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Abstract

A Model Based Safety Assessment for Multirotors

Saad Bin Nazarudeen

Unmanned Aerial Vehicles (UAVs) must be safe and reliable to prevent fatal accidents in densely

populated areas. This research makes the first steps to create a framework which can integrate safety

and reliability considerations in the design process. The conceptual design process should consider

creating design models coupling sizing with system architecture. Additionally, the multirotor has

safety challenges from the propulsor configuration. They lose flight control and show erroneous

flight behaviour when propulsors fail. Hence, the design models of multirotor should also incor-

porate a controllability assessment method to identify and isolate uncontrollable events. For this

matter, an appropriate tool should be considered to create such design models.

A combination of OpenAltarica, System Analyst and Python is used to create design models of mul-

tirotor in a model-based safety assessment framework. These models are developed by integrating

system architecture and controllability assessment following the etiquettes of the process. A case

study is used to validate the framework and to demonstrate its ability to explore innovative designs.

The reliability analysis confirms that the multirotors are fault-tolerant except quadrotor and some

configurations are potentially highly reliable.

The results demonstrate the feasibility of the multirotor system modelling methods in terms of relia-

bility and pave the way to further develop the model-based safety assessment framework with sizing

methodologies. The models can also be further enhanced with the addition of a component fault

library, additional failure modes and implementation of diagnosability analysis, fault detection and

identification analysis. Fault libraries and failure modes can help in foreseeing uncontrollable cases.

In contrast, diagnosability analysis, fault detection and identification analysis can integrate detect,
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isolate and recover mechanisms, and ensure redundancy optimization effectively. Additionally, the

framework should also be combined with multidisciplinary design optimization for sizing. Such

design models can contribute to the emergence of UAVs for safety-critical applications.
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Chapter 1

Introduction

Chapter 1 gives a background and safety-critical issues posed by multirotors. It illustrates the

problem statement with a state-of-the-art conceptual design which integrates safety and reliability

considerations in the design process to identify their limitations. It then presents the scope and the

approach to develop a framework that can address the identified limitations.

1.1 Background

Multirotor Unmanned Aerial Vehicles (UAVs) were under active development for more than

a decade [1]. They have shown promising applications in urban surveillance, agriculture, media

coverage, logistics, deliveries, flying taxis, or flying ambulances that would change our daily lives.

Emerging autonomous control has evolved such UAVs into autonomous aerial vehicles (AAV) [2]–

[4]. These vehicles can accomplish a preassigned task without human operators, especially high-

risk operations like air taxiing, painting skyscrapers, or aerial firefighting. Such operations are

safety critical. Failure leading to an uncontrollable UAV can cause a fatal accident if it collides with

humans, aircraft, helicopters, or infrastructures. This damage is increasing with its mass, speed, and

size. Therefore, designs of such vehicles must be adopted with high safety and reliability consider-

ations.

The state-of-the-art conceptual design methodologies of multirotor focus on propulsor configura-

tions and evaluate through sizing for performance (e.g., overall weight, payload, range, maximum
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speed) [5]–[9]. But they lack any safety considerations to avoid failure events. This absence is a ma-

jor limitation of current design methodologies [10]. However, some of the state-of-the-art reliability

evaluation studies on multirotor focus on flight control [11], [12]. It emphasizes the loss of control

of the multirotor following a rotor failure and assesses subsequent controllability issues. Some stud-

ies create unique designs to avoid physical failure from collision [13], [14]. Thus, it stands out that

safety and reliability considerations are not adopted in the sizing of multirotor. This work focuses

on the necessity of developing a new methodology and tool to evaluate the reliability of multirotor

depending on various architectures coupled with corresponding controllability assessment. And it

should also enable the flexibility to integrate a sizing methodology in the future.

For that matter, the research intends to develop a framework that can be integrated into the con-

ceptual design process of multirotor and formalize the reliability calculations for automating safety

analysis.

1.2 Problem statement

This section investigates the safety and reliability challenges in the state-of-the-art conceptual

design of multirotors by comparing a conventional one with a redundant one using criteria like mass,

safety implementations and reliability by a generic approach.

1.2.1 Medium-sized midrange multirotor

A simple medium-sized midrange multirotor is designed to illustrate the problem statement.

The design represents medium-sized media drones, mail delivery drones, and surveillance drones

that usually operate over heavily populated areas. This design does not represent the typical size of

safety-critical applications like air taxis, flying ambulances, and aerial firefighting. The choice of

a medium-sized drone is driven by the limitation of the selected sizing tool, which is designed to

handle a maximum payload of 10 kg only.
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1.2.2 Sizing

The tool named Flyeval [15] is used to size the conventional design architecture of a quadrotor.

It doesn’t have any means to apply redundancy; therefore, parallel components are added manually

to create a redundant design architecture. The weight of each redundant component is added to

the total weight, looping back to the performance evaluation and eventually to another sizing loop

until converging. This approach avoids developing a new sizing tool, but it does not optimize the

redundancies and neglects the effect of failure cases on sizing. Flyeval is proposed in academic

research for validating drone sizing methodologies [16], [17]. It allows the user to perform sizing

according to preliminary design requirements and select off-the-shelf components from a database.

It then generates a mathematical model and calculates the resulting key performance criteria (for-

ward speed, flying range, and hovering time) so that the user can efficiently verify or refine its

component selection. The primary mission requirement considered for sizing is to carry a payload

of 10 kg within a 5 km range.

1.2.3 Reliability analysis

The typical first rule of safety-critical design standards is: A catastrophic failure condition must

not result from a single failure and must be extremely improbable [18]. A catastrophic failure con-

dition is defined as: High impact crash is imminent and unavoidable with the vehicle’s destruction

due to a complete system failure. Severe injuries or the death of people on the ground is possible.

Infrastructures can be damaged heavily. Here, a catastrophic failure condition shall have a proba-

bility of occurrence less than or equal to 10−7 [18], [19].

Other rules for less critical conditions (hazardous, major, and minor) also apply, but the presented

reliability analysis focuses on evaluating the conventional and redundant designs against this first

rule only for simplicity and conciseness.

Some studies on fault-tolerant control of quadrotors have proposed emergency landing procedures

[20]–[22] to avoid a single rotor failure to lead to a catastrophic condition. It is a significant improve-

ment in the reliability of the quadrotor. However, these procedures do not maintain yaw control. In

the studied case, the failure can occur in cruise flight and the control scheme must completely stop
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the speeding vehicle and engage a hover mode before any controlled descent. This procedure re-

quires sufficient control of all control axis. That is why the present reliability analysis assumes that

a catastrophic failure condition can be avoided only if the UAV keeps full or degraded control of all

control axis.

The reliability analysis of the conventional and redundant designs is performed with standard failure

mode and effect analysis and reliability block diagrams methodologies [23] and boolean algebra.

The reliability computation is based on independent and random failures, leading to constant failure

rates and convenient exponential distribution. The probability of failure is expressed as:

F (t) = 1− e−λt (1)

Where, λ is the failure rate (h−1) and t is the exposure time (h).

The exposure time corresponds to the maximum flight time of 22 minutes between two charges

and is enforced by the assumption of a built-in test procedure confirming the functionality of each

component at power-up.

1.2.4 Conventional design

General information

The conventional design of the quadrotor consists of a frame, battery, power distribution board,

Flight Controller (FC), Inertial Measurement Units (IMU), and four sets of electronic speed con-

trollers (ESC), rotors, and propellers with no redundancy.

