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Abstract 

Methodologies for the Management, Normalization and Identification of Sexual 

Predation of Minors in Cyber Chat Logs 

 

John Sekeres 

 

Neural networks based on the Transformer architecture have shown great results in tasks such as 

machine translation and text generation. Our contribution provides a methodology for an AI 

agent capable of Sexual Predator Identification (SPI) based on the classification capabilities of 

models built on the Transformer architecture. Results are comparable to existing state-of-the-art 

methods, with a F0.5 score of 92.5% for predator identification on the PAN2012 test dataset 

consisting of 2,004,235 lines of text. Practical considerations require an AI agent that can 

evaluate large numbers of chats quickly. In that regard the Transformer based AI agent is able to 

evaluate over 2 million lines of text in under 6 minutes on a modestly configured workstation. 

An AI agent by itself does not provide a complete solution to sexual predator identification. In an 

effort to give practical value to an AI agent, we address the vitally important but often 

overlooked issues of chat management and normalization. Our contribution provides a 

methodology for efficiently transforming raw chats from a native format into a consistent 

'normalized' format suitable for analysis. We define a methodology to the problem of managing 

large numbers of chats, converting/normalizing 10,000 documents in a dataset in under 3 

minutes on a modestly configured workstation.  We present a software-based solution that 

among other things brings together chat management, normalization, and AI based analysis into 

a cohesive, productive environment that law enforcement can use to identify and build a case 

against suspected predators.  
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Chapter 1: Introduction 
 

Social media provides a powerful platform for individuals to communicate globally. This 

capability has many benefits, but it can also be used by malevolent individuals for nefarious 

reasons.  

Since 2014, the number of police-reported online child sexual exploitation and abuse incidents 

has generally been on an upward trend. In 2020, the overall rate of online child sexual 

exploitation and abuse was 131 incidents per 100,000 children and youth compared with 50 

incidents per 100,000 children and youth in 2014 [1].  

Reading through documents searching for sexual predation of minors is a daunting task, but this 

is precisely what law enforcement is faced with. With limited resources the focus is usually set to 

searching for evidence to build a court case against a suspect. This requires great effort, as it 

involves reading documents found on a suspects storage devices and on social media platforms 

known to be used by the suspects. This task takes away resources from identifying unknown 

predators before they commit future crimes.  

This thesis describes the tools needed by law enforcement to be able to manage and analyze large 

numbers of chats, and furthermore, we present a methodology for how these tools might deal 

with; 

1. Transforming raw chats into a normalized (i.e., consistent) format, suitable for further 

analysis. 

2. Automatically detecting suspicious conversations and authors. 

3. Bringing together all the required functionality into an application that law enforcement 

can use to analyze many chats. 

 

1.1 Motivation 
Technology is in some sense making it easier for predators to find and lure victims. This creates 

an environment where minors are often left vulnerable to predation. The motivation of our work 

is to help protect minors from these threats without excluding them from utilizing the benefits of 

the underlying technology. 

Threats can come from all sorts of different mediums, however, there often exists with 

reasonable likelihood a digital footprint somewhere of a predator attempting to lure his/her 

victim. Often this interaction is in the form of a conversation, i.e., chat.  

It is our assessment that having a set of tools that can quickly and intelligently identify 

incriminating chats offer a partial but meaningful impact at protecting victims. 
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1.2 Problem Statement 
Chats are basically short text-based conversations between two or more people. The dialog often 

takes a form similar to a spoken conversation.  

Online chats can come from many diverse places on the Internet. Chats will often be stored with 

different file encodings, for example: ASCII, Unicode. Also, within each conversation chat lines 

will be stored using different formats, for example, XML, HTML, plain text with different 

positions for the date/time, author identification and dialog positioning.  

These raw formats make it difficult to analyze chats either manually, or by computational means 

without first transforming the chat data into a consistent format. As a result, one of the problems 

addressed in this thesis is the process of transforming raw chats into a consistent ‘normalized’ 

format. 

Manual analysis of chats presents a big problem for law enforcement due to the amount of data 

they need to read through. We define and build an AI agent that can analyze and detect sexual 

predation of minors based on the text in a conversation, using a Transformer based model.  

Normalization and automatic SPI analysis address the core functionality needed; however, it is 

not enough to make it practical to be used by law enforcement. There is also the issue of 

managing a great many documents, and of bringing together the normalization and SPI AI agent 

into a cohesive package. We address these issues by describing and building a software 

application which we name ‘Resolute’. 

 

1.3 Research Objectives 
Our research objectives are founded on the issues presented in the last section 1.2 Problem 

Statement, which essentially require 3 areas of exploration: 

1. Normalizing chats into a consistent format suitable for analysis. 

We’d like to explore how to best address chat normalization, i.e., make it as easy and as 

fast as possible.  

2. An intelligent system for automatically detecting suspicious conversations and authors. 

We’d like to expand on the existing body of knowledge in this area, and answer the 

question of how well a model can be created using an attention (Transformer) based deep 

learning model. 

3. A practical system that allows for the management of a great many documents, and that 

brings together all the required functionality into a cohesive package. 

What would a system like that look like? How can it bring together the diverse 
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functionality into a cohesive, and productive environment? How can we organize the data 

so that it can handle millions of chats with lighting speed?  

Aligned with the problems and areas of exploration defined above, the research conducted in this 

thesis is based on the following two hypotheses: 

Hypothesis 1: the Transformer architecture used as a SPI classifier can obtain state of the art 

speed and identification of the sexual predation of minors in chats. 

Hypothesis 2: a chat management system can be defined and built that enables users to manage, 

process, analyze and identity raw chats for sexual predation more efficiently than it takes to 

perform the task manually. 

 

1.4 Research Approach 
Our research included working with the cyber-crime unit of the Sûreté du Québec1 (SQ) in order 

to get a sense of the challenges they face with regards to acquiring and identifying documents 

that contain incriminating evidence of sexual predation of a minor. The following is a partial list 

of the most relevant challenges: 

1. Data acquisition.  

The SQ keeps details of their data acquisition procedures relatively secure. This process 

does however involve a lot of effort. Data acquisition is not the focus of this thesis, and it 

is assumed that the data has been acquired and is in need of analysis. 

2. Data analysis. 

The SQ generally performs the analysis of documents manually. That is, they have a team 

of analysts that read through each document identifying which ones contain incriminating 

evidence. The evidence is later used to build a case against a suspected predator. This is a 

difficult and tedious task that takes a large amount of time and resources to perform. 

In an effort to build a complete solution, it became apparent early on that before an AI agent 

could analyze the documents, raw chats would have to be normalized into a consistent format. 

Furthermore, because of the large number of documents that need to be processed, and based on 

the SQ requirement that only original documents could be used as evidence and could not be 

altered (e.g., normalization), this meant that some sort of document management facility needs to 

be considered. As a result of this line of reasoning the following list summarizes the order of the 

research approach taken: 

1. Address the issues of document management. Details of this are given in Chapter 6: 

Resolute. 

2. Address the issues of normalization. Details of this are given in Chapter 4: Chat 

Normalization. 

 

1 Sûreté du Québec is our provincial law enforcement agency 
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3. Address the issues of SPI. Details of this are given in Chapter 5: Sexual Predator 

Identification. 

Our approach allowed us to work iteratively with the SQ. The idea is that by building the 

software early on in the process and putting it into the hands of the user, it would be possible to 

work out small issues before they became big problems. Also, this would give the SQ some time 

to use the software to build a dataset of French chats that we could later use to train the SPI 

model to detect French speaking predators. 

 

1.5 Contributions 
The goal of our work is to build a practical solution that will help law enforcement in their fight 

to protect minors from sexual predation. Part of that effort includes the analysis of many 

documents for incriminating evidence. This activity entails document management, document 

preparation and intelligent automated analysis of the documents. To that end, some notable 

contributions of our work include: 

• A method of storing and organizing many documents in a secure, efficient manner so that 

original documents remain unchanged, while allowing copies of them to be edited as 

needed.  

This task has not been sufficiently addressed in other papers dealing with SPI.  

Our thesis describes a system that allows the data to be stored in a database management 

system, allowing for fast secure access to the data. Additionally, we show how to store 

data in a manner that allows the documents to be normalized and edited without altering 

the original document. 

• A method towards fully automated normalization and the evaluation of the ‘goodness’ of 

text that is normalized.  

Normalization is a necessary part of SPI and has not been sufficiently addressed in other 

papers dealing with this task.  

Our thesis brings fully automated normalization closer to realization by addressing the 

issues involved with normalizing documents using templates and the scoring of 

normalized documents for how well they have been normalized. 

• The effectiveness of a Transformer based model architecture using pre-trained word-

embeddings as a classifier to automatically identify sexual predation of minors in text.  
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Chapter 2: Literature Review 
 

2.1 Chat Normalization 
Normalization in the context of this thesis, refers to the process of transforming the file encoding 

and structure of a raw chat into a text-based, standardized format. 

Online chats can come from many diverse places on the Internet, for example; instant messaging, 

social media, chat rooms, Internet forums, computer storage (e.g., forensics), etc. In each case 

chats will be stored with different file encodings, for example: ASCII, Unicode, HTML, Word, 

PDF, XML, JSON, etc.  

Also, within each conversation the chat lines will contain different positions and formats for the 

date/time, author identification and dialog positioning. These raw formats make it difficult to 

analyze the chats manually, and impossible to analyze by computational means without first 

transforming the chat data into a consistent format.  

Once chats are normalized it is possible to present the chats for manual analysis in a pleasant and 

readable form (REQ9). More importantly the chats can be analyzed automatically by sufficiently 

intelligent Natural Language Processing (NLP) models (REQ6-REQ8).  

Under normal circumstances custom programs or scripts are needed to transform the raw chat 

into a consistent format suitable for analysis. In our case the end-user of Resolute is not expected 

to know how to do this (CON1). This implies that we need to define a method that can do this 

work automatically, or at least provide a mechanism that can facilitate this process for the end-

user (REQ3).  

Unfortunately, not much research on how to normalize raw chats automatically is available. As a 

result, we have initiated research on the topic of normalizing raw chats automatically in this 

thesis. 

 

2.2 Sexual Predator Identification 
The task of SPI in chats using AI systems has been addressed in several other papers. The most 

successful approaches are summarized in the following table: 

Approach Precision Recall F1.0 F0.5 
M. Vogt, et al. (BERT/NN) [2]   0.98  

Pastor Lopez-Monroy et al. (MulR/SVM) [3]   0.97  

M. Wani, et al. (CBOW/Random Forest) [4] 0.97 0.94 0.95 0.96 

D. Liu (Sentence Vectors/LSTM) [5] 1.0 0.81 0.90 0.96 

M.A. Fauzi, et al. (TF-IDF/Ensemble) [6] 0.96 0.86 0.90 0.93 

E. Villatoro-Tello et al (CBoW/NN) [7] 0.98 0.79 0.87 0.93 

snider12-run (no info available) 0.98 0.72 0.83 0.92 

P. Borj, et al. [8] (SVM, Random Forest, Naïve Bayes) 0.92 0.89 0.91 0.91 

H. K. Patrick Bours (NN/SVM/NB/Ridge) [9]  0.89 0.87 0.88 0.89 

M. Ebrahimi (CNN) [10] 0.92 0.74 0.82 0.87 
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J. Parapar et al.  (TF-IDF/SVM) [11] 0.94 0.67 0.78 0.87 

C. Morris and G. Hirst (morris12, SVM) [12] 0.97 0.61 0.75 0.87 

G. Eriksson and J. Karlgren (eriksson12) [13] 0.86 0.89 0.87 0.86 
Table 2-1: Sexual predator identification systems 

The PAN2012 competition [14] [15] opened up the doors for research in SPI by supplying an 

extensive labeled training and testing dataset (see 3.1.1 PAN-2012 Dataset). In addition, the 

competition detailed a set of performance metrics (e.g., f-score – see section 5.8 ) to use as a 

basis for comparison between the different approaches. The SPI systems summarized in Table 

2-1 all utilize the PAN2012 dataset and scoring in one form or the other. This provides a rich 

environment for analysis.  

Based on the existing work the following sections provide a description of the essential topics 

related to AI based SPI, and how our approach was influenced by the work already done. 

 

2.2.1 Overview of the Top Approaches to SPI 

Elements of a Transformer based model for early SPI detection (eSPD) has been explored in the 

paper ‘Early Detection of Sexual Predators in Chats’ by M. Vogt, et al. [2]. Their approach uses 

a pre-trained BERT [16] language model as input to a linear classifier. In contrast, our models 

use traditional language models (learnt from training data, Word2Vec [17] and GloVe [18]) and 

a Transformer encoder for classification. Although eSPD is a form of SPI the goal of eSPD is to 

be able to detect the sexual predation of minors as early as possible, i.e., detection during an 

ongoing chat. Because of limitations of the PAN2012 dataset with regard to eSPD (e.g., chat 

timestamps do not include dates) M. Vogt, et al. built their own dataset (PANC) from PAN2012 

(non-predator chats) and ChatCoder2 (predator chats). Nonetheless they did include experiments 

that compared their model to ‘conventional SPI’ (i.e., PAN2012 competition). Details of the SPI 

detection setup in the paper is lacking; however, their conventional SPI experiments did use the 

PAN2012 dataset filtered using the methods used in E. Villatoro-Tello et al. [7] (VTPAN). The 

VTPAN dataset filters out 90% of the chats from the PAN2012 dataset (see 3.1.2 VTPAN 

Dataset). Filtering proved to be very effective for E. Villatoro-Tello et al., which makes it 

difficult to know what percentage of the results reported by M. Vogt, et al. can be attributed to 

the filtering and which can be attributed to the pre-trained BERT model. As a result in this thesis 

we will include experiments with the full PAN2012 dataset and the VTPAN dataset for 

comparison. 

The effectiveness of good word embeddings is evident in the results reported in the paper ‘Early 

Text Classification using Multi-Resolution Concept Representations’ by Pastor Lopez-Monroy et 

al. [3]. Their paper addresses eSPD, but unlike M. Vogt, et al. [2] their experiments use the 

PAN2012 dataset. It is not mentioned if they used all the data from the PAN2012 dataset or the 

filtered version VTPAN. The paper proposes and explores Multi-Resolution Representations 

(MulR) word-vector representations. Which is a method of enhancing existing word-embeddings 

with extra generalizations. The model uses a SVM with a linear kernel to process the MulR 

embeddings. In comparison to the highest reported result for a SVM based model J. Parapar et 

al. (SVM) [11] (F1.0 0.78) in which they used TF-IDF unigram encodings, the result of F1.0 0.97 in 
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Pastor Lopez-Monroy et al. (MulR(Temporal Variation Terms (TVT))) paper is exceptional. One 

can infer that given that the classification for both models was done by a SVM, that the 

substantial difference in performance must in some way be attributed to the effectiveness of the 

word embeddings.  

The approach to SPI taken in the paper “Sexual-predator Detection System based on Social 

Behavior Biometric (SSB) Features”, M. Wani, et al. [4] (F0.5 0.96) focuses on enhanced and 

extensive feature engineering, specifically targeting social behaviors. Input features consist of 

CBOW2 encodings of the PAN2012 chat data along with encodings of social behaviors. The 

reported best result was from the CBOW encodings fed into a Random Forest model (F1.0 0.95). 

They also included for comparison, a SVM and Descision-Tree model. Given the same set of 

input features the Decision-Tree produced a result of F1.0 0.94, and the SVM F1.0 0.86. It is 

interesting that the performance of the SVM model is 9% less than the Random Forest model, 

and 8% better than the performance of the J. Parapar et al.  (TF-IDF/SVM) [11] model. It is 

unclear from the data whether the good performance is coming mainly from the added social 

behavioral features or from the Random Forest and Decision Tree models. A baseline 

comparison would have been useful in this circumstance. Ideally, we want to keep feature 

engineering to an absolute minimum, and let the model learn which features are important.  

Good performance was also achieved by D. Liu (LSTM) [5] (F0.5 0.96). The approach to SPI 

taken in the thesis “Identifying Cyber Predators by Using Sentiment Analysis and Recurrent 

Neural Networks” [5] uses a 2-phase approach where phase 1 is used to identify suspicious 

conversations and phase 2 is used to identify which of the authors is a predator. Similar to our 2-

phase approach and that used by E. Villatoro-Tello et al. [7]. The models use sentence vectors to 

increase the training and processing speed of the LSTMs. The sentence vectors are built from 

using the hidden layers of a LSTM. The input embeddings are learnt from the training data. The 

output of the sentence vector is then used as input into another LSTM in which the output is fed 

into a dense linear network for classification. Approximately 20% of the PAN2012 data is 

filtered prior to processing. LSTMs have been proven to be very good at NLP tasks. It would 

have been interesting to know how a baseline LSTM based model (e.g., without filtering or 

sentiment scoring) would have performed, but such a baseline was not included. Also, because of 

the sequential nature of RNN based models, they are notoriously slow at training and evaluation, 

it would have been interesting to know the time that it takes for training and evaluation, and the 

gains achieved by implementing sentence vectors. 

M.A. Fauzi, et al. (Ensemble) [6] also used a two-phase approach to identify suspect 

conversations followed by author identification. A different filtering strategy from VTPAN was 

used to filter out approximately 90% of the data. Filtering consists of using only conversations 

between two authors, and conversations that had at least 6 messages per author. In addition to an 

Ensemble model the paper evaluates eight other machine learning models; Multinomial Naive 

Bayes (mult nb), Bernoulli Naive Bayes (bern nb), SVM, Neural Network (NN), K-Nearest 

 

2 In their paper they referred to the encoding as ‘CBOW (Count of Bag Of Words)’, which sounds more like TF-IDF 

than the indicated Continuous Bag-Of-Words acronym.  
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Neighbours (knn), Logistic Regression (lr), Random Forest (rf), and Decision Tree (dt). Input 

features for all models are encoded using BoW (binary), TF, and TF_IDF. The Ensemble 

consists of the top three performing classifiers (based on F0.5), i.e., svm_tfidf, mult_nb_binary, 

and lr_binary. It is interesting that the Naïve Bayes and Logistic Regression models out-

performed the Decision Trees and Random Forest models, especially considering how well they 

performed for M. Wani, et al. (CBOW/Random Forest) [4]. The Ensemble used two voting 

mechanisms for the final prediction; hard and soft. Hard voting consists of selecting the highest 

prediction, and soft consists of averaging the probabilities. The soft voting approach slightly 

outperformed the hard. In their paper [6] they state “The experiment results also show that both 

ensemble strategies had a very impressive performance and obtained higher F0.5-scores than any 

individual method.”. This does correlate with the general observation of Ensembles, as stated in 

the book “Deep Learning with Python” by François Chollet [19] “If you look at machine 

learning competitions, in particular on Kaggle, you’ll see that the winners use very large 

ensembles of models that inevitably beat any single model, no matter how good.”.  

