

Cache-Aided Delivery Networks with Correlated Content in a Shared

Cache Framework

Behnaz Merikhi

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

October 2022

© Behnaz Merikhi, 2022

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

 This is to certify that the thesis prepared

By: Behnaz Merikhi

Entitled: Cache-Aided Delivery Networks with Correlated Content in a Shared Cache Framework

and submitted in partial fulfillment of the requirements for the degree of

 Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

 Signed by the final examining committee:

Dr. Wen-Fang Xie
 Chair

Dr. Benoit Champagne
 External Examiner

Dr. Hovhannes Harutyunyan
 External to Program

Dr. Walaa Hamouda
 Examiner

Dr. Yousef R. Shayan
 Examiner

Dr. Mohammad Reza Soleymani
 Thesis Supervisor

 Approved by:

Dr. Jun Cai, Graduate Program Director

 October 6, 2022

Dr. Mourad Debbabi, Dean

 Gina Cody School of Engineering and Computer Science

iii

Abstract

Cache-Aided Delivery Networks with Correlated Content in a Shared Cache Framework

Behnaz Merikhi, Ph.D.

Concordia University, 2022

Internet traffic is growing exponentially due to the penetration of powerful internet-connected

devices and cutting-edge technologies. Additionally, the rise in internet usage has coincided with

a shift in the nature of data traffic from voice-based to content-based usage, putting significant

stress on delivery networks. Despite the infrastructural advancements in communication networks

over the past few years, content delivery networks (CDNs) still face challenges in keeping up with

the high delivery data rates and suffer from the imbalanced network load between off-peak hours

and peak hours.

In this regard, content caching has emerged as an efficient technique to combat the high delivery

date rates and maintain a balanced network load while improving the quality of services (QoS) by

storing some popular content close to the end users. Caching networks operate in two phases; the

placement phase during off-peak hours before users reveal their demands and the delivery phase,

which is accomplished when users’ demands are revealed to the server during peak hours. As the

server is unaware of the demands during the placement phase, this phase must be designed

carefully to minimize the delivery rate regardless of the requested content during peak hours.

This dissertation studies cache-aided delivery networks with correlated content in a shared cache

framework. A shared cache framework is beneficial in the current and next-generation wireless

networks as it provides a local cache to all users within small base stations (SBSs), relieving strain

on the backhaul. Furthermore, the library of a caching network could consist of content with a high

degree of similarity in many practical applications; Therefore, exploiting the similarity among

library content can also be leveraged to reduce the delivery rate in such networks.

In this dissertation, we look at the proposed caching network from an information-theoretic

perspective and formulate it as a distributed source coding problem with side information at the

decoder. Then, the critical question arises as to what should be cached as side information to reduce

the delivery rate of the network efficiently.

iv

To answer this question, we propose an automatic clustering scheme using artificial intelligence

(AI)-based optimization techniques to identify the selected side information for the entire library.

We comprehensively evaluate the performance of the general clustering framework in a separate

chapter by considering different datasets and distance measures. The general clustering framework

enables us to develop two novel clustering schemes as a part of the placement phase of the

proposed caching networks under different settings throughout this study, considering both the

similarity and popularity of the library content.

Upon identifying the selected side information for such networks, the next question that should be

answered is how we should place the side information into caches; And consequently, what is the

delivery strategy for this placement scheme? We have furnished our answer to these questions by

considering three different caching networks: first, a network in a single shared cache framework

under lossy caching. Next is a network with multiple shared caches under uniform popularity, and

finally, a network with multiple shared caches under non-uniform preferences. In such networks,

we address the placement and delivery strategy to show the trade-off between the delivery rate and

the memory size of the system. We calculate the peak and expected rates of the studied networks

by considering the rate-distortion function and caching strategy. We also introduce the optimum

library partitioning formulated to minimize the peak delivery rate in the system.

The performance analysis and extensive simulations of the proposed solution confirm that our

scheme provides a considerable boost in network efficiency compared to legacy caching schemes

due to our problem formulation and the careful extraction of side information during the placement

phase.

v

To my wonderful husband, Sina

Whose endless love, support, and encouragement embrace me every day

To my lovely parents, Fatemeh and Manouchehr

For their unconditional love

And

To my dear brothers, Babak and Behrooz

Who have always been a constant source of inspiration to me

vi

Acknowledgments

First and foremost, I wish to express my sincere appreciation to my supervisor, Professor

Mohammad Reza Soleymani, for providing me with this wonderful opportunity in his research

group. Being a part of his research group is an honor that will stay with me forever. I am forever

grateful to him for his continuous encouragement and guidance throughout my Ph.D. journey. This

dissertation would not have been possible without his support and constructive feedback.

I would also like to express my deepest gratitude to my Ph.D. committee members, Professor

Yousef R. Shayan, Professor Walaa Hamouda, and Professor Hovhannes Harutyunyan, for their

time and helpful feedback. My special gratitude goes to Professor Benoit Champagne from McGill

University for his time as my external examiner.

I would like to thank Professor Ali Mirjalili from Torrens University Australia and Dr.

Mohammad Mirjalili from Polytechnique Montréal. I am thankful to them for providing me with

the great opportunity to collaborate and learn the fundamentals of artificial intelligence and

optimization algorithms, which was invaluable to my research endeavors.

I would like to thank my dearest parents, Fatemeh and Manouchehr, and my brothers, Babak

and Behrooz, for all the selfless love and support they have given me throughout my life. My

gratitude for their devotion and support is beyond words.

Last but not least, I am most thankful to the love of my life, Sina, who has always believed in

me and supported me every step of the way. He lived every single minute of the challenges and

achievements with me throughout this journey, and I could not succeed without his love, patience,

and encouragement.

vii

Table of Content

List of Figures ... x

List of Abbreviations ... xiv

List of Symbols ... xvi

Chapter 1 Introduction ... 1

1.1. Research Motivation ... 2

1.2. System Model and Problem Statement ... 4

1.3. Literature Review .. 7

1.3.1. Caching Networks ... 7

1.3.2. Data Clustering .. 11

1.4. Research Contributions ... 16

1.5. Organization of Dissertation ... 18

Chapter 2 Background .. 19

2.1. Centralized vs. Decentralized Caching ... 19

2.1.1. Centralized Coded Caching Strategy with Uncoded Placement 20

2.2. Placement and Delivery Phases Strategies .. 20

2.3. Index Coding Technique ... 21

2.4. Popularity Demand Distribution ... 22

2.5. Distributed Source Coding with Side Information at the Decoder 23

2.5.1. Lossless Source Coding ... 24

2.5.2. Lossy Source Coding ... 25

2.6. AI-Based Optimization Techniques .. 26

2.6.1. Binary Bat Algorithm .. 26

2.6.2. Binary Particle Swarm Optimization .. 28

2.6.3. Binary Genetic Algorithm ... 28

2.6.4. Binary Dragonfly Algorithm ... 29

Chapter 3 Automatic Clustering Using AI-Based Optimization Techniques in a General

Framework .. 31

3.1. Introduction ... 32

3.2. Data Clustering Problem Formulation .. 34

3.3. Proposed Data Clustering Framework .. 34

viii

3.3.1. AI-Based Optimizer Module ... 35

3.3.2. Binary Encoding Scheme .. 36

3.3.3. Objective Function .. 37

3.4. Results and Discussion .. 42

3.4.1. Dataset and Validity Measure ... 42

3.4.2. Experimental Results and Parameter Settings ... 44

3.4.3. Discussion ... 66

3.5. Statistical Analysis .. 67

3.6. Automatic Clustering for Binary Correlated Sources ... 75

3.6.1. Methodology for Binary Case ... 76

3.6.2. Results and Discussion for Correlated Binary Case .. 77

3.7. Summary ... 81

Chapter 4 Content Delivery in a Network with a Single Shared Cache and Correlated

Content ... 82

4.1. Introduction ... 83

4.2. System Model .. 84

4.3. Correlation-Aware Clustering Scheme (CACS) ... 85

4.3.1. CACS Methodology .. 86

4.3.2. CACS Optimizer Module .. 86

4.3.3. CACS Objective Function and Formulation ... 88

4.4. Proposed Caching and Delivery Scheme .. 90

4.4.1. Placement Phase .. 90

4.4.2. Delivery Phase ... 91

4.5. Performance Analysis and Discussion .. 94

4.6. Summary ... 97

Chapter 5 Content Delivery in a Network with Multiple Shared Caches and Correlated

Content under Uniform Demand .. 98

5.1. Introduction ... 98

5.2. System Model .. 99

5.3. Proposed Caching and Delivery Scheme .. 101

5.3.1. Placement Phase .. 101

5.3.2. Delivery Phase ... 102

5.4. Delivery Rate Analysis.. 105

ix

5.5. The Optimal Library Partitioning .. 106

5.6. Performance Analysis and Discussion .. 107

5.7. Summary ... 110

Chapter 6 Content Delivery in a Network with Multiple Shared Caches and Correlated

Content under Non-Uniform Popularity Demand ... 111

6.1. Introduction ... 112

6.2. System Model .. 112

6.3. Popularity-Based Correlation-Aware Clustering Scheme................................. 114

6.3.1. PB-CACS Objective Function and Methodology ... 114

6.4. Proposed Hybrid Caching and Delivery Strategy ... 117

6.4.1. Hybrid Cache Placement Strategy ... 117

6.4.2. Delivery Phase ... 118

6.5. Delivery Rate Analysis.. 120

6.6. Results and Discussion .. 122

6.7. Summary ... 124

Chapter 7 Conclusions and Future Research Directions ... 126

7.1. Conclusions ... 127

7.2. Future Directions ... 131

7.3. Publications ... 132

References ... 133

x

List of Figures

Figure 1.1: Global IP video traffic forecast by Cisco VNI from 2017 to 2022 [2] 2

Figure 1.2: Different videos of a person of interest from the same event with the same scene and

background .. 4

Figure 1.3: Cache-aided delivery system in a shared cache framework with multiple caches in the

network ... 5

Figure 1.4: Example of a robot factory where all laborers are connected to a shared cache 6

Figure 1.5: Tension between the popularity principle and the coding principle in cache placement

... 8

Figure 2.1: The achievable rate region in SW coding .. 25

Figure 2.2: The setup of the Wyner-Ziv problem ... 25

Figure 3.1: The steps of assigning a cluster number to each data point by the proposed binary

encoding scheme in the general clustering framework ... 37

Flowchart 3.1: The objective function of the proposed clustering framework 40

Figure 3.2: The process of evolving clusters and migration of data points to other clusters during

different stages of the proposed clustering framework. .. 41

Figure 3.3: The convergence curve of Example 3.2 in three different stages 42

Figure 3.4: Convergence curve of (a) aggregation, (b) compound, and (c) D31 datasets considering

BBA, BPSO, BGA, and BDA in the optimizer module. .. 50

Figure 3.5: Convergence curve of (d) flame, (e) Jain, and (f) Pathbased datasets considering BBA,

BPSO, BGA, and BDA in the optimizer module.. 51

Figure 3.6: Convergence curve of (g) R15, (h) spiral datasets considering BBA, BPSO, BGA, and

BDA in the optimizer module. .. 52

Figure 3.7: Convergence curve of (i) appendicitis, (j) dermatology, and (k)Ecoli datasets

considering BBA, BPSO, BGA, and BDA in the optimizer module. ... 53

Figure 3.8: Convergence curve of (l) glass, (m) Haberman, and (n) housevotes datasets considering

BBA, BPSO, BGA, and BDA in the optimizer module. .. 54

Figure 3.9: Convergence curve of (o) ionosphere, (p) iris, and (q) segment datasets considering

BBA, BPSO, BGA, and BDA in the optimizer module. .. 55

Figure 3.10: Convergence curve of (r) vehicle, (s) Wdbc, and (t) Wine datasets considering BBA,

BPSO, BGA, and BDA in the optimizer module.. 56

Figure 3.11: The shape dataset in its original form before performing the proposed clustering .. 57

Figure 3.12: Visual results of performing the proposed clustering framework on the shape datasets.

... 57

https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20136_Tables%20editing.docx#_Toc120813987
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20136_Tables%20editing.docx#_Toc120813987

xi

Figure 3.13: Convergence curve of (a) dataset 1, (b) dataset 2, and (c) dataset 3 considering BBA,

BPSO, BGA, and BDA in the optimizer module.. 80

Figure 4.1: Cache-aided delivery network model with a single shared cache 85

Flowchart 4.1: How the optimizer module and objective function collaborated to solve the

clustering problem in the proposed CACS considering the given constraints of the system 87

Figure 4.2: Placing the set of achieved representatives as the selected side information into the

shared cache .. 91

Figure 4.3: Reverse water-filling algorithm in delivery rate optimization for clustered files in a

cluster 𝑘... 94

Figure 4.4: Delivery rate memory trade-off in the proposed scheme compared to the conventional

caching for N=100 users, m=100 files .. 95

Figure 4.5: The expected distortion memory trade-off in the proposed scheme for different fixed

delivery rates compared to the conventional approach for N=100 users, m=100 files 96

Figure 5.1: Cache-aided delivery network with multiple shared caches 99

Figure 5.2: The minimum of the Peak delivery rate occurred in memory size 𝑀 = 20 for a library

of 𝑚 = 100 files, categorized into 𝐾𝐶𝑆 = [1: 100] clusters with different 𝛿𝑚𝑎𝑥 ≤ 0.231 107

Figure 5.3: The trade-off between the achieved number of clusters and the maximum distance in

the clusters for 𝑚 = 130 files with different correlation level among sources 108

Figure 5.4: Delivery rate comparison in a network with 𝑍 = 5 shared caches of size 𝑀 = 20. 109

Figure 6.1: Content delivery network in a shared cache Framework with multiple caches under

non-uniform popularity demand considering a hybrid placement strategy 114

Flowchart 6.1: How the optimizer module and objective function collaborated to solve the

clustering problem in the proposed PB-CACS considering system constraints 117

Figure 6.2: The trade-off between the achieved number of clusters and the similarity among

content files with 𝑚 = 130 in the proposed clustering solution .. 123

Figure 6.3: Uniformity of the aggregate popularity in the process of clustering by selecting 𝑚𝐻 =
7 high popular files and 𝐾𝑪 = 10 CSIs in the PB-CACS considering Zipf parameter 𝜉 = 1.4 123

Figure 6.4: Delivery rate comparison in a network with m=100 content files and Z=10 shared

cache each serving 𝑈𝑖=10 users ... 124

xii

List of Tables

Table 3.1: Summary of used datasets with different features ... 43

Table 3.2: Parameter configuration of the utilized optimization algorithms in the proposed

framework and two of the comparative studies .. 45

Table 3.3: Comparison results for the shape dataset with considering BBA, BPSO, BGA, and BDA

in the optimizer module in the proposed method.. 46

Table 3.4: Comparison results for the real-life dataset with considering BBA, and BPSO in the

optimizer module in the proposed method.. 47

Table 3.5: Comparison results for the Real-life dataset with considering BGA, and BDA in the

optimizer module in the proposed method.. 48

Table 3.6: Comparison results for the higher-dimensional dataset with considering BBA, BPSO,

BGA, and BDA in the optimizer module in the proposed Method .. 49

Table 3.7: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the shape datasets ... 60

Table 3.8: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the shape datasets ... 61

Table 3.9: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ... 62

Table 3.10: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ... 63

Table 3.11: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ... 64

Table 3.12: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ... 65

Table 3.13: Achieved Ranks by the Friedman Test for the Proposed Framework Considering four

Different Optimizer Modules .. 69

Table 3.14: Achieved P-values by the Wilcoxon Rank-Sum Test.. 70

https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471062
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471063
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471063
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471064
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471064
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471065
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471065
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471066
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471066
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471067
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471067
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471068
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471068
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471068
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471069
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471069
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471069
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471070
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471070
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471070
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471071
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471071
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471071
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471072
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471072
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471072
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471073
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471073
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471073
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471074
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471074
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471075

xiii

Table 3.15: Achieved Ranks by the Friedman Test on the DB-index for the Proposed Framework

Compared to Other Algorithms .. 71

Table 3.16: Achieved Ranks by the Friedman Test on Distortion Deviation Measures for the

Proposed Framework Compared to Other Algorithms ... 72

Table 3.17: Achieved P-values by the Wilcoxon Rank-Sum Test on the DB-index for the Proposed

Framework Compared to Other Algorithms ... 73

Table 3.18: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion Deviation Measures

for the Proposed Framework Compared to Other Algorithms.. 74

Table 3.19: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion Deviation Measures

for the Proposed Framework Compared to Other Algorithms.. 79

Table 3.20: Statistical Results of the Proposed Correlation-Aware Clustering Scheme Considering

Four Different Optimizer Modules ... 79

https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471076
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471076
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471077
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471077
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471078
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471078
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471079
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471079
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471080
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471080
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471081
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471081

xiv

List of Abbreviations

ACDE Automatic Clustering Using Differential Evolution

ACDE-O Automatic Clustering Using Differential Evolution with Oscillation

ACPAHS Automatic Clustering using Parameter Adaptive Harmony Search Algorithm

ACPSO Automatic Clustering based on Particle Swarm Optimization

ADEFC Automatic Differential Evolution Based Fuzzy Clustering

AGCUK Automatic Genetic Clustering for Unknown K

AI Artificial Intelligence

AKC-BCO Automatic Kernel Clustering with Bee Colony Optimization

AP Access Point

BA Binary Address

BBA Binary Bat Algorithm

BDA Binary Dragonfly Algorithm

BGA Binary Genetic Algorithm

BPSO Binary Particle Swarm Optimization

BSC Binary Symmetric Channel

CACS Correlation-Aware Clustering Scheme

CC Coded Caching

CDN Content Delivery Network

CSI Clusters’ side information

CS-index Compact-Separated index

DA Decimal Address

DB-index Davis-Bouldin index

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DCPSO Dynamic PSO

DE Differential Evaluation

DSC Distributed Source Coding

EM Expectation-Maximization

FAPSO Firefly Algorithm and Particle Swarm Optimization

FCM Fuzzy C-Mean

GA Genetic Algorithm

gBest Global Best

xv

GCUK Genetic-based clustering with an unknown number of clusters

HetNet Heterogeneous Network

HPF Highest Popularity First

i.i.d Independent and identically distributed

iABC Improved Artificial Bee Colony

IC Index Coding

IWO Invasive Weed Optimization

LFU Least Frequently Used

LRU Least Recently Used

MBS Macro Base Station

MinPts Minimum number of neighbors within epsilon radius in DBSCAN

MOIMPSO Multi-objective Immunized Particle Swarm Optimization

NC Network Coding

NPIR The nearest point with the indexing ratio

PB-CACS Popularity-Based Correlation-Aware Clustering Scheme

PSI Popular side information

PSO Particle Swarm Optimization

QoE Quality of Experience

QoS Quality of Service

SA Simulated Annealing

SBS Small Base Stations

SMC Simple Matching Coefficient

SW Slepian-Wolf

TGCA Two-stage Genetic Clustering Algorithm

WZ Wyner-Ziv

ZB Zettabyte

xvi

List of Symbols

𝐴 Loudness of emitted sound in BBA

𝓐𝑚×𝑙 Dataset containing 𝑚 patterns with 𝑙 features

𝐵 Length of a binary vector

𝛽 Maximum number of requested representatives in a cache across all caches

𝔠1, 𝔠2 Acceleration coefficients of the BPSO algorithm

𝑐𝑖 Cluster 𝑖

𝐶 Set of achieved clusters

𝑪 Selected clustering solution upon performing the clustering scheme

𝑪𝑆 Clustering solution 𝑆

𝜉 Zipf distribution parameter

𝐷𝑘,𝑖 Maximum allowable distortion for file 𝑖 within cluster 𝑘

𝒹(. , .) Distance measure

𝒹𝑖,𝑗
𝐻 Hamming distance between two vectors 𝑖 and 𝑗

�̅�𝐶
𝑚𝑎𝑥 Average of the maximum distance over all clusters

𝑑(. , .) Distortion measure

𝜹 Given distortion

𝛿𝐶
𝑚𝑎𝑥 Maximum distance within clusters in clustering solution 𝐶

𝛿𝑐𝑖 Maximum intra-cluster distance in a cluster 𝑐𝑖 ∈ 𝐶

𝛿𝑘,𝑖
2 Distance of a content file 𝑖 to its representative within cluster 𝑘

∆𝐶 Distortion deviation over all clusters in the clustering solution 𝐶

∆𝑃𝐶 Deviation of aggregate popularity in the clustering solution 𝐶

�̅�𝐶
𝑚𝑖𝑛 Average of minimum inter-cluster distances over all clusters

휂 Number of caches which has a request from the server in a set of 𝛽

𝐹𝑟𝑖(𝑡) Frequency of particle 𝑖𝑡ℎ in the optimization algorithm at iteration 𝑡

𝒇(.) Objective function

ℱ Set of library content files

𝑓𝑖 Content file 𝑖 in the library

�̂�𝑖 The representative of cluster 𝑖

𝑭 Set of all representatives by the achieved clustering solution

𝑓𝑖
𝑗
 Requested file 𝑓𝑖 by user 𝑗

xvii

𝐹𝑘,𝑖 Notation of file 𝑖 located in cluster 𝑘 (after clustering)

𝐹𝑘,𝑖
𝑗𝑧 Notation of file 𝑖 located in cluster 𝑘 requested by user 𝑗 from cache 𝑧

φ𝑖
(𝑡) Position of particle 𝑖𝑡ℎ in the optimization algorithm at iteration 𝑡

𝐻(𝑓i) The entropy of content file 𝑓𝑖

𝐻(. |.) Conditional entropy between two random variables

𝐻(𝑓1, … , 𝑓𝑚) Joint entropy of 𝑚 content files

𝐾 Number of clusters

𝐾𝑪 Achieved number of clusters /representatives in clustering solution 𝑪

𝐾𝑚𝑖𝑛/𝐾𝑚𝑎𝑥 Minimum/Maximum number of clusters in a clustering solution

𝐿 Number of bits to address cluster numbers in the general clustering scheme

𝜆 Optimal allowable distortion introduced to the files

Λ𝑖,𝑗 Inter-cluster distance between cluster 𝑖𝑡ℎ and 𝑗𝑡ℎ for the DB-index validity measure

𝑚 Number of content files in the library

𝑚𝑘 Number of files within cluster 𝑘

𝑚𝐶 Content files in the PB-CACS (clustered files)

𝑚𝐻 Content files with high popularity (PSIs)

𝑀 Size of each shared cache

𝑀𝑅 Required memory size to store CSIs per shared cache

𝑁 Total number of users in the network

�̃� Binary random variable

𝑝𝑖 Popularity of file 𝑖

�̅�𝐶 Average aggregate popularity on all clusters in the clustering solution 𝐶

𝑃𝑘 Aggregate popularity of cluster 𝑘

𝒫(. , .) Joint probability

𝒫ℱ Joint distribution of the library content files ℱ

𝑞𝑖 Demand for file 𝑖 ∈ ℱ

𝓆𝑖 The probability of requesting the 𝑖𝑡ℎ file according to the Zipf distribution

𝑄𝑧 All demands of cache 𝑌𝑧

𝑄 Unique representatives requested across all caches

𝑄′ Unique clustered files requested across all caches

𝑅𝐶𝑀 Delivery rate required for the coded multicast messages

𝑅𝑅𝑆 Delivery rate required for the refinement segments

𝑅𝐶𝑀
𝑃 Peak delivery rate required for the coded multicast messages

𝑅𝑅𝑆
𝑃 Peak delivery rate required for the refinement segments

xviii

𝑟𝑖 Pulse rate in BBA

𝜌0 Crossover probability

𝜌 Correlation parameter

𝛴 Covariance Matrix

𝜓 Set of all feasible ways of clustering a given dataset

𝑇 An integer parameter for the sake of symmetry in splitting files into segments

𝜗 A random number from a uniform distribution in [0,1]

𝑈𝑖 Number of users in SBS 𝑖 connected to the cache 𝑌𝑖

Υ𝑖 Intra-cluster distances in the 𝑖𝑡ℎ cluster for the DB-index validity measure

𝑉𝑖(𝑡) Velocity of particle 𝑖𝑡ℎ in the optimization algorithm at the iteration 𝑡

𝓌 Inertia weight

𝑋𝑖 Encoded message of file 𝑖

𝑌𝑖 Shared cache 𝑖 in the network

𝑦𝑧 Mapped vector for requests of SBS 𝑧

𝑍 Number of shared caches in the network

휁 Maximum number of requested representatives per shared cache

1

Chapter 1

Introduction

During the last two decades, wireless networks have witnessed a dramatic rise in content-related

data traffic due to the continuous development of cutting-edge technologies and smart applications

along with the increasing number of internet users demanding high-quality services.

According to Cisco studies, internet traffic has already exceeded the zettabyte (ZB) level and

will reach 4.8 ZB per year by the end of 2022 [1], while over 72% of this traffic is predicted to be

content-related due to the frequent use of streaming services, social media and smart applications

in recent years [2].

Figure 1.1 shows the IP video traffic predicted by the Cisco studies for 2017 to 2022.

2

Figure 1.1: Global IP video traffic forecast by Cisco VNI from 2017 to 2022 [2]

1.1. Research Motivation

As content-related internet traffic grows exponentially, delivery networks are forced to handle

massive volumes of content, which is a serious challenge for current content delivery networks,

especially during peak hours. Therefore, providing high-quality services for the end-users requires

a solution beyond traditional content delivery networks, which is why designing efficient content

delivery solutions have become increasingly important in the current and next-generation wireless

networks [3].

In recent years, content caching has proved to be an efficient technique to improve the quality

of services and reduce the high delivery data rate by storing some popular content close to the end-

users. Caching networks generally operate in two phases; the placement phase during off-peak

hours before users reveal their demand and the delivery phase, which is accomplished when users’

demand is revealed to the server during peak hours.

As the server is unaware of the demands during the placement phase, this phase must be

carefully designed and implemented to improve the quality of services and maximize the network

performance regardless of the requested content [4].

Conventionally, the most popular files were stored in local memories to provide a local caching

gain in the network. This strategy randomly allocates some files to the memory in cases with a

3

uniform popularity demand distribution. A few years ago, Maddah-Ali and Niesen [5] introduced

the coded caching (CC) strategy and improved the conventional results to reach a global gain by

creating multicast opportunities under the assumption that each user is equipped with an individual

cache in the network. Since then, this setting has been studied extensively from different angles

[3]-[10], considering various system settings, demand characteristics, and source distribution.

The advancement of caching networks with users having individual caches in the past few years

has led to focusing on another aspect of caching networks which considers shared caches for a

group of users [11]-[14]. A shared cache framework is highly beneficial in next-generation

wireless networks as it allows users in a small base station (SBS) to access a nearby cache in the

cell. Also, it is useful in a heterogeneous network (HetNet) environment [15] or as an upper layer

of hierarchical caching networks in IoT-based applications [16].

A few recent studies presented promising results in a shared caching setting, but their study has

been focused on caching networks with independent sources. As discussed in [17], a library of a

caching network could consist of sources with a high degree of similarity in many practical

applications. Any event recordings with common scenes and background, news updates, different

chunks of a video in video summarization, repeated measurements, new updates, augmented and

virtual reality [17]-[19], and crowdsourced multi-view videos [20] are examples of such

applications. Figure 1.2 illustrates an example of a scene of interest captured by multiple cameras

in the field, which has the same scene and background in all videos from different views.

Despite current advancements in caching networks with correlated sources, all these studies

also assumed a setting where each user has been equipped with an individual cache. Thus, an

efficient solution is still needed for a network with correlated content in a shared cache framework.

Motivated by the aforementioned issues, our research explores a cache-aided delivery network

with correlated content based on a shared cache framework to fill the gap between recent studies

on shared caches with independent sources and individual caches with correlated sources. We

show that the efficiency of current shared cache networks with independent sources does not carry

over to a network with correlated sources in a shared setting. Therefore, finding an efficient

solution to fill this gap is still necessary.

4

Figure 1.2: Different videos of a person of interest from the same event with the same scene and

background1

1.2. System Model and Problem Statement

This research considers a centralized cache-aided delivery network with correlated content in a

shared cache framework. In line with current studies, we consider a network consisting of one

server, e.g., Macro base station (MBS), and multiple receivers, e.g., SBSs, over a shared error-free

broadcast link. Each SBS is equipped with a shared cache and serves multiple users. It is assumed

that each user is connected to only one SBS at the same time and can receive messages from the

server and its SBS. The caching network operates in two phases;

In the placement phase, a set of side information is extracted and placed into the caches

according to a proposed placement strategy considering network settings.

In the delivery phase, users reveal their requests independently from each other according to a

uniform (Chapters 4 and 5) or non-uniform (Chapter 6) popularity demand distribution. If the

connected cache to the user already has (some of) the content, the request (or a portion of the

request) can be served locally. Otherwise, the server must transmit requested content not available

1 The person of interest in these scenes is Alistair Johnston, #2 of the Canada soccer team during the 2022 World

Cup Qualifying matches. Images vailable on: https://www.canadasoccer.com/news/canada-announces-squad-for-

september-2022-matches/

https://www.canadasoccer.com/news/canada-announces-squad-for-september-2022-matches/
https://www.canadasoccer.com/news/canada-announces-squad-for-september-2022-matches/

5

in the shared cache via broadcast index coding messages and unicast/multicast of the encoded

messages2.

The goal is for every user to be able to reconstruct the file that it requests with the information

received from the server and the cached content in the shared cache while the delivery rate of the

system is also improved. It should be mentioned that the transmission rate is only considered for

the delivery transmission and not for the placement phase, as the placement phase is accomplished

during off-peak hours.

Figure 1.3 illustrates the network model of a cache-aided delivery system in a shared cache

Framework where each cache is connected to a different group of users.

Figure 1.3: Cache-aided delivery system in a shared cache framework with multiple caches in the

network

2 We prefer to refer to the encoded messages as refinement segments throughout this research, and these two terms

may be used interchangeably in the following chapters.

6

Figure 1.4: Example of a robot factory where all laborers are connected to a shared cache

First, we explore the proposed networks by assuming a single shared cache under lossy caching,

and then we extend our study to networks with multiple shared caches under uniform and non-

uniform popularity demands. Connecting users to a single shared cache is beneficial where they

have a very small memory size. Consider robots as laborers in a factory or drones as operators in

deserted areas. In such settings, providing a shared cache in the access point to be filled with the

most useful content for the entire network during the placement phase leads to only transmitting

small updates (e.g., recent maps and frequent updates of the locations under their coverage) during

the delivery phase. Figure 1.4 illustrates a simple example of such networks.

In this dissertation, we study the cache-aided delivery problem from an information-theoretic

perspective and formulate it as distributed source coding with side information at the decoder. We

focus on the content placement phase to reduce the peak delivery rate and the users’ expected

distortion during the delivery time in the proposed network. More specifically, we are seeking the

answer to the following questions throughout this research:

• What content should be placed into the memory during the placement phase?

• How should we place the selected content into the caches?

• And what content should be transmitted during the delivery phase to serve all possible

demands at a low delivery rate in the caching network?

• Moreover, what is the trade-off between the cache size, delivery rate, and the user’s

expected distortion under different settings in such a system?

7

To answer the above questions, we proposed two automatic clustering solutions using AI-based

optimization techniques to extract the most efficient set of side information for the entire library

considering the similarity among sources and the popularity demand distribution. Then, we utilize

the side information for the caching strategy and proceed with the delivery phase under different

popularity demands to serve all requests.

1.3. Literature Review

A literature review related to our study is presented in this section in two parts: first, we discuss

related works on caching networks, and then we present related works on data clustering.

1.3.1. Caching Networks

The increasing number of internet users and IoT devices, in addition to the widespread use of

social media and streaming services, has put significant stress on current content delivery

networks. Content caching has emerged as an effective solution to combat this stress and reduce

the high delivery data rate to improve the quality of services for the end-users in such networks.

Over the past few years, many studies have been conducted to face the key challenges of

caching networks from different angles. In general, one perspective is optimizing the delivery

phase for specific demands and fixed cache content [21][22]. The other point of view is optimizing

the content placement for a fixed delivery phase consisting of unicast or multicast transmissions

[23]-[25].

In the simplest form of content caching, the most popular files are stored in local memories

close to the end-users; therefore, such requests will be locally served without requiring an extra

transmission rate. Depending on the cache size, this approach selects some files randomly for local

caching when demand distribution is uniform. Therefore, the network experiences a “local caching

gain.” By leveraging the multicast nature of the shared link, the coded caching strategy with

uncoded placement [5] revolutionized conventional results even for caches with distinct demands

by reaching a “global caching gain.” While the local caching gain is proportional to the size of the

8

user’s cache, the global caching gain is proportional to the aggregate size of all the available caches

in the network.