Conventional design reliability analysis

Failure Mode and Effect Analysis (FMEA) is a simple and widely used reliability analysis that

considers the effects of each component’s single failures and assesses the failure severity [23]. It

shows that each component of the conventional quadrotor is susceptible to at least one catastrophic

effect. Hence, it violates the typical first rule of safety-critical design standards. It can be concluded

that the conventional design is unfit for any safety-critical application.
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1.2.5 Redundant design

General

The redundant design is obtained by incorporating redundancies systematically into the conven-

tional design as follows,

(1) A redundant battery and a battery management system are added;

(2) Inertial measurement units and the flight controllers are tripled and managed with a majority

voting algorithm. In case of failure, the service will continue with the two agreeing flight

controllers;

(3) Quadrotor configuration is modified into a co-axial configuration for redundancy and allowing

the development of control failure mitigating strategies;

(4) As the design is modified, a new off-the-shelf frame is selected considering the increase in

maximum take of weight due to redundant components. The thickness of the plate of the

frame is increased for rigidity. The arm and motor mass are increased to reflect dualization.

Redundant design reliability analysis

Unlike conventional design, the redundant design is robust to single failures. Therefore, the

reliability analysis needs to focus on the combination of failures. Fault Tree Analysis (FTA) and

Reliability Block Diagram (RBD ) analysis [23] are more suited than an FMEA for this purpose.

RBD is selected because it has the advantage of providing a physical illustration of the system ar-

chitecture.

For comparison, an RBD is constructed for both conventional and redundant design according to the

ability of the design to perform the emergency landing procedure in case of a complete system shut-

down. The reliability of the majority voting redundancies is obtained from a k-out-of-n redundancy

calculation as follows:

R2/3(t) = 3Ri(t)
2 · (1−Ri(t)) +Ri(t)

3 (2)
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Figure 1.1: RBD of conventional design (A1) and redundant design (B1) with corresponding con-
figurations (A2 and B2)

Where, Ri(t) is the reliability of the identical components of the redundancy, in effect, each

assembly of an inertial measurement unit and flight controller.

An evaluation of reliability based on controllability is presented in [11]. This approach applies

here to the propulsor system. A propulsor is the assembly of a speed controller, electric motor, and

propeller. The reliability of the redundant system of propulsors is calculated from the union of the

probabilities of each failure case (no failure, single failures, and double failures) that maintain full

or degraded controllability of all the control axis [24]. The co-axial quadrotor can keep control of

all the control axis for any single failure. The resulting reliability of the system of propulsors is

integrated into the RBD shown in Figure 1.1 and expressed as follows:

RRSP =
k∑

i=0

Ci ·Rprop(t)
m−i · (1−Rprop(t)

i) (3)

Where, RRSP (t) is the reliability of the redundant system of propulsors, Ci is the number of

controllable cases of multiplicity i and Rprop(t) is the reliability of a propulsor, which is the product

of the speed controller, motor, and propeller reliabilities.

The failure rates used for RBD calculations in Figure 1.1 represent modern high-end transport

category aircraft equipment, which is probably overly optimistic. Therefore, it is interesting to

evaluate the impact of derating those failure rates. Table 1.1 shows the reliability of conventional

and redundant design for failure rates rating from the toy industry (derating 1000) to high-end

transport category aircraft (no derating).

The results in Table 1.1 illustrate the unfitness of conventional design and the potential of a fully
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Table 1.1: Emergency landing probability of failure

Failure rate derating Conventional Redundant
x1000 (toy industry) 6.42E-02 4.40E-03
x100 6.62E-03 4.65E-05
x10 6.64E-04 4.68E-07
x1 (transport category aircraft) 6.64E-05 4.68E-09

redundant design, but implementation feasibility needs to be demonstrated and several challenges

need to be addressed. For example, the analysis assumes an ideal (no failure) battery management

system, majority voting algorithms, electric wiring, and airframe. The actual implementation of

these components could significantly impact the overall reliability as it can reveal single points of

failure.

1.2.6 Conventional and redundant design sizing

Both conventional and redundant designs are sized with the approach described in Section 1.2.2.

The conventional design uses a LiPo 12S-44.4V-25C-32000 mAh battery, while the redundant one

uses a LiPo 12S-44.4V-25C-62000 mAh. The mass of redundant components and additional fittings,

including the harness, is also considered. The frame size remains the same for both designs, but the

frame mass of the redundant design increases by +50% to accommodate redundant components,

coaxial rotors and doubled battery capacity. It results in an additional mass of +18 kg ( 82.5%

increase) for the redundant design, as illustrated in Figure 1.2. It shows that reliability and safety

measures can significantly impact the multirotor mass. However, this limitation is not the scope of

the study.

1.2.7 Limitations

The major limitation of the generic approach is that it limits design freedom in the physical

architecture of multirotor and is only applicable to specific designs or scenarios. It is limited to

adding simple parallel redundancy. Hence, the approach prevents the exploration of innovative

design architectures.
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Figure 1.2: Mass comparison of conventional design (Conv) and redundant design (Redd)

On the other hand, physical architecture poses a design limitation. The electronics and propulsion

system blocks are connected using a single line. And reliability evaluation of the electronics and

propulsor systems are independent of each other as shown in Figure 1.3. Hence, it can be derived

as follows.

Rtot = Relec ·Rprop (4)

Where Rtot is the total reliability of the multirotor, Relec is the reliability of the electronics

system and Rprop is the reliability of the propulsor system. This approach does not represent a

full system model. For example, batteries generally power IMUs, FCs and ESCs in multirotor

power systems. RBD represents only functional logic, hence the battery is connected in series

with other components. Thus, RBD does not represent information flow in the system like power,

communication, mechanical connections, control etc.

Another general limitation is the need for recurring safety analysis for each top failure event, for

each configuration and for design changes in the architecture. Hence, the safety analysis should be

automated to meet such design demands.

These limitations show the necessity of developing a framework to integrate safety and reliability
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Figure 1.3: RBD of redundant design

considerations into the multirotor design.

1.3 Scope

This research work focuses on developing a framework that provides reliability assessment to

various system architectures of multirotor coupling controllability assessments and enables the in-

tegration of a sizing methodology in the future.

1.4 Approach

The approach considers the following steps:

• Review the safety assessment methods against the ability to integrate safety considerations

addressing the identified limitations of the generic approach.

• Create a safety assessment framework that addresses the identified limitations by allocating

networked connections and coupling with corresponding controllability assessments.

• Validate the developed framework with a case study and evaluate the reliability of various

multirotor configurations.
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1.5 Outline

The work starts with the introduction discussing the background of multirotor and the necessity

of safety-critical designs. The problem statement implements a generic approach to state-of-the-art

conceptual design in order to identify the limitations. Chapter 2 reviews the classic and model-

based safety assessment methods to identify a methodology to address the limitations of the generic

approach. It also analyzes available open-source model-based safety assessment tools and selects

a suitable tool. Also it introduces the system modelling in Altarica language. It also presents

the technical aspects of the language and showcases the coding method. Chapter 3 formalizes the

methodology used to develop the model-based safety assessment framework and illustrates system

modelling methods. It then follows the model-based safety assessment etiquette to create system

models of multirotor capturing both system architecture and controllability assessment. Finally,

case studies are presented to validate the developed model-based safety assessment framework.

It also compares the reliability of various multirotor configurations to identify the most potential

safety-critical multirotor. In chapter 4, the work concludes the findings, contributions and identifies

ways to improve the maturity of the design models in the framework for future work.
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Chapter 2

Review of Safety Assessment Methods

This section reviews the safety assessment methods to capture the etiquettes of a methodol-

ogy/tool that can address the limitations of the generic approach in design configuration, architec-

ture and safety analysis. Then, it illustrates the selected tool in order to introduce the principles of

system safety modelling to prepare the development of a safety assessment framework.

2.1 Classic safety assessment methods

Classic methods are categorized from the kind of model formalism within the safety assessment.

These models are classic as they are informally built by safety engineers/analysts separately from

the design process, purely from judgements. This way of coupling safety to design is extremely

complex and creates large amounts of data.

Classic models can be categorized into elementary models, boolean formalisms and transition sys-

tems.

