-attack during 10000 time

steps with ε = 0.6. 156

Figure 7.7 Reward convergence of N = 5 agents in a cluster-based MADRL system,

including P = 3 various clusters, under FGSM cyber-attack during 10000 time

steps with ε = 0.6, using DRL and proportional controller. 157

Figure 7.8 Loss convergence of the DQN algorithm in a cluster-based MADRL sys-

tem, including P= 3 various clusters, under FGSM cyber-attack during 10000 time

steps with ε = 0.6, using DRL and proportional controller. 157

Figure A.1 Average reward and loss convergence of data transmission in MADRL sys-

tem using ReLU activation function in 2-D space. 191

Figure A.2 Average reward and loss convergence of data transmission in MADRL sys-

tem using ReLU activation function in 3-D space. 191

Figure A.3 Average reward and loss convergence of data transmission in MADRL sys-

tem using ReLU6 activation function in 2-D space. 192

Figure A.4 Average reward and loss convergence of data transmission in MADRL sys-

tem using ReLU6 activation function in 3-D space. 192

Figure A.5 Average reward and loss convergence of data transmission in MADRL sys-

tem using ELU activation function in 2-D space. 193

xvii

Figure A.6 Average reward and loss convergence of data transmission in MADRL sys-

tem using ELU activation function in 3-D space. 193

Figure A.7 Average reward and loss convergence of data transmission in MADRL sys-

tem using SELU activation function in 2-D space. 194

Figure A.8 Average reward and loss convergence of data transmission in MADRL sys-

tem using SELU activation function in 3-D space. 194

Figure A.9 Average reward and loss convergence of data transmission in MADRL sys-

tem using Swish activation function in 2-D space. 195

Figure A.10 Average reward and loss convergence of data transmission in MADRL sys-

tem using Swish activation function in 3-D space. 195

xviii

List of Tables

Table 1.1 Specifications, advantages and disadvantages of automated and autonomous

systems, separately. 6

Table 1.2 Opportunities and risks of emerging autonomous systems in military, road

logistics, and healthcare. 9

Table 3.1 Initial and target positions of all 12 agents for four different clusters in 2-D

space (various goals). 62

Table 3.2 Initial and target positions of all 12 agents for four different clusters in 3-D

space (various goals). 62

Table 3.3 Initial and target positions of all 12 agents for four different clusters in 2-D

space (global goal). 64

Table 3.4 Initial and target positions of all 12 agents for four different clusters in 3-D

space (global goal). 64

Table 4.1 Comparison of each agent’s average cumulative reward as well as the average

cumulative team reward using different immediate reward functions during 200

episodes without a malicious agent. 89

Table 4.2 Comparison of each agent’s average cumulative reward as well as the average

cumulative team reward using different immediate reward functions during 200

episodes in the presence of a malicious agent. 89

xix

Table 4.3 Comparison of each agent’s average cumulative reward as well as the aver-

age cumulative team reward after normalization using different immediate reward

functions during 200 episodes without a malicious agent. 90

Table 4.4 Comparison of each agent’s average cumulative reward as well as the aver-

age cumulative team reward after normalization using different immediate reward

functions during 200 episodes in the presence of a malicious agent. 90

Table 4.5 Comparing the results of algorithm’s complexity and execution time using

different immediate reward functions. 95

Table 5.1 Comparison of each agent’s average loss using linear and sigmoid activation

functions at the last layer of malicious agent’s (Agent#1) critic and reward NN

during 100 episodes. 108

Table 5.2 Comparison of each agent’s average cumulative reward using linear and sig-

moid activation functions at the last layer of malicious agent’s (Agent#1) critic and

reward NN during 100 episodes. 108

Table 6.1 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 20000 time

steps without considering the distance-based reward. 133

Table 6.2 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 20000 time

steps by considering the novel distance-based reward. 133

Table 6.3 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 30000 time

steps by considering time-delay and distance-based reward under FGSM, FGM,

and BIM adversarial attacks. 137

xx

Table 6.4 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 30000 time

steps by considering time-delay and distance-based reward after adversarial attack

defence Algorithm 6.1. 139

Table 6.5 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 30000 time

steps by considering time-delay and distance-based reward after adversarial attack

defence Algorithm 6.2. 140

Table 7.1 Utilized Kp gain after manual tuning under FGSM cyber-attack. 153

Table 7.2 Comparison of DQN loss and average reward of N = 5 agents in a cluster-

based MADRL system with P= 3 clusters before FGSM cyber-attack during 10000

time steps. 155

Table 7.3 Comparison of DQN loss and average reward of N = 5 agents in a cluster-

based MADRL system with P= 3 clusters under FGSM cyber-attack during 10000

time steps. 155

Table 7.4 Comparison of DQN loss and average reward of N = 5 agents in a cluster-

based MADRL system with P= 3 clusters under FGSM cyber-attack during 10000

time steps using DRL and proportional controller. 155

Table A.1 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 150000

time steps by considering time-delay and distance-based reward using ReLU acti-

vation function in 2-D and 3-D spaces. 196

Table A.2 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 150000

time steps by considering time-delay and distance-based reward using ReLU6 ac-

tivation function in 2-D and 3-D spaces. 196

xxi

Table A.3 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 150000

time steps by considering time-delay and distance-based reward using ELU acti-

vation function in 2-D and 3-D spaces. 196

Table A.4 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 150000

time steps by considering time-delay and distance-based reward using SELU acti-

vation function in 2-D and 3-D spaces. 196

Table A.5 Comparison of each agent’s average reward and DQN loss of a heteroge-

neous MAS, including N = 5 agents in P = 3 different clusters, during 150000

time steps by considering time-delay and distance-based reward using Swish acti-

vation function in 2-D and 3-D spaces. 196

xxii

List of Abbreviations

AI Artificial Intelligence

AUV Autonomous Underwater Vehicle

BIM Basic Iterative Method

CNN Convolutional Neural Network

CPS Cyber-physical System

CRN Cognitive Radio Network

CS-DLMA Carrier-sense Deep Reinforcement Learning Multiple Access

CSMA Carrier-sense Multiple Access

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-network

DRL Deep Reinforcement Learning

FGM Fast Gradient Method

FGSM Fast Gradient Sign Method

FTP File Transfer Protocol

HRI Human-robot Interaction

IFCS Intelligent Flight Control System

IT Information Technology

LSTM Long-short-term Memory

MADDPG Multi-agent Deep Deterministic Policy Gradient

xxiii

MADRL Multi-agent Deep Reinforcement Learning

MARL Multi-agent Reinforcement Learning

MAS Multi-agent System

MCS Mobile Crowd-sensing

MDP Markov Decision Process

ML Machine Learning

MSE Mean Squared Error

MTDDQN Multi-source Transfer Double DQN

NN Neural Network

PID Proportional-integral-derivative

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

SARSA State Action Reward State Action

SDN Software-defined Networking

SU Secondary Users

TL Transfer Learning

TRPO Trust Region Policy Optimization

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UMV Unmanned Maritime Vehicle

URL Uniform Resource Locator

xxiv

List of Publications

[J1]. N. Elhami Fard and R. R. Selmic, ªAdversarial Attacks on Heterogeneous Multi-agent

Deep Reinforcement Learning System with Time-delayed Data Transmission"; in Journal of Sen-

sor and Actuator Networks (JSAN), vol. 11, no. 3, pp. 45, Aug. 2022 [2].

[J2]. N. Elhami Fard and R. R. Selmic, ªConsensus of Multi-agent Reinforcement Learning

Systems: The Effect of Immediate Rewards"; in Journal of Robotics and Control (JRC), vol. 3,

no. 2, pp. 115-127, Mar. 2022 [3].

[C1]. N. Elhami Fard and R. R. Selmic, ªData Transmission Resilience to Cyber-attacks on Het-

erogeneous Multi-agent Deep Reinforcement Learning Systems"; in Proc. The 17th International

Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2022 [4].

[C2]. N. Elhami Fard and R. R. Selmic, ªTime-delayed Data Transmission in Heterogeneous

Multi-agent Deep Reinforcement Learning System"; in Proc. 30th Mediterranean Conference on

Control and Automation (MED), Vouliagmeni-Athens, Greece, 2022, pp. 636-642 [5].

[J3]. N. Elhami Fard, R. R. Selmic, and K. Khorasani, ªA Review of Techniques and Policies on

Cybersecurity Using Artificial Intelligence and Reinforcement Learning Algorithms"; submitted

xxv

to Frontiers in Artificial Intelligence.

[J4]. N. Elhami Fard, R. R. Selmic, and K. Khorasani, ªPublic Policy Challenges and Technical

Considerations for Autonomous Systems"; submitted to IEEE Technology and Society Magazin.

[C3]. N. Elhami Fard and R. R. Selmic, ªControl of Multi-agent Reinforcement Learning Sys-

tems: The Effect of Neural Network Structure Manipulation"; to be submitted to 2023 IEEE Inter-

national Conference on Systems, Man and Cybernetics (SMC), Maui, Hawaii, 2023.

xxvi

Chapter 1

Introduction

1.1 Literature Review

A system that reacts intelligently and flexibly to changing operating conditions and demanding

processes is an autonomous system. These systems, which have been booming in civilian and

military applications recently, can modify their behaviour in response to unpredictable events.

The railway, shipbuilding, aircraft, and robotics industries have developed new self-driving or

autonomous systems products.

In recent years, much attention has been paid to multi-agent systems (MAS) and their applications

in various fields. The collective behaviour of social insects and animal groups in nature has inspired

the design of MAS. The colonies of ants, school of fish, and flocks of birds are prominent natu-

ral examples where MAS mimic their behaviours [6]. Each MAS consists of several autonomous

agents. Depending on the different tasks allocated to multiple agents, each agent decides to take

appropriate action to solve the specific task according to different inputs [7]. Agents’ communi-

cation and collaboration enable such a system to achieve complex goals that are impossible for

individuals [8]. Cyber-attacks on MAS, including autonomous agents, are a significant issue that

1

should be taken into consideration.

Cybersecurity refers to the process of protecting networks, systems, and applications against cyber-

attacks. Attacks on digital information aim to gain access to, modify, or destroy sensitive data.

Cybersecurity has become a significant challenge due to the attackers’ creativity, and its importance

is also seen in the military and defence industries.

1.1.1 Autonomous Systems

One of the main features of autonomous control systems is solving complicated optimization prob-

lems without human intervention in the presence of uncertainty in real-time [9]. Autonomous

systems must have the recognition and discretion potency, evaluation and estimate authority, and

decision-making power to independently perform various tasks in a dynamic environment [10].

These systems have a variety of sensors to understand environmental information so that they can

distinguish, evaluate, and make decisions based on environmental data [10]. Therefore, the fea-

tures of autonomous systems include inferring their own state, comprehending their surroundings,

and performing self-navigation [11]. In addition to an autonomous single-agent system, the au-

tonomous systems can be designed in the form of multi-agents to identify high-risk, hazardous, or

inaccessible areas [12], [13].

Research and development of robotics and autonomous systems have led to significant advances

in a wide range of areas, including unmanned ground vehicles (UGV), unmanned aerial vehi-

cles (UAV), unmanned maritime vehicles (UMV), artificial intelligence (AI), and self-learning

machines [14]. Navigation [15], [16], and 3-D path following [17] for autonomous underwater

vehicles (AUV), AUV for oceanographic research [18], and rescue robots [19] have benefited from

the development of autonomy. Autonomy in systems is directly related to the security of such sys-

tems. If an autonomous system is compromised, virtual and physical problems occur that lead to

lost data, communication interruptions, and damage or loss of the system [20]. To ensure a proper

operation, robot operating system security features are optimized utilizing encrypted communica-

2

tions and semantic rules [21]. Decision-making in all types of autonomous systems is a critical

process and is a significant issue [22]. An always-present dilemma - ªwhich decision should be

made by a software system, and which one should be made by a human.º Software developers for

autonomous systems have a responsibility to answer the above question [23].

1.1.1.1 Autonomous Systems: Background

The first remote control system with limited autonomous capability was proposed in the 19th-

century [24]. In the 1930s, primary types of the autonomous system were used for travel, includ-

ing auto tillers to protect sailboats from wind and autopilot to preserve altitude and speed using a

gyroscope [25]. In 1940, while developing automated range finders for anti-aircraft guns, Norbert

Wiener introduced a new field, termed cybernetics [26]. In the 1950s, General Motors inspected

and tested new cars driven by special auto constructions [25]. An autonomous rover system, which

was able to walk through the corridors of a building and charge its battery by identifying a power

outlet on the wall and plugin into it, was introduced in 1964 [27]. Digital control electronics

were developed in the 1970s. AI technology created automated perception and cognition. With

the integration of these technologies, significant advances have been made in autonomous systems

to perform complicated operations without human intervention [27]. The use of the autonomous

system has increased dramatically in various fields, so they have had an undeniable influence on

society. Autonomous systems are widely used to decrease human labour while enhancing produc-

tivity and safety [28], [29].

• Levels of Autonomy: Human-robot interaction (HRI) defines the types of robot interac-

tions, with each category requiring a different level of autonomy [30]. Developers should

evaluate autonomy levels suitable for their robot according to the framework guidelines and

investigate the effects of autonomy on HRI [30]. In general, and for all systems, autonomy

has four levels. These levels are level 0: human operation, level 1: automation, level 2:

semi-autonomous, and level 3: autonomous. At level 0, the system’s control is always

performed by one operator, e.g., manual driving requiring constant supervision of steer,

3

brake, or accelerate systems. At level 1, an operator continues to control the system and

is responsible for operating the system safely. However, at this level of autonomy, lim-

ited control over a specific function is left to the system itself, e.g., providing steering OR

brake/acceleration support to the driver, such as lane centring, OR adaptive cruise control

(requires supervising steer, brake, or accelerate systems constantly). Since the system at

level 2 is semi-autonomous, it performs some of the defined tasks without the operator’s in-

tervention. The rest of the functions are carried out by the operator, e.g., providing steering

AND brake/acceleration support to the driver, such as lane centring AND adaptive cruise

control simultaneously (requires supervising steer, brake, or accelerate systems constantly).

Finally, at level 3, the system performs all defined tasks without human interaction and is

responsible for the safety and critical activities, e.g., driving the vehicle everywhere under

all conditions (does not require a driver).

• Automated vs. Autonomous Systems: According to the Merriam-Webster dictionary, [31]

autonomy is either ªthe quality or state of being self-governingº or ªself-directing freedom

and especially moral independence.º Automatic is defined as ªhaving a self-acting or self-

regulating mechanismº [32]. The different definitions of automation are ªthe technique of

making an apparatus, a process, or a system operate automatically,º ªthe state of being op-

erated automatically,º and ªautomatically controlled operation of an apparatus, process, or

system by mechanical or electronic devices that take the place of human labourº [33]. Ac-

cording to the definition in [34], autonomy is a capability in which unmanned systems can

combine various features to achieve the systems’ goals. These specifications are sensing

and perceptions of the environment, analysis, communication, planning, decision-making,

and ultimately acting and executing. It is worth mentioning that human operators set the

objectives for the system.

As illustrated in Figure 1.1, the authors of [35] have defined five steps to go through au-

tomation and achieve autonomy. These modifications commence with a simple and assisted

4

Figure 1.1: The steps of converting automated systems to autonomous ones.

behaviour, including ªlow-level sensing and control,º and terminate with a full cognitive be-

haviour via a ªvery high degree of autonomyº [35]. An automated system lacks the ability

to think about the consequences of its actions, and it is unable to modify a predefined se-

quence of activities. In contrast, an autonomous system has the ability to perceive and make

decisions to accomplish its tasks based on purposes, skills, and learning experiences [35].

Despite the capacity to decide, these systems have significant shortcomings. Due to the ex-

isting drawbacks, autonomous systems in the aerospace industry are more applicable than

road transportation. While autonomous flying is more reliable, it is predicted that automation

driving will diminish fatal accidents by up to 90% [35]. Table 1.1 summarizes the technical

specifications, advantages and disadvantages of automated and autonomous systems [36],

[37], [38], [39].

1.1.1.2 Autonomous Systems: Significant Challenges

The design and implementation of any autonomous system face various challenges. Generally, the

critical challenges posed by the advent of autonomous systems are technical challenges, profes-

sional responsibility difficulties, regulation hurdles, oversight challenges, public acceptance prob-

lems, and finally ethics challenges.

5

Table 1.1: Specifications, advantages and disadvantages of automated and autonomous systems, separately.

Specifications of Automated and Autonomous Systems

Features

Automated Systems

(Automation)

• Sensing ability,
• Execution ability to activate and perform operations manually regarding predefined rules,
• Deterministic operation outcomes,
• Need for manual intervention during operations.

Autonomous Sys-

tems

(Autonomy)

• Sensing ability including advanced technologies,
• Cognitive ability containing perceptual integration, pattern recognition, learning, reasoning, etc. to achieve

self-defined goals, make strategy adjustment, allocate resources, etc.,
• Execution ability inclusive autonomous activation, and independent execution,
• Adaptive ability to unpredictable environments,
• Non-deterministic operation outcomes,
• No need for manual intervention during operations; however, human should be the final decision maker per

human factors design.
Pros and Cons of Automated and Autonomous Systems

Pros Cons

Automated Systems

(Automation)

• Reducing labour costs,
• Accomplishing tasks faster,
• Increasing the cheaper goods,
• Optimizing the components’ life,
• Avoiding boring, and repetitive jobs,
• Giving customers greater choice of goods,
• Enhancing the use of available equipment,
• Increasing safety, and decreasing risk of human

error,
• Preventing theft of the components or the entire

system,
• Improving productivity and increasing efficient

production,
• Supporting less experienced operators to per-

form efficiently, enhancing labour productivity,
and increasing wages.

• Leading to unemployment,
• Increasing monopoly power,
• Leading to lack of empathy with events,
• Decreasing quality of life due to deal with com-

puters, and loss of human interaction.

Autonomous Sys-

tems

(Autonomy)

• Saving time and spending it on other tasks,
• Enhancing safety due to the lack of human error,
• Increasing the use of these systems by people

with disabilities,
• Reducing the rate of collisions and crashes in

mobile autonomous systems due to possess var-
ious sensors.

• Being extremely expensive, especially after the
first release,

• Leading to unemployment, which is catas-
trophic for the economy,

• Worrying about computer crashing or malfunc-
tioning, and resulting in a major collision.

6

• Technical: In addition to simulation and real-world trials, new validation and verification

techniques are needed to ensure the safety and reliability of autonomous systems.

• Professional Responsibility: The right standards and regulations are required to create a

culture alongside the generated challenges.

• Regulation: A fast, responsive, and advanced monitoring system is needed to communi-

cate with regulators of various sectors to ensure that regulations for properly implementing

standards are carefully considered and enforced.

• Oversight: A surveillance expert must consider the advantages of an autonomous system if

there are uncertainty and risk in the mentioned system.

• Public Acceptance: Before deploying a new autonomous system, trust and public accep-

tance must be established between system users and service providers.

• Ethics: There should be mechanisms in the process design of autonomous systems that

can have a collective, effective, and transparent decision-making to solve moral uncertainty,

address the absence of human oversight, and inform about extending autonomous systems

[40].

Additional challenges facing autonomous systems are described below.

• Challenges Based on Autonomous Systems Capabilities: In [41] the authors classify the

types of autonomous systems based on their capabilities so that they can identify the varieties

of related challenges. According to [41], autonomous systems capabilities are classified into:

interaction with a real environment, HRI, motion planning and execution, and autonomous

system perception. The resemblance of the challenges for the interaction with a real envi-

ronment is the interaction with the unstructured environment and an approach to describe it

so that autonomous systems can use it effectively. The challenge for HRI capability is that

an effective standard interface for human-machine communication has not been defined in

7

the military environment so far. Based on research in [41], the principal challenge of mo-

tion planning and execution capability is to describe the level of least intervention of human

supervision in the cooperation attempt. Finally, another challenge related to autonomous

system perception is to describe the environment that can be more similar to human percep-

tion. Consequently, the authors acknowledged that a solution to the mentioned challenges

and better comprehension of autonomous systems and autonomous system-human interac-

tion might be a common ontology for the autonomous system operationalization [41].

• Challenges to the Establishment of Autonomous Systems: Challenges to establishing

autonomous systems include technological constraints, economic limitations, and also eth-

ical and legal concerns [42], [43]. There are numerous debates regarding using lethal au-

tonomous systems during the war. The entirety of these arguments includes accepting re-

sponsibility for the failure of an autonomous system, violation of war rules, non-acceptance

of ethical robots to monitor human fighters, and the presence of a problem with assigning a

specific goal for each independent system.

• Resilience Challenges for Autonomous Systems: In [44], two resilience challenges for

autonomous systems are discussed. Resilience by design means that the developed cyber

systems should be robust to large-scale quantifiable perturbations, and resilience by reaction,

which is used in the cyber systems during a disturbance at run-time and strengthens the

system by a bounce back ability.

• Challenges of Military Ground-based Operations: In [45], the authors have explored

other challenges in military ground-based operations. They claim that the ground-based op-

erations of the military, which depend on satellite communications, encounter significant

challenges, namely, vulnerability against hacking, which leads to misconceptions and ulti-

mately receiving false coordinates. Moreover, there are problems in real-time data process-

ing and networked communications.

8

Table 1.2: Opportunities and risks of emerging autonomous systems in military, road logistics, and health-
care.

Opportunities and Risks of Autonomous Systems for Royal Netherlands Army (RNLA)

Opportunities • Generating more reliable and quicker situational consciousness and perception,
• Extending the ability, persistence, and stability of operations,
• Diminishing the physical and cognitive loads of soldiers,
• Allowing and enabling the simultaneous execution of tasks for effective and useful actions,
• Enhancing the speed of the OODA (Observe, Orient, Decide, Act) loop,
• Defending and protecting the force.

Risks • Communication signals applied by autonomous systems are vulnerable and assailable to cyber-attacks, namely hack-
ing, blocking, and disrupting system performance,

• How data is interpreted, and practical information is provided, is extremely tough for autonomous systems to simplify
trust in decision-making,

• How autonomous systems work, and how to solve their upcoming problems, is incomprehensible for defence com-
munities,

• Lack of development of various machines and moving towards autonomy due to insufficient trust in autonomous
systems,

• Operators’ overconfidence on autonomous systems,
• Creating possible new tensions between traditional soldiers and new technical experts and data scientists,
• Changing of training requirements, education, careers, and the type of work which soldiers engage in, as well as,

exchanging leadership positions due to generating autonomous systems,
• The integration of autonomous systems and the possibility of replacing machines in some individuals or units will

have an impact on the training of the armed forces,
• In some autonomous systems, such as the killer robot, a negative public perception leads to a lack of consideration

for the benefits of automation and autonomy and thus considering the human control,
• Authoritarian and rebellious governments that care less about moral considerations may reinforce the autonomous

systems and use them in dangerous inhumane ways,
• Since those who use autonomous systems are able to distract and deny responsibility for attacks, assigning individuals

to use autonomous systems is a challenging task,
• Opponents and adversaries may have many moral and legal restrictions on the reproduction and use of autonomous

systems in all areas,
• The creation of autonomous systems may lead to an arms race so that powerful countries can show and use their

potential.
Opportunities and Risks of Autonomous Systems in Logistics

Opportunities • Creating new job opportunities for the elderly, people with disabilities, and the underprivileged by integrating them
with autonomous systems, especially for jobs like autonomous truck driver,

• Reducing shipping operation costs up to 40% by eliminating drivers and using autonomous vehicles,
• Save fuel by creating a network, including a leader and several followers. The leader determines the speed and

direction of the rest of autonomous vehicles, thereby preventing additional fuel consumption.
Risks • Tendency to make mistakes, errors, and possible situational misjudgments because of their computer nature, and

consequently leaning to accident,
• Increasing job loss, and consequently high unemployment rate.

Opportunities and Risks of Autonomous Systems in Healthcare

Opportunities • Opening up new commercial opportunities for the insurance and healthcare industries,
• Reduction of emergencies leading to death for high-risk patients due to active monitoring.

Risks • Rising privacy and security concerns due to weak security structure.

9

1.1.1.3 Opportunities and Risks of Emerging Technologies

The specific technologies, whose development or practical applications are possible to obtain or

achieve, yet not obtained or achieved, are termed emerging technologies [46]. The five emerging

technologies that are worth investing are: (i) sensing and mobility; (ii) advanced AI and analytic;

(iii) post-classical compute and communications; (iv) augmented human; and (v) digital ecosys-

tems [47]. Among the technologies mentioned above, AI as a pervasive process is used in the most

critical technologies, namely adaptive machine learning (ML), edge AI, edge analytic, explain-

able AI, AI platform as a service (PaaS), transfer learning (TL), generative adversarial networks,

graph analytic, and autonomous systems [47]. AI technologies provide an essential capability for

autonomous systems. An autonomous system must be able to learn from past experiences and

take action based on what it has learned [48]. The primary foundation of AI is ML, which cre-

ates computer knowledge through data, observations, and interacting with the world around them

[49]. Therefore, the capability that AI gives to autonomous systems is provided through ML. In

Table 1.2, opportunities and risks of emerging autonomous systems in the military, road logistics,

and healthcare are discussed [50], [51], [52].

In addition to the opportunities presented in Table 1.2, practical (internal) and conditional (exter-

nal) risks have raised. It should be noted that internal challenges include technical, personnel, and

training issues, and also external risks contain perceptions, ethical, legal, military, and political sub-

jects [50]. Challenges to autonomous systems’ health include incorrect system decision-making

due to faults from sensors, system misbehaviour due to faults from actuators, and system malfunc-

tion due to faults from electronic components. Autonomous systems encounter following various

challenges to ensure their safe process. These systems must be designed to accurately sense their

surroundings, deal with any anomalies in the environments, and make decisions consistent with the

primary purpose of autonomous systems. Also, autonomous systems in teams, including humans

and robots, may harm other group members by synchronizing with their actions and refusing dis-

orders. Besides, an autonomous system must be able to detect any malfunctions and failures, early

10

Figure 1.2: The defined relationships between AI, ML, RL, DL, and DRL [1].

warning, and respond quickly to identified system defects. The security challenges in autonomous

systems are the security of hardware and software, as well as the security of communication links.

Autonomous systems must be designed so that humans can interrupt them during emergencies. To

achieve these conditions, task priorities, operations, interruption frequency, and timings must be

considered; however, the main challenge of HRI is the complete identification of human kinds.

This challenge is due to the diversity, complexity, uncertainty, and emotional expression of human

beings [53].

1.1.2 Cybersecurity Using Artificial Intelligence and Reinforcement Learn-

ing Algorithms

The intelligence that has appeared in man-made machines and enables devices to imitate human

behaviour is AI. AI is different from human and animal intelligence, which is intertwined with

consciousness and emotions [54], [55]. As a subset of the AI method, ML has been used to

improve the performance of devices, utilizing statistical techniques [56]. Reinforcement learning

(RL) algorithms, which are used to solve numerous sequential decision-making problems, as well

as deep learning (DL) methods, which utilize multi-layer neural networks (NN) for learning large

11

volumes of data, are subsets of ML [1], [57]. Deep reinforcement learning (DRL), as a combination

of DL and RL, has been established to overcome the high-dimensional problems of RL algorithms

[58]. Relationships between AI, ML, RL, DL, and DRL are illustrated in Figure 1.2. Using RL

and DRL, intelligent devices can learn from the actions they take at every time step, similarly to

humans who learn from experiences [59].

Cyber-physical systems (CPS) consist of cyber and physical subsystems, including various spec-

ifications, e.g., complexity, dynamic variability, and heterogeneity. Types of CPS include smart

grids, smart transportation, and smart industrial manufacturing [60]. One of the RL and DRL ap-

plications is in cyber-attacks on CPS, as well as cyber-attack detection [57], [61]. Since the CPS

models have infinite state-space, conventional methods such as cross-entropy are unsuitable for

detecting their defects. RL, especially DRL, algorithms are superior to other methods in identify-

ing CPS models’ weaknesses [62]. An advantage of RL algorithms is that they can make accurate

decisions automatically in an unknown environment by trial and error experiences [60]. According

to [63], [64], [65], the cybersecurity tasks using DRL algorithms are intrusion detection, malware

detection, privacy and security [59]. In [63], utilizing a labelled dataset, applications of various

DRL algorithms have been offered for intrusion detection. In [64] a DRL architecture, including

an adaptive cloud infrastructure, is proposed for intrusion detection. This DRL cloud intrusion de-

tection system is robust to modern attacks and is able to maintain a balance between high accuracy

and low false positive rate [64]. In [65] a DRL algorithm based on deep Q-networks (DQN) is

presented to decrease the malware attacks in order to preserve the reliability, privacy, and security

of the entire system.

There has been an increased effort to develop defence strategies and applications using RL and

DRL algorithms. The authors in [66] have proposed three defence strategies using DRL. In detail,

these methods increase the accuracy of the DRL agent that is attacked and, in contrast, take de-

fensive positions against the dynamic actor-critic DRL jamming attacker. These strategies utilize

a proportional-integral-derivative (PID) control, use an imitation attacker, and develop orthogonal

12

policies. Another application of RL and DRL algorithms is in the MAS defence and attack. In

MAS, cooperation between agents is a vital issue, where all agents, to accomplish their goals,

learn efficient approaches. RL and DRL algorithms can be used to solve consensus problems. The

authors of [67] have presented a multi-agent, deep deterministic policy gradient (MADDPG) algo-

rithm for multi-agent defence and attack, containing rule-based attackers and DRL-based attackers

accompanying DRL-based defence agents.

1.1.2.1 Cyber-physical System (CPS): Background

Cybernetics, during the development of automated range finders for anti-aircraft guns, was intro-

duced by Norbert Wiener in 1940 [26], [68]. Wiener’s proposed method is an adjustment and

re-adjustment cycle by aircraft and an anti-aircraft gun. In this method, several observations are

made to predict the future position of a flying aircraft during tracking, and the anti-aircraft gun’s

actions should be added to the previous forecast [68]. Both cyberspace and CPS terms are de-

rived from cybernetics, respectively. Cyberspace was introduced by William Gibson in 1982 [69].

Based on Gibson’s theory, cyberspace is a real non-space world identified by the ability to present

virtually as well as interact with individuals through icons, waypoints, and AI [70]. Afterward, and

for the first time, Helen Gill proposed the concept of CPS at the United States National Science

Foundation (NSF) CPS workshop in 2006 [69], [71]. As a computer system, the mechanisms of a

CPS are controlled and monitored using computer-based algorithms.

RL usage has flourished over the past decade. For the first time, Thorndike [72] introduced RL

in 1898 with an experiment on cat’s behaviour, and other researchers have further supplemented

it over the years [73], [74]. In general, an agent of an RL algorithm receives a state from the

environment and performs an action related to the received state at time step t. Then, according to

the completed action, the agent gets a reward in the form of compensation or punishment from the

environment at time t + 1. The goal of the algorithm is to maximize the cumulative reward [75].

Figure 1.3a illustrates the RL structure [75]. DL, introduced by Walter Pitts and Warren McCulloch

in 1943, is a computer model based on the human brain’s NN and is a combination of algorithms

13

(a) A single-agent RL structure including the interaction
between agent and environment.

(b) A single-agent DRL structure including a deep neural
network (DNN).

Figure 1.3: Structures of RL and DRL algorithms.

and mathematics [76]. Finally, in 2015, DRL was developed by integrating DL architectures, and

RL algorithms [58]. Different types of NN are utilized to convert RL to DRL algorithm [77]. The

DRL structure is displayed in Figure 1.3b [78].

1.1.2.2 Challenges of RL and DRL Algorithms in CPS

Using RL and DRL Algorithms, CPS, both in cyber-attack and cyber-defence, is hampered by

challenges similar to any other method. The following are the most significant challenges to con-

sider:

• Although many RL and DRL algorithms present superior performance, hyperparameters and

reward function design highly influence their performance. As a result, there is a great deal

of uncertainty in training the controller [79].

• Many RL and DRL algorithms operate based on Markov decision processes (MDP), which

are fully observable in terms of the environment. For CPS, in particular, the existence of an

observable environment is false due to inherent uncertainties in states. This type of system

is modelled by utilizing a partially observable Markov decision process (POMDP) [79].

Despite the discussed challenges, RL and DRL algorithms are now widely used as powerful learn-

ing techniques in various fields, especially in cyber-attacks and cyber-defence. These applications

in CPS are exemplified by the following.

14

1.1.2.3 RL and DRL Algorithms for Cyber-attack

Various cyber-attacks related to the RL and DRL algorithms for different CPS are studied as fol-

lows:

• Cyber-attacks on Smart Grids: Since the smart grid is a complex CPS as an electrical

network, including various operations and energy measures, multiple attacks and any other

disruption in this network can damage the entire system. Attacks must be detected early for

a smart grid to operate securely and reliably [80]. Due to the system’s vulnerability to mali-

cious attacks [81], we first examine these types of attacks in the smart grid. Malicious attacks

are divided into two categories: physical-attacks and cyber-attacks [82]. In physical-attacks,

the components of the power grids are physically attacked and damaged. These components

include transformers, transmitters and transmission lines, generators, and others. This attack

can be detected by the topology and data processing modules in the control center. Unlike

physical-attacks, in cyber-attacks, power grid components are not physically attacked, but

the measurable data transmitted in the supervisory control and data acquisition (SCADA)

systems are modified and compromised. A well-thought-out and sophisticated cyber-attack

can manipulate the topology and data processing modules and completely mislead or disrupt

the performance of the control center [83].

The authors of [81] have proposed a coordinated topology attack to overload a critical line by

misleading the control center. In this method, both physical-attack and cyber-attack are inte-

grated and performed coordinated topology attacks using DRL algorithms. The functions of

the coordinated topology attack are: first, the physical-attack interrupts the transmission line;

second, it hides the cut line signal in the cyber layer (masking a physical tripped line); and

finally, it generates a fake cut-off signal for the following transmission line (creating a cyber

tripped line). There are two types of DRL algorithms in this method: one to determine the

attack strategy to overload a critical transmission line; another one to select minimal attack

resources to inject the cyber-attack with limited attack resources. For the aforementioned

15

coordinated topology attack, the DRL algorithms are based on deep Q-learning algorithms

[81].

• Cyber-attacks on Software-defined Networking (SDN): ªSoftware-defined networking

(SDN) is a network architecture approach that enables the network to be intelligently and

centrally controlled, or programmed, using software applications [84]." When the SDN’s

cyber-defence system is defined using RL algorithms, the cyber-attacker tries to modify or

destroy the training process in the RL algorithm. In this case, the cyber-attacker can perform

this change and destruction in two ways: first, forging and changing part or all of the reward

signal; second, manipulation and modification of some states received from the environment

[85]. Therefore, when the defender agent receives the wrong state and reward from the en-

vironment, it will not perform the correct optimal action in response to the inaccurate data.

As a result, the system can be compromised.

• Cyber-attacks on CPS: The major challenge that sometimes arises is the unknown cyber-

attacks that threaten any CPS. One advantage of known cyber-attacks over unknown ones

is that recognizing the type of attack and realizing how to model it can provide the cyber-

defence more reliably and securely. Since the type of unknown cyber-attacks is undetectable,

an online cyber-attack detection method must perform an optimal and effective defence strat-

egy in an instant according to the existing conditions. In this regard, it is better to use

learning-based methods (e.g., RL and DRL algorithms [86]) against these attacks to learn

the existing conditions in real-time and defend online.

1.1.2.4 RL and DRL Algorithms for Cyber-attack Detection and Defence Applications

The different types of cyber-attack detection and defence applications that apply RL and DRL

algorithms for diverse CPS are presented as follows:

• Cyber-defence of Smart Grids: Considering the problems that occur for smart grids due to

issues related to cyber-attacks raised in Subsection 1.1.2.3, the authors of [80] have formu-

16

lated an online cyber-attack detection problem as a POMDP. They have provided a robust

online detection algorithm based on model-free RL algorithms for detecting cyber-attacks

that targets a smart grid. The RL cyber-attack detection algorithm incorporates two stages:

learning and online detection. In the learning stage, the defender is trained by the state action

reward state action (SARSA) algorithm (a model-free RL algorithm) and learns a Q-table.

In the online detection stage, the learned Q-table in the learning stage is utilized to select the

action with the lowest expected future cost. Since the proposed algorithm by the authors of

[80] is general, it is able to detect both known and unknown attacks.

• Cyber-defence of SDN: The authors of [85] have proposed an RL method to have a suitable

autonomous cyber-defence against attackers who intend to infiltrate and propagate through-

out the entire SDN and compromise critical network servers. This proposed method is sup-

posed to train two diverse RL agents. One agent is based on double deep Q-networks (Dou-

ble DQN) RL algorithm to isolate the agents and preserve them from attacks. Another agent

is the asynchronous advantage actor-critic RL algorithm to keep nodes uncompromised and

reachable from the critical server. Therefore, this method allows RL agents to perform sub-

optimal actions despite attacks on RL algorithms [85].

• Cyber-defence of CPS: The authors of [86] have introduced and developed a particular type

of optimal online cyber-defence to combat unknown cyber-attacks in a CPS. The steps of the

suggested method are as follows. First, innovative cyber-state dynamics have been created

to assess the effects of the current cyber-attack and the defence strategy efficiently and dy-

namically in real-time. Since cyber-attack is unknown, and there is insufficient information

about the cyber-state dynamics, to provide an optimal cyber-defence, an actor-critic NN ar-

chitecture has been proposed to learn the optimal online cyber-defence strategy effectively.

Finally, a novel actor-critic DRL algorithm has been implemented to improve the proposed

method [86].