The methods and approaches to SPI discussed thus far were all performed post PAN2012 

competition. The PAN2012 competition 1st place was awarded to E. Villatoro-Tello et al. (TF-

IDF/SVM) [7]. Their approach to SPI included a two-phase method to identify suspect 

conversations followed by author identification. It is the same approach we take with our models 

and is the same as that taken by D. Liu [5] and M.A. Fauzi, et al. [6]. Filtering of the data is 

defined by the VTPAN dataset (see section: 3.1.2 VTPAN). The model used is a Neural Network 

with input features encoded as CBoW with little preprocessing. A detailed analysis as to how the 

simple Neural Network using CBoW encoding is able to outperform other models with similar 

configurations was not provided in their paper [7]. One can infer that a good part of the 

performance of the model came from the filtering, based on the fact that most of the non-

predator data was removed helping with the precision, and it also helped even out some of the 

huge imbalances in predator vs. non-predator data in the original dataset. A baseline with the 

unfiltered dataset would have proven useful. We will attempt to run some experiments later on to 

help answer the question of the effectiveness of filtering. 

 

2.2.2 Two-Phased Approach 

Some of the SPI systems summarized in Table 2-1 use a two-phase approach in an effort to 

identify which authors in the PAN2012 datasets are predators [4] [5] [6] [7] [12]. Phase 1, deals 

with identifying which conversations contain dialog between a predator and a victim. Phase 2, 

deals with identifying which author is the predator from the set of conversations flagged in 

phase-1. Phase-1 basically acts as a filter, i.e., filtering down the number of chats and prospective 

authors.  

Our approach uses the 2-phased approach for SPI, not only because it has shown to be effective 

[5] [6] [7] but mainly because we require both predications to be displayed to the user in 

Resolute as specified in requirements REQ6 and REQ7 (see 6.3.2 User Requirements). 
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2.2.3 Preprocessing  

The role of preprocessing is to transform/augment the raw input data in some fashion as to 

extract needed data, reduce dimensionality of the input and help the model perform and 

generalize better.  

There are numerous ways that the input text can be preprocessed, and the decisions made form 

part of feature engineering. Some common preprocessing techniques include; 

• Convert letter case, e.g., convert case of all letters to upper or lower case. This is very 

common and is used by virtually all NPL classification tasks to help reduce the 

dimensionality of the input. 

• Stemming, i.e., removing common prefixes and suffixes from words. For example: 

‘works’, ’worker’, working’ => ‘work’. Experiments done by C. Morris and G. Hirst [12], 

with and without stemming shows that stemming is not very effective. The models 

explored in this thesis will not make use of stemming. 

• Named entities and numbers to tokens. Named entities include things like: URL, email, 

proper names, addresses, phone numbers, ... Often it is not useful to know the exact 

values of entities or numerical values, in fact they may serve to disrupt classification. 

Transforming them to predefined tokens (e.g., #URL, #NUM) [5] [12], or remove them 

altogether (e.g., emoticons [5]) helps reduce the dimensionality of the input vectors. 

Experiments done by C. Morris and G. Hirst [12], with and without the transformations 

show that they are not very effective at SPI. Nonetheless, since named-entity recognition 

is already being done as part of anonymization (REQ5 – see 6.7.4 Anonymization) we 

decided to include transformations of numbers and some basic named entities. 

• Stop word removal. Stop words are words used in normal conversation but that do not 

have significance in NLP tasks such as classification. Examples of stop words include: 

‘an’, ‘the’, ‘to’, or ‘in’. In the case of chats different stop words need to be considered in 

addition to the standard proper stop words [10]. There is no compelling evidence that 

removing stop words helps and as a result our models will not remove them. 

Some approaches make heavy use of preprocessing [4] [8] [12]. Others like E. Villatoro-Tello et 

al. [7] make specific statements about keeping their preprocessing to an absolute minimum. The 

realization is that it is difficult to know what information is important, and thus what type of 

preprocessing is beneficial. As a result, for our models we try to keep preprocessing 

transformations to a minimum (see 5.5 Preprocessing).  

 

2.2.4 Filtering 

Filtering the is the process of removing conversations from the dataset that do not meet specific 

criteria. The idea with filtering is to remove noisy data that hinders the performance of the 

model. Deciding what data should be excluded from training and evaluation form part of the 

feature engineering of a model. 
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Filtering the PAN2012 dataset prior to training and during evaluation has proven to be a very 

popular method used in many of the SPI approaches discussed thus far [2] [4] [5] [6] [7] [8] [9]. 

E. Villatoro-Tello et al. [7] the 1st place competitors at the PAN2012 competition utilized heavy 

filtering in their approach (see 3.1.2 VTPAN Dataset). Subsequently, it has become favored in 

many of the post-competition approaches to SPI.  

Filtering helps balance out the big disparity between the number of predator chats vs. normal 

chats in the PAN2012 dataset. This can have a positive effect on recall. It also reduces the 

likelihood that a model will erroneously predict a normal chat as a predator (i.e., reduce false-

positives helping precision). 

In an effort to determine the effectiveness of using word embeddings with a Transformer (and 

Neural Network) without obscuring results with filtering we will train, optimize and test the 

models on the PAN2012 dataset. Subsequently, we will attempt to boost the results using 

VTPAN to get an idea of the impact that filtering has on the final test results. 

 

2.2.5 Lexical, Behavioral & Social Features 

“Lexical features are those that can be derived from the raw text of the conversation.” [14]. 

Some examples of lexical features: bi-gram [7] [11] [12] [13], TF-IDF [6] [7] [8] [10] [11], 

Named entities [12] [13], numbers to tokens [5], features obtained by the LIWC3 tool [11]. More 

examples of lexical features can be found in the section 2.2.3 Preprocessing. 

Our models make use of some lexical features as defined in section 5.5 Preprocessing. In terms 

of token positions (e.g., bi-gram), the Transformer architecture gets positional information from 

the attention mechanism. 

“Behavioural are all those features that captures the “actions” of a user within a conversation.” 

[14]. Some examples of behavioral features: “the number of times a user starts a dialogue, the 

response time after a message of the partner in the conversation, the number of questions asked, 

the frequency of turn-taking, intention (grooming, hooking, ...), etc.” [14].  

In the paper "Identifying sexual predators by svm classification with lexical and behavioral 

features" [12], C. Morris et al. go on to define a set of behavioral features to help deal with 

issues of the imbalance between the number of normal vs. predator chats, and to what they refer 

to as “symmetry-breaking”, which is the tendency of predators and victims to use similar 

language when conversing. Incidentally, we noticed this symmetry in our experiments as well, 

i.e., our models having difficulty on some chats to unequivocally identify victims vs. the 

predators. This symmetry is both interesting and unexpected. Are these anomalies a result of an 

adult posing as a victim?  

There is another category of features explored by M. Wani, et al. in the paper “Sexual-predator 

Detection System based on Social Behavior Biometric (SSB) Features” [4]. In their paper they 

 

3 “calculates the degree to which people use different categories of words across a wide array of texts” [14] - 

http://www.liwc.net/ 



 

11 

attempt to capture the Social Behavioral Biometrics (SBB) traits of users with regard to SPI. 

SBB focuses on analyzing the social/emotional interaction and activities of users. Features are 

defined based on an emotion behavioral-based lexicon that are categorized as: fear, anger, sad, 

joy, surprise, disgust, trust, and anticipation.  

Our models will not rely on behavioral or social features, since the intension is to also build a 

model based on French text (see REQ8), that would require a new set of behavioral/social 

features. Also, deep learning models are generally good at figuring out features of importance, so 

the expectation is that the Transformer based models will figure out which features are relevant.  

 

2.2.6 Embeddings 

Word embeddings are vector representations of words that map language to points in a 

hyperplane (see 3.3 Word Embeddings).  

The use of proper word embeddings can provide significant improvements in model 

performance. This is evident from the two top performing approaches explored by M. Vogt, et al. 

[2] and Pastor Lopez-Monroy et al. [3]. The top performing model M. Vogt, et al. uses a simple 

NN as a classifier, but incorporates embeddings pre-trained on a BERT [16] language model. 

BERT is a language model that uses Transformers to build rich pre-trained embedding vectors. 

Pastor Lopez-Monroy et al. use a technique (MUL) to augment the representational expression 

of existing embedding vectors.  

With the exception of some experiments done by Pastor Lopez-Monroy et al. [3] with 

Word2Vec4 and P. Borj, et al. [8] with GloVe, not much is known about the use of Word2Vec 

and GloVe embeddings with respect to using them for SPI. We hypothesize that Word2Vec and 

GloVe embeddings can produce superior results with our models, and will be explored in our 

experiments. 

 

2.2.7 Classification 

Many of the top performing approaches to SPI use Neural Networks, SVM, Naïve Bayes or 

Random Forest architectures for classification. Two of the approaches use deep learning models 

D. Liu [5] (LSTM) and M. Ebrahimi (CNN) [10].  

The Transformer is a deep neural sequence-to-sequence (encoder-decoder) type network model 

that does not use recurrent or convolutional layers. Section 3.4 Transformer Architecture 

describes the Transformer architecture. It has seen great success in machine translation (MT) 

[20, 21], and in AI generated text (GPT-3 [22]). M. Vogt, et al. [2] used a language model based 

on the Transformer (BERT [16]) for the pre-trained embeddings, followed by a linear neural 

network for classification. In this thesis we will explore a different configuration of the 

 

4 The pre-trained Word2Vec vectors used in their experiments were manipulated by MUL 
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Transformer from M. Vogt, et al., using word embeddings fed directly into a Transformer 

encoder. 
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Chapter 3: Background 
 

This chapter describes background information on some of the topics discussed in this thesis.   

 

3.1 Datasets 
The following 3 datasets are used as part of the work done and described in this thesis.  

 

3.1.1 PAN-2012 Dataset 

The PAN-2012 dataset was taken from the PAN Sexual Predator Identification 2012 [23] 

competition. It is widely used in other papers concerned with sexual predator identification, and 

provides a good basis for comparison of the effectiveness of the different approaches taken to 

identifying predators in on-line chats. The dataset is extensive, consisting of;  

 
# Conversations # Chat Lines # Authors # Predator Authors 

Training 66,830 879,136 97,448 142 

Testing 154,955 2,004,235 218,213 254 

Table 3-1: Properties of the PAN-2012 dataset 

The number of normal authors to predators is highly imbalanced; however, this was done by 

design to reflect what is believed to be a realistic proportion of the true number of predators to 

normal users in on-line chats. The paper “Overview of the International Sexual Predator 

Identification Competition at PAN-2012” [14] details characteristics of the how the dataset was 

built. From a training and evaluation perspective however; this imbalance presents several 

challenges that we address throughout this thesis. 

The PAN2012 competition defines two basic tasks: 

1. Identifying the predators. 

2. Identifying the distinctive chat lines of the predator behavior. 

This thesis addresses task #1, and reserves task #2 for future exploration. 

The PAN-2012 dataset consists of structured chats embedded in XML. Here is an example of a 

chat defined in the PAN2012 dataset: 

<conversations> 
  <conversation id="e621da5de598c9321a1d505ea95e6a2d"> 
    <message line="1"> 
      <author>97964e7a9e8eb9cf78f2e4d7b2ff34c7</author> 
      <time>03:20</time> 
      <text>Hola.</text> 
    </message> 
    <message line="2"> 
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      <author>0158d0d6781fc4d493f243d4caa49747</author> 
      <time>03:20</time> 
      <text>hi.</text> 
    </message> 
    <message line="3"> 
      <author>0158d0d6781fc4d493f243d4caa49747</author> 
      <time>03:20</time> 
      <text>whats up?</text> 
    </message> 

Figure 3-1: Excerpt of the PAN-2012 training dataset 

The training and testing data are stored in two XML files respectfully. 

 

3.1.2 VTPAN Dataset 

VTPAN is a filtered version of the PAN2012 dataset. The filtering is the same as that done by E. 

Villatoro-Tello et al. [7], which includes the following processing: 

1. Conversations that had only one participant 

2. Conversations that had less than 6 interventions per-user  

3. Conversations that had long sequences of unrecognized characters (e.g., spam) 

 Training Test 

Original Filtered Original Filtered 

Conversations 66,928 6,588 155,129 15,330 

Authors 97,690 11,038 218,702 25,120 

Predators 148 136 254 222 
Table 3-2: VTPAN data counts 

The filtering removes approximately 90% of the data from the PAN2012 dataset. As a result, 

some of the predators are removed from consideration as well. This ultimately impacts what can 

be achieved as a final score. It is a justified compromise, with which we agree with the statement 

stipulated by Villatoro-Tello et al. [7]  “Nevertheless, we think the information from 

interventions of removed predators was not enough to effectively recognize them as predators 

anyways”, i.e., some predators in the PAN2012 had so little information in them that it would be 

even impossible for a human to identify them.  

 

3.1.3 Sûreté du Québec Dataset 

The SQ cyber-crime unit assembled a dataset of local French based chats for use in our research. 

It consists of; 
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 # Conversations # Chat Lines # Authors # Predator Authors 

962 35,610 1555 326 

Table 3-3: Properties of the SQ dataset 

The chats were anonymized manually by the SQ, however, except for a small proportion of chats 

there was no consistency maintained with the author names across chats. That is, most of the 

authors for a given chat were either randomly named or in most cases simply named ‘X’ and ‘Y’. 

This meant that conversations between authors spanning more than one chat sequence/file were 

lost. This configuration does not work well for the training of our SPI models, and so the dataset 

could not be used for training. The SQ could not justify the time needed to fix the existing 

dataset or build another one. Consequently, we took the approach of including an anonymization 

feature into Resolute (see section: 6.7.4 Anonymization). The idea was to provide the SQ tools 

that they could use to quickly assemble a French dataset, to be ready when we started training 

our models. This approach did not work out as planned, and so our work on the SPI models is 

based solely on the PAN-2012 dataset. 

The SQ dataset did prove useful for our work on normalization. The dataset included a diverse 

set of documents in several different styles and formats, which as it turned out was perfect for 

what we needed in our normalization research. 

Each chat is stored in its own file. The majority of the files are encoded as text and Microsoft 

Word. There are 8 different unstructured chat formats provided. The following is an example of 

2 chats with different formats: 

2011-05-11 12:20:18 Jacky : Bonjour a toi ça va bien?? 
2011-05-11 12:20:44 Doly : Oui je vais bien et toi ?? 
2011-05-11 12:21:07 Jacky : très bien merci 
2011-05-11 12:21:19 Jacky : tu es jolie tu sais 
2011-05-11 12:21:34 Doly : Merci 
---------------------------------------------------------------- 
14:14 
Jean X 
allo ca va 
 
14:14 
Jeanne Y 
oui toi 
 
14:14 
Jean X 
pas si mal 
ke fais tu de bon dans la vie 

 
Figure 3-2:Sample of two chats from the SQ dataset with different formats 

 

5 Most chats anonymized the author names to ‘X’ and ‘Y’ 
6 A large proportion of the chats had authors named ‘X’ and ‘Y’ 
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3.2 Feature Engineering 
It is often not reasonable to expect an NLP machine-learning model to be able to learn something 

useful from arbitrary data. The data needs to be transformed in a way that will make the models’ 

job easier. Feature engineering is the process of applying non-learned transformations to raw 

data in order to use as input to a machine learning algorithm. 

Care must be applied with feature engineering, as it is difficult to know what assumptions should 

be made about the data. Doing so usually requires understanding the problem in depth. 

In early attempts prior to deep-learning, feature engineering was a critical part of the machine 

learning workflow. Modern deep learning architectures such as Transformers do not require 

extensive feature engineering, because they are capable of extracting useful features from raw 

data automatically. However, some feature engineering is useful, as it potentially allows you to 

use less resources, and less data. For example, correcting misspelled words in text will reduce the 

dimensionality of your input vocabulary. Also, learning features from raw text can potentially 

require a lot of data. In the instance where a large corpus is not available, some feature 

engineering can augment the value of whatever data you do have. 

 

3.3 Word Embeddings 
Word embeddings are vector representations of words that map language to points in a 

hyperplane. Words with similar meanings have similar representations.   

Word embedding vectors are dense representations of words, versus, one-hot vectors for 

example, that are high-dimensional and sparse. Typically, word embeddings are anywhere 

between 25 to 1,024 dimensions, whereas one-hot vectors are the size of the vocabulary, for 

example 20,000 or more.  Word embeddings pack a lot of information into much lower 

dimensions. 

Word embedding vectors contain information about the structure of the language that is learned 

from the data, i.e., similar words map closely in the hyperplane, and directions in the embedding 

space are meaningful. For example, suppose we map the words; ["dog", "cat", "wolf", "tiger", 

“table”, “chair”] and map them on a 2D plane for simplicity:  
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Figure 3-3: Example word embeddings on a 2D plane 

The vector that goes from dog to wolf, when applied to cat gives us tiger. This can be interpreted 

as the vector that goes from pet to wild animal [24]. Similarly, the vector that goes from dog to 

cat, when applied to wolf gives us tiger. This can be interpreted as the vector that goes from 

canine to feline [24]. Arithmetic operations can be performed on vectors to give very interesting 

results. For example, king – man = queen. The distance of a vector (e.g., cosine similarity) 

between words can also show which word is semantically closer to a given word. For example, 

dog is semantically closer to cat than it is to table.   

Word embeddings are generally computed by training a neural network in an unsupervised way 

on a large corpus. The concept was first explored by Yoshua Bengio in his seminal paper 'A 

neural probabilistic language model' [25]. The first to formalize a word embedding algorithm 

was Word2Vec, which was developed by Tomas Mikolov at Google in 2013 [17]. Since then, 

other schemes have been developed, for example GloVe, which was developed by Jeffrey 

Pennington, Richard Socher, and Christopher D. Manning at Stanford University [18]. GloVe 

enhances word embeddings by including word-word co-occurrence statistics into the 

representations.  

Word embeddings can be trained as part of model, or pre-trained word embeddings can be 

incorporated into a model.  

Training new embeddings as part of a model can be done in Keras using the Embedding layer for 

example. The benefit of training an embedding layer as part of a model is that the embedding 

representations are tailored to the domain specific task at hand. This however might not be 

optimal, since building effective embeddings usually requires a large amount of data.  