• Elementary models: They are created by investigating each element of the system and iden-

tifying the effects of events associated with that specific element. Failure Mode and Effect

Analysis (FMEA) is an example of this kind.

• Boolean formalisms: They make use of boolean operators to architect either connection be-

tween elements or hierarchy of event occurrences in the system. Reliability Block Diagrams

(RBD) and Fault Trees (FT) are examples of this type.

11



• Transition systems: They are a graphical method that presents the state identification of each

element with respect to event transitions. Markov process and petri nets are good examples

of this type.

2.1.1 Failure mode and effect analysis

Failure mode and effect analysis (FMEA) is a systematic methodology designed to identify and

categorize known and potential failure modes and their causes and effects on system functionality

[23], [25]–[28]. It assesses the risk associated with the identified failure modes, effects, and causes,

and prioritizes precautions. It allows the system analyst to identify and carry out corrective actions

to address the most serious concerns. An FMEA-based failure propagation model is defined from a

local failure to its system effects and subsequent corrective actions. FMEA is presented in a sheet-

based tabular form. Major known widely used software are XFMEA from Reliasoft, Reliability

Workbench from Isograph, and Relex Reliability Studio 2007 from Crimson Quality.

FMEA presents an overview for evaluating a process by identifying where and how it might

fail and assessing the relative impact of different failures. Usually, FMEA requires subject matter

experts who can analyze the system to identify weaknesses and propose corrective actions that

prevent a negative impact on the system’s performance. FMEA doesn’t predict failures but identifies

existing and potential failures through a subjective and systematic assessment and classifies them

according to the priority of risks.

But FMEA needs to be constantly updated. As the complexity of the system increases, a new

failure mode will be discovered. This can lead to underestimating the outcome of failure events.

FMEAs solely rely on the expertise of the analyst to identify and list failure modes. This task takes

a lot of work and is time-consuming depending on the complexity of the system. FMEA is also not

suitable to analyze multiple failures and the correlation between them.

2.1.2 Reliability block diagrams

Reliability block diagrams are a graphical representation of a system using component blocks

showing how the reliability of each component contributes to the overall performance [23], [25]–

[27], [29]. It shows the logical connection between components using functional dependence. For
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example, two elements in a series mean that the function of the first component controls the second

component. While two elements in parallel mean that the function of the first component and

the second component are independent of each other. Hence, the failure of each component is

propagated in this logical sense. Thus a system engineer can identify poor reliability areas and make

necessary improvements. For a large system, RBD’s graphical approach poses a challenge. RBD

doesn’t require subject matter experts but the system engineer’s ability to formulate the functional

dependency between components should be well-versed.

2.1.3 Fault tree analysis

Unlike FMEA, Fault tree analysis (FTA) is a graphical tool that identifies the causes of system-

level failures [23], [25]–[27], [30], [31]. It is used to ensure that the system withstands the failure

tolerance requirements even if multiple failures occur. It uses boolean logic to combine the identified

component level failures called basic events that cause the system level failure called the top event

to occur. Two major elements in FTA are “events” and “logic gates”. These elements connect the

events hierarchically using logic gates to identify the cause of the top undesired event. Hence, an

FTA-based failure propagation model is defined from a system failure to its root causes. Major

known widely used software are BlockSim from Reliasoft, Reliability Workbench from Isograph,

and Relex Reliability Studio 2007 from Crimson Quality.

FTA helps in highlighting the critical components related to the system failure. It prioritizes the

action items to solve the problem. But a large complex system with too many gates and events is

difficult to be considered under a fault tree. Due to FT’s graphical approach, another disadvantage

is it examines only one top event at a time. It also has difficulties to capture common cause failures,

time-related and other delay factors. Like FMEA, FTA also requires experienced subject matter

experts who also know of logic gates.

2.1.4 Markov process

Markov process is a system analysis that describes the sequence of possible events from the

state of the previous events [23], [25]–[27], [32]. It is a stochastic method for randomly changing

systems. It means that the next state is dependent on the current state and is independent of the
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past state. Markov models represent all states of a system as observable. Thus it shows all possible

states, between states and the transition rate (probability of moving from one state to another per

unit of time).

The simplest way to show a Markov model is through a Markov chain. It can be expressed using a

transition matrix or a graph. A transition matrix is used to indicate the probability of moving from

each state to another state. Generally, the current states are listed in rows, and the next states are

represented as columns. Each cell then contains the probability of moving from the current state

to the next state. For any given row, all the cell values must then add up to one. A graph consists

of circles, each of which represents a state, and directional arrows to indicate possible transitions

between states. The directional arrows are labelled with the transition probability. The transition

probabilities on the directional arrows coming out of any given circle must add up to one.

A major disadvantage of the Markov process is state explosion. The number of possible states of

a system with an ’N’ number of components is 2N . It also does not represent a functional system

architecture. This makes it difficult for both design and safety engineers to collaborate.

2.1.5 Advantages and disadvantages of classic safety assessment methods

The advantages of classic safety assessment methods are as follows,

• Early identification and elimination of potential failures.

• Prioritize and implement corrective actions.

• Document failure propagation path and system safety history.

The major disadvantages of classic safety assessment methods are listed for clarity.

• Structural difference between systems specifications and models.

• Expertise to read safety data and knowledge in safety-related softwares.

• Inability to automate safety analysis following recurring design changes.

• Misunderstandings between safety analysts and designers due to discrepancies between work-

ing hypotheses. Hence, it causes difficulties in model checking the system models.

14



• One model usually represents one major safety goal.

Additionally, the mentioned disadvantages of classic methods prevent addressing the limitations

of the generic approach in order to develop a framework.

2.2 Model-based safety assessment methods

2.2.1 MBSA background

As the importance of safety criticality grows with system complexity and size, the effort to han-

dle reliability and safety analysis with the design aspects is getting convoluted. Thus developed the

idea, to create system formal models based on system behaviour mathematically. At first, a nominal

model will be developed with the logic to fulfill all system functionalities. Faulty or degraded be-

haviours can be injected into the model and create an extended system model [33]–[37]. Finally, the

framework can automate the generation of required safety artifacts like FMEA tables and FTs from

the extended system model. The model matures with time by integrating more design decisions and

the safety artifacts automatically update with the model. This process is termed as Model-Based

Safety Assessment (MBSA). The formal models in MBSA methods give both the design team and

safety team a means to develop the system collaboratively. Thus unlike the classic methods, MBSA

methods take safety initiatives from the earlier phases of the system development.

State-of-the-art MBSA frameworks are mostly for industrial production systems. These approaches

are developed by combining Model-Based Systems Engineering (MBSE) with safety analyses, for

ex. Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) [38], Modular-

ized component fault trees [39], [40], and Safe component model [41]. Extensive overviews of these

methods are given by Aizpurua and Muxika [42], Sharvia et al [43], and Lisagor et al [44]. These

MBSA approaches showcase the changes in the system model on the system’s safety and the error

propagation of each component separately. Höfig et al [45] present two case studies that show why

these approaches are useful for complex industrial cases. MBSA methods were introduced for vari-

ous metamodels, ex., MathWorks’s MATLAB/Simulink [46], [47], Architecture Analysis & Design

Language (AADL) [48], EAST-ADL [49], and the universal modelling language (UML) [50].

Eventually, MBSA started emerging without a systems engineering perspective. Nordmann presents
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a SysML-based MBSA approach that combines SysML Internal block diagrams and Activity dia-

grams of system overview with component fault trees and shows how it supports safety experts when

performing FTA and FMEA [51]–[53]. Bozzano captures an approach to the formal modelling of the

system, the formalization of the requirements and the formal verification and validation of the sys-

tem characteristics. Also, created an MBSA framework using the xSAP platform to automatically

extract minimal cut sets for the triple modular generator in the avionics domain [54]. Nannapaneni

proposes a method to automate reliability block diagrams from a formal framework using a Generic

Modeling Environment with a domain-specific modelling language and PyEDA package available

in the python environment [55]. Even though there are these MBSA abstracts captured, none of

these are openly present as ready-to-use tools.