The key to increasing multicast opportunities in the coded caching strategy is to involve diverse

parts of the library content in the cache placement and store them symmetrically across different

users (coding principle) [12][15]. However, in a caching network with non-uniform content

popularity demand distribution caching higher popular content is preferable as it significantly

reduces the delivery rate (popularity principle) [6][12][15].

Even though the popularity principle reduces delivery rates, it forces caches to store almost the

same content and prevents creating multicast opportunities. In this regard, developing a placement

strategy that can simultaneously benefit from both local and global caching gains is extremely

challenging since these principles conflict with one another.

Figure 1.5 shows the tension between the popularity principal and the coding principle, which

are moving in opposite directions.

Figure 1.5: Tension between the popularity principle and the coding principle in cache placement

Over the past few years, various studies have been conducted on developing placement schemes

assuming an individual cache for each user under different settings, including different source

distributions [5]-[10] and demand specifications [26]-[28], to address this challenge.

Recent studies are focused on another aspect of caching networks that considers shared caches

for a group of users. In such settings, considering a shared cache in the access points to be filled

with the most useful content during the placement phase leads to transmitting only the small

updates during the delivery phase.

According to [5], when multiple caches are available in the network, coded caching rather than

replication is the best strategy as it provides multicast opportunities and global caching gain.

9

However, multicast opportunities cannot be created for the connected users in a single shared cache

setting as the framework is not distributed for that group of users. Thus, designing a cache-aided

delivery network with shared caches is still being investigated from different aspects.

In this regard, [11] has studied a network consisting of a server and several small base stations,

each connected to a shared cache. They proposed a combination of coded-uncoded placement

strategies and extracted the expected delivery rate of the system. Also, they formulated the near-

optimum partitioning placement for such systems. However, they assumed a homogenous number

of users connected to each cache.

Authors in [12] have also considered a network with a non-uniform popularity demand

consisting of a server and multiple shared caches under homogenous and heterogenous user

behavior. In this sense, they proposed a coded-uncoded placement strategy to consider the trade-

off between the coding and popularity principles. They extracted a closed-form expression of the

transmission rate by formulating the problem as a constraint optimization problem. They have

shown that the proposed placement strategy significantly reduces the transmission rate compared

to the pure-coded or pure-uncoded schemes in the literature.

A similar setting with shared caches is described in [13]. They proposed a coded placement

strategy that considers the asymmetry in the number of users connected to each cache. They

characterized the gain for the two-cache system and then extended it to a larger network. They

concluded that coded placement would achieve more gains if the users’ connectivity were more

asymmetric. It has been shown that their method is more effective than [14], which considers a

similar setting with uncoded placement.

Assuming each user can only request a subset of files, [27] analyzes the average rate for three

placement schemes considering a heterogeneous user profile. They divided users into groups

according to the request pattern of the shared and individual files. They showed that the lowest

average rate under a small cache capacity is found when caching, and delivery of shared and

individual files are decoupled.

While recent studies presented promising results in a shared caching setting, they have

investigated caching networks with independent sources. As discussed in [17]-[19], a library of a

caching network could consist of sources with a high degree of similarity in many practical

10

applications. Any event recordings with common scenes and background, repeated measurements,

news updates, different chunks of a video in video summarization, augmented and virtual reality

[17]-[19],[30]-[34], and crowdsourced multi-view videos [20] are examples of such applications.

The authors in [17] showed that exploiting the correlation among the sources can be considered

leverage to reduce the delivery rate and improve network efficiency during peak hours. They have

assumed a system consisting of a server with correlated sources and multiple users where each

user is equipped with an individual cache in the network. They proposed a correlation-aware

scheme for the placement phase that enables users to store some segments of the files based on

their similarity to the rest of the library files. The delivery phase then considers transmitting the

compression version of the requested files. They have studied the same system with an alternative

for the placement phase in [31], in which a compressed version of some selected segments of each

file is stored in each user’s cache. They have shown how joint compression of the selected

segments prior to the placement phase can reduce load compared to other solutions in the same

setup.

A caching network consisting of a library with three correlated files and two receivers, each

having an individual cache, is considered in [32]. They have proposed a two-step scheme in which

the library files are compressed using Gray-Wyner source coding. Then the encoded segments are

treated as independent content using a multiple-request cache-aided coded multicast scheme. They

have characterized the rate-memory trade-off and examined the limits for the worst-case rate.

The authors in [33] studied a coded caching scheme considering the correlation among the

library files in a network where each user is equipped with an individual cache of the same size.

They assumed that each file is divided into some subfiles shared between several users. They

defined the level of commonness as the number of files that include a certain subfile and proposed

one uncoded and one coded caching scheme for the placement phase, which has been optimized

in terms of the achievable delivery rate.

In [34], the same network setup with one server consisting of correlated sources and multiple

users, each having an individual cache, is studied for applications with updated versions of

dynamic data. They have considered a caching scheme in which users cache content pieces based

on popularity and correlation with the rest of the library files. Then they receive compressed

11

versions of the requested files according to the information distributed across the network and their

joint statistics during delivery time.

Despite current advancements in caching networks with correlated sources, all these studies

also assumed a setting where each user has been equipped with an individual cache. Thus, the

challenges mentioned above have remained unsolved for a shared caching framework. Therefore,

a solution is still needed for a network with correlated sources in a shared cache framework, which

is the focus of this study.

1.3.2. Data Clustering

As Artificial Intelligence technologies expand and smart sensors and internet-connected

devices are used more widely, wireless networks are faced with a large volume of unstructured

data. This massive volume of content is highly beneficial in data analysis, social sciences, and

many other modern applications if appropriately classified and analyzed in a meaningful way

[36][37].

Clustering is a popular unsupervised data analysis technique that captures the natural structure

of a dataset and places similar objects into a set of groups to simplify the process of analyzing and

understanding information coming from different sources. As a result, objects within a cluster have

a higher degree of similarity. Nowadays, clustering analysis methods are widely used in many

fields, such as wireless sensor networks, mobile networks, image and video processing, and data

summarization [38]. In some applications of wireless sensor networks, having clusters with

approximately the same distance is desirable, as it helps to introduce the optimum allocation of the

maximum allowable distortion to the receivers and reduce the transmission rate. In most cases,

however, there is no prior information specifying the number of clusters, which makes clustering

difficult.

Over the years, many optimization algorithms have been proposed to overcome the problems

caused by traditional algorithms in cluster analysis. Tabu search algorithm [41], the simulated

annealing (SA) algorithm [42], and the particle swarm optimization (PSO) algorithm [43], which

is one of the most powerful optimization algorithms for data clustering in complex problems, are

some of the well-known examples in this area. Van der Merwe and Engelbrecht [44] have

12

investigated the capability of several swarm intelligence algorithms in partitioning different types

of datasets. They have also proposed a novel approach for clustering different datasets into an

optimal number of clusters through an optimization process. In [45], the data clustering problem

has been formulated as a single objective problem, and the standard global best (gbest) of the PSO

algorithm has been used to identify the centroid of the clusters.

Evolutionary algorithms have also been among the most frequently used metaheuristic

algorithms for the clustering problem [46]. Hence, different types of this algorithm have been

studied in the literature, ranging from a straightforward encoding to a more sophisticated solution

similar to Falkenauer’s grouping genetic algorithm (GA) [47].

In [48], the automatic data clustering problem has been addressed using a hybrid solution called

FAPSO based on an improved firefly algorithm and the particle swarm optimization algorithm.

The authors also investigate the applicability of the proposed solution in detecting the correct

number of clusters according to the Davis-Bouldin index (DB-index) [49] and the compact-

separated index (CS-index) [50] as the validity measure. The proposed algorithm’s performance

has been evaluated on thirteen benchmark datasets, and it has also been compared to other well-

known clustering algorithms. The experimental results indicated that the FAPSO outperforms the

comparative studies in most cases in terms of the accuracy of the results.

In [51], an automatic data clustering algorithm using an improved PSO algorithm (ACPSO) has

been proposed to address the clustering problem. The proposed algorithm determines the correct

number of clusters and adjusts the centroids. The authors have considered the 𝐾-means algorithm

and a sigmoid function to adjust the cluster centroids and manage the infeasible solutions. This

algorithm has been evaluated by considering four benchmark datasets in terms of consistency and

accuracy.

Abraham et al. [52] proposed a kernel-based automatic clustering using a modified PSO

algorithm. This approach employs a kernel-induced similarity measure instead of the sum of

square distances. They believed that using a kernel function in this solution leads to clustering

linearly non-separable data into homogenous clusters in a high dimensional feature space

transformation. This algorithm has been evaluated by considering five synthetic and three real-life

datasets in terms of convergence, accuracy, and robustness.

13

In [53], Nanda and Panda proposed a multi-objective automatic clustering algorithm called

MOIMPSO to classify the actions of 3D human models. This algorithm provides a Pareto optimal

archive for automatic clustering problems by considering a developed hybrid evolutionary

algorithm immunized PSO and two objective functions. Besides, a single best solution from the

Pareto optimal archive has been provided to satisfy the users’ requirements. They have also

evaluated the proposed algorithm on eleven benchmark datasets in terms of computation time and

accuracy.

Liu et al. [54] proposed a solution based on the genetic algorithm with unknown 𝐾 called

AGCUK. They employed the DB-index as the validity measure of clusters. The performance of

this algorithm has been evaluated on several artificial and real-life datasets in terms of determining

the correct number of clusters and the accuracy of the clustering.

Then, He and Tan [55] proposed a novel two-stage genetic algorithm called TGCA to solve the

clustering problem. This algorithm uses the selection and mutation operators of the original genetic

algorithm. The TGCA algorithm attempts to gradually reach globally optimal cluster heads by

focusing on determining the correct number of clusters for each input. The experimental results on

four artificial and seven real-life datasets in this study indicate that this algorithm shows high

performance in determining the number of clusters and the accuracy of the clustering solution.

In [56], the application of the differential evaluation (DE) algorithm is described for the

clustering problem with an un-labeled large dataset. The proposed algorithm is called the ACDE

algorithm and uses an improved differential evaluation algorithm for the data clustering problem.

The ACDE algorithm has been evaluated by considering five benchmark datasets via DB-measure

and CS-measure. The authors also reported the application of the ACDE algorithm to the automatic

segmentation of images.

Then, in [57], a new hybrid algorithm based on differential evaluation and fuzzy clustering

called ADEFC is proposed to solve the automatic clustering problem. In this algorithm, the cluster

heads are encoded in the vectors. The data points are then assigned to different clusters based on

the Xie-Beni index, a validity measure for the clustering validation. The performance of the

ADEFC algorithm has been evaluated on two synthetic and two real-life datasets. It has also been

compared to the fuzzy C-mean algorithm and the variable-length genetic algorithm based on fuzzy

14

clustering. The authors indicated that the ADEFC has the capability of being considered for micro-

array data clustering.

An improved differential evaluation algorithm with cluster number oscillation called ACDE-O

has been proposed in [58]. Since poor initial guesses lead to inefficient clusters, a cluster number

oscillation mechanism is used in this algorithm to improve searching and finding more possible

clusters. This algorithm’s efficiency has been evaluated on three real-life datasets compared to the

ACDE algorithm and reported better performance.

Kuo et al. [59] proposed automatic kernel clustering with bee colony optimization (AKC-BCO)

to address the weaknesses of the automatic clustering problem in determining the number of

clusters and the accuracy of the clustering. The authors employed a kernel function to increase the

capability of the clustering algorithm. The performance of the AKC-BCO has been evaluated on

several benchmark datasets compared to three other clustering algorithms. The experimental

results indicate that the AKC-BCO algorithm demonstrates superior performance in terms of not

trapping in local optima, convergence speed, and accurate and stable clustering results.

Then, in [60], Kuo and Zulvia proposed a hybrid solution of an improved artificial bee colony

optimization and the K-means algorithm called iABC for the automatic clustering and customer

segmentation problems. In this study, the onlooker bee exploration in the original ABC algorithm

is improved by guiding their movements to a better location, leading to a better initial centroid in

the K-means algorithm. Then, to increase the algorithm’s efficiency, only the worst cluster

centroid will be improved through an updating process. The experimental results on several

benchmark datasets show that the iABC algorithm provides better performance than the classical

ABC algorithm. It has been discussed that the average value of the computational time for some

datasets is less than the original ABC algorithm. The reason is that the iABC algorithm generates

better solutions compared to the original ABC algorithm. However, its performance is not faster

than the PSO and GA-based algorithms.

In [61], the harmony search algorithm has been employed by Kumar et al. to present a parameter

adaptive harmony search algorithm called ACPAHS for automatic data clustering problems. The

number of clusters in the proposed algorithm is determined by using a real-coded variable-length

harmony vector. The data points are assigned to clusters according to the developed weighted

15

Euclidean distance. The authors also reported the application of the proposed algorithm to the

automatic segmentation of images. The efficiency of the ACPAHS algorithm has been evaluated

on several real-life datasets and compared to four other well-known clustering techniques in terms

of the determined number of clusters and the accuracy of the clustering solution.

In [62], the problem of automatic data clustering has been solved based on an evolutionary

metaheuristic algorithm known as invasive weed optimization (IWO). This algorithm can perform

the clustering task without requiring any prior knowledge of the datasets and employs the genetic

algorithm’s fitness function as the validity measure. The algorithm’s proficiency has been

evaluated on nine artificial and four real-life datasets, and the results are compared to three other

clustering algorithms. The experimental results have indicated that the IWO algorithm shows great

performance in population size and computation time.

Qaddoura et al. in [63] proposed an open-source, cross-platform framework called EvoCluster

for data clustering. EvoCluster is a customizable framework that can employ various objective

functions in addition to different well-known nature-inspired optimizers developed by other

researchers to perform partitional clustering tasks. It can also evaluate the result according to

different validity measures such as Purity, Entropy, squared error sum, and other common validity

measures. Since this framework covers different algorithms and measures, it can be useful in

different applications.

A comprehensive survey on data clustering using metaheuristic algorithms can also be found

in [56][64][65][66][67]. We have reviewed many related studies that focus on the clustering

problem from different aspects in this section. Since cluster analysis is being exploited in diverse

research fields, a unique algorithm cannot be a solution to all clustering scenarios due to the

differences in the nature of the patterns and applications. Hence, considering the main purpose of

this research, we remain focused on reaching clusters with approximately the same maximum

distance while the number of clusters is in accordance with the number of inputs.

Reaching clusters with the same radius can also be discussed under the cluster-level constraint

and has many practical applications. The cluster-level constraint considers some available

information about the underlying cluster structures in the form of limitations [68][69].

16

The facility location problem discussed in [70] is similar to the clustering problem with a

cluster-level constraint. In this study, the authors propose two heuristic algorithms for the facility

location problems that can be interpreted as clustering problems with upper bounds on the radius

of the clusters.

In [71], the authors study two types of cluster-level constraints in a search-based agglomerative

hierarchical clustering algorithm. This algorithm forms initial partitioning using the must-link

constraints and then merges some groups by taking constraints into account to meet the stopping

criteria. Finally, they mentioned creating a feasible dendrogram is intractable since solving the

clustering problem with unspecified 𝐾 is NP-complete under these constraints.

One of the other exciting applications using cluster-level constraint approaches is discussed in

[72] for a distributed sensor network. In such applications, each sensor has one master node, and

the aim is to find balanced clusters of sensor nodes while attempting to minimize the distance

between master and sensor nodes. The authors formulated the problem as a minimum cost flow

problem and optimally solved it.

Although many optimization algorithms have been used to solve traditional clustering

problems, few studies have focused on applying AI-based optimization techniques to solve

automatic clustering problems, and none of them concentrate on having clusters with the same

maximum distance. Due to the requirement of an appropriate clustering solution in such

applications, as part of this research, we proposed an automatic clustering framework using AI-

based optimization techniques to create clusters with approximately the same maximum distance

without knowing the exact number of clusters.

1.4. Research Contributions

This research studies a cache-aided delivery network in a shared cache framework with

correlated content under different settings. We focus on the content placement phase to reduce the

delivery rate and the users’ expected distortion in the delivery phase of the caching network. The

contributions to this dissertation are summarized as follows:

17

• Automatic data clustering using AI-based optimization techniques in a general

framework: To extract the most efficient side information for the placement phase, we

propose a systematic framework for automatic data clustering using AI-based

optimization techniques. Our proposed clustering solution partitions the library content

files into compact and well-separated clusters with approximately the same maximum

distance without requiring prior knowledge about the exact number of clusters. The

proposed solution has been designed in a general framework and can successfully cope

with different types of datasets and distance measures. The proposed clustering scheme

is highly effective in high-dimensional data and binary datasets with a high degree of

similarity.

• Single shared cache Scenario: As the first step toward this research, we study the

proposed network in a single shared cache scenario. To address the key challenge of

content placement, we propose a correlation-aware clustering scheme (CACS),

developed based on the general framework, to extract the most efficient side information

for the placement phase. This scheme categorizes content files with a high degree of

similarity into the same group with approximately the same maximum distance per

cluster, considering the distortion constraint of the system. We formulate the expected

delivery rate by joint consideration of the rate-distortion function and caching strategy,

where the limit for the maximum allowable distortion in the system is determined based

on the Lagrange multipliers technique and reverse water-filling algorithm. Our

simulation results show a considerable boost in network efficiency compared to legacy

caching schemes.

• Shared cache framework with multiple caches under uniform popularity demand:

We study the proposed network in a shared cache framework with multiple caches

where each cache is connected to a different group of users in the network. We utilize

the proposed CACS to extract the side information for the entire library along. Then we

address the caching placement and delivery scheme in a distributed platform. The

placement phase considers splitting the representatives into segments and placing the

segments according to codded caching strategy to maintain symmetry and reach the

global caching gain. The delivery phase involves constructing the clusters’

18

representatives and clustered files by transmitting codded multicast messages and

refinement segments. Moreover, we introduce the optimum library partitioning

formulated to minimize the worst-case delivery rate in the system.

• Shared cache framework with multiple caches under non-uniform popularity

demand: We propose a cache-aided delivery network in a shared cache framework with

correlated content under non-uniform popularity demand distribution. To address the

content placement challenge, we propose a popularity-based correlation-aware

clustering scheme (PB-CACS) that considers both the popularity and similarity of

library content to extract the most efficient side information for the entire library. Then,

we consider a hybrid 3 placement, in which the popular side information is stored

completely in all caches, and the clusters’ side information is split among different

caches. In the delivery phase, coded multicast messages and refinement segments are

transmitted to construct the requested cluster representatives and clustered files. Finally,

we discuss the trade-offs between the cache size and the delivery rate in our system.

1.5. Organization of Dissertation

This thesis is organized as follows. Chapter 2 fully represents the fundamentals and theoretical

backgrounds behind the proposed cache-aided content delivery network in this research. Chapter

3 introduces the proposed automatic clustering solution in a general framework. In Chapter 4, our

proposed solution to the cache-aided delivery network in a single shared cache is presented.

Chapter 5 introduces the cache-aided delivery network in a shared framework with multiple caches

under uniform demand distribution. Chapter 6 discusses our proposed solution considering the

non-uniform demand popularity, and finally, Chapter 7 represents the conclusions and directions

for future works.

3 Hybrid placement in this model means that the placement strategy benefits from two models of placement

simultaneously; some content is fully cached into the memory, while others are cached only in segments according to

the coded caching strategy.

19

Chapter 2

Background

This chapter introduces the theoretical concepts and the fundamental background used in this

research for the proposed cache-aided delivery network under different settings.

2.1. Centralized vs. Decentralized Caching

Cache-aided networks are categorized into two main classes: centralized [5] and decentralized

[9] caching. A centralized cache-aided network assumes that all users, and consequently caches,

are available during both phases of caching; therefore, they can all be counted on for the placement

phase. However, a decentralized caching network is designed for applications where some of the

20

users are not available during the placement phase (For example, due to the mobility of users) and

cannot participate in the placement phase. In this research, we consider a centralized approach for

the proposed network.

2.1.1. Centralized Coded Caching Strategy with Uncoded Placement

The centralized coded caching strategy with uncoded placement [5] has emerged as a major

breakthrough to combat the high delivery data rate requirement and improve the quality of

experience (QoE) for the end-users in delivery networks. This strategy aims to minimize the peak

load on the broadcast link through the caching and delivery scheme.

This strategy assumes a network consisting of a single server with access to 𝑚 independent

library files and 𝑁 users, where each user is equipped with an individual cache of size 𝑀 files. It

is assumed that the server is connected to the users through a shared error-free broadcast link, and

files follow a uniform popularity demand.

This scheme splits each content file into (
𝑁
𝑇
) nonoverlapping subfiles, where 𝑇 = 𝑁𝑀 𝑚⁄ and

caches each subfile in a distinct group of 𝑇 users in the placement phase. In the delivery phase,

one coded message is sent to each subset of 𝑇 + 1 users by the server. The coded message is the

bitwise XOR of all 𝑇 + 1 request subfiles. Therefore, the delivery rate to serve all users with one

request for any 1 < 𝑀 < 𝑚 is calculated as:

𝑅(𝑀) = 𝑁 (1 −
𝑀

𝑚
)𝑚𝑖𝑛 (

1

1+𝑁 𝑀 𝑚⁄
,
𝑚

𝑁
) ()

Where 𝑁 (1 −
𝑀

𝑚
) is known as the local caching gain and

1

1+ 𝑁 𝑀 𝑚⁄
 is known as the global

caching gain.

2.2. Placement and Delivery Phases Strategies

Content placement strategy identifies selected content for placing into the cache during the

placement phase. Generally, two kinds of placement strategies are discussed in studies: uncoded

placement and coded placement [73][74]. In the uncoded placement strategy, some actual files or

21

subfiles are placed into the caches without manipulation according to the cache size. While in the

coded strategy, the library files are divided into subfiles and processed by a certain coding method.

Then the coded segments are placed into the caches according to the cache size.

A content replacement is another placement strategy that replaces the old content with updated

content. In this regard, a frequency-based strategy called least frequently used (LFU) and a

recency-strategy called least recently used (LRU) are the most famous replacement strategies in

studies [6][75].

The caching delivery strategy determines how requested files are delivered to receivers during

the delivery phase considering the placement strategy. The linear network coding (NC) [77][78]

or equivalently index coding (IC) technique [22][79] is typically used to create multicast

opportunities and reduce bandwidth usage in the delivery phase. In cases where multicasting

cannot improve the unicast rate, unicasting can also be considered [5][26][72].

As the content placement and delivery strategies directly affect each other, jointly designing

placement and delivery strategies is another point of view to improve network efficiency

[15][17][22][72]. This strategy aims to optimize both the placement and delivery phases

simultaneously; hence, the placement phase will be designed in a way to minimize the delivery

rate.

2.3. Index Coding Technique

Birk and Kol introduced index coding [22][79] as a transmission technique for a noiseless

broadcast channel consisting of a transmitter and multiple receivers. In this technique, the

transmitter wishes to deliver multiple packets to the receivers over a shared error-free broadcast

link, where each receiver has already stored some packets in its own cache and demands a subset

of the remaining packets. The goal is to minimize the required transmissions so that all users can

decode the desired packets reliably with their own side information and received packets.

Example 2.1: Consider a simple network with four users 𝑢1, 𝑢2, 𝑢3, 𝑢4 each with an individual

cache, requesting messages 𝑎, 𝑏, 𝑐, 𝑑, respectively. Assume user 𝑢1 has message 𝑏 in its cache,

user 𝑢2 has message 𝑎 in its cache, user 𝑢3 has message 𝑑 in its cache, and user 𝑢4 has message 𝑐

22

in its cache. As an alternative to transmitting all four messages 𝑎, 𝑏, 𝑐, 𝑑 separately, according to

the index coding technique, we can transmit just two coded messages 𝑎⨁𝑏 and 𝑐⨁𝑑, which

reduces the delivery rate by 1 2⁄ . The coded messages are the result of bitwise XOR operation

between the two desired messages denoted by ⨁.

The IC technique has recently gained significant attention in the delivery phase of caching

problems. The difference between caching and IC problems is the available side information in the

receivers; In the IC, the cached side information is fixed for the problem, while in the caching

scenarios, the cached content is not predefined and should be properly designed during the

placement phase. Moreover, in IC problems, demands are also assumed to be fixed for each

receiver, while in caching scenario, one might be interested in all possible demands.

2.4. Popularity Demand Distribution

Generally, cache-aided delivery networks can be investigated under two content popularity

distributions: uniform content popularity and non-uniform content popularity.

In uniform content popularity demand, the assumption is that all library content files are

requested according to a uniform distribution, and users have no preference in choosing one file

over the others [5]. The traditional approach for the placement phase under the uniform popularity

is randomly placing some of the content into the cache according to the memory size. In such

cases, the worst-case demand delivery rate is usually evaluated as a performance criterion.

Non-uniform content popularity demand is of great importance in the caching literature as it is

more likely to occur in the real world. According to this model, only a small number of files are

23

highly requested by a large number of users, and the rest of the files will be demanded only from

time to time in the network. In this sense, different popularity models have been considered in the

literature [18][44], in which Zipf distribution is discussed as one of the most famous models in

multimedia content popularity.

The Zipf distribution models the relative popularity of a few population numbers and the

relative obscurity of others. Based on this distribution, 𝓆𝑖 ∼ Zipf (𝜉,𝑚), the probability of

requesting the 𝑖𝑡ℎ file among all 𝑚 library content files with the parameter 𝜉 is modeled as follows.

𝓆𝑖 =
1 𝑖𝜉⁄

∑ 1 𝑗𝜉⁄
𝑚

𝑗=1

 ()

Lower values of parameter 𝛾 indicate a more uniform distribution, while high values indicate

that a large number of users are interested in a small number of files.

Conventionally, caches are allocated to the highest popular content under the non-uniform

content popularity demand. Dividing files into groups with similar probability [6], categorizing

library files into only two groups of popular and non-popular content files [10], and the multi-level

popularity model [19] are the most well-known approaches used in designing caching schemes

under non-uniform popularity demand.

2.5. Distributed Source Coding with Side Information at the Decoder

As mentioned earlier, we have an information-theoretic perspective on the caching scheme and

formulate this problem in the context of distributed source coding (DSC) with side information at

the decoder.

DSC considers independently compressing and jointly decompressing the library sources by

exploiting mutual correlation among them. These sources should be statistically dependent but

physically separated [80]. The basic idea of the distributed source coding with a decoder side

information problem is compressing the sources conditionally according to the available side

information in the decoder so that less delivery rate is needed for the reconstruction of the sources

at the decoder [81]. Lossless DSC considers discrete sources and perfect reconstruction at the

24

decoder, while lossy DSC allows for some distortion in the decoder, and the problem turns to a

rate-distortion function.

2.5.1. Lossless Source Coding

The Slepian-Wolf (SW) coding is the simplest case of lossless distributed source coding, which

considers the separate compression and joint lossless decompression of correlated discrete sources.

Slepian-Wolf Theorem: Let 𝒰 and 𝒱 be two correlated random sources drawn independently and

identically distributed, i.i.d, from joint distribution 𝒫(𝓊,𝓋). Therefore, the achievable rate region

for compressing 𝒰 and 𝒱 with compressing rate ℛ𝓊 and ℛ𝓋 respectively is as follows.

 ℛ𝓊 ≥ 𝐻(𝒰|𝒱)

ℛ𝓋 ≥ 𝐻(𝒱|𝒰)

ℛ = ℛ𝓊 + ℛ𝓋 ≥ 𝐻(𝒰,𝒱) ()

It is shown that if we compress the first source up to its entropy, the second source can then be

compressed as low as its conditional entropy given the first source and vice versa.

Figure 2.1 illustrates this achievable rate region. As we can see, the SW rate region has two

corner points (𝐻(𝒰),𝐻(𝒱|𝒰)) and (𝐻(𝒰|𝒱), 𝐻(𝒱)).

The asymmetric SW coding scheme is a scheme that attempts to approach one of these two

corner points. In Asymmetric coding, a source is compressed to its entropy rate while the second

source is compressed at the minimum possible rate. Therefore, during the decompression process,

the first source is decompressed, and then the second source is decompressed with the help of the

first source. This point of view is equivalent to the source coding with decoder side information

case where a source is already available at the decoder, and the other source is compressed to the

minimum possible rate.

25

Figure 2.1: The achievable rate region in SW coding

2.5.2. Lossy Source Coding

Wyner-Ziv (WZ) coding generalizes SW coding from the lossless to the lossy case, which is

similar to the generalization of the classic source coding problem to the rate-distortion problem

[80][81].

Assuming 𝒰 and 𝒱 be two joint i.i.d sources, the WZ problem aims to compress a block of 𝒰,

lossily and recover an estimate �̂� at the decoder with the help of 𝒱.

The fidelity of �̂� from 𝒰 is characterized using a distortion measure 𝑑(. , .). In this regard, we

are interested in finding the smallest rate required to ensure the average distortion 𝔼[𝑑(𝒰, �̂�)] is

smaller than some predetermined value 𝜹.

Figure 2.2 shows the setup of the WZ problem.

Figure 2.2: The setup of the Wyner-Ziv problem

26

Then, the rate-distortion function 𝑅𝑊𝑍(𝐷) can be found by solving the optimization problem

as follows:

𝑅∗(𝐷) ≜ min
𝑞(𝑤|𝓊),�̂�

𝐼(𝒰;𝒲|𝒱) ()

𝑠. 𝑡. 𝔼[𝑑(𝒰, �̂�)] ≤ 𝜹

In other words, we have 𝑅𝑊𝑍(𝐷) = 𝑅∗(𝐷).

2.6. AI-Based Optimization Techniques

Most clustering problems can be described as typical optimization problem that tries to optimize

a criterion and specify the clustering quality [66]. Therefore, using heuristic and meta-heuristic AI

techniques in automatic clustering has been proposed as a superb solution to work with different

applications and datasets and overcome the weaknesses of the classical approaches in recent years.

Heuristic and meta-heuristic AI techniques are optimization techniques that do not require offline

training but could provide an optimal or near-optimal solution for the formulated objective

function, considering the system objectives and constraints. A comprehensive survey on data

clustering using metaheuristic algorithms can also be found in [56][64][65][66][67].

Since assigning a cluster number to a data point has a discrete nature, we have adopted binary

metaheuristics optimization algorithms in the AI-optimizer module of the proposed clustering

scheme. To this end, we have considered four of the most well-known algorithms, including the

binary bat algorithm (BBA) [82], binary particle swarm optimization (BPSO) [83], binary genetic

algorithm [84], and binary dragonfly algorithm (BDA) [85].

2.6.1. Binary Bat Algorithm

The bat algorithm is a heuristic optimization algorithm inspired by the echolocation behavior

of bats, initially proposed to solve problems with continuous search spaces [86]. In [82], a binary

version of this algorithm known as BBA is developed, which has a discrete search space and

applies to binary problems.

27

In the original Bat algorithm, each artificial bat will update the velocity, position, and frequency

vector according to (2.5), (2.6), and (2.7) during the course of iterations 𝑡.

𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) + (𝜑𝑖
(𝑡) − 𝐺𝑏𝑒𝑠𝑡)𝐹𝑟𝑖 ()

𝜑𝑖(𝑡 + 1) = 𝜑𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) ()

𝐹𝑟𝑖 = 𝐹𝑟𝑚𝑖𝑛 + (𝐹𝑟𝑚𝑎𝑥 − 𝐹𝑟𝑚𝑖𝑛)𝜗 ()

where 𝐹𝑟𝑚𝑖𝑛 and 𝐹𝑟𝑚𝑎𝑥 are the minimum and maximum frequencies, and 𝜗 is a random number

from a uniform distribution in [0,1]. Each bat for a local search carries out the random walk based

on the optimal solution as given in (2.8).

𝜑𝑛𝑒𝑤 = 𝜑𝑜𝑙𝑑 + 휀𝐴𝑡 ()

Where 휀 is a random number from a uniform distribution in [−1,1], 𝜑𝑜𝑙𝑑 is a solution randomly

selected from the current optimal solution, and 𝐴 shows the loudness of emitted sound. The

loudness of the pulse emission of the bat 𝐴𝑖 and the velocity 𝑟𝑖 will be updated as follows.

𝐴𝑖(𝑡 + 1) = 𝛼𝐴𝑖(𝑡) ()

𝑟𝑖(𝑡 + 1) = 𝑟𝑖(0)[1 − exp(−𝓎𝑡)] ()

Where 0 < 𝛼 < 1 and 𝓎 > 0 are constant. In the binary version of the bat algorithm, a V-

shaped transfer function is used to define a transformation probability from 0 to 1 for a position

vector and oblige the particles with high velocity to switch their positions. Then a new position-

updating equation is also used to update the position of the particle. These equations are given in

(2.11) and (2.12), respectively.