An alternative to training new embeddings in a model is to use pre-trained embeddings built 

using Word2Vec or GloVe for example. You may choose to train from your own domain 

specific corpus, or download existing pre-trained embeddings built on other corpuses. These pre-

trained models can be included into a new model. Note that if a new model incorporates pre-

trained word embeddings, the new model should not alter the existing vector representations 

during training. The models used in this thesis use pre-trained GloVe word embeddings. 
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3.4 Transformer Architecture 
The Transformer architecture was first introduced in the seminal paper "Attention is all you 

need" by Vaswani et al. [21]. It is a deep neural sequence-to-sequence (encoder-decoder) type 

network model that does not use recurrent or convolutional layers. It has seen great success in 

machine translation (MT) [20, 21], and in AI generated text (GPT-3 [22]). Neural attention has 

become one of the influential ideas in deep learning [19].  

Attention is based on a powerful idea, that not all information processed by a model is equally 

important to the task at hand. The concept is rather simple, models should pay more attention to 

some features and less attention to others. Attention is a concept that has been used in NLP 

applications before, for example TF-IDF normalization where important tokens are assigned 

greater importance and irrelevant ones get assigned less importance [19].  

Words have different meanings depending on the context in which they are being used. Self-

attention fine-tunes the representation of tokens by considering the other tokens in a sequence. 

This creates context-aware token representations. That is, it essentially alters the word 

embedding representations (see 3.3 Word Embeddings) so that the vectors are changed according 

to the context in which the words in a text are used. The paper “Attention is all you need” refers 

to this as ‘Scaled Dot-Product Attention’. We will refer to it as the attention layer and is 

essentially computed by:  

embeddings = sum(values * distance(query, keys)) 

That is, for each token in query, compute the distance (see 3.3 Word Embeddings) to every token 

in keys, and sum the weighted values to give a new set of embeddings. The query, keys and 

values can be different input sequences, but in our models they will all refer to the same input 

values. The following describes the formula in detail: 

1. For a given token take the distance (e.g., dot product) between the token vector (e.g., 

word embedding) and every other token vector in the sequence. This serves as the 

strength of the relationships between tokens. 

2. Process the distance scores through scaling and Softmax functions. 

3. Compute the sum of all token vectors in the sequence, weighted by our distance scores. 

Tokens that are semantically closer to a given token, will contribute more to the total, 

while distant tokens will contribute less.  

4. Repeat steps 1-2 for all tokens in the sequence. The end result is a matrix of scores, in 

which every token is scored against every other token in the sequence. 

The resulting sequence of vectors represents the new token embeddings with attention included 

in the embeddings for each of the tokens. 

The paper on “Attention is all you need” goes further to describe “Multi-Head Attention” which 

essentially describes h independent attention layers (referred to as a ‘head’) with an additional 

dense projection on the inputs to each head. The output of each head is concatenated back into a 

single output sequence. The dense projections enable each head to learn different groups of 

features for each token. Figure 3-4 illustrates a Multi-Head Attention layer with two heads: 
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Figure 3-4: Multi-Head Attention layer with two heads 

Another issue that needs to be addressed is that Transformers are sequence models, i.e., they 

process sequences without regard for the positions of the tokens. But, word order in text matters. 

The way Transformers handle this is to include token positions in the token embeddings and let 

higher order networks figure out what they mean. The positions cannot just be integer ordinals, 

since neural networks do not process large values well. There are different ways one can choose 

to encode the position of the tokens, as long as the values can be interpreted as the ordinal 

position of the token in the sequence and that are small enough not to overwhelm the network. 

For instance, the authors of “Attention is all you need” added to the token embeddings a vector 

containing values ranging from [-1, 1] that varied based on a cosine function. 

The end-to-end Transformer architecture consists of two major parts: an encoder and decoder, as 

depicted in Figure 3-5: The Transformer - model architecture. 
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Figure 3-5: The Transformer - model architecture 

The encoder is responsible for processing the source sequence into an encoding as described 

above. The decoder uses the source encoding to generate a translated version of the sequence. 

Important to note that the encoder can be used on its own for classification. Our models designed 

for SPI use the encoder in such a way. The encoder and decoder look very similar, except the 

decoder has an extra attention layer. The output of the decoder is the target sequence one step in 

the future, i.e., the next sequence from the original sequence.  

As mentioned above, our SPI model makes use of the Transformer encoder for classification. It 

does not use the decoder part. Section 5.7 Classification details the construction of the SPI 

model.  
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Chapter 4: Chat Normalization 
 

Chat normalization refers to the process of converting the format and structure of a raw chat into 

a standardized text-based format. It is an essential process if we are to be able to automatically 

detect sexual predation of minors in chats. 

In this chapter we discuss the issues with chat normalization and provide a practical process for 

normalizing without the need for writing custom programs. 

Chats once converted from their native file encoding into text, come in 2 basic flavors: 

1. Structured chats, i.e., chats that contain embedded meta-data, or data that describes the 

structure of the chat, but that is not related to the data in the header or dialog. An example 

of structured chats includes chat-data embedded in XML or JSON.  

2. Unstructured chats, i.e., chats with no meta-data in them. Basically, chats that have only 

the required chat line header and the authors’ dialog.  

Each basic type of chat has its own set of normalization challenges, and will be discussed 

separately below.  

 

4.1 Motivation 
The ability to facilitate the normalization of raw chats is required for Resolute (see REQ3). 

Without normalization Resolute cannot function as a practical system (see NFR1). To the best of 

our knowledge a methodology for normalizing chats without having to write programs or scripts 

has not been thoroughly explored in other papers. 

In an effort to make the process of normalization practical, this chapter presents a method of 

normalizing large numbers of chats while minimizing the need for writing custom programs or 

scripts. 

 

4.2 Contribution 
A systematic method of normalizing chats in a practical and efficient way, that provides users 

with the ability to analyze large amounts of chat conversations. 

 

4.3 Workflow 
There are essentially 4 steps in chat normalization (each step maps to REQ3): 

1. Convert raw chats, i.e., natively encoded non-text-based chats (e.g., PDF, MS Word) into 

text encoded files.  

2. Extract the chat header and author dialog. With unstructured chats this involves locating 

the positions and format of the date/time, chat line author and dialog. Often this can be 
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challenging as headers and dialog can span many lines, and often contain different 

formats from one line to another. For example, this is often the case when chats are 

acquired by copy/pasting from a web-site. In other scenario, structured chats that contain 

meta-data (e.g., XML, JSON), whereby the meta-data needs to be excluded from the final 

normalized chat.  

3. Score the correctness of a normalized chat. If we are to make the process of 

normalization practical, it is important to be able to detect how good a chat was 

normalized. It is also a key part of being able to fully automate normalization.  

4. Store the chat data into a standardized format that be retrieved for analysis later on. 

In order to build a system that can streamline the SPI process and make it practical to work with, 

it is important that at a minimum these steps can be performed in a semi-automatic way (see 

NFR1).  

 

4.4 Converting Raw Chats to Text 
Raw chats refer to chat documents acquired before any processing is done on them. These 

documents can come from anywhere, for example: web-sites (copy pasted, screen scrapped), 

computer equipment (forensics), IRC chat logs, etc.  

Raw chats also come in many different file encodings, for example; ASCII, Unicode, Microsoft 

Word, PDF, Excel, Google Docs, etc. Before any processing can be done on the documents, they 

need to be converted into text. This would in itself be a challenge to normalizing chats, but 

fortunately there are existing software utilities that can convert from various encodings into text, 

for example: Pandoc [26], Apache Tika [27]. Resolute makes use of Pandoc to convert raw chats 

into UTF-8 text based documents as part of the normalization process.  

We refer to raw chats as those documents that have not yet been converted to text and text chats 

as those that have been converted into text but that not yet been normalized. 

 

4.5 Normalizing Structured Chats 
Structured chats refer to text chats that include meta-data or structure information about the chat 

embedded in the text. For example, XML, JSON, CSV (with headers), HTML, etc. Refer to 

Figure 3-1: Excerpt of the PAN-2012 training dataset for an example of a structured chat. 

Normalizing structured chats consists of identifying and keeping the chat headers and text, and 

ignoring the rest of the data. The complication is that the information of interest (i.e., author, 

date-time, chat dialog) is interspersed with other data/meta-data that needs to be filtered out. 

It is generally not possible to build a fully generalized automated normalizer for structured chats 

unless something is known about the structure; therefore, some form of manual intervention is 

required.  

There are a number of ways to extract chat data from structured text chats: 
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• Manually remove the meta-data. This might be appropriate in a one-off situation, but is 

not practical for a large dataset. 

• Utilize an existing utility program. For example, Pandoc supports the extraction of text 

from HTML, and JSON files amongst others. This only works for basic structures like the 

PAN2012 dataset. It will not work for more complicated structures like a HTML page, 

where you may find other text not related to the chat. 

• Create a custom program or script that extracts the chat data from a complicated 

structure.  

Resolute supports the normalizing of structured chats by the following features: 

• REPLACE directive. This directive provides a simple and quick way of removing 

unwanted structure related text from a chat. For example, some of the chats in the SQ 

dataset contain simple one line session information inserted at different points in the chat. 

For Example: ‘Session Start: Fri May 29 18:24:50 2009’ that need to be removed. 

• PREPROCESS directive. This directive signals Resolute to invoke an external program 

to extract the chat information from a complex structured chat. For example, the 

PREPROCESS directive was used to execute an external program that removed the XML 

tags from the PAN2012 dataset.  

The output of the REPLACE and PREPROCESS directives is an unstructured chat, which as we 

will see in the next section allows for a more systematic way of normalizing chats. 

 

4.6 Normalizing Unstructured Chats 
Unstructured chat types refer to chats that do not contain meta-data or information about the chat 

structure within the chat. We define an unstructured chat as: 

• A text chat that contains only chat headers and conversation-based text.  

• The chat header (date-time and/or author) for a given chat line precedes the authors text. 

 

Figure 4-1: Example of an unstructured chat 

 

Figure 4-1 shows an example of an unstructured text chat. The header is composed of a date and 

time in a particular format, followed by the author id of the chat line enclosed in <>. The chat 

line text associated with the author who wrote the text follows the authors name, and ends with 

the beginning of the next header.  
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Figure 4-2 shows the chat in Figure 4-1 in normalized form. 

 

Figure 4-2: Unstructured chat in normalized form 

Figure 4-3 shows an unstructured chat from the SQ dataset followed by its normalized form in 

Figure 4-4. 

  

Figure 4-3: Example 2 of an unstructured chat 

 

Figure 4-4: Normalized version of chat in example 2 

Normalizing a chat consists of knowing the position and format of the date-time, the author id 

and the text. This can be done by applying a template to the chat data that describes the format of 

the chat header. As the system parses each token, it is compared against the template. If each 

token matches the template (which is also tokenized) then those series of tokens become the 

header. The remaining text after the header becomes the chat-line dialog until the next header is 

uncovered. If at any point there is a mismatch between the template and the current token, then 

the comparison resets to the 1st token of the template and the cycle repeats.  
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Resolute supports templated normalization of unstructured chats. For example, we can define the 

following templates: 

 

Figure 4-5: Example unstructured chat normalization templates 

Applying each template defined in Figure 4-5 to the following unstructured text chat: 

Unstructured raw chat: 

 

On April 17, 2013 6:35 AM, Rita B wrote: 

Hello, how are you? 

On April 18, 2013 8:37 AM, Fred S wrote: good and you 

... 

 

Normalized to: 

 

04/17/2013 6:35:00, Rita B: Hello, how are you? 

04/18/2013 8:37:00, Fred S: good and you 

... 
Figure 4-6: Sample of a normalized chat using template 1 

Going through the sequence of applying each token in the chat to each token in the templates, we 

find that template #1 in Figure 4-5 matches the chat header of our example chat in Figure 4-6. 

The following details the steps taken in order to conclude that template #1 is the best and proper 

match for the chat: 

1. The header is expected to begin with the word ‘on’, so each token in our example chat is 

scanned until it comes across the 1st token ‘on’. 

2. The next tokens expected are ‘#LONGMONTH #DAY’, which in our example is ‘April 

17’ for the 1st header and ‘April 18’ for the second. 

3. The next token expected is a comma. 

4. The next set of tokens expected are: #YEAR #HOUR:#MINUTE #AMPM which match 

‘2013 6:35 AM’ for the 1st header and ‘2013 6:35 AM’ for the second. Note that the 

colon separating #HOUR:#MINUTE in our template is expecting a colon in the chat 

header. If it’s anything but a colon the template is considered a mis-match. 

5. The next token expected after “#AMPM” is a comma. 
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6. The next token expected is ‘#AUTHOR’ which can contain more than 1 word. In our 

example the authors match ‘Rita B’ and ‘Fred S’. Note that the authors name ends with 

the template defined next token. Which in our example is the token ‘wrote’.  

7. The next token expected is ‘wrote’ followed by a colon. 

8. The remaining tokens following the header are considered the text associated with the 

current header, until the token ‘on’ is found. If the word ‘on’ is part of the text the next 

sequence of tokens will not match the template and thus will be considered as part of the 

text. If the token ‘on’ is the beginning of the next header, it will match the template and 

the steps above are repeated. 

Note that when parsing for the author in step 6, the assumption is that the header ends with some 

sort of delimiter. In our example that delimiter is ‘wrote:’. If a template ends with #AUTHOR 

(i.e., no ending delimiter), then the system does not know when to stop parsing tokens as part of 

the name, so it assumes the author name to be one token.  

Template based normalization achieves very good results; however, it does require a user to 

specify a template. This makes template-based normalization impractical if it needs to be done 

for every chat, however; that can be mitigated by: 

• For any given set of chats acquired from the same source, the format of the chats remain 

rather consistent. That is, one template can serve to normalize multiple text chats coming 

from the same source.  

• A system that can apply a set of templates one-by-one against a given text chat and be 

able to choose (i.e., score) the template that gives the best results. 

• Automating the creation of the templates. This refers to building the normalization 

template from the chat by analyzing the chat for the header. Technically it should be 

feasible, but this topic is reserved for future research.  

A prerequisite for each of these mitigating points is that the system should be able to score the 

quality of the normalization done to a chat. For example, the system should be able to highlight 

which chats did not normalize properly, or take the highest normalized score to match the best 

template from a set of templates. The next section describes a method of how to score the quality 

of a normalized chat. 

 

4.7 Scoring Normalized Documents 
In this section we will be discussing how we propose to quantify the quality of a chat that has 

been normalized. Scoring the quality of a normalized file is important for a number of reasons: 

• We may want to fully automate the normalization process by generating a template for a 

given chat. 

• When normalizing many chats with a given template it is useful to know which chats a 

template did or did not apply to. 

• When applying more than 1 template to a chat it is useful to know which one produced 

the best results. 
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Resolute uses scoring to select the best template from a set of templates, and it uses the score to 

let the user know when a chat did not normalize properly.  

The scoring method applies the following rules when evaluating a chat after it is normalized. 

Each chat starts with a normalization score of 1.0, and is penalized a certain percentage 

depending on which rule is broken: 

1. The date-time fields should contain only date-time data. 

2. Penalize the score for every formal date-time specification in the text.  

3. Every line in the chat should have an associated author. 

4. Penalize the score the more authors there are from the expected average of 2 authors in a 

conversation7.  

For example, a penalty of 0.0 if there are 2 authors, 0.01 if there are 3, 0.03 if there are 4, 

0.08 if there are 5, etc. 

If the normalization is bad then we would expect the system to parse part of the text for 

#AUTHORS. This would generate arbitrary author names thus associating the chat with a 

large number of authors. 

5. Penalize the score for every mention of the authors id in the text.  

6. Subtract a small score if the line starts with a number. 

This is useful when a bad template places the date/time as part of the text. 

7. Subtract from the score deviations of line lengths greater than the average length of 40 

characters8. The more the deviation the greater the penalty. 

Some rules can end up penalizing the score even though they are valid. For instance, rule #2 

‘Penalize the score for every formal date-time specification in the text’. It is perfectly acceptable 

for an author to specify a date in the text; however, you would not normally expect to see many 

dates in the text. In this case the net effect on the final score is minimal. If, however 

normalization is bad, there is a good probability that the date-time specification that belongs in 

the header would be placed in the text. The net effect on the final score would be substantial. 

The consequence of these scoring methods on a normalized chat produces good results. From a 

set of 9 templates the process is able to identify the proper template for all 990 of the 997 chats 

in the SQ dataset. The 7 chats that did not normalize were conversations that did not specify a 

complete header. These were basically non-chat documents without an author or date-time 

entries. 

 

4.8 Experiments and Results 
We began our experiments by classifying the chats in the PAN-2012, and SQ datasets by their 

internal structures. A class is a set of documents that are of the same internal format, thus they all 

share the same normalization template. 

 

7 The PAN2012 dataset gives an average of 2.28 authors per conversation 
8 The PAN2012 dataset gives an average of 33.39 characters per line 
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The PAN-2012 dataset consists of 1 class of structured chats. Since this dataset consists of 

structured chats, it required pre-processing to extract the chats from the XML meta-data. Refer to 

Figure 3-1: Excerpt of the PAN-2012 training dataset for an example of a chat from this dataset. 

The pre-processing was done by a custom program invoked from within Resolute. Here is an 

example of a PAN-2012 chat after pre-processing in Resolute: 

[2021-10-01 18:59] "edb259c0e0038f38bb200bc20c8cbf7e": guess we-spam-wikis took a 
week off or so 
[2021-10-01 19:07] "06cb330920ae58e1614c9145d983b3d6": just delete any old account 
that's never done anything? 
[2021-10-01 19:11] "e9fe2a8ed6a64844a5c024b6f688d024": Happy New Year, Whatwg! 
[2021-10-01 19:12] "a11aabeeceeae6b8cb5d12ea06b56554": Eh, so there are two dates 
that 

Figure 4-7: PAN-2012 chat after pre-processing in Resolute 

Note that the format of the pre-preprocessed output matches closely the standardized format for a 

normalized chat in Resolute but still requires a normalization template for the chats to be 

normalized properly. 

The SQ dataset consists of 8 different unstructured chat formats (i.e., classes), file encoded in 

either ASCII text or Microsoft Word. Refer to Figure 3-2:Sample of two chats from the SQ 

dataset with different formats for an example of two chats with different internal formats. 

We imported all the chats into Resolute from the PAN-2012 and SQ datasets, and converted 

them from their native file formats into text. The following table describes the 9 classes of 

documents with their corresponding normalization templates. More information on the template 

syntax can be found in section 6.7.2 Directives. 