• Cyber-defence of Autonomous Vehicle Systems: An adversarial DRL algorithm is pre-

17

sented by authors of [87] in order to maximize the robustness of autonomous vehicle dynam-

ics control when it is subjected to CPS attacks. In addition, the authors investigated state es-

timation during monitoring of autonomous vehicle dynamics in the presence of CPS attacks.

Based on game theory, the authors of [87] analyzed how the autonomous vehicle responds to

CPS attacks and how the attacker acts. Using inaccurate data feeding into autonomous vehi-

cle sensor readings, the attacker could potentially disrupt the optimal safe spacing between

vehicles and cause autonomous vehicle collisions. As a defender, the autonomous vehicle

attempts to minimize spacing errors so that it is resistant to attackers’ destructive actions.

Given the possibilities of manipulating data values and that the autonomous vehicle has no

idea how the attacker is planning to attack, each player learns the expected spacing error us-

ing long-short-term memory (LSTM). An RL algorithm processes the error after being fed

by the player. The attacker’s RL algorithm attempts to make the attack as successful as pos-

sible, while the autonomous vehicle’s RL algorithm explores the optimal action to minimize

the spacing error. This is carried out with the Q-learning RL algorithm [87].

1.1.2.5 Other Applications of RL and DRL Algorithms in Cyber-security

• Generating a virtualized smart city network resource allocation that aims to assign virtual

resources to a specific user, optimally, using a double duelling DQN RL algorithm [88].

• Using an actor-critic RL algorithm creates a mobile edge caching to maximize offloading

traffic [89].

• Robustness-guided falsification of CPS can be done to find false inputs in these systems by

integrating double DQN and actor-critic RL algorithms [90].

• Enhancing the robustness of the autonomous system against adversarial attacks to recognize

corrupted measurements and decrease the effects of malicious errors using trust region policy

optimization (TRPO) RL algorithm [91].

18

• Producing a secure offloading in mobile edge caching that aims to learn a policy for a mobile

device to securely offload data to edge nodes against jamming and intelligent attacks using

DQN RL algorithm with hot-booting TL methods [92].

• Creating an anti-jamming communication scheme for cognitive radio networks (CRN) in

order to derive an optimal frequency hopping policy for CRN secondary users (SU) to over-

come intelligent jammers based on a frequency-spatial anti-jamming game using DQN RL

algorithm including convolutional neural network (CNN) [93].

• Developing other anti-jamming communication technologies to expand the previous item.

In this scenario, jammers can use a variety of channel-slot-based architectures, including the

recursive CNN algorithm and DQN RL algorithm [93], [94].

• A spoofing detection method is applied in wireless networks to determine the optimal au-

thentication threshold using a Q-learning and Dyna-Q RL algorithm [95], [96].

• Hotbooting Q-learning and DQN RL algorithms are implemented as part of the develop-

ment of mobile offloading for cloud-based malware detection, which will enhance detection

accuracy and speed [97], [98].

• By developing a protected mobile crowd-sensing (MCS) system using the DQN RL algo-

rithm, the payment policy is optimized to enhance the sensing performance facing faked

sensing threats by forming a Stackelberg game [99].

• Using the DQN RL algorithm, an automated uniform resource locator (URL) based phishing

detection is produced that identifies malicious websites (URLs) [100].

1.1.2.6 AI Algorithms for Defence Applications

There are diverse AI applications for the defence category, which are classified as follows [101],

[102]:

19

• Intelligence, Surveillance, and Reconnaissance: AI has automated the workforce of data

analysts who have to spend a lot of time analyzing various data to make essential decisions.

In this field, multiple projects have been developed that are integrated with AI to generate an-

alytical tools. These projects are developing algorithms for multilingual speech recognition

and translation in noisy environments, fusing 2-D images to create 3-D models, geo-locating

images without the associated metadata, and building tools to infer a building’s function

based on pattern-of-life analysis [101], [102].

• Logistics: AI is used to predict aircraft maintenance in the military instead of repairing

damaged parts. Information is extracted from various aircraft parts, such as the engine,

through real-time sensors and entered into a predictive algorithm. By focusing on the input

data, this algorithm detects which parts of the aircraft should be inspected or which parts

should be replaced. The AI scheduled maintenance program is another method to inspect

different parts of an aircraft by schedule [101], [102].

• Cyberspace Operations: Since the standard cybersecurity tools seek to find pre-known

matches to detect malicious codes, malicious users only need to change a small part of the

code to disrupt the defence. In contrast, AI cybersecurity tools are trained to find irreg-

ularities in wider patterns of activity within a network and strengthen the protection. AI

cybersecurity tools must be able to ªdetect, evaluate, and fix software vulnerabilitiesº so that

military systems are able to perform tasks and defence simultaneously. This operation must

be completed before an attack can take place [101].

• Command and Control: The information collected by different sensors is gathered in one

place by AI and used centrally to control the systems [101].

• Semi-autonomous and Autonomous Vehicles: Integrating AI with autonomous and semi-

autonomous systems aims to understand the surrounding environment, identify obstacles,

navigate, and interact with other agents as a single agent in a MAS [101].

20

1.1.3 Position Consensus of Multi-agent Reinforcement Learning Systems:

The Effect of Immediate Rewards

Applications of RL algorithms have increased over the years and led to tremendous advancements

in various fields of science and robotics [103], [104]. The RL algorithms have been used to solve

numerous sequential decision-making problems and have encountered significant hurdles when

dealing with high-dimensional environments [57]. To partially overcome high-dimensional prob-

lems and perform tasks that require policy control, DRL algorithms were generated by combining

DL, and RL algorithms [58], [105], [106]. In the combined algorithm, DL enables RL to address

those challenges [107].

One of the DRL applications is in the MAS control [108], [109]. The use of MAS stems from

nature, where multiple agents have higher efficiency and competitiveness when acting together in

groups. Individual agents collaborate and interact with the environment to achieve the best results

[57]. The consensus control is one of the fundamental problems in MAS, where agents support a

common decision or aim in the best interest of the entire system. The agents participate in a group

decision-making process, called consensus decision-making [110], [111], [112]. In consensus

control, the goal is to reach a global agreement on a value or state for all agents [112], [113].

To reach consensus, we use the RL actor-critic method for N homogeneous agents. An actor, as

the policy structure, decides to choose the best action based on its perception of the environment

[114]. A critic, as the value function structure, indicates what is right in the long term and evaluates

the selected actions by the actor [114]. In this stage, the internal structures of agents’ actors and

critics are multi-layer NN.

Consensus control in MAS has been studied in various situations, e.g. distributed optimal con-

sensus algorithm [115], distributed linear-quadratic regulator (LQR) consensus control for hetero-

geneous MAS [116] or consensus control under delayed information [117], and has been exten-

sively investigated for different systems such as linear and nonlinear systems [118], [119], [120],

21

[121], [122], [123], [124], [125]. In recent years, the consensus problem for multi-agent rein-

forcement learning (MARL) systems has also been researched, e.g. an optimal bipartite consen-

sus control framework designed for MARL systems including model-free structure [126]. An

integrated, resilient, model-free, off-policy, distributed state-feedback control protocol for leader-

follower MARL system with adversarial inputs to reach consensus on the leader’s state is proposed

in [127], where only the leader can communicate with real information. The rest of the agents use

a distributed observer to estimate the leader’s state. The MARL system without malicious agents

is implemented in [128], and the sum of the cumulative rewards is calculated and maximized. In-

spired by [127], [128], we study a position consensus and we propose immediate reward functions

that increase the cumulative reward with the presence of malicious agents in a leaderless MARL

system in this Ph.D. dissertation. All agents of the on-policy system can communicate with the

environment and receive the related states.

In order to use RL techniques in MAS, the authors of [129], [130], [131] have proposed actor-critic

algorithms where the actor part is utilized for training of decentralized policies corresponding to

each agent. Critic part is used for learning centralized value function including all agents informa-

tion. In this Ph.D. dissertation, we use the decentralized actor-critic method [128] and the multi-

agent actor-critic algorithm under adversarial attacks proposed in [132]. The authors in [132] have

shown that the algorithm introduced in [128] for the consensus of MARL systems is not robust

to adversarial attacks. In this Ph.D. dissertation, we present results in the presence of malicious

agents by changing the immediate reward function of the RL algorithm. We propose four different

distance-based immediate reward functions to select the best one (based on the results) and study

their effects on the MARL system’s cumulative reward. Our analysis of distance-based immedi-

ate reward functions shows that if a distance metric (e.g., Manhattan distance, Euclidean distance,

n−norm distance, or Chebyshev distance) provides a smaller value between the current position

and the desired position compared with the existing distance metrics, then the defined immediate

reward function based on that distance metric will improve the MARL system performance.

22

Though different immediate rewards have already been introduced for various RL algorithms, stud-

ies of their effects on the MARL systems, with and without a malicious agent, are lacking. Defin-

ing the reward function according to the overall system’s objective is preferred, as noted in [133],

[134]. As the objective of the presented system is to reach a position consensus, considering the

distance between the current position and desired position plays a significant role in achieving the

consensus. Therefore, the main advantage of the proposed method is that the defined immedi-

ate reward functions are formulated using various distance metrics, e.g., Manhattan, Euclidean,

n−norm, and Chebyshev distances, and their superiority over the Manhattan immediate reward

function (as already used in [132]) have been proven. The superiority of the proposed immediate

reward functions leads to higher average cumulative rewards for each agent. In addition, there is a

greater average cumulative team reward for the entire MARL system. The MARL system perfor-

mance is improved by obtaining a higher cumulative team reward, causing a higher percentage of

correct actions are executed over time to achieve consensus, resulting in a position consensus with

a lower error rate.

1.1.4 Control of Multi-agent Reinforcement Learning Systems: The Effect

of Neural Network Structure

We studied the behaviour of undirected, leaderless, homogeneous MARL systems, including N

agents, in reaching a position consensus using the RL actor-critic approach in the presence of

malicious agents. In this chapter, the malicious agents are considered part of the MAS in which

they transmit improper data to neighbouring agents’ critic units or perform damaging actions [3].

Subsequently, we sought an approach to decrease the malicious agents’ harmful effects on the

MARL system performance.

The use of MAS has received much attention in the last two decades [135], [136]. MAS have

been used in a wide range of applications in science and engineering, from industry, military, and

medicine to smart grids, internet, and social networks [137], [138], [139], [140]. There have been

23

several control techniques for MAS proposed over the past decade for network flocking, consensus,

and formation control including adaptive control, slide mode control, tracking control, and back-

stepping schemes [141], [142], [143]. In this chapter, we have used one of the RL algorithms

called the decentralized actor-critic RL method to solve the MAS consensus problem under internal

adverse attack [128]. Unlike the introduced decentralized actor-critic RL method in this chapter,

the various actor-critic approaches have been presented for MAS, including the actor sector for

each agent’s decentralized policies training and the critic sector for all agents’ centralized value

function learning process [129], [130], [131]. The reason for using decentralized critic sectors

in this chapter is to utilize the results of paper [144] which shows that in the introduced MARL

system, the agents with centralized critic units converge to the optimal action with less stability,

whiles the agents with decentralized critic units converge to the optimal action robustly.

The existing challenge is that MAS, like other systems, can be exposed to all kinds of adversarial

attacks. In this regard, MAS attack detection and security of MAS have been a research topic in

the past few years [145]. Adversarial attacks can be in the form of inner and outer threats [146].

In this chapter, the adversarial attack appears as an internal threat. In other words, one or multiple

agents receive the correct data from the neighbours, but they transmit incorrect information to the

rest of the neighbouring agents [3], [132]. Therefore, efforts should be made to nullify or mitigate

the destructive effect of internal malicious agents.

As an extension of MAS, the MARL system has used RL algorithms in the structure of agents. In

this chapter, the utilized RL approach in each agent’s architecture is a policy-gradient-based actor-

critic algorithm. Multi-layer NN is used in this chapter as the internal structures of agents’ actors

and critics. We have used the actor-critic framework in this chapter because these algorithms are

useful in various real-life applications, including robotics, power control, and finance, due to their

ability to search for optimal policies using low-variance gradient estimates [147].

24

1.1.5 Adversarial Attacks on Heterogeneous Multi-agent Deep Reinforce-

ment Learning System with Time-delayed Data Transmission

The RL algorithm is the process of learning, mapping states to actions, and ultimately maximiz-

ing a reward signal through the interaction of an agent with a specific environment [114], [148].

DRL is characterized by a combination of RL and DL algorithms, two subdivisions of ML [107],

[149], [150]. The DRL’s advantage is that it addresses the high-dimensional problems that RL

algorithms encounter [58], [105], [107]. Q-learning, as a type of RL algorithm, learns action val-

ues in a specific state [114]. Despite Q-learning’s technological advances, it has one major flaw±

similarly to dynamic programming, Q-learning can only update data within a two-dimensional ar-

ray {state×action} [151]. The DQN algorithm is introduced, which merges Q-learning, and DNN

[58], [152]. To cope with the two-dimensional array problem arising from the Q-learning algo-

rithm, the DQN has been used in a wide range of applications [153], [154], [155]. There are two

main reasons for using the DQN algorithm instead of other DRL approaches in this work: (i) the

stability in performing complicated tasks. The discussed stability is the consequence of utilizing

randomly sampled experience replay and a target network; (ii) the ability to predict the Q-value

function.

DQN algorithm has been used in data transmission between multiple agents. The TL approach is

combined with the DQN algorithm, and a multi-source transfer double DQN (MTDDQN) is intro-

duced in [156]. The MTDDQN is based on actor learning and enables the collection, summariza-

tion, and transfer of action knowledge by the RL agent between multiple agents [156]. Compared

to [156], this Ph.D. dissertation uses one DQN agent in a cluster-based, heterogeneous, MAS for

on-time and time-delayed data transmission.

Data transmission in MAS has been investigated in various scenarios and for linear and nonlinear

systems [157]. For instance, periodic event-triggered output regulation for linear MAS by con-

sidering a leader-follower topology is proposed in [158]. An adaptive event-triggered consensus

25

control of linear MAS with directed leader-follower topology in the presence of a cyber-attack that

affects the control input without modification in communication topology is developed in [159].

A dynamic event-triggered asynchronous control integrating fuzzy models with directed topology

is presented in [160]. A new adaptive event-triggered leaderless consensus control of nonlinear

MAS, including directed topology, can be found in [161]. Moreover, some researches address data

exchanges between linear and nonlinear systems as a heterogeneous MAS, e.g., a leaderless and

a leader-follower consensus of heterogeneous second-order MAS on time scales using an asyn-

chronous impulsive approach, is presented in [162]. The previous studies have shown that there

is little research on data transmission within homogeneous or heterogeneous multi-agent deep re-

inforcement learning (MADRL) systems, and the majority of the research has been focused on

linear and nonlinear MAS. A heterogeneous MAS based on carrier-sense multiple access (CSMA)

that utilizes DRL algorithm in data transmission, termed carrier-sense deep reinforcement learning

multiple access (CS-DLMA), is introduced in [163]. The CS-DLMA uses α−fairness objective to

measure system performance. Inspired by [163] and using CS-DLMA, we study time-delayed data

transmission between agents of a leaderless MADRL system in this Ph.D. dissertation. The same

study is carried out for a leader-follower MADRL system. Note that CSMA is an access control

protocol in which an agent in the network checks the state of data channel for data transmission.

Cyber-attacks can happen to any system, especially those that transmit data. Various adversarial

attacks pose a threat to ML algorithms and DL systems [164], [165]. The ML algorithms are mis-

led by adversarial attacks that manipulate input data to undermine algorithm performance, access

the ML model, and modify model behaviour [166], [167]. Therefore, it is important to study the

effects of various attacks on ML algorithms [168]. This Ph.D. dissertation uses three types of

gradient-based adversarial attacks, termed fast gradient sign method (FGSM) [169], fast gradient

method (FGM) [170], [171], and basic iterative method (BIM) [170], [172] to investigate their

effects on the DQN algorithm, and consequently, MADRL system performance. Paper [163] is

devoid of any information on cyber-attack on the system. The authors of [173] have examined the

26

adverse effects of FGSM attack on DRL-based traffic signal control for a single-intersection and

multiple intersection cases; however, its effects are not investigated on sending and receiving data.

Hence, the FGSM attack plus FGM and BIM attacks, that try to fool the NN, are considered in

this dissertation to check their impacts on the data transmission robustness. The authors of [174]

have used the discussed attacks to target the observation set provided by the RL algorithm envi-

ronment; as respects, we have applied the three types of adversarial attacks to target the produced

environmental state of the DRL algorithm.

There are various defence techniques for ML algorithms, and these adversarial defence methods

are used to improve the robustness of a designed model [175]. Among all the presented methods

[176], [177], [178], [179], the best defence procedure occurs when the adversarial examples are

fed to the NN training process [171]. In this regard, we use the worst perturbation as the input of

the NN to train the model and reach the robustness against malicious attacks.

This Ph.D. dissertation scrutinizes adversarial attacks issues facing ML algorithms and studies the

time-delayed data transmission robustness due to three types of gradient-based malicious attacks±

FGSM, FGM, and BIM adversaries± between agents of a cluster-based, heterogeneous MADRL

system. This study shows how the leaderless or leader-follower MAS perform due to time-delayed

data transmission. After occurring attack for a leader-follower MADRL system, this Ph.D. dis-

sertation presents two adversarial attack defence approaches against gradient-based attacks. This

dissertation does not study the detectability of attacks, but how to reverse the attacks.

A potential application of this research is to use the proposed system in smart grids to make the

grid more reliable, secure, and efficient. Moreover, by converting static agents to mobile agents

and considering relevant contributions to the novel architecture, this system can be used for data

transmission between the agents of all types of multi-agent autonomous vehicles, e.g., multi-rescue

robots.

27

1.1.6 Data Transmission Robustness to Cyber-attacks on Heterogeneous Multi-

agent Deep Reinforcement Learning Systems

We studied the behaviour of undirected, leaderless (or undirected, leader-follower) heterogeneous,

MADRL system in reaching a cluster-based consensus, using a DQN algorithm in the absence

and presence of an FGSM adversarial attack. We designed an integrated method of classical and

learning-based control to investigate the MADRL system behaviour before and under adversarial

attack in various scenarios. The designed proportional controller assists the DQN learning process

in defending against adversarial attacks and reaching data transmission consensus for each cluster.

A lower loss and a higher DQN average reward after starting training are advantages in using a

proportional controller along with the DQN algorithm. Achieving acceptable values in a shorter

period of time reduces various costs (e.g., the cost of electricity consumption), saves time, and

reduces equipment deterioration.

A PID controller can have unstable controlled process inputs if its gains (Kp, Ki, Kd) are set in-

correctly. Therefore, proper selection of controller parameters is a significant issue [180], [181],

[182], [183]. The authors of [184] showed that the proportional-integral (PI) controller can be

automatically tuned by DRL methods. Moreover, in [185], [186], [187] the DQN algorithm is

applied to design the controller parameters optimally. The authors of [185], and [186] designed a

type−2 fuzzy PID controller, and a tilt fuzzy cascade controller, respectively. The parameters of

the discussed controllers in [185], [186] are optimized using DQN algorithms under various oper-

ating conditions. Furthermore, the authors of [187] proposed a method of linear active disturbance

rejection control and used the DQN algorithm to obtain controller parameters in real-time. Though

DQN has been used with a variety of controllers in [185], [186], [187] and other research, this

Ph.D. dissertation reverses the trend and uses a feedback control system (e.g., a proportional con-

troller) to assist the DQN algorithm and defend against the FGSM adversarial attack for on-time

and time-delay data transmission.

28

The authors’ purpose of [188] is to compare the proposed feedforward feedback control system

based on the DQN algorithm with a feedback control system using the same parameters. The in-

troduced method in [188] improved the control system performance and solved the feedforward

controller design for nonlinear systems’ problems. However, in the current investigation, we com-

pare the feedback control system based on the DQN algorithm with the pure DQN approach in a

MADRL system under an FGSM cyber-attack and verify the proposed algorithm’s effectiveness.

Various methods have been used to schedule and transfer data between agents of a MAS, e.g.,

different types of AI methods [189]. To transfer data between N heterogeneous agents of various

P clusters, we used the DQN algorithm as a learning approach to control the data transmission.

Consequently, we used a proportional controller on the DQN algorithm to support the DQN agent

and cope with the FGSM malicious attack when data is transferred between the cluster-based

MADRL system agents. The authors of [190] applied a proportional and derivative (PD) controller

to the learning policy in order to stabilize the discussed RL policy and to compensate for the

shortcomings of the gradient-based algorithm; however, this controller alone produces very high

costs to control the quadrotor system in [190].

The proportional controller calculates the error between a measured process signal and desired

signal value and performs the corrective action if necessary [191], [192]. In this Ph.D. dissertation,

we use the estimated reward of the DQN algorithm as the desired output for the feedback control

system. Moreover, we utilize the DQN environmental received reward as the measured output.

Learning from the error signal in terms of estimated reward and environmental received reward

causes the DQN agent to make a more reasonable decision and to choose the appropriate action.

1.2 Contributions

The contributions of this Ph.D. dissertation can be summarized in several categories as below:

• We introduced a cluster-based MAS structure including N agents and P clusters. We pre-

29

sented the average position consensus for cluster-based MAS, including clusters with a

unique purpose such that all agents’ goal of all groups is to reach a global agreement on

the same position state. Afterward, we provided the average position consensus for cluster-

based MAS containing clusters with various goals. In this regard, the agents’ goal of each

group is to reach a local agreement on a position state; however, the discussed agreement

differs from the other clusters’ settlement. We extended all calculations and simulation ex-

amples from 2-D space to 3-D space.

• We studied the behaviour of a leaderless, homogeneous MARL system in reaching consen-

sus using a decentralized actor-critic method with and without malicious agents. We defined

and proposed various immediate reward functions based on different distance metrics. These

immediate reward functions can be used to calculate the cumulative reward for each agent

and the MARL system. This work examines whether changing the immediate reward can

improve the system’s overall performance even with the destructive effects of a malicious

agent. Suppose one of the distance metrics (e.g., Manhattan, Euclidean, n−norm, or Cheby-

shev distances) provides a smaller value between the current position and the desired po-

sition compared with the existing distance metrics. Consequently, the extracted immediate

reward from the discussed distance metric generates a higher return cumulative reward for

each agent and the MARL system as a whole. Hence, the criterion for measuring the MARL

system’s behaviour is based on various immediate reward functions.

First, we studied the immediate reward function based on Manhattan distance proposed by

[132]. Therefore, we proposed immediate reward functions based on Euclidean, n-norm,

and Chebyshev distances. Additionally, we provided an algorithm to combine various im-

mediate reward functions and used them based on the maximum returned value during each

episode to enhance the agents’ cumulative reward with and without malicious agents within

the MARL system. Then, we proved the superiority of the Euclidean immediate reward

function over the Manhattan immediate reward function. We showed the superiority of

30

the Chebyshev immediate reward function over the Euclidean immediate reward function.

Moreover, we showed that the combined immediate reward function outperforms other im-

mediate reward functions.

• We provided a compatible combination of the mean squared error (MSE) loss function and

sigmoid activation function in the malicious agent’s NN structure to decrease the cumula-

tive reward and increase the cumulative loss of the discussed adversarial agent in the MARL

system. In such an event, the harmful effects of malicious agents on the MARL system per-

formance are mitigated, and the MARL system efficiency in reaching the position consensus

is improved. We proved the superiority of the MSE loss function in combination with the lin-

ear activation function over the integration of the MSE loss function and sigmoid activation

function in terms of achieving higher cumulative reward and lower cumulative loss.

• We studied the time-delayed data transmission problem between agents in a cluster-based,

heterogeneous, MADRL system under adversarial attacks. In addition to the leaderless

MAS, we proposed a leader-follower MAS, such that the preassigned leader in each clus-

ter communicates with the leader of other clusters as well as the agents of its own cluster.

We considered two novel observations in data transmission, called on-time and time-delay

observations, and we investigated their effects on the DQN loss and team reward. We pro-

posed a novel immediate reward function that considers the package length, packet header

size, and distance between neighbouring agents to improve the MAS performance in terms

of approximated cumulative team discounted reward during time-delayed data transmission.

We considered the FGSM, FGM, and BIM adversaries (gradient-based attacks) to attack

the DQN algorithm. Then we investigated the effects of such attacks on MAS performance

and time-delayed data transmission. We introduced two defence algorithms against the per-

formed adversarial attacks. In the proposed defence methods, the DQN agent’s DNN learns

from a state that produces the maximum perturbation value and uses its negative feedback to

improve the system performance during an adversarial attack.

31

• We designed a proportional controller for the DQN algorithm against the destructive effects

of the FGSM adversarial attack. We considered on-time and time-delay data transmissions

to investigate a defence algorithm, including the DQN method and feedback control system.

Therefore, we proposed an algorithm wherein the DQN algorithm as the feedback control

system process defends against the FGSM cyber-attack. We proved the superiority of using

the proportional controller on the DQN learning process in achieving the higher average

approximated cumulative team discounted reward for the MADRL system.

1.3 Summary and Dissertation Outline

This dissertation is organized into eight chapters as below:

• Chapter 1: This chapter presents the introduction, literature review, contributions, and out-

line of this dissertation. The corresponding parts of this chapter appear in [J1], [J2], [J3],

[J4], [C1], [C2], and [C3].

• Chapter 2: This chapter represents a brief background on the research ahead, including RL,

DRL, MDP, MAS, consensus decision making, adversarial attacks, and team organization.

• Chapter 3: This chapter briefly discusses the average position consensus of cluster-based,

heterogeneous MAS. This chapter presents the average position consensus of clusters, in-

cluding various goals as well as global goals in both 2-D and 3-D spaces. The simulation

examples verify the calculations for all scenarios. This chapter aims to connect non-learning

methods and learning approaches, especially RL algorithms, to reach a consensus.

• Chapter 4: This chapter studies the position consensus problem of a leaderless, homoge-

neous MARL system using actor-critic algorithms with and without malicious agents. The

goal of each agent is to reach the position consensus with the maximum cumulative reward.

We study the immediate reward function based on Manhattan distance. We propose three dif-

32

ferent immediate reward functions based on Euclidean, n-norm, and Chebyshev distances.

We present a combination of various immediate reward functions that yields a higher cumu-

lative reward for each agent and the team of agents. By increasing the agents’ cumulative

reward using the combined immediate reward function, we have demonstrated that the cu-

mulative team reward in the presence of a malicious agent is comparable with the cumulative

team reward in the absence of the malicious agent. The results of this chapter are published

as [J2].

• Chapter 5: This chapter represents the control of a leaderless, homogeneous MARL system

using actor-critic algorithms in the presence of a malicious agent as one agent of the MAS.

The overall purpose of this chapter is to mitigate the adverse effects of the malicious agent

to improve the MAS performance. This aim has been achieved by the malicious agent’s NN

structure modification. The corresponding parts of this chapter appear in [C3].

• Chapter 6: This chapter studies the gradient-based adversarial attacks on cluster-based,

heterogeneous MADRL systems with time-delayed data transmission. The structure of the

MADRL system consists of various clusters of agents. The DQN architecture presents the

first cluster’s agent structure. We consider three types of gradient-based attacks to investigate

the robustness of the proposed system data transmission. Two defence methods are proposed

to reduce the effects of the discussed malicious attacks. The theoretical results are illustrated

and verified with simulation examples. The results of this chapter are published as [J1] and

[C2].

• Chapter 7: This chapter investigates the data transmission robustness between agents of a

cluster-based, heterogeneous MADRL system under the FGSM± a gradient-based adversar-

ial attack. An algorithm is proposed using a DQN approach and a proportional feedback

controller to defend against the FGSM attack and improve the DQN agent performance. The

data transfer is carried out between agents of a MADRL system in a timely and time-delayed

manner for both leaderless and leader-follower scenarios. The corresponding parts of this

33

chapter appear in [C1].

• Chapter 8: In this chapter, a summary of the dissertation is given, and possible future works

have been discussed.

1.4 Dissertation High-level Overview

In Chapter 3, an overview of MAS position consensus methods which are used in Chapters 4 and

5 is provided. Moreover, in Chapter 3, a preface of cluster-based MAS consensus approach for a

set of heterogeneous agents which is utilized in Chapters 6 and 7 is presented, symbolically.

In Chapter 4, by considering an agent as an internal malicious agent in the MARL system, reaching

position consensus has been examined with the help of Chapter 3 and an effort has been made to

improve the performance of the MARL system in terms of higher cumulative reward.

In Chapter 5, the problem described in Chapter 4 is studied under the assumption that there is an

internal malicious agent in the MARL system. In Chapter 5, a different method to improve the

MARL system performance in terms of higher cumulative reward for position consensus, provided

in Chapter 3, is proposed.

In Chapter 6, gradient-based adversarial attacks on cluster-based, heterogeneous MADRL systems

with time-delayed data transmission are considered. Chapter 6 builds on the model presented in

Chapter 3 and explicitly allows for communication between preassigned leaders across clusters.

In Chapter 7, gradient-based adversarial attacks are investigated for DQN algorithms and a linear

feedback control system. The analysis generalizes the results derived in Chapter 6. Chapter 7

builds on the model presented in Chapter 3 and consequently in Chapter 6.

34

Chapter 2

Background

2.1 Introduction

This chapter deals with the background of our study. A brief history of RL algorithms, DRL

approaches, and the MDP as a decision-making process is presented. Later, a concise description

of MAS is explained. A brief explanation of consensus decision-making and team organization is

provided.

RL has a large number of applications, from finance to robotics [193]. In recent decades, the

use of RL and DL in solving various complex problems has increased significantly. Over the

past few years, with DRL’s creation, which is a combination of RL and DL, new solutions have

been proposed to solve some of the complicated problems. In one kind of classification, there

are two types of methods for solving RL and DRL decision-making problems. If a model of the

environment and planning are used to address the issues as mentioned earlier, it is called a model-

based method. Model-based is an approach to derive the rewards and optimal actions using a model

of the transition dynamics [193]. In contrast, if a more straightforward trial-and-error approach is

applied to obtain the rewards and optimal actions, without using the environmental model, it is

35

termed a model-free technique.

Figure 2.1: An illustration of the generic DRL structure of our heterogeneous MAS. At each time step t,
each agent performs action At based on the learned policy. At time t+1, the environment returns a new state
and reward to each agent.

As demonstrated in Figure 2.1, in the proposed multi-agent DRL, at each time step t, each agent

receives state from the environment and takes action. Then, at every time step t, a joint action

of all agents is obtained and returned to the environment. Afterward, each agent receives the

next state and a delayed independent immediate reward. Finally, at every time step t, a joint

immediate reward is calculated. According to Figure 2.1, using the current and next environmental

states in combination with the existence of joint action, the state transition probability can be

calculated to describe the environment’s dynamics. It is possible to have an independent local

policy for each agent; however, several agents can use the same policy at the same time, depending

on the circumstances. The set of independent local policies for N agents is described as Policy =

{π1,π2, ...,πN}. The set of local policies for N agents when two or more policies are similar to

each other is defined as Policy = {π1,π2, ...,πϒ}, where ϒ < N.

36

2.2 Reinforcement Learning (RL)

There are three branches of ML methods, namely, supervised learning, unsupervised learning, and

RL. In supervised learning, there are input variables and an output variable, where an algorithm

is used to learn the mapping function from the input to the output [194]. In this way, with new

input data, the output variable for that new input data is predictable [194]. In contrast, in unsuper-

vised learning, there are input data and no corresponding output variables. This learning method

is applied to model the underlying structure or distribution in the data to learn more about the data

[194]. RL is an intersection of various fields of science such as ML (computer science), optimal

control (engineering), operations research (mathematics), bounded rationality (economics), clas-

sical/operant conditioning (psychology), and reward system (neuroscience) [75]. RL includes a

complete, interactive, goal-seeking agent and an environment [75], which the agent learns from by

trial-and-error interactions with it, and receiving rewards after choosing actions.

The choices made by the agent are actions. Besides, the basis for making the choices and the

base for evaluating them are states and rewards, respectively [77]. The characteristics of a learning

agent are the ability (i) to sense the environment’s state, (ii) to take the relevant actions to affect

that states, and (iii) to have the ultimate goals [75]. Thereby, any method that is well-designed

to solve these three aspects of agent specifications is considered as RL [75]. One RL agent may

contains four main parts as following:

• policy, which is a mapping from perceived states to actions, is the core of RL agent [75]. In

other words, at every time step t, an agent perceives the state of the environment, and then

the agent’s policy decides to choose the best action based on its perception. Selecting the

best action leads to find the optimal policy, π∗ : S→ A, where π indicates the policy, S is a

finite set of states of the environment, and A is a finite set of actions.

• reward signal has a crucial role in each RL system. When an agent transits from one state to

the next, the environment returns a reward R. The agent’s goal is to maximize the expected

37

reward. Therefore, it can be said that the reward signal specifies the purpose of the RL

system. The optimal policy π∗ must be obtained from the policy π . In this regard, the

optimal policy π∗ can calculate the maximum expected reward.

• value function V π , which is the most significant sub-component in RL agent, should be

considered in decision-making. Value function shows that what is right in the long run [75].

It is worth mentioning that the state-action value function (Q function) is used to determine

which action should be selected by the agent in the current state using a policy π [195]. The

relationship between policy, reward, and value function is given in the following equations.

The total amount of reward including a discount factor γ ∈ [0,1) is given by

Rt =
∞

∑
t=0

γ tR(st), (2.1)

where R(st) is the reward for simply being in the state s at time t (immediate reward at time

t).

Since the value function is the expected future reward, the purpose is to maximize the value

function as the total reward over time. In this regard, finding the policy with the highest

expected reward is required. To evaluate a given policy, the value function is utilized as

V π(s) = R(s,π(s))+E

[

∞

∑
t=1

γ tR(st ,π(st))

]

, (2.2)

where R(st ,π(st)) is the reward for being in the state s at time t, taking policy π(st). The

expectation operator in Equation (2.2) averages the stochastic transition model, resulting in

V π(s) = R(s,π(s))+ γ ∑
s′∈S

p(s′|s,π(s))V π(s′). (2.3)

38

The policy π can be extracted from the value function V as follows

π(s) = argmax
a∈A

[

R(s,a)+ γ ∑
s′∈S

p(s′|s,a)V (s′)

]

. (2.4)

The Bellman equation solution for each state s is used to obtain the optimal value function

V ∗ as well as the optimal policy π∗:

V ∗(s) = max
a∈A

[

R(s,a)+ γ ∑
s′∈S

p(s′|s,a)V ∗(s′)

]

. (2.5)

• model of the environment, that mimics the environment’s behaviour and dynamics [75], is

the fourth significant part of an RL system. The dynamics of the environment are tran-

sition and reward functions. If an agent uses only policy or value function, it is called a

policy-based or a value-based agent, respectively. Moreover, an actor-critic is an agent in-

cluding both policy and value function [75]. On the other hand, for solving RL problems,

an agent which contains one or both of the policy and value function, is also divided into

two categories; model-based and model-free [75] agent. The first approach uses models of

the environment, whereas the second one applies trial-and-error to present a solution for

RL problems [75]. Since model-based methods are based-on planning, they use simulated

experience produced by a model. In contrast, model-free approaches rely on learning and

apply real experience created by the environment [75]. However, the significant part for both

model-free and model-based approaches is the estimation and calculation of value function

[75].

The RL agent taxonomy is illustrated in Figure 2.2. In some classifications, the reward is one of

the main parts of each RL agent. Reward signal is a numerical feedback that each agent receives

as a result of the chosen action. This reward signal could be an actual reward or punishment. If

it does the right task, then it gets a reward, and if it does a wrong job, it receives a punishment.

These numerical rewards, which indicate what is right and what is wrong in environmental com-

39

Figure 2.2: RL agent taxonomy.

prehension, often because of their delay, are called delayed rewards. The agent receives a delayed

reward in the next time step to evaluate its former action.

One of the most critical challenges in RL is a trade-off between exploration, to take better future

actions, and exploitation, to obtain rewards from past experiences [75]. Exploration finds more

information about the environment, but exploitation exploits known information to maximize re-

ward.

2.2.1 Reinforcement Learning-based Controller

Various types of controllers, such as PID controllers and intelligent flight control systems (IFCS),

can be used to control a UAV [195]. To optimize the aircraft performance under normal conditions

and to provide increased safety for the crew and passengers of an aircraft, the IFCS is designed

[196]. The main benefit of IFCS is that it will allow a pilot to control an aircraft even under failure

conditions (minor, major, hazardous, catastrophic) that would generally cause it to crash [196].

A PID is employed in stable environments because of its desirable and exceptional performance

[195]. However, when the environment and dynamics are changeable, and various factors, such as

wind and voltage sag, exist, the PID controller will not remain optimal. Therefore, an adaptable in-

40

telligent controller like an RL-based controller will be needed [195]. As an example, although the

nonlinear controller based on feedback linearization has a better performance than the RL-based

controller using a fitted value iteration algorithm for UAVs in [197], the design of the first one re-

quires a lot of mathematical modelling knowledge. While for an RL-based controller, the quadrotor

model can be approximated by input-output mapping via a non-parametric method. Remarkably,

the fitted value iteration is an algorithm for approximating the value function of a continuous state

(a finite sample of states) MDP. Note that the application mentioned in this subsection is based on

UAVs and aircraft; however, it can be extended to other types of autonomous systems.