𝑉 (𝑣𝑖
𝑘(𝑡)) = |

2

𝜋
 arctan(

𝜋

2
𝑣𝑖

𝑘(𝑡))| ()

𝜑𝑖
𝑘(𝑡 + 1) = {

(𝜑
𝑖
𝑘
(𝑡))

−1
 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑉 (𝑣𝑖

𝑘(𝑡 + 1))

𝜑𝑖
𝑘(𝑡) 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 𝑉 (𝑣𝑖

𝑘(𝑡 + 1))
 ()

where 𝜑𝑖
𝑘(𝑡) and 𝑣𝑖

𝑘(𝑡) indicate the position and velocity of 𝑖𝑡ℎ particle at 𝑡𝑡ℎ iteration in 𝑘𝑡ℎ

dimension and (𝜑𝑖
𝑘(𝑡))−1 is the complement of 𝜑𝑖

𝑘(𝑡).

28

2.6.2. Binary Particle Swarm Optimization

Particle swarm optimization is one of the most widely used evolutionary due to its simplicity

and low computation cost in solving a wide range of problems. The binary version of the PSO was

originally proposed by Kennedy and Eberhart [87]. In this algorithm, each particle will update the

position and velocity vectors as guidance for its movement in the discrete search space. This

algorithm utilizes a transfer function to map the velocity vector to a probability vector, and then

the probability vector is used to update the position of particles. This transfer function is a sigmoid

function that returns 0.5 when the velocity equals 0. At this point, the probability of changing a

variable is at the highest level. By contrast, as the velocity value goes toward the positive or

negative infinity, the transfer function returns values close to 1 or 0. The related equations are

given in (2.13), (2.14), and (2.15).

𝑉𝑖(𝑡 + 1) = 𝓌𝑉𝑖(𝑡) + 𝔠1𝔯1 (𝜑𝑏𝑒𝑠𝑡(𝑖)(𝑡) − 𝜑𝑖(𝑡)) + 𝔠2𝔯2 (𝜑𝑏𝑒𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙(𝑖)(𝑡) − 𝜑𝑖(𝑡)) ()

𝜑𝑖(𝑡 + 1) = {
1 𝑖𝑓 𝑟 < 𝑇(𝑉𝑖(𝑡 + 1))

0 𝑖𝑓 𝑟 ≥ 𝑇(𝑉𝑖(𝑡 + 1))
 ()

𝑇(𝑉𝑖(𝑡 + 1)) =
1

1+𝑒
−(𝑉𝑖(𝑡+1))

 ()

Over the years, several studies [88][89][90] have improved the original BPSO by enhancing

the updating position formula, as the original BPSO suffered from local minima trapping. The

authors of [83] discussed how the transfer function affects the efficiency of the algorithm in the

binary version for mapping the continuous search space to the discrete search space. They

improved the performance and convergence speed of the algorithm by proposing two families of

transfer functions and showed excellent performance with a V-shaped transfer function which has

been used utilized in our study as well.

2.6.3. Binary Genetic Algorithm

The genetic algorithm is a population-based optimization method that formulates the problem

as an objective function using the concept of genes from biology. The GA initializes by generating

the initial population; then, three genetic operators are performed (i.e., selection, crossover, and

29

mutation) on some selected individuals from the current population iteratively to reach either a

near-optimal solution or reach a predefined number of generations [91].

For BGA [92], the decision variables are represented as chromosomes = [𝐺1, 𝐺2, … , 𝐺𝑛], while

each gene 𝑔𝑖 in the chromosome is encoded by a binary vector of length 𝐵, in which 0 means not

selected feature and 1 means selected feature for the decoding process. BGA uses a group of

chromosomes known as population (𝑁pop) and goes through a process of updates or generations

to evolve. The cost function can be represented as 𝒇(chromosome), which needs to be minimized

or maximized based on the desired settings. The next step is natural selection and mating, in which

a pair of chromosomes are selected to mate to generate further offspring in each generation. BGA

first selects a set of fittest chromosomes (𝑁keep) from which the parents will be selected, and all

other chromosomes are discarded and replaced by generated offsprings. Once the offsprings is

generated, the mutation occurs as a random process to mutate the bits in the population. If the new

population is ineffective in terms of cost, it will be discarded in the next generation or iteration.

As a final step, BGA checks for convergence conditions as soon as the mutated population is

generated. If the convergence conditions are met, the process stops; otherwise, BGA iterates

through multiple generations and repeats the decoding, cost calculation, mating, and mutation

process.

2.6.4. Binary Dragonfly Algorithm

While the dragonfly algorithm had been proposed for problems with continuous search spaces,

the binary version of this algorithm (BDA) [85] has been developed for feature selection and

demonstrated excellent performance in discrete search spaces.

DA adopted the step and position vectors to solve the optimization problem. In a continuous

search space, the position of dragonflies is updated by adding the step vector to the previous

position.

∆𝜑𝑡+1 = (𝓈𝒥𝑖 + 𝒶𝒯𝑖 + 𝒸𝒞𝑖 + ℊ𝒢𝑖 + ℯℰ𝑖) + 𝓌∆𝜑𝑡+1 ()

𝜑𝑡+1 = 𝜑𝑡 + ∆𝜑𝑡+1 ()

30

 Where 𝓈 describes the separation weight, 𝒥𝑖 represents the separation of the 𝑖𝑡ℎ individual, 𝒶

is the alignment weight, 𝒯𝑖 is the alignment of the 𝑖𝑡ℎ individual, 𝒸 is the cohesion weight, 𝒞𝑖 is the

cohesion of the 𝑖𝑡ℎ individual, ℊ shows the food factor, 𝒢𝑖 is the food source of the 𝑖𝑡ℎ individual,

ℯ indicates the enemy factor, ℰ𝑖 is the enemy position of the 𝑖𝑡ℎ individual,

𝓌 is the inertia weight, and finally, 𝑡 is the number of iterations. The swarming behavior and

mathematical model of this algorithm are given as follows:

𝒥𝑖 = ∑ 𝜑 − 𝜑𝑗

𝓃

𝑗=1
 ()

𝜑𝑗 represents the 𝑗𝑡ℎ neighboring individual of the 𝜑 position, and 𝓃 is the neighborhood size.

𝒯𝑖 = ∑ 𝑉𝑗
𝓃

𝑗=1
𝓃⁄ ()

𝑉𝑗 represents the 𝑗𝑡ℎ neighboring individual velocity.

𝒞𝑖 =
∑ 𝑉𝑗

𝓃

𝑗=1

𝓃
 − 𝜑 ()

𝒢𝑖 = 𝜑+ − 𝜑 ()

ℰ𝑖 = 𝜑− + 𝜑 ()

𝜑 represents the current individual’s position, 𝜑+ describes the position of the food source and

𝜑− represents the enemy positions.

In a binary search space, the following equations should be used to update the step vector:

𝜑𝑡+1 = {
𝛽𝜑𝑡, 𝑖𝑓 𝑥 < 𝑇(∆𝜑𝑡+1)

𝜑𝑡, 𝑖𝑓 𝑥 ≥ 𝑇(∆𝜑𝑡+1)
 ()

𝛽 indicates a random number in the range [0,1], and 𝑇(∆𝜑𝑡+1) is as follows:

𝑇(∆𝜑) = |
∆𝜑

√∆𝜑2+1
| ()

31

Chapter 3

Automatic Clustering Using AI-Based Optimization

Techniques in a General Framework

This chapter provides an extensive evaluation and comprehensive discussion of the proposed

clustering solution in a general framework. This chapter is important because it validates and

facilitates the development of the other two clustering schemes presented as part of the placement

phase of the proposed caching networks in the following chapters.

Cluster analysis using AI-based optimization techniques has earned increasing popularity due

to the excellent performance of such solutions in finding high-quality clusters in complex

problems. This chapter proposes a novel framework for automatic data clustering, creating clusters

with approximately the same maximum distance using meta-heuristic AI-based optimization

32

techniques. Such techniques do not require offline training but could provide an optimal or near-

optimal solution, considering the system objectives and constraints.

The inherent problem with clustering using such algorithms is having a huge search space.

Therefore, we have also proposed a binary encoding scheme for the particle representation in the

AI-optimizer module to alleviate this problem. The proposed clustering solution does not require

prior knowledge of the number of clusters and evolves based on re-clustering, merging, and

modifying the small clusters to compensate for the distortion deviation between groups with

different sizes.

The performance of this framework has been evaluated over a wide range of synthetic, real-life,

and higher dimensional datasets first by considering four different binary optimization algorithms

in the AI-optimizer module. Furthermore, utilizing internal validity measures, it has also been

evaluated in comparison with multiple classical and new clustering solutions as well as two other

automatic clustering techniques in continuous search space. The experimental results show the

proposed solution is highly efficient in creating well-separated and compact clusters with

approximately the same distance in almost all datasets. Moreover, the application of the proposed

framework to the correlated binary dataset is also investigated as a case study.

Besides having a dynamic number of clusters, simplicity, customizability, and flexibility in

adding extra conditions to the proposed solution are the advantages of the proposed framework.

3.1. Introduction

Over the years, many clustering algorithms have been proposed for different data types,

algorithms, and applications. In general, partitional and hierarchal clustering algorithms are the

two main approaches for cluster analysis in the literature [38],[66],[94]-[99]. The partitional

algorithms can be performed in two different modes: hard and fuzzy. In the hard-clustering

algorithm, each pattern only belongs to one cluster, while in the fuzzy algorithm, different

membership degrees are assigned to each pattern in a group. Partitional algorithms are often non-

deterministic. These algorithms require a priori knowledge of the number of clusters [38][94].

33

The well-known 𝐾-means method is a famous example of this type that is initialized with a

random solution and tries to partition a given dataset into a predefined number of clusters.

Although it is an efficient and robust algorithm, the results strongly depend on the initial random

guesses. Furthermore, this algorithm computes the local minimum and cannot guarantee the global

optimum solution [95]-[97].

On the other hand, the hierarchical clustering algorithm develops a tree-based data structure to

reach the exact number of clusters by splitting the tree at different levels. This algorithm creates a

more deterministic and flexible mechanism than the partitional approach. However, the final

grouping is static since each cluster’s assigned objects cannot move to other groups. Besides,

hierarchical clustering exhibits poor performance when the separation of overlapping clusters is

carried out [38][96][98]. In this case, the fuzzy clustering algorithm can express the overlapping

nature of clusters much better than the hierarchical model. The fuzzy C-mean (FCM) algorithm

[99] is a widely used clustering algorithm that divides objects into a C number of clusters. This

number is determined by trial and error in advance. Although FCM is a powerful method, it is

highly dependent on initial guesses; thus, it can be easily entrapped within local optima

[38][66][99].

Being sensitive to initial solutions, entrapping in local optima, and requiring a priori knowledge

of the number of clusters in most classical clustering algorithms made it challenging to handle this

task in some applications. On the other hand, most real-world clustering problems can be described

as a typical optimization problem that tries to optimize a criterion and specify the clustering quality

[9]. Therefore, meta-heuristic AI-based techniques have been proposed as superb solutions in

automatic clustering to overcome the weaknesses of the classical approaches in recent years

[48][68].

In a nutshell, metaheuristic algorithms can address the clustering problem via two main

approaches. In one approach, the optimization algorithm tries to find the optimum centroids for

the desired dataset. Then, it divides data points into predetermined clusters according to the

identified centroids. This approach requires a priori knowledge of the exact number of clusters. In

another approach, the optimization algorithm assigns each data point directly to a group and tries

to reach the best possible solution over the course of iterations. The second approach is more

convenient since the number of clusters is not required to be predefined, and a sufficient number

34

of clusters evolve during the entire clustering process. However, it suffers from a huge search

space, which makes the overall solution extremely difficult without providing additional insights.

The advantage of not requiring predefined information in the second approach motivated us to

develop our clustering problem based on this solution. In this regard, we have formulated the

clustering problem as an AI-based optimization problem and adopted a dynamic range of clusters

in accordance with the input data to improve the convergence speed.

3.2. Data Clustering Problem Formulation

Let 𝓐𝑚×𝑙 represents a set of 𝑚 patterns, each having 𝑙 features. The data clustering problem

considers a given dataset 𝓐𝑚×𝑙 and attempts to partition it into 𝐾 clusters 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝐾] such

that 𝐾 ≤ 𝑚. In such partitioning, the following properties should be maintained:

• ∀𝑖 ∈ {1,2,3, … , 𝐾}, 𝑐𝑖 ≠ ∅

• ⋃ 𝑐𝑖 = 𝓐𝐾
𝑖=1

• 𝑐𝑖 ∩ 𝑐𝑗 = ∅, ∀𝑖, 𝑗 ∈ {1,2, … , 𝐾}, and 𝑖 ≠ 𝑗

Given dataset 𝓐𝑚×𝑙, the fitness function 𝒇 is defined as a partitioning adequacy measure to

quantify the goodness of a partition based on the similarity of the patterns. Therefore, the clustering

problem turns into finding optimal partitions among all other feasible solutions [94].

Euclidean distance is one of the most popular choices for distance measures to evaluate the

similarity between data points in clustering problems. The Euclidean distance between any two 𝑙-

dimensional data points is given by:

𝒹(𝒜𝑙 , 𝒜𝑙
′) = √∑ (𝒜𝑙

𝑖 − 𝒜𝑙
′𝑖)2𝑙

𝑖=1 ()

3.3. Proposed Data Clustering Framework

The main idea of designing the proposed framework using AI-based optimization techniques is

to reach a sufficient number of compact and well-separated clusters with approximately the same

maximum distance within each group without requiring prior knowledge of the number of clusters.

35

To overcome the inconvenience of having a huge search space as well as not having a priori

knowledge of the adequate number of clusters, we propose a binary encoding scheme for the

particle representation of the optimization algorithm in a predetermined range [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥], where

𝑚 is the total number of data points and 𝐾𝑚𝑖𝑛 = 1, 𝐾𝑚𝑎𝑥 = ⌊√𝑚⌋.

𝐾𝑚𝑎𝑥 is considered as ⌊√𝑚⌋ according to similar assumptions discussed in [100] for a clustering

solution with the fuzzy C-mean model and [66] for automatic clustering using metaheuristic

algorithms. They have mentioned that 𝐾 = √𝑚 usually provides a decent answer for such

clustering solutions as a rule of thumb. Hence, we applied this assumption to our dynamic range

of clusters in our proposed solution. We observed that considering this assumption along with the

proposed binary encoding scheme provides excellent results in our proposed framework.

Overall, the proposed framework operates in two main steps: First, each data point is directly

equipped with an initial cluster number. Consequently, a primary clustering solution is formed at

this step. The obtained clusters will then be re-clustered, merged, and modified based on some

conditions to compensate for the distortion deviation between groups with different sizes and

improve the result according to the desired objectives.

Following is a detailed description of the AI-based optimizer module, the binary encoding

scheme, and the objective function.

3.3.1. AI-Based Optimizer Module

The first step is to formulate the clustering problem in a way that is amenable to an AI optimizer

module. The second step is utilizing AI-based optimization techniques in the optimizer module to

find the near-optimum solution. In this way, the optimizer intelligently encompasses the process

of finding a decent number of clusters with the same maximum distance in accordance with the

dataset considering the defined constraint in the system.

The AI-based optimizer module stands at the highest level of the proposed approach and

considers the clustering problem as a black box that needs to be optimized iteratively. In this

regard, the automatic clustering problem is formulated as a single objective optimization function

based on the desired goals and system constraints. The AI-based optimizer takes a binary vector

36

as input and calculates the corresponding output according to some merit factors while minimizing

this function during the entire process. In other words, the optimizer module checks combinations

of the input to determine which input vector will yield the minimum output of the function.

A wide range of binary optimization algorithms can be utilized for the AI-based optimizer

module. This research considers the BPSO algorithm, the BBA algorithm, the BGA algorithm, and

the BDA algorithm due to their excellent performance discussed in the literature.

3.3.2. Binary Encoding Scheme

Similar to other iterative metaheuristic algorithms [66], our approach requires a representation

of a solution that is directly related to the objective function to be optimized. Therefore, a binary

encoding scheme for particle representation has also been proposed in this research. The proposed

binary encoding scheme assigns binary vectors with the length of 𝑚 × 𝐿 bits to each particle in the

optimizer, where 𝐿 is the number of required bits to address each cluster number and calculated as

 𝐿 = log2 𝐾𝑚𝑎𝑥 ()

The suggested binary vectors are considered the candidate solution and evaluated by the

optimizer module iterations. For this purpose, every L bit of this vector is converted to the decimal

equivalent in sequential order. These decimal numbers are assigned to data points as the initial

cluster numbers.

Example 3.1: A simple example of the proposed encoding scheme is shown in Figure 3.1 for

𝑚 = 16 data points. In this case, 𝐾𝑚𝑎𝑥 = 4, and 𝐿 = 2; therefore, each particle is represented by

a binary vector of length 𝑚 × 𝐿 = 32 bits.

Then every 2-bit of the binary vector is converted to the decimal equivalent in sequential order.

The decimal equivalents are considered the initial cluster numbers and will be assigned to the data

points in the same order to form the initial clustering.

37

Figure 3.1: The steps of assigning a cluster number to each data point by the proposed binary

encoding scheme in the general clustering framework

3.3.3. Objective Function

We formulate the data clustering problem as a single objective optimization problem with

objective function 𝒇 that needs to be minimized iteratively over the set of all feasible ways of

clustering a given dataset.

The set of all feasible ways of clustering a given dataset is defined as 𝜓 = {𝐶1, 𝐶2, … , 𝐶𝑆(𝑚,𝐾)}.

𝑆(𝑚,𝐾) is the total number of combinations in assigning 𝑚 files into 𝐾 clusters [66] obtained by

the Stirling number of the second kind [118].

𝑆(𝑚,𝐾) =
1

𝐾!
∑ (−1)𝑖(𝐾

𝑖
)(𝐾 − 𝑖)𝑚𝐾

𝑖=0 ()

Once the initial clustering solution is formed, a representative is selected for each cluster. The

representative is defined as the nearest data point to the current centroid in each group, where the

centroid is the mean of all data points in each cluster. Then, data points will be re-clustered

according to the identified representatives of the clusters. Consequently, the representatives will

also be updated according to the recent changes. Re-clustering and updating the representatives

will be repeated several times until no further changes are observed.

38

Although the achieved clustering solution up to this stage consists of separated clusters, it is not

well-organized yet and needs to be revised to satisfy our goals. To reach clusters with

approximately the same maximum distance while keeping the number of clusters less than 𝐾𝑚𝑎𝑥 ,

the distortion gap between the largest and the smallest clusters must be compensated. In this regard,

the smallest clusters are identified and marked as defective, meaning they should be merged

appropriately with adjacent clusters. To merge clusters, we compare the maximum distances of all

clusters with the cluster with the largest maximum distance across all clusters according to

inequality (3.4). Clusters that do not satisfy this inequality are considered defective and merged

with adjacent clusters.

𝛿𝑐𝑖 ≤ 0.9 Max
𝐶

 {𝛿𝑐𝑖 } ()

where 𝛿𝑐𝑖 is the maximum distance within the cluster 𝑐𝑖 ∈ 𝐶, for 𝑖 ∈ {1,… , 𝐾}, and 𝐶 ∈ 𝜓.

The process of re-clustering and updating representatives is repeated to stabilize the clustering

in this step. Once no change happens in the clusters, that solution is considered the best result for

the corresponding input vector, and the following merit factors are calculated by the optimizer:

• 𝐾𝑚𝑎𝑥 as the maximum number of clusters

• 𝛿𝑐𝑖 as the maximum intra-cluster distance within each cluster 𝑐𝑖 ∈ 𝐶

• ∆𝐶 as the distortion deviation over all clusters in a clustering solution 𝐶

• �̅�𝐶
𝑚𝑎𝑥 as the average of the maximum distance over all clusters in a clustering solution 𝐶

• �̅�𝐶
𝑚𝑖𝑛 as the average of minimum inter-cluster distances in a clustering solution 𝐶

The definition of these parameters is given as follows.

Definition 1: Considering 𝛿𝑐𝑖 as the maximum distance in each cluster 𝑐𝑖, then �̅�𝐶
𝑚𝑎𝑥 is defined

as the average of the maximum distance of all clusters and is calculated as:

�̅�𝑚𝑎𝑥

𝐶
=

1

𝐾
∑ 𝛿𝑐𝑖𝐾

𝑖=1 ()

where 𝑖 ∈ {1,2, … , 𝐾} and 𝐶 ∈ 𝜓.

Definition 2: The distance deviation ∆𝐶 is defined as the difference between the maximum and

the minimum value of maximum distance over all clusters and is defined as:

39

∆𝐶= max
𝑐∈𝐶

{𝛿𝑐𝑖} − min
𝑐∈𝐶

{𝛿𝑐𝑗} ()

where 𝑖, 𝑗 ∈ {1,2, … , 𝐾} 𝑗 ≠ 𝑖, and 𝐶 ∈ 𝜓.

Definition 3: Let 𝐸𝑖𝑗
𝒜 be the inter-cluster distance between data point 𝒜 within the cluster 𝑖 to

the cluster-head 𝑗, where 𝒜 ∈ 𝑐𝑖, 𝑖 ∈ {1,2, … , 𝐾}, 𝑗 ∈ {1,2, … , 𝐾 − 1} and 𝑖 ≠ 𝑗.

𝐸𝑖𝑗
𝒜 is calculated for all data points in all clusters to determine the inter-cluster distances. The

minimum of 𝐸𝑖𝑗
𝒜 is determined for each cluster and denoted by 𝐸𝑐𝑖

𝑚𝑖𝑛.

Then, �̅�𝑚𝑖𝑛

𝐶
 is calculated as the average of the minimum inter-cluster distances over all clusters

given by:

�̅�𝑚𝑖𝑛

𝐶
=

1

𝐾
∑ 𝐸𝑐𝑖

𝑚𝑖𝑛𝐾
𝑖=1 ()

Finally, the output of the function 𝒇 will be calculated according to the defined parameters, and

the goal is to minimize it.

𝒇 =
𝐾𝑚𝑎𝑥 ∆𝐶 �̅�𝑚𝑎𝑥

𝐶

�̅�𝑚𝑖𝑛
𝐶

 ()

Flowchart 3.1 summarizes all the steps within the objective function.

40

Flowchart 3.1: The objective function of the proposed clustering framework

41

Also, the following example illustrates the process of evolving clusters and migration of data

points to other groups during different stages.

Example 3.2. This evaluation has been performed on dataset R15 with 𝑚 = 320 points, which

is one of the standard datasets in UCI machine learning [101] illustrated in Figure (3.2-a). We have

considered the BBA optimization algorithm with 100 agents and 200 iterations for this experiment.

Figure (3.2-b) shows the result of initial clustering, where an initial cluster number is assigned to

each data point. Figures (3.2-c) and (3.2-d) show the clustering result after two re-clustering levels.

Although the clusters are distinguishable in this stage, the smallest and largest clusters still have a

considerable size difference. During Stages (e) to (h), the process of merging and modifying the

small clusters is performed, and the result is evaluated according to output. As can be seen, the

proposed framework provides a sufficient number of compact and well-separated clusters with

relatively close values for maximum distance.

Figure 3.3 illustrates the convergence curve of this example. The convergence curve is a very

common tool to qualitatively present the results of a single-objective optimization algorithm.

Figure 3.2: The process of evolving clusters and migration of data points to other clusters during

different stages of the proposed clustering framework.

42

Figure 3.3: The convergence curve of Example 3.2 in three different stages

As shown, the proposed framework demonstrates high convergence speed in a small number of

iterations when we perform the merging and modifying steps to compensate for the distortion gap.

3.4. Results and Discussion

In this section, the performance of the proposed automatic clustering framework is evaluated

on twenty-four benchmark datasets. The details of the used datasets and the parameter settings for

this performance evaluation are also presented here. Then, simulation results and comparative

studies are discussed.

3.4.1. Dataset and Validity Measure

This experiment collects twenty-four different synthetic and real-world datasets from the UCI

Machine learning [101] and KEEL repositories [102]. This collection includes datasets with

different shapes, densities, and dimensions ranging from 2 to 512, with diverse data points from

106 to 3100.

Table 3.1 describes the summary of the datasets.

43

We have used internal validity measures to examine the quality of the proposed clustering

scheme. In this regard, we have calculated the sum of intra-cluster and inter-cluster distance

validity measures [38][94] to ensure the compactness and the separation of the clusters. We have

also evaluated the proposed framework using the DB-index validity measure [49], which describes

Table 3.1: Summary of used datasets with different features

Dataset
Number of

features
Number of

points
Number of Clusters

Shape dataset

Aggregation 2 788 6

Compound 2 399 6

D31 2 3100 31

Flame 2 240 2

Jain 2 373 2

Pathbased 2 300 3

R15 2 600 15

Spiral 2 312 3

Real-World
dataset

Appendicitis 7 106 2

Dermatology 34 358 6

Ecoli 7 336 8

Glass 9 214 7

Haberman 3 306 2

Housevotes 16 232 2

Ionosphere 33 351 2

Iris 4 150 3

Segment 19 2310 7

Vehicle 18 846 4

Wdbc 30 569 2

Wine 13 178 3

Higher-
dimensional

dataset

Dime064 64 1024 16

Dime128 128 1024 16

Dime256 256 1024 16

Dime512 512 1024 16

44

a trade-off in maximizing intra-cluster compactness and inter-cluster separation. In the DB-index

measure, the intra-cluster distances in the 𝑖𝑡ℎ cluster and the inter-cluster distances between cluster

𝑖𝑡ℎ and 𝑗𝑡ℎ are defined as follows:

Υ𝑖,𝜏 = [
1

𝓃𝑖
 ∑ ∥ 𝒜 − 𝓂𝑖 ∥2

τ
𝒜∈𝑐𝑖

]
1

τ⁄

 ()

where 𝓃𝑖 is the number of elements in the 𝑖𝑡ℎ cluster denoted by 𝑐𝑖. �⃗⃗⃗� 𝑖 is the 𝑖𝑡ℎ cluster centroid

and 𝜏 is an integer, and both 𝜏, 𝓉 ≥ 1.

Λ𝑖,𝑗,𝓉 = {∑ |𝓂𝑖,ℓ − 𝓂𝑗,ℓ|
𝓉𝑙

ℓ=1 }
1

𝓉⁄ =∥ 𝓂𝑖 − 𝓂𝑗 ∥𝓉 ()

𝛷𝑖,𝜏,𝓉 = Max
𝑗∈𝐾,𝑗≠𝑖

{
Υ𝑖,𝜏+Υ𝑗,𝜏

Λ𝑖,𝑗,𝓉
} ()

Finally, the DB-index measure is given by (3.12).

𝐷𝐵(𝐾) =
1

𝐾
∑ 𝛷𝑖,𝜏,𝓉

𝐾
𝑖=1 ()

The smaller the value of the DB-index measure, the better the compactness and the separation.

3.4.2. Experimental Results and Parameter Settings

The experiments have been carried out on a PC with Windows 10 Professional 64-bit operating

system, an Intel(R) Core ™ i7-10700K processor, and 48 GB RAM using MATLAB software

2021 b. We have also used MATLAB packages4, Yarpize packages5, and NPIR source code6 [63]

with its required python packages for the comparative study during this experiment. Besides, the

IBM SPSS Version 27 has been used for performing the statistical analysis test.

The comparison results are explained in two parts. The first set of results describes the effect

of considering different binary optimization algorithms on the proposed framework. In this regard,

we have evaluated the proposed framework performance using BBA, BPSO, BGA, and BDA

algorithms in the optimizer module and presented the result for different cases.

4 https ://www.mathworks.com/products/matlab.html.
5 http://yarpiz.com/64/ypml101-evolutionary-clustering
6 http://evo-ml.com/2019/10/28/npir/

45

The parameter settings for the used algorithms are represented in Table 3.2.

In order to evaluate each optimizer module, twenty independent trials are conducted on each

dataset. Then the best and the worst cost, the average cost, and the standard deviation are reported.

These comparison results are described in Tables 3.3, 3.4, and 3.5. The best entries are shown in

boldface in all tables.

Table 3.2: Parameter configuration of the utilized optimization algorithms in the

proposed framework and two of the comparative studies

BBA BPSO

Parameter Value Parameter Value

𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100

𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200

𝐾𝑀𝑎𝑥 √𝑚 𝐾𝑀𝑎𝑥 √𝑚

𝐹𝑟𝑚𝑖𝑛, 𝐹𝑟𝑚𝑎𝑥 0.2 𝔠1, 𝔠2 2

𝐴 0.25 𝑤 0.85

𝑟 0.5

BGA BDA

Parameter Value Parameter Value

𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100

𝐼𝑡𝑒𝑟𝑀𝑎𝑥 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200

𝐾𝑀𝑎𝑥 𝐾𝑀𝑎𝑥 𝐾𝑀𝑎𝑥 √𝑚

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.8 𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 0.2, 0.9

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.001 𝛼 0.01

 𝛽 0.09

GCUK DCPSO

Parameter Value Parameter Value

𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100

𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200

𝐾𝑀𝑎𝑥 √𝑚 𝐾𝑀𝑎𝑥 √𝑚

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.8 𝔠1, 𝔠2 1.494

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.001 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 0.75

46

Table 3.3: Comparison results for the shape dataset with considering BBA, BPSO, BGA, and

BDA in the optimizer module in the proposed method

Datasets

BBA BPSO

Best Worst Mean Std Best Worst Mean Std

Aggregation 5.62 6.76 6.58 0.25 6.76 8.16 6.92 0.32

Compound 12.69 22.47 18.70 2.91 16.63 24.00 20.56 2.33

D31 2.16 6.74 4.87 1.39 3.66 7.88 6.59 0.78

Flame 3.59 6.78 5.32 0.66 5.12 6.81 6.01 0.45

Jain 6.04 7.28 6.21 0.35 6.04 7.12 6.18 0.32

Pathbased 8.57 12.52 11.34 1.08 8.95 12.51 11.75 0.94

R15 3.00 3.83 3.53 0.21 2.63 3.81 3.55 0.28

Spiral 11.18 16.68 14.65 1.59 12.67 17.02 14.97 1.32

Datasets

BGA BDA

Best Worst Mean Std Best Worst Mean Std

Aggregation 6.47 7.25 6.68 0.16 6.47 7.66 6.77 0.22

Compound 12.08 21.86 16.03 2.56 12.44 24.05 16.95 2.83

D31 2.18 6.73 5.45 1.35 2.16 7.40 6.22 1.15

Flame 3.50 6.22 5.34 0.68 5.43 6.42 5.92 0.33

Jain 5.92 8.87 6.50 0.90 5.75 6.32 6.04 0.09

Pathbased 10.05 12.14 11.60 0.58 9.59 12.44 11.83 0.63

R15 1.54 3.80 2.95 0.79 1.54 3.81 3.45 0.51

Spiral 11.12 15.92 14.16 1.32 12.77 16.67 14.92 1.11

47

Table 3.4: Comparison results for the real-life dataset with considering BBA, and

BPSO in the optimizer module in the proposed method

Datasets

BBA BPSO

Best Worst Mean Std Best Worst Mean Std

Appendicitis 1.66 2.28 1.95 0.13 2.23 2.23 2.08 0.11

Dermatology 26.69 41.53 36.35 4.16 43.59 43.59 39.49 2.80

Ecoli 367.51 484.57 446.22 29.70 501.28 501.28 466.99 27.12

Glass 7.78 8.14 8.12 0.08 8.42 8.42 8.18 0.10

Haberman 44.92 46.86 45.79 0.99 46.86 46.86 45.40 0.86

Housevotes 2.24 3.79 2.95 0.38 5.46 5.46 3.59 0.51

Ionosphere 34.98 48.35 41.42 3.10 50.72 50.72 45.40 3.38

Iris 2.01 3.20 2.68 0.40 3.33 3.33 2.97 0.22

Segment 145.10 148.73 145.29 0.81 166.36 166.36 146.71 4.81

Vehicle 140.68 141.73 141.48 0.41 226.51 226.51 151.81 23.68

Wdbc 1861.93 1869.16 1864.61 3.45 1858.82 1867.87 1864.54 2.398

Wine 139.27 296.37 210.93 47.56 296.37 296.37 244.10 32.78

48

Table 3.5: Comparison results for the Real-life dataset with considering BGA,

and BDA in the optimizer module in the proposed method

Datasets

BGA BDA

Best Worst Mean Std Best Worst Mean Std

Appendicitis 1.66 2.24 2.03 0.14 1.66 2.28 2.00 0.17

Dermatology 35.45 44.13 38.01 2.03 31.16 44.04 38.07 3.29

Ecoli 388.90 487.49 447.70 26.49 404.82 524.54 462.88 28.41

Glass 8.14 8.42 8.17 0.08 8.14 8.420 8.20 0.11

Haberman 44.92 46.86 45.40 0.86 44.92 46.86 45.60 0.94

Housevotes 2.03 3.33 2.81 0.38 2.35 3.54 2.99 0.34

Ionosphere 36.05 47.56 42.15 3.58 36.80 48.65 43.04 3.41

Iris 2.19 3.20 2.79 0.30 2.24 3.52 2.83 0.38

Segment 145.10 168.93 150.73 9.61 145.10 168.93 150.55 9.68

Vehicle 140.68 141.73 141.33 0.48 140.68 226.84 148.11 21.23

Wdbc 1809.57 1928.53 1870.38 28.08 1857.94 1871.54 1864.76 3.451

Wine 139.27 296.37 215.24 52.86 116.02 296.37 178.40 37.98

49

From the results, we can see the four binary optimization algorithms have reached a very

competitive result. However, the performance of the proposed framework by considering the BBA

algorithm in the optimizer module is more significant in most datasets.