Class Format Template # Documents 
SQ1 #NL #AUTHOR: 1 

SQ2 #NL #DAY/#MONTH/#YEAR #HOUR:#MINUTE #NL #AUTHOR #NL 4 

SQ3 #NL #HOUR:#MIN #NL #AUTHOR #NL 3 

SQ4 #NL (#HOUR:#MINUTE) #AUTHOR : 13 

SQ5 #YEAR-#MONTH-#DAY #HOUR:#MIN:#SEC #AUTHOR: 3 

SQ6 [#HOUR:#MIN] <#AUTHOR> 9179 

SQ7 [#HOUR:#MINUTE:#SECONDS] #AUTHOR: 1 

SQ8 on #MONTH #DAY, #YEAR #HOUR:#MINUTE:#SECONDS #AMPM PDT 

#OR PST, #AUTHOR wrote: 

28 

PN1 [#YEAR-#MONTH-#DAY #HOUR:#MIN] "#AUTHOR": 10010 

Table 4-1: Datasets Class Templates 

 

4.8.1 Normalization with Template Specification 

In this experiment we applied the proper template to each class of documents and manually 

verified the score against the normalized chat. 

 

9 Our experiments used 100 randomly selected chats from the 917 chats 
10 Our experiments used 100 randomly selected chats from the PAN-2012 training dataset 
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Class # Documents Min 

Score 

Max 

Score 

Average 

Score 

SQ1 1 0.96 0.96 0.96 

SQ2 4 0.94 0.98 0.96 

SQ3 3 0.99 0.99 0.99 

SQ4 13 0.87 0.98 0.93 

SQ5 3 0.92 0.98 0.96 

SQ6 100 0.82 0.99 0.93 

SQ7 1 0.98 0.98 0.98 

SQ8 28 0.46 0.99 0.91 

PN1 100 0.00 0.99 0.90 

Table 4-2: Normalization with Template Specification Results 

The results showed a proper correlation between the scores and the normalized chat when 

verified manually.  

Of interest are the results for the lowest 10 conversations in the PAN-2012 sample dataset of 100 

chats: 

0.00 0.26 0.51 0.54 0.63 0.68 0.72 0.76 0.77 0.81 

 

The score of 0.00 was given to the following chat: 

[2022-07-17 05:31] "0a39f78bcb297ab0ebe8a29c28bfed89": bugmail: [Bug 10605] Typo: Replace 
'the alt attribute's value may be omitted' with '@alt may be omitted' 
<http://lists.w3.org/Archives/Public/public-html-bugzilla/2011Jan/0677.html> ** [Bug 10618] 
Use "unmapped" rather than "no role" in the weak/strong ARIA tables 
<http://lists.w3.org/Archives/Public/public-html-bugzilla/2011Jan/0676.html> ** [Bug 10066] 
replace section 3.2.6 with the alternative spec text provided (ARIA) <http://lists.w3.o 

 

This conversation was composed of 1 very long line. It normalized properly, however the scoring 

was heavily penalized by the fact that there was only 1 line in the chat and that it was very long.   

The chat with a score of 0.26, is as follows: 

[2022-07-17 15:21] "0a39f78bcb297ab0ebe8a29c28bfed89": bugmail: "[Bug 12171] Define "resolve 
an address" here until there's a useful spec to reference. The lack of specification 
seriously hurts any attempt to improve interoperability for anything related to URLs" (2 
messages in thread) <http://lists.w3.org/Archives/Public/public-html-
bugzilla/2011Feb/0960.html> 

 

This chat is very similar to the previous one, and was penalized for the same reasons. It achieved 

a higher score because the line length was shorter. 

The chats with a score of 0.51 and 0.54 were penalized in the same way.  

 

4.8.2 Normalization with Template Selection 

In this experiment we defined all the templates as Resolute directives and allowed Resolute to 

select the best template for a given chat. Resolute does this by applying each template directive 
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to a chat and calculates the normalization score of that template. The template with the best 

normalization score is then selected as the template for that chat.  

Class # Documents # Matching Template Found 
SQ1 1 1 

SQ2 4 4 

SQ3 3 3 

SQ4 13 13 

SQ5 3 3 

SQ6 100 100 

SQ7 1 1 

SQ8 28 28 

PN1 100 99 

Table 4-3: Correctly Selected Templates 

With the exception of one chat in class PN1, all the correct templates were identified for every 

chat. The document that failed in class PN1 was the document with a score of 0.00 discussed in 

the previous section. 

 

4.8.3 Normalization with Missing Template 

In this experiment we removed a template from the set of 9 templates setup in the previous 

section, and normalized the chats with the missing template. The idea is to evaluate how well the 

scoring works in the absence of having a proper template available. We did this in turn for all 9 

classes with the following results: 

Class # 

Documents 

Wrong Template 

without Warning 

Wrong Template 

with Warning 

Error  

No Template 
SQ1 1 0 0 1 

SQ2 4 0 0 4 

SQ3 3 0 2 1 

SQ4 13 0 4 9 

SQ5 3 0 2 1 

SQ6 100 0 15 85 

SQ7 1 0 0 1 

SQ8 28 0 0 28 

PN1 100 0 0 100 

Table 4-4: Scoring without a proper template available 

The column “wrong template without warning” indicates that Resolute selected a template for a 

chat even though the correct template was not specified, i.e., it selected a wrong template with 

high confidence. The column “wrong template with warning” indicates that Resolute selected a 

template but issued a warning to the user that the normalization score was low, i.e., a 

normalization score less than 50%. The column of ‘error no template found’ means that Resolute 

returned an error indicating that a template was not found, i.e., all templates returned a 

normalization score of 0.00. 

Ideally, we would like to see all chats without a template be identified as ‘error no template’, 

however; some chats are small and don’t contain enough data for the normalization procedure to 

properly detect with enough certainty that the chat did not normalize properly.  
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4.9 Future Work 
The work described in this chapter requires that a normalization template be manually specified 

prior to normalization. The scoring mechanism allows one to apply many templates to a chat and 

allow the system to choose the best one. This provides a productive environment for users to be 

able to process many chats with little effort. However, we can bring this process one step further 

by supporting fully automatic normalization, where a system is able to build templates 

automatically from a given chat. 

Building a template automatically requires one to discover the format of the chat header, which 

in most cases is composed of a date-time and author id usually followed by a delimiter that 

separates the header from the chat line text. The idea would be to scan a chat and iteratively look 

for different date-time formats. Once a re-occurring date-time format is identified the author id 

usually follows it; however, discovering the author id is a rather tricky task, as it can contain 

more than one token and is usually followed by the chat line text. This can be mitigated, as a chat 

line header usually ends with some sort of delimiter. Once these entities are identified a 

normalization template can be built. The scoring mechanism described in this chapter can further 

help quantify how good the generated template applies to the chat. 

  

4.10 Concluding Remarks 
The process of transforming a corpus of text into a format that is suitable for analysis is an 

important and common task. Often custom programs are created to perform the task. This 

method of normalization is not always an option for users who do not know how to program, or 

that do not find that taking the time required to do so provides a suitable return on investment.  

Since it is our goal to build a practical system that law enforcement can use to identify predators 

from chats acquired from many diverse places and in many diverse formats, we address in this 

chapter the issue of how to generalize normalization so that a non-technical user can efficiently 

process a large number of documents with many different formats. We break up the complexity 

of normalization by introducing templates and scoring to create a normalization methodology 

that sets the groundwork for a fully automated way of normalizing text. 

With a suitable solution for normalization in place, we take an important step towards being able 

to put together a practical system that law enforcement can use to identify suspected sexual 

predators (see requirements: REQ3, REQ6, REQ7, NFR1).  

In the next chapter we define and build an AI agent that is capable of analyzing our normalized 

chats to identify sexual predators.  
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Chapter 5: Sexual Predator Identification 
 

In this chapter we design and build a system that is capable of performing SPI by computational 

means. It is composed of an AI agent that is based on a deep neural network, which utilizes NLP 

deep learning techniques. 

The foundation of the AI agent is based on the Transformer, which is described in section 3.4 

Transformer Architecture. In this chapter we test hypothesis 1 and show how the Transformer 

can be adapted to work as a SPI classifier.  

  

5.1 Motivation 
Resolute is built around the premise that an AI agent can help law enforcement in the analysis of 

many chats (see REQ6, REQ7, REQ8, NFR1). In that regard, the research described in section 

2.2 Sexual Predator Identification in the literature review substantiates that premise.  

In addition to defining and building an application in this thesis, we are exploring in detail two 

other fundamental issues; normalization of raw chats, and AI based analysis of SPI. As 

mentioned in section 2.2 in the literature review, the PAN2012 competition provides a rich 

landscape for the exploration of SPI. Because of that rich landscape research papers continue to 

be published on the topic. Our motivation in this chapter is to add to that body of knowledge by 

testing hypothesis 1, while at the same time acquire a comprehensive understanding of SPI. 

 

5.2 Contribution 
The predictive performance of well-known word embeddings; Word2Vec and GloVe with regard 

SPI classification. 

The performance (prediction and speed) of a deep learning model based on the Transformer 

architecture for the purposes of SPI classification.  

 

5.3 AI Agent 
The AI agent performs SPI in two distinct phases (Figure 5-1). Phase 1 is responsible for 

identifying suspected conversations (see REQ6), and phase 2 is responsible for identifying 

predators (see REQ7).  
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Figure 5-1: SPI System Architecture 

The grouping operations are responsible for grouping the chats for a given corpus in a manner 

that provides the classifiers with the data needed for the type of classification required. Without 

grouping (i.e., feeding the chats one-by-one to the classifiers) information about a conversation 

between people is scattered in other chats throughout the corpus. For example, given the 

complete conversation of a predator and victim being divided into several different chats, one 

chat can hold information about the victims’ age, while another holds information about sexual 

intent. Grouping increases the ability of the classifiers to detect SPI more accurately. Section 5.4 

Chat Grouping details how the chats are grouped for each classifier. 

Preprocessing consists of cleaning up the chat text, for example the removal of non-alphabetic 

symbols. This serves to reduce the dimensionality of the classifiers’ input vectors, and 

standardizes words with symbols in them. Section 5.5 Preprocessing details the preprocessing 

we apply to the text. 

Neural networks accept numbers as input, so the preprocessed text needs to be numerically 

encoded. There are many ways to do this, and which method is used weighs heavily on the 

performance of the model. Section 5.6 Encoding details how the preprocessed text was encoded 

as input to the classifiers. 

The classifiers perform the task of calculating the probability that a given chat contains a 

suspicious conversation, and who is the predator in those chats. The classifiers are based on the 

Transformer model architecture (see 3.4 Transformer Architecture). Transformers are great at 
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machine translation and text generation tasks. Section 5.7 Classification shows how we adapted 

the Transformer architecture for classification. 

The output of the 1st phase which assigns a predatory probability to each chat, is then used to 

build the input to the 2nd phase which in turn assigns a predator probability to each author. The 

end result of the SPI AI agent is; 

• A list of chats with their corresponding probabilities of a sexual predatory conversation 

occurring between an adult and a minor (REQ6). 

• A list of authors with a corresponding probability of being a sexual predator (REQ7). 

 

5.4 Chat Grouping 
Grouping chats consists of consolidating chats from a given dataset in a certain way in order to 

increase the effectiveness of the classifier. In this section we will describe how chats are grouped 

and how grouping provides benefits over working with individual chats. 

For a given dataset of chats, the AI agent uses two distinct types of groupings: all chats by the 

same set of authors (see Figure 5-2) and all the text written by an author (see Figure 5-3). The 

grouping maintains the chronological order of the chat lines.  

Chat 1:
Author 1: Hi author 2 (1)
Author 2: Hi author 1 (1)

Chat 2:
Author 1: Hi author 3 (2)
Author 3: Hi author 1 (2)

Chat 3:
Author 2: Hi author 1 (3)
Author 1: Hi author 2 (3)

Chat 4:
Author 3: Hi author 2 (4)
Author 2: Hi author 3 (4)

Chat 5:
Author 3: Hi author 1 (5)

Dataset

Author 1 – Author 2:
Author 1: Hi author 2 (1)
Author 2: Hi author 1 (1)
Author 2: Hi author 1 (3)
Author 1: Hi author 2 (3)

Author 1 – Author 3:
Author 1: Hi author 3 (2)
Author 3: Hi author 1 (2)
Author 3: Hi author 1 (5)

Author 2 – Author 3:
Author 3: Hi author 2 (4)
Author 2: Hi author 3 (4)

Conversations by Authors

 
Figure 5-2: Chat grouping by the same set of authors 

Chat 1:
Author 1: Hi author 2 (1)
Author 2: Hi author 1 (1)

Chat 2:
Author 1: Hi author 3 (2)
Author 3: Hi author 1 (2)

Chat 3:
Author 2: Hi author 1 (3)
Author 1: Hi author 2 (3)

Chat 4:
Author 3: Hi author 2 (4)
Author 2: Hi author 3 (4)

Chat 5:
Author 3: Hi author 1 (5)

Dataset

Author 1:
Author 1: Hi author 2 (1)
Author 1: Hi author 3 (2)
Author 1: Hi author 2 (3)

Author 2:
Author 2: Hi author 1 (1)
Author 2: Hi author 1 (3)
Author 2: Hi author 3 (4)

Author 3:
Author 3: Hi author 1 (2)
Author 3: Hi author 2 (4)
Author 3: Hi author 1 (5)

Authors  Text

 
Figure 5-3: Chat grouping by all authors’ text 

 

An issue arises with the grouping of ‘conversations by authors’ for chats with one author, in 

which that author has participated in conversations with other authors. A chat with one author is 

not a conversation, so where does it belong? We place the chat in the group in which that author 

has participated and that matches the closest with regards to time.  
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Small chats when taken as a unit, usually do not contain enough information in them to be 

classified properly and usually add little value to classification. This is evident with the approach 

to SPI taken by Villatoro-Tello [7] who came in 1st at the PAN-2012 competition. Their filtering 

strategy excluded small chats entirely.  

Our approach is to not filter out any chats. Small chats when grouped may provide important 

information to the classifier.  

Grouping also provides benefits in situations where a particular conversation between a predator 

and victim for example span several chats. One chat may contain information that one of the 

authors is a minor, while another chat may reveal that there is sexual intent involved. Grouping 

enables the classifier to see this data consolidated as one conversation. 

 

5.5 Preprocessing 
Preprocessing is where the chat text is transformed in some way to make it conducive to being 

used as input to the classifier. There are essentially 3 tasks that are addressed in preprocessing: 

• Standardize the text so that it is easier to process.  

• Split the text into tokens. 

• Convert the tokens into numerical vectors.  

This involves encoding tokens which is covered in the next section 5.6 Encoding. 

Standardizing the text is part of feature engineering (see 3.2 Feature Engineering). The goal is to 

transform the text in a way that makes our Transformer model generalize better, and require less 

training data. The type of encoding used also plays a role in the type of transformation decisions 

made. The following is a list of the transformations we did for each chat: 

• Remove all characters except: alphanumeric characters, and the single quote.  

The idea is to clean up the text of unnecessary noise. Note that the single quote is kept 

only if it is in-between two characters.  

• Remove emoticons (this is by extension of the previous point). 

Emoticons could provide important information, however; based on an analysis of the 

PAN-212 dataset it is unlikely for a conversation involving a predator to have many 

emoticons. Also, the expected syntax of emoticons is not always respected, for example, 

:-) is also written as :-))), and supporting them would require complex processing.  

• Convert all characters to lower case. 

• Numerical values are transformed into either ~L if the number is less than 18 and ~H if 

greater. The threshold of 18 is the defining age in Quebec for a person to be considered a 

minor.  

• Emails, and URL addresses are transformed into ~EMAIL and ~URL respectfully. 

This type of data was deemed important enough to identify and tag as it is often used by 

predators to exchange pictures for example. 

• Postal codes are transformed into ~PCODE. 

Sometimes used by predators to meet with victims. 
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• Dates and times are transformed into ~DTTM. 

Dates and times are often used in coordinating a meet up. 

• Repetitive characters in words are shorted to 2 characters, for example: sooorrrryyy = 

soorryy. 

The idea is to reduce the dimensionality of the input features, and increase the likelihood 

that a token maps to an embedding vector.  

• Words greater than 30 characters are transformed into ~LW (i.e., Long Word). 

These transformations aim to increase the likelihood that a given token will map to a word vector 

defined in the vocabulary table (see 5.6 Encoding). The transformed tokens (e.g., ~EMAIL, 

~URL, …) are included in the pre-trained vocabulary table. This was done by manually editing 

the dictionary of pre-trained tokens and replacing the definition of an existing token with the 

transformed token. For example, the token ‘0’ was edited to ~L, and the token ‘18’ was edited to 

~H. 

The other responsibility of preprocessing is to split the text into tokens. Each token maps to a 

corresponding encoding vector as discussed in the next section. There are several ways to 

tokenize the text, the following lists some of the more common ones: 

• Character level tokenization. 

• Word level tokenization. 

This is the tokenization used by the models described in this thesis. 

• N-gram tokenization.  

Tokens are groups of N consecutive words. For example, “Hi there” would be a 2-gram 

token. 

The final step in preprocessing is to convert the tokens into numerical vectors, i.e., map the 

tokens to an encoding. The format and values for numerical vectors or encodings depends on the 

model. This topic is covered in detail in next section 5.6 Encoding. 

 

5.6 Encoding 
Artificial neutral networks of the type that we use for classification cannot take raw text as input. 

They can only process numerical vectors (or tensors). After grouping and preprocessing the 

chats, the next step is to encode the tokens into a numerical tensor to be used as input to the 

model. 

There are essentially 2 types of text processing models; sequence models, and bag-of-words 

models. Sequence models care about the order of the words in a text. Word level tokens are often 

used for sequence models. Bag-of-words models treat input as a set of words. N-gram tokens are 

often better suited for bag-of-word models.  

Transformers are sequence-to-sequence models, and our encoding uses word level tokens. There 

are numerous ways to encode tokens. For example, the tokens can be hashed to a unique value. 

More commonly, and the method used in our model, is to start by representing tokens by an 



 

37 

index to a vocabulary table. The vocabulary table can be built from the training data, or from an 

external corpus (e.g., pre-trained word embeddings) (see 3.3 Word Embeddings). The following 

diagram depicts the relationship between the tokens and the vocabulary table: 

 

Figure 5-4: Token to vocabulary index encoding 

The <OOV> token in the vocabulary table signifies an ‘Out Of Vocabulary’ token, and is used to 

mark tokens that are not in our vocabulary. The <mask> token is used to indicate that there is no 

token. The model learns to ignore these tokens.  

A list of encoded tokens is known as a sequence, and our model expects the input encodings to 

be in contiguous batches of fixed length sequences. This poses a problem since chats are of 

variable length. Sequences that contain chats smaller than a given sequence length are padded 

with the <mask> token. Chats that are larger than a sequence are broken into 2 or more 

sequences.  