2.3 Deep Reinforcement Learning (DRL)

The combination of DL architectures and RL algorithms is a powerful DRL model that may be the

solution to previously unsolved complex problems. In high-dimensional states, these complicated

problems lead to finding a solution to a sequence of decisions [198]. The essence of RL is learning

from the environment’s feedback through trial and error to choose an action [198]. In other words,

RL algorithms learn from successes and mistakes. However, in the process of trial and error, the

agent may make a mistake in finding the proper action [198]. The characteristic of DL is the

approximation of functions in high-dimensional problems using DNN in such a way that tabular

methods are not able to provide exact solutions [198]. Since DL uses DNN to find approximations

for large, complex, high-dimensional environments, the main difference between the RL and DRL

algorithms is the use of DNN in the RL’s agent structure. Hence, the DNN is used to convert

RL to DRL algorithm [77]. By interacting with a complex, high-dimensional environment, DRL

aims to learn optimal actions (learning from feedback) that maximize the reward for all states in

every discussed environment [198]. The popularity of DRL is primarily due to its compatibility

with current computers and its use in various applications [198]. Since DRL is looking for a

solution for sequential decision-making problems, research in this field focuses on two basic types

of applications. These applications include robotic problems and games.

41

2.3.1 Deep Reinforcement Learning-based Controller

When nonlinear function approximators are applied to estimate the value function, the RL ap-

proach will no longer be stable [58], [75]. Given this situation, the RL is combined with a specific

type of function approximator, organized as a DNN, to form the DRL [58], [75]. This specified

combination can directly map raw sensory outputs to the control signal [58], [75]. For example,

UAVs’ landing automatically on a ground marker is a significant problem. A DRL-based method

is proposed to land these vehicles accurately on markers. At first, an attached camera to the UAV

takes a low-resolution image. The ground marker position is identified from the received image,

and finally, the UAV lands on it [199]. The recommended method comprises two DQN algorithms

used as a high-level-control policy for landmark detection (marker detection) and vertical descent

on a static pad, respectively [199]. Notably, the application mentioned in this subsection is based

on UAVs; however, it can be expanded to other types of autonomous systems.

2.4 Markov Decision Process (MDP)

The MDP is a discrete-time stochastic control process that represents a fully observable environ-

ment for RL. It makes decisions to select the best action in a stochastic environment. Stochastic

control, as a subfield of control theory, deals with the presence of uncertainty that drives the evo-

lution of the system. It should be emphasized that in a fully observable environment, the agent can

sense the entire state of the environment without any memory to make an optimal decision. An

MDP is a 5-tuple M =
〈

S,A, p,R,γ
〉

, where S = {s1,s2, . . . ,sn} is a finite set of states of the envi-

ronment, A = {a1,a2, . . . ,am} is a finite set of actions, p(s′|s,a) is the state-transition probability

matrix that agent starts in state s, takes action a, and ends in state s′. Moreover, R : S×A→ R is a

reward function, and γ ∈ [0,1) is a discount factor. A factor that multiplies by the expected future

rewards and shows the importance of future rewards versus immediate rewards is called the dis-

count factor. The lower the discount factor is, the less significant future rewards are. Therefore, the

agent tends to perform actions that result in immediate rewards. With γ = 0, the agent only cares

42

about the immediate reward. Totaly, in RL, the MDP models the environment. In this process, the

target is to calculate a policy π for mapping state to action that can maximize the expected sum of

discounted reward [200] that is described as follows

Jπ ≡ E

[

∞

∑
t=0

γ tR(st ,π(st))

]

. (2.6)

2.4.1 Partially Observable Markov Decision Process (POMDP)

The POMDP is a combination of MDP and hidden states for modeling system dynamics [201].

In a partially observable environment, the agent can never see the entire state of the environment.

In this situation, to make an optimal decision, one or more memory is needed. A POMDP is

a 7-tuple PM =
〈

S,A, p,R,Ω,O,γ
〉

, where S, A, p, R, and γ are similar to their peers in MDP.

Furthermore, Ω = {o1,o2, . . . ,ok} is a finite set of observations, and O is a set of conditional

observation probabilities where O(o | s′,a) is conditioned on the next state and the taken action.

The POMDP is a mathematical model of uncertain decision-making. One should mention that

in MDP and POMDP, state and action spaces are discrete or continuous. On the other hand, the

signals to control and navigate UAVs are continuous. Thus often continuous state and action spaces

are used for controlling these types of vehicles.

2.5 Multi-agent System (MAS)

If multiple intelligent agents interact with each other and ultimately pursue the same goal, they

form a MAS. Sometimes it is challenging or impossible for a single-agent to solve multiple prob-

lems on their own, simultaneously. In these cases, the complex issues can be addressed by using

a MAS and subdividing tasks between individual agents of the system [202]. In fact, in a MAS,

the agents can perform multiple tasks in collaboration with each other due to their inherent abil-

ity to learn and make independent decisions. In any MAS, the metrics used for decision-making

43

are sensed data from the environment (inputs), the knowledge of the system, and the determined

goal for the mentioned system. Each agent in the MAS can communicate with any other agents

in the network, and directly do an action on the environment based on the decision [7]. The main

features of each MAS that are used in this Ph.D. dissertation are leadership, heterogeneity, delay

consideration, topology, data transmission frequency, and mobility [7].

Leadership: In a MAS, an agent with a leadership role sets goals and tasks based on one global

goal for the other agents. Leaderless or leader-follower MAS can be classified based on the pres-

ence or absence of such a leader. Hence, if in a MAS structure, each agent automatically decides

to perform actions related to its purposes without the presence of a leader, it is a leaderless MAS.

However, the leader-follower MAS allows the leader to determine actions for the rest of the agents

[7].

Heterogeneity: A MAS can be classified into homogeneous or heterogeneous, depending on

agents dynamics. The entire agents of a homogeneous MAS are identical and have similar dy-

namics, structures, and goals; whereas, heterogeneous MAS is a system including multiple agents

in which agents’ dynamics may be different or changeable [117].

Delay Consideration: In each MAS, each agent can be responsible for performing a specific task,

and its information is essential to the entire system’s survival. Therefore, there must be communi-

cation and data exchange between agents. During on-time (without time-delay) data transmission,

the information of all agents is exchanged simultaneously; however, data conflict arises, and there

is a possibility of data loss. In this regard, to prevent data loss, a delay can be considered to transfer

data between agents of a MAS, which is called time-delayed data transmission. Given the impor-

tance of data, the system determines the priority of sending and receiving information between

two agents. Therefore, the agent, including the most critical information, sends the data without

time-delay, and the agent with the information of lower importance sends the data with time-delay

[7].

44

Topology: A MAS topology depends on the location and relations between agents. The topology

of a MAS has been chosen as dynamic or static topology. In dynamic topology, agents change

position as they move; however, over the lifetime of an agent, a static topology maintains its

position and relations [7].

Data Transmission Frequency: Agents in a MAS interact with the environment and transfer the

received data in a time- or event-triggered manner. In time-triggered mode, each agent contin-

uously interacts with the environment, gathers and transmits data to other agents at predefined

intervals. In an event-triggered manner, the agent only interacts with the environment when a spe-

cific event happens. Later, the agent transmits the gathered data to other agents [7]. If control of a

MAS structure is based on RL algorithms, then at each time step t, the agents receive the environ-

ment’s state, and each agent must select a proper action in response. One step later, the agent gets

a reward and a new state. Therefore, agents continuously sense the environment, collect data, and

transfer the sensed data with other agents, in order of preference, in a time-triggered manner.

Mobility: If the agents of a MAS move through the environment and perform various tasks, such

as identifying obstacles and detecting attacks, they fall into the category of mobile agents. The

static agents are permanently positioned in the environment [7].

2.6 Consensus Decision-making

When agents in a MAS develop and agree to support a decision in the best interest of the en-

tire system or common aim, they participate in a team decision-making process called consensus

decision-making. Consensus control is known as one of the primary coordination problems in

MAS [203]. The control algorithm’s goal in consensus control is to reach a global agreement on a

standard value or state for all agents [113].

45

2.6.1 Discrete-time Consensus Algorithms

Consider an undirected graph G = (V ,E) including a set of vertices V and a set of edges E ⊆

{(i, j)|i∈ V , j ∈ V } as a multi-agent system. At each time step t, the state updating in the discrete-

time domain is performed by

xi(k+1) = xi(k)+ϒ ∑
j∈N (i)

ai j

(

x j(k)− xi(k)
)

, (2.7)

where x(k)≜ [x1(k), . . . ,xN(k)]
T ∈ R

n, and ϒ = 1/deg(G) in which deg(G) is the degree of graph

G . All the vertex degrees are figured out to find the degree of graph G . The largest vertex degree is

the degree of the graph G . Furthermore, the adjacency matrix is described as A
N×N

= [ai j] ∈ {0,1},

where

ai j =

1 if (vi,v j) ∈ E ,

0 otherwise.

(2.8)

Moreover,

x(k+1) = Pϒx(k), (2.9)

where Pϒ is the Perron matrix and is given by

Pϒ = I−ϒL. (2.10)

In the Perron matrix of Equation (2.10), I and L are identity and Laplacian matrices, respectively.

2.7 Adversarial Attacks

A malicious attempt that perturbs a data point x0 ∈ R
d to another point x ∈ R

d is an adversarial

attack. In this case, the point x belongs to a particular target adversarial class. Suppose that there is

an image with a feature vector x0 of a dog image. An adversarial attack aims to create a different

46

feature vector x that will be classified as another class specified by the attacker, e.g., a cat. This

type of attack is targeted attack. The goal of each adversarial attack is not limited to pushing x0 to

a specific target class Ct . Instead, it may pursue the goal of moving x0 away from the original class

Ci. This type of attack is untargeted attack [204].

The move of a data point x0 from Ci to Ct can be achieved in several ways. One of the common

definitions in this field is to consider an operator A :Rd→R
d such that x=A (x0) is the perturbed

data [204].

Definition 2.1 (Adversarial Attack). Let x0 ∈ R
d be a data point belong to class Ci. Define a

target class Ct . An adversarial attack is a mapping A : Rd → R
d such that the perturbed data

x = A (x0)

is misclassified as Ct [204].

The additive model is a common adversarial attack model, in which linear operator A adds per-

turbation to the input [204].

Definition 2.2 (Additive Adversarial Attack). Let x0 ∈ R
d be a data point belong to class Ci.

Define a target class Ct . An additive adversarial attack is an addition of a perturbation r ∈ R
d

such that the perturbed data

x = x0 + r

is misclassified as Ct [204].

Depending on the type and complexity of the problem, one of the Definition 2.1 or Definition 2.2

can be extended for further analysis and introducing related defence algorithms.

47

2.8 Team Organization

In a MAS, when several agents form a group and define a specific goal for the created group, they

have organized a team organization. In a team organization, each group’s purpose is different from

each agent’s goal inside the group. There may be two or more groups in a team organization.

To promote the decision-making process, each group, depending on its requirements, is able to

request information from other groups’ agents. Furthermore, the number of agents in a group

is termed team size. The amount of data and information received from the environment is more

considerable for larger team size; however, combining the data received by agents within the group

requires more process [7].

48

Chapter 3

Average Position Consensus of

Cluster-based Heterogeneous Multi-agent

Systems

3.1 Introduction

This chapter provides a preface of the cluster-based MAS position consensus methods ahead. The

difference is that no ML method is utilized in the current chapter to reach the agreement. This

chapter presents the cluster-based average position consensus for two different scenarios in 2-D

and 3-D (to show the results in higher dimensions and better clarification) spaces.

3.2 Methodology

In this chapter, agents of a MAS change position as they move. Hence, the proposed MAS topology

has been chosen as dynamic topology since it depends on the location and relations between agents.

As shown in Figure 3.1, the proposed MAS includes N agents in P various clusters. The sets of

49

Figure 3.1: A generic illustration of the proposed cluster-based MAS structure, including N agents and P

clusters, which other forms can be extracted from this structure.

agents and clusters are Agent = {Agent1, Agent2, ..., AgentN} and Cluster = {Cluster1, Cluster2,

..., ClusterP}, respectively. The sets of various clusters in terms of agents are given below

Cluster1 = {Agent1,Agent2, ...,AgentK},

Cluster2 = {AgentK+1,AgentK+2, ...,AgentL},

...

ClusterP = {AgentM+1,AgentM+2, ...,AgentN}.

Agents of each cluster contain the same structure and same goal. Moreover, the agents’ structure

of one cluster is different from the agents’ architecture of another group. Although each cluster

has an independent goal, all P clusters could have a global goal. Hence, the clusters’ goals could

be different or the same.

In the graph G = (V ,E) including a set of vertices V and a set of edges E ⊆ {(i, j)|i ∈ V , j ∈ V }

50

(Figure 3.1), the adjacency matrix is described as A
N×N

= [ai j] ∈ {0,1}, where

ai j =

1 if (vi,v j) ∈ E ,

0 otherwise.

(3.1)

Moreover, the degree matrix is defined as D
N×N

= diag(d1,d2, ...,dN), where for i∈ {1,2, ...,N} and

the neighborhood N (i)≜ { j ∈ V : (i, j) ∈ E }, the degree of ith agent is given by

di ≜ |N (i)|. (3.2)

Using the adjacency matrix A
N×N

and degree matrix D
N×N

, the Laplacian matrix L
N×N

is defined by

L ≜ D−A, (3.3)

where

Li j =

di if i = j,

−ai j if i ̸= j.

(3.4)

Regarding the above definitions, two types of position consensus based on different or global goals

are explained in the following:

3.2.1 Condition for Position Consensus of Clusters with Various Goals

Since we considered a complete graph as a MAS including P clusters, the adjacency matrices for

all P clusters, including N agents, are introduced in the set of Adjacency = {A1, A2, ..., AP} as

51

follows:

A1
K×K

=

0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

, A2
(L−K)×(L−K)

=

0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

, ..., AP
(N−M)×(N−M)

=

0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

.

Furthermore, the set of Degree = {D1, D2, ..., DP} defines the degree matrices for all P clusters

and N agents.

D1
K×K

=

K−1 0 · · · 0

0 K−1 · · · 0

...
...

. . .
...

0 0 · · · K−1

, D2
(L−K)×(L−K)

=

L−K−1 0 · · · 0

0 L−K−1 · · · 0

...
...

. . .
...

0 0 · · · L−K−1

, ...,

DP
(N−M)×(N−M)

=

N−M−1 0 · · · 0

0 N−M−1 · · · 0

...
...

. . .
...

0 0 · · · N−M−1

.

Note that the number of agents in one cluster is not necessarily equal to the number of agents in

other clusters. According to the obtained adjacency and degree matrices for all P clusters, the

graph Laplacian of Pth cluster is given by

LP
(N−M)×(N−M)

= DP−AP =

N−M−1 −1 · · · −1

−1 N−M−1 · · · −1

...
...

. . .
...

−1 −1 · · · N−M−1

.

52

It should be emphasize that vector vP =
[

vP1 , . . . ,vPN−M

]T
∈ R

n is an eigenvector of Laplacian

matrix LP of eigenvalue λP if

LPvP = λPvP. (3.5)

Vector vP satisfies the following relation for Pth cluster,

vT
PLPvP =

1
2 ∑
(i, j)∈E

(

vPi
− vPj

)2
≥ 0. (3.6)

Here, LP is positive semi-definite. Since each cluster is a complete graph, then the graph Laplacian

LP has an eigenvalue equal to 0 (λP1 = 0), and the corresponding eigenvector 1 ∈ R
n. According

to the connectivity of Pth cluster, the following is given for eigenvector vP = 1.

vT
PLPvP = 0. (3.7)

Since the Pth cluster is a connected graph, then λP2 is strictly positive and λP2 > 0. Therefore,

for the Pth cluster, the consensus can be achieved. The eigenvalues of Laplacian matrix LP in

ascending order are given by

0 = λP1 < λP2 ≤ ·· · ≤ λPN−M
.

Therefore, for complete graph G of Pth cluster, including N−M agents, the Laplacian spectrum

(the set of eigenvalues) is {0,N−M, ...,N−M}.

Note: If each group of agents is considered as an agent, then the adjacency, degree, and Laplacian

matrices for P clusters are given by

A
P×P

=

0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

, D
P×P

=

P−1 0 · · · 0

0 P−1 · · · 0

...
...

. . .
...

0 0 · · · P−1

.

Hence, the Laplacian matrix is obtained as follows:

53

L
P×P

= D−A =

P−1 −1 · · · −1

−1 P−1 · · · −1

...
...

. . .
...

−1 −1 · · · P−1

.

3.2.1.1 Average Position Consensus of Clusters with Various Goals in 2-D Space

Assume that in 2-D space a random initial position state of ith agent in Pth cluster is given by the

pair of (xPi
(0),yPi

(0)). The ith agent communicates with the corresponding neighbors to update its

state at each time step t. Therefore, at each time step t, the state updating is performed by

xPi
(t +1) = xPi

(t)+ϒ ∑
j∈N (i)

ai j(xPj
(t)− xPi

(t)),

yPi
(t +1) = yPi

(t)+ϒ ∑
j∈N (i)

ai j(yPj
(t)− yPi

(t)),

(3.8)

where xP(t)≜
[

xP1(t), . . . ,xPN−M
(t)
]T
∈Rn, yP(t)≜

[

yP1(t), . . . ,yPN−M
(t)
]T
∈Rn, and ϒ= 1/deg(G)

in which deg(G) is the degree of graph G (multi-agent system). Moreover,

xP(t +1) = PϒxP(t), (3.9)

where Pϒ is the Perron matrix and is given by

Pϒ = I−ϒL. (3.10)

54

In the Perron matrix of Equation (3.10), I and L are identity and Laplacian matrices, respectively.

For Pth cluster the average vectors xPavg
and yPavg

are given by

xPavg
≜

1T xP(0)
N−M

1,

yPavg
≜

1T yP(0)
N−M

1.

(3.11)

The error vectors are defined as follows:

ex
P(t)≜ xP(t)− xPavg

,

e
y
P(t)≜ yP(t)− yPavg

.

(3.12)

The purpose of the average consensus is to minimize the error during the time as below:

ex
P(t)→ 0 as t→ ∞,

e
y
P(t)→ 0 as t→ ∞.

(3.13)

3.2.1.2 Average Position Consensus of Clusters with Various Goals in 3-D Space

Suppose that in 3-D space a random initial position state of ith agent in Pth cluster is given by

the pair of (xPi
(0),yPi

(0),zPi
(0)). The ith agent communicates with the corresponding neighbors to

update its state at each time step t. Hence, at each time step t, the state updating is performed by

xPi
(t +1) = xPi

(t)+ϒ ∑
j∈N (i)

ai j(xPj
(t)− xPi

(t)),

yPi
(t +1) = yPi

(t)+ϒ ∑
j∈N (i)

ai j(yPj
(t)− yPi

(t)),

zPi
(t +1) = zPi

(t)+ϒ ∑
j∈N (i)

ai j(zPj
(t)− zPi

(t)),

(3.14)

55

where xP(t) ≜
[

xP1(t), . . . ,xPN−M
(t)
]T
∈ R

n, yP(t) ≜
[

yP1(t), . . . ,yPN−M
(t)
]T
∈ R

n, and zP(t) ≜
[

zP1(t), . . . ,zPN−M
(t)
]T
∈ R

n. Furthermore, ϒ = 1/deg(G) in which deg(G) is the degree of graph

G . Moreover,

xP(t +1) = PϒxP(t), (3.15)

where Pϒ is the Perron matrix. For Pth cluster the average vectors xPavg
, yPavg

, and zPavg
are given by

xPavg
≜

1T xP(0)
N−M

1,

yPavg
≜

1T yP(0)
N−M

1,

zPavg
≜

1T zP(0)
N−M

1.

(3.16)

The error vectors are defined as follows:

ex
P(t)≜ xP(t)− xPavg

,

e
y
P(t)≜ yP(t)− yPavg

,

ez
P(t)≜ zP(t)− zPavg

.

(3.17)

The purpose of the average consensus is to minimize the error during the time as below:

ex
P(t)→ 0 as t→ ∞,

e
y
P(t)→ 0 as t→ ∞,

ez
P(t)→ 0 as t→ ∞.

(3.18)

3.2.2 Condition for Position Consensus of Clusters with a Global Goal

Assume that all N agents in a graph G = (V ,E) belong to various P clusters (the agents’ dynamics

of each cluster are different from other clusters). It is considered that achieving a global goal

56

requires all network agents are connected. Effectively, this is the same as the original model with

one cluster including heterogeneous agents. This hypothesis aims to reach a global goal even

though the agents’ dynamics are different. The study of agents’ dynamics is beyond the scope of

this section, and the purpose is only to introduce the model for use in the following chapters. In

this regard, the adjacency and degree matrices of Figure 3.1 are defined as below:

A
N×N

=

0 1 · · · 1

1 0 · · · 1

...
...

. . .
...

1 1 · · · 0

, D
N×N

=

N−1 0 · · · 0

0 N−1 · · · 0

...
...

. . .
...

0 0 · · · N−1

.

Hence, the Laplacian matrix is obtained as follows:

L
N×N

= D−A =

N−1 −1 · · · −1

−1 N−1 · · · −1

...
...

. . .
...

−1 −1 · · · N−1

.

An eigenvector of Laplacian matrix L of eigenvalue λ is defined by vector v = [v1, . . . ,vN]
T ∈ R

n.

Vector v must satisfy the following equation,

Lv = λv. (3.19)

Assuming for graph G , vector v satisfies the following inequality,

vT Lv =
1
2 ∑
(i, j)∈E

(

vi− v j

)2
≥ 0. (3.20)

57

The Laplacian matrix L is positive semi-definite. Since G is a fully connected graph, the following

equation is given for eigenvector v = 1.

vT Lv = 0. (3.21)

Therefore, λ1 = 0, and λ2 > 0 is strictly positive. According to the values of λ1 and λ2, the

consensus can be achieved for the agents of graph G . The eigenvalues of Laplacian matrix L in

ascending order are given by

0 = λ1 < λ2 ≤ ·· · ≤ λN ,

and the Laplacian spectrum is {0,N, ...,N} for complete graph G including N agents.

3.2.2.1 Average Position Consensus of Clusters with a Global Goal in 2-D Space

Assume that in 2-D space a random initial position state of ith agent in graph G is given by the pair

of (xi(0),yi(0)). The ith agent communicates with the corresponding neighbors to update its state

at each time step t. Therefore, at each time step t, the state updating is performed by

xi(t +1) = xi(t)+ϒ ∑
j∈N (i)

ai j(x j(t)− xi(t)),

yi(t +1) = yi(t)+ϒ ∑
j∈N (i)

ai j(y j(t)− yi(t)),

(3.22)

where x(t) ≜ [x1(t), . . . ,xN(t)]
T ∈ R

n, and y(t) ≜ [y1(t), . . . ,yN(t)]
T ∈ R

n. Furthermore, ϒ =

1/deg(G) in which deg(G) is the degree of graph G . Moreover,

x(t +1) = Pϒx(t), (3.23)

58

where Pϒ is the Perron matrix. For graph G the average vectors xavg and yavg are given by

xavg ≜
1T x(0)

N
1,

yavg ≜
1T y(0)

N
1.

(3.24)

The error vectors are defined as follows:

ex(t)≜ x(t)− xavg,

ey(t)≜ y(t)− yavg.

(3.25)

The purpose of the average consensus is to minimize the error during the time as below:

ex(t)→ 0 as t→ ∞,

ey(t)→ 0 as t→ ∞.

(3.26)

3.2.2.2 Average Position Consensus of Clusters with a Global Goal in 3-D Space

Suppose that in 3-D space a random initial position state of ith agent in graph G is given by the pair

of (xi(0),yi(0),zi(0)). The ith agent communicates with the corresponding neighbors to update its

state at each time step t. Therefore, at each time step t, the state updating is performed by

xi(t +1) = xi(t)+ϒ ∑
j∈N (i)

ai j(x j(t)− xi(t)),

yi(t +1) = yi(t)+ϒ ∑
j∈N (i)

ai j(y j(t)− yi(t)),

zi(t +1) = zi(t)+ϒ ∑
j∈N (i)

ai j(z j(t)− zi(t)).

(3.27)

In the Equation (3.27), x(t) ≜ [x1(t), . . . ,xN(t)]
T ∈ R

n, y(t) ≜ [y1(t), . . . ,yN(t)]
T ∈ R

n, and z(t) ≜

[z1(t), . . . ,zN(t)]
T ∈ R

n. Furthermore, ϒ = 1/deg(G) in which deg(G) is the degree of graph G .

59

Moreover,

x(t +1) = Pϒx(t), (3.28)

where Pϒ is the Perron matrix. For graph G the average vectors xavg, yavg, and zavg are given by

xavg ≜
1T x(0)

N
1,

yavg ≜
1T y(0)

N
1,

zavg ≜
1T z(0)

N
1.

(3.29)

The error vectors are defined as follows:

ex(t)≜ x(t)− xavg,

ey(t)≜ y(t)− yavg,

ez(t)≜ z(t)− zavg.

(3.30)

The purpose of the average consensus is to minimize the error during the time as below:

ex(t)→ 0 as t→ ∞,

ey(t)→ 0 as t→ ∞,

ez(t)→ 0 as t→ ∞.

(3.31)

60

3.3 Results and Discussion

This section provides the results of position consensus for 12 agents of four different clusters in a

MAS. The number of agents in each cluster are

3 agents ∈Cluster1,

2 agents ∈Cluster2,

4 agents ∈Cluster3,

3 agents ∈Cluster4.

3.3.1 Reaching Position Consensus of Clusters with Various Goals in 2-D

Space

Each cluster of this MAS is considered as a sub-MAS and a complete graph. In this regard, the

graph Laplacian of four various clusters of the mentioned MAS with an undirected topology are as

below:

L1
3×3

= D1
3×3
− A1

3×3
=

2 0 0

0 2 0

0 0 2

−

0 1 1

1 0 1

1 1 0

=

2 −1 −1

−1 2 −1

−1 −1 2

,

L2
2×2

= D2
2×2
− A2

2×2
=

(

1 0

0 1

)

−

(

0 1

1 0

)

=

(

1 −1

−1 1

)

,

L3
4×4

= D3
4×4
− A3

4×4
=

3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

−

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

=

3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

,

L4
3×3

= D4
3×3
− A4

3×3
=

2 0 0

0 2 0

0 0 2

−

0 1 1

1 0 1

1 1 0

=

2 −1 −1

−1 2 −1

−1 −1 2

.

61

Table 3.1: Initial and target positions of all 12 agents for four different clusters in 2-D space (various goals).

Cluster

Agent
1st Agent 2nd Agent 3rd Agent 4th Agent Target Position

Cluster 1 (1.1436,−1.5512) (−0.9147,0.9298) (0.1798,0.9019) Ð (0.2878,−0.0419)
Cluster 2 (−0.9833,0.1383) (0.3848,−0.3784) Ð Ð (−0.2993,−0.1201)
Cluster 3 (0.3257,0.1431) (1.2963,1.6050) (1.0992,1.3491) (0.6532,−0.4484) (0.8436,0.6622)
Cluster 4 (−0.5051,0.1684) (−0.4760,−1.1205) (−2.0516,0.4007) Ð (−1.0109,−0.1838)

Table 3.2: Initial and target positions of all 12 agents for four different clusters in 3-D space (various goals).

Cluster

Agent
1st Agent 2nd Agent 3rd Agent 4th Agent Target Position

Cluster 1 (1.5270,−0.1461,1.2347) (0.4669,−0.5320,−0.2296) (−0.2097,1.6821,−1.5062) Ð (0.6526,0.2104,0.2756)
Cluster 2 (0.6252,−0.8757,−0.4446) (0.1832,−0.4838,−0.1559) Ð Ð (0.4042,−0.6798,−0.3003)
Cluster 3 (−1.0298,−0.7120,0.2761) (0.9492,−1.1742,−0.2612) (0.3071,−0.1922,0.4434) (0.1352,−0.2741,0.3919) (0.0904,−0.5881,0.2126)
Cluster 4 (0.5152,1.5301,−1.2507) (0.2614,−0.2490,−0.9480) (−0.9415,−1.0642,−0.7411) Ð (−0.0549,0.0723,−0.9799)

Using (3.19), the set of eigenvalues of each Laplacian matrix (Laplacian spectrum) are obtained

as follows:

Sλ
1 = {0,3,3},

Sλ
2 = {0,2},

Sλ
3 = {0,4,4,4},

Sλ
4 = {0,3,3}.

From the aforementioned eigenvalue sets, it is realized that each cluster is a connected graph.

Therefore, reaching a consensus is possible for the agents of each cluster. Table 3.1 shows that

the agents of each cluster converge to a specific target position. In this regard, all three agents of

Cluster1 converge to the point of (0.2878,−0.0419). Moreover, the agents of Cluster2, Cluster3,

and Cluster4 converge to (−0.2993,−0.1201), (0.8436,0.6622), and (−1.0109,−0.1838), respec-

tively. Figures 3.2-3.4 illustrate reaching consensus of 12 agents in four different clusters in 2-D

space.

62

(a) Cluster-based consensus on x−direction. (b) Cluster-based consensus on y−direction.
Figure 3.2: 12 agents of four different clusters reach consensus on x−direction and y−direction with random
initial x and y during 10 seconds.

Figure 3.3: The cluster-based movement trajectory of 12 agents in four clusters on xy−direction.

(a) Simulation at step 1. (b) Simulation at step 20. (c) Simulation at step 50.
Figure 3.4: A simulation of 12 agents’ cluster-based motion at three various steps in 2-D space.

63

Table 3.3: Initial and target positions of all 12 agents for four different clusters in 2-D space (global goal).

Cluster

Agent
1st Agent 2nd Agent 3rd Agent 4th Agent Target Position

Cluster 1 (−0.8236,−0.8314) (−1.5771,−0.9792) (0.5080,−1.1564) Ð (−0.3135,−0.3286)
Cluster 2 (0.2820,−0.5336) (0.0335,−2.0026) Ð Ð (−0.3135,−0.3286)
Cluster 3 (−1.3337,0.9642) (1.1275,0.5201) (0.3502,−0.0200) (−0.2991,−0.0348) (−0.3135,−0.3286)
Cluster 4 (0.0229,−0.7982) (−0.2620,1.0187) (−1.7502,−0.1332) Ð (−0.3135,−0.3286)

Table 3.4: Initial and target positions of all 12 agents for four different clusters in 3-D space (global goal).

Cluster

Agent
1st Agent 2nd Agent 3rd Agent 4th Agent Target Position

Cluster 1 (−0.8657,−0.4140,1.7463) (−1.0431,−0.4383,0.1554) (−0.2701,2.0034,−1.2371) Ð (−0.1011,0.4564,−0.2463)
Cluster 2 (−0.4381,0.9510,−2.1935) (−0.4087,−0.4320,−0.3334) Ð Ð (−0.1011,0.4564,−0.2463)
Cluster 3 (0.9835,0.6489,0.7135) (−0.2977,−0.3601,0.3174) (1.1437,0.7059,0.4136) (−0.5316,1.4158,−0.5771) (−0.1011,0.4564,−0.2463)
Cluster 4 (0.9726,−1.6045,0.1440) (−0.5223,1.0289,−1.6387) (0.1766,1.4580,−0.7601) Ð (−0.1011,0.4564,−0.2463)

3.3.2 Reaching Position Consensus of Clusters with Various Goals in 3-D

Space

Here, all agents of different clusters reach consensus in a three-dimensional (3-D) space. The steps

of doing this experiment are similar to the efforts of Subsection 3.3.1. The only difference is the

use of (x,y,z) space instead of (x,y) space. Table 3.2 demonstrates that the agents of each clus-

ter converge to a specific target position. In this regard, all three agents of Cluster1 converge to

the point of (0.6526,0.2104,0.2756). Furthermore, the agents of Cluster2, and Cluster3 converge

to (0.4042,−0.6798,−0.3003), and (0.0904,−0.5881,0.2126), respectively. Plus, the agents of

Cluster4 converge to the target position of (−0.0549,0.0723,−0.9799). Figures 3.5 and 3.6 illus-

trate the discussed convergence in 3-D space. Figure 3.5 shows 12 agents’ cluster-based conver-

gence of four different clusters on x−direction, y−direction, and z−direction with random initial

x, y, and z during 10 seconds. Moreover, Figure 3.6 shows 12 agents’ cluster-based movement

trajectory and motion simulation in four different clusters on xyz−direction.

64

(a) Consensus on x−direction. (b) Consensus on y−direction.

(c) Consensus on z−direction.
Figure 3.5: 12 agents of four different clusters reach consensus on x−direction, y−direction, and z−direction
with random initial x, y, and z during 10 seconds.

(a) The cluster-based xyz movement trajectory. (b) Simulation at step 50 in 3-D space.
Figure 3.6: 12 agents’ cluster-based movement trajectory and motion simulation in four clusters on
xyz−direction.

65

(a) Consensus on x−direction. (b) Consensus on y−direction.
Figure 3.7: 12 agents reach consensus on x−direction and y−direction with random initial x and y during
one second.

Figure 3.8: The movement trajectory of 12 agents on xy−direction.

(a) Simulation at step 1. (b) Simulation at step 20. (c) Simulation at step 40.
Figure 3.9: A simulation of 12 agents’ motion at three various steps in 2-D space.

66

3.3.3 Reaching Position Consensus of Clusters with a Global Goal in 2-D

Space

In this subsection all agents are communicated with each others and it is assumed that the en-

tire MAS is a complete graph. Therefore, the graph Laplacian of MAS (including four different

clusters) is defined as below:
L

12×12
= D

12×12
− A

12×12

Using (3.19), the set of eigenvalues of Laplacian matrix L
12×12

is obtained as follows:

Sλ = {0,12,12,12,12,12,12,12,12,12,12,12}.

Hence, reaching a consensus is possible for the agents of the MAS. In this scenario, the initial

position of each agent is randomly selected. The goal is to reach a common position (consensus on

position) for all agents. In this regard, the initial positions of all agents are as Table 3.3. At each

time step, agents depending on their current state (current position), make a forward movement

(action) to reach the next state (next position), and consequently attain the position consensus.

Table 3.3 demonstrates that the agents of all clusters converge to a common target position. In this

regard, all agents converge to the point of (−0.3135,−0.3286). Reaching the consensus on x− and

y−directions (position vs. time) are demonstrated in Figures 3.7a and 3.7b, respectively. All agents

have reached a position consensus in the 0.4th seconds. In Figure 3.8 the movement trajectory of

all agents is illustrated in both x− and y−directions (X vs. Y). Furthermore, the movement of

all agents is simulated for 40 steps. Three various steps of this simulation are demonstrated in

Figure 3.9.

67

(a) Consensus on x−direction. (b) Consensus on y−direction.

(c) Consensus on z−direction.
Figure 3.10: 12 agents reach consensus on x−direction, y−direction, and z−direction with random initial x,
y, and z during one second.

(a) The xyz movement trajectory. (b) Simulation at step 40 in 3-D space.
Figure 3.11: 12 agents’ movement trajectory and motion simulation on xyz−direction.

68

3.3.4 Reaching Position Consensus of Clusters with a Global Goal in 3-D

Space

All 12 agents reach consensus in a three-dimensional (3-D) space in this experiment. The stages of

doing this experiment are identical to the steps of Subsection 3.3.3. The only dissimilarity is using

(x,y,z) space instead of (x,y) space. Table 3.4 demonstrates that all agents converge to a global

target position. In this regard, all agents converge to the point of (−0.1011,0.4564,−0.2463).

Figures 3.10 and 3.11 illustrate the discussed convergence in the 3-D space. Figure 3.10 shows

12 agents convergence on x−direction, y−direction, and z−direction with random initial x, y, and

z during one second. Moreover, Figure 3.11 shows 12 agents’ movement trajectory and motion

simulation on xyz−direction.

It is worth mentioning that for developing and simulating this chapter’s method, MATLAB Pro-

gramming Language is used.

3.4 Conclusions

This chapter considered the average position consensus of cluster-based, heterogeneous MAS us-

ing non-learning methods. We presented the discussed average position consensus in two scenarios

for 2-D and 3-D spaces. First, the average position consensus was performed when each cluster’s

goal differed from the other groups. Second, the average position consensus was achieved when

all clusters’ aim was global. The numerical and simulation results show the successful position

consensus for the proposed cluster-based, heterogeneous MAS in 2-D and 3-D spaces.

69

Chapter 4

Position Consensus of Multi-agent

Reinforcement Learning Systems: The

Effect of Immediate Rewards

4.1 Introduction

This chapter studies the consensus problem of a leaderless, homogeneous, MARL system using

actor-critic algorithms with and without malicious agents. The goal of each agent is to reach the

consensus position with the maximum cumulative reward. Although the reward function converges

in both scenarios, in the absence of the malicious agent, the cumulative reward is higher than with

the malicious agent present. We consider here various immediate reward functions. First, we

study the immediate reward function based on Manhattan distance. In addition to proposing three

different immediate reward functions based on Euclidean, n-norm, and Chebyshev distances, we

have rigorously shown which method has a better performance based on a cumulative reward for

each agent and the entire team of agents. Finally, we present a combination of various immediate

reward functions that yields a higher cumulative reward for each agent and the team of agents. By

70

increasing the agents’ cumulative reward using the combined immediate reward function, we have

demonstrated that the cumulative team reward in the presence of a malicious agent is comparable

with the cumulative team reward in the absence of the malicious agent. The claims have been

proven theoretically, and the simulation confirms theoretical findings.

4.2 Background

For decision-making, each agent applies the information received from the environment. The finite

MDP is considered to represent the dynamics of the environment for decision-making in choosing

the best action. An MDP for a MARL system can be defined by a 5-tuple M =
〈

S,A, p,R,γ
〉

,

where S = S1×S2× ...×SN is a finite set and Cartesian product of environmental states, A = A1×

A2× ...×AN is a finite joint action set for all agents so that Ai = a1×a2× ...×aK , i = 1,2, ...,N, is

a set of actions of each agent, p : S×A×S
′
→ [0,1], describes the environment’s dynamics is the

state-transition probability function that agents starts in state S, takes action A, and ends in state

S
′
. Further, R : S×A×S

′
→ IRn is a reward function. For ith agent Ri

t+1 = E
[

ri
t+1|st = s,ai

t = a
]

,

where ri
t+1 indicates the immediate reward, st shows the state, and ai

t is action at time t. In an MDP

for a MARL system, the cumulative reward is expected to be maximized for all agents, as well as

the team of agents [205]. The trade-off between an immediate reward and potential future reward

is determined by the discount factor γ ∈ [0,1).