We have also provided the convergence curve of the shape and the real-world datasets by

considering all four optimizer modules in Figures 3.4 to 3.10. The convergence curve is a useful

tool to visualize how an algorithm improved the global best (gbest) as the first best path iteratively

to reach the global optimum solution starting from a random solution. In our model, the global

best represents the minimum of the objective function across all search agents in each iteration.

In all these curves, the optimizer that reaches the minimum cost after passing all iterations is

suitable for that specific dataset and can provide the best solution.

Table 3.6: Comparison results for the higher-dimensional dataset with considering

BBA, BPSO, BGA, and BDA in the optimizer module in the proposed Method

Datasets

BBA BPSO

Best Worst Mean Std Best Worst Mean Std

Dime064 13.06 13.07 13.06 0.00 13.10 13.18 13.14 0.01

Dime128 12.95 13.20 13.06 0.05 13.01 13.14 13.07 0.03

Dime256 3.56 5.15 4.24 0.40 3.84 4.84 4.36 0.29

Dime512 3.02 4.78 3.95 0.48 3.55 4.87 4.14 0.38

Datasets

BGA BDA

Best Worst Mean Std Best Worst Mean Std

Dime064 13.14 13.14 13.14 0.00 13.10 13.10 13.10 0.00

Dime128 12.93 13.12 13.03 0.04 13.68 13.81 13.74 0.03

Dime256 3.74 4.92 4.25 0.27 4.12 5.07 4.61 0.29

Dime512 3.28 5.14 4.26 0.50 3.05 5.54 4.27 0.62

50

Figure 3.4: Convergence curve of (a) aggregation, (b) compound, and (c) D31 datasets

considering BBA, BPSO, BGA, and BDA in the optimizer module.

51

Figure 3.5: Convergence curve of (d) flame, (e) Jain, and (f) Pathbased datasets considering

BBA, BPSO, BGA, and BDA in the optimizer module.

52

Figure 3.6: Convergence curve of (g) R15, (h) spiral datasets considering BBA, BPSO, BGA,

and BDA in the optimizer module.

53

Figure 3.7: Convergence curve of (i) appendicitis, (j) dermatology, and (k)Ecoli datasets

considering BBA, BPSO, BGA, and BDA in the optimizer module.

54

Figure 3.8: Convergence curve of (l) glass, (m) Haberman, and (n) housevotes datasets

considering BBA, BPSO, BGA, and BDA in the optimizer module.

55

Figure 3.9: Convergence curve of (o) ionosphere, (p) iris, and (q) segment datasets considering

BBA, BPSO, BGA, and BDA in the optimizer module.

56

Figure 3.10: Convergence curve of (r) vehicle, (s) Wdbc, and (t) Wine datasets considering BBA,

BPSO, BGA, and BDA in the optimizer module.

57

Figure 3.11 shows the shape dataset in its original form without clustering. Figure 3.12

illustrates the results of applying the proposed framework to the shape dataset to visualize some

results. As can be seen, the proposed approach can generate different well-separated clusters while

maintaining a trade-off between the number of clusters and their shape.

Figure 3.11: The shape dataset in its original form before performing the proposed clustering

Figure 3.12: Visual results of performing the proposed clustering framework on the shape

datasets.

58

In the second part of the comparison results, the performance of the proposed framework has

been compared with other classical and new clustering algorithms in terms of internal validity

measures.

We have considered the 𝐾-means ++ [103] as a representative of partitional clustering and the

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [104] as a

representative of density-based models. Also, we have considered the Expectation-Maximization

(EM) algorithm [105] and the Nearest point with indexing ratio (NPIR) algorithm [106]. EM is a

famous example of distribution-based clustering that employs a fixed number of Gaussian

distributions to reach the distribution of the objects. NPIR is one of the latest clustering algorithms

and works based on finding the nearest neighbors. Moreover, we have considered two well-known

optimization algorithms in the continuous search space. These two algorithms are known as GCUK

[107], a genetic-based clustering with an unknown number of clusters, and DCPSO [108], the

dynamic PSO.

In this comparison, we have evaluated the sum of intra-cluster distances, the sum of inter-cluster

distances, and the DB-index for twenty independent trials with each approach. We have also

calculated the distortion deviation in all clustering solutions and compared the result. The

distortion deviation, calculated in Eq. (3.6), shows the difference in the size (radius) of clusters in

a clustering approach. We wish to keep it minimized in our proposed method.

Our comparison study continues by utilizing the BBA in the optimizer module since it has

provided excellent performance based on Tables 3.4 to 3.6; However, the other three algorithms

have also shown competitive results, so they can also be considered in the optimizer module for

the rest of the performance evaluation.

For the comparative study, preliminary experiments have been done to determine the best

settings for the required parameters to calculate internal validity measures. For GCUK and

DCPSO, the parameter settings are described in Table 3.2. The EM algorithm needs to know the

number of clusters in advance.

The NPIR algorithm also requires prior knowledge of the number of clusters and the indexing

ratio (IR) [106]. Therefore, we have performed multiple runs with various clusters in both

59

algorithms and also have considered different IR values suggested by the authors for the NPIR to

find the most appropriate parameters for each dataset in these algorithms.

The DBSCAN algorithm forms clusters based on density-based connectivity, and its

performance is affected by MinPts and eps parameters. The MinPts can be selected based on

dimensionality, and the eps can be specified based on the elbow in the k-distance graph [109].

Authors in [110] suggest using larger MinPts for a noisy and large dataset. Also, depending on the

aim of clustering, you can decrease eps to avoid large clusters or increase it to avoid noise. Hence,

we have run the DBSCAN algorithm with different MinPts and eps values for each dataset to select

the value leading to the best results in terms of the mentioned validity measures.

60

Table 3.7: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index

and distortion deviation over 20 independent runs for the proposed framework, DCPSO,

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the shape datasets

Algorithm

 Datasets

 Measure

Aggregation Compound D31 Flame

Proposed

Intra-C Distances 3183 ± 125 1450 ± 458 9329 ± 186 318 ± 21

Inter-C Distances 327 ± 8 484 ± 308 394 ± 90 279 ± 12

DB Index 0.57 ± 0.01 0.66 ± 0.07 0.75 ± 0.03 0.76 ± 0.09

Distortion Deviation 1.69 ± 0.06 1.83 ± 0.04 0.37 + 0.01 0.48 ± 0.00

DCPSO

Intra-C Distances 3232 ± 262 1507 ± 135 6453 ± 302 527 ± 143

Inter-C Distances 313 ± 11 303 ± 42 2792 ± 339 158 ± 118

DB Index 0.63 ± 0.05 0.72 ± 0.07 0.75 ± 0.02 0.69 ± 0.05

Distortion Deviation 4.8 ± 1.58 3.54 ± 1.44 4.89 ± 0.72 2.14 ± 0.69

GCUK

Intra-C Distances 3795 ± 110 1491 ± 303 7334 ± 373 411 ± 67

Inter-C Distances 375± 48 798 ± 453 1871 ± 953 275 ± 157

DB Index 0.69 ± 0.06 0.74 ± 0.08 0.79 ± 0.00 0.76 ± 0.04

Distortion Deviation 6.50 ± 1.45 2.46 ± 0.75 4.13 ± 0.83 2.16 ± 0.69

K-means++

Intra-C Distances 2937 ± 2 1159 ± 61 3169 ± 121 783 ± 6

Inter-C Distances 271 ± 0.5 234 ±7 6170 ± 104 6 ± 0.04

DB Index 0.64 ± 0.00 0.79 ± 0.06 0.65 ± 0.04 1.11 ± 0.00

Distortion Deviation 1.72 ± 0.49 4.81 ± 0.86 1.81 ± 0.25 0.93 ± 0.22

DBSCAN

Intra-C Distances 3808 ± 537 871 ± 0.00 11202 ± 785 731 ± 30

Inter-C Distances 207 ± 97 131 ± 0.00 365 ± 90 11 ± 1

DB Index 0.65 ± 0.06 3.39 ± 0.00 0.76 ± 0.02 2.03 ± 1.64

Distortion Deviation 10.77 ± 1.28 5.18 ± 0.00 7.54 ± 0.02 5.04 ± 1.44

EM

Intra-C Distances 3251 ± 286 1248 ± 80 3032 ± 200 819 ± 13

Inter-C Distances 271 ± 13 222 ± 18 6371 ± 153 5.54 ± 0.05

DB Index 0.65 ± 0.07 1.42 ± 0.74 1.14 ± 0.18 1.20 ± 0.02

Distortion Deviation 7.06 ± 2.10 6.52 ± 1.22 4.13 ± 0.90 1.20 ± 0.60

NPIR

Intra-C Distances 3158 ± 142 1335 ± 42 2886 ± 6 766 ± 96

Inter-C Distances 307 ± 53 180 ± 37 6085 ± 97 12 ± 1

DB Index 0.85 ± 0.06 1.06 ± 0.13 0.55 ± 0.01 1.10 ± 0.15

Distortion Deviation 7.73 ± 0.53 3.88 ± 0.14 1.76 ± 0.02 2.48 ± 1.25

61

Table 3.8: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index

and distortion deviation over 20 independent runs for the proposed framework, DCPSO,

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the shape datasets

Algorithm

 Datasets

 Measure

Jain Pathbased R15 Spiral

Proposed

Intra-C Distances 1007 ± 81 930 ± 65 501 ± 11 1782 ± 121

Inter-C Distances 653 ± 34 665 ± 48 655 ± 59 310 ± 56

DB Index 0.64 ± 0.03 0.66 ± 0.00 0.36 ± 0.07 0.74 ±0.02

Distortion Deviation 1.04 ± 0.001 0.57 ± 0.18 0.34 ± 00 0.84 ± 0.21

DCPSO

Intra-C Distances 1819± 746 1267 ± 216 508 ± 41 1823 ± 253

Inter-C Distances 269 ± 181 340 ± 205 622± 48 179 ± 79

DB Index 0.64 ± 0.03 0.66 ± 0.03 0.41 ± 0.04 0.74 ± 0.01

Distortion Deviation 4.03 ± 2.21 3.30 ± 1.54 0.78 ± 0.10 2.15 ± 0.98

GCUK

Intra-C Distances 1427 ± 407 975 ± 184 512 ± 49 1968±198

Inter-C Distances 553 ± 374 908 ± 465 656 ± 63 123 ± 32

DB Index 0.69 ± 0.09 0.73 ± 0.03 0.42 ± 0.06 0.74 ± 0.00

Distortion Deviation 4.89 ± 2.30 4.35 ± 1.72 0.71 ± 0.00 1.98 ± 0.99

K-means++

Intra-C Distances 2623 ± 4 1435 ± 1 229± 12 1815 ± 0

Inter-C Distances 18.00 ± 0.01 47 ± 0.07 644 ±11 40 ± 0.04

DB Index 0.78 ± 0.00 0.66 ± 0.00 0.33 ± 0.02 0.87 ± 0.003

Distortion Deviation 2.41 ± 0.13 1.20 ± 0.15 0.34 ± 0.18 0.34 ± 0.09

DBSCAN

Intra-C Distances 2809 ± 11 1528 ± 106 250 ±3 2908 ± 32

Inter-C Distances 54 ± 0.09 47 ± 21 572 ± 0 9.94 ± 0.04

DB Index 0.78 ± 0.00 1.67 ± 0.41 0.37 ±0.00 5.94 ± 0.07

Distortion Deviation 53.97 ± 0.09 9.82 ± 0.70 0.84 ± 0.07 0.71 ± 0.08

EM

Intra-C Distances 2739 ± 0 1469 ± 0 273± 24 1829 ± 0

Inter-C Distances 18 ± 4 48 ± 0 674 ± 25 36 ± 0

DB Index 0.74 ± 1.39 0.68 ± 0.07 0.51 ± 0.09 0.99 ± 0.00

Distortion Deviation 9.32 ± 0.00 7.15 ± 0.00 1.27 ± 0.27 0.83 ± 0.00

NPIR

Intra-C Distances 2647 ± 61 1699 ± 1 231 ± 7 1765 ± 70

Inter-C Distances 18 ± 0.05 15.04 ± 0.01 640 ± 0 64 ± 19

DB Index 0.76 ± 0.01 0.75 ± 0.00 0.33 ± 0.02 0.94 ± 0.02

Distortion Deviation 6.99 ± 1.59 0.60 ± 0.27 0.57 ± 0.20 4.96 ± 2.64

62

Table 3.9: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index

and distortion deviation over 20 independent runs for the proposed framework, DCPSO,

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets

Algorithm

 Datasets

 Measure

Appendicitis Dermatology Ecoli Glass

Proposed

Intra-C Distances 66 ± 6 2977 ± 170 13904 ± 1764 376 ± 87

Inter-C Distances 1.86 ± 0.11 1206 ± 546 156 ± 12 125 ± 24

DB Index 0.74 ± 0.02 1.01 ± 0.02 0.90 ± 0.01 0.68 ± 0.18

Distortion Deviation 0.20 ± 0.09 3.53 ± 0.87 5.27 ± 3.44 3.30 ± 0.92

DCPSO

Intra-C Distances 72 ± 6 2987 ± 272 15729 ± 2307 333 ± 26

Inter-C Distances 1.58 ± 0.12 588 ± 130 1848 ± 1890 154 ± 32

DB Index 0.89 ± 0.02 1.06 ± 0.03 0.91 ± 0.06 0.60 ± 0.13

Distortion Deviation 0.59 ± 0.22 5.30 ± 0.78 34.38 ± 17.27 4.31 ± 1.08

GCUK

Intra-C Distances 65 ± 12 3173 ± 239 14829 ± 2254 499 ± 29

Inter-C Distances 11.23 ± 9.46 451 ± 64 3037 ± 2337 158 ± 30

DB Index 0.93 ± 0.10 1.02 ± 0.05 1.06 ± 0.06 0.88 ± 0.02

Distortion Deviation 0.53 ± 0.26 4.05 ± 2.13 30.87 ± 14.87 4.85 ± 1.06

K-means++

Intra-C Distances 38 ± 0 2039 ± 39 10029 ± 178 243 ± 6

Inter-C Distances 0.75 ± 0.01 397 ± 19 950 ± 77 135 ± 7

DB Index 1 ± 0.03 1.01 ± 0.02 1.35 ± 0.11 0.72 ± 0.09

Distortion Deviation 0.20 ± 0.10 4.02 ± 1.30 28.66 ± 5.73 4.31 ± 0.40

DBSCAN

Intra-C Distances 36 ± 0 2333 ± 115 10048 ± 191 188 ± 1

Inter-C Distances 1.74 ± 0.01 772 ± 66 957 ± 71 20 ± 3

DB Index 0.97 ± 0.01 1.41 ± 0.11 1.34 ± 0.02 0.83 ± 0.13

Distortion Deviation 1.73 ± 0.00 19.27 ± 1.30 18.19 ± 0.33 4.33 ± 0.04

EM

Intra-C Distances 39 ± 0 3555 ± 304 11503 ± 809 233 ± 13

Inter-C Distances 0.73 ± 0 292 ± 32 1793 ± 73 110 ± 10

DB Index 1.06 ± 0.01 2.56 ± 0.59 2.20 ± 0.57 1.16 ± 0.22

Distortion Deviation 0.13 ± 0.01 27.20 ± 4.27 44.08 ± 10.60 4.27±1.02

NPIR

Intra-C Distances 37 ± 2 2283 ± 106 12696 ± 358 226 ± 3

Inter-C Distances 1.76 ± 0.77 262 ± 54 106 ± 58 120 ± 0

DB Index 0.97 ± 0.30 1.67 ± 0.66 1.38 ± 0.19 1.50 ± 0.07

Distortion Deviation 0.57 ± 0.08 12.02 ± 2.11 18.77 ± 5.01 3.78 ± 0.02

63

Table 3.10: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index

and distortion deviation over 20 independent runs for the proposed framework, DCPSO,

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets

Algorithm

 Datasets

 Measure

Haberman Housevotes Ionosphere Iris

Proposed

Intra-C Distances 2001 ± 125 341 ± 20 1210 ± 75 157 ± 8

Inter-C Distances 152 ± 2 32 ± 0 78 ± 0 5 ± 0.16

DB Index 0.59 ± 0.00 1.26 ± 0.06 1.24 ± 0.02 0.43 ± 0.00

Distortion Deviation 7.49 ± 1.5 0.07 ± 0.4 0.28 ± 0.14 0.20 ± 0.05

DCPSO

Intra-C Distances 2964± 596 400 ± 21 1427 ± 67 132± 10

Inter-C Distances 301 ± 281 35 ± 29 85 ± 56 11± 7

DB Index 0.63 ± 0.05 1.44 ± 0.19 1.34 ± 0.07 0.55 ± 0.9

Distortion Deviation 13.49 ± 4.58 0.29 ± 0.12 1.42 ± 0.31 0.60 ± 0.28

GCUK

Intra-C Distances 2600 ± 647 408 ± 20 1422 ± 52 139 ± 11

Inter-C Distances 700 ± 664 102 ± 34 262 ± 132 8 ± 7

DB Index 0.72 ± 0.07 1.97 ± 0.07 1.70 ± 0.04 0.44 ± 0.10

Distortion Deviation 11.53 ± 4.57 0.39 ± 0.16 1.42 ± 0.47 0.31 ± 0.12

K-means++

Intra-C Distances 3054 ± 254 333 ± 0 831 ± 72 97 ± 0

Inter-C Distances 17 ± 0 2.5 ± 0 3.7 ± 1.2 10 ± 0

DB Index 1.22 ± 0.15 1.13 ± 0 1.30 ± 0.42 0.66 ± 0.00

Distortion Deviation 5.61 ± 3.65 0.10 ± 0.01 0.74 ± 0.38 0.41 ± 0.00

DBSCAN

Intra-C Distances 247 ± 0 305 ± 0 479 ± 1 91 ± 12

Inter-C Distances 11 ± 0 2.66 ± 0 2.40 ± 0 4.65 ± 1.85

DB Index 1.13 ± 0.00 1.04 ± 0.00 1.21 ± 0.00 0.40 ± 0.15

Distortion Deviation 21.18 ± 0.00 0.13 ± 0.09 3.45 ± 0.00 0.57 ± 0.19

EM

Intra-C Distances 3335 ± 0 333 ± 0 904 ± 0 104 ± 9

Inter-C Distances 8.8 ± 0 2.54 ± 0 1.88 ± 0 9.30 ± 0.2

DB Index 2.54 ± 0 1.13 ± 0.00 2.82 ± 0.01 0.77 ± 0.03

Distortion Deviation 19.72 ± 0.00 0.12 ± 0.00 0.92 ± 0.08 0.89 ± 0.35

NPIR

Intra-C Distances 2716 ± 0 450 ± 0 845 ± 4 128 ± 0

Inter-C Distances 18.55 ± 0 0.67 ± 0.09 11.08 ± 0.02 3.97 ± 0.01

DB Index 0.91 ± 0.00 5.81 ± 0.91 1.17 ± 0.01 0.38 ± 0.00

Distortion Deviation 22.48 ± 0.00 0.18 ± 0.02 2.16 ± 0.54 1.31 ± 0.00

64

Table 3.11: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index

and distortion deviation over 20 independent runs for the proposed framework, DCPSO,

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets

Algorithm

 Datasets

 Measure

Segment Vehicle Wdbc Wine

Proposed

Intra-C Distances 246834 ± 54297 107956 ± 7782 262665 ± 9839 17221 ± 663

Inter-C Distances 6083 ±2971 528 ± 42 3655 ± 260 7288 ± 21

DB Index 0.50 ± 0.09 0.54 ± 0.00 0.51 ± 0.00 0.47 ± 0.01

Distortion Deviation 110 ± 45.87 22.40 ± 8.67 69.58 ± 35.89 16.96 ± 4.71

DCPSO

Intra-C Distances 373634 ± 7257 73457 ± 6883 188642 ± 52069 17253 ± 895

Inter-C Distances 15215 ± 2472 846 ± 125 10456 ± 9420 7065 ± 6736

DB Index 0.54 ± 0.14 0.48 ± 0.03 0.52 ± 0.05 0.48 ± 0.01

Distortion Deviation 361 ± 21 22.49 ± 9.90 528 ± 171 53.33 ± 16.22

GCUK

Intra-C Distances 477924 ± 38190 84066 ± 6907 221180 ± 53611 19242 ± 6757

Inter-C Distances 25576 ± 8408 3894 ± 5314 12662 ± 16499 84142 ± 8529

DB Index 0.78 ± 0.05 0.72 ± 0.22 0.59 ± 0.13 0.55 ± 0.04

Distortion Deviation 325 ± 38 56.65 ± 13.90 438 ± 125 82.94 ± 37.62

K-means++

Intra-C Distances 270182 ± 24659 57195 ± 3886 152647 ± 0 17967 ± 836

Inter-C Distances 17402± 86 2228 ± 160 1331 ± 0 1550 ± 45

DB Index 0.69 ± 0.01 0.65 ± 0.017 0.50 ± 0.00 0.54 ± 0.006

Distortion Deviation 122 ± 22 81.15 ± 41.96 2215 ± 0 205 ± 59

DBSCAN

Intra-C Distances 124129 ± 1294 16856 ± 56 93540 ± 1602 21726 ± 6405

Inter-C Distances 3529 ± 375 1684 ± 6 786 ± 9 1173 ± 356

DB Index 1.01 ± 0.02 0.63 ± 0.01 0.40 ± 0.01 0.59 ± 0.01

Distortion Deviation 118 ± 3 46.02 ± 1.73 436 ± 22 184 ± 9

EM

Intra-C Distances 204704 ± 9713 55697 ± 1680 175896 ± 0 22874 ± 339

Inter-C Distances 7185 ± 2785 1823 ± 345 1030 ± 0 1230 ± 17

DB Index 2.97 ± 1.11 0.92 ± 0.09 0.70 ± 0.00 0.84 ± 0.02

Distortion Deviation 791 ±2 71 167 ± 41 2558 ± 0 387 ± 147

NPIR

Intra-C Distances 160144 ± 6912 65104 ± 67 175454 ± 0 22535 ± 6782

Inter-C Distances 2736 ± 656 359 ± 0 2113 ± 0 1023 ± 512

DB Index 1.32 ± 0.09 0.44 ± 0.00 0.71 ± 0.00 0.58 ± 0.05

Distortion Deviation 1331 ± 6 99 ± 0 3261 ± 0 424 ± 136

65

Table 3.12: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index

and distortion deviation over 20 independent runs for the proposed framework, DCPSO,

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets

Algorithm

 Datasets

 Measure

Dime064 Dime128 Dime256 Dime512

Proposed

Intra-C Distances 122308 ± 137 138102 ± 227 14106 ± 221 184041 ± 399

Inter-C Distances 143803 ± 1169 18489 ± 409 27070 ± 914 38553 ± 1364

DB Index 0.04 ± 0.00 0.07 ± 0.00 0.04 ± 0.00 0.15 ± 0.05

Distortion Deviation 26.82 ± 2.88 30.55 ± 1.65 18.00 ± 3.64 16.78 ± 5.30

DCPSO

Intra-C Distances 21901 ± 517 11852 ± 683 18457 ± 1463 190630 ± 13235

Inter-C Distances 9475 ± 520 201642 ± 796 19413 ± 1565 384915 ± 17197

DB Index 0.20 ± 0.04 1.17 ± 0.23 0.10 ± 0.03 1.01 ± 0.03

Distortion Deviation 45.81 ± 5.06 78.37 ± 13.54 43.06 ± 7.39 78.61 ± 4.49

GCUK

Intra-C Distances 21455 ± 599 12731 ± 703 19928 ± 2129 198168 ± 14725

Inter-C Distances 10331 ± 629 21486 ± 707 18547 ± 2181 395861 ± 13172

DB Index 0.14 ± 0.04 1.42 ± 0.11 0.09 ± 0.04 2.16 ± 0.13

Distortion Deviation 46.22 ± 4.42 71.26 ± 14.56 41.84 ± 8.51 75.12 ± 6.42

K-

means++

Intra-C Distances 12149 ± 246 13691 ± 359 13975 ± 164 16022 ± 436

Inter-C Distances 144819 ± 475 205577 ± 612 296376 ± 765 418384 ± 684

DB Index 0.04 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.02 ± 0.01

Distortion Deviation 35.46 ± 1.81 46.91 ± 1.91 22.60 ± 2.67 27.71 ± 0.74

DBSCAN

Intra-C Distances 11958 ± 202 13182 ± 309 13400 ± 242 15106 ± 1798

Inter-C Distances 144915 ± 484 205765 ± 973 296078 ± 1087 420203 ± 2817

DB Index 0.08 ± 0.01 0.10 ± 0.01 0.07 ± 0.01 0.41 ± 0.07

Distortion Deviation 36.82 ± 3.29 35.41 ± 4.16 24.83 ± 2.29 40.41 ± 3.42

EM

Intra-C Distances 12014 ± 277 13416 ± 467 13985 ± 226 152965 ± 939

Inter-C Distances 143968 ± 499 205785 ± 739 286227 ± 1104 461964 ± 3321

DB Index 0.06 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.68 ± 0.07

Distortion Deviation 39.61 ± 2.69 47.85 ± 2.79 26.62 ± 3.03 38.12 ± 5.97

NPIR

Intra-C Distances 11677 ± 933 12935 ± 1060 14203 ± 920 151784 ± 1176

Inter-C Distances 144075 ± 2259 205647 ± 2011 276229 ± 1520 471126 ± 2768

DB Index 0.09 ± 0.03 1.15 ± 0.55 0.03 ± 0.00 0.67 ± 0.09

Distortion Deviation 40.44 ± 2.15 54.46 ± 6.07 25.72 ± 4.17 35.85 ± 4.28

66

3.4.3. Discussion

The numerical results over twenty-four datasets have been summarized in Tables 3.7 to 3.12.

It can be seen that in comparison with k-needed clustering methods (NPIR, K-Means++, and EM),

the proposed framework has shown an excellent performance in most of the datasets in terms of

the DB-Index and the distortion deviation measures as the main focus in our clustering method. In

some cases, such as D31 and R15 in the shape datasets and Ionosphere, Iris, and vehicle in the

Real-world datasets, the NPIR algorithm has shown better performance in the DB-index measure.

However, the proposed method has yielded a smaller distortion deviation in all these datasets.

The reason why the proposed framework has reached a bit higher DB-index measure compared

to the other algorithms in some datasets can be explained as follows. The proposed framework

focuses mainly on reaching clusters with approximately the same distance while satisfying the

other designed merit factors. This goal has been achieved by dividing the dataset into more or

fewer groups compared to other algorithms in some cases; for example, D31, which contains

several spherical clusters with high overlap. The proposed framework has divided D31 into fewer

clusters compared to others. Consequently, the sum of intra-cluster distances has significantly

increased while inter-cluster distances have considerably decreased. As a result, we have reached

a higher DB-index measure. Yet, we have demonstrated the best performance in terms of the

distortion deviation in this dataset.

𝐾-means++ has shown highly competitive performance in the Pathbased and dermatology

datasets in terms of the DB-index. It has also been able to achieve better performance in distortion

deviation on spiral and Haberman datasets. However, by increasing the dimension and the data

points as shown in higher-dimensional datasets, the proposed framework outperforms the 𝐾-

means++ in terms of the distortion deviation measure.

The proposed algorithm has achieved the best DB-index measure in the Appendicitis dataset,

but the EM algorithm reached the best distortion deviation in this case.

On the other hand, the proposed framework has shown highly successful results in the automatic

k-determination clustering methods (DBSCAN, DCPSO, and GUCK) in most datasets. DBSCAN

algorithm has reached the best value of DB-index in the Housevotes and WDBC datasets.

67

Nevertheless, the proposed method has obtained the best distortion deviation among all other

algorithms in both datasets. It should be mentioned that DBSCAN is fundamentally different from

center-based clustering methods. Although the DB-index measure may not be considered a fair

validity measure for this clustering method, we needed to evaluate the proposed solution in terms

of the DB-index with other algorithms for the purpose of this research. Aside from this point, the

algorithm has not performed well in reaching the minimum possible value of distortion deviation

compared to the other algorithms.

In a few datasets (such as Jain, Pathbased, and Spiral), the DCPSO and the GCUK algorithms

have reached the same value as the proposed solution in the DB index. Nevertheless, the distortion

deviation, which is a primary goal in this research, still yields lower figures in these datasets for

the proposed framework.

3.5. Statistical Analysis

To validate the above numerical results, we have performed the Friedman non-parametric

statistical test [111][112]. This test, similar to the ANOVA [48], can point out significant

differences between the behavior of two or more algorithms.

Table 3.13 describes the achieved ranks by the Friedman test in the proposed framework

considering different optimizer modules. The ranks indicate that the optimizer module with all

four optimization algorithms has shown excellent performance, especially among the BBA, BGA,

and BPSO. However, BBA and BGA have been ranked better in most datasets with the proposed

framework.

Then, we performed another statistical test called the Wilcoxon rank-sum test [113][114] to

draw a more meaningful conclusion from the results. The Wilcoxon rank-sum test for equal

medians establishes a proper pairwise comparison between the algorithms. It compares the null

hypothesis that two values are samples from a continuous distribution with equal medians against

the alternative that they are not.

68

For evaluating the first set of comparison results, the Wilcoxon test has been applied to the

optimizer module considering the optimization algorithm with the best average performance

against the rest of the algorithms, according to Tables 3.3 to 3.6.

The significance level is considered 0.05, which gives strong evidence against the null

hypothesis. The achieved p-values by the Wilcoxon test for the first set of comparison results

considering the optimizer module with different optimization algorithms have been reported in

Table 3.14. As can be seen in some datasets (i.e., R15, Wine), the p-value by the optimizer module

with one of the algorithms has a significant difference from others. On the other hand, the achieved

p-values by the optimizer module with two or three other algorithms are not significantly different

in some other datasets (i.e., Pathbased, Dermatology, Haberman, Housevotes, Wdbc, Dim256). It

means the proposed framework utilizing all these optimizer modules exhibits similar performance

for that dataset.

We have also applied these non-parametric statistical tests to the second set of comparison

results to compare the proposed framework with other algorithms statistically. During this

experiment, we implemented the proposed framework considering the BBA optimizer.

We have applied the statistical tests to the DB-index and distortion deviation measures achieved

in the second set of comparison results. The achieved ranks by the Friedman test and the p-values

by the Wilcoxon test for the second set of comparison results are reported in Tables 3.15 and 3.18.

As shown, the proposed framework is able to reach the best or the second-best DB-index rank in

multiple datasets. Besides, the proposed framework has achieved the best distortion deviation rank

in almost all datasets, which is a great success.

The reason why we have not achieved the lowest DB-index rank in a few datasets lies in how

the problem has been formulated in our model. In line with the initial motivation of this research,

reaching the minimum distortion deviation has been prioritized in our proposed model. Therefore,

there might be cases where the proposed framework achieves the minimum distortion by dividing

the data points into more or fewer groups, affecting the DB-index measure.