An overview and classification of approaches to model-based safety assessment is given in [56],

[57]. Most of them focus on the automated generation of fault trees or FMEA or both. AltaRica

[58] is a formal language for specifying complex, hierarchical systems in terms of automata and

equations, which allows for modelling the functional and dysfunctional behaviour of a system. The

FSAP/NuSMV-SA [36] approach supports failure mode definition based on a library of commonly

used failure models, automatic fault injection, and automatic fault tree construction, based on a

model checker. HiP-HOPS is a tool that supports the annotation of hierarchical system models with

failure logic information, which can then be used for the automatic generation of fault trees. Later,

It is integrated with Simulink models using Matlab [59]. Some MBSA tools worth mentioning that

can automate both FMEA and FTA are [60]–[62]. Another MBSA tool developed using SysML can

auto-generate FMEA tables [63], [64]. Safety analysis linked to a system dynamic behaviour is also

proposed using Modelica [65]. SmartIflow is a component-oriented modelling language developed

from information flow that shares many features like AltaRica [66].

However, a detailed analysis of open-source MBSA tools is required. But before that, an overview

of the MBSA process should be understood to enable the discussion.

2.2.2 MBSA general overview

In general, MBSA methods can be categorized into a seven-step process which is handled col-

laboratively by design engineers and safety engineers as detailed below.
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(1) Model capturing: This is the first step in MBSA methods where the design team provides a

formal model to the system under development.

(2) Requirement capturing: Both the design and the safety engineer provide the properties of the

system under development.

(3) Failure Mode capturing: The safety engineer identifies failure modes of the components of

the system model under development.

(4) Failure injection: The safety engineer injects failure modes of the system into the design

model and creates an extended system model.

(5) Formal assessment of system model:

• Formal Verification: The design engineer checks the model against a set of pre-defined

requirements, under the hypothesis of nominal behaviour.

• Assess Safety: The safety engineer checks the model against a set of pre-defined re-

quirements, under the hypothesis that the component may fail.

(6) Automatic generation of safety artifacts: automated generation of minimal cut sets, fault trees

and FMEA tables from the extended system model.

(7) Diagnosability Analysis, Fault Detection, and Identification Analysis: Optimized redundancy

allocation and evaluation of the amount and quality of the level of observers (sensors) of a

system for diagnosing faults.

This way of developing a system poses several advantages when compared to classic modelling,

• Assist in system model construction from the earlier phase.

• Supports a tight integration between the design and the safety teams.

• Automates (some of) the activities related both to the verification and to the safety analysis of

systems in a uniform environment.

• Compatible to incrementally develop based on iterative releases of the system model at dif-

ferent levels of detail.
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2.2.3 Open-source MBSA tools comparison

Open-source MBSA tools are compared against their ability to address the limitations of the

generic approach. The selected tool should be able to accommodate any design configuration, and

all kinds of system architectures and automate safety analysis for different top events. There are

some other criteria to find distinct approaches of MBSA. The first one is model construction. There

are extended system models, standalone system models and generic models. Extended system mod-

els are models created by injecting fault data into nominal models, stand-alone models are models

created solely for safety analysis while generic models are a hybrid of the other two. The extended

system models are more advanced than the standalone models but the computational effort is sig-

nificantly high. The second criterion is modelling logic. There are failure logic modelling and

failure effect modelling. Failure logic modelling (FLM) describes component failure propagation

by variation in output values depending on the input values and failure modes. Failure effect mod-

elling (FEM) describes the connection between components using information flow like power flow

between the electrical system components. Most of the MBSA approaches use the combination

of both modelling logic. The third criterion is the system abstraction level. It shows the level of

captured system behaviour like nominal, degraded, and failed. However, higher abstraction puts a

toll on computational effort, making it the last criterion.

With the limitations of the generic approach and the deduced criteria, MBSA tools can be assessed

to find a suitable one for this work. The comparison is presented in the table 2.1.

Altarica creates standalone safety assessment models. Components in a system are represented by

a set of flow and state variables, transitions, events, and equations to express the behaviour. State

variables describe the state of the component and the flow variables are used to exchange informa-

tion between components. Altarica uses a combination of both modelling logic (FEM and FLM).

Components exchange information about failure modes and flow properties. Altarica also supports

bidirectional flows thus making it possible to model undirected connections. System analyst is a

graphical interface of Altarica developed separately [67]. It can create mini-versions of an extended

system model for Altarica.

The fully integrated Simulink version of HiP-HOPS uses safety models, which utilize the structure
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Table 2.1: Open-source MBSA tools comparison
Config. and

Arch.
Auto. Saf
Analysis

Model
constr.

Model
logic

Sys.
abst. lvl

Comp.
effort

Altarica Any Yes standalone FEM/FLM 4 Medium
System analyst Any Yes extended FEM/FLM 4 Medium
HiP-HOPS Any Yes generic FLM 5 High
Simulink-NuSMV Any Yes generic FLM 3 Low
SLIM Any Yes standalone FEM/FLM 1 Low
SAML Any Yes generic FEM/FLM 1 Low
SmartIflow Any Yes generic FEM/FLM 2 Medium

of existing design models. HIP-HOPS is based on FLM as the components only exchange informa-

tion about signal deviations at input ports.

The Simulink-NuSMV model creates an extended system model injected with a fault model using

FEM. This model is translated into the input language of the NuSMV model checker. Simulink

gives a graphical representation of the NuSMV model. Computation tree logic is used for mod-

elling. This logic combines both linear-time and branching-time operators. Linear logic operators

describe events along a single computation path while branching logic operators quantify the paths

that are possible from a given state. This modelling approach also does not have state variables to

express state-dependent behaviour and makes use of directed connections.

System Level Integrated Modeling Language (SLIM) framework is based on NuSMV and com-

putation tree logic is used for requirement specification. SAML (Safety Analysis and Modeling

Language) is another MBSA tool worth mentioning.

SmartIflow creates component-based models also using computation tree logic. Each component

communicates via ports and connections by manipulating and checking abstracted physical flows as

well as by exchanging key-value pairs that are called properties. It makes use of a combination of

FEM/FLM modelling logic and uses undirected connections.

It can be concluded that the Altarica language can create models that address the limitations of

the generic approach and provides a good measure in other criteria while comparing it with other

tools. Also, the System analyst GUI is an additional advantage.
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2.3 General overview of Altarica

Altarica is an object-oriented modelling language dedicated to the safety analysis of complex

system architectures in the avionics, automotive and nuclear industries. Object-oriented languages

are programs that can model objects which contain data and code to interact with each another.

Generally, data is in the form of attributes or properties of the elements in the model and code is in

the form of procedures or methods which represents the behaviour. The main purpose of Altarica is

to fill the gap between the system specifications, safety models and traditional safety analyses. Al-

tarica is integrated into modeling environments like Cecilia OCAS by Dassault Aviation, Simfia v2

by Airbus-Apsys and Safety Designer by Dassault Systèmes. The Altarica language creates models

that imitate the functioning of each element in a system and establishes the connection between

them. Altarica models can provide clarity about how a system works, degraded system functions,

how it may fail and the outcomes of the failure. Thus, it ensures that the considered system is safe

to operate. Altarica model contains blocks, classes, object properties, connections, observers etc.

Blocks are used to define the system and subsystem functionalities. Classes define each element in

a system and provide a means to accommodate object properties. Major object properties defined

are element states, events related to states, failure rates and repair rates. The element states are

represented by state variables. The change of state occurs when an event occurs (defined as transi-

tions), thus updating the values of the state variables. Connections between elements are established

using assertion by means of flow variables. These variables circulate the state information between

elements of a model, thus establishing remote interaction between elements at the far ends of the

physical architecture. These remote interactions portray the consequences of failures of individual

components into the system as a whole [68]–[72].