The MAS is considered as the graph G = (V ,E), where V is the set of all vertices (agents), and

E ⊆ {(i, j)|i ∈ V , j ∈ V } is the set of all edges (communication links between agents). The agents

i and j are neighbors if and only if (i, j) ∈ E .

4.3 Methodology

This chapter investigates increasing the agents’ cumulative reward for two scenarios: with and

without malicious agents in the MARL system.

71

Figure 4.1: Multi-agent actor-critic architecture with N agents. The green arrows indicate transferring
correct data between neighboring agents.

4.3.1 Without Malicious Agents

The goal of each agent is to reach the position consensus in the environment with the maximum

cumulative reward. The considered environment in this chapter is a grid world. We consider a MAS

with corresponding actor-critic architecture [128]. An actor-critic architecture is assigned to each

agent in the MAS, where the neighboring agents communicate with each other via the critic unit

as illustrated in Figure 4.1. Each agent is trained to learn the local policy utilizing decentralized

learning.

The set of independent local policies for N agents is described as Policy = {π1,π2, ...,πN}. At time

t = 0, all agents are assigned the initial state s0. The actor unit of ith agent uses the policy function

πi(a
i
0|s0) to perform the action ai

0 related to the initial state s0. At time t + 1, all agents receive

state st+1, as well as a local immediate reward ri
t+1 from the environment according to the action

ai
t they performed at time t. Each agent keeps the immediate reward information ri

t+1; however,

they are permitted to estimate the immediate reward of the network. Based on the reward ri
t+1

and state st+1, the critic unit of ith agent examines whether the actor unit has taken the appropriate

action to improve the agent’s selection in the following steps. For this purpose, at time t + 1,

the critic unit estimates the reward r̂i
t+1 and compares it with the environmental received reward

ri
t+1. The estimation of r̂i

t+1 is done using a four-layer NN including input layer (environmental

72

received states are fed to this layer), two hidden dense layers, and a dense output layer to return

the estimated reward r̂i
t+1.

The comparison between the estimated reward r̂i
t+1 and the environmental received reward ri

t+1 is

carried out using the temporal difference (TD) error. The higher value of the TD error means the

greater difference between the actual reward ri
t+1 and expected reward r̂i

t+1. The TD error for the

ith agent, δ i
t , is given by

δ i
t = Ri

t+1 + γV i
t (st+1)−V i

t (st), (4.1)

where V i
t (st) is the critic value function at time t defined by

V i
t (st) = E

[

∞

∑
t=0

γ tri
t+1|st = s

]

, (4.2)

where st is state of ith agent at time t which is defined as the current position (xi,yi) in 2-D space.

Using (4.1) and (4.2), the TD error method yields

V i
t+1(st) =V i

t (st)+αδ i
t , (4.3)

where α is the learning rate. The TD error value of ith agent is sent to the actor unit of the current

agent to improve the following action selection, as well as to the critic units of the neighboring

agents through the communication links using a consensus protocol.

In the utilized algorithm, the consensus step is as follows:

λ i
t+1← ∑ j∈N wt(i, j) · λ̃

j
t ,

vi
t+1← ∑ j∈N wt(i, j) · ṽ

j
t ,

(4.4)

where λ and λ̃ are the actual and estimated multi-agent reward function parameters, respectively.

Furthermore, v and ṽ are the actual and estimated multi-agent value function parameters, respec-

73

tively. According to [132], and [128] the initialization of the parameters is performed for λ , λ̃ , v,

and ṽ at time t = 0 for all N agents. The discussed parameters should be updated and added to the

list of previous values at t + 1. Moreover, vi of each agent describes the network value function

approximation V i
t (st ;vi

t). Hence,

λ̃ i
t ← λ i

t +αv,t

(

ri
t+1− r̂t+1

(

λ i
t

))

∇λ r̂t+1
(

λ i
t

)

(4.5)

ṽi
t ← vi

t +αv,tδ
i
t ∇vV

i
t

(

st ;vi
t

)

. (4.6)

Besides, N is the set of neighbors of ith agent, and Wt = [wt(i, j)]N×N is Metropolis weight matrix

specified by

Wt =

1
1+max{dt(i),dt(j)}

if (i, j) ∈ E ,

1− ∑
(i,k)∈E

Wt(i,k) if i = j,

0 otherwise,

(4.7)

with dt(i) and dt(j) being the degree of agents i and j, respectively. Therefore, the weight on the

message transferred from agent i to agent j at time t is wt(i, j). The consensus step (4.4) must be

done by all N agents in the MARL system to reach the position consensus. Updating the reward

function parameter λ i and value function parameter vi enables the ith agent to update its policy

function πi(a
i
t |st). Note that the structure of weight matrix Wt depends on the communication

graph topology [128].

4.3.2 With Malicious Agents

One of the problems that can occur with any MAS is an incompatibility of one or more agents

with the other agents. These types of agents, termed malicious agents, may be internally disturbed

and can have a negative effect on MAS performance. In this chapter, the malicious agent does not

apply the consensus updates and skips the consensus step of (4.4), which results in an unbalanced

consensus throughout the entire MAS [132]. An actor-critic MARL system with a malicious agent

74

Figure 4.2: Multi-agent actor-critic architecture with N agents. The green arrows indicate transferring
correct data between neighboring agents, and the red arrow represents transmitting inaccurate data from
malicious agent to neighboring agents.

is illustrated in Figure 4.2. At the time t, the malicious agent receives correct data from the critic

units of neighboring agents, including TD error. However, the malicious agent sends inaccurate in-

formation to neighboring agents’ critic units via communication links or performs adverse actions,

causing this agent to maximize its cumulative reward. Simultaneously, the cumulative rewards of

neighboring agents are reduced due to improper information they receive from the malicious agent.

MAS’s cumulative team reward is reduced compared to the situation where there is no malicious

agent in the system [132]. In the following, the immediate reward function and its effect on the

system performance are analyzed.

4.3.3 Reward Functions

Choosing an appropriate reward function is a significant challenge in RL algorithms. There is

no specific rule to select or define an immediate reward function. In general, one should select

the immediate reward function based on the RL system’s application. We consider five various

immediate reward functions, based on multiple distance metrics, to reach the position consensus.

For all the following distance metrics and immediate reward functions, (x,y) and (xdes,ydes) are

the current position and the desired position, respectively. Moreover, (xi,yi) and (xi
des,y

i
des) are the

current position and the desired position of the ith agent, sequentially.

75

4.3.3.1 Manhattan Immediate Reward

Each agent’s immediate reward in 2-D space is determined based on the Manhattan distance: Md =

|x− xdes|+ |y− ydes|. The Manhattan immediate reward function for ith agent is given by [132]:

Mri
t+1 =−

∣

∣xi− xi
des

∣

∣−
∣

∣yi− yi
des

∣

∣ . (4.8)

4.3.3.2 Euclidean Immediate Reward

Based on the Euclidean distance Ed , we define the Euclidean immediate reward function for the ith

agent in 2-D space

Eri
t+1 =−

(

∣

∣xi− xi
des

∣

∣

2
+
∣

∣yi− yi
des

∣

∣

2
)1/2

. (4.9)

4.3.3.3 n-norm Immediate Reward

Using the n-norm metric Nd = (|x− xdes|
n + |y− ydes|

n)1/n, the immediate reward function for the

ith agent in 2-D space is given by

Nri
t+1 =−

(

∣

∣xi− xi
des

∣

∣

n
+
∣

∣yi− yi
des

∣

∣

n
)1/n

, (4.10)

where n≥ 3.

4.3.3.4 Chebyshev Immediate Reward

Utilizing the Chebyshev distance metric Čd = max(|x−xdes|, |y−ydes|), the Chebyshev immediate

reward function for ith agent in 2-D space is given by

Čri
t+1 = max

(

−
∣

∣xi− xi
des

∣

∣ ,−
∣

∣yi− yi
des

∣

∣

)

. (4.11)

76

4.3.3.5 Combined Immediate Reward

Based on the immediate reward functions (4.8)-(4.11), the combined immediate reward function

for ith agent in 2-D space is given by

Cri
t+1 = max

(

Mri
t+1,Eri

t+1,Nri
t+1,Čri

t+1

)

. (4.12)

Equation (4.12), in each episode and for all agents, calculates the various immediate rewards of

(4.8)-(4.11) and selects the maximum reward based on the returned values. This method uses other

immediate reward functions to get the largest cumulative reward during each episode.

Theorem 4.1 Let Mri
t+1 and Eri

t+1 be Manhattan and Euclidean immediate reward functions for

ith agent in 2-D space, then the Euclidean cumulative team reward is greater than or equal to the

Manhattan cumulative team reward for N agents in 2-D space.

Proof 4.1 For ith agent in 2-D space, |∆x|= |xi−xi
des|, and |∆y|= |yi−yi

des|. According to |∆x|2+

|∆y|2≤ (|∆x|+ |∆y|)2 and by considering the positive roots of both sides of inequality, the following

is valid

−
∣

∣xi− xi
des

∣

∣−
∣

∣yi− yi
des

∣

∣≤−
(

∣

∣xi− xi
des

∣

∣

2
+
∣

∣yi− yi
des

∣

∣

2
)1/2

. (4.13)

From (4.13), it is concluded that the Manhattan immediate reward is less than or equal to the

Euclidean immediate reward. Therefore, from Mri
t+1 ≤ Eri

t+1 it is obvious that

E
[

Mri
t+1|st = s,ai

t = a
]

≤ E
[

Eri
t+1|st = s,ai

t = a
]

(4.14)

MRi
t+1 ≤ ERi

t+1, (4.15)

where MRi
t+1 and ERi

t+1 are Manhattan and Euclidean cumulative rewards for ith agent in 2-D

77

space, respectively. Using (4.15) we have

1
N

N

∑
i=1

MRi
t+1 ≤

1
N

N

∑
i=1

ERi
t+1. (4.16)

Hence, the Euclidean cumulative team reward is greater than or equal to the Manhattan cumulative

team reward for N agents in 2-D space.

Remark 4.1 Since Manhattan and Euclidean distances are called 1-norm and 2-norm distances,

respectively, then the proof of Theorem 4.1 can be expanded to show that the n-norm cumulative

team reward (n≥ 3) is greater than or equal to the Euclidean cumulative team reward for N agents

in 2-D space.

Theorem 4.2 Let Eri
t+1 and Čri

t+1 be Euclidean and Chebyshev immediate reward functions for

ith agent in 2-D space, then the Chebyshev cumulative team reward is greater than or equal to the

Euclidean cumulative team reward for N agents in 2-D space.

Proof 4.2 Based on triangle inequality, the product of Chebyshev distance is always less than or

equal to the outcome of Euclidean distance (Čd ≤ Ed). Hence, the following is valid

−
(

|∆x|2 + |∆y|2
)1/2
≤−max(|∆x|, |∆y|) . (4.17)

We know that

−max(|∆x|, |∆y|)≤max(−|∆x|,−|∆y|) . (4.18)

Using (4.17) and (4.18) yields

−
(

∣

∣xi− xi
des

∣

∣

2
+
∣

∣yi− yi
des

∣

∣

2
)1/2
≤max

(

−
∣

∣xi− xi
des

∣

∣ ,−
∣

∣yi− yi
des

∣

∣

)

. (4.19)

78

From (4.19), it is derived that Eri
t+1 ≤ Čri

t+1. Afterward,

E
[

Eri
t+1|st = s,ai

t = a
]

≤ E
[

Čri
t+1|st = s,ai

t = a
]

(4.20)

ERi
t+1 ≤ ČRi

t+1, (4.21)

where ČRi
t+1 is the Chebyshev cumulative reward for ith agent in 2-D space. Using (4.21) we have

1
N

N

∑
i=1

ERi
t+1 ≤

1
N

N

∑
i=1

ČRi
t+1. (4.22)

Therefore, the Chebyshev cumulative team reward is greater than or equal to the Euclidean cumu-

lative team reward for N agents in 2-D space.

Theorem 4.3 Let Mri
t+1, Eri

t+1, Nri
t+1, Čri

t+1, and Cri
t+1 be Manhattan, Euclidean, n-norm, Cheby-

shev, and combined immediate reward functions for ith agent in 2-D space, respectively. Then, the

combined cumulative team reward for N agents is greater than or equal to the maximum of the

Manhattan, Euclidean, n-norm, and Chebyshev cumulative team rewards for the same N agents in

2-D space during each episode.

Proof 4.3 From (4.12) it follows

E
[

Cri
t+1|st = s,ai

t = a
]

≥ E
[

Mri
t+1,Eri

t+1,Nri
t+1,Čri

t+1|st = s,ai
t = a

]

. (4.23)

Given that Mri
t+1, Eri

t+1, Nri
t+1, and Čri

t+1 are independent functions, also by taking the maximum

function from both sides of inequality, one has

E
[

Cri
t+1|st = s,ai

t = a
]

≥max
(

E
[

Mri
t+1|st = s,ai

t = a
]

,E
[

Eri
t+1|st = s,ai

t = a
]

,

E
[

Nri
t+1|st = s,ai

t = a
]

,E
[

Čri
t+1|st = s,ai

t = a
]

)

.

(4.24)

79

As a consequence, we have

CRi
t+1 ≥max

(

MRi
t+1,ERi

t+1,NRi
t+1,ČRi

t+1

)

, (4.25)

where NRi
t+1 and CRi

t+1 are n-norm and combined cumulative rewards, respectively. From (4.25),

it follows that the combined cumulative reward for ith agent is greater than or equal to the maxi-

mum of Manhattan, Euclidean, n-norm, and Chebyshev cumulative rewards for the same agent in

2-D space during each episode. Therefore,

1
N

N

∑
i=1

CRi
t+1 ≥

N

∑
i=1

max

(

1
N

MRi
t+1,

1
N

ERi
t+1,

1
N

NRi
t+1,

1
N

ČRi
t+1

)

. (4.26)

We know that

N

∑
i=1

max

(

1
N

MRi
t+1,

1
N

ERi
t+1,

1
N

NRi
t+1,

1
N

ČRi
t+1

)

≥

max
N

∑
i=1

(

1
N

MRi
t+1,

1
N

ERi
t+1,

1
N

NRi
t+1,

1
N

ČRi
t+1

)

.

(4.27)

Using (4.26) and (4.27) yields

1
N

N

∑
i=1

CRi
t+1 ≥max

(

1
N

N

∑
i=1

MRi
t+1,

1
N

N

∑
i=1

ERi
t+1,

1
N

N

∑
i=1

NRi
t+1,

1
N

N

∑
i=1

ČRi
t+1

)

. (4.28)

Hence, at time t, the combined cumulative team reward for N agents is greater than or equal to the

maximum of the Manhattan, Euclidean, n-norm, and Chebyshev cumulative team rewards for the

same N agents in 2-D space during each episode.

Theorem 4.4 Let Mri
t+1, Eri

t+1, Nri
t+1, Čri

t+1, and Cri
t+1 be Manhattan, Euclidean, n-norm, Cheby-

shev, and combined immediate reward functions for ith agent in 2-D space, respectively. Then,

the combined critic value for ith agent is greater than or equal to the maximum of Manhattan,

Euclidean, n-norm, and Chebyshev critic values for the same agent in 2-D space during each

episode.

80

Proof 4.4 Since γ ∈ [0,1) and t ∈ [0,∞), it is concluded that γ t ∈ [0,1]. Therefore, from (4.12) we

have
∞

∑
t=0

γ tCri
t+1 =

∞

∑
t=0

max
(

γ tMri
t+1,γ

tEri
t+1,γ

tNri
t+1,γ

tČri
t+1

)

. (4.29)

We know that

∑
∞
t=0 max

(

γ tMri
t+1,γ

tEri
t+1,γ

tNri
t+1,γ

tČri
t+1

)

≥max∑
∞
t=0

(

γ tMri
t+1,γ

tEri
t+1,γ

tNri
t+1,γ

tČri
t+1

)

.

(4.30)

After simplifying, using (4.29) and (4.30) yields

∞

∑
t=0

γ tCri
t+1 ≥

∞

∑
t=0

(

γ tMri
t+1,γ

tEri
t+1,γ

tNri
t+1,γ

tČri
t+1

)

. (4.31)

By taking expectation with respect to the state from both sides of inequality, the following is

achieved

E
[

∑
∞
t=0 γ tCri

t+1|st = s
]

≥ E

[(

∑
∞
t=0 γ tMri

t+1,∑
∞
t=0 γ tEri

t+1,∑
∞
t=0 γ tNri

t+1,∑
∞
t=0 γ tČri

t+1

)

∣

∣

∣st = s

]

.

(4.32)

Since ∑
∞
t=0 γ tMri

t+1, ∑
∞
t=0 γ tEri

t+1, ∑
∞
t=0 γ tNri

t+1, and ∑
∞
t=0 γ tČri

t+1 are statistically independent,

after simplifying and taking the maximum function from both sides of (4.32), the following is ob-

tained

E

[

∞

∑
t=0

γ tCri
t+1|st = s

]

≥max

(

E

[

∞

∑
t=0

γ tMri
t+1|st = s

]

,E

[

∞

∑
t=0

γ tEri
t+1|st = s

]

,

E

[

∞

∑
t=0

γ tNri
t+1|st = s

]

,E

[

∞

∑
t=0

γ tČri
t+1|st = s

])

.

(4.33)

Therefore,

CV i
t (st)≥max

(

MV i
t (st),EV i

t (st),NV i
t (st),ČV i

t (st)
)

, (4.34)

where MV i
t (st), EV i

t (st), NV i
t (st), ČV i

t (st), and CV i
t (st) are Manhattan, Euclidean, n-norm, Cheby-

shev, and combined critic value functions. Therefore, the combined critic value for ith agent is

81

greater than or equal to the maximum of Manhattan, Euclidean, n-norm, and Chebyshev critic

values for the same agent in 2-D space during each episode.

4.4 Results and Discussion

This section demonstrates results for consensus control of MAS with and without malicious agents,

using the RL decentralized actor-decentralized critic method. To reach the position consensus, a

fully connected graph G is considered, which is illustrated in Figure 4.5. Each actor’s internal

structure consists of a fully-connected NN architecture for training, including three dense layers

with Adam optimizer and categorical cross-entropy loss function. The first and second layers’

activation functions are rectified linear unit (ReLU) functions, and the third layer has the softmax

activation function.

Similar to the actor, each agent’s critic has a three-layer, fully-connected NN structure, including

the ReLU activation functions for the first two layers, utilizing Adam optimizer and MSE loss

function. The NN structure for training the reward function is similar to the architecture used for

training all agents critic. This section’s results are derived from MAT-files, obtained by training

the NN above for each agent. Each MAT-file is a cell of 200 structures (number of episodes to

train); each structure contains state, action, reward, and predicted reward for five agents in 1000

time-steps. In this chapter, evaluating the performance of the utilized RL algorithm is done by

considering how much reward each agent and a team of agents receive while acting, and then

showing the cumulative reward as a function of the episodes and number of steps.

First, reaching the position consensus on the X-axis is shown in the 1000 time-steps for five agents,

using the Manhattan immediate reward function. Then, the average reward during 200 episodes

is displayed using five immediate reward functions. Afterward, each agent’s average cumulative

reward and the average cumulative team reward using different immediate reward functions during

200 episodes with and without a malicious agent are compared. Note that action space consists

82

Figure 4.3: The MARL system’s performance in reaching the position consensus without a malicious agent
at episodes 50, 100, 150, 200 on X-axis.

Figure 4.4: The MARL system’s performance in reaching the position consensus with a malicious agent at
episodes 50, 100, 150, 200 on X-axis.

83

(a) Topology of a fully con-
nected graph G without a mali-
cious agent.

(b) Topology of a fully con-
nected graph G with a malicious
agent.

Figure 4.5: A fully connected graph G is considered as the MARL system, including N = 5 nodes. The
malicious agent (red circle) refuses to update the parameters in the consensus step.

of five distinctive actions, including waiting and also move to the right, left, up, and down. The

actor and critic learning rates are α = 0.001 and α = 0.01, respectively, and the discount factor is

γ = 0.95.

We have used and extended a part of the code provided in [206] for a part of our implementation.

Moreover, the algorithm’s execution is done using a system with 3.60 GHz Intel Core i7− 7700

processor, 16 GB installed RAM, 64−bit operating system, and x64−based processor.

4.4.1 Reaching Consensus

The position consensus of five agents on the X-axis with and without a malicious agent are illus-

trated in Figures 4.3 and 4.4 at episodes 50, 100, 150, and 200. This consensus is demonstrated

during 1000 time-steps using Manhattan immediate reward function. The initial position for ith

agent is randomly selected. The desired position for ith agent is xi
des = 35. As shown in Figures 4.3

and 4.4, the position convergence of the MARL system in the absence of a malicious agent is supe-

rior to the position convergence with a malicious agent’s presence during 200 episodes. According

to Figure 4.3, the agents’ convergence behaviour is observed in the episode 50; however, according

to Figure 4.4, this behaviour has not appeared during 200 episodes. The cumulative team reward

84

of the system without malicious agents is greater than the system’s cumulative team reward with a

malicious agent (Figure 4.6). Accordingly, the MARL system’s performance in reaching the con-

sensus without a malicious agent is superior to the network performance with a malicious agent

during 200 episodes. Therefore, to improve the network performance in Figure 4.4, the system’s

cumulative team reward with the malicious agent should increase, which we will examine in the

following.

4.4.2 Increasing the Cumulative Reward

When no malicious agents exist in the MARL system, the agents’ goal is to maximize the sum of

all cumulative rewards. Figure 4.6a shows the reward vs. episodes diagram of five agents without

malicious agents. The cumulative reward of all agents reaches the maximum value during 200

episodes. As Figure 4.6a shows, all agents have learned the optimal policy almost equally and

have maximized their cumulative reward. We examine the agents’ reaction of a MARL system if a

malicious agent is detected within the system.

An agent is considered as a malicious agent when it seeks to maximize its own cumulative reward

only. The reward vs. episodes diagram of five agents with the malicious agent’s presence is

illustrated in Figure 4.6b during 200 episodes. Indeed, Agent#1 is the malicious agent, and its

cumulative reward is maximized. The other four agents are not able to maximize their cumulative

reward as much as they did in the previous step and cannot learn the optimal policy precisely.

However, they enhanced their cumulative reward. Thus, as shown in Figure 4.6c, the cumulative

team reward of the MARL system converges without the presence of a malicious agent and is

superior to the cumulative team reward of the MARL system with the presence of a malicious

agent. The malicious agent has caused the cumulative team reward to converge to −2291.05. All

diagrams of Figure 4.6 are obtained using the Manhattan immediate reward function defined in

(4.8).

85

(a) Average reward without malicious
agents.

(b) Average reward with a malicious
agent.

(c) Team reward with and without a
malicious agent.

Figure 4.6: Reward convergence using the Manhattan immediate reward function during 200 episodes for
N = 5 agents.

(a) Average reward without malicious
agents.

(b) Average reward with a malicious
agent.

(c) Team reward with and without a
malicious agent.

Figure 4.7: Reward convergence using the Euclidean immediate reward function during 200 episodes for
N = 5 agents.

(a) Average reward without malicious
agents.

(b) Average reward with a malicious
agent.

(c) Team reward with and without a
malicious agent.

Figure 4.8: Reward convergence using the 5-norm immediate reward function during 200 episodes for N = 5
agents.

86

(a) Average reward without malicious
agents.

(b) Average reward with a malicious
agent.

(c) Team reward with and without a
malicious agent.

Figure 4.9: Reward convergence using the Chebyshev immediate reward function during 200 episodes for
N = 5 agents.

(a) Average reward without malicious
agents.

(b) Average reward with a malicious
agent.

(c) Team reward with and without a
malicious agent.

Figure 4.10: Reward convergence using the combined immediate reward including Manhattan, Euclidean,
5-norm, and Chebyshev immediate reward functions during 200 episodes for N = 5 agents.

4.4.3 Modifying the Immediate Reward Function

The experiment is repeated with the same conditions but using the proposed Euclidean, n-norm

(n = 5), Chebyshev, and combined immediate reward functions, (4.9)-(4.12).

As shown in Figure 4.7a and Figure 4.7b, the cumulative reward in both cases, without and with

a malicious agent, have converged using the Euclidean immediate reward function in (4.9). The

outcomes of using (4.9) is superior to the results of (4.8) because, as illustrated in Figure 4.7c, the

MARL system’s cumulative team reward with a malicious agent is larger than demonstrated results

in Figure 4.6c. The cumulative team reward with a malicious agent has converged to −1468.74

using (4.9). Hence, as shown in Figure 4.6 and Figure 4.7, the use of (4.9) yields better results

87

compared to (4.8).

We repeated the experiment using (4.10) where n = 5 (5-norm immediate reward function). As

demonstrated in Figure 4.8, compared to the Figure 4.6 and Figure 4.7, the average received reward

enhances for each agent and system by increasing n in the n-norm immediate reward function. For

instance, the cumulative team reward with a malicious agent has converged to −1045.88 using

(4.10), where n = 5.

As shown in Figure 4.9a and Figure 4.9b, the cumulative reward, without and with a malicious

agent, have converged by applying the Chebyshev immediate reward function in (4.11). The re-

sults of using (4.11) are superior to (4.8)-(4.10), because, as illustrated in Figure 4.9c, the MARL

system’s cumulative team reward with a malicious agent is larger than demonstrated results in

Figures 4.6c-4.8c. The cumulative team reward has converged to −369.11 using (4.11). Conse-

quently, as displayed in Figures 4.6-4.9, the use of (4.11) has yielded more reliable results com-

pared to (4.8)-(4.10). Using (4.11), the average received reward is higher for each agent and MARL

system.

The outcomes of using (4.12) are superior to the results of (4.8)-(4.11), because, as shown in Fig-

ure 4.10c, the MARL system’s cumulative team reward in the presence of a malicious agent is

larger than illustrated results in Figures 4.6c-4.9c. The cumulative team reward has converged to

−244.78 using (4.12). Hence, as demonstrated in Figure 4.10, the use of (4.12) has produced supe-

rior results compared to previously introduced immediate reward functions. Moreover, the average

received reward is higher for each agent and system. The comparison of each agent’s average cu-

mulative reward as well as the average cumulative team reward using different immediate reward

functions during 200 episodes without and with a malicious agent are indicated in Tables 4.1 and

4.2, respectively. As highlighted in these tables, the combined reward performed superior than the

other rewards for each agent and team of agents.

88

Table 4.1: Comparison of each agent’s average cumulative reward as well as the average cumulative team
reward using different immediate reward functions during 200 episodes without a malicious agent.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −1566.21 −2011.39 −2093.50 −1209.28 −1490.39 −1641.68

Euclidean Reward −756.45 −939.41 −961.17 −640.07 −992.70 −849.07

5-norm Reward −576.56 −703.18 −720.72 −491.55 −655.37 −622.58

Chebyshev Reward −330.13 −423.84 −430.31 −250.89 −300.96 −335.76

Combined Reward −176.21 −231.49 −238.25 −135.51 −174.27 −185.91

Table 4.2: Comparison of each agent’s average cumulative reward as well as the average cumulative team
reward using different immediate reward functions during 200 episodes in the presence of a malicious agent.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −273.01 −2781.51 −3454.21 −2638.68 −2403.99 −2291.05

Euclidean Reward −164.16 −1606.92 −2047.06 −1349.11 −2190.22 −1468.74

5-norm Reward −143.52 −1351.53 −1258.49 −1179.52 −1305.38 −1045.88

Chebyshev Reward −44.15 −143.68 −1062.88 −465.00 −173.53 −369.11

Combined Reward −21.84 −87.28 −686.82 −338.84 −109.43 −244.78

4.4.4 The Immediate Rewards’ Comparison After Normalization

To have a valid comparison between the used and proposed immediate reward functions, we nor-

malize the accumulated reward values into a range of [−1,0] for each agent using

Ri
n =

Ri−Ri
min

Ri
max−Ri

min
−1, (4.35)

where Ri and Ri
n are the cumulative reward and normalized cumulative reward vectors for ith agent,

respectively. Therefore, at this stage, the analysis is performed based on normalized data. Re-

garding Tables 4.3 and 4.4, as well as, Figures 4.11-4.15 after normalization, still the combined

reward performed superior to the other rewards for each agent and team of agents (with and with-

out malicious agents). It is worth mentioning that the data of Tables 4.3 and 4.4 are rounded to four

decimal places. Furthermore, Figure 4.16 depicts the values of Tables 4.3 and 4.4 in two different

charts. The performance of the malicious agent (Agent#1) in increasing its cumulative reward and

89

decreasing the cumulative reward of the other agents is well illustrated in Figure 4.16b. In addition,

Figure 4.16b shows how changing the type of immediate reward function can reduce the negative

effect of the malicious agent.

Table 4.3: Comparison of each agent’s average cumulative reward as well as the average cumulative team
reward after normalization using different immediate reward functions during 200 episodes without a mali-
cious agent.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −0.0496 −0.0524 −0.0523 −0.0486 −0.0546 −0.0515

Euclidean Reward −0.0489 −0.0522 −0.0521 −0.0475 −0.0545 −0.0510

5-norm Reward −0.0449 −0.0498 −0.0500 −0.0431 −0.0518 −0.0479

Chebyshev Reward −0.0396 −0.0452 −0.0455 −0.0371 −0.0447 −0.0424

Combined Reward −0.0381 −0.0427 −0.0431 −0.0364 −0.0444 −0.0409

Table 4.4: Comparison of each agent’s average cumulative reward as well as the average cumulative team
reward after normalization using different immediate reward functions during 200 episodes in the presence
of a malicious agent.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team

Manhattan Reward −0.0372 −0.0702 −0.0701 −0.0698 −0.0704 −0.0635

Euclidean Reward −0.0334 −0.0688 −0.0702 −0.0686 −0.0702 −0.0623

5-norm Reward −0.0249 −0.0659 −0.0702 −0.0645 −0.0697 −0.0590

Chebyshev Reward −0.0153 −0.0366 −0.0686 −0.0561 −0.0406 −0.0435

Combined Reward −0.0152 −0.0348 −0.0681 −0.0513 −0.0387 −0.0417

4.4.5 Reward Algorithm’s Complexity and Execution Time

The comparison of the algorithm execution time of using different immediate reward functions

during 200 episodes is presented in Table 4.5. Lower algorithm execution time and higher cumu-

lative team reward are crucial factors in determining the type of the immediate reward function for

the MARL system. By comparing the results of using Mri
t+1 provided by [132], and the outcomes

of using the proposed immediate reward functions (Eri
t+1, Nri

t+1, Čri
t+1, and Cri

t+1) the following

results are obtained. The %increase = 100× (final team reward - initial team reward)
|initial team reward| is used to calculate

the percentage increase of team reward, where initial team reward is the Manhattan team reward.

90

(a) Without malicious agents. (b) With a malicious agent. (c) Team reward with and without a
malicious agent.

Figure 4.11: Normalized reward convergence using the Manhattan immediate reward function during 200
episodes for N = 5 agents.

(a) Without malicious agents. (b) With a malicious agent. (c) Team reward with and without a
malicious agent.

Figure 4.12: Normalized reward convergence using the Euclidean immediate reward function during 200
episodes for N = 5 agents.

(a) Without malicious agents. (b) With a malicious agent. (c) Team reward with and without a
malicious agent.

Figure 4.13: Normalized reward convergence using the 5-norm immediate reward function during 200
episodes for N = 5 agents.

In addition, the Euclidean, 5-norm, Chebyshev, and combined team rewards are considered as the

final team reward, each time.

91

(a) Without malicious agents. (b) With a malicious agent. (c) Team reward with and without a
malicious agent.

Figure 4.14: Normalized reward convergence using the Chebyshev immediate reward function during 200
episodes for N = 5 agents.

(a) Without malicious agents. (b) With a malicious agent. (c) Team reward with and without a
malicious agent.

Figure 4.15: Normalized reward convergence using the combined immediate reward including Manhattan,
Euclidean, 5-norm, and Chebyshev immediate reward functions during 200 episodes for N = 5 agents.

(a) Normalized average cumulative reward without
malicious agents.

(b) Normalized average cumulative reward with a
malicious agent (Agent#1).

Figure 4.16: Normalized average cumulative reward for each agent and a team of agents, including N = 5
agents, using various immediate reward functions during 200 episodes.

92

4.4.5.1 Before Normalization

By comparing the results of using Manhattan and Euclidean immediate rewards, it is concluded

that after using the Euclidean immediate reward, the +48.28% and +35.89%, increase in the

assertiveness of team reward without and with a malicious agent, respectively. The algorithm

execution time using the Euclidean immediate reward function is +1.76 times that of the Man-

hattan immediate reward function. Moreover, by comparing the outcomes of using Manhattan

and 5-norm immediate rewards, it is realized that after using the 5-norm immediate reward, the

+62.08% and +54.35%, increase in the assertiveness of team reward without and with a malicious

agent, respectively. The algorithm execution time using the 5-norm immediate reward function is

+1.28 times that of the Manhattan immediate reward function. Furthermore, by comparing the

outcomes of using Manhattan and Chebyshev immediate rewards, it is achieved that after using the

Chebyshev immediate reward, the +79.55% and +83.89%, increase in the assertiveness of team

reward without and with a malicious agent, respectively. The algorithm execution time using the

Chebyshev immediate reward function is +1.08 times that of the Manhattan immediate reward

function. Besides, by comparing the results of using Manhattan and combined immediate rewards,

it is concluded that after using the combined immediate reward, the +88.68% and +89.32%, in-

crease in the assertiveness of team reward without and with a malicious agent, respectively. The

algorithm execution time using the combined immediate reward function is +3.14 times that of

the Manhattan immediate reward function.

4.4.5.2 After Normalization

By comparing the results of using Manhattan and Euclidean immediate rewards, it is concluded that

after using the Euclidean immediate reward, the +0.97% and +1.89%, increase in the assertive-

ness of team reward without and with a malicious agent, respectively. The algorithm execution

time using the Euclidean immediate reward function is +1.75 times that of the Manhattan im-

mediate reward function. Moreover, by comparing the outcomes of using Manhattan and 5-norm

immediate rewards, it is realized that after using the 5-norm immediate reward, the +6.99% and

93

+7.09%, increase in the assertiveness of team reward without and with a malicious agent, respec-

tively. The algorithm execution time using the 5-norm immediate reward function is +1.29 times

that of the Manhattan immediate reward function. Furthermore, by comparing the outcomes of

using Manhattan and Chebyshev immediate rewards, it is noted that after using the Chebyshev im-

mediate reward, the +17.67% and +31.50%, increase in the assertiveness of team reward without

and with a malicious agent, respectively. The algorithm execution time using the Chebyshev im-

mediate reward function is +1.08 times that of the Manhattan immediate reward function. Besides,

by comparing the results of using Manhattan and combined immediate rewards, it is concluded that

after using the combined immediate reward, the +20.58% and +34.33%, increase in the assertive-

ness of team reward without and with a malicious agent, respectively. The algorithm execution

time using the combined immediate reward function is +2.95 times that of the Manhattan imme-

diate reward function.

Table 4.5 lists the time complexity of various types of immediate reward algorithms. The time

complexity of Manhattan, Euclidean, 5-norm, and Chebyshev immediate reward functions with n

point pairs are O(n), and they take linear time. Moreover, the time complexity of the combined

immediate reward algorithm is O(n) as well.

Nevertheless, this time difference would not mean that the proposed immediate rewards are better

or worse. Still, with longer episodes having more time-steps, this execution time difference may

be significant. Note that the data of Table 4.5 are rounded to two decimal places.

It is worth mentioning that for developing and simulating this chapter’s algorithm, Python and

MATLAB Programming Languages are utilized.

4.5 Conclusions

We studied the consensus problem of a leaderless, homogeneous MARL system using the actor-

critic algorithms in the absence and presence of malicious agents. Each agent’s principal goal is

94

Table 4.5: Comparing the results of algorithm’s complexity and execution time using different immediate
reward functions.

Manhattan Euclidean 5-norm Chebyshev Combined

Reward Reward Reward Reward Reward

Algorithm

Execution 31.41
±0.02

55.27
±0.03

40.07
±0.42

33.98
±0.20

98.67
±0.45

Time(seconds)

Algorithm

Execution 31.23
±0.13

54.57
±0.04

40.18
±0.01

33.72
±0.09

92.22
±0.19

Time(seconds)

(Normalized)

Algorithm

Time O(n) O(n) O(n) O(n) O(n)
Complexity

to reach the position consensus with the maximum cumulative reward. We presented the imme-

diate reward function based on Manhattan distance. Then, we proposed three other immediate

reward functions based on various distance metrics to improve the MARL system’s performance.

We combined various immediate reward functions and used each of them based on the maximum

returned value during each episode to enhance agents’ cumulative reward in the presence of mali-

cious agents within the MARL system. Finally, we compared different immediate reward functions

within the MARL system and we found that the type of immediate reward function plays a signifi-

cant role in efficiency of each agent in the network in reaching the consensus and obtaining further

cumulative team reward.