There is a potential problem for chats that span more than 1 sequence, since our model 

essentially works with one sequence of data at a time. A large chat that is broken into multiple 

sequences can potentially hide information about a predator or victim from the model. For 

example, suppose a chat is broken into 2 sequences. The first sequence may contain information 

about the victims age, and the second sequence about the predators’ intent. We can mitigate this 

limitation by overlapping (window) the sequences for a given large chat with the previous 

sequence for that chat.  

There is another issue with the encoded sequences we need to address. The sequences contain 

indexes to the vocabulary table that are represented by large integers. Neural networks do not 

work well with large numbers. One possible solution is to one-hot encode the values into a 

sequence of one-hot encoded vectors. There are several problems with this approach as well. 

Since we can expect our vocabulary table to be very big (greater than 100,000 tokens) the 

dimensionally of our model (which matches the number of tokens in our vocabulary for every 

token in our sequence) would be exceedingly high. An alternative to one-hot encoding is to use 

word embeddings.  

Word embeddings are dense low-dimensional (e.g,. 25-1024 dimensions) vector representations 

of words. Refer to section 3.3 Word Embeddings for details. The vector representations contain 

contextual information about each token. This provides a rich set of low dimensional features as 
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input to the classifier. With the exception of some experiments done by Pastor Lopez-Monroy et 

al. [3] with Word2Vec11 and P. Borj, et al. [8] with GloVe, not much is known about the use of 

Word2Vec and GloVe embeddings with respect to using them for SPI. In this thesis we explore 

embeddings learnt from the training data and pre-trained Word2Vec and GloVe embeddings.  

 

5.7 Classification 
There are two models defined in a SPI AI agent as described in section 5.3 AI Agent. One model 

is responsible for identifying conversations that contain sexual predation of minors. The other 

model is responsible for detecting which author in the set of detected chats is the predator. This 

process of partitioning the problem in two has been explored before from SPI attempts of the 

PAN-2012 dataset with good results (see 2.2.2 Two-Phased Approach). Also, the independent 

scoring of conversations and authors allows us to support the following requirements in 

Resolute: 

• REQ6: Provide the likelihood that a chat contains predatory behavior 

• REQ7: Provide the likelihood that an author is a predator 

The models are built using Keras12 and Tensorflow13. Keras is a deep learning API for Python, 

built on top of TensorFlow. 

For our experiments we built and evaluate two AI agents;  

• Based on a simple neural network for classification (NN-Agent)(see Figure 5-5) 

• Based on a Transformer encoder followed by a simple neural network for classification 

(TR-Agent)(see Figure 5-6) 

 

Figure 5-5: NN-Agent, conversation and author model architecture 

 

11 The pre-trained Word2Vec vectors used in their experiments were manipulated by MUL 
12 https://keras.io 
13 https://tensorflow.org 
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Figure 5-6: TR-Agent, conversation and author model architecture 

The TR-Agent uses a Transformer encoder to enhance the token representations which are fed 

into a neural network for classification.  

The NN-Agent will be used as a baseline for comparison with the TR-Agent. This will allow us 

to get a sense of the performance of the Transformer encoder. 

 

5.8 Experiments and Results 
The performance of our model is calculated using precision (P), recall (R) and weighted 

harmonic mean (F), which are based on the same metrics defined for the PAN-2012 competition 

[14]: 

 

   

  
Table 5-1: PAN-2012 competition model performance metrics 

At the PAN-2012 international competition, both β=1 and β=0.5 were used to score the results of 

the competitors. With β=1 both precision and recall are treated equally, and with β=0.5 precision 

is given a higher weight. The organizers of the competition deemed F0.5 as more relevant to the 

task at hand. According to the organizers “what is more important is the fact that the retrieved 

authors are relevant (Precision). This to optimize the time of the police agent towards the 

“right” suspect rather than “all” the possible suspects. For this reason we used a measure of F 

with the β factor equal to 0.5, in order to emphasize Precision.” [14]. 

Our experience with the SQ is different, they had indicated that they would rather have a higher 

set of false-positives than false-negatives. This translates to a greater importance on recall vs. 
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precision. The SQ envisioned a system when given a large number of documents, that an AI 

based agent could filter out the irrelevant chats down to a manageable set, without sacrificing 

documents that can be used as evidence. In this section we report on β=1 and β=0.5 to keep 

consistent with the results of the PAN2012 competition. This allows for a comparison of 

performance between the different approaches to SPI. 

The following tables summarizes the hyperparameters that will be evaluated: 

Sequence grouping 

(group) 

Conversations can be evaluated as individual chats or they can be 

grouped by the same set of authors as described in section 5.4 Chat 

Grouping.  

Note, that for author-based models grouping is implied. 

Classification type 

(ct) 

i.e., cost/loss function 

Binary cross entropy and categorical cross entropy are both evaluated. 

Note that the notation below will use ‘PN’ to signify categorical 

classification and ‘P’ for binary. Also, the classification type for  

the conversational and author models will be separated by a ‘/’, e.g., 

PN/P. 

Embedding types 

(em) 

The following word embedding types will be evaluated: 

• None: embeddings are learned from the training data 

• Glove 1: 50, 100, 200, 300 dimensional vectors pre-trained on 

6 billion tokens taken from Wikipedia 

• Glove 2: 25, 50, 100, 200 dimensional vectors pre-trained on 

27 billion tokens taken from Twitter 

• Word2Vec: 100, 300, 500 dimensional vectors pre-trained on 

tokens taken from Wikipedia 

Embedding 

dimension 

(emdim) 

The dimension of the embedding vectors 

Sequence length 

(seqlen) 

The models are setup to evaluate fix length sequences of tokens as 

described in section 5.6 Encoding. 

Sequence evaluation 

(seqeval) 

The text for a given conversation or author can span more than one 

sequence as described in section 5.6 Encoding.  

Two methods are used to calculate the probabilities for a given 

conversation or author: 

• max(): the probability is assigned based on the sequence with 

the highest value. 

• weighted_average(): the probability is calculated from the 

weighted average of all the sequences. The weight comes from 

the number of tokens in a sequence. 

Epochs The number of epochs used for training 

Final_nn_nodes 

(fnodes) 

The number of nodes used in the final 2-layer dense neural network 

Heads 

(heads) 

The number of attention heads configured in the Transformer model.  
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Tr_dense_nodes 

(trnodes) 

The number of nodes used in the Transformer intermediate dense 

neural networks.  
Table 5-2: Summary of model hyperparameters 

The following sections detail different hyperparameter configurations, with the goal of building 

an AI agent that achieves the best β=0.5 f-score for author detection. All experiments are based 

on 75% of the training data used for training and 25% used for validation. Each experiment 

reports on the average value of at least three runs. 

 

5.8.1 Base Models 

The first set of configuration parameters are given values based on processing simplicity and a 

best guess based on some initial experimentation. The following results are based on training 

with the full PAN2012 dataset: 

Model Configuration Precision Recall F1.0 F0.5 

NN 
group=false, ct=PN/PN, em=none, emdim=100, 

seqlen=200, seqeval=wavg, fnodes=32, epochs=15 0.923 0.693 0.791 0.865 

Transformer 
group=false, ct=PN/PN, em=none, emdim=100, 

seqlen=200, seqeval=wavg, fnodes=32, epochs=15, 

heads=2, trnodes=128 
0.839 0.654 0.732 0.792 

Table 5-3: Base model results 

To address the question of what impact filtering has on the performance of the SPI models, the 

following table shows the results of training the same models with the VTPAN dataset: 

Model Precision Recall F1.0 F0.5 

NN 0.98 0.851 0.908 0.949 

Transformer 0.978 0.826 0.894 0.942 

Table 5-4: Base model with VTPAN training dataset results 

Given an unoptimized model, the experiment shows that filtering has a significant impact on the 

results. Should filtering be included with the final version of Resolute? That question needs to be 

considered carefully, because, filtering by its very nature discards data. In a competition such as 

the PAN2012 competition where achieving the best score is the objective, filtering makes perfect 

sense. In a production environment where the well-being of people is involved, filtering needs to 

be assessed more carefully. As a result, our experiments and model optimizations will use the 

full PAN2012 dataset, but an additional test at the end will be included with VTPAN for 

comparison. 

In the next section the conversation grouping and classification type will be examined. 
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5.8.2 Conversation Grouping and Classifier Type 

The input for the classification of conversations can incorporate either no grouping of chats or 

grouping as described in section 5.4 Chat Grouping. Since the type of classification (P=binary 

cross entropy/PN=categorical cross entropy) can influence the final results based on the type of 

grouping, the classification type is also considered.  

The following graph shows experiments altering the chat grouping for the conversation classifier 

and the classification type for both the conversation and author classifiers. The x-axis labels 

indicate ‘conversation-class-type, author-class-type, grouping’, where P=binary classification 

and PN=categorical. Other parameters are fixed at: em=none, emdim=100, seqlen=200, 

seqeval=wavg, fnodes=32, epochs=15, heads=2, trnodes=128: 

 

Figure 5-7: Conversation grouping and classifier type results 

Best results for each model are when the conversations are grouped and classified categorically, 

and the author classifier is configured for binary classification (i.e., PN, P, TRUE): 

Model 
Configuration 

Precision Recall F1.0 F0.5 
grouping Binary/Categorical 

NN True 
Conversation: PN (i.e., categorical) 

Author: P (i.e., binary) 
0.931 0.749 0.830 0.888 

Transformer True 
Conversation: PN (i.e., categorical) 

Author: P (i.e., binary) 
0.906 0.666 0.767 0.844 

Table 5-5: Conversation grouping and classifier type experiments best results 

Grouping the conversations improves the results for all combinations of classifier types, except 

for a slight decrease on the NN agent for the PN/PN classifier types. Better results with grouping 

are expected as the conversation classifier has more data to work with. 
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Figure 5-8: Classifier type with conversation grouping 

Figure 5-8 shows the classification types for the grouped conversations. The author classifier 

performs slightly better as a binary classifier (*,P). This could be because of the difficulty in 

detecting the difference in symmetry between a predator and victim as discussed in the literature 

review (see 2.2.5 Lexical, Behavioral & Social Features). With this setup a suitable threshold 

can be used to decide between a predator and victim. The conversation model performs best as a 

categorical classifier (PN). This is expected if we consider the observed symmetry between 

victim and predator, i.e., the classifier performs well deciding between a predator/victim, vs. a 

normal conversation. 

In the next section the word embeddings and dimensionality of the word vectors will be 

evaluated. 

 

5.8.3 Word Embedding  

The proper type of word-embedding is crucial to the performance of any NLP based model. This 

has been demonstrated from the work reported by M. Vogt, et al. [2] (BERT/NN) and Pastor 

Lopez-Monroy et al. [3] (MulR/SVM). Their state-of-the-art results were achieved mainly by the 

type of word embeddings that were used, i.e., BERT and MUL(TVT14). Our contribution will 

explore other types of word embeddings. The following embedding types will be evaluated: 

• None: embeddings are learned from the training data using the following word vector 

dimensions: 25, 50, 100, 200, 500 

• Glove 1: 50, 100, 200, 300, dimensional pre-trained GloVe vectors based on 6 billion 

tokens taken from Wikipedia 

• Glove 2: 25, 50, 100, 200, dimensional pre-trained GloVe vectors based on 27 billion 

tokens taken from Twitter 

• Word-2-Vec: 100, 300, 500, dimensional pre-trained Word2Vec vectors based on tokens 

taken from Wikipedia 

 

14 Temporal Variation Terms (TVT) 
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Note that higher dimensional vectors provide more input into the final linear network layer. In an 

effort to keep the playing field fair, the same experiment is performed varying the number of 

nodes in the final linear network with the following values: [32, 514, 1024, 2048, 4096]. All 

experiments are performed at least three times and results are averaged.  

 

Figure 5-9: pre-trained embedding results 

The best embedding for the NN model is ‘None’, which are embeddings learnt from the training 

data. This result is surprising as it is reasonable to expect that at least one of the other pre-trained 

embeddings would outperform embeddings learnt from the training data. Pastor Lopez-Monroy 

et al. [3] experienced the same situation with their Word2Vec embeddings experiments. The 

inferior results of the pre-trained embeddings might be due to the limited depth of the model, i.e., 

the pre-trained vectors remain static during training, only the last neural network is actually 

trained. Whereas the learnt embeddings offer the NN model a deeper architecture in which to 

learn, i.e., the learnt embedding vectors are updated during training and provide the model with a 

deeper set of layers to work with.  

The best results for the Transformer based model is Glove_2, i.e., pre-trained GloVe embeddings 

based on 27 billion tokens taken from Twitter. The Transformer model produced significantly 

better results for all the pre-trained embeddings as compared to the NN model. In contrast to the 

NN model the Transformer model has a deep neural architecture, which supports our proposition 

above for why trained embeddings in the NN model significantly outperform the pre-trained 

embeddings.  

For each respective ‘best embedding’, the following diagram shows results for different 

embedding vector dimensions: 
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Figure 5-10:best embedding dimension results 

The best embedding dimension for the NN model is 25. Graph ‘NN-None Dimensions’ shows 

that lower dimensions produce better results. This can be explained by the fact that the model is 

building the embeddings from the limited training data, and that there is not enough data present 

to properly build the complex word representations required for higher dimensional embeddings. 

The best embedding dimension for the Transformer model is 200. This result is in line with our 

expectation as the GloVe_2 embeddings were trained on a huge corpus, and the higher 

dimensions represent a more robust token representation. 

Best results for the best embedding configuration: 

Model Configuration Precision Recall F1.0 F0.5 

NN 
group=false, ct= PN/P, em=none, emdim=25, 

seqlen=200, seqeval=wavg, fnodes=<var>, 

epochs=15 
0.936 0.773 0.846 0.898 

Transformer 
group=true, ct= PN/P, em=glove_2, emdim=200, 

seqlen=200, seqeval=wavg, fnodes=<var>, 

epochs=15, heads=2, trnodes=128 
0.962 0.729 0.828 0.903 

Table 5-6: Word embedding type experiment best results 

In the next section the input sequence length and the number of nodes in the final two-layer 

neural network will be evaluated. 

 

5.8.4 Two Layer Dense Neural Network and Sequence Length 

A sequence is a fixed length buffer containing text that is used as input to the model. The 

sequence length refers to the number of tokens (words) used as input to the model. Text that 

contains more than the maximum sequence length is overlapped (i.e., windowed) over onto the 

next sequence as described in section 5.6 Encoding. Text that is shorter than the maximum 

length is padded with a special mask token. 

During evaluation the model calculates a probability for a given sequence. If the text spans more 

than one sequence a weighted average (wavg) for the sequences is computed to give a probability 

for the complete text. The weight for a sequence is taken from the number of tokens in a given 

sequence. Another common method is to assign a probability for a given text by taking the 
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probability of the sequence with the highest probability (max). In the experiments below we 

compare both methods. 

The other parameter we will be evaluating is the number of nodes in the final two-layer dense 

neural network. The following graphs summarize the results for the NN and Transformer 

models, varying the sequence length and number of nodes in the final layer:  

 

Figure 5-11: NN-agent results of sequence lengths of 50 to 3200 

 

Figure 5-12: NN-agent results of sequence lengths of 100 to 400 
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Figure 5-13: TR-agent results of sequence lengths of 50 to 3200 

 

Figure 5-14: TR-agent results of sequence lengths of 100 to 400 

The NN model performs best with a sequence length of 200 and with 1024 nodes in the final 

two-layer dense network. The Transformer model performs best with a sequence length of 200 

and with 128 nodes in the final two-layer dense network.  

Both agents show that sequence lengths between 200 and 400 provide the most stable results. 

Smaller and larger sequences have a negative effect on the results. The data indicates that 

sequences smaller than 100 do not encapsulate enough information to make a definitive 

prediction and sequences greater than 400 contain too much information such that the important 

markers in the data are lost. Perhaps more training epochs might help stabilize sequences greater 

than 400, however the variability of the results in concert with their poor performance does not 

indicate that we could achieve results better than those achieved with a sequence length of 200.  

More nodes in the final 2-layer dense neural network do not have a significant impact on the 

results. This could be an indication of the representational effectiveness of the embeddings used 
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as input to the dense neural network, e.g., even a dense neural network of 16 nodes offers results 

close to those with 16,384 nodes. 

Regarding the methods of calculating the overall probability of a text, maximum (max) does 

better for sequence lengths less than 200. This is expected as probabilities calculated using 

weighted averages (wavg) for small sequences would contain more sequences to average across 

giving less weight to any individual sequence that contains predatory text. Interestingly, the 

weighted average (wavg) and maximum (max) methods of calculating the overall probability 

both produce similar results for sequence lengths greater than 100. Using the visual data in the 

graphs above, the NN seems to perform slightly better with max and the Transformer with wavg. 

 

Model Configuration Precision Recall F1.0 F0.5 

NN 
group=false, ct= PN/P, em=none, emdim=25, 

seqlen=200, seqeval=max, fnodes=1024, epochs=20 
0.962 0.741 0.837 0.907 

Transformer 
group=true, ct= PN/P, em=glove_2, emdim=200, 

seqlen=200, seqeval=wavg, fnodes=256, epochs=20, 

heads=2, trnodes=128 
0.978 0.711 0.823 0.909 

Table 5-7: Two-layer dense neural network and sequence length experiments best results 

In the next section some specific Transformer parameters will be evaluated. 

 

5.8.5 Transformer 

The Transformer architecture defines multi-head attention layer(s) and a series of hidden dense 

neutral networks (see section 3.4 Transformer Architecture). In this section we will be running 

experiments altering the number of heads and nodes in the hidden dense neural network layers. 

 

  
Figure 5-15: Number of Transformer heads and inner-network nodes 

Two and four heads produced the best results. Two heads will be used going forward as it 

requires less resources. With 2 heads the internal dense network works best with 256 nodes.  
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Model Configuration Precision Recall F1.0 F0.5 

Transformer 
group=true, ct= PN/P, em=glove_2, emdim=200, 

seqlen=200, seqeval=wavg, fnodes=128, epochs=20, 

heads=2, trnodes=256 
1.0 0.812 0.915 0.925 

Table 5-8: Transformer heads and inner-network nodes best results 

Each head helps the model learn different groups of features for each token. In our setup the data 

shows that increasing the number of heads does not impact the results in any significant manner. 

This could be due because the input embeddings we are using (GloVe) already encode a rich set 

of features in their own right. If this is true then is using a Transformer encoder for classification 

in our model redundant? The results being achieved by the NN model seem to suggest this. 

In the next section we will run a series of experiments looking for the optimal number of epochs 

to use for training. 