Altarica is reinforced using guarded transition systems which is a mathematical model of compu-

tation gathered under the generic term of finite-state machines or finite-state automata. Finite state

machines can be simulated to be in one of the finite number of states at any given time. It can change

from one state to another in response to some inputs.
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2.4 Guarded transition systems

Guarded Transition System (GTS) is a states/events formalism dedicated to safety analyses.

GTSs can be considered as a generalization of block diagrams, petri nets, and the Arnold–Nivat

model of parallelism. Block diagrams give the concept of flow or network allowing the interactions

between components of a system. Petri nets give the idea of representing states using variables

and changes of states using events and transitions. Arnold–Nivat model of parallelism gives the

composition to create hierarchical models. While Altarica is a convenient way to describe and

structure guarded transition systems [73].

Mathematically, a guarded transition system is defined using a quintuple 〈V, E, T, A, ι〉, where:

• V is a set of variables. It can take its value in as a certain set of constants (Booleans, integers,

reals or a set of symbolic constants). V is the union of two subsets - State variables - S (defines

component’s operative states concerning safety, eg: working, repairing, and failed) and Flow

variables - F (defines connections, eg: input and output of components).

• E is a set of events.

• T is a set of transitions that defines the event. A transition T is a triple 〈e, G, P〉, also denoted

as a function e : G → P; where e is an event of E, G is called the guard of the transition,

which is a boolean formula built on variables of V, and P is called the action of the transition

that changes the value of state variables or a post-condition. The transitions can be enabled

or disabled whenever necessary. It is called the firing process.

• A is an instruction, called assertion, that calculates the values of flow variables from the values

of state variables.

• ι is a function that gives the initial/default value of state variables and the flow variables.

To understand the semantics of GTS in detail, the following sections consider a quadrotor de-

picted in Figure 2.1, made of,

• Batteries, B1 and B2 supplying power to Electronic Speed Controller ESCs E1, E2, E3 and E4
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Figure 2.1: Simplified view of a quadrotor

which regulates the speed of rotors R1, R2, R3 and R4. Each rotor is connected to the corre-

sponding propellers. One combination of ESC, rotor and propeller can be called a propulsor.

• Flight controller FC is connected to ESCs to control the rotors.

The goal of the system is to keep the quadrotor in hover flight by supplying power to all four

rotors.

2.5 Definition of GTS using component description

Consider the component ESC of the quadrotor. The state diagram of ESC is depicted in Figure

2.2.

ESC can have two states – working or failed. The initial state of the ESC is working. In a failure

event, a change of state occurs from working to failed. If the ESC is working, then the variable

‘output’ of the component will be equal to the variable ‘input’ else there is no output. The following

part describes how the attributes of component ESC is converted into a GTS model.

• The set of variables, V is a disjoint union of state variables, S and flow variables, F. It can be

represented as V = S � F.
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Figure 2.2: State diagram of ESC

◦ the state variables S can take in various operative states of the defined component, for

example, working, failed, repaired, stopped etc. It can also take in boolean conditions.

It can be represented as,

S = { s, c } with

dom(s) = { WORKING; FAILED }

dom(c) = { TRUE; FALSE },

◦ the flow variables F defines connections between components, for example, input and

output. It can be represented as,

F = { input; output } with

dom(input) = dom(output) = { TRUE; FALSE }

• The set of events E can contain the events like start, stop, and failure of components.

E = { failure }

• Transition T defines the event. Here in event failure, state variable s change from working to

failed.

failure: s == WORKING → s := FAILED

• The assertion A is a block of instructions that contains two conditional assignments: Output

only exists when state variable s is working, and input is connected. Thus, both assignments

are connected with the Boolean operator ‘and’.

output := (s == WORKING) and (input)
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Figure 2.3: GTS of ESC

• Finally, the initial or default variable assignment ι is as follows: the initial state of state

variable s is working and flow variables input and output are false.

(s = WORKING, input = FALSE, output = FALSE)

Following Figure 2.3 shows an Altarica syntax representing the GTS of the ESC.

The state values are saved in a domain called ComponentState. There are two states, defined as

WORKING and FAILED. Component ESC is modelled into a class named ESC. The variable ‘s’

represents the state of the ESC. The attribute init gives the initial value to state ‘s’ as WORKING.

Class can take parameter values using parameter Real. Failure rate, lambda is defined so. Variables

input and output represent the in and out connection of the ESC. They are the flow variables. Initial

values of these variables are given by the attribute reset. The state variable ‘s’ is changed using

transition by initiating an event. Event failure defines the transition of the state from WORKING to

FAILED. These variables are connected to state variables using assertion.

The transitions are subjected to firing which means an event has occurred. The event failure

mentioned above is only fireable when the state variable s is WORKING. The firing changes the

value of s to FAILED and then updates the values of flow variables.

Likewise, all components of the quadrotor can be created into distinct classes using the GTS

model in Altarica.
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Figure 2.4: GTS of quadrotor system

2.6 Composition of GTS

2.6.1 Independency

The composition of two (or more) guarded transition systems is also a guarded transition system.

Let G1 : ⟨V1, E1, T1, A1, ι1⟩ and G2 : ⟨V2, E2, T2, A2, ι2⟩ be two independent GTSs.

Then G = G1 +G2,

G = ⟨V,E, T,A, ι⟩ such that,

V = V1 ∪ V2

E = E1 ∪ E2

T = T1 ∪ T2

A = A2;A1

ι = ι2 · ι1

Larger models can thus be obtained by composing smaller models. For example, consider the

block created from a quadrotor system in Figure 2.4. It consists of two batteries, four ESCs, one

flight controller and four rotors. So, the GTS of a quadrotor is a composition of GTSs representing

the battery, ESC, flight controller and rotors.

The block Quadrotor contains two instances of class battery named B1 and B2, four instances

of ESC named E1, E2, E3 and E4, one instance of Flight controller FC and four instances of Rotor

named R1, R2, R3 and R4. The resulting GTS contains all variables, events, transitions, assertions,

and initial values from each instance of GTS. All named objects are distinguished by prefixing the

name of the class. For example, variable ’input’ of class ’Battery’ instance B1 will be termed as

B1.input.
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Figure 2.5: System flow variables

2.6.2 Connection

Connections between each class in the block Quadrotor are defined by the flow variables using

assertion in a GTS as in Figure 2.5. B1.input and B2.input are equated to true as they are the source

of power for other components. The input of flight controller FC.input is connected to B1.output and

B2.output with a boolean operator ‘or’ as the FC is powered by both batteries. One of the batteries

should always work to power FC. FC regulates the ESCs to control the speed of rotors. Thus, the

input of ESCs E1.input, E2.input, E3.input and E4.input is connected to FC.output and the input

of rotors R1.input, R2.input, R3.input and R4.input are connected to the output of corresponding

ESCs. Each rotor contains one propeller. Thus propeller inputs are connected to the corresponding

rotor output. The dependency of both state and flow variables of each component can be seen in

Figure 2.6.

The diagram shows combined status of transition and assertion in the block Quadrotor, meaning

how the state variables and flow variables in the block Quadrotor are connected to each other. Each

output of the component is only possible when the component state is working and the component

input is true. Simply stating, a component’s functionality is defined by its working condition and

the input component connected to it.
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Figure 2.6: Dependency of variables

2.6.3 Synchronization

Transitions of GTS are asynchronous, which means a set of events cannot occur simultaneously.