95

Chapter 5

Control of Multi-agent Reinforcement

Learning Systems: The Effect of Neural

Network Structure

5.1 Introduction

This chapter is a continuation of Chapter 4 with the same research background to reduce the mali-

cious agent’s adverse effects on a MARL system, including actor-critic architecture. In this chapter,

an attempt has been made to achieve the overall goal of the MARL system, which is to increase the

cumulative reward of all individual agents and reduce the malicious agents’ negative effect on the

entire MARL system. For this purpose, considering that the adverse agent is detectable, we have

changed the malicious agent’s NN structure. The claims have been proven theoretically, and the

simulation confirms theoretical findings. The methodology we have used to prove the superiority

of a NN structure over another NN architecture in terms of the amount of loss is the gradient of the

loss function with respect to the activation function.

96

5.2 Background

The temporal difference (TD) error defines the comparison between the predicted reward r̂t+1 and

the actual reward rt+1. Higher TD error values are associated with greater differences between

actual reward rt+1 and predicted reward r̂t+1. The discussed TD error δt , is given as follows

δt = Rt+1 + γVt(st+1)−Vt(st), (5.1)

where Rt+1 is the reward function which is given by

Rt+1 = E [rt+1|st = s,at = a] . (5.2)

Moreover, Vt(st) is the critic value function at time t that is specified as below

Vt(st) = E

[

∞

∑
t=0

γ trt+1|st = s

]

. (5.3)

The critic value function Vt+1(st) at time t +1 is

Vt+1(st) =Vt(st)+αδt , (5.4)

using the learning rate α . The consensus of N agents is given by

λ i
t+1← ∑ j∈N wt(i, j) · λ̃

j
t ,

vi
t+1← ∑ j∈N wt(i, j) · ṽ

j
t ,

(5.5)

where λ and v are the actual multi-agent reward function parameter, and actual multi-agent value

function parameter, respectively. Moreover, λ̃ and ṽ are the predicted multi-agent reward function

parameter and the predicted multi-agent value function parameter, respectively. The initialization

of λ , λ̃ , v, and ṽ parameters is done for all N agents at time t = 0 [128], [132]. At time t + 1,

97

the above parameters should be updated and added to the previous value list. The network value

function approximation V i
t (st ;vi

t) is characterized by vi of each agent. In this regard, the following

is achieved

λ̃ i
t ← λ i

t +αv,t

(

ri
t+1− r̂t+1

(

λ i
t

))

∇λ r̂t+1
(

λ i
t

)

(5.6)

ṽi
t ← vi

t +αv,tδ
i
t ∇vV

i
t

(

st ;vi
t

)

. (5.7)

The set of neighbors of the ith agent is described by N , and the Metropolis weight matrix specified

by Wt = [wt(i, j)]N×N is

Wt =

1
1+max{dt(i),dt(j)}

if (i, j) ∈ E ,

1− ∑
(i,k)∈E

Wt(i,k) if i = j,

0 otherwise,

(5.8)

where the degrees of agents i and j are defined by dt(i) and dt(j), respectively. Furthermore, at

time t, wt(i, j) indicates the weight on the message transferred from agent i to agent j. MARL’s

position consensus requires all N agents to perform the consensus step (5.5). To update the ith

agent’s policy function πi(a
i
t |st) the reward function parameter λ i and value function parameter vi

should be updated.

A loss function describes the model’s performance according to the current set of parameters

(weights and biases). The MSE loss function is given by

MSE =
1
n

n

∑
k=1

(ŷk− yk)
2 , (5.9)

where yk is the actual value and ŷk is the estimated value, using kth sample out of n samples. Any

machine learning (ML) model aims to minimize the loss function. The gradient descent method is

utilized, as an iterative optimization method, to minimize the loss function in ML and determine

the most appropriate parameters.

98

Figure 5.1: An illustration of a multi-agent actor-critic architecture including a malicious agent (red agent).
The correct data between the neighboring agents are transferred via green arrows, and inaccurate data from
the adverse agent is transmitted to neighboring agents through the red arrow.

5.3 Methodology

To mitigate the harmful effects of malicious agents, we modify the adverse agents’ NN archi-

tectures, especially the activation function of the last layer, to enhance the cumulative loss and

decrease the cumulative reward of the malicious agents. A multi-agent actor-critic system with a

malicious agent is demonstrated in Figure 5.1.

5.3.1 Modifying the Neural Network Structure

To train the ith agent’s critic and reward networks in [132], and [206], the authors have used a fully

connected NN structure containing m dense layers. Each layer of this NN includes n neurons. The

last layer of each NN has a linear activation function in combination with the MSE loss function.

According to the properties of a linear function, it is evident that the output of this function is

in the range of (−∞,+∞), which makes the uncertain activation bound range. Moreover, the

derivative of a linear function is a constant value. Consequently, the gradient with respect to the

variable is constant. Therefore, descent converges to a constant gradient in gradient descent for

training. When there is an error between the actual and predicted values, the back-propagation

(feedback) changes are constant and do not depend on the calculated error. Therefore, we replace

99

the sigmoid activation function with the linear function in the last layer of malicious agents’ critic

and reward NN. Afterward, we analyze the results. The main reason for this choice is that sigmoid

is a nonlinear function, and any combination with that becomes nonlinear. Thus, the sigmoid

function’s gradient is smooth and non-constant. In addition, the output of this function is in the

range of (0,+1) or (−1,+1), which makes the specific activation bound range. The specificity of

the output boundary indicates that the activation bound is in a particular range that prevents the

activation from exploding.

Assumption 5.1 The malicious agents have already been detected.

Theorem 5.1 Given Assumption 5.1, the combination of the MSE loss function with the sigmoid

activation function provides a higher gradient of loss than its combination with the linear activa-

tion function.

Proof 5.1 The last layer’s loss function of malicious agent’s critic and reward NN, including n

neurons, is the MSE loss function that is given by

ℓ=
1
n

n

∑
k=1

(r̂k− rk)
2 , (5.10)

where r and r̂ are actual and predicted rewards, respectively. Furthermore, the linear activation

function is considered as

g(x) = x. (5.11)

Consequently, the combination of MSE loss function (5.10) and linear activation function (5.11) in

the regression setting is given by

ℓ(r̂,g(x)) =
1
n

n

∑
k=1

(r̂k−g(x))2 . (5.12)

In this regard, the gradient of MSE loss function with respect to linear activation function is a

100

linear function as follows

∂ℓ(r̂,g(x))

∂x
=

∂ℓ(r̂,g(x))

∂g(x)
·

∂g(x)

∂x

=
∂

∂g(x)

(

1
n

n

∑
k=1

(r̂k−g(x))2

)

·
∂

∂x
(x)

=
2
n

n

∑
k=1

(g(x)− r̂k)

=
2
n

n

∑
k=1

(x− r̂k) .

(5.13)

The MSE loss function with the combination of sigmoid activation function is utilized at the last

layer of the malicious agent’s critic and reward NN. The sigmoid activation function is given by

σ(x) =
1

1+ e−x
. (5.14)

The combination of MSE loss function and sigmoid activation function in the regression setting is

given by

ℓ(r̂,σ(x)) =
1
n

n

∑
k=1

(r̂k−σ(x))2 . (5.15)

Therefore, the gradient of MSE loss function with respect to sigmoid activation function is a non-

101

linear function as below

∂ℓ(r̂,σ(x))

∂x
=

∂ℓ(r̂,σ(x))

∂σ(x)
·

∂σ(x)

∂x

=
∂

∂σ(x)

(

1
n

n

∑
k=1

(r̂k−σ(x))2

)

·
∂

∂x

(

1
1+ e−x

)

=
2
n

n

∑
k=1

(r̂k−σ(x)) ·
−e−x

(1+ e−x)2 ·
e−x

(1+ e−x)2

=
2
n

n

∑
k=1

(σ(x)− r̂k) ·

(

1
1+ e−x

(

1−
1

1+ e−x

))2

=
2
n

n

∑
k=1

(σ(x)− r̂k) ·

(

1
1+ e−x

)2

·

(

1−
1

1+ e−x

)2

=
2
n

n

∑
k=1

(σ(x)− r̂k) ·σ
2(x) · (1−σ(x))2.

(5.16)

For the malicious agent, the episode reward repisode is considered as a negative episode reward

by default; therefore, the obtained result of Equation (5.16) yields a higher gradient of loss rather

than the obtained result of Equation (5.13) as below

2
n

n

∑
k=1

(g(x)− r̂k)<
2
n

n

∑
k=1

(σ(x)− r̂k) ·σ
2(x) · (1−σ(x))2. (5.17)

n

∑
k=1

(g(x)− r̂k)<
n

∑
k=1

(σ(x)− r̂k) ·σ
2(x) · (1−σ(x))2. (5.18)

Hence, the Theorem 5.1 is proven.

Considering the Theorem 5.1, and from Inequality (5.18), it is expected that the combination of

MSE loss function with linear activation function yields a lower cumulative loss than the combi-

nation of MSE loss function with a sigmoid activation function. As a hint, lower cumulative loss

provides higher cumulative reward. The NN is trained using the gradient of the MSE loss func-

tion two times± one time utilizing the gradient of the MSE loss function with respect to the linear

activation function g(x), and another time using the gradient of MSE loss function concerning the

sigmoid activation function σ(x). After specific episodes, the cumulative loss combining both lin-

102

ear and sigmoid activation functions started to decrease. However, the speed of loss reduction in

combination with the linear activation function is higher than the speed of loss reduction in com-

bination with the sigmoid activation function. In the meantime, the cumulative loss using both

activation functions is calculated. Hence, the cumulative loss with the sigmoid activation function

provides a higher value than the cumulative loss with the linear activation function.

It is worth mentioning that Subsection 5.3.1 is done to enhance the cumulative loss and reduce the

cumulative reward of malicious agents. In this regard, the adverse effect of the malicious agent is

decreased by increasing the loss.

5.4 Results and Discussion

For obtaining the results, the combined immediate reward function ri
t+1 (one of the proposed im-

mediate reward functions of Chapter 4) is given by

ri
t+1 = max

(

Mri
t+1,Eri

t+1,Nri
t+1,Čri

t+1

)

, (5.19)

where Mri
t+1, Eri

t+1, Nri
t+1, and Čri

t+1 are the Manhattan, Euclidean, n-norm, and Chebyshev

immediate reward functions, respectively [3]. Furthermore, in training, the distance metric that

accompanies the combined immediate reward function is Euclidean distance

Ed =
(

∣

∣xi− xi
des

∣

∣

2
+
∣

∣yi− yi
des

∣

∣

2
)1/2

, (5.20)

where (xi,yi) and (xi
des,y

i
des) are the current position and the desired position of the ith agent,

respectively.

We have used and extended a part of the code provided in [206] for a part of our implementation.

Moreover, the algorithm’s execution is done using a system with 3.60 GHz Intel Core i7− 7700

processor, 16 GB installed RAM, 64−bit operating system, and x64−based processor.

103

(a) The gradient of MSE loss function with respect to
linear activation function.

(b) The gradient of MSE loss function with respect to
sigmoid activation function.

Figure 5.2: The gradient of MSE loss function with respect to linear activation function and sigmoid activa-
tion function for n = 30 neurons in the range of [−20,20] and [−0.6,0.6], respectively.

5.4.1 Consequences of Modifying the Neural Network Structure

Figure 5.2 shows the gradient of the MSE loss function with respect to two different activation

functions. The gradient of MSE loss function ℓ with respect to linear activation function g(x) (final

obtained Equation (5.13)) is illustrated in Figure 5.2a for n = 30 neurons. Moreover, Figure 5.2b

demonstrates the gradient of MSE loss function ℓ with respect to sigmoid activation function σ(x)

(final generated Equation (5.16)) for n = 30 neurons.

5.4.1.1 MSE Loss Function with Linear Activation Function

In the last layer of all agents’ critic and reward NN (malicious and non-malicious agents), the

combination of MSE loss function and linear activation function is used. The simulation results

are demonstrated in Figure 5.3. As shown in Figure 5.3a, the average loss of non-malicious agents

are close to zero. In addition, the average loss of malicious agent tends to zero over time, and thus

the average reward of this adverse agent tends to enhance (Figure 5.3b). The tendency to increase

the reward affects non-malicious agents’ performance negatively.

5.4.1.2 MSE Loss function with Linear and Sigmoid Activation Function

In the last layer of malicious agent’s critic and reward NN, the MSE loss function and sigmoid

activation function are combined. However, for the rest of the agents (non-malicious agents), the

104

(a) Average loss convergence, using linear activation function at the last layer of all agents’ NN.

(b) Average reward convergence, using linear activation function at the last layer of all agents’ NN.
Figure 5.3: Average loss and reward convergence for N = 5 agents, including a malicious agent (Agent#1),
during 100 episodes and 1000 time-steps.

105

integration of the MSE loss function and linear activation function is applied in the critic and

reward NN. The simulation results are illustrated in Figure 5.4. As shown in Figure 5.4a, the

average loss of non-malicious agents are close to zero. However, the average loss of malicious

agent tends to a value in the range of (500,600) over time. Therefore, the average reward of the

adverse agent tends to decrease (Figure 5.4b). To some extent, the tendency to decrease the reward

affects non-malicious agents’ performance positively.

Table 5.1 shows that when the MSE loss function with sigmoid activation function is combined

in the malicious agent’s critic and reward NN (last layer), the average loss of Agent#1 has been

increased dramatically from 84.2749 to 574.3421 compared to the situation when the linear acti-

vation function is used in the last layer of all agents’ critic and reward NN. Due to the limitation

of the sigmoid activation bound range of malicious agent and growing the loss of Agent#1, it is

expected that its average cumulative reward will decrease.

Table 5.2 represents that by combining the MSE loss function and sigmoid activation function (in

the last layer of malicious agent’s critic and reward NN), the adverse agent’s average cumulative

reward has been reduced from−528.11 to−806.12 compared to the case when the linear activation

function is used in the last layer of all agents’ critic and reward NN. Moreover, using the sigmoid

activation function at the last layer of critic and reward NN, the team reward of non-malicious

agents is increased from −992.26 to −591.89.

As can be seen from the charts shown in Figure 5.5, using the sigmoid activation function in the

NN structure of the malicious agent (Agent#1) provides a greater loss than in the case of linear

activation function (Figure 5.5a). In addition, according to Figure 5.5b, the reward for malicious

agent when using the sigmoid activation function in its NN architecture is less than when using

the linear activation function. Consequently, using the sigmoid activation function in the malicious

agent NN structure increases the reward in other agents. Note that the linear activation function is

still used in the NN architecture of other agents.

106

(a) Average loss convergence, using sigmoid activation function and linear activation function at
the last layer of malicious agent and non-malicious agents’ NN, respectively.

(b) Average reward convergence, using sigmoid activation function and linear activation function at the last
layer of malicious agent and non-malicious agents’ NN, respectively.

Figure 5.4: Average loss and reward convergence for N = 5 agents, including a malicious agent, during 100
episodes and 1000 time-steps.

107

Table 5.1: Comparison of each agent’s average loss using linear and sigmoid activation functions at the last
layer of malicious agent’s (Agent#1) critic and reward NN during 100 episodes.

Last

Layer

Activation Function

Agents

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team (Agents 2-5)

Linear: All Agents

Critic and Reward NN 84.2749 0.3557 0.2961 0.2652 0.6500 0.3917

Sigmoid: Malicious Agent

Linear: Other Agents

Critic and Reward NN 574.3421 0.3698 0.5017 0.2687 0.9482 0.5221

Table 5.2: Comparison of each agent’s average cumulative reward using linear and sigmoid activation func-
tions at the last layer of malicious agent’s (Agent#1) critic and reward NN during 100 episodes.

Last

Layer

Activation Function

Agents

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team (Agents 2-5)

Linear: All Agents

Critic and Reward NN −528.11 −975.90 −1544.38 −888.20 −560.59 −992.26

Sigmoid: Malicious Agent

Linear: Other Agents

Critic and Reward NN −806.12 −984.28 −766.80 −239.37 −377.13 −591.89

(a) Loss of individual agents and a team of
agents (Agents#2-5).

(b) Reward of individual agents and a team of
agents (Agents#2-5).

Figure 5.5: Loss and reward for each agent and a team of agents 2-5, including N = 5 agents, using linear
and sigmoid activation functions during 100 episodes and 1000 time-steps.

It is concluded that manipulating and modifying the NN structure (using a nonlinear activation

function instead of a linear activation function) of malicious agents makes it possible to decrease

their adverse effects on the MARL performance.

108

Python and MATLAB Programming Languages are used to develop and simulate the results in this

chapter.

5.5 Conclusions

In this chapter, we studied the control of a leaderless, homogeneous MARL system using actor-

critic algorithms in the presence of a malicious agent. Using the gradient of the loss function with

respect to the activation function, we proved that when the MSE loss function is combined with

the sigmoid activation function in the malicious agent’s critic and reward NN (last layer), the loss

of Agent#1 (malicious agent) is increased and the cumulative reward is decreased dramatically

compared to the situation when the linear activation function is used in the last layer of adverse

agent’s critic and reward NN.

109

Chapter 6

Adversarial Attacks on Heterogeneous

Multi-agent Deep Reinforcement Learning

System with Time-delayed Data

Transmission

6.1 Introduction

This chapter studies the gradient-based adversarial attacks on cluster-based, heterogeneous, MADRL

systems with time-delayed data transmission. The structure of the MADRL system consists of var-

ious clusters of agents. The DQN architecture presents the first cluster’s agent structure. The other

clusters are considered as the environment of the first cluster’s DQN agent. We introduce two novel

observations in data transmission, termed on-time and time-delay observations. The proposed ob-

servations are considered when the data transmission channel is idle and the data is transmitted

on-time or time-delayed. Considering the distance between the neighbouring agents, we present a

novel immediate reward function by appending a distance-based reward to the previously utilized

110

reward to improve the MADRL system performance. We consider three types of gradient-based

attacks to investigate the robustness of the proposed system data transmission. Two defence meth-

ods are proposed to reduce the effects of the discussed malicious attacks. We have rigorously

shown the system performance based on the DQN loss and the team reward for the entire team of

agents. Moreover, the effects of the various attacks before and after using defence algorithms are

demonstrated. The theoretical results are illustrated and verified with simulation examples. The

proposed algorithms and methods in this chapter can be used for data transmission between agents

of a MARL system or a MADRL system to reach a consensus related to the Chapters 4 and 5.

6.2 Background

Decision-making is based on the information received from the environment by an RL or DRL

agent. It is considered that the finite MDP represents the dynamics of the environment for decision-

making. The 5-tuple M =
〈

s,a,T,R,γ
〉

presents an MDP for an RL and DRL system, where s is a

finite set of environmental states, and a is a finite action set. Moreover, T (st ,at ,st+1)→ [0,1] is the

state-transition probability function that agent takes action at in the state st , and is transferred to

the state st+1 to do the next action. Further, R(st ,at ,st+1) ≜ ∑
∞
k=0 γkrt+k+1→ IRn is a cumulative

reward function, where rt+k+1 shows the immediate reward, with discount factor γ that is the

trade-off between an immediate reward and potential future reward.

In the leaderless MAS scenario, all agents communicate with their cluster-mates, as well as agents

of other clusters. In the leader-follower MAS scenario, in each cluster, only the preassigned leader

communicates with the other agents in the same cluster as well as leaders of different clusters.

Thus, data transmission occurs between the leader and the followers of one cluster as well as lead-

ers of clusters. The leaderless and leader-follower MAS are considered as the graph G = (V ,E),

where V is the set of all agents, and E ⊆ {(i, j)|i∈ V , j ∈ V } is the set of all communication links

between agents. The agents i and j communicate if and only if (i, j) ∈ E [207].

111

6.3 Methodology

In this section, the leaderless and leader-follower topologies are introduced. Then, the components

of the DQN algorithm (observation, action, state, and reward) are explained. Afterward, the DQN

loss for on-time and time-delayed data transmission is justified. Three types of adversarial attacks

to target the proposed leader-follower MAS (state of the DQN agent) are extended and explained.

Finally, two defence methods against performed adversarial attacks are introduced.

6.3.1 Leaderless and Leader-follower Topologies

A generic illustration of the MADRL system topology including N static, heterogeneous agents,

and P clusters is shown in Figure 6.1. The leaderless and leader-follower MAS scenarios can be

envisioned from the presented topology in Figure 6.1. The goal of each static agent in this topology

is to transfer data with the maximum average reward.

Figure 6.1: An illustration of the MADRL system topology, including N static, heterogeneous agents and P

clusters.

112

6.3.2 Observation

In this chapter, observation describes the state of the data transmission channels that are either idle

or busy [163]. If the channel between each pair of agents is busy at time step t, no data can be

transmitted at time step t + 1 due to data transition by another agent. However, if this channel

is idle, data can be transmitted. The transmitted data either reaches its destination successfully

or collides along the way, gets corrupted, and does not reach the goal. Therefore, the defined

observation set by [163] is ot = {busy, idle, successful, collided}.

We propose a modified observation set to use in our MADRL system. We add on-time and time-

delayed arrival states to the observation set. As in [163], it is first checked that the data channel

between each pair of agents is either idle or busy. If the channel is idle, the data can be transferred

successfully on-time, successfully with time-delay, or collided. Therefore, in the introduced sce-

narios of this chapter, the novel observation set ot = {busy, idle, on-time, time-delay, collided} is

proposed.

The lengths of the transferred packets in the network are different and belong to the set of Rc ∈

{1,2, . . . ,Rcmax}. When the observation is on-time, it means that each agent in the network trans-

mits the packet at the next Rc mini-slot, with the action time duration in the set of Td(at) ∈

{1,2, . . . ,Rcmax}. With the time-delay observation, each agent in the network transmits the packet

at the next Rc mini-slot, with the action time duration in the set of T ′d(at) ∈ {Rcmax + 1,Rcmax +

2, . . .}. In both on-time and time-delay observations, when an agent transmits a packet in a data

transmission channel, no other agent sends the data at that specified channel to avoid a collision. In

the following, Td(at) and T ′d(at) are abbreviated as Td and T ′d , respectively. When the observation

is collided, it means that the agent transmits the packet at the next Rc mini-slot; however, another

agent transmits data in at least one of the Rc mini-slots. Note that each mini-slot is a required time

to perform CSMA. In this chapter, each mini-slot is considered a time step.

113

6.3.3 Action

Action is one of the significant components of RL and DRL algorithms [208]. In general, the agent

receives the corresponding state from the environment at time step t and performs the appropriate

action accordingly. Due to the quality of the performed action at time step t, the agent receives

the reward associated with that action at time step t + 1. According to the observation set in this

chapter, the agent first checks whether the data channel is idle or busy. This stage should be done

at less than one mini-slot. The performed actions in this chapter are based on [163], as follows:

• No Selection: If the channel is busy at time step t (checked at less than one mini-slot), the

DQN agent does not take any action at the next time step. Hence, at+1 = 0.

• Uniform Selection with Probability ε: If the channel is idle at time step t, the DQN agent

chooses an action (transfer or not to transfer a packet) at time step t + 1. If the agent at the

next Rc mini-slot transmits packets with the length of Rc, then the action at time step t +1 is

at+1 =Rc, where Rc ∈ {0,1,2, . . . ,Rcmax}. This action selection method is a uniform random

election with probability ε (exploration) using ε-greedy algorithm.

• Non-uniform Selection with Probability 1− ε: If the channel is idle at time step t, an action

to transfer or not to transfer a packet at time step t + 1 can be chosen by the DQN agent.

According to the conventional ε-greedy DQN algorithm, the action will be the maximum

Q-value {Q(s,a;θ)|a ∈A}, where Q is a parametric function including state s, action a, and

parameter θ as a vector, including the weights in the NN. Moreover, A is the set of actions.

Therefore, the action at time step t +1 is

at+1 = argmax
at∈{0,1,2,...,Rcmax }

N

∑
i=1

Qi
(

st+1,at ;θ−
)

, (6.1)

where θ− denotes the target Q-value weight. This action selection method is a non-uniform

selection with probability 1− ε (exploitation) using ε-greedy algorithm.

114

Note that the ε-greedy algorithm is a widely used policy-based exploration approach in RL and

DRL algorithms [114], [209].

6.3.4 State

We consider two types of states; channel state cs
t+1, and DQN algorithm state st+1 [163]. The

DQN algorithm state used in the DRL process is based on the channel state. The channel state

at time step t + 1 is cs
t+1 =∆ (at ,ot). Hence, the DQN algorithm state at time step t + 1 is st+1 =∆

[cs
t−L+2, ...,c

s
t ,c

s
t+1], where L is the state history length that describes the number of past time steps

to be tracked by the DQN algorithm.

6.3.5 Reward

Selecting a reward function is usually based on what the RL and DRL systems are supposed to

do [3]. First, the selection of the reward function depends on the data specifications, including

the length of a sent package and the packet header duration [163]. The larger the packet header

duration, the more problems it causes in sending data in the channel (time-delay data transmission

or data collision). Therefore, the overhead packet header causes the DQN agent to receive less

reward. Afterward, we propose another component to obtain each agent’s more precise average

reward. Distances between agents may be significant for sending and receiving data and maintain-

ing distances between clusters. Additionally, the distance between two mobile agents is crucial

to avoid collisions (the study of mobile agents is beyond the scope of this chapter). Hence, we

consider the length of a sent package, the packet’s header duration, and the distance between a

couple of agents in determining the immediate reward function.

The utilized rewards are:

• At time step t, if the transferred package does not reach the destination (another agent from

another cluster or the agent from the same cluster) successfully, and collides on the way, the

immediate reward for the ith agent at time step t +1 is ri
t+1 = 0.

115

• Using the observation set of [163], if the data packet successfully transferred by each agent

in the network, the immediate reward for the ith agent at time step t +1 is

ri
t+1 = Ri

c−H i
p, (6.2)

where Hp is the packet’s header duration and is a part of each mini-slot.

• By proposing on-time and time-delay observations, we append other component to the im-

mediate reward and present a new immediate reward for each agent. Considering constant

κ ∈ R
+
∗ and κ ∈ [1,∞), the new immediate reward for ith agent is introduced by

ri
t+1 = Ri

c− (κ ·H i
p), (6.3)

where κ = 1 if the data packet transferred by each agent in the network successfully and

on-time, and κ > 1 if the data packet transferred by each agent in the network successfully

and with time-delay.

• Considering distance between agents who transmit data to each other, we propose another

type of immediate reward for the ith agent using the combined immediate reward function

[3]. If the data packet successfully transferred by ith agent to jth agent (on-time), we propose

the novel distance-based immediate reward for ith agent at time step t +1 as

ri
t+1 = Ri

c−H i
p−

N−1

∑
j=1

Cr
i j
t+1. (6.4)

If the data packet transferred by ith agent to jth agent successfully and time-delayed, the

distance-based immediate reward for ith agent at time step t +1 when κ > 1 is given by

ri
t+1 = Ri

c− (κ ·H i
p)−

N−1

∑
j=1

Cr
i j
t+1, (6.5)

116

where Cr
i j
t+1 = max(Mr

i j
t+1,Er

i j
t+1,Čr

i j
t+1,Nr

i j
t+1) is the combined immediate reward func-

tion such that Mr
i j
t+1, Er

i j
t+1, Čr

i j
t+1, and Nr

i j
t+1 are Manhattan, Euclidean, Chebyshev, and

n−norm immediate reward functions, respectively [3]. The combined immediate reward

function is obtained based on positions (xi,yi) and (x j,y j) of ith and jth agents, respectively.

Nevertheless, the original combined immediate reward function, defined by [3], is based on

the current position and the desired position of ith agent in the MARL system.

The formal definition of the DQN target Q-value of a state-action pair (st ,at) is

TarQ = R(st ,at ,st+1)+ γ max
at+1

Q
(

st+1,at+1;θ−
)

, (6.6)

using the cumulative reward function R(st ,at ,st+1), discount factor γ ∈ (0,1), and target Q-value

weight θ−. According to [163], the DQN target Q-value of a state-action pair (st ,at) is given by

TarQ =
rt+1 · (1+ γ + ...+ γTd−1)

Td

+ γTd max
at+1

Q
(

st+1,at+1;θ−
)

=
rt+1 · (1+ γ + ...+ γTd−1)

Td

·
1− γ

1− γ
+ γTd max

at+1
Q
(

st+1,at+1;θ−
)

=
rt+1

Td

·
1− γTd

1− γ
+ γTd max

at+1
Q
(

st+1,at+1;θ−
)

.

(6.7)

The Q-value function Q(st ,at ;θ) is defined by

Q(st ,at ;θ) = Est+1∼T (st ,at ,st+1)

[

R(st ,at ,st+1)+ γ max
at+1

Q
(

st+1,at+1;θ−
)

]

, (6.8)

using the state-transition probability function T (st ,at ,st+1) that defines the conditional probabili-

ties between the states. Furthermore, θ is the Q-value weight. According to the gradient method,

the parameter θ is updated as

θt+1← θt +α (TarQ−Q(st ,at ;θ))∇θ Q(st ,at ;θ), (6.9)

117

where α is the learning rate.

Both immediate reward choices (6.2)-(6.5) and the final Q-value function, obtained by updating the

parameter θ of (6.9), are connected to the actual data transmission by considering two options: (i)

characteristics of transferred packets including the package length and packet header duration; (ii)

specifications of neighbouring agents’ distances in such a way that unregulated distance between

agents delays data transmission.

Remark 6.1 Learning process in DQN algorithm is more stable than Q-learning process since the

update rule introduces a delay between the time when Q-value Q(st ,at ;θ) is updated and the time

when target network Q(st+1,at+1;θ−) is updated [210]. Therefore, the target network remains

unchanged due to the time-delay.

Theorem 6.1 Suppose that the MAS including N agents is modelled by a graph G , and the learn-

ing process is performed by the DQN algorithm. If the ith agent transfers data to the jth agent

successfully and with time-delay then the average approximated cumulative team discounted re-

ward of a state-action pair (st ,at) satisfies the following

1
N

N

∑
i=1

Qi(st ,at ;θ)

κ>1

<
1
N

N

∑
i=1

Qi(st ,at ;θ)

κ=1

. (6.10)

Proof 6.1 To avoid time-delay, we consider the action time duration Td ∈ {1,2, . . . ,Rcmax}. With

the time-delay, we assume that the action time duration is unbounded above and T ′d ∈ {Rcmax +

1,Rcmax + 2, . . .}. Therefore, the time-delay occurs when T ′d ≥ Rcmax + 1. We set the constant

κ ∈ R
+
∗ in such a way that κ ∈ [1,∞). From (6.3) it follows

N

∑
i=1

Ri
c− (κ ·H i

p)

T ′id
T ′id∈{Rcmax+1,Rcmax+2,...}

<
N

∑
i=1

Ri
c−H i

p

T i
d

T i
d
∈{1,2,...,Rcmax}

. (6.11)

118

Considering a specific value of γ ∈ (0,1), we have

N

∑
i=1

Ri
c− (κ ·H i

p)

T ′id
·

1− γT ′
i
d

1− γ
<

T ′id∈{Rcmax+1,Rcmax+2,...}

N

∑
i=1

Ri
c−H i

p

T i
d

·
1− γT i

d

1− γ

T i
d
∈{1,2,...,Rcmax}

. (6.12)

Considering a specific value of γ ∈ (0,1), for high values of T ′d the following is given

γT ′d → 0
T ′

d
∈{Rcmax+1,Rcmax+2,...}

, (6.13)

while for Td ∈ {1,2, . . . ,Rcmax} we have

0 < γTd

Td∈{1,2,...,Rcmax}

< 1. (6.14)

Using (6.13) and (6.14), for ith agent the following is achieved

N

∑
i=1

γT ′
i
d

T ′id∈{Rcmax+1,Rcmax+2,...}

<
N

∑
i=1

γT i
d

T i
d
∈{1,2,...,Rcmax}

. (6.15)

Knowing that the target network Q(st+1,at+1;θ−) ≥ 0, and according to Remark 6.1, by consid-

ering the maximum target network among the possible actions that can be taken from the next state

and using (6.15), the following is valid

N

∑
i=1

γT ′
i
d max

at+1
Qi
(

st+1,at+1;θ−
)

T ′id∈{Rcmax+1,Rcmax+2,...}

<
N

∑
i=1

γT i
d max

at+1
Qi
(

st+1,at+1;θ−
)

T i
d
∈{1,2,...,Rcmax}

. (6.16)

119

Utilizing (6.12) and (6.16) yields

N

∑
i=1

(Ri
c− (κ ·H i

p)

T ′id
·

1− γT ′
i
d

1− γ
+ γT ′

i
d max

at+1
Qi
(

st+1,at+1;θ−
)

T ′id∈{Rcmax+1,Rcmax+2,...}

)

<
N

∑
i=1

(Ri
c−H i

p

T i
d

·
1− γT i

d

1− γ
+ γT i

d max
at+1

Qi
(

st+1,at+1;θ−
)

T i
d
∈{1,2,...,Rcmax}

)

.

(6.17)

Therefore,
N

∑
i=1

TarQi

T ′id∈{Rcmax+1,Rcmax+2,...}

<
N

∑
i=1

TarQi

T i
d
∈{1,2,...,Rcmax}

. (6.18)

To achieve the least amount of training loss ℓ(θ ,s,a), the difference between the target Q-value

and predicted Q-value should converges to zero. Hence, the below equation can be considered for

ith agent,

lim
t→t0

Qi(st ,at ;θ) = TarQi , (6.19)

where t0 is a certain time. Substituting (6.19) in (6.18) yields

N

∑
i=1

lim
t→t0

Qi(st ,at ;θ)

T ′id∈{Rcmax+1,Rcmax+2,...}

<
N

∑
i=1

lim
t→t0

Qi(st ,at ;θ)

T i
d
∈{1,2,...,Rcmax}

. (6.20)

According to the monotone convergence condition, the following is given

N

∑
i=1

lim
t→t0

Qi(st ,at ;θ) = lim
t→t0

N

∑
i=1

Qi(st ,at ;θ). (6.21)

By considering (6.21), the inequality (6.20) is modified as below

lim
t→t0

N

∑
i=1

Qi(st ,at ;θ)

T ′id∈{Rcmax+1,Rcmax+2,...}

< lim
t→t0

N

∑
i=1

Qi(st ,at ;θ)

T i
d
∈{1,2,...,Rcmax}

(6.22)

120

N

∑
i=1

Qi(st0 ,at0;θ)

T ′id∈{Rcmax+1,Rcmax+2,...}

<
N

∑
i=1

Qi(st0 ,at0;θ)

T i
d
∈{1,2,...,Rcmax}

. (6.23)

By averaging each side of inequality (6.23), and redistribute each side of the inequality to time t,

the following is given

1
N

N

∑
i=1

Qi(st ,at ;θ)

T ′id∈{Rcmax+1,Rcmax+2,...}

<
1
N

N

∑
i=1

Qi(st ,at ;θ)

T i
d
∈{1,2,...,Rcmax}

. (6.24)

T i
d ∈ {1,2, . . . ,Rcmax} if κ = 1,

T ′
i
d ∈ {Rcmax +1,Rcmax +2, . . .} if κ > 1.

(6.25)

Therefore, by considering inequality (6.24) and condition (6.25) for MAS, including N agents, the

inequality (6.10) is proven.

Theorem 6.2 Suppose that graph G as a MAS includes N agents. The distance between ith agent

and jth agent is di j such that ξ ≤ di j ≤ λ , where ξ and λ ∈ R
+
∗ are constant values and ξ ̸= λ .

Using the results of [3] if ξ ≤ di j ≤ λ , then the distance-based immediate reward (6.5) improves

the DQN learning process and compensates for the negative effect of the time-delayed data trans-

mission. Therefore, the average approximated cumulative team discounted reward of a state-action

pair (st ,at) satisfies the following

1
N

N

∑
i=1

Qi(st ,at ;θ)

κ>1

≥
1
N

N

∑
i=1

Qi(st ,at ;θ)

κ=1

. (6.26)

Proof 6.2 In the case of time-delayed data transmission, distance-based immediate reward, which

is calculated based on the distance di j between ith and jth neighbouring agents, assists the learning

process of the DQN agent. Therefore, this immediate reward compensates for the negative effect

of time-delayed data transfer at time step t and causes to take more appropriate action at the next

time step t +1.

Since the agents are static and the distance di j between them is constant, the distance-based im-

121

mediate reward (in combination with the package length and packet header duration) helps the

DQN agent to adjust the learning process over time in terms of data transmission speed. Hence,

the Q-value is improved at each time step by speeding up the data transmission. This trend will

continue in which, at higher time steps, the approximated cumulative team discounted reward of

time-delayed data transmission increases more than the on-time data transmission conditions.

6.3.6 DQN Loss

The output layer loss function of the DQN algorithm’s NN is the MSE loss function. By decreasing

the DQN loss, the DQN reward increases. Therefore, by observing the DQN loss behaviour,

the DQN reward performance is predicted. In [211], for uniform action selection, the DQN loss

function is given by

ℓ(θ ,s,a) =
1

Be ·N

N

∑
i=1

∑
et

(

ri
t+1 + γ max

at+1
Qi
(

st+1,at+1;θ−
)

−Qi (st ,at ;θ)

)2

, (6.27)

where Be is the experience replay mini-batch size. Using the non-uniform action (6.1), containing

the set of Rc ∈ {0,1,2, . . . ,Rcmax} as possible actions, and applying target Q-value (6.7) as well

as predicted Q-value, the DQN loss function for non-uniform action selection with action time

duration Td ∈ {1,2, . . . ,Rcmax} is defined as

ℓ(θ ,s,a) =
1

Be ·N

N

∑
i=1

∑
et

(ri
t+1

Td

·
1− γTd

1− γ
Td∈{1,2,...,Rcmax}

+ γTd max
at+1

Qi
(

st+1,at+1;θ−
)

−Qi (st ,at ;θ)
)2

, (6.28)

where et = (st ,at ,Td,rt+1,st+1) is the experience at time t that is the simplified version of

et = (cs
t ,at ,Td,rt+1,c

s
t+1).