 

5.8.6 Epochs 

In this section we run experiments altering the number of epochs each model is trained with. The 

following graph summarizes the results: 

 

Figure 5-16: Number of epochs experiments 

Best results at 5 epochs for both the NN and Transformer models: 

Model Configuration Precision Recall F1.0 F0.5 

NN 
group=false, ct= PN/P, em=none, emdim=25, 

seqlen=200, seqeval=max, fnodes=1024, epochs=5 
0.934 0.761 0.838 0.893 

Transformer 
group=true, ct= PN/P, em=glove_2, emdim=200, 

seqlen=200, seqeval=wavg, fnodes=128, epochs=5, 

heads=2, trnodes=256 
0.981 0.746 0.847 0.923 

Table 5-9: Number of epochs best results 

In the next section we will be evaluating the AI agents against the PAN2012 and VTPAN test 

datasets. 

 



 

50 

5.8.7 Test Results 

The optimal configuration based on experiments: 

Model Parameter Configuration 

NN 

Conversation grouping False 

Conversational classification 

(loss function) 

CategoricalCrossentropy 

Predator/Normal 

Author classification 

(loss function) 

binary_crossentropy 

Predator 

Embedding Learnt from training data 

Embedding dimension 25 

Sequence length 200 

Sequence evaluation Maximum, i.e., highest sequence probability 

Number of nodes + activation 

function of final dense linear 

network 

Conversation = 1024 (Softmax) 

Author= 1024 (Sigmoid) 

Transformer 

Conversation grouping True 

Conversational classification 

(loss function) 

CategoricalCrossentropy 

Predator/Normal 

Author classification 

(loss function) 

binary_crossentropy 

Predator 

Embedding GloVe pre-trained on 27 billion tokens taken from Twitter 

Embedding dimension 200 

Sequence length 200 

Sequence evaluation Weighted average 

Number of nodes + activation 

function of final dense linear 

network 

Conversation = 128 (Softmax) 

Author= 128 (Sigmoid) 

Number of Transformer 

heads 

2 

Number of nodes in 

Transformer internal dense 

linear networks 

256 

Table 5-10: Test configuration based on experiments 

The models are built using Keras and Tensorflow. Table 5-11 shows the test results taking the 

average of 10 runs, i.e., training with the PAN2012 training data, with evaluation on the test 

dataset: 

Model Precision Recall F1.0 F0.5 

NN 0.959 0.768 0.852 0.913 

Transformer 0.965 0.761 0.85 0.915 

Table 5-11: SPI test results 

The average time for each evaluation of the test dataset is approx. 5 minutes for the NN-agent, 

and 6 minutes for TR-agent on a modestly configured workstation. 

The NN and Transformer models performed at the same level both in predictions and speed of 

training and evaluation. It is interesting that the Transformer configured as a classifier performed 
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the same as the NN, especially given that the NN did not have token positional information to 

work with, as the Transformer did. Perhaps the results reflect the quality of the data and a 

convergence toward the upper limit of what is detectable without filtering out the noisy data. J. 

Parapar et al. [11] the highest performing approach that does not filter the PAN2012 dataset 

reported a F0.5 result of 0.87.  

In order to get an idea of how filtering might affect the performance of our models, the following 

table shows the test results on the VTPAN dataset taking the average of 10 runs, i.e., training 

with the VTPAN training data with, evaluation on the VTPAN test dataset (note: the models 

were not optimized for VTPAN): 

Model Precision Recall F1.0 F0.5 

NN 0.972 0.753 0.848 0.918 

Transformer 0.98 0.757 0.854 0.925 

Table 5-12: Base model with VTPAN test dataset results 

The Transformer model performed slightly better because of an increase in the precision, which 

to some extent is expected when most of the non-predator data is removed. The F0.5 results for 

the NN were less than E. Villatoro-Tello et al. [7] (0.93) which used a similar approach to our 

NN model. The difference could be because our NN encodings do not include token positional 

information in it, whereas E. Villatoro-Tello et al. used n-grams and a TF-IDF weighing scheme 

which provides a limited form of token position.  

Based on the results of the experiments, filtering helps greatly with weak models (Table 5-4) but 

does not add much with strong ones (Table 5-12).  

M. Vogt, et al. [2] achieved good results using pre-trained BERT [28] embeddings over a linear 

network. The BERT architecture is based on a Transformer but it also incorporates several 

additional processes tailored to building highly representational embeddings, for example 

bidirectional encoder representations using a “masked language model” (MLM) pre-training 

objective (J. Devlin at al. [16]). For comparison, the role of the Transformer in our models 

perform a similar function in that the output from the Transformer encoder is fed into a 2-layer 

neural network for classification, but it does not include the extra processes defined in BERT. 

The idea is that the Transformer in our models should be able to enhance the input GloVe 

embeddings in a manner that would provide the final 2-layer network layer with enough 

representational expressiveness that the final 2-layer neural network could provide superior 

classification results over the NN model. This however did not prove to be the case, i.e., the 

results of our Transformer agent are very close to the NN agent.  

The results achieved by our NN model on the full PAN2012 dataset suggest that the word 

embeddings contributed a great deal to the final results, and that the Transformer encoder layer 

in our model is not able to enrich the input embeddings in any significant manner as to produce 

superior results.  
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5.9 Future Work 
The following are some areas of research that might be worth future exploration: 

• Creation of an AI agent architecture that can support the analysis of many different 

languages. The biggest problem we had with building an AI agent for French was the 

training and testing dataset. This problem extends to many other languages as well. What 

if we could use the power of the Transformers’ ability to do language translation, coupled 

with a pre-trained model on the English dataset to be able to perform SPI in multiple 

languages without having to create an extensive set of training and test data for each 

language.  

• One of the features the SQ mentioned that would be useful to them is to have an AI agent 

that could identify the lines in a chat that are predatory in nature. This was also one of the 

two events of the PAN2012 SPI competition. Unfortunately, the PAN2012 organizers did 

not provide the classification labels for the task in the training dataset, but did provide the 

labels for the test dataset. The test dataset can be converted into a training and test dataset 

for this task. Considering that the first rank for this event was by ‘grozea12-run-2012-06-

14-1706b’ with F1 = 16.16%, F3 = 47.62% [14] [29], there is more exploration of this 

task required.   

 

5.10 Concluding Remarks 
We have shown that in support of hypothesis 1 (see 1.3 Research Objectives) the Transformer 

architecture used as a SPI classifier can obtain good results and speed for the identification of 

sexual predators in chats. In addition, our contribution shows that when using trained or pre-

trained word embeddings, the Transformer encoder used for SPI text classification does not 

perform much better than a Neural Network.  

The results achieved by our NN model on the full PAN2012 dataset suggest that the word 

embeddings contribute a great deal to the final results, and that the Transformer encoder layer in 

our model is not able to enrich the input embeddings in any significant manner as to produce 

superior results. GloVe word embeddings provide good results but more recent work done by M. 

Vogt, et al. (BERT) [2] and P. Lopez-Monroy et al. (MulR) [3] show that recent advancements in 

word embeddings can offer significant increases in SPI detection. 

Filtering data in a dataset provides a boost in performance, especially with regard to weaker 

models. Filtering also helps balance out the big disparity between predator and non-predator 

however we did not see an expected increase in recall. As a result, our final test models did not 

benefit greatly from filtering.  
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Chapter 6: Resolute 
 

Resolute is an application we built as part of this thesis that essentially allows for the 

management, processing and analysis of online chat documents, with specific focus on 

identifying sexual predation of minors in chats.  

Some of the features and benefits of Resolute include: 

• Document management: 

o A secure environment to store sensitive documents. 

o The ability to store, access and manage a large number of documents efficiently. 

o Original documents (i.e., imported chats) cannot be modified. That is, any work 

done to a chat (e.g., normalization) never changes the original document. Instead, 

any changes or meta data is linked to the original. This is important for law 

enforcement when building a case against a suspected predator, since the original 

documents need to be presented unaltered to the court as evidence. 

• Document processing: 

o Document conversion: provides tools to easily and quickly convert documents 

from their native encoding into a text-based document. (e.g., MS Word to text). 

o Document transformation: incorporates tools to transform chats from native 

formats into consistent, normalized form that can be used for manual and 

automatic analysis. 

o Anonymization: tools that obfuscate named entities. 

• Document analysis: 

o Manual analysis tools: chat viewer: chats are presented to the reader in a legible 

manner. Authors can be color coded or excluded from a chat making it easier for 

the reader to isolate points of interest. 

o Chat summaries: important chat information and statistics are presented to the 

user to quickly identify potential chats of interest. 

o Automatic analysis tools:  a computer AI agent that scans documents looking for 

interactions between sexual predators and minor aged victims. 

Resolute offers a GUI interface that is responsible for consolidating all functionality in a 

cohesive, productive manner. This is where the work of managing, normalizing and analyzing 

chats is done.  

 

6.1 Motivation 
Resolute is an application that helps manage a large number of chats and brings together the 

processes and tools required in order to be able to make effective use of the data. An application 

such as Resolute is essential for SPI analysis if it is going to be utilized on a day-to-day basis to 

catch predators. 
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Our motivation in building Resolute is to build an application that law enforcement can use to on 

a day-to-day basis to identify and help prosecute suspected sexual predators. 

 

6.2 Contribution 
Resolute provides a method of handling big data, in a high-performance environment. It provides 

data management facilities, that help organize chats in a secure manner. Resolute brings together 

a set of tools that can normalize, anonymize, and analyze the chats in a cohesive and productive 

environment. 

 

6.3 Specification 
Interaction with the SQ was done through a series of in-person meetings, emails and video 

conferences. Initially discussions centered around getting an understanding of their current 

operations and what we could do to facilitate the process. The following activity diagram 

summarizes their business process: 

 

Figure 6-1: SQ cyber-crime investigation unit business process 

There are three major parts to consider in the business process; data acquisition, document 

analysis and document management activities. In terms of data acquisition, the process used by 

the SQ is very dynamic, involves many different platforms and technologies, and changes so 

often that the activity was deemed to be better off to remain as it is for the near future. In this 

thesis we address the two other parts; document management and analysis. 
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In terms of document management Resolute offers a series of functions that enable the SQ to 

organize, categorize, archive, and annotate many documents by folder, dataset or dataset 

collection as they see fit (see REQ1-REQ4). 

In terms of document analysis Resolute offers features that assist in the normalization of chats, 

sexual predator identification at the conversation and author level, chat anonymization and a chat 

viewer (see REQ3, REQ5-REQ8).  

One of the requirements identified with the SQ is the ability to detect SPI in French chats 

(REQ8). Since a dataset similar to the PAN2012 dataset is unavailable for French chats it was 

decided that the SQ would build one. In an effort to help the SQ in this endeavor we include a 

chat anonymizer in Resolute (REQ5). Unfortunately, the SQ was not able to put together a 

sufficient dataset for use with our SPI agent (see 3.1.3 Sûreté du Québec Dataset). Although the 

SQ can still use Resolute for English chats the missing ability to process French chats is a 

drawback to its useability. The intention is to continue to work with the SQ past the work done in 

this thesis to find a proper solution to the French chats.  

 

6.3.1 Constraints  

The following section lists the constraints on the functional and non-functional requirements of 

Resolute.  

CON1: End user is not expected to have programming proficiency  

• System should not require the user to have more than a basic knowledge of programming 

CON2: Concurrent users in a dataset not supported 

• System will not support two or more users working concurrently on the same dataset. 

CON3: Chat only input documents 

• System will support only conversational chats as input for normalization and analysis. 

CON4: Analysis of French chats 

• The analysis of French chats is contingent on acquiring enough good data from the SQ 

for the training and testing of a French based SPI AI agent. 

 

6.3.2 User Requirements 

The following section lists the functional requirements of Resolute. They were identified and 

accumulated during the course of interacting with the SQ.   

REQ1: Original documents must remain unmodified 

• User level Requirement: The system shall keep the original document that was imported 

into the system unchanged and in its original file format and encoding.  

• Use case scenario 1: User imports an original document acquired from some unknown 

source. User/system requires changes to the original document (e.g., convert to text, clean 
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up meta-data, …), system automatically creates a copy of the document. User/system 

modifies copied document. User decides that document can be used as evidence. System 

allows user to export the unmodified original document. 

• Use case scenario 2: User wishes to view original document at any time. User selects 

option to view original document. System automatically exports the original document 

and instructs the operating system to execute the appropriate program (based on filename 

extension) to view the original document. 

REQ2: Document management 

• User level Requirement: The system shall allow a user to organize documents by case 

identifiers and provide the ability to archive documents.  

Use case scenario 1: User creates a dataset with a chosen name. User imports a set of 

documents related to a case into the dataset. User works with documents in dataset. When 

work is completed, system allows user to move dataset to an archive folder. 

Use case scenario 2: User wishes to move, rename, copy or delete a dataset. System 

provides facilities to move, rename, copy or delete a dataset. 

REQ3: Convert original documents to text and normalize them 

• User level Requirement: The system shall provide facilities to convert original documents 

from their native encoding to text. The system shall also provide facilities to normalize 

the structure of a text document without the need to write special programs. 

Use case scenario 1: User imports a set of documents of different types of encodings and 

formats into a dataset. User initiates system function to convert the original document to 

text. System takes a copy of the original document and converts it to text. System 

automatically imports the converted text document into the dataset. User has the option to 

edit the converted text document. 

Use case scenario 2: User is required to normalize the format of a chat prior to analysis. 

System provides facilities to normalize a converted text chat into a consistent format as 

efficiently as possible. System will utilize normalization information from other 

documents when possible. A scoring mechanism will inform the user when chats have 

not been normalized properly. 

REQ4: Export documents  

• User level Requirement: The system shall provide an export facility for the original 

document and all intermediate documents. 

Use case scenario 1: User selects document(s) and activates system export function. 

System prompts user for which directory to place the files. System copies to specified 

directory all files related to the selected document(s): original document, converted to 

text document (if available), normalized document (if available). 

REQ5: Chat Anonymization   

• User level Requirement: System shall have the capability of obfuscating data that can be 

used to determine the identity or location of an author in a chat. 
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• Use case scenario 1: User converts a document to text or normalizes it using system 

features. User selects chats that require anonymization, and invokes the system 

anonymization feature. System prompts user for a directory in which to place the 

anonymized chats. System displays message when process is complete. 

REQ6: Provide the likelihood that a chat contains predatory behavior 

• User level Requirement: System will calculate the likelihood that a given chat contains a 

conversation between a predator seeking a sexual encounter with a minor. 

Use case scenario 1: User selects normalized chats for analysis. User initiates the analyze 

feature. System initiates an analysis of the chats using an AI agent. System displays the 

likelihood of predation as a value between 0.0 and 1.0 to indicate the confidence level of 

the prediction.  

REQ7: Provide the likelihood that an author is a predator 

• User level Requirement: System will calculate the likelihood that a given author is a 

predator seeking a sexual encounter with a minor. 

Use case scenario 1: User initiates actions defined in REQ6. User selects suspect chat and 

invokes the system chat viewer. System chat viewer displays all authors in the 

conversation along with the likelihood of being a predator as a value between 0.0 and 1.0 

to indicate the confidence level of the prediction. 

REQ8: Analysis of English and French chats 

• User level Requirement: The system shall be able to analyze English and French chats 

(see REQ6-7). Note that for French chats this requirement is contingent of constraint 

CON4. 

• Use case scenario 1: User initiates actions defined in REQ6. System detects language of 

chat and invokes the appropriate AI agent to calculate the likelihood of predation for the 

conversation and author. 

REQ9: Chat viewer 

• User level Requirement: The system shall enable a user to view a normalized chat with 

the following capabilities:  

o Each chat line formatted so that the reader has access to the complete text 

o Color coding for each author with the ability to remove an author from the 

conversation 

o If analysis has been performed (REQ6) the system will display the likelihood of 

each author exhibiting predator behavior. 

• Use case scenario 1: User selects normalized chat. User activates system chat viewer. 

System chat viewer displays normalized chat with each line formatted so that the reader 

has access to the complete line of text (e.g., line wrapping). User can select from the list 

of authors to color code or remove chat lines authored by the selected author. 

• Use case scenario 2: User initiates actions defined in REQ5. User selects normalized 

chat. User activates system chat viewer. Each author is given a likelihood of exhibiting 

predatory behavior. User uses chat viewer as defined in the previous scenario. 
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6.3.3 Non-Functional Requirements 

The following section lists the non-functional requirements of Resolute. They were identified 

and accumulated during the course of interacting with the SQ.   

NFR1: Performance and Usability 

• System does not impede current productivity. 

The system should not take longer or take more effort than it currently takes to process 

documents manually. 

NFR2: Capacity 

• Store, access and manage a large number of documents quickly and efficiently. 

The expectation is that the system should be able to store an upper limit of one million 

documents. 

NFR3: Security 

• In addition to infrastructure security the data management facilities should be able to 

store and protect the data from unauthorized access.  

NFR4: Scalability 

• The ability to store and access the data from a local or remote data store, with the 

optional capability to distribute the databases across multiple servers. 

 

6.4 Iterations of Resolute 
There are 3 versions of Resolute:  

• A prototype that was built early on to establish requirements and expectations with the 

SQ. 

• Resolute version 1.0, which contained all functionality except SPI analysis, however; it 

had issues with useability and performance that required fundamental architectural 

changes. 

• Resolute version 2.0, is the version described throughout this thesis. 

This following sections briefly describe the different versions of Resolute and what each part 

played in defining the final version.  

 

6.4.1 Prototype 

The Resolute prototype served as a useful tool in generating ideas, discussions, and establishing 

expectations with the SQ. It allowed us to discover requirements that would otherwise have been 

missed. It also allowed us to establish common ground with regard to the overall structure of the 

application.  
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Figure 6-2: Resolute Prototype Main Screen 

Development efforts for the prototype were kept at a minimum. The prototype did not make use 

of a database. A few chats were manually normalized for demonstration purposes. The GUI used 

basic functionality of the WPF common controls.  

The prototype proved useful during development of version 1.0 as well. It gave us a picture of all 

the features which allowed us to think about how to bring these features together in a cohesive 

manner.  

Refactoring of version 1 was reduced because we could see further down the development 

pipeline and plan appropriate development patterns early on. It also allowed us to make better 

architectural decisions early on. 

The effort and time taken to build the prototype paid off many times over by serving as a very 

valuable tool in gathering requirements, setting expectations, and reducing the overall time and 

effort required in designing, and building the actual application. 