69

Table 3.13: Achieved Ranks by the Friedman Test for the Proposed Framework Considering

four Different Optimizer Modules

Datasets BBA BPSO BGA BDA

Aggregation 1.65 2.65 2.08 3.63

Compound 2.75 2.23 1.58 3.45

D31 1.70 2.70 2.13 3.48

Flame 2.10 2.78 1.93 3.20

Jain 2.45 2.08 2.75 2.73

Pathbased 2.10 2.60 2.25 3.05

R15 2.90 2.55 1.68 2.88

Spiral 2.45 2.65 2.10 2.80

Appendicitis 2.00 2.35 2.70 2.95

Dermatology 1.98 2.48 2.35 3.20

Ecoli 2.25 2.75 2.10 2.90

Glass 2.20 2.70 2.50 2.60

Haberman 2.75 2.55 2.35 2.35

Housevotes 2.15 2.40 1.85 3.60

Ionosphere 2.05 2.55 2.20 3.20

Iris 2.30 2.40 2.45 2.85

Segment 2.20 2.60 2.68 2.53

Vehicle 2.38 2.78 1.83 3.03

Wdbc 2.20 2.55 2.65 2.60

Wine 2.30 1.63 2.65 3.43

Dim64 2.03 2.43 2.73 2.83

Dim128 2.08 2.48 2.75 2.70

Dim256 2.40 2.50 2.50 2.60

Dime512 2.30 2.40 2.55 2.75

70

Table 3.14: Achieved P-values by the Wilcoxon Rank-Sum Test

Datasets BBA BPSO BGA BDA

Aggregation 1 0.0077 0.4849 0.0000

Compound 0.000 0.2235 1 0.0000

D31 1 0.0006 0.2439 0.0000

Flame 0.6073 0.0032 1 0.0005

Jain 0.2288 1 0.0711 0.0265

Pathbased 1 0.0496 0.6262 0.0149

R15 0.0023 0.0110 1 0.0009

Spiral 0.2733 0.0909 1 0.0468

Appendicitis 1 0.4092 0.0482 0.0058

Dermatology 1 0.2789 0.4986 0.0087

Ecoli 1 0.1636 0.8817 0.0133

Glass 1 0.0251 0.0914 0.0482

Haberman 0.1960 0.5065 1 1.0000

Housevotes 0.3104 0.1988 1.0000 0.0000

Ionosphere 1 0.1895 0.4249 0.0005

Iris 1 0.2972 0.5883 0.0138

Segment 1 0.0671 0.0335 0.1573

Vehicle 0.1410 0.0129 1 0.0029

Wdbc 1 0.9246 0.6750 0.7972

Wine 0.0441 1.0000 0.0088 0.0000

Dim64 1 0.1774 0.0094 0.0019

Dim128 1 0.1794 0.0097 0.0226

Dim256 1 0.3421 0.3421 0.1624

Dime512 1 0.2733 0.0565 0.0962

71

Table 3.15: Achieved Ranks by the Friedman Test on the DB-index for the Proposed

Framework Compared to Other Algorithms

 DB-index ranks

 Proposed DCPSO GCUK K-means++ DBSCAN EM NPIR

Aggregation 1.2 3.6 4.8 4.4 3.95 3.2 6.85

Compound 1.65 2.5 2.6 3.4 7 5.3 5.55

D31 3.95 3.9 5.75 1.95 4.4 7 1.05

Flame 2.35 1.5 2.35 4.6 5.25 6.75 5.2

Jain 1.6 1.85 3.55 6.35 6.25 3.8 4.6

Pathbased 1.9 2.35 4.95 3.25 7 3 5.55

R15 3.05 5 5.35 2.05 3.7 6.65 2.2

Spiral 2.35 1.9 1.75 4 7 6 5

Appendicitis 1.45 2.8 3.75 4.9 4.45 6.35 4.3

Dermatology 2.35 3.45 2.35 1.85 5.65 6.65 5.7

Ecoli 1.4 1.65 2.95 5.05 5.1 7 4.85

Glass 2.55 1.7 4.55 2.65 3.65 6 6.9

Haberman 1.15 2 2.85 5.75 5.25 7 4

Housevotes 3.9 4.75 6 3 1.05 2.3 7

Ionosphere 3.2 3.95 6 4.2 2.45 7 1.2

Iris 3.45 4.65 3.3 5.7 1.85 7 2.05

Segment 1.4 1.85 3.9 2.85 5 7 6

Vehicle 3.25 2.1 4.95 5.3 4.5 6.8 1.1

Wdbc 3.65 3.5 4.55 2.6 1.1 5.8 6.8

Wine 1.5 1.7 3.9 3.875 5.35 7 4.675

Dim64 1.45 6.85 5.95 1.75 4.40 3.30 4.30

Dim128 3.85 6.20 6.80 2.30 4.95 1.25 2.65

Dim256 3.70 6.25 5.75 1.00 5.55 3.70 2.05

Dim512 2.00 6.30 6.70 1.00 3.00 4.50 4.50

72

Table 3.16: Achieved Ranks by the Friedman Test on Distortion Deviation Measures for the

Proposed Framework Compared to Other Algorithms

 DB-index ranks

 Proposed DCPSO GCUK K-means++ DBSCAN EM NPIR

Aggregation 1.45 3.35 4.65 1.55 6.85 4.85 5.3

Compound 1.4 3.25 2.15 5.35 5.5 6.7 3.65

D31 1 6.65 6.05 3.45 2.1 5.3 3.45

Flame 1.05 4.95 4.55 2.55 6.85 2.8 5.25

Jain 1.1 3.35 3.55 2.25 7 5.9 4.85

Pathbased 1.45 4.25 4.75 3 6.95 5.95 1.65

R15 2.15 4.95 3.9 1.4 5.45 6.7 3.45

Spiral 3.5 5.45 5.3 1.15 2.85 3.65 6.1

Appendicitis 2.25 5.1 4.65 2.35 7 1.8 4.85

Dermatology 1.95 3.3 2.35 2.4 6.05 6.95 5

Ecoli 1.05 5.2 4.65 4.9 2.7 6.25 3.25

Glass 2 4.25 5.15 4.5 4.95 4.6 2.55

Haberman 2.3 3.7 2.95 1.3 5.9 4.85 7

Housevotes 1.9 5.85 6.4 2.25 3.5 3.25 4.85

Ionosphere 1.2 4.55 4.2 2.35 7 3 5.7

Iris 1.5 4.25 2.45 3.2 4.1 5.7 6.8

Segment 1.85 4.75 4.25 2.4 1.75 6 7

Vehicle 1.3 1.7 4 5.25 3.25 6.75 5.75

Wdbc 1 3.3 3.05 5 2.65 6 7

Wine 1 2.15 2.85 4.375 4.75 6.25 6.625

Dim64 1.00 6.00 6.40 2.60 2.70 4.30 5.00

Dim128 1.10 6.50 6.25 3.50 1.90 3.70 5.05

Dim256 1.30 6.50 6.40 2.55 3.35 4.20 3.70

Dim512 1.00 6.60 6.40 2.05 4.45 3.95 3.55

73

Table 3.17: Achieved P-values by the Wilcoxon Rank-Sum Test on the DB-index for the

Proposed Framework Compared to Other Algorithms

DB-index

DCPSO GCUK K-means++ DBSCAN EM NPIR

Aggregation 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Compound 0.0071 0.0026 0.0000 0.0000 0.0000 0.0000

D31 0.0000 0.0001 0.0000 0.0000 0.0960 0.0000

Flame 0.0060 0.9892 0.0000 0.0000 0.0000 0.0000

Jain 0.7353 0.0077 0.0000 0.0000 0.0000 0.0000

Pathbased 0.8392 0.0000 0.0574 0.0000 0.0000 0.0000

R15 0.0043 0.0040 0.0970 0.2067 0.0000 0.2493

Spiral 0.0294 0.0215 0.0000 0.0000 0.0000 0.0000

Appendicitis 0.0000 0.0000 0.0000 0.0000 0.0000 0.5953

Dermatology 0.0000 0.7972 0.2499 0.0000 0.0000 0.0000

Ecoli 0.2287 0.0000 0.0000 0.0000 0.0000 0.0000

Glass 0.1806 0.0001 0.2731 0.0175 0.0000 0.0000

Haberman 0.2534 0.0000 0.0000 0.0000 0.0000 0.0000

Housevotes 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

Ionosphere 0.0001 0.0000 0.0010 0.0001 0.0000 0.0000

Iris 0.0000 0.4570 0.0000 0.0002 0.0000 0.0000

Segment 0.6949 0.0000 0.0009 0.0000 0.0000 0.0000

Vehicle 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000

Wdbc 0.4903 0.0083 0.0000 0.0000 0.0000 0.0000

Wine 0.2534 0.0000 0.0000 0.0000 0.0000 0.0000

Dim64 0.0000 0.0000 0.3548 0.0000 0.0000 0.0000

Dim128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Dim256 0.0000 0.0002 0.0000 0.0000 0.3734 0.0000

Dim512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

74

Table 3.18: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion Deviation

Measures for the Proposed Framework Compared to Other Algorithms

Distortion deviation

DCPSO GCUK K-means++ DBSCAN EM NPIR

Aggregation 0.0000 0.0000 0.5801 0.0000 0.0000 0.0000

Compound 0.0005 0.0003 0.0000 0.0000 0.0000 0.0000

D31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Flame 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Jain 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Pathbased 0.0000 0.0000 0.0000 0.0000 0.0000 0.7338

R15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005

Spiral 0.0000 0.0001 0.0000 0.0148 0.8168 0.0001

Appendicitis 0.0000 0.0000 0.6488 0.0000 0.3304 0.0000

Dermatology 0.0000 0.6554 0.1070 0.0000 0.0000 0.0000

Ecoli 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Glass 0.0060 0.0000 0.0000 0.0002 0.0016 0.0010

Haberman 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000

Housevotes 0.0000 0.0000 0.0127 0.0625 0.0001 0.0000

Ionosphere 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000

Iris 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000

Segment 0.0000 0.0000 0.1961 0.6749 0.0000 0.0000

Vehicle 0.6359 0.0000 0.0000 0.0000 0.0000 0.0000

Wdbc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Wine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Dim64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Dim128 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

Dim256 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

Dim512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

75

We have observed the performance of the proposed clustering framework in different datasets

with varying numbers of data points and dimensions. According to our statistical analysis, the

proposed clustering framework performs exceptionally well on datasets with small to mid-sized

data points from different dimensions. From our perspective, having a dataset with high data points

can slightly affect the performance of the clustering framework as an increase in data points

directly affects the proposed binary encoding scheme and therefore increases the size of the search

space in our proposed model. Meanwhile, increasing the dataset dimensions has no direct impact

on the proposed approach and only affects the distance calculation process, as should be expected

when working with higher-dimensional datasets. As also pointed out by [106], the Euclidean

distance is not an appropriate distance measure for higher-dimensional datasets in general; Hence,

considering an appropriate distance measure in such datasets should also enhance the results,

which could be investigated in future studies.

3.6. Automatic Clustering for Binary Correlated Sources

The proposed clustering framework has been applied to a set of correlated binary datasets as a

case study in this section.

Binary data is the simplest case of categorical data in which only two possible values describe

discrete attributes and can be reflected as a special case of quantitative data. Binary data clustering

is a challenging task due to its high dimensionality and sparsity [115]. The correlated binary

clustering is beneficial in various disciplines such as medical sciences, machine learning, big data,

pattern recognition, image analysis [38][94], and many other recent applications such as cache-

aided networks and edge caching. In such cases, taking advantage of the similarity between the

sample sets in the clustering solution can improve efficiency and reduce the delivery load. The

presence of correlation in a binary dataset can be realized as the relevance of content files in the

same category, such as the repeated measurements in remote sensing, the updated versions of

dynamic content, augmented reality, news updates, etc. [38][17]. Moreover, correlated binary data

clustering is widely used in medical studies, such as dental and radiologic studies. In such cases,

the observations are taken from multiple representations of the same subject [116].

76

3.6.1. Methodology for Binary Case

In the binary case, each data point is a B-bit binary vector. Therefore, the B-dimensional binary

dataset with m data points is indicated by 𝒜.

𝓐𝑚×𝐵 = [
𝒜1

⋮
𝒜𝑚

] = [

𝑎1,1, 𝑎1,2 … , 𝑎1,𝐵

⋮ ⋮ ⋮
𝑎𝑚,1, 𝑎𝑚,2 … , 𝑎𝑚,𝐵

]

𝑚×𝐵

 ()

Since the proposed clustering, discussed in Chapter 3, is designed as a customizable general

framework, it can also cater to binary datasets; therefore, all of the steps of problem formulation

are the same as the general clustering framework. However, the definition of distance measure

and representative selection has been tailored with binary space.

In the binary case, the distance measure is the Hamming distance [38], defined as follows:

𝒹𝑖,𝑗
𝐻 = {

1 𝑖𝑓 𝑎𝑖,𝐵 ≠ 𝑎𝑗,𝐵 , ∀𝑖 ≠ 𝑗

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ()

The maximum distance of each cluster is calculated according to the Hamming distance

measure between each data point 𝒜𝑖 and its representative �̂�𝑖 within each cluster 𝑐𝑖, where 𝑐𝑖 ∈ 𝐶,

and 𝑖 = [1,2, … , 𝐾].

𝛿𝑐𝑖 = max
𝑐𝑖

𝒹𝐻(𝒜𝑖 , �̂�𝑖) ()

Selecting a cluster representative in the binary case is carried out in two consecutive steps; First,

a centroid is identified within each cluster by performing the majority rule. Then, one actual point

within the clusters with the least distance to the centroid is selected as the representative.

According to the majority rule, a decision is made based on the majority of alternatives.

The following example shows how a centroid is determined based on the majority rule for a

group of 4 binary data points.

77

Example 3.3:

The similarity among correlated vectors is extracted by a statistic measure known as the simple

matching coefficient (SMC) [105][118], which is closely related to the definition of the hamming

distance on bit strings.

Consider 𝒜𝑖 and 𝒜𝑗 as two different n-bit binary vectors in a cluster. Let 𝐵11 and 𝐵00 represent

the number of bits that are 1 or 0 simultaneously among two vectors while 𝐵01 and 𝐵10 represent

the number of bits that are not the same in each position. Then SMC is defined as follows.

𝑆𝑀𝐶 =
𝐵00+𝐵11

𝐵11+𝐵00+𝐵01+𝐵10
 ()

Similar to the discussed experiment in the general framework, the goal is partitioning 𝓐𝑚×𝐵

into 𝐾 number of compact and well-separated clusters with relatively close values for the

maximum distance in each group, such that 𝐾 ≤ 𝑚.

3.6.2. Results and Discussion for Correlated Binary Case

In this section, the performance of the proposed correlation-aware clustering scheme has been

analyzed on a set of correlated binary datasets. For this purpose, based on assumptions considered

in [22] for generating correlated binary vectors, three synthetic binary datasets are generated with

dimensions 128 × 100 bits and a similarity of 50%, 60%, and 70%.

Similar to the general framework, this scheme is also evaluated under the presence of the BBA,

BPSO, BGA, and BDA in the optimizer module, and the convergence curve is illustrated in Figure

3.12. For each algorithm, twenty independent trials have been performed on each dataset. The best

and worst cost, the average cost, and the standard deviation have been reported in Table 3.19.

𝒜1: 0 0 1 0 1 1 1 1

𝒜2: 1 1 1 1 0 0 0 1

𝒜3: 1 0 0 1 0 0 1 0

𝒜4: 1 1 1 0 1 0 0 1

Counting the number

of 0s &1s vertically

 Majority vector: 1 0 1 0 1 0 1 1

78

The statistical analysis is described in Table 3.20, which shows the binary scheme has high

capabilities in performing the clustering task considering all four optimization algorithms in the

optimizer module. However, the optimizer module considering the BBA and BDA provides superb

performance in solving binary clustering problems since the fastest convergence rate belongs to

the BBA, followed by the BDA optimizer.

The BBA algorithm can take advantage of the loudness and pulse emission balance between

the exploration and exploitation to accelerate the convergence rate toward the global optimum and

not trap in local minima over the course of iterations. Besides, the V-shaped transfer function in

the BBA algorithm helps the particles not go through the unpromising area of the search space,

and therefore it contributes to having a fast convergence rate in this case. The BDA optimizer also

inherits high exploration and exploitation from the DA algorithm and provides an excellent result.

Furthermore, the convergence curves of this experiment show that by increasing the similarity

among data points, the convergence speed significantly increases. Consequently, reaching the

minimum cost can be achievable in fewer iterations. The reason is that, as the correlation among

datasets increases, the similarity between data points becomes very large. As a result, the

maximum Hamming distance between data points decreases; therefore, the clustering problem

becomes a much simpler problem that can even be solved in less than half of the iterations. In such

cases, the maximum distance in each cluster will be decreased as well.

79

Table 3.19: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion

Deviation Measures for the Proposed Framework Compared to Other Algorithms

Datasets

BBA BPSO

Best Worst Mean Std Best Worst Mean Std

Dataset 1 13.22 27.59 17.44 5.75 27.59 27.59 21.53 6.55

Dataset 2 13.23 13.98 13.72 0.22 14.13 14.13 13.93 0.12

Dataset 3 0.00 13.93 12.16 4.17 13.98 13.98 13.78 0.15

Datasets

BGA BDA

Best Worst Mean Std Best Worst Mean Std

Dataset 1 27.65 27.65 18.81 6.17 12.67 27.48 17.01 5.67

Dataset 2 14.26 14.26 13.91 0.18 13.25 14.02 13.79 0.17

Dataset 3 13.96 13.96 13.65 0.18 12.95 13.84 13.57 0.25

Table 3.20: Statistical Results of the Proposed Correlation-Aware Clustering

Scheme Considering Four Different Optimizer Modules

Datasets
Friedman’s Rank P-Values

BBA BPSO BGA BDA BBA BPSO BGA BDA

Dataset 1 2.35 3.25 2.7 1.7 0.13 0.0003 0.0071 1

Dataset 2 2.05 3.05 2.8 2.1 1 0.0026 0.0051 0.4249

Dataset 3 1.85 3.5 2.45 2.2 1 0.0016 0.2184 0.4093

80

Figure 3.13: Convergence curve of (a) dataset 1, (b) dataset 2, and (c) dataset 3 considering

BBA, BPSO, BGA, and BDA in the optimizer module.

81

3.7. Summary

Clustering algorithms are developed as a powerful tool to analyze the massive amount of data

produced by cutting-edge technologies. Over the years, various meta-heuristic searching

techniques have been proposed to achieve optimal or near-optimal solutions due to the challenges

such as defining a suitable objective function and ambiguity in data clustering definition.

In this chapter, the clustering problem is formulated as an optimization problem with the

motivation to reach well-separated clusters with approximately the same maximum distance. This

framework utilized an AI-based optimizer module considering metaheuristics binary optimization

algorithm. It adopts a dynamic range of clusters in accordance with the input data to tackle the

problem of determining the exact number of clusters in advance. Hence, users do not need prior

knowledge of the number of clusters. We have also proposed a binary encoding scheme for the

particle representation in the proposed framework.

Furthermore, we examined the proposed clustering framework for correlated binary datasets as

a case study. A wide range of practical applications can benefit from such datasets, including

repeated measurements in remote sensing, medical studies, cache-aided networks with correlated

content, and crowdsourced multi-view video uploading.

According to the results, we have successfully reached a fair number of well-separated clusters

with approximately the same maximum distance for each cluster in most datasets. This chapter can

be considered the opening for further research to improve the distortion deviation between clusters

in other applications. Future studies can consider the proposed automatic clustering framework

with approximately the same maximum distance in each cluster as a multi-objective optimization

algorithm problem and consider the maximum distance of the clusters as an objective to possibly

improve the distortion deviation gap.

82

Chapter 4

Content Delivery in a Network with a Single Shared

Cache and Correlated Content

So far, we have comprehensively described and evaluated the proposed clustering scheme in a

general framework. This framework is an essential part of our research as it will be used to develop

two novel clustering schemes for the placement phase of the proposed caching networks in the

current and following chapters.

Caching networks are typically analyzed under uniform or non-uniform popularity demand

distributions. In this regard, this chapter considers a uniform demand distribution and studies the

proposed network under lossy caching.

83

Developing the lossy caching scenario is highly beneficial in many practical applications,

particularly involving multimedia content, as files can be downloaded at different quality levels

depending on the channel and traffic conditions or the capabilities of the device. For example, the

description of a file requested by a laptop user may require high quality, while a mobile user can

be satisfied with a much lower-resolution description [119].

4.1. Introduction

In this chapter, we study a content delivery caching network considering a single shared cache.

Connecting all receivers to a single shared cache is beneficial in many practical applications.

Consider robots as laborers in a factory or drones as operators in deserted areas. In such settings,

providing a shared cache in the access point to be filled with the most useful content during the

placement phase leads to transmitting only small updates (e.g., recent maps and frequent updates

of the locations under their coverage) during the delivery phase.

Networks with multiple caches can reduce delivery rates by taking advantage of multicast

opportunities and global caching gains in addition to local gains; But networks with a single cache

can not benefit from the global caching gain as only one local cache is available in the network.

The optimal caching strategy for a single-cache network with independent library sources is the

highest popularity first (HPF) scheme in which the highest popular files are placed into the cache

[6]. In cases where files have no priority over each other and demand popularity is uniform, some

files are randomly allocated to memory (random placement) according to the memory size.

In this chapter, we show that the gain of the conventional random placement in a single-cache

network with independent sources does not carry over to a single-cache network with correlated

content; thus, an efficient solution is still needed for such a setting.

We address the caching strategy and examine the trade-off between the delivery rate and the

memory size from an information-theoretic perspective. As content placement is the key challenge

in such networks, we first introduce a clustering scheme to extract the efficient side information

for the entire library during the placement phase considering the similarity among content and the

maximum distortion constraint in the system.

84

 Then, we formulate the expected delivery rate by joint consideration of the rate-distortion

function and caching strategy, where the limit for the maximum allowable distortion in the system

is determined based on the Lagrange multipliers technique and reverse water-filling optimization.

Our extensive simulations validate the proposed scheme, which provides a considerable boost in

network efficiency compared to the legacy caching scheme.

In the remainder of this chapter, we first describe the system model and introduce the

correlation-aware clustering scheme for the placement phase. Next, we describe the caching and

delivery strategy and analyze the delivery rate of the system.

4.2. System Model

In this chapter, we study a centralized cache-aided delivery network consisting of a server,

multiple users, and a single cache over a shared error-free broadcast link. The network model is

illustrated in Figure 4.1.

All 𝑁 users have access to a single shared cache of size 𝑀 = 𝐾𝑪 files, where 𝐾𝑪 is the number

of representatives determined by the clustering solution 𝑪 upon performing the proposed clustering

scheme in the placement phase.

The proposed caching strategy operates in two phases; in the placement phase, the clustering

scheme is performed to identify the side information for placing into the shared cache. Then in the

delivery phase, encoded messages are transmitted as refinement segments enabling users to

reconstruct their requested files by jointly decoding the received message and the side information

in the shared cache.

The server has access to a library of 𝑚 uniformly popular content files 𝑓𝑖 ∈ ℱ = {𝑓1, … , 𝑓𝑚}

with the same length. In line with studies on lossy caching scenarios [119][120], the library content

files in this chapter are assumed to be zero-mean correlated gaussian sources. Thus, we have

generated 𝑚 correlated gaussian random variables 𝑓𝑖~𝒩(0, 𝛴), where covariance matrix 𝛴 is

given by

85

(

𝜎1
2 𝜌12𝜎1𝜎2 ⋯ 𝜌1𝑚𝜎1𝜎𝑚

𝜌12𝜎1𝜎2 𝜎2
2 ⋯ 𝜌2𝑚𝜎2𝜎𝑚

⋮ ⋮ ⋱ ⋮
𝜌1𝑚𝜎1𝜎𝑚 𝜌2𝑚𝜎2𝜎𝑚 ⋯ 𝜎𝑚

2

) ()

Figure 4.1: Cache-aided delivery network model with a single shared cache

4.3. Correlation-Aware Clustering Scheme (CACS)

The CACS aims to extract the most efficient side information for the entire library during the

placement phase taking into account the similarity among sources and the maximum allowable

distortion in the system. The application of this scheme is not limited to the correlated gaussian

sources, and it can also work with correlated binary sources considering an appropriate distance

measure.

The CACS is designed to provide a sufficient number of compact and well-separated clusters

with approximately the same maximum distance per cluster without requiring prior knowledge of

the exact number of clusters.

Achieving clusters with approximately the same maximum distance is useful to introduce the

optimum allocation of the maximum allowable distortion to the files and reduce the transmission

rate. Later in the delivery phase, we discuss this point more extensively.

86

4.3.1. CACS Methodology

The CACS operates in two general steps. First, the AI-based optimizer module assigns an initial

cluster number to each data point to form a primary clustering. The primary clusters are then re-

clustered, merged, and modified based on the designed condition described in Eq. (3.3) to

compensate for the distortion deviation between clusters of different sizes and improve the result.

This modification leads clusters to gradually achieve the same maximum distance without

increasing the number of clusters. Following that, the AI-based optimizer module optimizes the

clusters in accordance with the objectives over iterations.

The cluster representative is selected in two consecutive steps; First, a centroid (approximated

center) is identified within each cluster. Then, one actual point within the clusters with the least

distance to the centroid is selected as the representative. In binary sources, a centroid is determined

according to the majority rule, where a decision is made based on the majority of bits in each

position [Chapter 3, section 3.6.1].

The CACS can adopt any appropriate distance measure based on the problem settings; In this

regard, we consider the squared error measure for gaussian content files in this chapter and the

hamming measure for binary content files in Chapters 5 and 6.

4.3.2. CACS Optimizer Module

The AI-based optimizer module stands at the highest level of the proposed approach and

considers clustering as a problem that must be minimized over the course of iterations.

The AI-based optimizer module checks combinations of the input to determine which candidate

solution yields the minimum output of the objective function. The optimizer module creates binary

vectors of length 𝑚 × 𝐿 bits as a candidate solution to be assigned to the particles in the utilized

binary optimization algorithm. 𝐿 is the number of bits that are required to define a cluster number

as a binary address (BA) for the optimizer module and is calculated as 𝐿 = log2 𝐾, where 𝐾 is the

number of clusters. The candidate solution then converts to the decimal address equivalent (DA)

to form the initial clustering.

87

The number of clusters is initialized by 𝐾 = ⌊√𝑚⌋. However, the value of 𝐾 will be optimized

as needed over the merging and modifying steps to comply with the maximum distortion constraint

for the system while clusters obtain the same maximum distance. If the constraint still allows for

more distance within each cluster, it means the number of clusters can be reduced to meet the

condition. While if the maximum distance per cluster exceeds the distortion constraint, the number

of clusters should be increased to meet the condition.

As shown in the general framework, the proposed clustering can be implemented using a variety

of binary optimization algorithms in the AI module. Here we used the binary bat algorithm [83] in

the AI module due to its excellent performance, which is comprehensively discussed and analyzed

in Chapter 3.

Flowchart 4.1 shows how the AI module and objective function collaborated to solve the clustering

problem in the proposed CACS.

Flowchart 4.1: How the optimizer module and objective function collaborated to solve the

clustering problem in the proposed CACS considering the given constraints of the system

88

4.3.3. CACS Objective Function and Formulation

The CACS is formulated as a single objective AI-based optimization problem with objective

function 𝒇 that needs to be minimized iteratively over the set of all feasible clustering solutions,

denoted by 𝜓 = {𝐶1, 𝐶2, … , 𝐶𝑆(𝑚,𝐾)}, where 𝑆(𝑚,𝐾) is defined by Eq. (3.3).

Our goal is to find the clustering solution 𝑪 with 𝐾𝑪 clusters and maximum distance 𝛿𝑪
𝑚𝑎𝑥

within each cluster, where 𝒇(𝑪) = Min {𝒇(𝐶) | 𝐶 ∈ 𝜓}. To this end, we define 𝐺(𝐶) and 𝐸(𝐶) as

two functions reflecting the criteria to ensure the compactness and the separation of the clusters

considering the given maximum distortion constraint 𝜹 in the system.

The objective function 𝒇 is defined as follows

𝒇(𝐶) = Min(
𝐶∈𝜓

𝐺(𝐶)

𝐸(𝐶)
)

𝑠. 𝑡. 𝛿𝐶
𝑚𝑎𝑥 ≤ 𝜹

 ()

Such that

𝐺(𝐶)
𝐶∈𝜓

=𝐾𝐶 . �̅�
𝑚𝑎𝑥

𝐶
. 𝛥𝐶 ()

𝐸(𝐶)
𝐶∈𝜓

=
1

𝐾𝑪
∑ 𝐸𝐶𝑖

𝑚𝑖𝑛𝐾𝑪
𝑖=1 ()

Where �̅�𝑚𝑎𝑥

𝐶
, 𝛥𝐶, and 𝐸𝐶𝑖

𝑚𝑖𝑛 are defined by equations (3.5), (3.6), and (3.7), respectively, in the

general clustering framework in Chapter 3.

Below are the summarized steps of the objective function algorithm followed by the binary

optimization algorithm utilized in the optimizer module.

89

Objective Function Algorithm:

 Input: candidate solution, ℱ, 𝑚 , 𝐿 , 𝜹

1: Cluster initialization based on the DA assigned to each data point

2: Determining clusters’ representatives based on the two-step rule and

updating the clusters based on recent changes

3: if the current clustering solution is different from the previous one

4: flag=0

5: while flag=0 do (2)

6: else

7: find 𝛿𝑐𝑖, ∀ 𝑐𝑖 ∈ 𝐶, ∀𝑖 ∈ {1,2, … , 𝐾𝐶}

find Max
𝑐𝑖 ∈ 𝐶

 {𝛿𝑐𝑖 }

8: end if

9: while ∀ 𝑐𝑖 ∈ 𝐶, 𝛿𝑐𝑖 ≤ 0.9 Max
𝑐𝑖 ∈ 𝐶

 {𝛿𝑐𝑖 }

 10: Merge clusters w.r.t the maximum distortion 𝜹 constraint

11: do (2) & (3)

12: end while

13:
Calculate 𝐾𝐶, 𝛿𝐶

𝑚𝑎𝑥

14: Calculate �̅�𝑚𝑎𝑥

𝐶
. Δ𝐶

15: Calculate 𝐺(𝐶)
𝐶∈𝜓

=𝐾𝐶 . �̅�
𝑚𝑎𝑥

𝐶
. Δ𝐶

16: Calculate 𝐸(𝐶)
𝐶∈𝜓

=
1

𝐾𝑪
∑ 𝐸𝐶𝑖

𝑚𝑖𝑛𝐾𝑪
𝑖=1

17:
Calculate 𝒇(𝐶) =

𝐺(𝐶)

𝐸(𝐶)

 Output over the course of iterations: 𝑪, 𝐾𝑪, 𝛿𝑪
𝑚𝑎𝑥

90

4.4. Proposed Caching and Delivery Scheme

Here we describe the caching strategy in two phases: placement and delivery.

4.4.1. Placement Phase

During the placement phase, the CACS is performed and the 𝐾𝑪 representatives corresponding

to the achieved clustering solution 𝑪 are identified as the selected side information for the rest of

the library content. The set of all representatives of the clustering solution 𝑪 is denoted by 𝑭 =

{�̂�1, … , �̂�𝐾𝑪
}. The selected side information is then placed into a shared cache with size 𝑀 = 𝐾𝑪 to

minimize peak delivery rate.

Figure 4.2 presents a simple illustration of the placement phase.

Binary bat Algorithm:

 Initialize: the bat population 𝕏𝑖 = (1,… , 𝑛), 𝑉𝑖 = 0

1: Define pulse frequency 𝐹𝑟𝑖

2: Initialize pulse rate 𝑟𝑖 and the loudness 𝐴𝑖

3: while (𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

4:
Generate new solutions by adjusting frequency and updating velocities

and positions

5: if (𝑟𝑎𝑛𝑑 > 𝑟𝑖)

6: Select a solution (gbest) among the best solutions randomly

7:
Change the dimensions of the positions vector in line with the

dimensions of gbest

8: end if

9: Generate a new solution by flying randomly

10: if (𝑟𝑎𝑛𝑑 <𝐴𝑖& 𝒇(𝑥𝑖) < 𝒇(𝑔𝑏𝑒𝑠𝑡))

11: Accept the new solutions

12: Increase 𝑟𝑖 and reduce 𝐴𝑖

13: end if

14: Rank the bat and find the current 𝐺𝑏𝑒𝑠𝑡

15: end while

91

Figure 4.2: Placing the set of achieved representatives as the selected side information into the

shared cache

4.4.2. Delivery Phase

In the delivery phase, demands are revealed to the server. Each user uniformly requests a file

𝑓𝑖
𝑗
∈ ℱ from the server, where 𝑖 ∈ {1,2, … ,𝑚} is the index of the requested file and 𝑗 ∈ 𝑁 is the

index of the requesting user.

Let 𝐹𝑘,𝑖 be the notation of the file 𝑓𝑖 after clustering, where 𝑘 ∈ 𝐾𝑪 and shows the file 𝑓𝑖 is

located in which cluster. As the server has global knowledge of the populated caches and clustered

files, such demands will be satisfied by transmitting an encoded message 𝑋𝑖 to the user 𝑗 ∈ 𝑁 in

response to each requested file 𝐹𝑘,𝑖
𝑗

. The size of encoded messages is ℎ(𝐹𝑘,𝑖
𝑗

|�̂�𝑘) ≤ ℎ(𝐹𝑘,𝑖), where

�̂�𝑘 denotes the relevant representative, and ℎ(. |.) describes the conditional entropy.

 These messages are generated in order to enable users to reconstruct their requested files by

jointly decoding the received message and the side information available in the single shared

cache.

The expected delivery rate of the system is formulated in Theorem 4.1 based on a joint

consideration of the rate-distortion function and the caching strategy, where the limit for the

maximum allowable distortion at the receivers is determined based on the Lagrange multipliers

technique and reverse water-filling algorithm.