122

Note that (6.27) is derived from (6.28) if Td = 1. Moreover, the time-delayed DQN loss function

for action time duration T ′d ∈ {Rcmax +1,Rcmax +2, . . .} is given by

ℓ(θ ,s,a) =
1

Be ·N

N

∑
i=1

∑
e′t

(ri
t+1

T ′d
·

1− γT ′d

1− γ

T ′
d
∈{Rcmax+1,Rcmax+2,...}

+ γT ′d max
at+1

Qi
(

st+1,at+1;θ−
)

−Qi (st ,at ;θ)
)2

, (6.29)

for experience e′t = (st ,at ,T
′

d,rt+1,st+1) at time t that is achieved from e′t = (cs
t ,at ,T

′
d,rt+1,c

s
t+1).

Note that average loss calculations based on experience et and experience e′t are performed from

m = 1 to Be as the experience replay mini-batch size.

6.3.7 Adversarial Attacks

Three types of gradient-based adversarial attacks are considered to benchmark the data transmis-

sion robustness of the proposed leader-follower MAS by considering the new observation set and

the proposed distance-based immediate reward (Figure 6.2). The changes made by this type of

attacks are very subtle, but they can also affect the system’s performance. Before occurring an at-

tack, the DQN algorithm aims to reduce the average training loss in a given time step and enhance

the average reward.

Figure 6.2: A DQN agent’s structure affected by an adversarial attack.

123

6.3.7.1 FGSM Adversarial Attack

The FGSM is a type of attack proposed in [169]. Our methodology involves attacking the system’s

state by causing the FGSM adversary to make very few changes to the state over a period of time to

increase the system’s average training loss. Using the gradient of the loss function with respect to

the state, FGSM maximizes the perturbation and minimizes the difference between the perturbed

and original inputs [169], [173], [212]. In this regard, using (6.28) and (6.29), for on-time and

time-delayed data transmission, respectively, the FGSM attack signal (perturbation) is obtained by

η = ε · sign(∇sℓ(θ ,s,a)) , (6.30)

where ε is the attack magnitude to ensure the perturbations are small, and sign(.) is the sign

function. Further, ∇s is the gradient of the loss function related to model state s as well as correct

action a, ℓ is the loss function of DQN agent, and θ is the model parameters. After adding the

attack signal to the state s, the adversarial input sadv is calculated as follows

sadv = s+η

= s+ ε · sign(∇sℓ(θ ,s,a)) ,

(6.31)

where L∞-norm bound ∥η∥∞ ≤ ε for perturbation η . Using (6.29) and (6.31), the adversarial input

sadv for time-delayed data transmission is given by

sadv = s+ ε · sign

(

∇s

1
Be ·N

N

∑
i=1

∑
e′t

(ri
t+1

T ′d
·

1− γT ′d

1− γ

T ′d∈{Rcmax+1,Rcmax+2,...}

+ γT ′d max
at+1

Qi
(

st+1,at+1;θ−
)

−Qi (st ,at ;θ)
)2
)

. (6.32)

Once sadv is calculated, it is fed to the NN and replaces the primary input s of the NN. The NN is

fooled and trained based on the adversarial input sadv.

124

6.3.7.2 FGM Adversarial Attack

The FGM attack signal is a generalization of FGSM attack signal and is calculated as:

η = ε ·
∇sℓ(θ ,s,a)

∥∇sℓ(θ ,s,a)∥2
. (6.33)

Using (6.33), the adversarial input sadv is calculated by

sadv = s+η

= s+ ε ·
∇sℓ(θ ,s,a)

∥∇sℓ(θ ,s,a)∥2
,

(6.34)

where L2-norm bound ∥η∥2 ≤ ε for perturbation η . By substituting (6.29) in (6.34), the adver-

sarial input sadv for time-delayed data transmission is given. The training procedure is performed

similarly to the FGSM adversarial attack.

6.3.7.3 BIM Adversarial Attack

The BIM attack is a simple and straight extension of the FGSM attack proposed by [172]. This

method uses a fast gradient multiple times by considering small step size instead of applying the

perturbation in a single step. The BIM attack signal and the adversarial input sadv is given by

η = β · sign
(

∇sadv
t
ℓ(θ ,sadv

t ,a)
)

, (6.35)

sadv
t+1 = sadv

t +η

= sadv
t +β · sign

(

∇sadv
t
ℓ(θ ,sadv

t ,a)
)

,

(6.36)

where β = ε
T

is a small step size and T is the number of iterations. Using (6.29) in (6.36), the

adversarial input sadv
t+1 for time-delayed data transmission is provided.

125

6.3.8 First Adversarial Attack Defence

We provide a simple but effective approach to defend against adversarial attacks and mitigate their

destructive effects on the MADRL system performance (Figure 6.3).

Figure 6.3: A DQN agent’s structure affected by an adversarial attack and defence algorithm.

Algorithm 6.1 First Adversarial Attack Defence

Input: s, sadv
t , θ , T , Tmax, ε

Output: sadv, sadv
t+1

for T = 0,1,2, . . . ,Tmax do

if attack = FGSM then

η = ε · sign(∇sℓ(θ ,s,a));
else if attack = FGM then

η = ε · ∇sℓ(θ ,s,a)
∥∇sℓ(θ ,s,a)∥2

;
else if attack = BIM then

β = ε
T

,

η = β · sign
(

∇sadv
t
ℓ(θ ,sadv

t ,a)
)

;

end if

while attack = True do

if attack = FGSM OR attack = FGM then

s∗ = argmax
s

(η),

η ←− s∗,
sadv = s+η ;

else if attack = BIM then

s∗ = argmax
sadv
t

(η),

η ←− s∗,
sadv

t+1 = sadv
t +η .

end if

end while

end for

126

In the proposed Algorithm 6.1 that is based on NN behaviour, we consider the argmax operation

on perturbation vector η to find the argument that gives the maximum value from η . In other

words, we desire to find a state that provides the maximum perturbation value. We assume that the

FGSM, FGM, or BIM adversarial attacks are detectable. Once one of the FGSM, FGM, or BIM

adversarial attacks is detected, the state vector s∗ is calculated based on the set of states (inputs)

and substituted with perturbation vector η as follows

s⃗∗
n×1

= argmax
s

(η⃗
n×1

), (6.37)

η⃗
n×1
←− s⃗∗

n×1
, (6.38)

where η and s∗ are n× 1 vectors. The state vector s∗, which determines maximum perturbation

value, has the worst effect on the MAS performance; however, the DNN learns from the state

vector s∗ and uses its negative feedback to improve the system performance during an adversarial

attack. For BIM adversarial attack the Equation (6.37) is presented as s⃗∗
n×1

= argmax
sadv
t

(η⃗
n×1

).

6.3.8.1 FGSM Adversarial Attack Defence

Using (6.30) and (6.31), the state vector s∗ and the adversarial input sadv are calculated to defend

against the FGSM adversarial attack as follows

s∗ = argmax
s

(ε · sign(∇sℓ(θ ,s,a))), (6.39)

ε · sign(∇sℓ(θ ,s,a))←− s∗, (6.40)

sadv = s+η

= s+ ε · sign(∇sℓ(θ ,s,a))

= s+ s∗.

(6.41)

127

6.3.8.2 FGM Adversarial Attack Defence

Utilizing (6.33) and (6.34), the state vector s∗ and the adversarial input sadv are computed to defend

against the FGM adversarial attack as below

s∗ = argmax
s

(

ε ·
∇sℓ(θ ,s,a)

∥∇sℓ(θ ,s,a)∥2

)

, (6.42)

ε ·
∇sℓ(θ ,s,a)

∥∇sℓ(θ ,s,a)∥2
←− s∗, (6.43)

sadv = s+η

= s+ ε ·
∇sℓ(θ ,s,a)

∥∇sℓ(θ ,s,a)∥2

= s+ s∗.

(6.44)

6.3.8.3 BIM Adversarial Attack Defence

Using (6.35) and (6.36), the state vector s∗ and the adversarial input sadv
t+1 are calculated to defend

against the BIM adversarial attack as follows

s∗ = argmax
sadv
t

(

β · sign
(

∇sadv
t
ℓ(θ ,sadv

t ,a)
))

, (6.45)

β · sign
(

∇sadv
t
ℓ(θ ,sadv

t ,a)
)

←− s∗, (6.46)

sadv
t+1 = sadv

t +η

= sadv
t +β · sign

(

∇sadv
t
ℓ(θ ,sadv

t ,a)
)

= sadv
t + s∗.

(6.47)

128

Algorithm 6.2 Second Adversarial Attack Defence

Input: s, sadv
t , θ , T , Tmax, ε

Output: sadv, sadv
t+1

for T = 0,1,2, . . . ,Tmax do

if attack = FGSM then

η = ε · sign(∇sℓ(θ ,s,a));
else if attack = FGM then

η = ε · ∇sℓ(θ ,s,a)
∥∇sℓ(θ ,s,a)∥2

;
else if attack = BIM then

β = ε
T

,

η = β · sign
(

∇sadv
t
ℓ(θ ,sadv

t ,a)
)

;

end if

while attack = True do

if attack = FGSM OR attack = FGM then

function convert(s)
return −s

end function

s←−−s,
attacker generates η ,
s∗ = argmax

s

(η),

η ←− s∗,
sadv = s+η ;

else if attack = BIM then

function convert(sadv
t)

return −sadv
t

end function

sadv
t ←−−sadv

t ,
attacker generates η ,
s∗ = argmax

sadv
t

(η),

η ←− s∗,
sadv

t+1 = sadv
t +η .

end if

end while

end for

129

6.3.9 Second Adversarial Attack Defence

We provide another effective method to mitigate the gradient-based attacks’ destructive effects on

the MADRL system performance and defend against the discussed adversarial attacks. We assume

that the FGSM, FGM, or BIM adversarial attacks are detectable. In Algorithm 6.2, that is an

extension of Algorithm 6.1, once one of the FGSM, FGM, or BIM adversarial attacks is detected,

a convert function changes the sign of the state. Hence, before the attacker can confuse the NN,

the state is modified and replaced with the correct state that was fed to the NN. This is done to

mislead the attacker, so that the attacker generates the attack signal η based on the converted state.

Changing the state sign not only fools the attacker and reduces its destructive effects but also causes

the generated attack signal by the attacker to be used for appropriate NN training. The remain of

the Algorithm 6.2 performs similar to the Algorithm 6.1.

Some application domains for Sections 6.3.8 and 6.3.9 are attack detection by various antivirus

software and provide security for e-mail contents, E-commerce, streaming media, databases, webs,

file transfer protocol (FTP) servers, etc.

6.4 Results and Discussion

We illustrate results for on-time and time-delayed data transmission between agents of heteroge-

neous MAS with and without a leader, using the DQN algorithm. Additionally, the impacts of

FGSM, FGM, and BIM attacks, as well as the consequences of the defence algorithms on the

proposed leader-follower system, are illustrated and shown numerically.

Two types of graphs G are considered: complete (leaderless) and connected (leader-follower)

graphs. The leaderless and leader-follower scenarios, including N = 5 static, heterogeneous agents,

and P = 3 clusters, are illustrated in Figure 6.4.

130

(a) Communication topology of a complete
graph G without any leader.

(b) Communication topology of a connected
graph G with a leader at each cluster.

Figure 6.4: Two heterogeneous MAS, including N = 5 agents in P = 3 different clusters.

The adjacency matrices of the leaderless (left) and leader-follower (right) MAS are given by

AG
5×5

=

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

, AG
5×5

=

0 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1 1 0 0 1

0 0 0 1 0

.

The degree matrices of the leaderless (left) and leader-follower (right) MAS are

DG
5×5

=

4 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4

, DG
5×5

=

2 0 0 0 0

0 3 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0 1

.

In both types of graphs, the DQN agent’s internal structure consists of feed-forward NN architec-

ture for training, including 36 layers with Adam optimizer and MSE loss function. Note that we

have used the trial and error method to choose the number of NN hidden layers. To select any

number of layers, we performed the learning process five times to reach a definite result about

the number of layers. The activation function of all 36 layers is ReLU function. The DQN agent

learning rate is α = 0.01, the discount factor is γ = 0.999, the experience replay mini-batch size

131

is Be = 64, and the constant positive real number to calculate immediate reward ri
t+1 is κ = 4 if

the data packet is transferred in the network with time-delay. The packet’s header duration for all

agents is considered as Hp = 0.5. The threshold to determine the on-time or time-delayed data

transmission is 11 mini-slots. To compute the attack signal, the attack magnitude is ε = 0.6, and

the number of iterations is Tmax = 30000. The five agents’ two-dimensional positions are

(xi,yi) = {(0.1,0.22),(0.3,0.27),(0.21,0.9),(0.3,0.23),(0.2,0.4)},

where i ∈ {1,2, ...,5}. The positions, which are used to obtain the distance-based immediate re-

wards of (6.4) and (6.5), remain constant during the total time steps due to the static agents. As

opposed to this, when agents are mobile, their positions should be updated and added to the list of

former positions at any time step, as we will investigate in the subsequent research. Moreover, the

returned values of the novel observation set are

[0,0,0,0,1] = busy,

[0,0,0,1,0] = idle,

[0,0,1,0,0] = on− time,

[0,1,0,0,0] = time−delay,

[1,0,0,0,0] = collided.

(6.48)

All scenarios are carried out during the 20000 time steps for the data transmission part of the

experiment. The experiments are performed during the 30000 time steps while investigating the

data transmission robustness due to various adversarial attacks. The results are shown after five

times training to ensure the reliability of the results.

We have used, modified, and extended a part of the code given in [213] as a part of our imple-

mentation. Furthermore, for algorithm’s execution, a system with 3.60 GHz Intel Core i7− 7700

132

Table 6.1: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 20000 time steps without considering the distance-based
reward.

Various Graphs

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

Leaderless MAS 0.0047 0.0332 0.0665 0.1330 0.0997 0.3372 3411.58

Leaderless MAS with time-delay 0.0227 0.0427 0.0427 0.0380 0.0997 0.2460 6924.71

Leader-follower MAS 0.0147 0.0475 0.0570 0.0760 0.0902 0.2855 7325.22

Leader-follower MAS with time-delay 0.0340 0.0475 0.0237 0.0617 0.0902 0.2572 8400.12

Table 6.2: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 20000 time steps by considering the novel distance-based
reward.

Various Graphs

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

Leaderless MAS 0.0202 0.0438 0.0485 0.0930 0.0735 0.2792 6037.81

Leaderless MAS with time-delay 0.0290 0.0438 0.0533 0.1028 0.1275 0.3566 6493.40

Leader-follower MAS 0.0095 0.0674 0.0288 0.0671 0.0768 0.2498 4116.27

Leader-follower MAS with time-delay 0.0322 0.0626 0.0336 0.0959 0.1008 0.3252 7983.38

processor, 16 GB installed RAM, 64−bit operating system, and x64−based processor is used.

6.4.1 Multi-agent Performance Analysis

According to Table 6.1, without considering distance-based reward and time-delay, both leaderless

and leader-follower MAS scenarios achieve the superior team reward compared to the case when

the packets transfer in the network with time-delay. In this case and for leaderless MAS, by con-

sidering time-delay, the team reward has been reduced by −27.04%. In a similar situation and for

leader-follower MAS, by considering time-delay, the team reward has been decreased by−9.91%.

Figure 6.5 illustrates the reward convergence of a heterogeneous MAS, including N = 5 agents in

P = 3 different clusters, during 20000 time steps for leaderless and leader-follower scenarios by

considering on-time and time-delay observations. Based on the results in Table 6.1 and Figure 6.5,

delay in sending data reduces team rewards for both leaderless and leader-follower scenarios.

133

(a) Leaderless MAS. (b) Leaderless MAS by con-
sidering time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS by
considering time-delay.

Figure 6.5: Reward convergence of a heterogeneous MAS, including N = 5 agents in P= 3 different clusters,
during 20000 time steps.

(a) Leaderless MAS. (b) Leaderless MAS by
considering time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
by considering time-delay.

Figure 6.6: Loss convergence of the DQN algorithm in a heterogeneous MAS, including N = 5 agents in
P = 3 different clusters, during 20000 time steps.

(a) Leaderless MAS. (b) Leaderless MAS by con-
sidering time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS by
considering time-delay.

Figure 6.7: Reward convergence of a heterogeneous MAS, including N = 5 agents in P= 3 different clusters,
during 20000 time steps by considering the novel distance-based reward.

(a) Leaderless MAS. (b) Leaderless MAS by con-
sidering time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS by
considering time-delay.

Figure 6.8: Loss convergence of the DQN algorithm in a heterogeneous MAS, including N = 5 agents in
P = 3 different clusters, during 20000 time steps by considering the novel distance-based reward.

As can be seen from Table 6.1 and Table 6.2, the simulation confirms the claim of Theorem 6.2

in such a way that the distance-based immediate reward has improved the system performance de-

134

spite the time-delayed data transmission (regardless of whether the system is leaderless or leader-

follower). Moreover, according to Table 6.1, without considering distance-based reward and

time-delay, the DQN algorithm in both leaderless and leader-follower MAS scenarios achieves

the less average loss compared to the case when the packets transfer in the network with time-

delay. For leaderless MAS, by considering time-delay, the average DQN loss has been increased

by +102.97%. For leader-follower MAS, by considering time-delay, the average DQN loss has

been enhanced by +14.67%. Figure 6.6 shows the DQN loss convergence of a heterogeneous

MAS, including N = 5 agents in P = 3 different clusters, during 20000 time steps for leaderless

and leader-follower scenarios by considering on-time and time-delay observations. The large fluc-

tuations in the amount of loss after 10000 time steps in Figures 6.6b and 6.6d are due to delay in

data transmission.

Considering distance-based reward and time-delay, both leaderless and leader-follower MAS sce-

narios achieve the higher team reward compared to the criteria when the packets transfer in the

network on-time (Table 6.2). In this case and for leaderless MAS, by considering time-delay, the

team reward has been increased by +27.72%. In a comparable status and for leader-follower MAS,

by considering time-delay, the team reward has been enhanced by +30.18%. Figure 6.7 shows the

reward convergence of a heterogeneous MAS, including N = 5 agents in P = 3 different clusters,

during 20000 time steps for leaderless and leader-follower scenarios by considering on-time and

time-delay observations as well as distance-based reward. Based on the results in Table 6.2 and

Figure 6.7, the proposed distance-based immediate reward, in combination with the previous im-

mediate reward, covers the negative effects of data transmission delays for both leaderless and

leader-follower topologies.

Considering distance-based reward and time-delay, the DQN algorithm in leaderless and leader-

follower MAS scenarios achieves the higher loss compared to the case when the packets transfer

in the network on-time (Table 6.2). For leaderless MAS, by considering time-delay, the average

DQN loss has been increased by +7.54%. In a similar criteria and for leader-follower MAS,

135

by considering time-delay, the average DQN loss has been enhanced by +93.94%. Figure 6.8

demonstrates the DQN loss convergence of a heterogeneous MAS, including N = 5 agents in

P = 3 different clusters, during 20000 time steps for leaderless and leader-follower scenarios by

considering on-time and time-delay observations as well as distance-based reward. The time-

delayed data transmission has caused the large fluctuations in the amount of loss after 10000 time

steps in Figures 6.8b and 6.8d. As can be seen from Table 6.1 and Table 6.2, in scenarios that data

is transmitted with time-delay, the average loss of DQN is increased compared to the cases where

data is transferred on-time.

Note that the percentage increase of average loss and reward are calculated by

% Inc = 100×
(With Time-Delay - Without Time-Delay)

|Without Time-Delay |
. (6.49)

Moreover, the percentage decrease of average loss and reward are computed by

% Dec = 100×
(Without Time-Delay - With Time-Delay)

|Without Time-Delay |
. (6.50)

6.4.2 Performance Analysis of the Proposed MAS Under Adversarial At-

tacks

According to Table 6.3, by considering time-delayed data transmission and distance-based re-

ward, the team reward of the leader-follower MADRL system including N = 5 agents in P = 3

various clusters without adversarial attack equals to 0.3415 (Figure 6.9a). Moreover, in similar

conditions, the DQN loss of the discussed MADRL system is 6996.28 (Figure 6.10a). Under

FGSM adversarial attack, the team reward of the leader-follower MADRL system is decreased

to 0.3236 by −5.24% (Figure 6.9b), and the DQN loss is increased to 20920.10 by +199.01%

(Figure 6.10b). Furthermore, under FGM adversarial attack, the MADRL system team reward

is reduced to 0.3054 by −10.57% (Figure 6.9c), and the DQN loss is enhanced to 60232.71 by

136

+760.92% (Figure 6.10c). Under BIM adversarial attack, the team reward of the leader-follower

MADRL system is declined to 0.2929 by −14.23% (Figure 6.9d), and the DQN loss is increased

to 27949.57 by +299.49% (Figure 6.10d). Hence, it is evident that the time-delayed data transmis-

sion of the proposed leader-follower MADRL system is not robust under three types of adversarial

attacks during 30000 time steps, meaning that its team reward is reduced after attack, and the DQN

loss is enhanced.

Table 6.3: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 30000 time steps by considering time-delay and distance-
based reward under FGSM, FGM, and BIM adversarial attacks.

Various Attacks

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

Leader-follower MAS without attack 0.0340 0.0674 0.0432 0.0911 0.1056 0.3415 6996.28

Leader-follower MAS with FGSM attack 0.0353 0.0626 0.0432 0.0767 0.1056 0.3236 20920.10

Leader-follower MAS with FGM attack 0.0315 0.0771 0.0480 0.0719 0.0768 0.3054 60232.71

Leader-follower MAS with BIM attack 0.0335 0.0385 0.0480 0.0719 0.1008 0.2929 27949.57

(a) Without attack. (b) Under FGSM attack. (c) Under FGM attack. (d) Under BIM attack.
Figure 6.9: Reward convergence of a heterogeneous leader-follower MAS, including N = 5 agents in P =
3 different clusters, during 30000 time steps by considering time-delay and distance-based reward under
FGSM, FGM, and BIM adversarial attacks.

(a) Without attack. (b) Under FGSM attack. (c) Under FGM attack. (d) Under BIM attack.
Figure 6.10: Loss convergence of the DQN algorithm in a heterogeneous leader-follower MAS, including
N = 5 agents in P = 3 different clusters, during 30000 time steps by considering time-delay and distance-
based reward under FGSM, FGM, and BIM adversarial attacks.

137

6.4.3 Performance Analysis of the Proposed MAS After Applying First Ad-

versarial Attack Defence

According to Tables 6.3 and 6.4, after using the proposed adversarial attack defence Algorithm 6.1,

the destructive effects of the FGSM, FGM, and BIM malicious attacks are mitigated during 30000

time steps. In this regard, the team reward of the leader-follower MADRL system is reached

0.3433 from 0.3236 by +6.08% after applying the adversarial attack defence method against the

FGSM attack (Figure 6.11b). Moreover, the DQN loss is decreased from 20920.10 to 8081.50

by −61.36% (Figure 6.12b). For FGM adversarial attack and after using the introduced defence

procedure, the team reward of the MADRL system is enhanced from 0.3054 to 0.3342 by +9.43%

(Figure 6.11c). The DQN loss is reduced from 60232.71 to 6966.24 by −88.43% (Figure 6.12c).

Furthermore, the team reward of the MADRL system under BIM attack is enhanced from 0.2929

to 0.3336 by +13.89%, and the DQN loss is decreased from 27949.57 to 3705.51 by −86.74%

after utilizing the suggested attack defence technique (Figures 6.11d and 6.12d).

(a) Without attack. (b) After defend against
FGSM attack.

(c) After defend against
FGM attack.

(d) After defend against
BIM attack.

Figure 6.11: Reward convergence of a heterogeneous leader-follower MAS, including N = 5 agents in
P = 3 different clusters, during 30000 time steps by considering time-delay and distance-based reward after
adversarial attack defence Algorithm 6.1.

(a) Without attack. (b) After defend against
FGSM attack.

(c) After defend against
FGM attack.

(d) After defend against
BIM attack.

Figure 6.12: Loss convergence of the DQN algorithm in a heterogeneous leader-follower MAS, including
N = 5 agents in P = 3 different clusters, during 30000 time steps by considering time-delay and distance-
based reward after adversarial attack defence Algorithm 6.1.

138

Table 6.4: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 30000 time steps by considering time-delay and distance-
based reward after adversarial attack defence Algorithm 6.1.

Various Attacks

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

Leader-follower MAS without attack 0.0340 0.0674 0.0432 0.0911 0.1056 0.3415 6996.28

Leader-follower MAS with FGSM attack 0.0359 0.0626 0.0480 0.1150 0.0815 0.3433 8081.50

Leader-follower MAS with FGM attack 0.0172 0.0433 0.0720 0.1294 0.0720 0.3342 6966.24

Leader-follower MAS with BIM attack 0.0213 0.0771 0.0384 0.0959 0.1008 0.3336 3705.51

6.4.4 Performance Analysis of the Proposed MAS After Applying Second

Adversarial Attack Defence

According to Table 6.3 and Table 6.5, after using the proposed adversarial attack defence Algo-

rithm 6.2, the destructive effects of the FGSM, FGM, and BIM malicious attacks are mitigated

during 30000 time steps. The team reward of the leader-follower MADRL system is reached

0.3563 from 0.3236 by +10.10% after applying the adversarial attack defence method against the

FGSM attack (Figure 6.13b). Moreover, the DQN loss is decreased from 20920.10 to 2905.81

by −86.11% (Figure 6.14b). For FGM adversarial attack and after using the introduced defence

procedure, the team reward of the MADRL system is enhanced from 0.3054 to 0.3187 by +4.35%

(Figure 6.13c). The DQN loss is reduced from 60232.71 to 4100.37 by −93.19% (Figure 6.14c).

Furthermore, the team reward of the MADRL system under BIM attack is enhanced from 0.2929

to 0.3292 by +12.39%, and the DQN loss is decreased from 27949.57 to 4526.58 by −83.80%

after utilizing the suggested attack defence technique (Figures 6.13d and 6.14d).

Figures 6.15a and 6.15b show the team reward and DQN loss before and after defence Algo-

rithm 6.1 against various adversarial attacks, respectively. Figures 6.16a and 6.16b show the team

reward and DQN loss before and after defence Algorithm 6.2 against various adversarial attacks,

respectively.

139

Table 6.5: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 30000 time steps by considering time-delay and distance-
based reward after adversarial attack defence Algorithm 6.2.

Various Attacks

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

Leader-follower MAS without attack 0.0340 0.0674 0.0432 0.0911 0.1056 0.3415 6996.28

Leader-follower MAS with FGSM attack 0.0105 0.0626 0.0480 0.1246 0.1103 0.3563 2905.81

Leader-follower MAS with FGM attack 0.0306 0.0578 0.0288 0.1006 0.1007 0.3187 4100.37

Leader-follower MAS with BIM attack 0.0314 0.0530 0.0528 0.1006 0.0911 0.3292 4526.58

(a) Without attack. (b) After defend against
FGSM attack.

(c) After defend against
FGM attack.

(d) After defend against
BIM attack.

Figure 6.13: Reward convergence of a heterogeneous leader-follower MAS, including N = 5 agents in
P = 3 different clusters, during 30000 time steps by considering time-delay and distance-based reward after
adversarial attack defence Algorithm 6.2.

(a) Without attack. (b) After defend against
FGSM attack.

(c) After defend against
FGM attack.

(d) After defend against
BIM attack.

Figure 6.14: Loss convergence of the DQN algorithm in a heterogeneous leader-follower MAS, including
N = 5 agents in P = 3 different clusters, during 30000 time steps by considering time-delay and distance-
based reward after adversarial attack defence Algorithm 6.2.

6.4.5 Variety of Agents

According to [163], in the proposed topology, there are three types of agents assigned to P = 3

different clusters. The first cluster’s agents use a DQN architecture. The agents in the second clus-

ter follow the ALOHA protocol [214], [215], [216]. Moreover, the time division multiple access

(TDMA) protocol makes up the agents’ architecture of the third cluster [217]. The concentration

of this chapter is on DQN agent behaviours (first cluster) and their effects on the other clusters of

140

(a) Team reward before and after defence Algo-
rithm 6.1.

(b) DQN loss before and after defence Algorithm 6.1.

Figure 6.15: Team reward and DQN loss before and after using defence Algorithm 6.1 against various
adversarial attacks, during 30000 time steps.

(a) Team reward before and after defence Algo-
rithm 6.2.

(b) DQN loss before and after defence Algorithm 6.2.

Figure 6.16: Team reward and DQN loss before and after using defence Algorithm 6.2 against various
adversarial attacks, during 30000 time steps.

agents’ performance of the MADRL system in different situations.

Note that for developing and simulating this chapter’s algorithms, Python Programming Language

is utilized.

6.5 Conclusions

We studied the on-time and time-delayed data transmission of a leaderless (complete graph), het-

erogeneous, MADRL system using the DQN algorithm. Moreover, we investigated the on-time and

time-delayed data transmission of a leader-follower (connected graph), heterogeneous, MADRL

system using the DQN algorithm as well. We studied the MADRL system’s performance under

various conditions. We investigated data transmission on a cluster-based MAS. We proposed a

141

novel immediate reward, including a new version of distance-based reward. We used three types

of adversarial attacks to check the data transmission robustness of the MADRL system. We intro-

duced two approaches to defend against malicious attacks and mitigate the destructive effects of

adversarial attacks. The results of various scenarios were demonstrated and compared with each

other numerically.

142

Chapter 7

Data Transmission Robustness to

Cyber-attacks on Heterogeneous

Multi-agent Deep Reinforcement Learning

Systems

7.1 Introduction

This chapter investigates the data transmission robustness between agents of a cluster-based, het-

erogeneous, MADRL system under gradient-based adversarial attacks. We propose an algorithm

using a DQN approach and a proportional feedback controller to defend against the FGSM attack

and improve the DQN agent performance. The feedback control system is an auxiliary tool that

helps the DQN algorithm reduce system deficiencies. In accordance with the achieved results and

under FGSM adversarial attack, the robustness of the developed system is evaluated in three differ-

ent ways termed robust, semi-robust, and non-robust based on average reward and DQN loss. The

data transfer is carried out between agents of a MADRL system in a timely and time-delayed man-

143

ners, for both leaderless and leader-follower scenarios. Simulation results are included to verify

the presented results. The proposed algorithm in this chapter can be employed for data transmis-

sion between agents of a MARL system or a MADRL system to reach a consensus related to the

Chapters 4 and 5.

7.2 Background

The graph G = (V ,E) models leaderless and leader-follower MAS, where V is the set of all

agents, and E ⊆ {(i, j)|i ∈ V , j ∈ V } represents all communication links between agents. A pair

of agents i and j communicate if and only if (i, j) ∈ E [207]. In this chapter, all agents in a

leaderless MAS scenario communicate with their cluster-mates and other cluster members. A

MAS with leader-follower configurations allows only the preassigned leader within each cluster to

communicate with its team-mates and other leaders within other clusters [2], [5], [218].

7.2.1 DQN Algorithm

The DQN algorithm observation set to transfer data between agents of MADRL system (leaderless

or leader-follower) is ot = {busy, idle, on-time, time-delay, collided} [2], [5], [163]. Data channels

are first checked if they are idle or busy. Data can be successfully transferred on-time, with time-

delay, or collided if the channel is idle.

When the channel is busy at the time step t, the DQN agent’s action at time step t+1 is at+1 = 0. If

Rc ∈ {0,1,2, . . . ,Rcmax} is the length of packets, when the channel is idle at time step t, the DQN

agent’s action at time step t + 1 is at+1 = Rc. This type of action selection is uniform selection

with probability ε . Moreover, when the channel is idle at time step t, the DQN agent’s action at

time step t +1 is

at+1 = argmax
at∈{0,1,2,...,Rcmax }

N

∑
i=1

Qi
(

st+1,at ;θ−
)

, (7.1)

where θ− defines the target Q-value weight. This type of action selection is non-uniform selection

144

with probability 1− ε [163].

The DQN target Q-value for a state-action pair (st ,at) is usually defined by

TarQ = R(st ,at ,st+1)+ γ max
at+1

Q
(

st+1,at+1;θ−
)

, (7.2)

where γ ∈ (0,1) is the discount factor, and R(st ,at ,st+1) is the cumulative reward function. Since

in [2], [5], and [163] R(st ,at ,st+1) =
rt+1
Td
· 1−γTd

1−γ , the DQN target Q-value of a state-action pair

(st ,at) is given by

TarQ =
rt+1

Td

·
1− γTd

1− γ
+ γTd max

at+1
Q
(

st+1,at+1;θ−
)

, (7.3)

where Q(st+1,at+1;θ−) is the target network, rt+1 is the immediate reward function at time t +1,

and Td ∈ {1,2, . . . ,Rcmax} is the action time duration for on-time observation. By replacing Td with

T ′d ∈ {Rcmax+1,Rcmax+2, . . .} the action time duration for time-delay observation is obtained [2],

[5]. Moreover, the parameter θ is updated as

θt+1← θt +α (TarQ−Q(st ,at ;θ))∇θ Q(st ,at ;θ), (7.4)

where α is the learning rate, and Q(st ,at ;θ) is the Q-value function.

For calculating the average loss, the DQN loss function is given by

ℓ(θ ,s,a) =
1

Be ·N

N

∑
i=1

∑
et

(ri
t+1

Td

·
1− γTd

1− γ
Td∈{1,2,...,Rcmax}

+ γTd max
at+1

Qi
(

st+1,at+1;θ−
)

−Qi (st ,at ;θ)
)2

, (7.5)

for experience et = (st ,at ,Td,rt+1,st+1) at time t. The average loss computations based on experi-

ence et are performed from m = 1 to Be as the experience replay mini-batch size.

145

7.2.2 Linear Feedback Control System

The proportional feedback controller is given by

u(t) = Kpe(t), (7.6)

where the constant Kp is proportional gain, and e(t) is the tracking error.

7.2.3 FGSM Adversarial Attack

By targeting the system’s input, the FGSM attack introduced by [169] causes the average loss to

increase. The FGSM attack signal η is calculated by

η = ε · sign(∇sℓ(θ ,s,a)) , (7.7)

sadv = s+η , (7.8)

where ε is the attack magnitude, sign(.) is the sign function, ∇s is the gradient of the loss function

based on the model state s, ℓ is the DQN algorithm’s loss function, θ is the model parameters, and

sadv is the adversarial input.

7.3 Methodology

This section introduces the combination of the DQN algorithm process and a linear feedback con-

trol system by considering different types of immediate reward functions in terms of on-time and

time-delay data transmission. Then, the data transmission robustness of the MADRL system is

presented.

146

7.3.1 DQN Algorithm and a Linear Feedback Control System

A combination of the DRL algorithm and a linear feedback control system is considered in the

DQN agent learning process to defend against the FGSM adversarial attack in the MADRL system.

According to the structure and learning process, a proportional controller is designed to help the

DQN agent to eliminate the destructive effects of the FGSM attack. As demonstrated in Figure 7.1,

the training procedure of the entire DRL algorithm is considered as the process part of the feedback

control system. The designed proportional controller output u(t) is specified by (7.6). The tracking

error value e(t) is given by

e(t) = r̂i
t+1− ri

t+1, (7.9)

where r̂i
t+1 and ri

t+1 are the optimal (estimated) and environmental received rewards at time step

t +1, respectively. The feedback control system output of (7.6) is given to the DQN agent. During

policy training and at time step t, the DNN of the DQN agent considers the controller output,

along with its input, to select the most appropriate action. Depending on the different states that

may exist in the system, the immediate reward for each agent is calculated using one of the methods

presented in [2], [5], and [163] for on-time and time-delay data transmission configurations. The

optimal reward r̂i
t+1 at time step t + 1 is calculated using the proposed technique in Appendix B

of [163]. Based on the various immediate rewards, the following control outputs are calculated.

The proportional controller output when the data packet transferred by each agent in the network

successfully and on-time is given by

u(t) = Kp(r̂
i
t+1− (Ri

c−H i
p)). (7.10)

When the data packet is transferred by each agent in the network successfully and by time-delay

then,

u(t) = Kp(r̂
i
t+1− (Ri

c−κ ·H i
p)). (7.11)

As a reminder, Rc is the packet length, Hp is the packet’s header duration, and κ ∈ (1,∞) is a real

147

Figure 7.1: A feedback control system is used on the DQN learning process to assist the DRL system against
the FGSM adversarial attack.

constant number for time-delayed data transmission. For on-time data transmission κ = 1. Note

that i ∈ {1,2, . . . ,N} determines a specific agent. The proposed Algorithm 7.1 shows the DQN

algorithm and feedback control system combination.

Theorem 7.1 Assume that the MAS with N agents is modeled by a graph G , and the learning pro-

cess is carried out by DQN algorithm with the proportional feedback controller u(t)=Kpe(t). With

on-time observation for data transmission, the average approximated cumulative team discounted

reward of a state-action pair (st ,at) satisfies the following

1
N

N

∑
i=1

Qi(st ,at ;θ)

u(t)=0

≤
1
N

N

∑
i=1

Qi(st ,at ;θ)

u(t)=Kpe(t)

. (7.12)

Proof 7.1 For an on-time data transmission, we consider the action time duration Td ∈{1,2, . . . ,Rcmax}.