 

6.5 Workflow 
The main workflow for a given document (i.e., chat CON3) in Resolute is: 

 

Figure 6-3: Resolute Workflow 
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• Dataset Collection: Resolute provides an administration utility that allows for the 

creation of Dataset Collections. A dataset collection translates into a MongoDB 

Collection (i.e., database). Dataset collections are designed to be able to hold large 

amounts of data (NFR2). 

One or more collections can be created and are intended to be used to partition datasets as 

an organization sees fit (REQ2). For example, law enforcement may choose to partition 

datasets based on forensics and cybercrime agencies.  

• Datasets: Datasets hold sets of documents. This is where documents are imported, 

normalized and analyzed (REQ3). Datasets can be created and deleted within the 

Resolute GUI interface (REQ2).  

• Folders: Folders hold one or more folders or datasets. They allow for simple grouping of 

datasets. Useful for organizing, folders can be created and deleted within the Resolute 

GUI interface (REQ2). 

• Import: Import original documents in their native formats (REQ1, CON3). For example, 

Microsoft Word, PDF, text documents with different encodings, XML, JSON, etc.  

Imported original documents are never changed by Resolute, and can later be exported as 

exact copies of the originals. This is important for agencies building a court case against a 

suspect.  

• Convert to Text: Converts the original document to text (REQ3). The original document 

is not changed. Instead, a text version is created and linked to the original document by 

Resolute (REQ1). 

• Normalize: The converted text document is normalized into a standardized format 

(REQ3). The associated original and converted text documents are not changed, but a 

new normalized document is created and linked (REQ1). 

• Analysis of the chats. This includes an AI agent that automatically scans the normalized 

chats and assigns a probability that a given chat contains dialog of sexual predation of a 

minor (REQ6-REQ9).  

 

6.5.1 Resolute Version 1.0 

Resolute version 1.0 is an almost full featured application including support for; anonymization, 

and normalization.  
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Figure 6-4: Resolute version 1.0 

Figure 6-4 shows a screen capture of Resolute version 1.0. Point #1 highlights a dataset. Double 

clicking a dataset brings up the main dataset screen in a tabbed document window (point #3). 

Point #2 shows a menu for the different parts of a dataset. Note that the menu was collapsible to 

show only the icons to save on screen space.  

The sections below highlight some of the more interesting characteristics and architecture of 

version 1, and we discuss the problems with it. Resolute version 1.0 is a functional application, 

but because of the problems we encountered, it was not a practical system to use on a day-to-day 

basis. The changes required to fix the problems lay deep in the architecture, and as a result could 

not easily be refactored. As a result, the hard decision to abandon most of the work done in v1 in 

favor of starting over in Resolute v2 was necessary. Some of the code from version 1 was 

brought over with minor changes but the majority of the code in v2 is new. 

 

Data Management 

Resolute v1.0 does not have a backend database to manage chats. Chats were processed as stored 

by the filesystem.  

A dataset would require a path to a folder, and Resolute would read the documents from that 

folder. Original documents were not altered, instead Resolute would create sub-directories in the 

document folder to hold the converted text chats, anonymized chats, and the normalized chats. 

We had considered using SQL as a database, but SQL requires some technical expertise to 

manage, and it enforces a rigid structure on the data, which may in the future complicate updates 

to the software.  

Later in the development of v1 when we started working with thousands of files, we started 

noticing significant slowdowns in performance. Operations that should have taken seconds to 
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perform where taking minutes. The more files in a folder the worse the performance. There was 

no way of optimizing this as the performance issues were coming directly from the operating 

system (Windows). This resulted in non-conformance to the non-functional requirement of 

performance (NFR1). 

It was clear that allowing the operating system to manage the documents was not going to be 

sufficient. In addition to slow processing in Resolute, the burden of managing the documents was 

being shifted to the users of the software after work on a particular set of documents was done. 

They would have to concern themselves with what to do with the files once work on them was 

complete, and moving a great number of files outside of Resolute was still very slow. 

For version 2.0 we revisited using a database management system to store and manage the 

documents. We looked for options other than SQL. MongoDB turned out to be a good 

alternative.  

MongoDB falls under the category of a NoSQL database management system. That is, data 

schemas are not rigid structures. We could choose to add or remove fields from the database 

without having to require complicated processes to updates of Resolute. Also, MongoDB is very 

performant. It allows for fast access to data, and allows a great many documents to be stored. 

A basic local/server installation of MongoDB is easy to install, not requiring much technical 

expertise to manage. It is also good to know that MongoDB is not limited to a basic setup. It 

allows for more complicated setups such as clustered distributed architectures.  

MongoDB was chosen as the back-end database in Resolute v2.0, and it turned out to live up to 

our requirements and expectations (NFR1-NFR4). 

 

User Interface 

One issue we discovered with the UI after using it for a while, is that because the tabbed 

windows (point #3 in Figure 6-4) were not detachable, it required a user to switch back and forth 

between tabs when working with two or more documents. This proved to be disorienting and 

unproductive, and we decided that it did not adhere to the non-functional requirement of 

useability (NFR1). 

We wanted to make the tabbed documents detachable. This would allow a user to view more 

than one document at a time. The following is an example of detached windows in Resolute 

v2.0: 
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Figure 6-5: Detached document windows in Resolute v2.0 

In Resolute v2, a user can detach a window by simply selecting and sliding a window from the 

tab. Detached windows provide even more benefits for systems with multiple screens (NFR1).  

Another issue with the UI in v1 was with the way we supported the different options of a dataset 

in the dataset window. Clicking an option from the dataset menu (point #2 in Figure 6-4, and #1 

in Figure 6-6) would instantly change the current screen to the selected option screen. For 

example, in Figure 6-6, clicking on the Files option replaced the current view (e.g., chat list) with 

the dataset file management screen. A user would have to click back and forth between two 

screens to see the effect on the dataset. This design after working with the software for a while 
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was found to be disorienting and unproductive, and it did not adhere to the non-functional 

requirement of useability (NFR1). 

 

 

Figure 6-6: Resolute v1.0 dataset file management 

We wanted to make the system open up a new window instead of switching the current screen on 

the user. Doing so would mean we would have to remove the menu altogether and come up with 

a new design of how to handle the different parts of a dataset. Also, the top buttons on the screen 

were taking too much screen real-estate.  

The changes we wanted to do to the UI in v1 could not be done via refactoring of the code alone. 

The code associated with the view had to be redone.  

 

Templates and Directives  

Normalization templates are a necessary part of normalization. Resolute v1 did not provide a 

proper facility for managing them. Instead, it would expect to find the templates either as 

directives specified in the converted text document or in an external file stored in the folder 

containing the dataset files. 

Furthermore, it was discovered during development that other directives were needed, for 

example the preprocessing directives.  

While working with the SQ on the usability aspect of Resolute, it became clear that the lack of 

directive support from the UI confused users, and it did not adhere to the non-functional 

requirement of useability (NFR1). Resolute needed to provide a proper facility to manage 

directives at the dataset collection, dataset and document level. 
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6.5.2 Resolute version 2.0 

Resolute v2.0 is the latest version of Resolute that was shipped to the SQ.  

The Resolute prototype and version 1.0 played an essential part in the design of version 2.0. 

Taking the decision to stop development on version 1, and rewrite large parts of the code in 

version 2 was not taken lightly but, it did not adhere to many of the non-functional requirements 

(NFR1-NFR4). In retrospect, however, it turned out to be a sound decision.  

 

6.6 Architecture 
The system illustrated in Figure 6-7: System Architecture defines the architecture we propose to 

define and build. 

Chat Management
(datasets)

Resolute Application

Raw Chats
Aquire

And
import

Normalization

Chat
Analysis

Automatic
Sexual Predator 

Identification
(SPI)

Anonymization

 

Figure 6-7: System Architecture 

• Resolute is an application that is responsible for providing a user interface, and to bring 

together the different functions in a cohesive, productive environment (REQ2, NFR1). 

• Chat Management is an integral part of Resolute. It is capable of managing potentially 

millions of chats. How Resolute allows a user to organize the data, and how performant it 

is at storing and retrieving chats are essential requirements (NFR2). 

• Normalization is the function of transforming raw chats into a standardized format 

suitable for Sexual Predator Identification (SPI) and analysis. Ideally this function should 

be a totally automatic process (REQ3). It also needs to be performant in order for it to be 

practical (NFR1). 

• Automatic SPI is the function of evaluating chats and calculating a probability that a 

given conversation and author contain evidence of sexual predation of a minor (REQ8). 

How well and how quickly chats can be evaluated are essential requirements (NFR1). 

• Anonymization is the function of obscuring named entities in the chats. This is a function 

that provides law enforcement the ability to distribute chats to outside personnel if 

required (REQ5). Section 6.7.4 Anonymization briefly describes anonymization. 
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• Chat analysis is an integral part of Resolute. It is responsible for presenting the user with 

information about a chat, for example, the probability of SPI, a viewer that presents the 

chat in a readable form including color coding of authors, etc. (REQ8). 

 

6.6.1 Architectural Patterns 

Resolute is built using Microsoft C# and the .NET framework. The GUI utilizes the .NET 

‘Windows Presentation Foundation’ (WPF) framework, which supports a well-defined 

separation between the presentation layer and the model.  

The high-level architecture of Resolute follows the Model-View-ViewModel (MVVM) pattern 

[30]. MVVM is a pattern that defines a clear separation of the business and presentation logic of 

an application. It is very close in nature to the traditional Model-View-Controller (MVC) pattern 

[31], but is more tailored to a GUI application using WPF.  

 

Figure 6-8: MVVM Pattern 

The view in WPF has 2 distinct components;  

• Extensible Application Markup Language (XAML) which is a declarative language that 

is based on XML. This is where the GUI screens are defined, i.e., XAML is used to 

define and place the controls on the GUI screen. There is no C# code in XAML, it is just 

XML that defines the GUI screen. 

• Code-behind component which is the C# code that WPF invokes in response to events 

from the GUI controls that are defined in the XAML. This code is used mainly to control 

aspects of the UI visual behaviors based on events. Business logic is not implemented 

here. In fact, this layer implements very little code.  

The view-model interacts with the view via properties and commands, to which the view 

contains data-binding definitions in XAML to the view-model properties and commands. The 

view-model notifies the view of state changes using notification events. The properties and 

commands of the view-model define the functionality offered by the UI, whereas the view 

determines how that functionality is to be presented in the GUI. 

The view-model is also responsible for coordinating events from the view that require interaction 

with the models. Each view-model provides data from a model in a form that the view can easily 

consume. 
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The model contains the code associated with the applications’ data and business logic, i.e., the 

applications’ domain model. As we will see in the next section, the model layer will be further 

divided into other layers. 

Resolute adheres strongly to the MVVM pattern, and it has proven to have worked very well in 

managing the code complexity during development. 

 

6.6.2 Application Architecture 

The general architecture of Resolute is based on the MVVM pattern as described in the previous 

section, but it also implements other patterns in the model as shown in the following diagram: 

 

Figure 6-9: Resolute General Architecture 

The Model layer contains the business (i.e., domain) logic of the application. The model classes 

go through the Data Access layer to retrieve, create, update and delete data from the Mongo DB.  

Mongo DB was chosen as the data repository because: 

• It’s free and open source. 
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• It’s a NoSQL, i.e., non-relational database. Records are stored as documents, and allows 

fields to vary from document to document, i.e., record structure is not rigid as it is in SQL 

for example. This allows Resolute to evolve iteratively without complications with 

deployments. Also, documents map naturally to C# objects. 

• Provides high-performance data I/O, is a distributed database, provides high availability, 

horizontal scaling, and geographic distribution (NFR1-NFR4). 

• Easy to install and maintain, which simplifies the installation and setup of Resolute. 

Tests were conducted in Resolute where over one million chats were imported without any 

noticeable degradation in performance (see 6.8 Experiments and Results). 

 

6.7 User Interface 
The following sections describe the Resolute GUI interface. Not all functions of Resolute are 

described in this section. We focus mainly on relevant topics found in this thesis. Full details 

about all the functions are provided in the Resolute Users Guide. 

 

6.7.1 Main Window 

The following is an example of the Resolute main GUI window after it’s been setup and loaded: 

 

Figure 6-10: Resolute Main Screen 
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1. The main work area. Different windows will be opened here depending on the options 

selected. 

2. Dataset Collections tool window. Users can navigate, create and manage datasets from 

here (REQ2). 

3. Messages tool window. System messages are displayed here. Some messages include 

detail buttons that will open another window showing details of an operation, and or extra 

error information if available. Figure 6-11: Displaying Message Details illustrates an 

error message with extra details (1), and the corresponding window that was opened after 

pressing the ‘Details’ button (2). (NFR1) 

4. Status bar. This area contains information about the current state of the application. For 

example, our session is based on the ‘Example Profile’ profile. 

 

Figure 6-11: Displaying Message Details 

All windows and tool windows in Resolute are detachable and can be docked in any predefined 

sections of the view (NFR1). For example: 
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Figure 6-12: Example of detached windows and docking points 

Point #1 are the areas where the windows can be docked. Point #2 are detached windows. 

 

6.7.2 Directives 

Directives hold normalization template and pre-processing specifications. They also allow the 

user to control the behavior of different functions throughout Resolute (NFR1).  

There are 3 different locations where a directive can be placed, and where it is placed defines its’ 

scope as follows: 

• Dataset Collection level: directives specified here apply to all datasets and documents 

contained within the dataset collection. 

• Dataset level: directives specified here apply to all documents contained within the 

dataset. 

• Document level: directives specified here apply to a document. 

The following diagram illustrates where directives can be specified: 
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Figure 6-13: Directives at the Dataset(2) and Datsset Collection(1) level 

 

Figure 6-14: Directives at the document level 

 

HEADER Directive 

The header directive allows for the specification of normalization templates.  

The syntax of the header directive is: 

HEADER: <template-specification> 

Where <template-specification> can be any of the following: 

#NL New line expected 

#YEAR Year part of a date 

#MONTH Month part of the date 

The month can be a number (1-12) or the word in English or 

French (e.g. Sep, Sept, September, Septembre) 

#DAY The day of the month (1-31) 

#HOUR The hour part of the time 

#MIN 

#MINUTE 

The minute part of the time 
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#SEC 

#SECONDS 

The seconds part of the time 

#AMPM If the time part contains AM or PM 

#WEEK Day of the week in English or French in short or long format. 

e.g.: Mon, Monday, Lun, Lundi 

#AUTHOR The author of the chat. 

Author names are usually delimited by some sort of symbol (‘:’), 

if they are not then the normalizer assumes the author name is less 

than 5 words. 

<any other character(s)> Any other character other than the special tokens defined above 

will be expected in the chat header as is.  

For example ‘HEADER: hello #AUTHOR:’ will expect to find the 

word ‘hello ‘ followed by the authors’ name and ending with a 

colon. 

 

Example: 

[2021-08-31 02:17] Mike: Hello there 

[2021-08-31 02:17] Julie: hey 

[2021-08-31 02:18] Mike: How are you doing today/night? 

[2021-08-31 02:18] Julie: i went to the beach 

[2021-08-31 02:18] Julie: and you? 

HEADER: [#YEAR-#MONTH-#DAY #HOUR:#MIN] #AUTHOR: 

 

In addition to the special template tokens #YEAR, #MONTH, etc. the other characters [- :] in the 

template including spaces are necessary parts of the header. The normalizer expects to find those 

characters at their respective positions in the chat header. 

 

Preprocessor Directives 

The preprocessor directives are used to alter/remove chat structure information from a chat prior 

to normalization. The following list briefly summarizes the syntax of the preprocessor directives: 

• PREP-CMD: <preprocess-tool-executable> <input-file-argument>%input_file <output-folder-

argument>%output_folder <other-arguments…> 

• PREP-REPLACE: <search-text> [#WITH <replace-text>] 

• PREP-REPLACEX: <regular-expression> [#WITH <replace-text>] 

Note that the preprocessing discussed here is not the same as the preprocessing required for 

classification (see 5.5 Preprocessing). 

PREP-CMD stands for ‘preprocessor command’ and it instructs Resolute to invoke an external 

program or script to preprocess a chat. The function of the external program is to remove any 

information in the chat not related to the chat header or text. When a preprocess directive is 

encountered Resolute exports the text chat and passes the exported filename as an input 
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parameter to the program. An output filename is sent to the program as a parameter as well. 

Resolute expects to find the resultant output preprocessed file once the chat has been 

preprocessed. The output file is imported back into Resolute, which will become the file that will 

be normalized. 

The PREP-REPLACE and PREP-REPLACEX directives perform the same function as PREP-

CMD but are supported internally in Resolute. PREP-REPLACE allows for simple text search 

and replace and PREP-REPLACEX allows for more complex search and replace using regular 

expressions. Both directives allow for cases were a search and replace could convert a structured 

chat into an unstructured chat. For example, given the following chat taken from the SQ dataset: 

Session Start: Wed Jul 13 19:51:27 2011 
 
Session Ident: [X] 
 
01[19:51] <Y> sa va X 
 
 
01[18:51] <Y> sa va X 
 
 
 
[18:56] <X> Oui, toi 
 
01[18:56] <Y> oui tres bien 

 

Preprocessing with the following PREP-REPLACE directives: 

PREP-REPLACEX: Session Start: .*|\n$ 
PREP-REPLACEX: Session Ident: .*|\n$ 
PREP-REPLACEX: Session Close: .*|\n$ 
PREP-REPLACEX: Session Xse: .*|\n$ 
PREP-REPLACE: 01[ #WITH [ 

 

Gives the following pre-processed chat without the need to call or create an external 

preprocessing program using PREP-CMD: 

[19:51] <Y> sa va X 
 
 
[18:51] <Y> sa va X 
 
 
 
[18:56] <X> Oui, toi 
 
[18:56] <Y> oui tres bien 
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6.7.3 Managing Datasets 

A Dataset is an object in Resolute where chat documents live. It is where functions like 

anonymization, normalization, SPI, and analysis happen on chat documents. The functions 

defined in this section map to requirements: REQ1-REQ4, NFR1. 

A Dataset Collection, is a container for holding datasets and folders. Folders are essentially an 

organizational tool. They simply contain other folders and datasets. 

In a typical setup, you could expect few dataset collections. Each dataset collection in turn can 

contain copious numbers of folders and datasets.  

Resolute provides a separate admin console program to create or delete Dataset Collections. This 

is because a dataset collection is actually a MongoDB database and it requires some basic 

knowledge of MongoDB to create. The admin application is best used by DBAs and it is not 

directly accessible by everyday users of Resolute. 