Two transitions cannot be fired once. So, a synchronization mechanism should be used to activate a

set of events step by step. Generally, a transition is represented as e : G → P. It is considered as a

triple, t = ⟨e,G, P ⟩. Let σ be a variable assignment before the firing of transition. Then, a transition

is fireable only if σ(G) = TRUE in a given state. Once a transition e : G → P is fired, a new variable

assignment will be calculated from σ and all variables needs to be updated: First, state variables

are updated by applying the instruction P to σ creating a new variable assignment; Second, flow

variables are propagated using the assertion. For example, let’s consider the event failure.

Event, E = {failure};

Transition T of event E is,

failure: s == WORKING → s := FAILED.

Here, σ(G) is s == WORKING. Only if σ(G) = TRUE in a given state, a failure event can occur

converting the state from s == WORKING to s == FAILED else not.

Assertion A as shown in 2.3 defines that
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output := (s == WORKING) and (input)

Output is only available when the state is WORKING, and input is TRUE. So, after the failure

event occurs or the firing of the transition, the state is no longer WORKING and is FAILED. Thus

after updating the state variables, Output is no longer available, and the component is completely

FAILED.

2.7 Summary

It can be concluded that the Altarica language can create models that address the limitations of

the generic approach. Therefore, the safety assessment framework will be developed with Altarica

language and System Analyst GUI. The chapter also presents the Altarica language technically by

creating a simple quadrotor system.
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Chapter 3

Developed MBSA Framework

This section presents the developed MBSA framework describing from the system modelling

methods to the safety analysis. It elaborates on the MBSA processes to create system models of

multirotor configurations. It presents case studies to validate the MBSA framework.

3.1 MBSA Framework

As specified before, MBSA framework is developed using OpenAltarica, System Analyst and

Python to model the multirotor systems. It is illustrated in Figure 3.1. The framework follows three

processes,

• System modelling

• Flattening

• Assessment tools

3.1.1 System modelling methods

Three major modelling methods can be used to create multirotor system architecture in an

MBSA framework.

• Code-based modelling
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Figure 3.1: Developed MBSA framework

• Network modelling

• Graphical modelling

Code based modelling

Code based modelling is based on the OpenAltarica code framework. Here the engineers create

the system using altarica code as shown in chapter 4. System components are defined using classes

and their attributes are defined using class parameters, the states of each component are defined

using state variables. The relationship between components is defined using flow variables. State

variables and flow variables are linked in such a way that flow variables respond to the state vari-

ables whenever the component state varies. For ex, if a component state changes from WORKING

to FAILED, the flow variables OUTPUT is no longer available from that component. Without the

OUTPUT from the component, the next component’s state stays not WORKING. Thus, the system

is made into a flow of components where they respond to each other’s state.

This altarica code can thus be fed into the MBSA framework to auto-generate conventional relia-

bility assessment methods. The limitation of this method is that code should be updated for every
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Figure 3.2: Network architecture

latest change in the design stages.

Network architecture modelling

Network modelling is developed from the idea that a system and its components behave like

a network. For this purpose, altarica code is automated using python. Each component is pre-

coded into a python capsule which behaves like a component-of-the-shelf. The required amount

of components and their attributes are manual inputs depending on the size of the system. The

system model is defined in a tabular format that represents the connection between components.

It is controlled using binary codes, 0 for no connection and 1 for connection. The python then

automates the altarica code. This is shown in Figure 3.2.

This altarica code can also be fed into the MBSA framework to auto-generate conventional

reliability assessment methods. The limitation of this method is the complexity of coding from the

size of the system and the number of components.

Graphical modelling

Graphical modelling is developed by System Analyst which can create altarica code using a

graphical user interface. To create a system architecture, each component can be defined using

functional blocks and the connections between components can be defined using the input and

output of components.

This modelling method can auto-generate conventional reliability assessment methods.
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3.1.2 Flattening

Flattening is a model-checking process to convert the Altarica model/code written in object-

oriented language to a universal language mentioned earlier called the Guarded Transition System

(GTS). Before conversion, it also applies a typo-checking tool and a grammar checker. This makes

it possible to detect typo and syntax errors and retrieve the error locations in the model.

3.1.3 Assessment tools

The assessment tools in Altarica can generate safety artifacts from GTS code based on the sys-

tem model. It includes stepwise simulation, fault tree assessment, FMEA generator and stochastic

simulation.

• Stepper: The stepper converts state and flow variables from the GTS model and creates the

system architecture in a tree format. It shows the operation sequence of the system as well

as the state of each component. It also can show state transitions, and active and lost input

and output connections of components. It also gives means to manually enable and disable

components to foresee the system behaviour. This helps in validating the system architecture

logically.

• Fault tree Assessment: GTS model can be compiled into a fault tree. Minimum cut sets and

top event probability can be calculated.

• FMEA Generator: GTS model can generate an FMEA table depending on the list of failure

modes entered.

• Stochastic simulation: Stochastic models are used to estimate the probability of various out-

comes while allowing for randomness in one or more inputs over time. The models result in

probability distributions, which are mathematical functions that show the likelihood of dif-

ferent outcomes. The Monte Carlo simulation is one example of a stochastic model. it can

simulate how a portfolio may perform based on the probability distributions of individual

stock returns. It can thus produce the random/every possible sequence of events that can

occur in a system.
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Figure 3.3: MBSA process with the scope of study

3.2 Model based safety assessment of multirotor configurations

As the framework is presented, this section applies the MBSA process to initialize the multirotor

system model. It will be limited to the scope of the current study to emphasize the acceptable

complexity of the model. Figure 3.3 illustrates the MBSA process.

• Model capturing: For capturing the multirotor model, the system architecture model and con-

trollability assessment model of corresponding propulsor configurations should be created.

System behaviour and component properties should also be collected.

• Requirement capturing: Design requirements should be collected.

• Failure Mode capturing: Failure modes of each component should be identified.

• Failure injection: Failure modes of the system should be injected into the design model and

create an extended system model.

• Formal assessment of system model:
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◦ Formal Verification: Check the model against requirements, under the hypothesis of

nominal behaviour. Redundancies should be created to withstand single failures and

dual failures.

◦ Assess Safety: Check the model against a set of requirements, under the hypothesis that

the component may fail. In case of a complete failure, the flight control system should be

assumed to initiate an emergency landing to avoid a complete failure of the multirotor.

In case of a susceptible failure, the flight control system will continue operation with

degraded functionalities.

• Automatic generation of safety artifacts: Automatically generate the fault trees and FMEA

tables from the extended system model of the multirotor.

• Diagnosability Analysis, Fault Detection, and Identification Analysis: This part is not in the

scope of the current work. It requires a mature design of the system.

3.2.1 Model capturing

Here, the work creates a formal model for multirotor configuartions. Some examples of such

configurations - quadrotor, coaxial quadrotor, two configurations of hexarotor (PNPNPN and PPN-

NPN) and octarotor configurations are shown in the figure 3.4. It is discussed in two steps. The

first step is to create the system architecture and the second is to assess the controllability of each

multirotor configuration when one or more propulsors fail.

System architecture of multirotor configurations

A system architecture is a conceptual model of a system that defines the physical structure,

system functions, driving parameters and system behaviour. The system architecture of a multirotor

is shown in figure 3.5.

A multirotor consists of various systems. Each system has various components and distinct

functionalities. It can be listed as follows,

• Power System: The power system represents the power storage and provides the required
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Figure 3.4: Multirotor configurations
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Figure 3.5: System model of a multirotor
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power to system components. It contains batteries and supplies power to the electronics sys-

tem and propulsion system. Depending on the requirements, the system can contain redundant

batteries.

• Electronics System: The electronics system can be sub-categorized as the flight control sys-

tem and the communication system. It contains the major electronic circuits like flight con-

trollers and onboard sensors called Inertial measurement units (IMU). The flight controller

collects information from the sensors and controls the propulsion system. Depending on the

requirements, the system can contain redundant flight controllers and sensors.