Since in this work r̂i
t+1 is a real constant number at each time step, and r̂i

t+1≫ ri
t+1, then Kpe(t)≥ 0

(Kp > 0, and e(t)≥ 0). According to [2], [5], [163] and using (7.6) the following is given

N

∑
i=1

Ri
c−H i

p

T i
d

≤
N

∑
i=1

Ri
c−H i

p +Kpe(t)

T i
d

. (7.13)

148

Algorithm 7.1 DQN Algorithm as the Feedback Control System Process to Defend Against FGSM
Cyber-attack

Input: t, Tmax, θ , ε , s, κ , Kp, Ki, Kd , setpoint, ot , a0, r0, r̂t+1

Output: sadv, at+1, rt+1, u(t)

ot ={busy, idle, on-time, time-delay, collided}
a0 = 0
r0 = 0
r̂t+1 ∈ R

setpoint←− r̂t+1

for t = 0,1,2, . . . , Tmax do

if attack = FGSM then

η = ε · sign(∇sℓ(θ ,s,a))
sadv = s+η

end if

while attack = True do

if observation is busy then

at+1 = 0
else if observation is idle then

at+1 ̸= 0

at+1 = Rc ∈ {0,1,2, . . . ,Rcmax}

at+1 = argmax
at∈{0,1,2,...,Rcmax }

∑
N
i=1 Qi (st+1,at ;θ−) ,

if idle observation is on-time then

rt+1 = Ri
c−H i

p

else if idle observation is time-delay then

rt+1 = Ri
c− (κ ·H i

p)
end if

e(t) =setpoint−rt+1

u(t) = Kpe(t)+Ki

∫ t
0 e(t)dt +Kd

de(t)
dt

u(t)←− update (u(t))
while setpoint > 0 and e(t)≥ 0 do

rt+1←− rt+1 +u(t)
end while

end if

end while

end for

149

By assuming a specific value of γ ∈ (0,1), the following inequality is provided

N

∑
i=1

Ri
c−H i

p

T i
d

·
1− γT i

d

1− γ
≤

N

∑
i=1

Ri
c−H i

p +Kpe(t)

T i
d

·
1− γT i

d

1− γ
. (7.14)

Furthermore, utilizing the discount factor γ ∈ (0,1) and action time duration Td , the following is

valid

0 < γTd

Td∈{1,2,...,Rcmax}

< 1. (7.15)

Consequently, for N agents, we have

N

∑
i=1

γT i
d

T i
d
∈{1,2,...,Rcmax}

> 0. (7.16)

If setpoint ∈ (0,∞), then the target network is considered by

Qi
(

st+1,at+1;θ−
)

> 0. (7.17)

Based on (7.16), and by considering the maximum of target network, we obtain

N

∑
i=1

γT i
d max

at+1
Qi
(

st+1,at+1;θ−
)

T i
d
∈{1,2,...,Rcmax}

> 0. (7.18)

Using (7.14) and (7.18), the following inequalities are obtained

N

∑
i=1

Ri
c−H i

p

T i
d

·
1− γT i

d

1− γ
+ γT i

d max
at+1

Qi
(

st+1,at+1;θ−
)

≤

N

∑
i=1

Ri
c−H i

p +Kpe(t)

T i
d

·
1− γT i

d

1− γ
+ γT i

d max
at+1

Qi
(

st+1,at+1;θ−
)

,

(7.19)

N

∑
i=1

TarQi

u(t)=0

≤
N

∑
i=1

TarQi

u(t)=Kpe(t)

. (7.20)

150

The difference between the target Q-value and predicted Q-value should converge to zero to obtain

the minimum amount of training loss ℓ(θ ,s,a) [2], [5]. Accordingly, the following equation applies

to ith agent,

lim
t→t0

Qi(st ,at ;θ) = TarQi . (7.21)

Substituting (7.21) in (7.20) yields

N

∑
i=1

lim
t→t0

Qi(st ,at ;θ)

u(t)=0

≤
N

∑
i=1

lim
t→t0

Qi(st ,at ;θ)

u(t)=Kpe(t)

. (7.22)

Regarding the monotone convergence condition, the following is valid

N

∑
i=1

lim
t→t0

Qi(st ,at ;θ) = lim
t→t0

N

∑
i=1

Qi(st ,at ;θ). (7.23)

Using (7.23), the inequality (7.22) is altered as following

lim
t→t0

N

∑
i=1

Qi(st ,at ;θ)

u(t)=0

≤ lim
t→t0

N

∑
i=1

Qi(st ,at ;θ)

u(t)=Kpe(t)

, (7.24)

N

∑
i=1

Qi(st0 ,at0;θ)

u(t)=0

≤
N

∑
i=1

Qi(st0 ,at0;θ)

u(t)=Kpe(t)

. (7.25)

By redistributing each side of the inequality (7.25) to time t and taking an average from both sides

of the relation, the following is provided

1
N

N

∑
i=1

Qi(st ,at ;θ)

u(t)=0

≤
1
N

N

∑
i=1

Qi(st ,at ;θ)

u(t)=Kpe(t)

. (7.26)

Therefore, the inequality (7.12) is proven.

Remark 7.1 Since T ′d ∈ {Rcmax +1,Rcmax +2, . . .} is considered as the time-delayed action time

duration in [2], and [5], then the proof of Theorem 7.1 can be expanded to show that using a pro-

151

portional controller for time-delay observation causes to produce a greater average approximated

cumulative team discounted reward rather than the absence of the feedback controller.

7.3.2 Data Transmission Robustness Evaluation

In the absence of an attack, the DQN algorithm aims to reduce the average loss in a given time step

and enhance the average reward. The purpose of the FGSM attack is to increase the average loss

and thus reduce the average reward. Hence, under FGSM attack, the robustness of our developed

system is evaluated in three ways based on the DQN algorithm’s aim and FGSM attack’s purpose:

(i) robust: the average loss is not increased and the average reward is not decreased compared to

the non-attack mode; (ii) semi-robust: the average loss is increased, but the average reward is not

decreased compared to the non-attack mode and vice versa; (iii) non-robust: the average loss is

increased and the average reward is decreased compared to the non-attack mode.

7.4 Results and Discussion

(a) Graph G as a leaderless MAS. (b) Graph G as a leader-follower MAS.
Figure 7.2: Leaderless and leader-follower heterogeneous MAS, including DQN, ALOHA, and TDMA
structures, affected by a cyber-attack.

This section examines the data transfer robustness between agents in the MADRL system under

the FGSM malicious attack with respect to average team reward and DQN loss. The investigation

is considered in various conditions, e.g., on-time and time-delay data transmission. The simulation

152

Table 7.1: Utilized Kp gain after manual tuning under FGSM cyber-attack.

Proportional Controller Gain

Various Graphs

Proportional Gain
Kp

Leaderless MAS 0.0050

Leaderless MAS with time-delay 0.00575

Leader-follower MAS 0.0059

Leader-follower MAS with time-delay 0.00557

examples and data analysis are shown later.

For undirected leaderless and leader-follower scenarios (Figure 7.2), the DQN agent uses a feed-

forward NN architecture for training, consisting of 36 layers with Adam optimization and MSE

loss functions. All 36 layers have a rectified linear unit (ReLU) as their activation function. As

an additional detail, DQN learning rate is α = 0.01, discount factor is γ = 0.999, the experience-

replay mini-batch size is Be = 64, and constant positive real number for calculating immediate

reward ri
t+1 if the data packet is transferred in the network by delay is κ = 4. A threshold of 11

mini-slots determines on-time or time-delay data transmission. The ε = 0.6 is assumed as the

attack magnitude to calculate the attack signal. Simulation scenarios are carried out during 10000

time steps such that the FGSM malicious attack occurs on the DQN agent after starting the training

process. The DQN algorithm setpoint that is considered as the estimated reward is 0.255.

Table 7.1 shows the different values of proportional gain Kp for various scenarios obtained by

manual tuning. In order to ensure the validity of the outcomes, all the results are shown after five

training cycles. Since the agents’ structures of each cluster in the cluster-based MADRL system

are different, the first, second, and third clusters of agents’ architecture are the DQN algorithm, the

ALOHA protocol, and the TDMA protocol, respectively.

As part of our implementation, we have used, modified, and extended parts of the code provided

in [213]. In addition, the algorithm is executed on a system equipped with a 3.60 GHz Intel Core

i7−7700 processor, 16GB of RAM, a 64−bit operating system, and an x64−based processor.

153

7.4.1 DQN Algorithm’s Robustness

The destructive effect of the FGSM adversarial attack on the MADRL system is visible in Table

7.2 and Table 7.3 in such a way that in all scenarios, after attack, the average loss of the DQN

algorithm has increased.

The average loss of leaderless MAS has increased by 69.93% (from 21715.09 to 36901.97), and

its average team reward has decreased by 16.94% (from 0.0608 to 0.0505). Therefore, without

a proportional controller, the DQN algorithm of leaderless MAS is not robust to FGSM attack

for data transmission and is located in the non-robust category. The average loss of leaderless

MAS with time-delay has enhanced by +23.85% (from 15905.47 to 19698.95), and its average

team reward has increased by +1.65% (from 0.0604 to 0.0614). Hence, without a proportional

controller, the DQN algorithm of leaderless MAS with time-delay is partly robust to FGSM attack

for data transmission and is placed in the semi-robust category.

Moreover, the average loss of leader-follower MAS has increased by 25.50% (from 17161.44 to

21537.88), and its average team reward has decreased by 1.83% (from 0.0598 to 0.0587). There-

fore, without a proportional controller, the DQN algorithm of leader-follower MAS is not robust to

the FGSM attack for data transmission and is located in the non-robust category. The average loss

of leader-follower MAS with time-delay has increased by 155.07% (from 16297.44 to 41570.27),

and its average team reward has enhanced by 9.24% (from 0.0530 to 0.0579). Hence, without

a proportional controller, the DQN algorithm of leader-follower MAS with time-delay is partly

robust to the FGSM attack for data transmission and is positioned in the semi-robust category.

Under the FGSM attack, the leaderless with time-delay and leader-follower with time-delay sce-

narios fall into the semi-robust category. The reason is that the delay in data transmission gives

enough time to the MADRL system to identify the cyber-attack and ignore its destructive effects

as much as possible.

154

Table 7.2: Comparison of DQN loss and average reward of N = 5 agents in a cluster-based MADRL system
with P = 3 clusters before FGSM cyber-attack during 10000 time steps.

DQN Loss and Average Reward Before FGSM Attack

Various Graphs

Agents
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Loss

Leaderless MAS 0.0218 0.0458 0.0411 0.0962 0.0993 0.0608 21715.09

Leaderless MAS with time-delay 0.0172 0.0380 0.0427 0.0950 0.1092 0.0604 15905.47

Leader-follower MAS 0.0172 0.0463 0.0477 0.0974 0.0904 0.0598 17161.44

Leader-follower MAS with time-delay 0.0087 0.0427 0.0522 0.0570 0.1045 0.0530 16297.44

Table 7.3: Comparison of DQN loss and average reward of N = 5 agents in a cluster-based MADRL system
with P = 3 clusters under FGSM cyber-attack during 10000 time steps.

DQN Loss and Average Reward Under FGSM Attack Using ε = 0.6

Various Graphs

Agents
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Loss

Leaderless MAS 0.0245 0.0237 0.0522 0.0807 0.0712 0.0505 36901.97

Leaderless MAS with time-delay 0.0127 0.0427 0.0617 0.0760 0.1140 0.0614 19698.95

Leader-follower MAS 0.0132 0.0475 0.0380 0.0902 0.1045 0.0587 21537.88

Leader-follower MAS with time-delay 0.0140 0.0570 0.0142 0.1092 0.0950 0.0579 41570.27

Table 7.4: Comparison of DQN loss and average reward of N = 5 agents in a cluster-based MADRL system
with P = 3 clusters under FGSM cyber-attack during 10000 time steps using DRL and proportional con-
troller.

DQN Loss and Average Reward Under FGSM Attack Using ε = 0.6

Various Graphs

Agents
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Loss

Leaderless MAS 0.2002 0.0570 0.0380 0.0997 0.1045 0.0999 19516.75

Leaderless MAS with time-delay 0.2778 0.0477 0.0486 0.0851 0.0973 0.1113 14676.98

Leader-follower MAS 0.244 0.0522 0.0332 0.1045 0.0997 0.1067 13984.18

Leader-follower MAS with time-delay 0.2717 0.0332 0.0665 0.076 0.0807 0.1056 25682.28

155

(a) Leaderless MAS. (b) Leaderless MAS with
time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
with time-delay.

Figure 7.3: Reward convergence of N = 5 agents in a cluster-based MADRL system, including P= 3 various
clusters, before FGSM cyber-attack during 10000 time steps.

(a) Leaderless MAS. (b) Leaderless MAS with
time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
with time-delay.

Figure 7.4: Loss convergence of the DQN algorithm in a cluster-based MADRL system, including P = 3
various clusters, before FGSM cyber-attack during 10000 time steps.

(a) Leaderless MAS. (b) Leaderless MAS with
time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
with time-delay.

Figure 7.5: Reward convergence of N = 5 agents in a cluster-based MADRL system, including P= 3 various
clusters, under FGSM cyber-attack during 10000 time steps with ε = 0.6.

(a) Leaderless MAS. (b) Leaderless MAS with
time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
with time-delay.

Figure 7.6: Loss convergence of the DQN algorithm in a cluster-based MADRL system, including P = 3
various clusters, under FGSM cyber-attack during 10000 time steps with ε = 0.6.

156

(a) Leaderless MAS. (b) Leaderless MAS with
time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
with time-delay.

Figure 7.7: Reward convergence of N = 5 agents in a cluster-based MADRL system, including P= 3 various
clusters, under FGSM cyber-attack during 10000 time steps with ε = 0.6, using DRL and proportional
controller.

(a) Leaderless MAS. (b) Leaderless MAS with
time-delay.

(c) Leader-follower MAS. (d) Leader-follower MAS
with time-delay.

Figure 7.8: Loss convergence of the DQN algorithm in a cluster-based MADRL system, including P = 3
various clusters, under FGSM cyber-attack during 10000 time steps with ε = 0.6, using DRL and propor-
tional controller.

7.4.2 DQN Algorithm’s Robustness: Proportional Controller

The positive effect of the proportional controller on the MADRL system under the FGSM adver-

sarial attack is apparent in Table 7.3 and Table 7.4. By comparing the MAS results of average loss

and average team reward in Tables 7.3 and 7.4, the outcomes below are achieved.

The average loss of leaderless MAS has reduced by 47.11% (from 36901.97 to 19516.75), and

its average team reward has increased by 97.82% (from 0.0505 to 0.0999). Therefore, with a

proportional controller, the DQN algorithm of leaderless MAS is robust to FGSM attack for data

transmission rather than the absence of a proportional controller and is located in the robust cate-

gory. Furthermore, the average loss of leaderless MAS with time-delay has diminished by 25.49%

(from 19698.95 to 14676.98), and its average team reward has enhanced by 81.27% (from 0.0614

to 0.1113). Hence, with a proportional controller, the DQN algorithm of leaderless MAS with

time-delay is robust to the FGSM attack for data transmission rather than the absence of a propor-

tional controller and is placed in the robust category.

157

Moreover, the average loss of leader-follower MAS has decreased by 35.07% (from 21537.88

to 13984.18), and its average team reward has increased by 81.77% (from 0.0587 to 0.1067).

Therefore, with a proportional controller, the DQN algorithm of leader-follower MAS is robust

to the FGSM attack for data transmission rather than the absence of a proportional controller and

is placed in the robust category. The average loss of leader-follower MAS with time-delay has

reduced by 38.21% (from 41570.27 to 25682.28), and its average team reward has enhanced by

82.38% (from 0.0579 to 0.1056). Hence, with a proportional controller, the DQN algorithm of

leader-follower MAS with time-delay is robust to the FGSM attack for data transmission rather

than the absence of a proportional controller and is positioned in the robust category.

In our proposed method, combining the DQN algorithm with a proportional controller improves the

team performance for all scenarios compared to when only the DQN algorithm is used. Adding a

proportional controller diminishes the number of non-robust and semi-robust systems under FGSM

adversarial attack in data transmission. The results of Tables 7.2-7.4 are shown in Figures 7.3-

7.8. The large fluctuations in the amount of loss for various scenarios in Figure 7.6 rather than

Figure 7.4 are due to FGSM adversarial attack. As can be seen from Figure 7.8, the fluctuation

in the amount of loss after using the proportional feedback controller is reduced compared to

Figure 7.6.

Compared to the other research developments using the pure DQN algorithm [2], in our experi-

ment, the proportional feedback control system based on the DQN algorithm can improve the MAS

performance and overcome the system disturbances caused by cyber-attacks, especially FGSM ad-

versarial attacks, in a lower period of time.

It is worth mentioning that Python Programming Language is used to develop and simulate the

algorithm of this chapter.

158

7.5 Conclusions

We studied the data transmission robustness to cyber-attacks on an undirected leaderless or leader-

follower, heterogeneous, cluster-based MADRL system using the DQN algorithm by considering

on-time and time-delay observations. After designing a proportional controller and adding it to the

DQN learning process, we concentrated on the MADRL system’s performance and data transmis-

sion robustness in terms of average team reward and DQN loss. The simulation results of various

scenarios were presented and analysed.

159

Chapter 8

Summary and Future Works

8.1 Summary

In this dissertation, we considered the average position consensus of cluster-based, heterogeneous

MAS using the non-learning methods. We presented the discussed average position consensus of

agents’ clusters in two scenarios for 2-D and 3-D spaces. The average position consensus was

performed when each cluster’s agents had the same goal; however, its goal differed from the other

groups. Later, the average position consensus was done when the aim of all clusters’ agents was

unique. The successful position consensus for the proposed cluster-based, heterogeneous MAS in

2-D and 3-D spaces was shown by numerical and simulation results.

We studied the consensus problem of a leaderless, homogeneous MARL system using the actor-

critic algorithms in the absence and presence of malicious agents. Each agent’s principal goal was

to reach the position consensus with the maximum cumulative reward. We presented the imme-

diate reward function based on Manhattan distance. Then, we proposed three other immediate

reward functions based on various distance metrics to improve the MARL system’s performance.

We combined different immediate reward functions and used each of them based on the maximum

160

returned value during each episode to enhance agents’ cumulative reward in the presence of mali-

cious agents within the MARL system. Finally, we compared different immediate reward functions

within the MARL system. We found that the type of immediate reward function plays a significant

role in the efficiency of each agent in the network in reaching the consensus and obtaining fur-

ther cumulative team rewards. The claims were proved theoretically, and the simulation confirmed

theoretical findings.

Moreover, in this dissertation, we studied the control of a leaderless, homogeneous MARL sys-

tem using actor-critic algorithms in the presence of a malicious agent. Using the gradient of the

loss function with respect to the activation function, we proved that when the MSE loss function

was combined with the sigmoid activation function in the malicious agent’s critic and reward NN

(last layer), the loss of Agent#1 (malicious agent) was increased. Then, the cumulative reward de-

creased dramatically compared to when the linear activation function was used in the last layer of

the adverse agent’s critic and reward NN. The simulation results confirmed the theoretical analysis.

We studied the on-time and time-delayed data transmission of a leaderless, heterogeneous MADRL

system using the DQN algorithm. We also investigated the on-time and time-delayed data transmis-

sion of a leader-follower, heterogeneous MADRL system using the DQN algorithm. We studied

the MADRL system’s performance under various conditions. We did the data transmission inves-

tigation on a cluster-based MAS framework. We proposed a novel immediate reward, including a

new version of the distance-based reward. We used three types of adversarial attacks to check the

data transmission robustness of the MADRL system. We introduced two approaches for defending

against malicious attacks and mitigating the destructive effects of adversarial attacks. The results

of various scenarios were demonstrated and compared with each other numerically.

We investigated the data transmission robustness to cyber-attacks on an undirected leaderless or

leader-follower, heterogeneous, cluster-based MADRL system using the DQN algorithm by con-

sidering on-time and time-delay observations. After designing a proportional controller and adding

it to the DQN algorithm learning process, we concentrated on the MADRL system’s performance

161

and data transmission robustness regarding average team reward and DQN loss. The simulation

results of various scenarios were demonstrated and compared with each other.

8.2 Future Work

The possible future works related to this dissertation are:

• Proposing various adversarial attack detection methods:

RL- and DRL-based adversarial attack detection algorithms can be studied for the various

types of malicious attacks that target the introduced processes in this dissertation. Moreover,

the computer-vision object detection approaches could be extended and used for the gradient-

based attacks considered in this thesis or other possible attacks.

• Extending the proposed algorithms in the presence of obstacles:

Various RL- and DRL-based object detection algorithms can be proposed to avoid the pos-

sible static or dynamic obstacles in the way of agents’ movement (if the agents are mobile)

in a MAS. Collision avoidance can be considered in two cases as below:

Internal Obstacle: In the first case, each agent considers the other neighbouring agents as ob-

stacles and does not get closer to them. Therefore, a certain distance between neighbouring

agents must be considered as below:

d(i, j)≤ din,

d(k, l)≤ dout ,

where d(i, j) is the distance between the ith and jth neighbouring agents in a cluster, and

d(k, l) is the distance between the kth and lth neighbouring agents of two neighbouring clus-

ters. Furthermore, din and dout are constant defined values.

External Obstacle: In the second case, static or dynamic objects outside the MAS are con-

162

sidered as obstacles. Therefore, agents during movement must avoid colliding with static or

dynamic obstacles. In this regard, it may be possible to consider each agent in the center of

a circle with a radius r. If agents can detect a foreign object at a distance r or closer, they

must react and avoid colliding with that obstacle.

163

Bibliography

[1] H. Ji, O. Alfarraj, and A. Tolba, ªArtificial intelligence-empowered edge of vehicles: archi-

tecture, enabling technologies, and applications,º IEEE Access, vol. 8, pp. 61020±61034,

2020.

[2] N. Elhami Fard and R. R. Selmic, ªAdversarial attacks on heterogeneous multi-agent deep

reinforcement learning system with time-delayed data transmission,º Journal of Sensor and

Actuator Networks, vol. 11, no. 3, p. 45, 2022.

[3] N. Elhami Fard and R. R. Selmic, ªConsensus of multi-agent reinforcement learning sys-

tems: The effect of immediate rewards,º Journal of Robotics and Control (JRC), vol. 3,

no. 2, pp. 115±127, 2022.

[4] N. Elhami Fard and R. R. Selmic, ªData transmission resilience to cyber-attacks on het-

erogeneous multi-agent deep reinforcement learning systems,º in Proceedings of The 17th

International Conference on Control, Automation, Robotics and Vision (ICARCV), 2022.

[5] N. Elhami Fard and R. R. Selmic, ªTime-delayed data transmission in heterogeneous multi-

agent deep reinforcement learning system,º in Proceedings of the 2022 30th Mediterranean

Conference on Control and Automation (MED), pp. 636±642, 2022.

[6] V. Selvi and R. Umarani, ªComparative analysis of ant colony and particle swarm optimiza-

tion techniques,º International Journal of Computer Applications, vol. 5, no. 4, pp. 1±6,

164

2010.

[7] A. Dorri, S. S. Kanhere, and R. Jurdak, ªMulti-agent systems: A survey,º IEEE Access,

vol. 6, pp. 28573±28593, 2018.

[8] B. D. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx, ªRigid graph control architectures

for autonomous formations,º IEEE Control Systems Magazine, vol. 28, no. 6, pp. 48±63,

2008.

[9] M. Pachter and P. R. Chandler, ªChallenges of autonomous control,º IEEE Control Systems

Magazine, vol. 18, no. 4, pp. 92±97, 1998.

[10] H. Xinhan and W. Min, ªMulti-sensor data fusion structures in autonomous systems: a

review,º in Proceedings of the 2003 IEEE International Symposium on Intelligent Control,

pp. 817±821, IEEE, 2003.

[11] Y. Tang, C. Zhao, J. Wang, C. Zhang, Q. Sun, W. X. Zheng, W. Du, F. Qian, and J. Kurths,

ªPerception and navigation in autonomous systems in the era of learning: A survey,º IEEE

Transactions on Neural Networks and Learning Systems, 2022.

[12] W. Fink, J. Dohm, and M. A. Tarbell, ªMulti-agent autonomous system,º Jan. 24 2006. US

Patent 6,990,406.

[13] W. Fink, J. Dohm, and M. A. Tarbell, ªMulti-agent autonomous system and method,º

June 22 2010. US Patent 7,742,845.

[14] A. Rossiter, ªThe impact of robotics and autonomous systems (ras) across the conflict spec-

trum,º Small Wars & Insurgencies, vol. 31, no. 4, pp. 691±700, 2020.

[15] J. J. Leonard, A. A. Bennett, C. M. Smith, H. Jacob, and S. Feder, ªAutonomous underwater

vehicle navigation,º in MIT Marine Robotics Laboratory Technical Memorandum, Citeseer,

1998.

165

[16] P. A. Miller, J. A. Farrell, Y. Zhao, and V. Djapic, ªAutonomous underwater vehicle naviga-

tion,º IEEE Journal of Oceanic Engineering, vol. 35, no. 3, pp. 663±678, 2010.

[17] P. Encarnacao and A. Pascoal, ª3d path following for autonomous underwater vehicle,º in

Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187),

vol. 3, pp. 2977±2982, IEEE, 2000.

[18] C. C. Eriksen, T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and

A. M. Chiodi, ªSeaglider: A long-range autonomous underwater vehicle for oceanographic

research,º IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 424±436, 2001.

[19] A. Birk and S. Carpin, ªRescue roboticsÐa crucial milestone on the road to autonomous

systems,º Advanced Robotics, vol. 20, no. 5, pp. 595±605, 2006.

[20] F. J. R. Lera, C. F. Llamas, Á. M. Guerrero, and V. M. Olivera, ªCybersecurity of robotics

and autonomous systems: Privacy and safety,º Robotics-Legal, Ethical and Socioeconomic

Impacts, 2017.

[21] J. Balsa-Comerón, Á. M. Guerrero-Higueras, F. J. Rodríguez-Lera, C. Fernández-Llamas,

and V. Matellán-Olivera, ªCybersecurity in autonomous systems: hardening ros using en-

crypted communications and semantic rules,º in Iberian Robotics Conference, pp. 67±78,

Springer, 2017.

[22] M. S. Rais, K. Zouaidia, and R. Boudour, ªEnhanced decision making in multi-scenarios

for autonomous vehicles using alternative bidirectional q network,º Neural Computing and

Applications, pp. 1±16, 2022.

[23] T. Linz, ªTesting autonomous systems,º in The Future of Software Quality Assurance,

pp. 61±75, Springer, Cham, 2020.

166

[24] V. Kumar, ª50 years of robotics [from the guest editors],º IEEE Robotics & Automation

Magazine, vol. 17, no. 3, pp. 8±8, 2010.

[25] M. Weber, ªwhere to? a history of autonomous vehicles.º https://

computerhistory.org/blog/where-to-a-history-of-autonomous-vehicles/

?key=where-to-a-history-of-autonomous-vehicles, May 2014.

[26] J. Von Neumann, N. Wiener, and S. J. Heims, From mathematics to the technologies of life

and death. MIT press, 1981.

[27] D. P. Watson and D. H. Scheidt, ªAutonomous systems,º Johns Hopkins APL Technical

Digest, vol. 26, no. 4, pp. 368±376, 2005.

[28] B. Pell, D. E. Bernard, S. Chien, E. Gat, N. Muscettola, P. P. Nayak, M. D. Wagner, and

B. C. Williams, ªRemote agent prototype for spacecraft autonomy,º in Space Sciencecraft

Control and Tracking in the New Millennium, vol. 2810, pp. 74±90, International Society

for Optics and Photonics, 1996.

[29] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams, ªRemote agent: To boldly go where

no ai system has gone before,º Artificial Intelligence, vol. 103, no. 1-2, pp. 5±47, 1998.

[30] J. M. Beer, A. D. Fisk, and W. A. Rogers, ªToward a framework for levels of robot autonomy

in human-robot interaction,º Journal of Human-Robot Interaction, vol. 3, no. 2, p. 74, 2014.

[31] ªautonomy.º https://www.merriam-webster.com/dictionary/autonomy, June 2020.

[32] ªautomatic.º https://www.merriam-webster.com/dictionary/automatic, June

2020.

[33] ªautomation.º https://www.merriam-webster.com/dictionary/automation, July

2020.

167

[34] H. Huang, ªAutonomy levels for unmanned systems (alfus) framework±volume i:

Terminology±version 2.0 (nist special publication 1011-i-2.0),º Gaithersburg, MD, USA,

2008.

[35] C. Ebert and M. Weyrich, ªValidation of autonomous systems,º IEEE Software, vol. 36,

no. 5, pp. 15±23, 2019.

[36] W. Xu, ªFrom automation to autonomy and autonomous vehicles: Challenges and opportu-

nities for human-computer interaction,º Interactions, vol. 28, no. 1, pp. 48±53, 2020.

[37] Caterpillar, ªAutomation and autonomy: What’s the difference?.º https:

//www.equipmentworld.com/partner-solutions-article/caterpillar/

automation-autonomy-whats-the-difference/, May 2016.

[38] T. Pettinger, ªAutomation ± benefits and costs.º https://www.economicshelp.org/

blog/25163/economics/automation/, Nov. 2019.

[39] ªautonomous systems-advantages and disadvantages.º https://sites.google.com/

site/autonomoussystemsmw/autonomous-cars/advantages-and-disadvantages.

[40] J. Williamson, ªWhat are the challenges for the development of au-

tonomous systems?.º https://www.themanufacturer.com/articles/

challenges-development-autonomous-systems/, jun 2020.

[41] J. Hodicky and D. Prochazka, ªChallenges in the implementation of autonomous systems

into the battlefield,º in 2017 International Conference on Military Technologies (ICMT),

pp. 743±747, IEEE, 2017.

[42] J. Markoff, ªCollision in the making between self-driving cars and how the world works,º

New York Times, 2012.

168

[43] R. C. Arkin, ªEthical robots in warfare,º IEEE Technology and Society Magazine, vol. 28,

no. 1, pp. 30±33, 2009.

[44] S. Bagchi, V. Aggarwal, S. Chaterji, F. Douglis, A. El Gamal, J. Han, B. Henz, H. Hoffmann,

S. Jana, M. Kulkarni, et al., ªVision paper: Grand challenges in resilience: Autonomous

system resilience through design and runtime measures,º IEEE Annals of the History of

Computing, no. 01, pp. 1±1, 2020.

[45] Q. Ha, L. Yen, and C. Balaguer, ªRobotic autonomous systems for earthmoving in military

applications,º Automation in Construction, vol. 107, p. 102934, 2019.

[46] ªEmerging technologies.º https://en.wikipedia.org/wiki/

Emerging-technologies, Aug. 2020.

[47] M. Bayern, ªThe 5 emerging technologies worth invest-

ing in for 2020.º https://www.techrepublic.com/article/

the-5-emerging-technologies-worth-investing-in-for-2020/, aug 2019.

[48] R. Haddal and N. K. Hayden, ªAutonomous systems artificial intelligence and safeguards.,º

tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM, 2018.

[49] Y. Bengio, Learning deep architectures for AI. Now Publishers Inc, 2009.

[50] B. Torossian, F. Bekkers, T. Sweijs, M. Roelen, A. Hristov, and S. Atalla, The Military

Applicability of Robotic and Autonomous Systems. Hague Centre for Strategic Studies,

2020.

[51] M. Grolms, ªAutonomous vehicles in logistics part 1: Oppor-

tunities and risks.º https://www.allthingssupplychain.com/

autonomous-vehicles-in-logistics-part-1-opportunities-and-risks/, jun

2020.

169

[52] O. David-West, ªWhat do new autonomous technologies mean for

global business?.º https://globalnetwork.io/perspectives/2016/09/

what-do-new-autonomous-technologies-mean-global-business, sep 2016.

[53] H. He, J. Gray, A. Cangelosi, Q. Meng, T. McGinnity, and J. Mehnen, ªThe challenges and

opportunities of artificial intelligence in implementing trustworthy robotics and autonomous

systems,º in 3rd International Conference on Intelligent Robotic and Control Engineering,

2020.

[54] J. A. Perez, F. Deligianni, D. Ravi, and G.-Z. Yang, ªArtificial intelligence and robotics,º

arXiv preprint arXiv:1803.10813, vol. 147, 2018.

[55] D. Rahmani and H. Kamberaj, ªImplementation and usage of artificial intelligence powered

chatbots in human resources management systems,º in International Conference on Social

and Applied SciencesAt: University of New York Tirana, May 2021.

[56] S. Singh, ªCousins of artificial intelligence.º https://towardsdatascience.com/

cousins-of-artificial-intelligence-dda4edc27b55, May 2018.

[57] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, ªDeep reinforcement learning for multia-

gent systems: A review of challenges, solutions, and applications,º IEEE Transactions on

Cybernetics, vol. 50, no. 9, pp. 3826±3839, 2020.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, and G. Ostrovski, ªHuman-level control through deep rein-

forcement learning,º Nature, vol. 518, no. 7540, pp. 529±533, 2015.

[59] I. H. Sarker, ªDeep cybersecurity: a comprehensive overview from neural network and deep

learning perspective,º SN Computer Science, vol. 2, no. 3, pp. 1±16, 2021.

170

[60] X. Liu, H. Xu, W. Liao, and W. Yu, ªReinforcement learning for cyber-physical systems,º in

2019 IEEE International Conference on Industrial Internet (ICII), pp. 318±327, May 2020.

[61] S. Mahdavifar and A. A. Ghorbani, ªApplication of deep learning to cybersecurity: A sur-

vey,º Neurocomputing, vol. 347, pp. 149±176, 2019.

[62] T. T. Nguyen and V. J. Reddi, ªDeep reinforcement learning for cyber security,º IEEE Trans-

actions on Neural Networks and Learning Systems, November 2019.

[63] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, ªApplication of deep reinforce-

ment learning to intrusion detection for supervised problems,º Expert Systems with Appli-

cations, vol. 141, p. 112963, 2020.

[64] K. Sethi, R. Kumar, N. Prajapati, and P. Bera, ªDeep reinforcement learning based intrusion

detection system for cloud infrastructure,º in 2020 International Conference on COMmuni-

cation Systems & NETworkS (COMSNETS), pp. 1±6, IEEE, March 2020.

[65] P. M. Shakeel, S. Baskar, V. S. Dhulipala, S. Mishra, and M. M. Jaber, ªMaintaining se-

curity and privacy in health care system using learning based deep-q-networks,º Journal of

Medical Systems, vol. 42, no. 10, pp. 1±10, 2018.

[66] F. Wang, C. Zhong, M. C. Gursoy, and S. Velipasalar, ªDefense strategies against adversar-

ial jamming attacks via deep reinforcement learning,º in 2020 54th Annual Conference on

Information Sciences and Systems (CISS), pp. 1±6, IEEE, May 2020.

[67] L. Huang, M. Fu, H. Qu, S. Wang, and S. Hu, ªA deep reinforcement learning-based method

applied for solving multi-agent defense and attack problems,º Expert Systems with Applica-

tions, vol. 176, p. 114896, 2021.

[68] N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine.

MIT press, 2019.

171

[69] E. A. Lee, ªThe past, present and future of cyber-physical systems: A focus on models,º

Sensors, vol. 15, no. 3, pp. 4837±4869, 2015.

[70] V. Fourkas, ªWhat is cyberspace,º Spatial Development Research Unit, Department of Ur-

ban and Regional Planning and Development, Aristotle University of Thessalonica, 2004.

[71] R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, ªCyber-physical systems and their secu-

rity issues,º Computers in Industry, vol. 100, pp. 212±223, 2018.

[72] E. L. Thorndike, ªAnimal intelligence: An experimental study of the associate processes in

animals.,º American Psychologist, vol. 53, no. 10, p. 1125, 1998.

[73] M. L. Minsky, Theory of neural-analog reinforcement systems and its application to the

brain model problem. Princeton University., 1954.

[74] A. H. Klopf, Brain function and adaptive systems: a heterostatic theory. Air Force Cam-

bridge Research Laboratories, Air Force Systems Command, United States, 1972.

[75] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT press Cam-

bridge, 2018.

[76] K. D. Foote, ªA brief history of deep learning.º https://www.dataversity.net/

brief-history-deep-learning/, February 2017.

[77] K. Kersandt, ªDeep reinforcement learning as control method for autonomous uavs,º Mas-

ter’s thesis, Universitat Politècnica de Catalunya, 2018.

[78] X. Huang, S. H. Hong, M. Yu, Y. Ding, and J. Jiang, ªDemand response management

for industrial facilities: A deep reinforcement learning approach,º IEEE Access, vol. 7,

pp. 82194±82205, 2019.

172

[79] A. Balakrishnan and J. Deshmukh, ªReinforcement learning for cyber-

physical systems.º https://viterbi-web.usc.edu/~jdeshmuk/teaching/

cs599-autocps-spring-2019/rl.pdf, March 2019.

[80] M. N. Kurt, O. Ogundijo, C. Li, and X. Wang, ªOnline cyber-attack detection in smart

grid: A reinforcement learning approach,º IEEE Transactions on Smart Grid, vol. 10, no. 5,

pp. 5174±5185, 2018.

[81] Z. Wang, H. He, Z. Wan, and Y. Sun, ªCoordinated topology attacks in smart grid using

deep reinforcement learning,º IEEE Transactions on Industrial Informatics, vol. 17, no. 2,

pp. 1407±1415, 2020.

[82] X. Li, X. Liang, R. Lu, X. Shen, X. Lin, and H. Zhu, ªSecuring smart grid: cyber attacks,

countermeasures, and challenges,º IEEE Communications Magazine, vol. 50, no. 8, pp. 38±

45, 2012.

[83] G. Hug and J. A. Giampapa, ªVulnerability assessment of ac state estimation with respect

to false data injection cyber-attacks,º IEEE Transactions on Smart Grid, vol. 3, no. 3,

pp. 1362±1370, 2012.