Theorem 4.1. The expected delivery rate of the proposed system considering a clustering

solution 𝑪𝑆, with 𝐾𝐶𝑆 clusters and 𝑚𝑘 files per cluster 𝑘 ∈ 𝐾𝐶𝑆, during the placement phase is as

follows

92

 𝔼{𝑅(𝐷)} =
1

𝐾𝐶𝑆
∑

1

𝑚𝒌
∑

1

2
𝑙𝑜𝑔 (

𝛿𝑘,𝑖
2

𝐷𝑘,𝑖
)

𝑚𝑘

𝑖=1

𝐾
𝐶𝑆

𝑘=1

 (4.5)

Where

 𝐷𝑘,𝑖 = {
𝜆 𝑖𝑓 𝜆 < 𝛿𝑘,𝑖

2 ,

𝛿𝑘,𝑖
2 𝑖𝑓 𝜆 ≥ 𝛿𝑘,𝑖

2 ,
 (4.6)

Where 𝜆 is chosen to minimize the total distortion as well as the expected delivery rate.

Proof. Consider the case of a clustering solution 𝑪𝑆 with 𝐾𝐶𝑆 clusters in the placement phase,

i.e., 𝑪𝑆 = [𝐶1
𝑆, 𝐶2

𝑆 , … , 𝐶𝐾
𝐶𝑆

𝑆], where each cluster 𝑘 ∈ 𝐾𝐶𝑆, includes a subset of library content and

a representative. Based on the optimizer module and the objective function of the clustering

scheme in our system design, files within a cluster have a random distance with respect to the

cluster representative and could be considered independent normal random variables

𝐹𝑘,1, 𝐹𝑘,2, … , 𝐹𝑘,𝑚𝒌
 with regard to the cluster representative, �̂�𝑘; where 𝐹𝑘,𝑖~𝒩(0, 𝛿𝑘,𝑖

2), and 𝛿𝑘,𝑖
2 is

a function of 𝛿𝑘
𝑚𝑎𝑥, the maximum distance within a cluster 𝑘.

The rate-distortion function [81] for our clustering solution can be written as

𝑅(𝐷) = min
𝔼d(𝐹𝑘,�̂�𝑘)≤𝐷

𝐼(𝐹𝑘; �̂�𝑘) (4.7)

The distortion measure is the squared error distortion, and it is considered between the clustered

files and the corresponding cluster representative.

Then, the mutual information function can be expanded as

𝐼(𝐹𝑘; �̂�𝑘) = ℎ(𝐹𝑘) − ℎ(𝐹𝑘|�̂�𝑘)

Considering 𝑚𝑘 files within a cluster 𝑘

≥ ∑ℎ(𝐹𝑘,𝑖)

𝑚𝒌

𝑖=1

− ∑ℎ(𝐹𝑘,𝑖|�̂�𝑘)

𝑚𝒌

𝑖=1

 = ∑𝐼(𝐹𝑘,𝑖; �̂�𝑘)

𝑚𝒌

𝑖=1

93

≥ ∑𝑅(𝐷𝑘,𝑖)

𝑚𝒌

𝑖=1

= ∑
1

2
𝑙𝑜𝑔 (

𝛿𝑘,𝑖
2

𝐷𝑘,𝑖
)

𝑚𝒌

𝑖=1

 (4.8)

Where 𝐷𝑘,𝑖 = 𝐸(𝐹𝑘,𝑖 − �̂�𝑘)
2
. As for the number of files within each cluster, i.e., 𝑚𝑘, it is

considered a random variable during the clustering phase. However, upon successful clustering,

𝑚𝑘 can be considered as a constant parameter for each cluster 𝑘 in the determined clustering

solution 𝑪𝑆.

Lagrange Multipliers Technique. To evaluate the optimal 𝜆 that achieves the objectives of

minimizing the total distortion and the delivery rate, we have used the Lagrange multipliers

technique. Considering Eq. (4.8), the function can be written as

𝐽(𝐷) = ∑
1

2
log (

𝛿𝑘,𝑖
2

𝐷𝑘,𝑖
)

𝑀𝒌

𝑖=1

+ 𝜆∑𝐷𝑘,𝑖

𝑀𝒌

𝑖=1

Differentiating with respect to 𝐷𝑘,𝑖 and setting equal to zero gives

𝜕𝐽

𝜕𝐷𝑘,𝑖
= −

1

2

1

𝐷𝑘,𝑖
+ 𝜆 = 0

This implies 𝐷𝑘,𝑖 = 𝜆′ that is a very interesting finding, wherein the optimum allocation of

delivery rate is achieved by considering equal distortion for all files. Based on Eq. (4.8), it is

observed that the optimization is achieved if 𝐷𝑘,𝑖 = 𝜆′ ≤ 𝛿𝑘,𝑖
2 for all 𝑖. Alternatively, if the

distortions 𝐷𝑘,𝑖 increase so does 𝜆′ until it exceeds 𝛿𝑘,𝑖
2 , as in Eq. (4.6).

The concept can be interpreted according to the reverse water-filling, see Figure 4.3. This

implies that the delivery rate is available only for the files with variances greater than constant 𝜆.

No delivery is expected for the files with a variance lower than 𝜆. In other words, 𝜆 reflects the

limit of the maximum allowable distortion introduced to the files. ■

94

Figure 4.3: Reverse water-filling algorithm in delivery rate optimization for clustered files in a

cluster 𝑘

4.5. Performance Analysis and Discussion

We have evaluated the performance of the proposed caching scheme in this section, where the

conventional random placement strategy is used as the benchmark.

According to our problem settings, the library content files are considered zero-mean correlated

gaussian random variables. In order to simulate the library content files, we have first generated a

vector of uncorrelated gaussian random variable 𝑊 and then multiplied it by a matrix φ, where

φφ𝑇 = 𝛴 and 𝛴 is the desired covariance matrix. It should be noted that φ can be created by using

the Cholesky decomposition of 𝛴, or from the eigenvalues and eigenvectors of 𝛴.

We have used the MASS package library in the R programming language7 for this experiment.

We have considered library content files with at least 0.75 similarities among library content

for the following experiments.

Figure 4.4 compares the delivery rate-memory trade-off between the conventional random

placement and the proposed caching schemes, considering different threshold values 𝜆. The

7 https ://www.geeksforgeeks.org/simulate-bivariate-and-multivariate-normal-distribution-in-r

95

memory size describes the total number of files placed in the cache during the placement phase,

whereas the expected delivery rate represents the average delivery rate per requested file per user

during the delivery phase.

It can be seen that the delivery rate of both the conventional approach and the proposed scheme

decreases as the memory size increases. However, our proposed scheme requires much lower

delivery rates for the same memory size to accomplish the delivery phase.

In Figure 4.4, we have also evaluated the effect of increasing the distortion threshold in the

proposed scheme, which implies allowing some distortion levels in the received files on the user

side. The threshold is considered based on the maximum proportion of the distortion introduced to

the corresponding file. As the threshold increases, the delivery rate decreases, which is due to the

allowable distortion that is reflected on the received files. The trade-off between the expected

distortion and memory size is investigated as follows.

Figure 4.5 shows the trade-off between the users’ expected distortion and the memory size in

the proposed caching scheme and the conventional approach considering different fixed delivery

rates. The expected distortion implies the average of the distortion introduced per requested file

per user, and the memory size describes the total number of files placed in the cache during the

placement phase.

Figure 4.4: Delivery rate memory trade-off in the proposed scheme compared to the conventional

caching for N=100 users, m=100 files

96

Figure 4.5: The expected distortion memory trade-off in the proposed scheme for different fixed

delivery rates compared to the conventional approach for N=100 users, m=100 files

It can be seen that by increasing the memory size, the expected distortion drops in both

approaches for a fixed delivery rate. However, our proposed scheme has yielded a significant

reduction in the expected distortion for all different delivery rates compared to the conventional

approach.

Another observation is that increasing the delivery rate leads to reducing the expected distortion

for a fixed memory size in both schemes. Still, this reduction is considerably boosted in our

proposed solution compared to the conventional scheme. For instance, for the expected delivery

rate of 0.1, the expected distortion of our proposed scheme significantly drops to lower than 10−3

even for the memory size of 40 files, while the conventional scheme hardly reaches a distortion

level 10−1.

It is seen that the conventional approach has the highest expected distortion, even by increasing

the delivery rate from 0.1 to 0.5. Meanwhile, the proposed approach reaches significantly better

results by adopting a much lower delivery rate (e.g., 0.025 to 0.1).

97

4.6. Summary

This chapter investigates a cache-aided delivery network with correlated content and a single

shared cache connected to multiple users to combat the high delivery data rates. The proposed

placement scheme considers a correlation-aware clustering scheme that categorizes content files

into clusters with approximately the same maximum distance by considering the similarity among

the content files. During the delivery phase, encoded messages are delivered to users in order to

meet all demands. We have formulated the expected delivery rate of the system by joint

consideration of the rate-distortion function and caching strategy. The limit for the maximum

allowable distortion of the system is determined based on the Lagrange multipliers technique and

reverse water-filling optimization. Finally, we have analyzed the trade-off between the memory

size, the delivery rate, and the users’ expected distortion. Our simulation results show that the

proposed caching scheme exhibits excellent performance in reducing the delivery rate and users’

expected distortion compared to the conventional scheme.

98

Chapter 5

Content Delivery in a Network with Multiple Shared

Caches and Correlated Content under Uniform

Demand

5.1. Introduction

This chapter extends our previous study to a cache-aided network with multiple shared caches.

Such systems are beneficial in current and next-generation wireless networks as they can be

applied to small base station architecture. It allows users in an SBS to access the nearby caches

and be served locally for some parts of demands to reduce the strain on the backhaul. Also, it is

99

useful in a HetNet environment or as an upper layer of hierarchical caching networks in IoT-based

applications.

We examine the proposed network under a uniform popularity demand distribution in this

chapter. To this end, the side information for the entire library is first extracted by using the

correlation-aware clustering scheme discussed in Chapter 4. Next, we introduce the placement

strategy based on the coded caching solution with uncoded placement. We describe the delivery

phase by considering the transmission of the coded multicast messages and refinement segments.

Following that, we discuss how increasing the number of users affects the peak delivery rate of

our proposed system. Furthermore, we introduce the optimum library partitioning of the system

formulated to minimize the peak delivery rate in the network.

In the remainder of this chapter, we first describe the system model and the caching and delivery

strategy to analyze the delivery rate of the system. Then we introduce the optimum library

partitioning of the system and present simulation results.

5.2. System Model

Consider a centralized cache-aided delivery network with a server, 𝑁 total users, and 𝑍 SBSs

over a shared error-free broadcast link. The network model is illustrated in Figure 5.1.

Figure 5.1: Cache-aided delivery network with multiple shared caches

100

Each SBS 𝑖 ∈ {1,… , 𝑍} is equipped with a shared cache 𝑌𝑖, which is connected to 𝑈𝑖 number of

users, where 𝑈𝑖 ∈ {𝑈1, … , 𝑈𝑍} and ∑ 𝑈𝑖
𝑍
𝑖=1 = 𝑁, and 𝑍 ≤ 𝑁. It is assumed that each user is

connected to only one SBS and can receive messages from its SBS as well as the server.

The proposed caching strategy operates in two phases; in the placement phase, the CACS is

performed to identify the side information for placing into the shared caches according to a coded

caching strategy with uncoded placement. Then in the delivery phase, multicast coded messages

and refinement segments are transmitted to enable users to reconstruct their requested files by

jointly decoding the received message and the side information in the shared cache.

The server has access to a library of 𝑚 uniformly popular content files ℱ = {1,… ,𝑚} with the

same length. In line with studies on coded caching scenarios [5][6], the library content files in this

chapter and the next chapter are assumed to be binary content files. In this regard, the library with

correlated content could be modeled according to the classical binary symmetric channel (BSC)

correlation model with crossover probability 𝜌0 ∈ [0,0.5].

Let �̃� be an i.i.d binary random variable generated according to the Bernoulli distribution

�̃�~𝐵𝑒𝑟𝑛 (1 2⁄) and (𝑓1, 𝑓2, … , 𝑓𝑚) be the output of a set of BSC with crossover probability 𝜌0 fed

by the same input �̃�. Thus, based on the model for correlated binary content files [17][18], each

content file is represented by a vector of i.i.d binary symbols with the same length. Since symbols

of the content files are correlated according to a joint distribution 𝒫ℱ, for a block length of 𝐵 bits

𝑓𝑖 ∈ 𝔽2
𝐵 and 𝐻(𝑓i) = 𝐵 bits, and ∀𝑓𝑖 , 𝑓𝑗 ∈ ℱ, 𝐻(𝑓𝑖|𝑓𝑗) ≤ 𝐵; therefore 𝐻(𝑓1, … , 𝑓𝑚) ≤ 𝑚𝐵 bits. 𝔽2

𝐵

denotes the set of binary sequences of length 𝐵 bits.

We consider 𝜌 = 1 − 𝜌0 as the correlation parameter in this chapter. It is clear that 𝜌0 close to

zero indicates highly correlated sources while 𝜌0 close to 0.5 indicates roughly no correlation

between binary sources. This correlation model can describe different communication scenarios

in which sources share common information, but each also has an individual component (e.g., A

wireless network in which a set of nodes collect and transmit correlated data arising from the same

physical phenomenon to a common sink) [121][122].

101

5.3. Proposed Caching and Delivery Scheme

We present the caching strategy in two following phases:

5.3.1. Placement Phase

First, upon performing the CACS, the 𝐾 clusters’ representatives are identified as the selected

side information for the rest of the library. Then the placement phase is carried out according to

the CC strategy with uncoded placement to take advantage of the multicast opportunities. Contrary

to the CC scheme, we only store representatives in our model. However, the rest of the library

(clustered files) will also be accessible at a low delivery rate by transmitting refinement segments

to the requesting users since delivery of the clustered files has been formulated as distributed

source coding with side information.

Let parameter 𝑇 define integer values 𝑇 ∈ [0, 𝑍]. Then, the available memory size of each

shared cache to store the obtained 𝐾 representatives is defined as 𝑀 ∈ 𝐾𝑇 𝑍⁄ , i.e., 𝑀 ∈

{0, 𝐾 𝑍⁄ , 2𝐾 𝑍⁄ ,… , 𝐾}.

Recall that 𝑭 = {�̂�1, … , �̂�𝐾} denotes the set of 𝐾 representatives. We divide each �̂�𝑘, 𝑘 ∈ 𝐾 ,

into (
𝑍
𝑇
) non-overlapping chunks of size 1 (𝑍

𝑇
)⁄ . The chunks of each �̂�𝑘 are labeled as follows

�̂�𝑘 = (�̂�𝑘,𝜏: 𝜏 ⊂ [𝑍], |𝜏| = 𝑇) ()

where 𝑇 = 𝑍𝑀 𝐾⁄ and [𝑍] ≜ {1,… , 𝑍}

Then, each shared cache 𝑧 ∈ [1, 𝑍] fills its caches as follows:

𝑌𝑧 = (�̂�𝑘,𝜏: 𝑘 ∈ [𝑭], 𝜏 ⊂ [𝑍], |𝜏| = 𝑇, 𝑧 ∈ 𝜏) ()

In other words, each cache 𝑌𝑧 stores all chunks �̂�𝑘,𝜏 if 𝑧 ∈ 𝜏.

In this way, each shared cache stores 𝐾(𝑍−1
𝑇−1

) number of representative chunks in total. In this

case 𝐾(𝑍−1
𝑇−1

)
1

(𝑍𝑇)
 memory size is required as the size of each chunk is 1 (𝑍

𝑇
)⁄ file, which results in

𝐾(𝑍−1
𝑇−1

)
1

(𝑍𝑇)
=

𝐾𝑇

𝑍
= 𝑀 files and satisfy the memory size constraint.

102

The following example shows how a set of side information is placed in the shared caches.

Example 5.1: Consider the proposed network with 𝑍 = 4 shared caches, each with size 𝑀 = 1

file. Assume the library files are categorized into 𝐾 = 4 clusters by performing the CACS scheme,

which results in a representative set 𝑭 = {�̂�1, … , �̂�4}.

Since 𝑇 = 𝑀 𝑍 𝐾⁄ = 1, each �̂�𝑖 is split into (
4
1
) = 4 chunks of size 1 4⁄ file. Hence, caches are

filled as follows:

𝑌1 = {�̂�1,1, �̂�2,1, �̂�3,1, �̂�4,1}

𝑌2 = {�̂�1,2, �̂�2,2, �̂�3,2, �̂�4,2}

𝑌3 = {�̂�1,3, �̂�2,3, �̂�3,3, �̂�4,3}

𝑌4 = {�̂�1,4, �̂�2,4, �̂�3,4, �̂�4,4}

The next section explains how the delivery phase works according to this placement setting.

5.3.2. Delivery Phase

During the delivery phase, users reveal their requests to the SBSs. Depending on the cache size

and requested files, some of the demands can be locally satisfied, while others need to be processed

by the server. Demands received by the server are either associated with representatives or

clustered files. In both cases, the relevant representative should be first constructed.

Let 𝑄𝑧 includes all the demands of the cache 𝑌𝑧, 𝑧 ∈ 𝑍, to be processed by the server. Then, all

files in a 𝑄𝑧 are mapped to the relevant representatives and create a vector of unique demanded

representatives across all caches denoted by 𝑄 in the server.

All unique requested clustered files across all SBSs are also assigned to the demand vector 𝑄′.

Lastly, requests will be satisfied in one of the following ways:

103

1. Demands corresponding to the representatives (Demand vectors 𝑄):

• When 𝑀 = 𝐾: such demands are locally served as they are fully cached and accessible

by all users.

• When 𝑀 < 𝐾: Such demands are served by transmitting coded multicast messages in

accordance with the cached content. Consider a case where one distinct representative

is requested in each shared cache, therefore; request vector 𝑄 = (𝑞�̂�1
, … , 𝑞�̂�𝑧

) is created,

where 𝑞�̂�𝑖
 means the representative �̂�𝑖 is requested in cache 𝑖 ∈ 𝑍. Consider subset 𝒮 ⊂

[𝑍] of cardinality |𝑇 + 1| shared caches. In this case, every 𝑇 cache in 𝒮 shared a chunk

in their memory that is needed at the rest of the shared caches in 𝒮. Therefore, the server

transmits the following coded message

 ⨁
𝑧∈𝒮

𝑞�̂�𝑠
, 𝒮\{𝑧}, ∀𝒮 ⊆ [Z] , |𝒮| = T + 1 ()

Where ⨁ indicates the bitwise XOR operation and 𝒮 is the subset of shared caches that

receives the coded message. The size of each coded message is 1 (𝑍
𝑇
)⁄ file.

Example 5.2 shows the transmitted coded multicast messages during the delivery phase.

2. Demands corresponding to the clustered files (Demand vector 𝑄′):

All unique requested clustered files across all SBSs are assigned to the demand vector 𝑄′. As

the server has global knowledge of the populated caches and the clustered files, let such files in

the 𝑄′ be described by their cluster numbers for convenience, i.e., 𝐹𝑘,𝑖, where 𝑖 ∈ 𝑚𝑘 and 𝑘 ∈ 𝐾.

Also, let 𝐹𝑘,𝑖
𝑗𝑧 describes the requested file 𝐹𝑘,𝑖 by the user 𝑗 ∈ 𝑁 connected to cache 𝑧 ∈ 𝑍.

Then, demands corresponding to the clustered files will be satisfied by transmitting a refinement

segment in addition to the coded multicast messages. To this end, in response to each request in

𝑄′, the server creates an encoded message 𝑋𝑖 of size 𝐻(𝐹𝑘,𝑖
𝑗𝑧 |�̂�𝑘) ≤ 𝐻(𝐹𝑘,𝑖) to be transmitted to the

requesting user, where 𝐻(. |.) denotes the conditional entropy, and �̂�𝑘 is the corresponding

representative. As such, users can reconstruct the desired content by jointly decoding the

refinement segment and the side information available in the cache.

104

It is clear that the refinement segment needed for the same file in different SBSs is transmitted

just once due to the broadcast nature of the medium.

The following example shows how the delivery phase works in accordance with the populated

caches in the network. We have considered a simple case in this example to focus on the delivery

solution.

Example 5.2: Consider the proposed cache-aided network with 𝑍 = 2 shared caches 𝑌𝑖, for 𝑖 =

[1, 2], connected to 𝑈1 = 14 and 𝑈2 = 16 users, results in 𝑁 = ∑ 𝑈𝑖
2
𝑖=1 = 30 total users. Let the

size of the cache be 𝑀 = 1 file. Assume the server consists of 𝑚 = 30 uniform popular files with

size 𝐵 bits that are categorized into 𝐾 = 2 clusters by performing the CACS scheme results in a

representative set 𝑭 = {�̂�1, �̂�2} and maximum distance 𝛿𝑚𝑎𝑥 = 0.2 per cluster.

Therefore, 𝑇 = 𝑀 𝑍 𝐾⁄ = 1 and each �̂�𝑖 is split into (
2
1
) = 2 chunks of size 1 2⁄ file. Hence,

the caches are filled as follows: 𝑌1 = {�̂�1,1, �̂�2,1} , and 𝑌2 = {�̂�1,2, �̂�2,2}

In this example, we investigate the delivery rate for the worst-case demand, which assumes all

the files are requested in the network. Therefore, both representatives are needed in each cache,

requiring the following coded multicast messages

Coded multicast messages (with size 𝐵 2⁄)

 decode �̂�12 ⇐ �̂�12⨁�̂�11 ⇒ decode �̂�11

 decode �̂�22 ⇐ �̂�21⨁�̂�22 ⇒ decode �̂�21

Therefore, 𝑅𝐶𝑀 = 2 ∗ 𝐵 2⁄ = 𝐵 bits or 1 file.

Refinement segments (with size 𝐵 5⁄):

(𝐹𝑘,𝑖|�̂�𝑘) = 𝐵 5⁄ for all the clustered files. Therefore, 𝑅𝑅𝑆 = 28 ∗ 𝐵 5⁄ = 5.6 files

105

Thus, 𝑅 = 𝑅𝐶𝑀 + 𝑅𝑅𝑆 = 6.6 files are required to serve all 30 users with 30 unique requests in

the proposed network.

5.4. Delivery Rate Analysis

The delivery rate of the proposed system includes two components; 𝑅𝐶𝑀 which is needed for

constructing the representatives and the 𝑅𝑅𝑆 which is required for the refinement segments. Hence,

the total delivery rate of the proposed system is

𝑅 = 𝑅𝐶𝑀 + 𝑅𝑅𝑆 ()

Coded multicast messages account for most of the delivery rate; therefore, the peak delivery

rate occurs when

• firstly, requests from each SBS involve all clusters; thus, all representatives must be

constructed in all SBSs via coded multicast messages.

• Secondly, all the clustered files are also requested in the network, for which we need to

assume 𝑁 = 𝑚, implying that the total number of users and files is the same.

In order to analyze the peak delivery rate, the upper bounds for 𝑅𝐶𝑀 and 𝑅𝑅𝑆 are described next.

Consider the case of reaching the clustering solution 𝑪𝑆 with 𝐾𝐶𝑆 clusters during the placement

phase. Let ζ describe the maximum number of requested representatives per shared cache in the

system. The coded multicast delivery rate 𝑅𝐶𝑀 in a network with 𝑍 shared caches, each having a

memory size of 𝑀 = 𝐾𝑪𝑆𝑇 𝑍⁄ files for 𝑇 ∈ [0: 𝑍] to construct a set of 휁 ∈ [1: 𝐾𝑪𝑆] representatives

in all receivers is given by

𝑅𝐶𝑀(𝑀) = 𝑍휁 (1 −
𝑀

𝐾
𝑪𝑆

)min (
1

1+ 𝑍 𝑀 𝐾
𝑪𝑆⁄

,
𝐾

𝑪𝑆

𝑍𝜁
) ()

In cases where 휁 = 𝐾𝑪𝑆, the upper bound for 𝑅𝐶𝑀 is achieved, representing the case when

requests from each SBS involve all clusters, and therefore, all representatives must be constructed

in all SBSs via coded multicast messages.

The coded multicast delivery rate 𝑅𝐶𝑀 can be achieved by treating each of the 휁 sets of

representative demands independently and then applying the coded multicast scheme proposed in

106

[5, Theorem 1] for each set of representative demands. The second term in the minimum function

is considered for the cases when multicasting does not improve the unicast rate.

Since we are interested in the peak rate 𝑅𝐶𝑀, we assume that all SBSs request all representatives,

i.e., 휁 = 𝐾𝑪𝑆, which results in the peak rate 𝑅𝐶𝑀
𝑃 as follows

𝑅𝐶𝑀
𝑃 (𝑀) = 𝑍𝐾𝑪𝑆 (1 −

𝑀

𝐾
𝑪𝑆

)min (
1

1+ 𝑍 𝑀 𝐾
𝑪𝑆⁄

,
1

𝑍
) ()

The delivery of the clustered content occurs by transmitting refinement segments according to

the representatives since the caching problem is formulated as distributed source coding with side

information at the decoder. Such messages describe the difference between the requested content

and the cached representatives. Therefore, the peak delivery rate 𝑅𝑅𝑆
𝑃 which upper bounds the

delivery rate 𝑅𝑅𝑆 required for transmitting clustered content to the requesting users across all 𝑍

shared caches in the system is given by:

 𝑅𝑅𝑆 ≤ 𝑅𝑅𝑆
𝑃 = ∑ ∑𝐻(𝐹𝑘,𝑖|�̂�𝑘)

𝑚𝒌

𝑖=1

𝐾
𝑪𝑆

𝑘=1

 (5.7)

5.5. The Optimal Library Partitioning

The optimum library partitioning achieved by the CACS is formulated with the objective of

minimizing the peak delivery rate 𝑅𝑃 of the system considering constraint 𝛿𝐶
𝑚𝑎𝑥 < 𝜹.

𝑅𝑃(𝑍,𝑀,𝑚, 𝑭, 𝜹)

= min
𝛿𝐶

𝑚𝑎𝑥<𝜹
{(𝑍𝐾𝑪𝑆 (1 −

𝑀

𝐾𝑪𝑆
)min (

1

1 + 𝑍 𝑀 𝐾𝑪𝑆⁄
,
1

𝑍
))

+ ∑ ∑𝐻(𝐹𝑘,𝑖|�̂�𝑘)

𝑚𝒌

𝑖=1

𝜁

𝑘=1

 } (5.8)

The first term of the min {.} function comes from the upper bound of the coded multicast messages

for the worst-case demand 휁 = 𝐾𝑪𝑆. The second term represents the rate 𝑅𝑅𝑆, required for the

refinement segments under the worst-case demand assumption.

107

Figure 5.2: The minimum of the Peak delivery rate occurred in memory size 𝑀 = 20 for a

library of 𝑚 = 100 files, categorized into 𝐾𝐶𝑆 = [1: 100] clusters with different 𝛿𝑚𝑎𝑥 ≤ 0.231

From this point of view, we are interested in finding the clustering solution 𝐶∗ with parameters

𝐾𝐶∗ , 𝛿𝐶∗
𝑚𝑎𝑥 that minimize the 𝑅𝑃. Therefore, 𝑀𝑜𝑝𝑡 = 𝐾𝐶∗ is considered the optimum library

partitioning for this setting.

It should be mentioned that the peak rate 𝑅𝑃 is significantly impacted by the coded multicast

messages in our model; hence, a balance should be maintained between the number of achieved

representatives and the global cache size in the network during the placement phase in order to

decrease the number of multicast messages in the delivery phase.

Figure 5.2 shows how the delivery rate decreases to a certain point by increasing memory size

but rises again once it touches its minimum.

5.6. Performance Analysis and Discussion

The performance of the proposed caching and clustering schemes is evaluated here. The

experimental results have been carried out on a PC with Windows 11 Professional 64-bit operating

system, an Intel(R) Core ™ i7-10700K processor, and 48 GB RAM using MATLAB software

2021 b.

108

We start our evaluation with Figure 5.3, which illustrates the trade-off between the achieved

number of clusters, the maximum distance within each cluster, and the similarity among the library

sources in the correlation-aware clustering scheme. This scheme categorizes the library files into

clusters with approximately the same maximum distance in all clusters.

This evaluation is performed on 𝑚 = 130 files with different correlation level among the

source files. This simulation is performed by considering the BBA algorithm in the optimizer

module. The parameter setting for the BBA solution is described in Table 3.2.

It is observed that increasing the number of clusters reduces the maximum distance within the

clusters. On the other hand, we can see the effect of having higher correlated sources in the library.

Increasing the correlation among the library files results in clustering solutions with fewer groups

and lower maximum distance in the clusters.

If the constraint of the system allows for more distance within each cluster, it means the number

of clusters can be reduced to meet the condition. While if the maximum distance per cluster

exceeds the system constraint, the number of clusters should be increased to meet the condition.

Figure 5.3: The trade-off between the achieved number of clusters and the maximum distance in

the clusters for 𝑚 = 130 files with different correlation level among sources

109

Figure 5.4: Delivery rate comparison in a network with 𝑍 = 5 shared caches of size 𝑀 = 20

As shown in Figure 5.4, our next evaluation examines the effect of increasing the number of

users connected to the shared caches in a delivery network with multiple caches under uniform

popularity demand. This evaluation is performed considering 𝑚 = 100 content files with 0.80

similarities among the library content in a network with 𝑍 = 5 shared caches of size 𝑀 = 20. We

have investigated the delivery rate of the system for the worst-case demand, which assumes a

different content is requested by the users and results in the worst-case delivery rate of the system.

For this evaluation, we have considered the proposed scheme compared to other studies,

including local caching with unicast delivery, coded caching strategy with uncoded placement [5],

and shared cache solution with coded placement [13]. Local caching with unicast delivery

considers the conventional local caching solution, in which 𝑀/𝑚 of each content is stored in all

caches, followed by a unicast delivery to transmit the remaining portions (1 − 𝑀/𝑚) of the

requested content to each user. Coded caching with uncoded placement is considered based on [5],

which takes advantage of a global caching gain of (
1

1+𝑍𝑀/𝑚
) beside the local caching gain for each

set of requests. Shared caches with coded placement [13] assume a network with 𝑍 shared caches

and 𝑁 users and divide users into 𝑍 groups. This scheme places both the coded and uncoded pieces

of the content into the caches according to the connectivity pattern of each cache, where the

optimal parameters for the caching scheme are obtained by solving a linear program.

110

We can see that although [13] reaches a lower delivery rate by increasing the number of users

in each SBS compared to the coded caching strategy with uncoded placement, our approach

achieves a higher gain due to the careful extraction of content for the placement phase. Our scheme

places less load on the system as the number of users increases because we are required only to

transmit extra refinement segments at low rates after a certain point.

5.7. Summary

As the demand for high delivery data rates continues to rise, content caching has become an

important technique for reducing the delivery rate and improving the quality of service in current

delivery networks. This chapter studies a cache-aided network with correlated sources and multiple

shared caches, where each cache is connected to a group of users. The proposed approach considers

the CACS for content placement that divides library content into clusters with approximately the

same maximum distance by considering the similarity among the sources and the maximum

allowable distortion in the network. Then, the representatives are used as the side information for

the placement phase according to the coded caching strategy with uncoded placement. The

delivery phase considers transmitting the coded multicast messages and refinement segments to

serve all demands. We have formulated the peak delivery rate for the worst-case demand of the

system by joint consideration of the delivery for the refinement segments and the caching strategy.

We have also addressed the optimum partitioning with the objective of minimizing the peak rate.

Our simulation results show that the proposed scheme exhibits excellent performance in reducing

the peak delivery rates compared to others. Further studies can consider the proposed caching

scheme in case of non-uniform demand. Also, considering a coded strategy in such a network can

be studied as future work.

111

Chapter 6

Content Delivery in a Network with Multiple Shared

Caches and Correlated Content under Non-Uniform

Popularity Demand

Designing an effective placement scheme is crucial to maximizing caching gains and reducing

the peak delivery load of cache-aided delivery networks. So far, we have addressed this challenge

in joint consideration with the delivery phase of a cache-aided network under uniform demand and

observed that a symmetric placement strategy for the extracted side information significantly

reduces the delivery rate in such networks.

112

This chapter extends our previous study in Chapter 5 to account for heterogeneous user

preferences as well. In this chapter, we study a more general case with a non-uniform popularity

demand, resulting in a more complicated caching design and analysis since some files will be more

popular than others.

6.1. Introduction

Conventionally, the HPF caching strategy is used in cache-aided networks with non-uniform

demands; This strategy utilizes the popularity parameter to place the most popular files in all

caches [5]. A few years ago, the coded caching strategy emerged as a major breakthrough in

different types of caching networks to increase global gain and combat the high delivery data rates.