• Propulsion system: The propulsion system represents all the propulsors and provides flight

power. A propulsor is a single combination of an electronic speed controller (ESC), rotor and

propeller. Multirotors are classified into quadrotor (4), coaxial quadrotor (4 pairs of 2 rotors),

hexarotor (6) and octarotor (8) depending on the number of propulsor configurations. ESCs

control the speed of the rotor attached to a propeller depending on signals from the flight

controller.

• Chassis system: The chassis system is the skeleton of the multirotor and provides structural

support. It contains the number of arms depending on the configuration, a center plate to hold

the entire body of the multirotor and landing gears for safe takeoff and landing. It can have

more components, but this work intends to limit the complexity of the system.

Controllability assessment of multirotor configurations

Controllability assessment is to make the multirotor susceptible to the challenges facing the

flight control system of the multirotor. A major challenge in multirotor flight control design is the

angular momentum generated from the torque of the rotor. This is handled by contra-rotating (pair-

ing it with a rotor with the counter-rotation). The total number of rotors rotating clockwise and

counterclockwise should always be the same for a multirotor to maintain complete stability. But

this is not possible when a propulsor failure occurs - Failure of ESC, failure of the rotor, failure

of propeller or loss of an arm can all have the same effect. Consequently, the multirotor will lose

control of the control axes. However, each multirotor configuration has different behaviour when
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propulsors fail.

Each multirotor configuration has different behaviour when propulsors fail. Assuming the overall

weight can be lifted by the rest of the propulsors, various controllable and uncontrollable cases in

single and dual failures of each configuration should be derived to evaluate the reliability of the

propulsion system and should reflect in the safety analysis. The current study has collected and

identified controllable and uncontrollable cases of each configuration [24], [74]. The controllable

cases will enable the system model to identify the recoverable actions to withstand single or dual

failures of propulsors.

Analyzing each configuration, all configurations are insusceptible to single failures except quadro-

tor. Investigating through dual failures, coaxial quadrotors have 12 controllable cases, hexarotors

(PNPNPN) have 9 controllable cases, hexarotors (PPNNPN) have 3 controllable cases and octaro-

tors are insusceptible to dual failures. And all configurations are susceptible to triple failures except

octarotors with 8 controllable cases. This is shown in the table 3.1.

The MBSA framework should enable this data to be reflected in the safety analysis. The system

model should incorporate a controllability model from controllable and uncontrollable cases. For

this matter, Figure 3.6 shows the controllability assessment model developed for this study.

In the controllability model, propulsors are connected to a state monitor that checks the operat-

ing status of components. As the multirotors are insusceptible to single propulsor failure except

quadrotor, a failure sequence is necessary. Controllable and uncontrollable cases of each configura-

tion from controllability assessment should be fed to a checker. And the checker can compare it with

the generated failure sequence to it. This is done using boolean algebra and observers from Altarica.

An observer can ensure the status of a component’s state variable (WORKING or FAILED). If the

identified failure sequence is controllable, safety analyses can reflect the precautionary measures. If

contrary, safety analyses can suggest emergency measures.

3.2.2 Requirement capturing

Requirement capturing is about identifying the major constraints of the design and defining its

properties. The selected design model represents a multirotor that operates over heavily populated
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Table 3.1: Controllable cases
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Figure 3.6: Controllability assessment model

areas with heavy loads. The requirement is to follow the first rule of safety-critical design stan-

dards - A catastrophic failure condition must not result from a single failure and must be extremely

improbable [[18], Pt. VTOL.2510(a)]. A catastrophic failure condition is defined as: High impact

crash is imminent and unavoidable with the vehicle’s destruction due to a complete system failure.

Severe injuries or the death of people on the ground is possible. Infrastructures can be damaged

heavily. A catastrophic failure condition shall have a probability of occurrence less than or equal to

10−7 [18], [19]. Ability to enable emergency landing procedures should be maintained under said

failure condition. Hence, the procedure requires sufficient control of all control axis.

3.2.3 Failure mode capturing

For simplicity, the work is limited to failure modes that cause complete system shutdowns as

shown in Table 3.2
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Table 3.2: Failure modes

Failure mode Root causes

Battery failure Low capacity and voltage
Sensor failure Low calibration, low power, circuit short

Flight controller failure Low power, circuit short
ESC failure Low power, circuit short
Rotor failure Low power, circuit short

Propeller failure Collision, fracture
Arm failure Collision, fracture

Center plate failure Collision, fracture
Landing Gear failure Collision, fracture

3.2.4 Failure injection

After identifying the failure modes of the system components, failure rates of each failure mode

should be injected into the design model and create an extended system model. This section should

be further developed with failure modes representing partial failures of components. Thus, all failure

modes of components can be injected into the extended system model as the design of the system

matures.

3.2.5 Formal assessment of system model

• Formal Verification: Formal verification can be conducted on both the nominal model and the

extended model. The nominal model should be verified that the system model is functional.

The extended model should be verified under the presumption that the system model is func-

tional even after a failure. Redundancies should be created to withstand single failures. To

avoid single failures, a simple single parallel redundancy can be applied, for example. Bat-

tery. To avoid multiple failures and to protect critical components like flight controllers, a

majority voting monitoring redundancy can be applied.

• Assess Safety: This step is to identify cases assuming that a critical component may have

failed or an uncontrollable case is identified. In case of such an event, the flight control

system should be assumed to initiate an emergency landing. This can only be possible by

maintaining the major control axes of the multirotor.
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3.2.6 Automatic generation of safety artifacts

MBSA framework can generate failure sequences, minimal cut sets, fault trees and FMEA tables

from the extended system model.

3.2.7 Diagnosability analysis, Fault detection and Identification analysis

Safety critical systems should be fault tolerant in presence of faults. It should be able to operate

fully functional or maintain major functions. Fault tolerance typically requires proper architectures

(Redundant), mechanisms to monitor, detect and isolate faults, and recover mechanisms. Diagnos-

ability analysis should verify the amount and effectiveness of system architectures and evaluate the

amount and quality of the level of observers (sensors) of a system for diagnosing faults. Fault de-

tection and Identification analysis should assess the ability to detect the fault and apply recovery

mechanisms at specified mission time. This part is out of the scope of the current study and should

be applied as the design stage matures.

3.3 Case studies

This section presents case studies to validate the developed MBSA framework against the lim-

itations of generic approach. Further, it shows the overall reliability results of various propulsor

configurations.

3.3.1 Hexarotor system model

The hexarotor system model is developed from functional logic. Thus, it contains a component

structure to achieve maximum reliability and a controllability assessment block to avoid uncon-

trollable cases. The component structure is adopted with redundancy techniques. The component

structure is listed below,

• Battery: This is the sole power source of the system. A simple active redundancy is applied

to avoid a single failure.
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• Flight controller: It is the decision-making component of the system. A triple redundancy is

applied with the majority voting algorithm.

• IMU: IMU is a collection of sensors that support the flight controller with necessary data.

Hence, each flight controller is equipped with its own data source.

• ESC: Each ESC is connected to all rotors, but only supports one at a time. In case of an ESC

failure, another ESC in a different propulsor can take over the rotor.

• Rotor: Hypothesis - All configurations except the quadrotor can handle a single rotor failure.

But all dual failures cannot be handled using redundancy. Hence the controllability block

assesses the case and checks whether the resulting scenario is controllable or not.

• Propeller: Hypothesis - All configurations except the quadrotor can handle a single propeller

failure. But dual failures cannot be handled using redundancy. Hence the controllability block

assesses the case and checks whether the resulting scenario is controllable or not.

• Arm: Hypothesis - All configurations except the quadrotor can handle a single arm failure or

loss of the arm. But dual failures cannot be handled using redundancy. Hence the control-

lability block assesses the case and checks whether the resulting scenario is controllable or

not.

• Central plate: Should be reinforced with mechanically strong elements.