[84] SDN, ªWhat is sdn?.º https://www.ciena.com/insights/what-is/What-Is-SDN.

html, June 2021.

[85] Y. Han, B. I. Rubinstein, T. Abraham, T. Alpcan, O. De Vel, S. Erfani, D. Hubczenko,

C. Leckie, and P. Montague, ªReinforcement learning for autonomous defence in software-

defined networking,º in International Conference on Decision and Game Theory for Secu-

rity, pp. 145±165, Springer, September 2018.

[86] M. Feng and H. Xu, ªDeep reinforecement learning based optimal defense for cyber-

physical system in presence of unknown cyber-attack,º in 2017 IEEE Symposium Series

on Computational Intelligence (SSCI), pp. 1±8, IEEE, February 2017.

173

[87] A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, ªRobust deep reinforcement learn-

ing for security and safety in autonomous vehicle systems,º in 2018 21st International Con-

ference on Intelligent Transportation Systems (ITSC), pp. 307±312, IEEE, December 2018.

[88] Y. He, F. R. Yu, N. Zhao, V. C. Leung, and H. Yin, ªSoftware-defined networks with mo-

bile edge computing and caching for smart cities: A big data deep reinforcement learning

approach,º IEEE Communications Magazine, vol. 55, no. 12, pp. 31±37, 2017.

[89] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, ªDeep reinforcement learning for mobile edge

caching: Review, new features, and open issues,º IEEE Network, vol. 32, no. 6, pp. 50±57,

2018.

[90] Y. Yamagata, S. Liu, T. Akazaki, Y. Duan, and J. Hao, ªFalsification of cyber-physical

systems using deep reinforcement learning,º IEEE Transactions on Software Engineering,

vol. 47, no. 12, pp. 2823±2840, 2020.

[91] A. Gupta and Z. Yang, ªAdversarial reinforcement learning for observer design in au-

tonomous systems under cyber attacks,º arXiv preprint arXiv:1809.06784, 2018.

[92] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani, ªSecurity in mobile edge caching

with reinforcement learning,º IEEE Wireless Communications, vol. 25, no. 3, pp. 116±122,

2018.

[93] G. Han, L. Xiao, and H. V. Poor, ªTwo-dimensional anti-jamming communication based on

deep reinforcement learning,º in 2017 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 2087±2091, IEEE, June 2017.

[94] X. Liu, Y. Xu, L. Jia, Q. Wu, and A. Anpalagan, ªAnti-jamming communications using spec-

trum waterfall: A deep reinforcement learning approach,º IEEE Communications Letters,

vol. 22, no. 5, pp. 998±1001, 2018.

174

[95] L. Xiao, Y. Li, G. Liu, Q. Li, and W. Zhuang, ªSpoofing detection with reinforcement learn-

ing in wireless networks,º in 2015 IEEE Global Communications Conference (GLOBE-

COM), pp. 1±5, February 2016.

[96] L. Xiao, Y. Li, G. Han, G. Liu, and W. Zhuang, ªPhy-layer spoofing detection with re-

inforcement learning in wireless networks,º IEEE Transactions on Vehicular Technology,

vol. 65, no. 12, pp. 10037±10047, 2016.

[97] X. Wan, G. Sheng, Y. Li, L. Xiao, and X. Du, ªReinforcement learning based mobile offload-

ing for cloud-based malware detection,º in GLOBECOM 2017-2017 IEEE Global Commu-

nications Conference, pp. 1±6, January 2018.

[98] Y. Li, J. Liu, Q. Li, and L. Xiao, ªMobile cloud offloading for malware detections with

learning,º in 2015 IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pp. 197±201, IEEE, August 2015.

[99] L. Xiao, Y. Li, G. Han, H. Dai, and H. V. Poor, ªA secure mobile crowdsensing game with

deep reinforcement learning,º IEEE Transactions on Information Forensics and Security,

vol. 13, no. 1, pp. 35±47, 2017.

[100] M. Chatterjee and A.-S. Namin, ªDetecting phishing websites through deep reinforcement

learning,º in 2019 IEEE 43rd Annual Computer Software and Applications Conference

(COMPSAC), vol. 2, pp. 227±232, IEEE, July 2019.

[101] D. S. Hoadley and N. J. Lucas, ªArtificial intelligence and national security,º tech. rep.,

Congressional Research Service Washington, DC, 2018.

[102] B. Zhang, M. Anderljung, L. Kahn, N. Dreksler, M. C. Horowitz, and A. Dafoe, ªEthics

and governance of artificial intelligence: Evidence from a survey of machine learning re-

searchers,º Journal of Artificial Intelligence Research, vol. 71, pp. 591±666, 2021.

175

[103] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton, et al., ªMastering the game of go without human knowledge,º

Nature, vol. 550, no. 7676, pp. 354±359, 2017.

[104] M. AlQuraishi, ªAlphafold at casp13,º Bioinformatics, vol. 35, no. 22, pp. 4862±4865, 2019.

[105] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller, ªPlaying atari with deep reinforcement learning,º arXiv preprint arXiv:1312.5602,

2013.

[106] D. Zhang, X. Han, and C. Deng, ªReview on the research and practice of deep learning and

reinforcement learning in smart grids,º CSEE Journal of Power and Energy Systems, vol. 4,

no. 3, pp. 362±370, 2018.

[107] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, ªDeep reinforcement

learning: A brief survey,º IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26±38,

2017.

[108] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vi-

cente, ªMultiagent cooperation and competition with deep reinforcement learning,º PloS

One, vol. 12, no. 4, p. e0172395, 2017.

[109] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, ªA survey and critique of multiagent

deep reinforcement learning,º Autonomous Agents and Multi-Agent Systems, vol. 33, no. 6,

pp. 750±797, 2019.

[110] R. Urena, F. Chiclana, G. Melancon, and E. Herrera-Viedma, ªA social network based ap-

proach for consensus achievement in multiperson decision making,º Information Fusion,

vol. 47, pp. 72±87, 2019.

[111] R. Urena, G. Kou, Y. Dong, F. Chiclana, and E. Herrera-Viedma, ªA review on trust prop-

176

agation and opinion dynamics in social networks and group decision making frameworks,º

Information Sciences, vol. 478, pp. 461±475, 2019.

[112] G. De Pasquale and M. E. Valcher, ªConsensus for clusters of agents with cooperative and

antagonistic relationships,º Automatica, vol. 135, p. 110002, 2022.

[113] D. Shen, C. Zhang, and J.-X. Xu, ªDistributed learning consensus control based on neural

networks for heterogeneous nonlinear multiagent systems,º International Journal of Robust

and Nonlinear Control, vol. 29, no. 13, pp. 4328±4347, 2019.

[114] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT Press, 2018.

[115] A. Wang, T. Dong, and X. Liao, ªDistributed optimal consensus algorithms in multi-agent

systems,º Neurocomputing, vol. 339, pp. 26±35, 2019.

[116] B. Mu and Y. Shi, ªDistributed lqr consensus control for heterogeneous multiagent sys-

tems: Theory and experiments,º IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1,

pp. 434±443, 2018.

[117] Z. Wang, J. Xu, X. Song, and H. Zhang, ªConsensus problem in multi-agent systems under

delayed information,º Neurocomputing, vol. 316, pp. 277±283, 2018.

[118] Y. Wang, Y. Song, D. J. Hill, and M. Krstic, ªPrescribed-time consensus and containment

control of networked multiagent systems,º IEEE Transactions on Cybernetics, vol. 49, no. 4,

pp. 1138±1147, 2018.

[119] B. Wang, W. Chen, and B. Zhang, ªSemi-global robust tracking consensus for multi-agent

uncertain systems with input saturation via metamorphic low-gain feedback,º Automatica,

vol. 103, pp. 363±373, 2019.

[120] L. Liu, H. Sun, L. Ma, J. Zhang, and Y. Bo, ªQuasi-consensus control for a class of time-

varying stochastic nonlinear time-delay multiagent systems subject to deception attacks,º

177

IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 11, pp. 6863±

6873, 2020.

[121] F. Shamsi, H. A. Talebi, and F. Abdollahi, ªOutput consensus control of multi-agent systems

with nonlinear non-minimum phase dynamics,º International Journal of Control, vol. 91,

no. 4, pp. 785±796, 2018.

[122] J. Zhang, H. Zhang, and T. Feng, ªDistributed optimal consensus control for nonlinear mul-

tiagent system with unknown dynamic,º IEEE Transactions on Neural Networks and Learn-

ing Systems, vol. 29, no. 8, pp. 3339±3348, 2017.

[123] L. Zha, J. Liu, and J. Cao, ªResilient event-triggered consensus control for nonlinear muti-

agent systems with dos attacks,º Journal of the Franklin Institute, vol. 356, no. 13, pp. 7071±

7090, 2019.

[124] G. Cui, S. Xu, Q. Ma, Y. Li, and Z. Zhang, ªPrescribed performance distributed consensus

control for nonlinear multi-agent systems with unknown dead-zone input,º International

Journal of Control, vol. 91, no. 5, pp. 1053±1065, 2018.

[125] C. Gao, Z. Wang, X. He, and Q.-L. Han, ªConsensus control of linear multiagent systems

under actuator imperfection: When saturation meets fault,º IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 2021.

[126] Z. Peng, J. Hu, K. Shi, R. Luo, R. Huang, B. K. Ghosh, and J. Huang, ªA novel optimal

bipartite consensus control scheme for unknown multi-agent systems via model-free rein-

forcement learning,º Applied Mathematics and Computation, vol. 369, p. 124821, 2020.

[127] R. Moghadam and H. Modares, ªResilient adaptive optimal control of distributed multi-

agent systems using reinforcement learning,º IET Control Theory & Applications, vol. 12,

no. 16, pp. 2165±2174, 2018.

178

[128] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. BaËsar, ªFully decentralized multi-agent rein-

forcement learning with networked agents,º arXiv preprint arXiv:1802.08757v2, 2018.

[129] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ªMulti-agent actor-critic for

mixed cooperative-competitive environments,º arXiv preprint arXiv:1706.02275v4, 2020.

[130] S. Iqbal and F. Sha, ªActor-attention-critic for multi-agent reinforcement learning,º arXiv

preprint arXiv:1810.02912v2, 2019.

[131] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, ªCounterfactual multi-

agent policy gradients,º arXiv preprint arXiv:1705.08926v2, 2017.

[132] M. Figura, K. C. Kosaraju, and V. Gupta, ªAdversarial attacks in consensus-based multi-

agent reinforcement learning,º arXiv preprint arXiv:2103.06967, 2021.

[133] A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine, ªVisual reinforcement learning

with imagined goals,º arXiv preprint arXiv:1807.04742v2, 2018.

[134] Q.-K. Hu and Y.-P. Zhao, ªAero-engine acceleration control using deep reinforcement learn-

ing with phase-based reward function,º Proceedings of the Institution of Mechanical Engi-

neers, Part G: Journal of Aerospace Engineering, p. 09544100211046225, 2021.

[135] Y. Lv, H. Zhang, Z. Wang, and H. Yan, ªDistributed localization for multi-agent systems

with random noise based on iterative learning,º IEEE Transactions on Neural Networks and

Learning Systems, pp. 1±9, 2022.

[136] L. Liu, B. Li, and R. Guo, ªConsensus control for networked manipulators with switched

parameters and topologies,º IEEE Access, vol. 9, pp. 9209±9217, 2021.

[137] Y. Cao and Y. Song, ªPerformance guaranteed consensus tracking control of nonlinear mul-

tiagent systems: A finite-time function-based approach,º IEEE Transactions on Neural Net-

works and Learning Systems, vol. 32, no. 4, pp. 1536±1546, 2020.

179

[138] Y. Lv, H. Zhang, Z. Wang, and H. Yan, ªDistributed localization for dynamic multiagent

systems with randomly varying trajectory lengths,º IEEE Transactions on Industrial Elec-

tronics, vol. 69, no. 9, pp. 9298±9308, 2021.

[139] H. Yan, H. Zhang, F. Yang, X. Zhan, and C. Peng, ªEvent-triggered asynchronous guaran-

teed cost control for markov jump discrete-time neural networks with distributed delay and

channel fading,º IEEE Transactions on Neural Networks and Learning Systems, vol. 29,

no. 8, pp. 3588±3598, 2017.

[140] H. Zhang, J. Chen, Z. Wang, C. Fu, and S. Song, ªDistributed event-triggered control for

cooperative output regulation of multiagent systems with an online estimation algorithm,º

IEEE Transactions on Cybernetics, 2020.

[141] H. Wang, ªFlocking of networked uncertain euler±lagrange systems on directed graphs,º

Automatica, vol. 49, no. 9, pp. 2774±2779, 2013.

[142] E. Nuno, ªConsensus of euler-lagrange systems using only position measurements,º IEEE

Transactions on Control of Network Systems, vol. 5, no. 1, pp. 489±498, 2016.

[143] L. Consolini, F. Morbidi, D. Prattichizzo, and M. Tosques, ªLeader±follower formation

control of nonholonomic mobile robots with input constraints,º Automatica, vol. 44, no. 5,

pp. 1343±1349, 2008.

[144] X. Lyu, Y. Xiao, B. Daley, and C. Amato, ªContrasting centralized and decentralized critics

in multi-agent reinforcement learning,º arXiv preprint arXiv:2102.04402, 2021.

[145] Y. Jung, M. Kim, A. Masoumzadeh, and J. B. Joshi, ªA survey of security issue in multi-

agent systems,º Artificial Intelligence Review, vol. 37, no. 3, pp. 239±260, 2012.

[146] N. N. Bakhtadze, I. B. Yadykin, V. A. Lototsky, E. M. Maximov, and E. A. Sakrutina,

ªMulti-agent approach to design of multimodal intelligent immune system for smart grid,º

180

IFAC Proceedings Volumes, vol. 46, no. 9, pp. 1164±1169, 2013.

[147] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, ªA survey of actor-critic rein-

forcement learning: Standard and natural policy gradients,º IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1291±1307,

2012.

[148] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, and S. Spanò,

ªMulti-agent reinforcement learning: A review of challenges and applications,º Applied

Sciences, vol. 11, no. 11, p. 4948, 2021.

[149] S. S. Mousavi, M. Schukat, and E. Howley, ªDeep reinforcement learning: an overview,º in

Proceedings of SAI Intelligent Systems Conference, pp. 426±440, Springer, 2016.

[150] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, ªAn introduction

to deep reinforcement learning,º arXiv preprint arXiv:1811.12560, 2018.

[151] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, and J.-P. Clarke, ªPerformance of q-learning

with linear function approximation: Stability and finite-time analysis,º arXiv preprint

arXiv:1905.11425, 2019.

[152] H. Van Hasselt, A. Guez, and D. Silver, ªDeep reinforcement learning with double q-

learning,º in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.

[153] Z. Gao, Y. Gao, Y. Hu, Z. Jiang, and J. Su, ªApplication of deep q-network in portfolio

management,º in Proceedings of the IEEE International Conference on Big Data Analytics

(ICBDA), pp. 268±275, 2020.

[154] S. Carta, A. Ferreira, A. S. Podda, D. R. Recupero, and A. Sanna, ªMulti-dqn: An ensemble

of deep q-learning agents for stock market forecasting,º Expert Systems with Applications,

vol. 164, p. 113820, 2021.

181

[155] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, ªQ-learning algorithms: A comprehensive

classification and applications,º IEEE Access, vol. 7, pp. 133653±133667, 2019.

[156] J. Pan, X. Wang, Y. Cheng, and Q. Yu, ªMultisource transfer double dqn based on actor

learning,º IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 6,

pp. 2227±2238, 2018.

[157] C. Zhao, X. Liu, S. Zhong, K. Shi, D. Liao, and Q. Zhong, ªSecure consensus of multi-

agent systems with redundant signal and communication interference via distributed dy-

namic event-triggered control,º ISA Transactions, vol. 112, pp. 89±98, 2021.

[158] S. Zheng, P. Shi, R. K. Agarwal, and C. P. Lim, ªPeriodic event-triggered output regulation

for linear multi-agent systems,º Automatica, vol. 122, p. 109223, 2020.

[159] S. Yuan, C. Yu, and J. Sun, ªAdaptive event-triggered consensus control of linear multi-agent

systems with cyber attacks,º Neurocomputing, vol. 442, pp. 1±9, 2021.

[160] M. Chen, H. Yan, H. Zhang, M. Chi, and Z. Li, ªDynamic event-triggered asynchronous

control for nonlinear multi-agent systems based on ts fuzzy models,º IEEE Transactions on

Fuzzy Systems, 2020.

[161] M. Rehan, M. Tufail, and S. Ahmed, ªLeaderless consensus control of nonlinear multi-agent

systems under directed topologies subject to input saturation using adaptive event-triggered

mechanism,º Journal of the Franklin Institute, 2021.

[162] B. Zhou, Y. Yang, L. Li, and R. Hao, ªLeaderless and leader-following consensus of het-

erogeneous second-order multi-agent systems on time scales: An asynchronous impulsive

approach,º International Journal of Control, pp. 1±11, 2021.

[163] Y. Yu, S. C. Liew, and T. Wang, ªNon-uniform time-step deep q-network for carrier-sense

multiple access in heterogeneous wireless networks,º IEEE Transactions on Mobile Com-

182

puting, vol. 20, no. 9, pp. 2848±2861, 2021.

[164] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, ªAdversarial

attacks and defences: A survey,º arXiv preprint arXiv:1810.00069, 2018.

[165] N. Akhtar and A. Mian, ªThreat of adversarial attacks on deep learning in computer vision:

A survey,º IEEE Access, vol. 6, pp. 14410±14430, 2018.

[166] I. Goodfellow, P. McDaniel, and N. Papernot, ªMaking machine learning robust against

adversarial inputs,º Communications of the ACM, vol. 61, no. 7, pp. 56±66, 2018.

[167] X. Wang, J. Li, X. Kuang, Y.-a. Tan, and J. Li, ªThe security of machine learning in an

adversarial setting: A survey,º Journal of Parallel and Distributed Computing, vol. 130,

pp. 12±23, 2019.

[168] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and G. Loukas, ªA taxon-

omy and survey of attacks against machine learning,º Computer Science Review, vol. 34,

p. 100199, 2019.

[169] I. J. Goodfellow, J. Shlens, and C. Szegedy, ªExplaining and harnessing adversarial exam-

ples,º arXiv preprint arXiv:1412.6572, 2014.

[170] A. Kurakin, I. Goodfellow, and S. Bengio, ªAdversarial machine learning at scale,º arXiv

preprint arXiv:1611.01236, 2016.

[171] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, ªBoosting adversarial attacks

with momentum,º in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 9185±9193, 2018.

[172] A. Kurakin, I. J. Goodfellow, and S. Bengio, ªadversarial examples in the physical world,º

arXiv preprint arXiv:1607.02533, 2016.

183

[173] A. Haydari, M. Zhang, and C.-N. Chuah, ªAdversarial attacks and defense in deep rein-

forcement learning (drl)-based traffic signal controllers,º IEEE Open Journal of Intelligent

Transportation Systems, 2021.

[174] L. Hussenot, M. Geist, and O. Pietquin, ªManipulating neural policies with adversarial ob-

servations,º in Real-world Sequential Decision Making Workshop, ICML, 2019.

[175] Z. Yuan, J. Zhang, Y. Jia, C. Tan, T. Xue, and S. Shan, ªMeta gradient adversarial attack,º

in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7748±

7757, 2021.

[176] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, ªOn detecting adversarial perturba-

tions,º arXiv preprint arXiv:1702.04267, 2017.

[177] Y. Dong, H. Su, J. Zhu, and F. Bao, ªTowards interpretable deep neural networks by lever-

aging adversarial examples,º arXiv preprint arXiv:1708.05493, 2017.

[178] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, ªEnsemble

adversarial training: Attacks and defenses,º arXiv preprint arXiv:1705.07204, 2017.

[179] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ªDistillation as a defense to ad-

versarial perturbations against deep neural networks,º in 2016 IEEE Symposium on Security

and Privacy (SP), pp. 582±597, IEEE, 2016.

[180] R. L. Whited, Q. T. Swanquist, J. E. Shipman, and J. R. Moon Jr, ªOut of control: The (over)

use of controls in accounting research,º The Accounting Review, vol. 97, no. 3, pp. 395±413,

2022.

[181] Y. Zhang, X. Shi, H. Zhang, Y. Cao, and V. Terzija, ªReview on deep learning applications in

frequency analysis and control of modern power system,º International Journal of Electrical

Power & Energy Systems, vol. 136, p. 107744, 2022.

184

[182] A. Visioli, Practical PID control. Springer Science & Business Media, 2006.

[183] P. Shah and S. Agashe, ªReview of fractional pid controller,º Mechatronics, vol. 38, pp. 29±

41, 2016.

[184] W. J. Shipman and L. C. Coetzee, ªReinforcement learning and deep neural networks for pi

controller tuning,º IFAC-PapersOnLine, vol. 52, no. 14, pp. 111±116, 2019.

[185] P. C. Sahu, R. Baliarsingh, R. C. Prusty, and S. Panda, ªAutomatic generation control of

diverse energy source-based multiarea power system under deep q-network-based fuzzy-

t2 controller,º Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,

pp. 1±22, 2020.

[186] P. C. Sahu, R. Baliarsingh, R. C. Prusty, and S. Panda, ªNovel dqn optimised tilt fuzzy cas-

cade controller for frequency stability of a tidal energy-based ac microgrid,º International

Journal of Ambient Energy, pp. 1±13, 2020.

[187] Y. Zheng, Q. Sun, Z. Chen, M. Sun, J. Tao, and H. Sun, ªDeep q-network based real-time

active disturbance rejection controller parameter tuning for multi-area interconnected power

systems,º Neurocomputing, vol. 460, pp. 360±373, 2021.

[188] M. Yiming, P. Boyu, L. Gongqing, L. Yongwen, and Z. Deliang, ªFeedforward feedback

control based on dqn,º in 2020 Chinese Control and Decision Conference (CCDC), pp. 550±

554, IEEE, 2020.

[189] T. Zhou, D. Tang, H. Zhu, and Z. Zhang, ªMulti-agent reinforcement learning for online

scheduling in smart factories,º Robotics and Computer-Integrated Manufacturing, vol. 72,

p. 102202, 2021.

[190] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, ªControl of a quadrotor with reinforcement

learning,º IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2096±2103, 2017.

185

[191] O. Katsuhiko, Modern Control Engineering. Pearson, 2009.

[192] R. C. Dorf and R. H. Bishop, Modern control Systems, 13th edition. Pearson, Hoboken,

New Jersey, 2017.

[193] A. S. Polydoros and L. Nalpantidis, ªSurvey of model-based reinforcement learning: Appli-

cations on robotics,º Journal of Intelligent & Robotic Systems, vol. 86, no. 2, pp. 153±173,

2017.

[194] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs,

CNNs and LSTMs in Python. Machine Learning Mastery, 2018.

[195] W. Koch, R. Mancuso, R. West, and A. Bestavros, ªReinforcement learning for uav attitude

control,º ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2, p. 22, 2019.

[196] N. A. F. Sheet, ªIntelligent flight control systems,º NASA Dryden Flight Research Center,

2014.

[197] H. Bou-Ammar, H. Voos, and W. Ertel, ªController design for quadrotor uavs using re-

inforcement learning,º in 2010 IEEE International Conference on Control Applications,

pp. 2130±2135, IEEE, 2010.

[198] A. Plaat, ªDeep reinforcement learning,º arXiv preprint arXiv:2201.02135, 2022.

[199] R. Polvara, M. Patacchiola, S. Sharma, J. Wan, A. Manning, R. Sutton, and A. Can-

gelosi, ªAutonomous quadrotor landing using deep reinforcement learning,º arXiv preprint

arXiv:1709.03339, 2017.

[200] M. A. Wiering, M. Withagen, and M. M. Drugan, ªModel-based multi-objective reinforce-

ment learning,º in 2014 IEEE Symposium on Adaptive Dynamic Programming and Rein-

forcement Learning (ADPRL), pp. 1±6, IEEE, 2014.

186

[201] H. Kamalzadeh and M. Hahsler, ªPomdp: Introduction to partially observable markov deci-

sion processes,º Tekn. rapport, 2019.

[202] F. Alkhateeb, E. Al Maghayreh, and S. Aljawarneh, ªA multi agent-based system for se-

curing university campus: Design and architecture,º in 2010 International Conference on

Intelligent Systems, Modelling and Simulation, pp. 75±79, IEEE, 2010.

[203] Z. Huang, ªConsensus control of multiple-quadcopter systems under communication de-

lays,º Master’s thesis, Dalhousie University, 2017.

[204] S. H. Chan, Adversarial Attack. Purdue University, 2018.

[205] S. Zhou, Z. Hu, W. Gu, M. Jiang, M. Chen, Q. Hong, and C. Booth, ªCombined heat

and power system intelligent economic dispatch: A deep reinforcement learning approach,º

International Journal of Electrical Power & Energy Systems, vol. 120, p. 106016, 2020.

[206] K. C. Kosaraju, M. Figura, and V. Gupta, ªAdversarial multi-agent reinforcement learning

(adv-marl).º https://github.com/asokraju/adv-marl, 2020.

[207] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks, vol. 33.

Princeton University Press, 2010.

[208] S. Wang, R. Diao, T. Lan, Z. Wang, D. Shi, H. Li, and X. Lu, ªA drl-aided multi-layer

stability model calibration platform considering multiple events,º in 2020 IEEE Power &

Energy Society General Meeting (PESGM), pp. 1±5, IEEE, 2020.

[209] Y. Liu, B. Cao, and H. Li, ªImproving ant colony optimization algorithm with epsilon greedy

and levy flight,º Complex & Intelligent Systems, vol. 7, no. 4, pp. 1711±1722, 2021.

[210] S. Ohnishi, E. Uchibe, Y. Yamaguchi, K. Nakanishi, Y. Yasui, and S. Ishii, ªConstrained

deep q-learning gradually approaching ordinary q-learning,º Frontiers in Neurorobotics,

vol. 13, p. 103, 2019.

187

[211] Y. Yu, T. Wang, and S. C. Liew, ªDeep-reinforcement learning multiple access for hetero-

geneous wireless networks,º IEEE Journal on Selected Areas in Communications, vol. 37,

no. 6, pp. 1277±1290, 2019.

[212] K. Ammouri, ªDeep reinforcement learning for temperature control in buildings and ad-

versarial attacks,º Master’s thesis, School of Electrical Engineering and Computer Science

(EECS), 2021.

[213] Y. Yu, ªCs-dlma.º https://github.com/YidingYu/CS-DLMA, 2019.

[214] N. Abramson, ªThe aloha system: Another alternative for computer communications,º in

Proceedings of the November 17-19, 1970, Fall Joint Computer Conference, pp. 281±285,

1970.

[215] F. F. Kuo, ªThe aloha system,º ACM SIGCOMM Computer Communication Review, vol. 25,

no. 1, pp. 41±44, 1995.

[216] F. F. Kuo, ªComputer networks±the aloha system.,º tech. rep., Hawaii Univ at Manoa Hon-

olulu Dept of Electrical Engineering, 1981.

[217] P. Jung, ªTime division multiple access (tdma),º Wiley Encyclopedia of Telecommunica-

tions, 2003.

[218] Y. Luo and J. Pang, ªObserver-based event-triggered finite-time consensus for general lin-

ear leader-follower multi-agent systems,º Advances in Continuous and Discrete Models,

vol. 2022, no. 1, pp. 1±17, 2022.

188

Appendices

189

Appendix A

Data Transmission in 2-D and 3-D Spaces:

Various Activation Functions

Average reward and loss convergence using various activation functions in the structure of DQN

agent NN for time-delayed data transmission related to Chapters 6 and 7 in 2-D and 3-D spaces

are demonstrated in this Appendix. The time-delayed data transmission occurs between agents of

a leader-follower MADRL system containing N = 5 agents and P = 3 various clusters. Various

activation functions, including rectified linear unit (ReLU), rectified linear unit 6 (ReLU6), expo-

nential linear unit (ELU), scaled exponential linear units (SELU), and Swish activation functions,

are integrated with the MSE loss function. The following results are obtained in 150000 time steps.

The five agents’ two-dimensional (2-D space) positions are

(xi,yi) = {(0.1,0.22),(0.15,0.27),(0.30,0.9),(0.35,0.14),(0.41,0.40)}.

Furthermore, the five agents’ three-dimensional (3-D space) positions are

(xi,yi,zi) = {(0.1,0.22,0.40),(0.15,0.27,0.14),(0.30,0.9,0.20),(0.35,0.14,0.50),(0.41,0.40,0.28)}.

190

A.1 Rectified Linear Unit (ReLU) Activation Function

ReLU(z) = max(0,z) (A.1)

A.1.1 2-D Space

(a) Average loss convergence, ReLU. (b) Average reward convergence, ReLU.
Figure A.1: Average reward and loss convergence of data transmission in MADRL system using ReLU
activation function in 2-D space.

A.1.2 3-D Space

(a) Average loss convergence, ReLU. (b) Average reward convergence, ReLU.
Figure A.2: Average reward and loss convergence of data transmission in MADRL system using ReLU
activation function in 3-D space.

191

A.2 Rectified Linear Unit 6 (ReLU6) Activation Function

ReLU6(z) = min(max(0,z),6) (A.2)

A.2.1 2-D Space

(a) Average loss convergence, ReLU6. (b) Average reward convergence, ReLU6.
Figure A.3: Average reward and loss convergence of data transmission in MADRL system using ReLU6
activation function in 2-D space.

A.2.2 3-D Space

(a) Average loss convergence, ReLU6. (b) Average reward convergence, ReLU6.
Figure A.4: Average reward and loss convergence of data transmission in MADRL system using ReLU6
activation function in 3-D space.

192

A.3 Exponential Linear Unit (ELU) Activation Function

ELU(z) = z if z≥ 0

ELU(z) = α(exp(z)−1) if z < 0
(A.3)

A.3.1 2-D Space

(a) Average loss convergence, ELU. (b) Average reward convergence, ELU.
Figure A.5: Average reward and loss convergence of data transmission in MADRL system using ELU
activation function in 2-D space.

A.3.2 3-D Space

(a) Average loss convergence, ELU. (b) Average reward convergence, ELU.
Figure A.6: Average reward and loss convergence of data transmission in MADRL system using ELU
activation function in 3-D space.

193

A.4 Scaled Exponential Linear Units (SELU) Activation Func-

tion

SELU(z) = λ z if z≥ 0

SELU(z) = λα(exp(z)−1) if z < 0
(A.4)

A.4.1 2-D Space

(a) Average loss convergence, SELU. (b) Average reward convergence, SELU.
Figure A.7: Average reward and loss convergence of data transmission in MADRL system using SELU
activation function in 2-D space.

A.4.2 3-D Space

(a) Average loss convergence, SELU. (b) Average reward convergence, SELU.
Figure A.8: Average reward and loss convergence of data transmission in MADRL system using SELU
activation function in 3-D space.

194

A.5 Swish Activation Function

Swish(z) = z∗Sigmoid(z)

=
z

1+ e−z

(A.5)

A.5.1 2-D space

(a) Average loss convergence, Swish. (b) Average reward convergence, Swish.
Figure A.9: Average reward and loss convergence of data transmission in MADRL system using Swish
activation function in 2-D space.

A.5.2 3-D space

(a) Average loss convergence, Swish. (b) Average reward convergence, Swish.
Figure A.10: Average reward and loss convergence of data transmission in MADRL system using Swish
activation function in 3-D space.

195

Table A.1: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 150000 time steps by considering time-delay and distance-
based reward using ReLU activation function in 2-D and 3-D spaces.

Activation Function

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

ReLU (2-D Space) 0.0 0.0737 0.0390 0.1302 0.0812 0.3243 1.4514

ReLU (3-D Space) 0.0 0.6680 0.0287 0.0952 0.1003 0.2912 0.6799

Table A.2: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 150000 time steps by considering time-delay and distance-
based reward using ReLU6 activation function in 2-D and 3-D spaces.

Activation Function

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

ReLU6 (2-D Space) 0.0 0.0245 0.0879 0.1013 0.1195 0.3333 0.0713

ReLU6 (3-D Space) 0.0298 0.0382 0.0431 0.0619 0.0764 0.2496 1.5150

Table A.3: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 150000 time steps by considering time-delay and distance-
based reward using ELU activation function in 2-D and 3-D spaces.

Activation Function

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

ELU (2-D Space) 0.0008 0.0638 0.0390 0.0965 0.0764 0.2767 55587.9454

ELU (3-D Space) 0.0317 0.0286 0.0623 0.1095 0.1147 0.3470 11100.7798

Table A.4: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 150000 time steps by considering time-delay and distance-
based reward using SELU activation function in 2-D and 3-D spaces.

Activation Function

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

SELU (2-D Space) 0.0072 0.0688 0.0537 0.0868 0.0908 0.3074 39.4038

SELU (3-D Space) 0.0073 0.0525 0.0479 0.0810 0.0812 0.2701 0.7636

Table A.5: Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS, including
N = 5 agents in P = 3 different clusters, during 150000 time steps by considering time-delay and distance-
based reward using Swish activation function in 2-D and 3-D spaces.

Activation Function

Rewards and Loss
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Team DQN

Reward Reward Reward Reward Reward Reward Loss

Swish (2-D Space) 0.0260 0.0540 0.0341 0.0579 0.1051 0.2774 2.6988

Swish (3-D Space) 0.0002 0.0382 0.0719 0.1048 0.0812 0.2964 0.3429

196

	List of Figures
	List of Tables
	List of Abbreviations
	List of Publications
	Introduction
	Literature Review
	Autonomous Systems
	Cybersecurity Using Artificial Intelligence and Reinforcement Learning Algorithms
	Position Consensus of Multi-agent Reinforcement Learning Systems: The Effect of Immediate Rewards
	Control of Multi-agent Reinforcement Learning Systems: The Effect of Neural Network Structure
	Adversarial Attacks on Heterogeneous Multi-agent Deep Reinforcement Learning System with Time-delayed Data Transmission
	Data Transmission Robustness to Cyber-attacks on Heterogeneous Multi-agent Deep Reinforcement Learning Systems

	Contributions
	Summary and Dissertation Outline
	Dissertation High-level Overview

	Background
	Introduction
	Reinforcement Learning (RL)
	Reinforcement Learning-based Controller

	Deep Reinforcement Learning (DRL)
	Deep Reinforcement Learning-based Controller

	Markov Decision Process (MDP)
	Partially Observable Markov Decision Process (POMDP)

	Multi-agent System (MAS)
	Consensus Decision-making
	Discrete-time Consensus Algorithms

	Adversarial Attacks
	Team Organization

	Average Position Consensus of Cluster-based Heterogeneous Multi-agent Systems
	Introduction
	Methodology
	Condition for Position Consensus of Clusters with Various Goals
	Condition for Position Consensus of Clusters with a Global Goal

	Results and Discussion
	Reaching Position Consensus of Clusters with Various Goals in 2-D Space
	Reaching Position Consensus of Clusters with Various Goals in 3-D Space
	Reaching Position Consensus of Clusters with a Global Goal in 2-D Space
	Reaching Position Consensus of Clusters with a Global Goal in 3-D Space

	Conclusions

	Position Consensus of Multi-agent Reinforcement Learning Systems: The Effect of Immediate Rewards
	Introduction
	Background
	Methodology
	Without Malicious Agents
	With Malicious Agents
	Reward Functions

	Results and Discussion
	Reaching Consensus
	Increasing the Cumulative Reward
	Modifying the Immediate Reward Function
	The Immediate Rewards' Comparison After Normalization
	Reward Algorithm's Complexity and Execution Time

	Conclusions

	Control of Multi-agent Reinforcement Learning Systems: The Effect of Neural Network Structure
	Introduction
	Background
	Methodology
	Modifying the Neural Network Structure

	Results and Discussion
	Consequences of Modifying the Neural Network Structure

	Conclusions

	Adversarial Attacks on Heterogeneous Multi-agent Deep Reinforcement Learning System with Time-delayed Data Transmission
	Introduction
	Background
	Methodology
	Leaderless and Leader-follower Topologies
	Observation
	Action
	State
	Reward
	DQN Loss
	Adversarial Attacks
	First Adversarial Attack Defence
	Second Adversarial Attack Defence

	Results and Discussion
	Multi-agent Performance Analysis
	Performance Analysis of the Proposed MAS Under Adversarial Attacks
	Performance Analysis of the Proposed MAS After Applying First Adversarial Attack Defence
	Performance Analysis of the Proposed MAS After Applying Second Adversarial Attack Defence
	Variety of Agents

	Conclusions

	Data Transmission Robustness to Cyber-attacks on Heterogeneous Multi-agent Deep Reinforcement Learning Systems
	Introduction
	Background
	DQN Algorithm
	Linear Feedback Control System
	FGSM Adversarial Attack

	Methodology
	DQN Algorithm and a Linear Feedback Control System
	Data Transmission Robustness Evaluation

	Results and Discussion
	DQN Algorithm's Robustness
	DQN Algorithm's Robustness: Proportional Controller

	Conclusions

	Summary and Future Works
	Summary
	Future Work

	Bibliography
	Appendix Data Transmission in 2-D and 3-D Spaces: Various Activation Functions
	Rectified Linear Unit (ReLU) Activation Function
	2-D Space
	3-D Space

	Rectified Linear Unit 6 (ReLU6) Activation Function
	2-D Space
	3-D Space

	Exponential Linear Unit (ELU) Activation Function
	2-D Space
	3-D Space

	Scaled Exponential Linear Units (SELU) Activation Function
	2-D Space
	3-D Space

	Swish Activation Function
	2-D space
	3-D space