A typical analysis of caching networks with coded caching strategy under heterogeneous user

preferences is to design a placement strategy under this setting and evaluate the system’s

performance accordingly [123][124]. In this regard, content placement using file grouping is a

common method to reduce the complexity of the problem. The authors in [6] propose grouping

files on the basis of their popularity to allocate different chunks of caches to different groups. Still,

they consider the same identical placement for the files within each group. Several other studies

[7][10][124] proposed partitioning files in groups for caching networks with independent library

content, demonstrating that file grouping in different ways is an effective method to cope with

non-uniform popularity demand. Motivated by the above, we propose a content placement strategy

based on joint consideration of the popularity and the similarity of library content in this chapter

and then evaluate the peak delivery rate in the proposed network.

In the remainder of this chapter, we first describe the system model and introduce a clustering

scheme based on the popularity and similarity of library content for the placement phase. Next, we

describe the caching and delivery strategy and analyze the delivery rate of the system.

6.2. System Model

Consider a cache-aided delivery network with a server, 𝑁 total users, and 𝑍 SBSs over a shared

error-free broadcast link. The network model of the proposed system is illustrated in Figure 6.1.

113

Each SBS 𝑖 ∈ {1,… , 𝑍} is equipped with a shared cache 𝑌𝑖, which is connected to 𝑈𝑖 number of

users, where 𝑈𝑖 ∈ {𝑈1, … , 𝑈𝑍} and ∑ 𝑈𝑖
𝑍
𝑖=1 = 𝑁, and 𝑍 ≤ 𝑁. We assume each user is connected to

only one SBS and can receive messages from its SBS and the server.

The server has access to a library containing 𝑚 content files ℱ = {1, … ,𝑚} with the same size.

The correlated library content files are considered based on the same model discussed in Chapter

5, in which each file is represented by a vector of i.i.d binary symbols of length 𝐵 bits, 𝑓i ∈ 𝔽2
𝐵;

thus, for a block length of 𝐵, 𝐻(𝑓i) = 𝐵 bits and 𝐻(𝑓1, … , 𝑓𝑚) ≤ 𝑚𝐵 bits.

We also consider a popularity parameter in this chapter to investigate the network under non-

uniform popularity demand. The popularity of each content file 𝑖 ∈ ℱ is denoted by 𝑝i, where

∑ 𝑝i = 1𝑚
𝑖=1 . Without loss of generality, we assume that the file popularity is decreasing in the

index, i.e., 𝑝𝑗 ≥ 𝑝𝑖 where 𝑗 ≥ 𝑖.

We also define 𝑃𝑘 as an aggregate popularity parameter for each cluster 𝑘 ∈ 𝐾𝑪, which

represents the sum of the popularity of files per cluster 𝑘, i.e., 𝑃𝑘 = ∑ 𝑝𝑖
𝑚𝑘
𝑖=1 , and ∑ 𝑃𝑘 = 1

𝐾𝑪
𝑘=1

where 𝑚𝑘 indicates the number of files within cluster 𝑘 and could be different across clusters. We

use this parameter later in designing the objective function.

We aim to optimize the content placement of the proposed network under non-uniform

popularity demand distribution to reduce the delivery rate during peak hours. To address the

placement challenge, we propose a popularity-based correlation-aware clustering scheme (PB-

CACS) that considers both the popularity and similarity of library content, extracting two types of

side information for the entire library known as;

▪ Popular side information (PSI)

▪ Clusters’ side information (CSI)

Then, we consider a hybrid placement strategy in which PSIs are fully stored in all caches,

while CSIs are divided into chunks and stored in different caches based on the coded caching

solution.

Next, coded multicast messages and refinement segments are transmitted in the delivery phase

to construct the requested CSIs and clustered files.

114

Figure 6.1: Content delivery network in a shared cache Framework with multiple caches under

non-uniform popularity demand considering a hybrid placement strategy

6.3. Popularity-Based Correlation-Aware Clustering Scheme

The proposed PB-CACS identifies the side information for the entire library based on joint

considerations of the similarity and popularity of library content files during the placement phase.

The proposed clustering scheme categorizes the library content into a set of highly popular files

along with a sufficient number of compact and well-separated clusters with approximately the

same aggregate popularity and maximum distance per cluster.

It is worth mentioning that we are interested in reaching clusters with the same aggregate

popularity to be able to formulate a non-uniform popularity case into a uniform popularity case.

Therefore, we can easily maintain symmetry among representatives during the placement phase

and create coded multicast messages efficiently.

6.3.1. PB-CACS Objective Function and Methodology

Similar to the proposed CACS in Chapter 4, the PB-CACS is formulated as an AI-based

optimization problem with objective function 𝒇 that needs to be minimized iteratively over the set

115

of all feasible clustering solutions defined by 𝜓 = {𝐶1, 𝐶2, … , 𝐶𝑆(𝑚,𝐾)}, where 𝑆(𝑚,𝐾) is the set

of all feasible clustering solutions defined by Eq. (3.3).

In addition to the similarity in the PB-CACS, a popularity parameter and a popularity-related

constraint are also considered in the objective function of this scheme. In this regard, we define

�̅�𝐶, as the average aggregate popularity over all clusters in the clustering solution 𝐶, given by

�̅�𝐶 =
1

𝐾𝐶
∑ 𝑃𝑘

𝐾𝐶
𝑘=1 ()

where 𝑃𝑘 = ∑ 𝑝𝑖
𝑚𝑘
𝑖=1 .

We also define 𝑃𝐶
𝑚𝑎𝑥 and 𝑃𝐶

𝑚𝑖𝑛 as the maximum aggregate popularity and minimum aggregate

popularity parameters of all 𝐾𝐶 clusters in the clustering solution 𝐶.

𝑃𝐶
𝑚𝑎𝑥 = max

∀𝑘∈𝐾𝐶

{𝑃𝑘} ()

𝑃𝐶
𝑚𝑖𝑛 = min

∀𝑘∈𝐾𝐶

{𝑃𝑘} ()

Moreover, for each clustering solution 𝐶, we define the deviation of aggregate popularity ∆𝑃𝐶,

given by:

∆𝑃𝐶 = 𝑃𝐶
𝑚𝑎𝑥 − 𝑃𝐶

𝑚𝑖𝑛 ()

Then, we define 𝐽(𝐶) as a function that reflects the compactness of the clusters, given by:

𝐽(𝐶)
𝐶∈𝜓

=𝐾𝐶 . �̅�
𝑚𝑎𝑥

𝐶
. Δ𝐶 . ∆𝑃𝐶 ()

where 𝐾𝐶 is the number of clusters obtained by the clustering solution 𝐶, and �̅�𝑚𝑎𝑥

𝐶
 and 𝛥𝐶 are

defined as described in chapter 3 by Eqs. (3.5) and (3.6).

Finally, considering 𝐸(𝐶) described in Eq. (4.4) as a function that reflects the separation of the

clusters in the clustering solution 𝐶, we introduce the objective function as follows

𝒇(𝐶) = Min(
𝐶∈𝜓

𝐽(𝐶)

𝐸(𝐶)
)

𝑠. 𝑡 .
𝑃𝐶

𝑚𝑎𝑥≤ �̅�𝐶+𝑃𝐶
𝑚𝑖𝑛

𝛿𝐶
𝑚𝑎𝑥≤𝜹

 ()

116

We iteratively minimize 𝒇(𝐶) subject to two constraints; one is with respect to the given

distortion of the system, and the other is to ensure reaching clusters with the same aggregate

popularity.

However, the PB-CACS goes through an extra step to meet the aggregate popularity constraint.

The PB-CACS consists of three main steps.

1. Cluster Initialization step: Initially, each content file is equipped with a cluster number

in order to form a primary clustering solution; then, the primary solution will be

repeatedly re-clustered and updated according to the representatives until no change is

seen in the clusters.

2. Merging and Modifying step: Following the achievement of the clustering solution in

step 1, the achieved clusters will be re-clustered, merged, and modified based on a

designed condition, Eq. (3.4), to compensate for the distortion deviation between

clusters of different sizes and improve the result. This condition leads clusters to

gradually achieve the same maximum distance without increasing the number of

clusters. The AI-optimizer module then optimizes the achieved clusters over the course

of iterations based on the problem objectives.

3. Aggregate Uniformity step: The final step involves optimizing clusters based on a

uniformity condition to reach the same aggregate popularity per cluster 𝑐𝑖 ∈ 𝐶,

according to the aggregate popularity constraint for all clusters defined as:

𝑃𝐶
𝑚𝑎𝑥 ≤ �̅�𝐶 + 𝑃𝐶

𝑚𝑖𝑛 ()

As long as the uniformity condition is not met, the highest popular content file in the library

will be removed from the library and stored in the set 𝑚𝐻; then, the library will be updated based

on recent changes, and the clustering scheme will proceed according to the updated library. As a

result of performing all the above steps, the clustering solution 𝑪 is obtained, consisting of 𝑚𝐻

number of highly popular content and 𝐾𝑪 representatives, while achieved clusters have

approximately the same maximum distance 𝛿𝑪
𝑚𝑎𝑥 and aggregate popularity 𝑃𝑪.

Flowchart 6.1 explains the above steps and illustrates how the optimizer module and objective

function collaborated to solve the clustering problem in the proposed PB-CACS, considering the

given constraints of the system.

117

Flowchart 6.1: How the optimizer module and objective function collaborated to solve the

clustering problem in the proposed PB-CACS considering system constraints

6.4. Proposed Hybrid Caching and Delivery Strategy

The proposed network operates in two phases: The cache placement and the delivery phase.

6.4.1. Hybrid Cache Placement Strategy

Let 𝑪 represents the achieved clustering solution by the PB-CACS during the placement phase.

Then, library files fall into one of the following groups based on the achieved 𝑪:

▪ 𝑚𝐻 content files with very high popularity, known as popular side information (PSIs)

▪ 𝐾𝑪 cluster representatives, known as clusters’ side information (CSIs)

▪ 𝑚𝐶 = (𝑚 − 𝑚𝐻 − 𝐾𝑪) files, known as Clustered files

118

We consider a hybrid strategy for the placement phase, in which PSIs are fully stored in all

shared caches. At the same time, distinct portions of CSIs are placed in different caches based on

the coded caching strategy with uncoded placement, which is introduced in section 5.3.1 of

Chapter 5.

 In contrast with the coded caching strategy with non-uniform demands [6], our model stores

only PSIs instead of all files in the same group. Still, the rest of the library would be accessible at

a low rate to the requesting users by sending refinement segments in our model. The reason is that

delivery of the clustered files has been formulated as distributed source coding with side

information at the decoder.

It is worth recalling that we have partitioned the library files into clusters with the same

aggregate popularity in our scheme. Therefore, different clusters do not have any priority over

each other; Hence, we allocate the same memory size to each CSI and preserve the symmetry

across different groups.

Recall that the parameter 𝑇 defined as integer values 𝑇 ∈ [0, 𝑍]. Then, the available memory

size to store CSIs per shared cache is defined as 𝑀𝑅 ∈ 𝐾𝑪𝑇 𝑍⁄ , i.e., 𝑀𝑅 ∈

{0, 𝐾𝑪 𝑍⁄ , 2𝐾𝑪 𝑍⁄ ,… , 𝐾𝑪}, where 𝐾𝑪 is the number of clusters achieved by the clustering scheme

and 𝑍 is the number of shared caches in the network.

The process of dividing CSIs into chunks and placing chunks in different caches is similar to

what we have discussed in section 5.3.1 of Chapter 5. In this regard, Eqs (5.1) and (5.2) indicate

how CSIs could be divided into chunks, labeled, and then placed in different caches.

This solution requires a maximum memory size of 𝑀 = 𝑚𝐻 + 𝑀𝑅 files per shared cache.

6.4.2. Delivery Phase

During the delivery phase, users reveal their demands to the SBSs. Demands corresponding to

the PSIs will be locally served as these files are fully stored in all SBSs, while the rest of the

demands should be processed by the server.

Let 𝑄𝑧 represents all the distinct requests of cache 𝑌𝑧, ∀𝑧 ∈ 𝑍, to be processed by the server.

Demands received by the server are either associated with representatives or clustered files. In

119

both cases, the relevant representative should also be constructed. Therefore, the server maps all

requested files in a demand vector 𝑄𝑧, to the relevant distinct representatives. We assume the

mapped vector is sorted ascending by the index of the requested representatives and denoted by

𝑦𝑧 ⊆ {𝐾1, … , 𝐾𝑪}, for each demand vector 𝑄𝑧 , ∀𝑧 ∈ 𝑍.

Similar to what we have discussed in section 5.3.2 of Chapter 5, the rest of the demands will be

satisfied in one of the two following ways:

1. Demands corresponding to representatives (CSIs):

▪ When 𝑀𝑅 = 𝐾𝑪: These demands are locally served since such content files have been

fully cached and are accessible to all users.

▪ When 𝑀𝑅 < 𝐾𝑪: Such demands are served by receiving coded multicast messages in

accordance with the cached content. The server sends the multicast coded messages to

𝑇 + 1 caches for each subset of the requested chunks according to Eq (5.3).

In recent years, a few efficient solutions have been proposed to optimize the caching strategy

by focusing on highly popular demands and the coded multicast messages in caching networks

with non-uniform demands. However, it is still a challenge to serve files from the less popular

groups at a low rate; Such requests could cause an unexpected spike in the system load if they are

not considered in the placement phase of the caching strategy. A key part of our problem

formulation involves targeting this group to satisfy such demands at a low rate as follows:

2. Demands corresponding to the clustered files:

Similar to the uniform case, all unique requested clustered files across all SBSs are assigned to

a demand vector 𝑄′ in the server. Such demands will be served by transmitting a refinement

segment in addition to the coded multicast messages required for constructing the CSIs. In this

regard, the server transmits encoded messages 𝑋𝑖 of size 𝐻(𝐹𝑘,𝑖
𝑗𝑧 |�̂�𝑘) ≤ 𝐻(𝐹𝑘,𝑖) to the requesting

user 𝑗 as a refinement segment so that the user, where 𝐻(. |.) describes the conditional entropy,

and �̂�𝑘 is the corresponding representative. As a result, users can reconstruct the clustered file 𝐹𝑘,𝑖

by jointly decoding the received message and the available side information in the cache.

The refinement segments needed for the same file in different SBSs are transmitted just once

due to the broadcast nature of the medium.

120

6.5. Delivery Rate Analysis

Let 𝛽 denote the maximum number of requested representatives in a mapped vector 𝑦𝑧 among

all 𝑍 caches. We assume the server creates 𝛽 sets of demand and then serves the demands from

each set together; In order to create each set, the first element with the lowest index is picked from

each 𝑦𝑧 vector. Since the number of requested representatives is not necessarily the same in all 𝑦𝑧,

the number of elements in each set can be different, reflecting the number of caches with a request

in this set. Then, we denote the number of caches with a request from the server in each set by 휂.

Example 6.1 illustrates this step in a simple way.

Example 6.1: Assume the library content is categorized into 𝐾 = 4 clusters with

representatives 𝑭 = {�̂�1, … , �̂�4} by the PB-CACS scheme in the proposed network with 𝑍 = 3

shared caches. Then, the mapped vector 𝑦𝑧 for each SBS is as follows

𝑦1 = {�̂�1, �̂�2, �̂�3, �̂�4} → 𝑦1 has the maximum number of requested representatives = 4

 𝑦2 = {�̂�1, �̂�3, �̂�4}

 𝑦3 = {�̂�2, �̂�3, �̂�4}

Therefore, 𝛽 = 4 sets and 휂1 = 3, 휂2 = 3, 휂3 = 2, and 휂4 = 1

According to Eq. (5.4), the total delivery rate of this proposed system also includes two

components; 𝑅𝐶𝑀 which is needed for constructing CSIs and the 𝑅𝑅𝑆 which is required for the

refinement segments; hence 𝑅 = 𝑅𝐶𝑀 + 𝑅𝑅𝑆.

In this regard, the delivery rate for transmitting the refinement segments is calculated based on

Eq. (5.7), while the delivery rate for the coded multicast messages is calculated as follows.

121

Consider the case of reaching the clustering solution 𝑪𝑆 with 𝐾𝐶𝑆 clusters during the placement

phase. The coded multicast delivery rate in a cache-aided network with 𝑍 shared caches, each

having a demand vector 𝑄𝑧, ∀𝑧 ∈ 𝑍, and 𝑀𝑅 = 𝐾𝑪𝑆𝑇 𝑍⁄ cached files is given by

𝑅𝐶𝑀(𝑀𝑅) = ∑ Min(
(𝑍
𝑇+1)−(

𝑍−𝜂𝑖
𝑇+1

)

(𝑍𝑇)
 , 휂𝑖(1 −

𝑀𝑅

𝐾
𝐶𝑆

))
𝛽
𝑖=1 ()

where 𝑇 = 𝑀𝑅 𝑍 𝐾𝑪𝑆⁄ , 𝑇 ∈ [0: 𝑍], 𝛽 describes the maximum number of requested

representatives (CSIs) across all mapped vectors, and 휂 describes the number of caches with a

request from the server in each set of 𝑖.

The coded multicast delivery rate 𝑅𝐶𝑀 can be achieved by treating each set 𝑖 ∈ 𝛽 representative

demands independently and then applying the coded delivery scheme proposed in [5, Theorem 1]

for each set of 𝛽 demands.

In this case, for each set of 𝛽, the server sends the XOR of the 𝑇 + 1 requested segments to

𝑇 + 1 caches, as each cache has stored 𝑇 Z⁄ of all segments of each representative. Thus, each SBS

can reconstruct one requested representative after (𝑍
𝑇+1

) coded multicast transmissions, where the

size of the coded messages is 1 (
𝑍
𝑇
)⁄ .

Accordingly, (𝑍
𝑇+1

) transmissions are needed to serve all caches with one set of demands.

However, there might be some cases where all demands of an SBS be associated with only one

cluster or belong to only PSIs. In such cases, the demand vector 𝑄𝑧 and consequently, the mapped

vector 𝑦𝑧 can be empty or have fewer requests than the rest of the caches; hence, for some sets of

𝛽 , they have no demand for the server to meet. In this regard, we assume 휂𝑖 as the maximum

number of caches that contributes to the multicast transmission in set 𝑖 ∈ 𝛽; thus, the number of

unnecessary transmissions is (𝑍−𝜂𝑖
𝑇+1

). As a result, the number of coded transmissions is (𝑍
𝑇+1

) −

(𝑍−𝜂𝑖
𝑇+1

) for each set of 𝛽 requested representatives, where the size of each coded message is 1 (
𝑍
𝑇
)⁄ .

The second term in the min (.) function is derived from the unicast rate and considered for the

cases when multicasting does not improve the rate; therefore, the minimum of the function is

transmitted.

122

If demands involve all clusters in all SBSs, then all CSIs must be constructed in all SBSs; that

is the worst-case demand for the multicast rate in our model and leads to the coded multicast peak

rate. In such a case 𝛽 = 𝐾𝑪𝑆 and 휂 = 𝑍 in all sets; thus, the upper bound (normalized by the file

size 𝐵) will be reached as follows: 𝑇 = 𝑀𝑅 𝑍 𝐾𝑪𝑆⁄

𝑅𝐶𝑀
𝑃 = 𝐾𝑪𝑆

(𝑍
𝑇+1)

(𝑍𝑇)

 = 𝐾𝑪𝑆
𝑍−𝑇

𝑇+1

 = 𝐾𝑪𝑆

𝑍(1−𝑀𝑅 𝐾
𝑪𝑆)⁄

1+Z𝑀𝑅 𝐾
𝑪𝑆⁄

 ()

Therefore, the peak delivery rate of the system is given by:

𝑅𝑃(𝑀𝑅) = 𝐾𝑪𝑆

𝑍(1−𝑀𝑅 𝐾
𝑪𝑆)⁄

1+Z𝑀𝑅 𝐾
𝑪𝑆⁄

+ ∑ ∑ 𝐻(𝐹𝑘,𝑖|�̂�𝑘)
𝑄𝑘

′

𝑖=1

𝐾
𝑪𝑆

𝑘=1 ()

Where 𝑄𝑘
′ ⊆ 𝑚𝑘 is the number of unique requested clustered files of cluster 𝑘 ∈ 𝐾𝑪𝑆 in all

SBSs.

6.6. Results and Discussion

The performance of the proposed clustering solution and the caching strategy is evaluated in

this section. In line with existing studies, we consider the Zipf popularity distribution 𝓆 with

parameter 𝜉 to describe the non-uniform popularity demand given by Eq. (2.2).

The evaluations are performed by considering the BBA algorithm in the AI-optimizer module

with 100 bat populations over 200 iterations. The parameter setting for the BBA solution is

described in Table 3.2.

Figure 6.2 illustrates the trade-off between the achieved number of clusters, the maximum

distance within each cluster, and the similarity among the library content in the proposed PB-

CACS. As can be seen, the achieved number of clusters reduces by increasing the similarity among

sources for a fixed maximum distance value. On the other hand, if the system specification allows

for more distance within each cluster, the number of clusters can be reduced.

123

Figure 6.2: The trade-off between the achieved number of clusters and the similarity among

content files with 𝑚 = 130 in the proposed clustering solution

Figure 6.3: Uniformity of the aggregate popularity in the process of clustering by selecting 𝑚𝐻 =

7 high popular files and 𝐾𝑪 = 10 CSIs in the PB-CACS considering Zipf parameter 𝜉 = 1.4

Figure 6.3 exhibits the process of partitioning library content into a set of highly popular side

information and several clusters with approximately the same aggregate popularity in each cluster.

As can be seen, desired clustering solution has been achieved by selecting 𝑚𝐻 = 7 highly popular

files and partitioning the rest of the library into 10 clusters. In that case, the achieved clusters reach

approximately the same aggregate popularity shown by the red line.

124

Figure 6.4 illustrates the performance of the proposed scheme compared to other studies for a

random demand request, including the famous HPF solution with an uncoded prefetching strategy

in addition to the state-of-the-art coded-uncoded placement strategy for shared caches with

independent sources [11]. We have assumed the same number of highly popular files fully placed

in all shared caches in both our solution and the coded-uncoded strategy to have a fair comparison.

We can see that all three solutions reduce at almost the same rate for the smaller memory size,

while our solution and the coded-uncoded strategy enjoy a higher reduction by increasing the

memory size. Although the coded-uncoded strategy exhibits a great performance, our proposed

strategy yields a higher gain after a certain point due to the careful extraction of content as side

information considering the similarity and popularity of sources for the placement phase.

Additionally, our problem formulation allows us to serve less popular requests at a low rate,

preventing unexpected spikes for such requests in the system load. In fact, with this comparison,

we show how leveraging similarities among sources, besides the popularity of demands, results in

significant reductions in the delivery rates in such networks.

Figure 6.4: Delivery rate comparison in a network with m=100 content files and Z=10 shared

cache each serving 𝑈𝑖=10 users

6.7. Summary

This chapter proposes a content delivery network in a shared cache framework with correlated

content under non-uniform demand popularity distribution, where each cache is responsible for

125

serving a group of users. Our goal is to optimize the content placement in order to reduce the peak

delivery rate of the system. To this end, we formulate the caching problem as a source coding with

side information at the decoder scenario. To address the content placement challenge, we propose

a popularity-based correlation-aware clustering scheme to extract the most efficient side

information for the entire library with the joint consideration of the popularity and similarity

among library files considering a given distortion in the system. Then, a hybrid placement strategy

is used, which consists of storing highly popular content in all caches and caching the cluster

representatives according to the coded caching strategy. The delivery phase includes transmitting

coded multicast messages and refinement segments to construct the representatives and clustered

files, respectively. We have studied the peak delivery rate consisting of the rate for refinement

segments and the coded multicast. Further studies can be conducted on the proposed network under

heterogeneous user preferences in each SBS. Furthermore, adopting coded prefetching can be

considered a future work in networks with correlated sources and shared caches.

126

Chapter 7

Conclusions and Future Research Directions

The exponential growth of content-related data traffic has posed a serious challenge for current

delivery networks, requiring them to come up with innovative solutions beyond traditional CDNs

to combat this challenge. Therefore, investigating novel techniques besides infrastructural

development is crucial to be able to reduce the delivery rate while providing high-quality services

for end users. Content caching has proved to be an efficient technique in reducing the delivery rate

by storing some content close to the end users.

This research considers a shared cache framework architecture, allowing users in SBSs to

access the deployed cache in the cell. As such, we are able to efficiently overcome the imbalanced

network load and high data rate challenge while improving user experience. This setting is highly

127

beneficial in next-generation wireless networks, HetNet environment, or as an upper layer of

hierarchical caching networks in IoT-based applications.

7.1. Conclusions

In this dissertation, we have examined the use of shared caches for users within an SBS in a

network with correlated content under different settings. We have addressed the content placement

and delivery phase in such settings and calculated the rate memory trade-off, the peak rate, and the

expected delivery rates of the system.

This dissertation concludes with the following remarks:

▪ Caching networks are directly affected by cached content; therefore, designing an

efficient placement solution along with a practical delivery strategy is crucial to

developing efficient cache-aided content delivery networks. Meanwhile, exploiting the

similarity among library content plays a crucial role in reaching a more efficient content

placement and delivery strategy in cache-aided networks with correlated content and

shared caches.

▪ We have formulated the caching problem as a source coding with side information at

the decoder; therefore, the first challenge is identifying the most efficient side

information for the entire library. Our solution to this challenge is to develop two

clustering schemes based on AI-based optimization techniques to categorize library

content into clusters with the same maximum distance according to the similarity of the

content and the popularity of demands, considering the distortion constraint of the

system. The representative of the clusters is then selected as the side information for the

placement phase.

▪ In Chapter 3, we comprehensively examined the proposed clustering in a general

framework and investigated its performance considering a wide range of datasets and

different algorithms in the AI-optimizer module. Our model has demonstrated excellent

performance against comparative studies based on extensive simulation results and

statistical analysis. This clustering framework is essential to our research as it facilitated

the development of two new clustering schemes, the CACS and the PB-CACS, as part

128

of the placement phase of the proposed caching networks, taking into account both

similarity and popularity of library sources.

o We have discussed that achieving clusters with approximately the same

maximum distance in both proposed schemes (CACS and PB-CACS) is useful

in introducing the optimum allocation of the delivery rate and maximum

allowable distortion to the files.

o We have observed a trade-off between the achieved number of clusters, the

maximum distance within each cluster, and the similarity among content in the

CACS solution; We have shown that the maximum distance within the clusters

can be reduced by increasing the number of clusters in the clustering solution.

At the same time, increasing the correlation among the library content results in

clustering solutions with fewer groups and lower maximum distance within the

clusters.

o We have also stated that we are interested in clusters with the same aggregate

popularity in the PB-CACS; The reason is that we have found that in this way,

we can easily maintain symmetry among representatives during the placement

phase and create coded multicast messages efficiently.

▪ In Chapter 4, we discussed a delivery network with a single shared cache and

correlated content under lossy caching.

o We have shown that the efficiency of the current shared cache networks with

independent sources does not carry over to the same caching network with

correlated content, which implies why an efficient solution is still required in

such systems.

o We exploited the correlation among library content in the placement phase by

utilizing the proposed CACS. We have also optimized the expected delivery rate

and the users’ expected distortion in the delivery phase by joint consideration of

the rate-distortion function and our proposed caching strategy, which resulted in

a significant reduction in the delivery rate.

o A key challenge in optimizing the expected delivery rate in our model is the limit

for the maximum allowable distortion in the system. We have addressed it based

129

on the Lagrange multipliers technique and reverse water-filling optimization

algorithm. In this regard, we found that the optimal allocation of delivery rate is

achieved by considering equal distortion for all files, which validates our

intention to create clusters with approximately the same maximum distance in

the first place.

o We have discussed the performance of the proposed scheme, and we have

demonstrated that our proposed scheme requires much lower delivery rates for

the same memory size to accomplish the delivery phase. Also, we have

illustrated that the proposed scheme has yielded a significant reduction in the

expected distortion for different delivery rates compared to the comparative

study.

▪ In Chapter 5, we discussed a delivery network with multiple shared caches and

correlated content under uniform popularity demand.

o First, we extracted the side information for this network according to the CACS.

We then carried out the placement phase based on the coded caching strategy to

take advantage of the multicast opportunities and global caching gain. Yet

contrary to the CC scheme, we only store representatives in our model, while

the rest of the library is accessible at a low rate by sending refinement segments

to the requesting users in this model. The delivery phase involves constructing

the clusters’ representatives and clustered files by transmitting coded multicast

messages and refinement segments, respectively.

o By formulating the problem based on the DSC solution and ensuring that content

is carefully extracted for the placement, we have demonstrated a higher gain in

this system. Our study has examined the impact of increasing the number of

users connected to each cache. We have observed that our scheme puts less load

on the system as users increase because we need to transmit only extra

refinement segments after a certain point. While with a pure coded caching

strategy, we must transmit more coded multicast messages as users increase,

which adversely affects delivery rates.

130

o Our analysis on increasing the number of users also implies why a shared cache

framework should be designed differently than a network with an individual

cache for each user. In a network with individual caches, increasing users

contribute to the global memory size and, therefore, the global gain. However, a

shared cache framework requires a different strategy since increasing the

number of users connected to each cache only increases delivery rates as more

demands are placed on the server.

o We have also discussed the optimum library partitioning formulated to minimize

the worst-case delivery rate in the system. We have demonstrated that the worst-

case demand is significantly impacted by the coded multicast messages in our

model; hence, a balance should be maintained between the number of achieved

representatives and the global cache size in the network during the placement

phase in order to decrease the number of multicast messages in the delivery

phase. We have illustrated how the delivery rate decreases to a certain point by

increasing memory size but rises again once it reaches its minimum.

▪ In Chapter 6, we discussed a delivery network with multiple shared caches and

correlated content under non-uniform popularity demand.

o In this system, we extract two sets of side information upon performing the PB-

CACS solution in the placement phase; the popular side information and the

clusters’ side information. As such, we introduce a hybrid placement strategy in

which the popular side information is stored completely in all caches, and the

clusters’ side information is split among different caches. In the delivery phase,

coded multicast messages and refinement segments are transmitted to construct

the requested cluster representatives and clustered files.

o We have shown in this network that our proposed strategy yields a higher gain

after a certain point due to the careful problem formulation and caching strategy

considering both the popularity and similarity of library content in the placement

phase.

o Additionally, our problem formulation allows us to serve less popular requests

at a low rate, preventing unexpected spikes for such requests in the system load.

131

We have illustrated how leveraging similarities among content, in addition to

the popularity of demands, results in significant reductions in the delivery rates

in such networks.

7.2. Future Directions

This research has been conducted on formulating the caching network as a DSC problem and

optimizing the content placement of a shared cache framework to maintain a balanced load while

improving the quality of experience for users. There are promising research directions arising from

this framework, which can be investigated further as outlined below:

▪ Investigating the studied framework under non-ideal channel conditions: It is possible

to extend the proposed framework with shared caches to networks with non-ideal

conditions where the broadcast link is not error-free. The challenge with noisy channels

is not only determining what should be cached during the placement phase or what

should be transmitted in the delivery phase but also addressing how to transmit the

required content is very important. In such a scenario, a joint-source channel coding

technique can be used as an efficient solution to reduce the delivery rate and the

expected distortion in receivers.

▪ Investigating the studied framework under heterogeneous cache size: another line of

research can focus on having shared caches of different sizes in the network, posing

exciting challenges to the coding design. In a conventional coded caching scheme with

homogenous cache sizes, the placement procedure results in caching segments of equal

sizes. Therefore, a maximal clique of different segments is formed that can be utilized

to create efficient coding opportunities in the delivery phase. However, a network with

heterogeneous cache sizes would prevent us from maintaining symmetry and diversity

as described in the conventional coded caching strategy since the size of the transmitted

segment would also be heterogeneous. One possible solution is to perform zero-padding

so that all segments can be aligned for coding. Grouping caches with approximately the

same size could also be considered a potential solution to this challenge which should

be investigated considering the system model and constraints.

132

▪ Investigating a case for a network with a dense deployment of SBS: Having a dense

deployment of SBS increases the possibility of some users accessing more than one

cache simultaneously. In such a scenario, the placement strategy should be designed so

that such users can take advantage of diverse cache content simultaneously to increase

the global caching gain of the network.

7.3. Publications

The following is the list of publications throughout this research.

[126] B. Merikhi, M. Soleymani, “Cache-Aided Networks with Shared Caches and Correlated

Content under Non-Uniform Demands,” 2023 20th IEEE Consumer Communications

& Networking Conference (CCNC), Jan. 8-11, 2023.

[127] B. Merikhi, M. Soleymani, “Cache-Aided Delivery Network in a Shared Cache

Framework with Correlated Sources,” in Proceedings of the 18th ACM International

Symposium on QoS and Security for Wireless and Mobile Networks (ACMQ2SWinet),

New York, NY, USA, Oct. 2022, pp. 121–129.

[128] B. Merikhi and M. R. Soleymani, “Automatic Data Clustering Framework Using

Nature-Inspired Binary Optimization Algorithms,” IEEE Access, vol. 9, pp. 93703–

93722, 2021.