Resolute requires a user to define a profile which contains information about which dataset 

collections a user wants to work with. After a profile is defined or loaded Resolute displays the 

corresponding Data Collection tool window, with the users’ defined dataset collections, for 

example: 

 

Figure 6-15: Dataset Collection tool window 

Datasets or folders can be managed by right-clicking on the root dataset collection, dataset or on 

a folder and selecting from a context menu which action to perform. For example: 
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Figure 6-16: Dataset Collection management context-menu 

The context menu is setup to disable the functions which are not applicable to the item selected 

in the dataset collection tree. For example, if a dataset is selected then the New|Folder and 

New|Dataset options would be disabled. A user can also copy, cut and paste either a dataset or a 

folder to another folder.  

Working with chat documents requires a dataset to have been created. Opening up the subitems 

of a dataset from the dataset collection tool window shows the dataset workflow entities, for 

example: 

 

Figure 6-17: Dataset workflow entities 
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The ‘Directives’ item, allows a user to define any directives which apply only to the chat 

documents contained in this dataset. See section 6.7.2 Directives for more information on 

directives. Items ‘Normalization’ and ‘Analysis’ are detailed below.  

Double clicking on an item will bring up the corresponding window in the workspace area. For 

example, clicking on ‘Normalization’ will bring up the main normalization screen: 

 

Figure 6-18: Normalization screen 

 

6.7.4 Anonymization 

Anonymization is the process of obscuring named entities such as author names, phone numbers, 

addresses, locations, and internet identifiers, etc. The functions defined in this section map to 

requirements: REQ5, NFR1. 

Resolute offers anonymization with the idea of offering the SQ a tool that could assist them in 

generating enough French data to be used to train and test an SPI AI agent.  

The anonymization feature in Resolute supports basic named entity recognition as follows: 

• Author names identified during normalization  

• URLs and IP addresses 

• Postal codes 

In addition, all numbers are changed to either #..#L for numbers under a certain configurable 

threshold, and #..#H for values above. Each # symbol generated replaces a digit. The threshold 

value between low and high is configured to the age considered a minor. In Quebec that value is 

18. Since our entity recognition logic is limited, replacing all numbers obfuscates several 

numerical entities such as phone numbers and addresses. 

Grouping different chats from the same authors improves SPI detection since it gives the AI 

agent more data to work with (refer to Chapter 5: Sexual Predator Identification for more 
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information). Therefore, obfuscating the author ids could not be random, since it is important 

that the same author in different chats keep the same generated name. In addition, the obfuscated 

names must not be reversable, i.e., not possible to figure out the original authors name from the 

generated name. 

To address this issue Resolute uses the following logic to generate a seemingly random name 

that will generate the same identifier for the same author but that cannot be reverse engineered: 

• Authors’ name is encrypted using SHA-256 which is a cryptographic one-way hash 

function.  

• A CRC-16 checksum value is calculated from the encrypted value. 

The resultant CRC-16 value is used as the authors’ obfuscated name. The extra step of using the 

CRC-16 value as the name was used to shorten the names to a reasonable length. This shortening 

of the name to a 16-bit value does mean that there are only 65,535 possible author names, and by 

applying the pigeon hole principal this implies that some different author names will map to the 

same generated name. This of course can be mitigated by increasing the generated identifier to a 

CRC-32 value, but at this time we felt that the CRC-16 value was good enough for our purposes. 

Resolute also allows non-normalized text chats to be anonymized. The quality of the 

anonymization is compromised in this case as the author names are unknown at that point. In 

these cases, a warning message is presented to the user of this fact and that further manual 

anonymization is recommended. 

The quality of anonymization in Resolute is by no means sufficient, for example it will not 

obfuscate street names or cities, or misspellings of the author names. The goal of anonymization 

in Resolute is to provide help, and make the process more efficient. We make it clear to the user 

that anonymized chats need to be manually verified before they are released. 

Anonymization is executed from the normalization screen by selecting the documents, right-

clicking and selecting ‘Anonymize’ from the context-menu. The following is an example: 
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Figure 6-19: Anonymize documents 

Resolute will then present the user with a dialog to choose which folder to save the anonymized 

chats. 

 

6.7.5 Normalization 

Importing, conversion to text, preprocessing and normalization are all functions that can be 

performed from the dataset normalization screen. The functions defined in this section map to 

requirements: REQ3, NFR1. 

The first step requires that a user import the original chat documents. These documents should be 

in their unaltered native file format. Once imported double clicking on the document entry will 

bring up the original document for viewing. For example: 

 

Figure 6-20: Importing documents 
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Double clicking on document ‘neg_3.docx’ will bring up the document in Microsoft Word. 

Resolute automatically exports the document to a temporary folder and filename, so editing the 

document will have no effect on the original. The application that is used to view the document 

depends on the type of file which is indicated by the filename extension.  

The next step is to convert the original text documents from their native file format into text. 

This is done by selecting which documents to convert and then selecting the ‘Convert to Text’ 

function. The resulting screen shows a text icon to indicate which documents have been 

converted, for example: 

 

Figure 6-21: Converting to text 

Clicking on the corresponding icon will bring up the converted text document in another tabbed 

window in Resolute, for example: 

 

Figure 6-22: Editing a converted to text document 

Resolute allows editing of the converted text document. This is useful for removing structure 

data from chats without having to provide preprocessing directives. This is only practical for a 
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small number of chats. If there are many chats that require editing then preprocessing them 

would be more efficient. 

The next step after converting all the documents to text is to normalize them. Structured chats 

however require an extra preprocessing step at this point. Our example in Figure 6-22 shows a 

structured chat that can be preprocessed into an unstructured chat using only the built-in Resolute 

PREP-REPLACE directives. Setting up the replace directives at the dataset level and 

preprocessing the documents results in preprocessed icons being displayed for all documents 

successfully preprocessed. Note that the message panel will provide details of the preprocess 

operation. This is useful if there are errors encountered during preprocessing. For example: 

 

Figure 6-23: Preprocessing screen 

Clicking on the preprocess icon opens up a tabbed window with the preprocessed output. The 

resultant document can be edited if desired, for example: 
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Figure 6-24: Preprocessed output editor 

The next step is to normalize the documents. Before normalization can be performed the 

normalization template directives need to be specified. The chats in our example are of the same 

format (i.e., class), as a result we can specify the template directive at the dataset level and 

invoke the normalize function. An extra document was imported for the example below, in 

which the template was not specified. Upon completion a normalization icon is displayed for all 

the chats that have been normalized properly, i.e., the Normalized column in Figure 6-25; 

 

Figure 6-25: Normalized chats 

Clicking on the normalized icon will bring up the normalized document in an editor, where the 

normalized document can be viewed or edited. For example: 
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Figure 6-26: Normalized chat text 

The icons in the Message column in Figure 6-25 indicate if the normalization operation was 

successful (check mark) or contained errors or warnings (warning icon). Clicking on either will 

bring up the details of the normalization operation for the corresponding document, e.g.: 

 

Figure 6-27: Normalization errors 

Notice that in the Directives column in Figure 6-25, Resolute has populated that column with the 

template it deemed the best. That is where directives can be specified at the document level. 

Resolute populates that field so that the next time the document is normalized, Resolute will not 

have to go through all the templates specified at the dataset and dataset collection levels, which 

under certain conditions (e.g., many templates specified) can be a lengthy operation. 

Once normalized chats can be analyzed as described in the next section. 

 

6.7.6 Chat Analysis 

The chat analysis tools can be accessed from the dataset collection tool window. The functions 

defined in this section map to requirements: REQ6-REQ9, NFR1. Selecting a dataset and 

clicking on the Analysis selection brings up the chat analysis window, for example: 
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Figure 6-28: Dataset analysis window 

The analysis window shows all the documents imported into the dataset from the normalization 

window. Documents that were normalized display some information about the corresponding 

chat, such as the number of authors in the chat, and the two authors with the most dialog in the 

chat. The ‘chat’ column displays a ‘ ’ icon, which can be pressed to open up the chat in a 

viewer. Refer to the section ‘Chat Viewer’ below for more information. Documents that are not 

normalized do not display the chat viewer icon and offer no information on the authors.  

 

 

Figure 6-29: Example analysis of dataset 

The SPI column displays the probability of predation of a minor that the AI agent assigned to the 

chat. The example chat in Figure 6-29 highlighted in blue shows a probability of 71% that it is a 

predatory chat. The top 3 chats are in fact predatory chats taken from the PAN2012 dataset.  
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Chat Viewer 

The chat viewer displays a chat in a presentable manner to the user (REQ9). It also provides 

basic analysis tools such as color coding of authors and author filtering. 

 

Figure 6-30: Chat Viewer 

Figure 6-30 shows a chat in the viewer. The authors can be color coded (point #1) to make it 

easier to keep track of a predator or victim as the user is reading. Authors can also be filtered out 

of the chat (point #2) so that the reader can focus on the text for a particular author. 

 

6.8 Experiments and Results 
The following experiments consist of recording the time it takes to perform certain functions 

with a certain number of documents, i.e., the ability to handle large numbers and volumes of data 

in a performant manner.  

All experiments were executed on a 4-core Intel i7-6700 @ 3.4Ghz, with 16G ram, running 

Windows 10.  

The MongoDB database (i.e., dataset collection) that was used for the experiments contained 

over 1.5 million pre-imported documents before any of the experiments began (approx. 180G of 

data). 

Dataset with 1,000 Documents mm:ss 

Import Documents 0:04 

Convert to Text 0:09 

Normalize 0:10 

Initial Load 0:01 

Open Document 0:01 

SPI Analysis 0:12 
 

Dataset with 5,000 Documents mm:ss 

Import Documents 0:09 

Convert to Text 0:49 

Normalize 0:49 

Initial Load 0:02 

Open Document 0:01 

SPI Analysis 0:13 
 

 

It is not recommended to create datasets greater than 5,000 documents:  
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• It becomes difficult to work with individual documents, for example scrolling the 

document list in a window becomes hyper-sensitive. 

• Processing time for each operation increases non-linearly. This is because the Windows 

operating system imposes heavy performance penalties when accessing individual files in 

a folder with many files. For example, given a dataset with 10,000 documents, the 

conversion to text operation requires Resolute to export the original document to a 

temporary folder, the conversion program creates a converted text document bringing the 

number of files in the folder to 20,000, then Resolute needs to import each text file.  

The following test cases show the time for datasets containing more than 5,000 documents. 

Dataset with 10,000 
Documents mm:ss 

Import Documents 1:13 

Convert to Text 1:42 

Normalize 1:17 

Initial Load 0:03 

Open Document 0:01 

SPI Analysis 0:24 
 

The PAN-2012 Training Dataset   

with 66,927 Documents mm:ss 

Import Documents 17:00 

Convert to Text 20:00 

Normalize 19:00 

Initial Load 0:03 

Open Document 0:01 

SPI Analysis 4:53 
 

  

The PAN-2012 Test Dataset   

with 155,128 Documents mm:ss 

Import Documents 74:00 

Convert to Text 88:00 

Normalize 95:00 

Initial Load 0:04 

Open Document 0:01 

SPI Analysis 31:22 
 

 

 

Given a corpus of more than 5,000 documents it is recommended that the documents be split 

across multiple datasets. 

 

6.9 Future Work 
Resolute could benefit from the following enhancements: 

• Scan and generate normalization templates automatically. Refer to section 4.9 Future 

Work for more information on how this can be accomplished. 

• Build functionality that would enable Resolute to poll a directory for incoming 

documents. Whenever a new document is placed in the directory Resolute would 

automatically import, normalize and perform SPI analysis on the document. It would 

raise an alert and notify a person responsible when it discovers a predatory chat. This 

would enable the SQ to process in-coming chats in real-time. The SQ could get advance 
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notice of a possible meetup between predator and victim and protect the victim before the 

crime happens. 

• The SPI scoring requires the user to perform some manual steps. Currently normalized 

documents need to be exported, then used as input to the SPI AI agent which runs outside 

of Resolute, and the scoring results imported back into resolute. Future work can 

integrate this directly into Resolute. 

• There are a number of auxiliary functions that are not performant on large datasets. For 

instance, copy/paste of directives in the normalization window, or moving large datasets 

from one folder to another.  

• There are a few long running functions that block the application. The application should 

never stop responding to user input. These functions need to be enhanced to not block a 

user from performing other functions while a long running operation is in progress. 

 

Resolute allows multiple users to work on the same dataset collection; however, there is always 

the risk that two or more users might decide to work on the same dataset (CON2). When that 

happens, users risk overwriting each other’s work. There are multiple ways of handling this, 

including building an observer that would be aware of any updates done to the dataset and 

updating any screens/windows working on that dataset in real-time. A more basic solution might 

be to lock the dataset so that only one user can work on it at a time.  

The ability to normalize documents opens up doors for other types of AI agents. For instance, it 

would be useful to be able to identify authors who use one or more aliases, i.e., authorship 

identification. The PAN-2012 competition not only included SPI, but it also held an Author 

Identification competition [32]. With enough data and a good authorship identification AI agent, 

it would be possible to build and display complex social networks more accurately. This ability 

would greatly help law enforcement.  

 

6.10 Concluding Remarks 
We have shown that in support of hypothesis 2 (see 1.3 Research Objectives) a chat management 

system can be defined and built that enables users to manage, process, analyze and identity raw 

chats for sexual predation more efficiently than it takes to perform the task manually. 

Resolute attempts to bridge the gap between an AI agent that works well, and one that works 

well and is practical to use.  

We wanted to provide the SQ with the ability to identify and prosecute suspected sexual 

predators quicker and with less effort than was done in the past (NFR1). A SPI AI agent alone 

cannot do that without help in managing and preparing the data first.  

We showed that facilitating document normalization is possible, and that it provides significant 

benefits to the user.  
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The decision to re-write Resolute v1 was not an easy one to make. We had to abandon a lot of 

work, however; we felt that a non-performant application that is not productive to use will not 

serve its intended purpose. In the end we believe we made the correct decision, and v1 served as 

an excellent prototype for v2. Resolute v2 is a useable performant application.  
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Chapter 7: Conclusion and Future Research 
 

Social media provides a powerful platform for individuals to communicate globally. This 

capability has many benefits, but it can also be used by malevolent individuals, i.e., predators. 

Anonymity exacerbates the problem. The motivation of our work is to help law enforcement 

protect our children from this potentially hostile environment, without excluding them from 

utilizing its benefits. 

An AI agent by itself cannot provide the practical functionality needed by law enforcement to do 

an effective job at SPI. The sheer quantity of messy/noisy data make it a necessity to provide 

document management and normalization features. Our contribution deals with all these issues, 

and presents a practical effective solution to SPI.  

The task of identifying conversations and authors engaged in sexual predation of minors is only 

the beginning. People adapt, and as one technology becomes effective at catching predators, they 

find other ways to locate and entrap their victims. Law enforcement is doing their best to protect 

us, but they have limited resources and need help. The work done in this thesis is our 

contribution to them. It is a worthwhile effort and one we hope other researchers will carry 

forward. 

We have outlined in chapters 3, 4 and 5, some of the future work we think might provide the 

most value going forward. The following sections summarize what we think are the ones that can 

provide the most benefits: 

 

7.1 Authorship Identification and Social Network Analysis 
Social network analysis (SNA) is a powerful way of being able to visualize the social 

interactions of an individual. Predators are not only using social platforms in search of victims; 

they often use them to participate in support networks with other predators. They use these 

support networks to exchange information on how to entrap victims and how to avoid detection. 

Having a clear picture of a predators’ social network can provide law enforcement very valuable 

information on protecting victims and identifying other predators.  

There are some issues with SNA that make it less effective than it could otherwise be. People 

often use different user names on different platforms. This makes it tricky to obtain a full view of 

a predators’ social network. A possible solution to this is an AI agent that can perform accurate 

identification of authorship. That is, a system that can map the likelihood that authors using 

different names are in fact the same author. 

Enhancing Resolute to support SNA with accurate authorship identification would provide great 

value. 
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7.2 Meetup Detection in Chats 
It would be useful for law enforcement to be able to detect when a predator and victim are 

planning to meet, before they meet. With this information law enforcement can prevent the crime 

before it happens, and they could build a solid case against the predator if they catch him/her red 

handed.  

An AI agent that is capable of detecting in real-time a predator and victim meetup before they 

actually meet would provide great value to law enforcement. Research on this task has been done 

by M. Vogt, et al. [2] and Pastor Lopez-Monroy et al. [3] (see 2.2.1 Overview of the Top 

Approaches to SPI). The general idea is for an AI agent that is capable of incorporating named 

entity recognition with SPI with the intention of a meetup. 

Resolute can be enhanced to poll a directory for new files containing recently obtained chats. 

The chats would be picked up and processed in real-time. Automatic normalization of the chats 

would be applied, and the documents filed under designated datasets in Resolute. Resolute can 

set the groundwork for such an AI agent to be of practical use.  

 

7.3 Automatic Template Creation for Normalization 
Normalization of a chat requires that a corresponding template describing the chat header be 

supplied. Currently this needs to be done manually for each chat, and runs the risk of being time 

consuming and tedious. Resolute has mitigated that risk by supporting directives in which one 

template can be applied to a multitude of chats. However, it is still not the optimal solution. 

It is possible to add functionality that can build the chat templates automatically. There are a few 

challenges to overcome (see section 4.9 ) but the benefits would be great. It would also be 

required if an AI agent that can detect meetups as described in the previous section is to be able 

to process chats in real-time. 

 

7.4 Multilingual SPI 
Using machine learning to give computers the ability to understand language requires large 

datasets. As part of the PAN2012 SPI competition the organizers created a dataset of English 

chats composed of 2,883,371 lines of labeled text. In their paper ‘Overview of the International 

Sexual Predator Identification Competition at PAN-2012’ [14] they describe the challenges they 

faced putting the corpus together. Despite the challenges, they were able to find existing publicly 

available repositories of chat logs to base the normal conversations on.  

Our experience trying to build a dataset of French based chats presented us with multiple 

challenges. The greatest challenge as it turned out was not the predator/victim chats (provided by 

the SQ), it was the large number of normal chats we needed to maintain the proportion of 

predator to normal chats as discussed in the ‘Overview of the International Sexual Predator 

Identification Competition at PAN-2012’ paper. There are surprisingly few publicly available 

places where the chats can be downloaded. Not being able to find French based chats, we 
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attempted to scan several English repositories for French based chats. Surprisingly, a small 

proportion of the chats were in French, but not enough to build a proper dataset. 

The idea of multilingual SPI is to use the existing English based PAN2012 dataset and leverage 

it to detect SPI in other languages. Can the machine translation capabilities of the Transformer be 

used in this task? There are online resources that enable one to build a decent machine-based 

language translation agent. These resources when used with a Transformer allow translation to 

and from many different languages. How can those resources be leveraged? These questions 

need exploration, and if an appropriate solution is discovered, the practical implications are 

great. 
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