• Landing gear: Should be reinforced with mechanically strong elements.

Figure 3.7: RBD of Hexarotor configuration

In order to validate this approach, an RBD shown in Figure 3.7 is developed adopting a similar

scenario for hexarotor and is compared with that of a system model for MBSA framework. The
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Component Failure rate (per hour)
Battery 1 10−6

Inertial measurement unit (IMU) 3 10−6

Flight controller 5 10−5

Electronic speed controller (ESC) 1 10−5

Rotor 1 10−6

Propeller 1 10−8

Center plate 1 10−6

Arm 1 10−6

Landing gear 1 10−6

Table 3.3: Failure rates

failure rates are summarized in Table 3.3 based on the orders of magnitude of modern high-end

transport category aircraft equipment. Figure 3.8 represents the full system model equipped with

said techniques of hexarotor in System Analyst.

The overall probability of failure generated from MBSA framework for the top event - complete

loss of flight control shows a 10% error with that of RBD. Thus, the methodology used to develop

the MBSA framework can be considered valid.
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Figure 3.8: Full system model of a hexarotor’s MBSA
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Figure 3.9: Component allocation for FC-ESC combo

3.3.2 Component allocations

The MBSA framework can solve the design limitation in the system architecture of multiro-

tors from the single connection between the electronics and the propulsor system by introducing

component allocations. Using the developed MBSA framework, multirotors can adopt two kinds

of component allocation, especially in the connection between the flight controller and the ESC,

namely arm based and distributed. This can avoid two scenarios. First, failure of the electronics

system causing a complete shutdown of the propulsor system and second, failure of the same-side

rotating propulsors. In arm-based allocation, each flight controller is allocated to a certain arm. This

kind is suited for coaxial multirotor as it have to operate two sets of propulsors. It is assumed that

the flight controllers will operate in a swarm behaviour for providing collaborative control. While

distributed component allocation is derived to avoid common cause failures of same-side rotating

propulsors. Most of the uncontrollable cases occur when two clockwise or counterclockwise rotors

fail. It can also occur in a complete loss of the arm. This can be avoided by a flight controller that

controls different sets of propulsors in multiple arms with one clockwise and the other counterclock-

wise. Subsequently, failure of this flight controller will not cause the loss of complete flight control.
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Also, both ways can reduce the frequency of failures in flight controllers significantly as they only

support two arms. These allocations can make the electronics systems and propulsor systems more

reliable.

A simple case study was conducted in the coaxial quadrotor to show the potential of such archi-

tecture as shown in Figure 3.9. The results are shown in Figure 3.4 with derating failure rate.

Distributed control allocation has high reliability while 3 out of 4 redundancy and arm-based con-

trol allocation show similar reliability. However, the complexity and cost of applying a majority

voting algorithm can be avoided by arm-based control allocation.

Hence, the MBSA framework expands design freedom and allows a designer to try and judge dif-

ferent design scenarios in terms of reliability.

Failure rate derating 3 out of 4 Arm based Distributed
x1 (transport aircraft) 5.10E-08 5.10E-08 5.20E-09
x10 5.10E-07 5.10E-07 5.20E-08
x100 5.10E-06 5.10E-06 5.20E-07
x1000 (toy industry) 5.10E-05 5.10E-05 5.20E-06

Table 3.4: Probability of failure comparison after component allocation with a mission time of 22
min

3.3.3 Reliability results

This section compares the reliability of various multirotor configurations - quadrotor, coaxial

quadrotor, hexarotor (PNPNPN and PPNNPN) and octarotor.

As mentioned before, the overall probability of failure requirement to be accepted by the standards

is 10−7. This value can be generated from the auto-generated fault trees from the MBSA framework

presented in the Appendix A of the discussed multirotor configurations and is shown in Figure 3.10.

All multirotors are insusceptible to single failures except quadrotors. The overall probability of

failure of the quadrotor also reveals that it does not fulfil the safety requirements. The coaxial

quadrotor and hexarotor with PNPNPN configuration are above the specified reliability limit and are

acceptable for safety-critical operations. However, quadrotor with redundant electronics is below

the reliability limit as they are still susceptible to single propulsor failures. Hexarotor with PPNNPN

configuration is above the specified reliability limit but has limited controllable cases in dual failure
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Figure 3.10: Reliability values of various multirotor configurations

sequences. However, octorotor is the best performer due to the higher number of controllable cases

and it withstands single, dual and triple propulsor failures.

3.4 Summary

The chapter presents the developed MBSA framework and also elaborates on the processes used

to create system models of multirotor configurations. The developed MBSA framework provides

much wider design freedom in modelling the physical architecture of multirotor using various sys-

tem modelling methods. The reliability of propulsors is evaluated by assessing the controllability of

each configuration separately by identifying controllable/uncontrollable cases. As the safety analy-

sis is automated, different top failure events can also be assigned to create safety data for numerous
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scenarios. Case studies are presented to validate the framework. It also shows the overall reli-

ability results of various propulsor configurations and identifies a potential one for safety-critical

applications.
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Chapter 4

Conclusion

As there is a lack of a comprehensive UAV design approach with safety and reliability consid-

erations in the open literature, this research made the first steps to add such a scenario in the design

process by developing an MBSA framework.

A generic approach is created by applying typical design for reliability modifications in the state-of-

the-art conceptual design to identify the limitations in design configuration, architecture and safety

analysis. The review of safety assessment models paved the way to develop an Altarica-System

Analyst-Python-based framework. The developed MBSA framework can integrate system models

from the physical architecture with networked connections and corresponding controllability as-

sessments. The framework can also create innovative system architectures and automate fault tree

generation for various multirotor configurations. The reliability analysis confirms that the multiro-

tors developed using the framework are fault-tolerant and some configurations are potentially highly

reliable.

Some aspects of the MBSA processes are omitted to reduce the system complexity and computation

effort. In future works, the models can be further enhanced with the addition of a component fault

library, additional failure modes, diagnosability analysis, fault detection and identification analysis.

Fault libraries and failure modes can help in foreseeing uncontrollable cases, while diagnosability

analysis, fault detection and identification analysis can integrate detect, isolate and recover mecha-

nisms, and optimize redundancy effectively. Additionally, the framework should also be combined

with multidisciplinary design optimization for sizing. Such design models can contribute to the
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emergence of UAVs for safety-critical applications shortly.
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Appendix A

Fault trees

Following pages show the fault trees generated using the MBSA framework for various multi-

rotor configurations.
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Figure A.1: Quadrotor main fault tree
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Figure A.2: Quadrotor fault tree extension G8 (similar to G18, G24, G30)

54



Figure A.3: Quadrotor with redundant electronics main fault tree
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Figure A.4: Quadrotor with redundant electronics fault tree extension G8 (similar to G27, G33, G39)
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Figure A.5: Quadrotor with redundant electronics fault tree extension G12
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Figure A.6: Coaxial quadrotor main fault tree
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Figure A.7: Coaxial quadrotor fault tree extension G7 (similar to)
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Figure A.8: Coaxial quadrotor fault tree extension
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Figure A.9: Coaxial quadrotor fault tree extension
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Figure A.10: Hexarotor (PNPNPN) main fault tree
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Figure A.11: Hexarotor (PNPNPN) fault tree extension G6 (similar to G33, G40, G26, G47, G54, G33)
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Figure A.12: Hexarotor (PPNNPN) main fault tree
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Figure A.13: Hexarotor (PPNNPN) fault tree extension G8
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Figure A.14: Hexarotor (PPNNPN) fault tree extension G27 (similar to G34, G41, G27, G48, G54, G57)
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Figure A.15: Octarotor main fault tree
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Figure A.16: Octarotor fault tree extension G7
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Figure A.17: Octarotor fault tree extension G33 (similar to G45, G57, G39, G51, G63, G57)
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