[129] B. Merikhi, S. M. Mirjalili, M. Zoghi, and S. Mirjalili, “Radiation pattern design of

photonic crystal LED optimized by using multi-objective grey wolf optimizer,”

Photonic Network Communications, vol. 38, no. 1, pp. 167–176, Aug. 2019.

133

References

[1] “Cisco Annual Internet Report - Cisco Annual Internet Report (2018–2023) White Paper,” Cisco.
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed
Nov. 04, 2021).

[2] “Global IP Networks Focus on Sharpening Their Edge,” Cisco Blogs, Dec. 04, 2018. https://blogs.cisco.com/sp/global-ip-networks-focus-on-
sharpening-their-edge (accessed Nov. 04, 2021).

[3] E. Ghabashneh and S. Rao, “Exploring the interplay between CDN caching and video streaming performance,” in IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, Jul. 2020, pp. 516–525. doi: 10.1109/INFOCOM41043.2020.9155338.

[4] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The Role of Caching in Future Communication Systems and Networks,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1111–1125, Jun. 2018, doi: 10.1109/JSAC.2018.2844939.

[5] M. A. Maddah-Ali and U. Niesen, “Fundamental Limits of Caching,” IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, May 2014, doi: 10.1109/TIT.2014.2306938.

[6] U. Niesen and M. A. Maddah-Ali, “Coded Caching With Nonuniform Demands,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146–1158, Feb. 2017, doi: 10.1109/TIT.2016.2639522.

[7] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-Optimal Rate of Caching and Coded Multicasting With Random Demands,” IEEE
Transactions on Information Theory, vol. 63, no. 6, pp. 3923–3949, Jun. 2017, doi: 10.1109/TIT.2017.2695611.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The Exact Rate-Memory Trade-off for Caching With Uncoded Prefetching,” IEEE
Transactions on Information Theory, vol. 64, no. 2, pp. 1281–1296, Feb. 2018, doi: 10.1109/TIT.2017.2785237.

[9] M. A. Maddah-Ali and U. Niesen, “Decentralized Coded Caching Attains Order-Optimal Memory-Rate Tradeoff,” IEEE/ACM Transactions
on Networking, vol. 23, no. 4, pp. 1029–1040, Aug. 2015, doi: 10.1109/TNET.2014.2317316.

[10] J. Zhang, X. Lin, and X. Wang, “Coded Caching Under Arbitrary Popularity Distributions,” IEEE Transactions on Information Theory, vol.
64, no. 1, pp. 349–366, Jan. 2018, doi: 10.1109/TIT.2017.2768517.

[11] A. G. Sheshjavani, A. Khonsari, S. P. Shariatpanahi, M. Moradian, and A. Dadlani, “Coded Caching Under Non-Uniform Content Popularity
Distributions with Multiple Requests,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC), May 2020, pp. 1–6.
doi: 10.1109/WCNC45663.2020.9120820.

[12] A. Ghaffari Sheshjavani, A. Khonsari, S. P. Shariatpanahi, and M. Moradian, “Content caching for shared medium networks under
heterogeneous users’ behaviors,” Computer Networks, vol. 199, p. 108454, Nov. 2021, doi: 10.1016/j.comnet.2021.108454.

[13] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded Placement for Systems with Shared Caches,” in ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), May 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761409.

[14] E. Parrinello, A. Ünsal, and P. Elia, “Coded Caching with Shared Caches: Fundamental Limits with Uncoded Prefetching.” arXiv, Oct. 16,
2018. doi: 10.48550/arXiv.1809.09422.

[15] J. Hachem, N. Karamchandani, and S. Diggavi, “Content caching and delivery over heterogeneous wireless networks,” in 2015 IEEE
Conference on Computer Communications (INFOCOM), Apr. 2015, pp. 756–764. doi: 10.1109/INFOCOM.2015.7218445.

[16] R. W. L. Coutinho and A. Boukerche, “Modeling and Analysis of a Shared Edge Caching System for Connected Cars and Industrial IoT-
Based Applications,” in IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2003-2012, March 2020, doi:
10.1109/TII.2019.2938529.

[17] P. Hassanzadeh, A. Tulino, J. Llorca, and E. Erkip, “Cache-aided coded multicast for correlated sources,” in 2016 9th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), Sep. 2016, pp. 360–364. doi: 10.1109/ISTC.2016.7593137.

[18] Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “Rate-Memory Trade-Off for Caching and Delivery of Correlated Sources,” IEEE
Transactions on Information Theory, vol. 66, no. 4, pp. 2219–2251, Apr. 2020, doi: 10.1109/TIT.2020.2969918.

[19] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “On Coded Caching with Correlated Files,” in 2019 IEEE International Symposium on Information
Theory (ISIT), Jul. 2019, pp. 692–696. doi: 10.1109/ISIT.2019.8849314.

[20] T. T. Nu, T. Fujihashi, and T. Watanabe, “Content-aware Efficient Video Uploading for Crowdsourced Multi-view Video Streaming,” in
2018 International Conference on Computing, Networking and Communications (ICNC), Mar. 2018, pp. 98–104. doi:
10.1109/ICCNC.2018.8390288.

[21] S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms for Content Distribution Networks,” in 2010 Proceedings IEEE
INFOCOM, Mar. 2010, pp. 1–9. doi: 10.1109/INFCOM.2010.5461964.

[22] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index Coding With Side Information,” IEEE Transactions on Information Theory, vol. 57,
no. 3, pp. 1479–1494, Mar. 2011, doi: 10.1109/TIT.2010.2103753.

[23] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide a scalable and interactive video-on-demand service,” IEEE
Journal on Selected Areas in Communications, vol. 14, no. 6, pp. 1110–1122, Aug. 1996, doi: 10.1109/49.508282.

[24] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement Algorithms for Hierarchical Cooperative Caching,” Journal of Algorithms,
vol. 38, no. 1, pp. 260–302, Jan. 2001, doi: 10.1006/jagm.2000.1129.

[25] I. Baev, R. Rajaraman, and C. Swamy, “Approximation Algorithms for Data Placement Problems,” SIAM J. Comput., vol. 38, no. 4, pp.
1411–1429, Aug. 2008, doi: 10.1137/080715421.

[26] M. M. Amiri, Q. Yang, and D. Gündüz, “Coded caching for a large number of users,” in 2016 IEEE Information Theory Workshop (ITW),
Sep. 2016, pp. 171–175. doi: 10.1109/ITW.2016.7606818.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://blogs.cisco.com/sp/global-ip-networks-focus-on-sharpening-their-edge
https://blogs.cisco.com/sp/global-ip-networks-focus-on-sharpening-their-edge
https://doi.org/10.1109/INFOCOM41043.2020.9155338
https://doi.org/10.1109/JSAC.2018.2844939
https://doi.org/10.1109/TIT.2014.2306938
https://doi.org/10.1109/TIT.2016.2639522
https://doi.org/10.1109/TIT.2017.2695611
https://doi.org/10.1109/TIT.2017.2785237
https://doi.org/10.1109/TNET.2014.2317316
https://doi.org/10.1109/WCNC45663.2020.9120820
https://doi.org/10.1016/j.comnet.2021.108454
https://doi.org/10.1109/ICC.2019.8761409
https://doi.org/10.48550/arXiv.1809.09422
https://doi.org/10.1109/INFOCOM.2015.7218445
https://doi.org/10.1109/ISTC.2016.7593137
https://doi.org/10.1109/TIT.2020.2969918
https://doi.org/10.1109/ISIT.2019.8849314
https://doi.org/10.1109/ICCNC.2018.8390288
https://doi.org/10.1109/INFCOM.2010.5461964
https://doi.org/10.1109/TIT.2010.2103753
https://doi.org/10.1109/49.508282
https://doi.org/10.1006/jagm.2000.1129
https://doi.org/10.1137/080715421
https://doi.org/10.1109/ITW.2016.7606818

134

[27] C. Zhang and B. Peleato, “On the Average Rate for Coded Caching with Heterogeneous User Profiles,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), Jun. 2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9148779.

[28] S. Wang and B. Peleato, “Coded Caching with Heterogeneous User Profiles,” in 2019 IEEE International Symposium on Information Theory
(ISIT), Jul. 2019, pp. 2619–2623. doi: 10.1109/ISIT.2019.8849537.

[29] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-Theoretic Caching: Sequential Coding for Computing,” IEEE Transactions on
Information Theory, vol. 62, no. 11, pp. 6393–6406, Nov. 2016, doi: 10.1109/TIT.2016.2604851.

[30] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching,” in 2015 IEEE International Symposium on Information Theory
(ISIT), Jun. 2015, pp. 1776–1780. doi: 10.1109/ISIT.2015.7282761.

[31] P. Hassanzadeh, A. Tulino, J. Llorca, and E. Erkip, “Correlation-aware distributed caching and coded delivery,” in 2016 IEEE Information
Theory Workshop (ITW), Sep. 2016, pp. 166–170. doi: 10.1109/ITW.2016.7606817.

[32] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “Broadcast caching networks with two receivers and multiple correlated sources,” in
2017 51st Asilomar Conference on Signals, Systems, and Computers, Oct. 2017, pp. 1449–1454. doi: 10.1109/ACSSC.2017.8335595.

[33] Q. Yang, P. Hassanzadeh, D. Gündüz, and E. Erkip, “Centralized Caching and Delivery of Correlated Contents Over Gaussian Broadcast
Channels,” IEEE Transactions on Communications, vol. 68, no. 1, pp. 122–136, Jan. 2020, doi: 10.1109/TCOMM.2019.2950930.

[34] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “On Coding for Cache-Aided Delivery of Dynamic Correlated Content,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 8, pp. 1666–1681, Aug. 2018, doi: 10.1109/JSAC.2018.2844579.

[35] R. Timo, S. Saeedi Bidokhti, M. Wigger, and B. C. Geiger, “A Rate-Distortion Approach to Caching,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1957–1976, Mar. 2018, doi: 10.1109/TIT.2017.2768058.

[36] Sharma and J. K. Chhabra, “Sustainable automatic data clustering using hybrid PSO algorithm with mutation,” Sustainable Computing:
Informatics and Systems, vol. 23, pp. 144–157, 2019, doi: https://doi.org/10.1016/j.suscom.2019.07.009.

[37] Cao, L. Liu, Y. Cheng, and X. Shen, “Towards Energy-Efficient Wireless Networking in the Big Data Era: A Survey,” IEEE Commun. Surv.
Tutorials, vol. 20, no. 1, pp. 303–332, 2018, doi: 10.1109/COMST.2017.2771534.

[38] C. Aggarwal and C. K. Reddy, “Data clustering : algorithms and applications”. CRC Press, 2015.

[39] S. Wang, Y. Fang, and S. Cheng, “Distributed Source Coding: Theory and Practice”. John Wiley & Sons, 2017.

[40] Z. Xiong, A. D. Liveris, and S. Cheng, “Distributed source coding for sensor networks,” IEEE Signal Processing Magazine, vol. 21, no. 5,
pp. 80–94, Sep. 2004, doi: 10.1109/MSP.2004.1328091.

[41] K. S. Al-Sultan, “A tabu search approach to the clustering problem,” Pattern recognition, vol. 28, no. 9, pp. 1443–1451, 1995.

[42] S. Z. Selim and K. Alsultan, “A simulated annealing algorithm for the clustering problem,” Pattern recognition, vol. 24, no. 10, pp. 1003–
1008, 1991.

[43] R. Poll, J. Kennedy, and T. Blackwell, “Particle swarm optimization: an overview,” Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[44] D. W. Van der Merwe and A. P. Engelbrecht, “Data clustering using particle swarm optimization,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC’03., 2003, vol. 1, pp. 215–220.

[45] A. Abraham, S. Das, and S. Roy, “Swarm intelligence algorithms for data clustering,” in Soft computing for knowledge discovery and data
mining, Springer, 2008, pp. 279–313.

[46] J. Handl and J. Knowles, “An Evolutionary Approach to Multiobjective Clustering,” IEEE Transactions on Evolutionary Computation, vol.
11, no. 1, pp. 56–76, Feb. 2007, doi: 10.1109/TEVC.2006.877146.

[47] E. Falkenauer, “Genetic algorithms and grouping problems.” John Wiley & Sons, Inc., 1998.

[48] M. B. Agbaje, A. E. Ezugwu, and R. Els, “Automatic data clustering using hybrid firefly particle swarm optimization algorithm,” IEEE
Access, vol. 7, pp. 184963–184984, 2019.

[49] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-1, no. 2, pp. 224–227, Apr. 1979, doi: 10.1109/TPAMI.1979.4766909.

[50] C.-H. Chou, M.-C. Su, and E. Lai, “A new cluster validity measure and its application to image compression,” Pattern Anal Applic, vol. 7,
no. 2, pp. 205–220, Jul. 2004, doi: 10.1007/s10044-004-0218-1

[51] R. Kuo and F. E. Zulvia, “Automatic clustering using an improved particle swarm optimization,” J. Ind. Intell. Inf., vol. 1, no. 1, pp. 46_51,
2013.

[52] A. Abraham, S. Das, and A. Konar, “Kernel based automatic clustering using modified particle swarm optimization algorithm,” in
Proceedings of the 9th annual conference on Genetic and evolutionary computation, New York, NY, USA, Jul. 2007, pp. 2–9, doi:
10.1145/1276958.1276960.

[53] S. J. Nanda and G. Panda, “Automatic clustering algorithm based on multi-objective Immunized PSO to classify actions of 3D human models,”
Engineering Applications of Artificial Intelligence, vol. 26, no. 5, pp. 1429–1441, May 2013, doi: 10.1016/j.engappai.2012.11.008.

[54] Y. Liu, X. Wu, and Y. Shen, “Automatic clustering using genetic algorithms,” Applied Mathematics and Computation, vol. 218, no. 4, pp.
1267–1279, Oct. 2011, doi: 10.1016/j.amc.2011.06.007.

[55] H. He and Y. Tan, “A two-stage genetic algorithm for automatic clustering,” Neurocomputing, vol. 81, pp. 49–59, Apr. 2012, doi:
10.1016/j.neucom.2011.11.001.

[56] S. Das, A. Abraham, and A. Konar, “Automatic clustering using an improved differential evolution algorithm,” IEEE Transactions on systems,
man, and cybernetics-Part A: Systems and Humans, vol. 38, no. 1, pp. 218–237, 2007.

[57] I. Saha, U. Maulik, and S. Bandyopadhyay, “A new Differential Evolution based Fuzzy Clustering for Automatic Cluster Evolution,” in 2009
IEEE International Advance Computing Conference, Mar. 2009, pp. 706–711, doi: 10.1109/IADCC.2009.4809099.

[58] W. Lee and S. Chen, “Automatic Clustering with Differential Evolution Using Cluster Number Oscillation Method,” in 2010 2nd International
Workshop on Intelligent Systems and Applications, May 2010, pp. 1–4, doi: 10.1109/IWISA.2010.5473289.

https://doi.org/10.1109/ICC40277.2020.9148779
https://doi.org/10.1109/ISIT.2019.8849537
https://doi.org/10.1109/TIT.2016.2604851
https://doi.org/10.1109/ISIT.2015.7282761
https://doi.org/10.1109/ITW.2016.7606817
https://doi.org/10.1109/ACSSC.2017.8335595
https://doi.org/10.1109/TCOMM.2019.2950930
https://doi.org/10.1109/JSAC.2018.2844579
https://doi.org/10.1109/TIT.2017.2768058
https://doi.org/10.1016/j.suscom.2019.07.009
https://doi.org/10.1109/COMST.2017.2771534
https://doi.org/10.1109/MSP.2004.1328091
https://doi.org/10.1109/TEVC.2006.877146
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1007/s10044-004-0218-1
https://doi.org/10.1145/1276958.1276960
https://doi.org/10.1016/j.engappai.2012.11.008
https://doi.org/10.1016/j.amc.2011.06.007
https://doi.org/10.1016/j.neucom.2011.11.001
https://doi.org/10.1109/IADCC.2009.4809099
https://doi.org/10.1109/IWISA.2010.5473289

135

[59] R. J. Kuo, Y. D. Huang, C.-C. Lin, Y.-H. Wu, and F. E. Zulvia, “Automatic kernel clustering with bee colony optimization algorithm,” Inf.
Sci., vol. 283, pp. 107_122, Nov. 2014.

[60] R. J. Kuo and F. E. Zulvia, “Automatic clustering using an improved artificial bee colony optimization for customer segmentation,” Knowl
Inf Syst, vol. 57, no. 2, pp. 331–357, Nov. 2018, doi: 10.1007/s10115-018-1162-5.

[61] V. Kumar, J. K. Chhabra, and D. Kumar, “Automatic Data Clustering Using Parameter Adaptive Harmony Search Algorithm and Its
Application to Image Segmentation,” Journal of Intelligent Systems, vol. 25, no. 4, pp. 595–610, Oct. 2016, doi: 10.1515/jisys-2015-0004.

[62] A. Chowdhury, S. Bose, and S. Das, “Automatic Clustering Based on Invasive Weed Optimization Algorithm,” in Swarm, Evolutionary, and
Memetic Computing, Berlin, Heidelberg, 2011, pp. 105–112, doi: 10.1007/978-3-642-27242-4_13.

[63] R. Qaddoura, H. Faris, I. Aljarah, and P. A. Castillo, “EvoCluster: An Open-Source Nature-Inspired Optimization Clustering Framework in
Python,” in Applications of Evolutionary Computation, Cham, 2020, pp. 20–36, doi: 10.1007/978-3-030-43722-0_2.

[64] S. J. Nanda and G. Panda, “A survey on nature inspired metaheuristic algorithms for partitional clustering,” Swarm and Evolutionary
computation, vol. 16, pp. 1–18, 2014.

[65] S. Das, A. Abraham, and A. Konar, “Metaheuristic clustering,” vol. 178. Springer, 2009.

[66] A. José-García and W. Gómez-Flores, “Automatic clustering using nature-inspired metaheuristics: A survey,” Applied Soft Computing, vol.
41, pp. 192–213, Apr. 2016, doi: 10.1016/j.asoc.2015.12.001.

[67] C.-W. Tsai, S.-J. Liu, and Y.-C. Wang, “A parallel metaheuristic data clustering framework for cloud,” Journal of Parallel and Distributed
Computing, vol. 116, pp. 39–49, Jun. 2018, doi: 10.1016/j.jpdc.2017.10.020.

[68] A. E. Ezugwu, “Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study,” SN Applied Sciences,
vol. 2, no. 2, p. 273, 2020.

[69] P. Gançarski, B. Crémilleux, G. Forestier, and T. Lampert, “Constrained Clustering: Current and New Trends,” in A Guided Tour of Artificial
Intelligence Research, Springer, 2020, pp. 447–484.

[70] D. Dinler and M. K. Tural, “A survey of constrained clustering,” in Unsupervised learning algorithms, Springer, 2016, pp. 207–235.

[71] Z. Drezner, “The p-centre problem—heuristic and optimal algorithms,” Journal of the Operational Research Society, vol. 35, no. 8, pp. 741–
748, 1984.

[72] I. Davidson and S. S. Ravi, “Agglomerative hierarchical clustering with constraints: Theoretical and empirical results,” in European
Conference on Principles of Data Mining and Knowledge Discovery, 2005, pp. 59–70.

[73] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh, “Optimal Energy Aware Clustering in Sensor Networks,” Sensors, vol. 2, no. 7, pp.
258–269, Jul. 2002, doi: 10.3390/s20700258.

[74] L. Li, G. Zhao, and R. S. Blum, “A Survey of Caching Techniques in Cellular Networks: Research Issues and Challenges in Content Placement
and Delivery Strategies,” IEEE Communications Surveys Tutorials, vol. 20, no. 3, pp. 1710–1732, 2018, doi: 10.1109/COMST.2018.2820021.

[75] N. Dimokas, D. Katsaros, and Y. Manolopoulos, “Cooperative Caching in Wireless Multimedia Sensor Networks,” Mobile Netw Appl, vol.
13, no. 3, pp. 337–356, Aug. 2008, doi: 10.1007/s11036-008-0063-3.

[76] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating content management techniques for Web proxy caches,”
SIGMETRICS Perform. Eval. Rev., vol. 27, no. 4, pp. 3–11, Mar. 2000, doi: 10.1145/346000.346003.

[77] K. Wan, D. Tuninetti, and P. Piantanida, “A novel index coding scheme and its application to coded caching,” in 2017 Information Theory
and Applications Workshop (ITA), Feb. 2017, pp. 1–6. doi: 10.1109/ITA.2017.8023478. Index coding with side information

[78] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, Jul. 2000, doi: 10.1109/18.850663.

[79] M. Effros, S. El Rouayheb, and M. Langberg, “An Equivalence Between Network Coding and Index Coding,” IEEE Transactions on
Information Theory, vol. 61, no. 5, pp. 2478–2487, May 2015, doi: 10.1109/TIT.2015.2414926.

[80] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching
clients,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2825–2830, Jun. 2006, doi: 10.1109/TIT.2006.874540.

[81] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, 2012.

[82] S. Wang, Y. Fang, and S. Cheng, Distributed Source Coding: Theory and Practice. John Wiley & Sons, 2017.

[83] S. Mirjalili, S. M. Mirjalili, and X.-S. Yang, “Binary bat algorithm,” Neural Comput & Applic, vol. 25, no. 3–4, pp. 663–681, Sep. 2014, doi:
10.1007/s00521-013-1525-5.

[84] S. Mirjalili and A. Lewis, “S-shaped versus V-shaped transfer functions for binary particle swarm optimization,” Swarm and Evolutionary
Computation, vol. 9, pp. 1–14, 2013.

[85] S. Mirjalili, “Genetic algorithm,” in Evolutionary algorithms and neural networks, Springer, 2019, pp. 43–55.

[86] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective
problems,” Neural Comput & Applic, vol. 27, no. 4, pp. 1053–1073, May 2016, doi: 10.1007/s00521-015-1920-1.

[87] X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), J.
R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, Eds. Berlin, Heidelberg: Springer, 2010, pp. 65–74. doi: 10.1007/978-3-
642-12538-6_6.

[88] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” in Computational Cybernetics and Simulation
1997 IEEE International Conference on Systems, Man, and Cybernetics, Oct. 1997, vol. 5, pp. 4104–4108 vol.5. doi:
10.1109/ICSMC.1997.637339.

[89] G.-C. Luh, C.-Y. Lin, and Y.-S. Lin, “A binary particle swarm optimization for continuum structural topology optimization,” Applied Soft
Computing, vol. 11, no. 2, pp. 2833–2844, Mar. 2011, doi: 10.1016/j.asoc.2010.11.013.

[90] P.-Y. Yin, “A discrete particle swarm algorithm for optimal polygonal approximation of digital curves,” Journal of Visual Communication
and Image Representation, vol. 15, no. 2, pp. 241–260, Jun. 2004, doi: 10.1016/j.jvcir.2003.12.001.

https://doi.org/10.1007/s10115-018-1162-5
https://doi.org/10.1515/jisys-2015-0004
https://doi.org/10.1007/978-3-642-27242-4_13
https://doi.org/10.1007/978-3-030-43722-0_2
https://doi.org/10.1016/j.asoc.2015.12.001
https://doi.org/10.1016/j.jpdc.2017.10.020
https://doi.org/10.3390/s20700258
https://doi.org/10.1109/COMST.2018.2820021
https://doi.org/10.1007/s11036-008-0063-3
https://doi.org/10.1145/346000.346003
https://doi.org/10.1109/ITA.2017.8023478
https://doi.org/10.1109/18.850663
https://doi.org/10.1109/TIT.2015.2414926
https://doi.org/10.1109/TIT.2006.874540
https://doi.org/10.1007/s00521-013-1525-5
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1109/ICSMC.1997.637339
https://doi.org/10.1016/j.asoc.2010.11.013
https://doi.org/10.1016/j.jvcir.2003.12.001

136

[91] Q. Shen, J.-H. Jiang, C.-X. Jiao, G. Shen, and R.-Q. Yu, “Modified particle swarm optimization algorithm for variable selection in MLR and
PLS modeling: QSAR studies of antagonism of angiotensin II antagonists,” European Journal of Pharmaceutical Sciences, vol. 22, no. 2, pp.
145–152, Jun. 2004, doi: 10.1016/j.ejps.2004.03.002.

[92] “The Binary Genetic Algorithm,” in Practical Genetic Algorithms, John Wiley & Sons, Ltd, 2003, pp. 27–50. doi: 10.1002/0471671746.ch2.
[93] Mishra, “Binary Genetic Algorithm,” Medium, Feb. 26, 2021. https://prateek-mishra.medium.com/binary-genetic-algorithm-19936e755271

(accessed Sep. 06, 2022).
[94] R. Xu and D. WunschII, “Survey of Clustering Algorithms,” IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005, doi:

10.1109/TNN.2005.845141.

[95] G. Gan, C. Ma, and J. Wu, “Data clustering: theory, algorithms, and applications.” SIAM, Society for Industrial and Applied Mathematics,
2007.

[96] C. K. Reddy and B. Vinzamuri, "A survey of partitional and hierarchical clustering algorithms", Proc. Data Clustering Algorithms Appl., pp.
87-110, 2013.

[97] C. Boutsidis, P. Drineas, and M. W. Mahoney, “Unsupervised feature selection for the k-means clustering problem,” in Advances in Neural
Information Processing Systems, 2009, pp. 153–161.

[98] C. Ding and X. He, “Cluster merging and splitting in hierarchical clustering algorithms,” in 2002 IEEE International Conference on Data
Mining, 2002. Proceedings., 2002, pp. 139–146.

[99] Z. Huang and M. K. Ng, “A fuzzy k-modes algorithm for clustering categorical data,” IEEE transactions on Fuzzy Systems, vol. 7, no. 4, pp.
446–452, 1999.

[100] N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-means model,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 370–
379, Aug. 1995, doi: 10.1109/91.413225.

[101] K. Bache and M. Lichman. (2013). UCI Machine Learning Repository. University of California, School of Information and Computer
Science, Irvine, CA, USA. [Online]. Available: http://archive.ics.uci.edu/ml/

[102] J. Alcalá-Fdez et al., “Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework.,”
Journal of Multiple-Valued Logic & Soft Computing, vol. 17, 2011.

[103] D. Arthur and S. Vassilvitskii, "K-means+ +: The advantages of careful seeding", pp. 1027-1035, Jan. 2007.

[104] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in
Kdd, 1996, vol. 96, no. 34, pp. 226–231.

[105] J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques - 3rd Edition.” The Morgan Kaufmann Series in Data Management
Systems, 2011.

[106] R. Qaddoura, H. Faris, and I. Aljarah, “An efficient clustering algorithm based on the k-nearest neighbors with an indexing ratio,” Int. J.
Mach. Learn. & Cyber., vol. 11, no. 3, pp. 675–714, Mar. 2020, doi: 10.1007/s13042-019-01027-z.

[107] S. Bandyopadhyay and U. Maulik, “Genetic clustering for automatic evolution of clusters and application to image classification,” Pattern
recognition, vol. 35, no. 6, pp. 1197–1208, 2002.

[108] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, “Dynamic clustering using particle swarm optimization with application in image
segmentation,” Pattern Anal Applic, vol. 8, no. 4, p. 332, Nov. 2005, doi: 10.1007/s10044-005-0015-5.

[109] E. Martin, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise.,” in
Kdd, 1996, vol. 96, no. 34, pp. 226–231.

[110] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN,”
ACM Trans. Database Syst., vol. 42, no. 3, p. 19:1-19:21, Jul. 2017, doi: 10.1145/3068335.

[111] M. Friedman, “A Comparison of Alternative Tests of Significance for the Problem of m Rankings,” The Annals of Mathematical Statistics,
vol. 11, no. 1, pp. 86–92, 1940.

[112] M. Friedman, “The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance,” Journal of the American
Statistical Association, vol. 32, no. 200, pp. 675–701, 1937.

[113] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of non-parametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[114] S. García, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization,” J Heuristics, vol. 15, no. 6, p. 617, 2008.

[115] S. J. Nanda, R. Raman, S. Vijay, and A. Bhardwaj, “A new density based clustering algorithm for Binary data sets,” in 2014 International
Conference on High Performance Computing and Applications (ICHPCA), 2014, pp. 1–6.

[116] C. Ahn, F. Hu, and W. R. Schucany, “Sample Size Calculation for Clustered Binary Data with Sign Tests Using Different Weighting
Schemes,” Statistics in Biopharmaceutical Research, vol. 3, no. 1, pp. 65–72, Feb. 2011.

[117] V. Verma, and R. K. Aggarwal, “A New Similarity Measure Based on Simple Matching Coefficient for Improving the Accuracy of
Collaborative Recommendations,” IJITCS, vol. 11, no. 6, pp. 37–49, Jun. 2019, doi: 10.5815/ijitcs.2019.06.05.

[118] E. W. Weisstein, “Stirling Number of the Second Kind.” https://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html (accessed
Oct. 07, 2021).

[119] Q. Yang and D. Gündüz, “Centralized coded caching for heterogeneous lossy requests,” in 2016 IEEE International Symposium on
Information Theory (ISIT), Jul. 2016, pp. 405–409. doi: 10.1109/ISIT.2016.7541330.

[120] G. J. O. ’t Veld and M. Gastpar, “Caching (Bivariate) Gaussians,” IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6150–6168,
Oct. 2020, doi: 10.1109/TIT.2020.3001176.

[121] A. Abrardo, G. Ferrari, M. Martalò, M. Franceschini, and R. Raheli, “Orthogonal Multiple Access With Correlated Sources: Achievable
Region and Pragmatic Schemes,” IEEE Transactions on Communications, vol. 62, no. 7, pp. 2531–2543, Jul. 2014, doi:
10.1109/TCOMM.2014.2325039.

https://doi.org/10.1016/j.ejps.2004.03.002
https://doi.org/10.1002/0471671746.ch2
https://prateek-mishra.medium.com/binary-genetic-algorithm-19936e755271
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/91.413225
http://archive.ics.uci.edu/ml/
https://doi.org/10.1007/s13042-019-01027-z
https://doi.org/10.1007/s10044-005-0015-5
https://doi.org/10.1145/3068335
https://doi.org/10.5815/ijitcs.2019.06.05
https://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html
https://doi.org/10.1109/ISIT.2016.7541330
https://doi.org/10.1109/TIT.2020.3001176
https://doi.org/10.1109/TCOMM.2014.2325039

137

[122] X. Zhou, X. He, M. Juntti, and T. Matsumoto, “Outage probability of correlated binary source transmission over fading multiple access
channels,” in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Jun. 2015, pp.
96–100. doi: 10.1109/SPAWC.2015.7227007.

[123] G. J. Op ’t Veld and M. C. Gastpar, “Caching Gaussians: Minimizing total correlation on the Gray-Wyner network,” in 2016 Annual
Conference on Information Science and Systems (CISS), Mar. 2016, pp. 478–483. doi: 10.1109/CISS.2016.7460549.

[124] Y. Deng and M. Dong, “Fundamental Structure of Optimal Cache Placement for Coded Caching With Nonuniform Demands,” IEEE
Transactions on Information Theory, vol. 68, no. 10, pp. 6528–6547, Oct. 2022, doi: 10.1109/TIT.2022.3179266.

[125] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded Caching for Multi-level Popularity and Access,” IEEE Transactions on
Information Theory, vol. 63, no. 5, pp. 3108–3141, May 2017, doi: 10.1109/TIT.2017.2664817.

[126] B. Merikhi, M. Soleymani, “Cache-Aided Networks with Shared Caches and Correlated Content under Non-Uniform Demands,” 2023 20th
IEEE Consumer Communications & Networking Conference (CCNC), Jan. 8-11, 2023.

[127] B. Merikhi and M. R. Soleymani, “Cache-Aided Delivery Network in a Shared Cache Framework with Correlated Sources,” in Proceedings
of the 18th ACM International Symposium on QoS and Security for Wireless and Mobile Networks on 18th ACM International Symposium
on QoS and Security for Wireless and Mobile Networks, New York, NY, USA, Oct. 2022, pp. 121–129. doi: 10.1145/3551661.3561372.

[128] B. Merikhi and M. R. Soleymani, “Automatic Data Clustering Framework Using Nature-Inspired Binary Optimization Algorithms,” IEEE
Access, vol. 9, pp. 93703–93722, 2021, doi: 10.1109/ACCESS.2021.3091397.

[129] B. Merikhi, S. M. Mirjalili, M. Zoghi, S. Z. Mirjalili, and S. Mirjalili, “Radiation pattern design of photonic crystal LED optimized by using
multi-objective grey wolf optimizer,” Photon Netw Commun, vol. 38, no. 1, pp. 167–176, Aug. 2019, doi: 10.1007/s11107-019-00843-1.

https://doi.org/10.1109/SPAWC.2015.7227007
https://doi.org/10.1109/CISS.2016.7460549
https://doi.org/10.1109/TIT.2022.3179266
https://doi.org/10.1109/TIT.2017.2664817

