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Abstract 

Cache-Aided Delivery Networks with Correlated Content in a Shared Cache Framework 

 

Behnaz Merikhi, Ph.D. 

Concordia University, 2022 

 

Internet traffic is growing exponentially due to the penetration of powerful internet-connected 

devices and cutting-edge technologies. Additionally, the rise in internet usage has coincided with 

a shift in the nature of data traffic from voice-based to content-based usage, putting significant 

stress on delivery networks. Despite the infrastructural advancements in communication networks 

over the past few years, content delivery networks (CDNs) still face challenges in keeping up with 

the high delivery data rates and suffer from the imbalanced network load between off-peak hours 

and peak hours.  

In this regard, content caching has emerged as an efficient technique to combat the high delivery 

date rates and maintain a balanced network load while improving the quality of services (QoS) by 

storing some popular content close to the end users. Caching networks operate in two phases; the 

placement phase during off-peak hours before users reveal their demands and the delivery phase, 

which is accomplished when users’ demands are revealed to the server during peak hours. As the 

server is unaware of the demands during the placement phase, this phase must be designed 

carefully to minimize the delivery rate regardless of the requested content during peak hours.  

This dissertation studies cache-aided delivery networks with correlated content in a shared cache 

framework. A shared cache framework is beneficial in the current and next-generation wireless 

networks as it provides a local cache to all users within small base stations (SBSs), relieving strain 

on the backhaul. Furthermore, the library of a caching network could consist of content with a high 

degree of similarity in many practical applications; Therefore, exploiting the similarity among 

library content can also be leveraged to reduce the delivery rate in such networks.  

In this dissertation, we look at the proposed caching network from an information-theoretic 

perspective and formulate it as a distributed source coding problem with side information at the 

decoder. Then, the critical question arises as to what should be cached as side information to reduce 

the delivery rate of the network efficiently. 
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To answer this question, we propose an automatic clustering scheme using artificial intelligence 

(AI)-based optimization techniques to identify the selected side information for the entire library. 

We comprehensively evaluate the performance of the general clustering framework in a separate 

chapter by considering different datasets and distance measures. The general clustering framework 

enables us to develop two novel clustering schemes as a part of the placement phase of the 

proposed caching networks under different settings throughout this study, considering both the 

similarity and popularity of the library content.  

Upon identifying the selected side information for such networks, the next question that should be 

answered is how we should place the side information into caches; And consequently, what is the 

delivery strategy for this placement scheme? We have furnished our answer to these questions by 

considering three different caching networks: first, a network in a single shared cache framework 

under lossy caching. Next is a network with multiple shared caches under uniform popularity, and 

finally, a network with multiple shared caches under non-uniform preferences. In such networks, 

we address the placement and delivery strategy to show the trade-off between the delivery rate and 

the memory size of the system. We calculate the peak and expected rates of the studied networks 

by considering the rate-distortion function and caching strategy. We also introduce the optimum 

library partitioning formulated to minimize the peak delivery rate in the system.  

The performance analysis and extensive simulations of the proposed solution confirm that our 

scheme provides a considerable boost in network efficiency compared to legacy caching schemes 

due to our problem formulation and the careful extraction of side information during the placement 

phase. 

 

 

 

  

 

  



v 

 

 

 

 

 

To my wonderful husband, Sina 

Whose endless love, support, and encouragement embrace me every day 

 

To my lovely parents, Fatemeh and Manouchehr 

For their unconditional love 

And 

To my dear brothers, Babak and Behrooz 

Who have always been a constant source of inspiration to me 

  



vi 

 

Acknowledgments 

First and foremost, I wish to express my sincere appreciation to my supervisor, Professor 

Mohammad Reza Soleymani, for providing me with this wonderful opportunity in his research 

group. Being a part of his research group is an honor that will stay with me forever. I am forever 

grateful to him for his continuous encouragement and guidance throughout my Ph.D. journey. This 

dissertation would not have been possible without his support and constructive feedback. 

I would also like to express my deepest gratitude to my Ph.D. committee members, Professor 

Yousef R. Shayan, Professor Walaa Hamouda, and Professor Hovhannes Harutyunyan, for their 

time and helpful feedback. My special gratitude goes to Professor Benoit Champagne from McGill 

University for his time as my external examiner. 

I would like to thank Professor Ali Mirjalili from Torrens University Australia and Dr. 

Mohammad Mirjalili from Polytechnique Montréal. I am thankful to them for providing me with 

the great opportunity to collaborate and learn the fundamentals of artificial intelligence and 

optimization algorithms, which was invaluable to my research endeavors. 

I would like to thank my dearest parents, Fatemeh and Manouchehr, and my brothers, Babak 

and Behrooz, for all the selfless love and support they have given me throughout my life. My 

gratitude for their devotion and support is beyond words. 

Last but not least, I am most thankful to the love of my life, Sina, who has always believed in 

me and supported me every step of the way. He lived every single minute of the challenges and 

achievements with me throughout this journey, and I could not succeed without his love, patience, 

and encouragement. 

  



vii 

 

Table of Content 

 

List of Figures  ............................................................................................................................... x 

List of Abbreviations ................................................................................................................. xiv 

List of Symbols ........................................................................................................................... xvi 

Chapter 1 Introduction ......................................................................................................... 1 

1.1. Research Motivation ............................................................................................. 2 

1.2. System Model and Problem Statement ................................................................. 4 

1.3. Literature Review .................................................................................................. 7 

1.3.1. Caching Networks ............................................................................................. 7 

1.3.2. Data Clustering ................................................................................................ 11 

1.4. Research Contributions ....................................................................................... 16 

1.5. Organization of Dissertation ............................................................................... 18 

Chapter 2 Background ........................................................................................................ 19 

2.1. Centralized vs. Decentralized Caching ............................................................... 19 

2.1.1. Centralized Coded Caching Strategy with Uncoded Placement ..................... 20 

2.2. Placement and Delivery Phases Strategies .......................................................... 20 

2.3. Index Coding Technique ..................................................................................... 21 

2.4. Popularity Demand Distribution ......................................................................... 22 

2.5. Distributed Source Coding with Side Information at the Decoder ..................... 23 

2.5.1. Lossless Source Coding ................................................................................... 24 

2.5.2. Lossy Source Coding ....................................................................................... 25 

2.6. AI-Based Optimization Techniques .................................................................... 26 

2.6.1. Binary Bat Algorithm ...................................................................................... 26 

2.6.2. Binary Particle Swarm Optimization .............................................................. 28 

2.6.3. Binary Genetic Algorithm ............................................................................... 28 

2.6.4. Binary Dragonfly Algorithm ........................................................................... 29 

Chapter 3 Automatic Clustering Using AI-Based Optimization Techniques in a General 

Framework .......................................................................................................... 31 

3.1. Introduction ......................................................................................................... 32 

3.2. Data Clustering Problem Formulation ................................................................ 34 

3.3. Proposed Data Clustering Framework ................................................................ 34 



viii 

 

3.3.1. AI-Based Optimizer Module ........................................................................... 35 

3.3.2. Binary Encoding Scheme ................................................................................ 36 

3.3.3. Objective Function .......................................................................................... 37 

3.4. Results and Discussion ........................................................................................ 42 

3.4.1. Dataset and Validity Measure ......................................................................... 42 

3.4.2. Experimental Results and Parameter Settings ................................................. 44 

3.4.3. Discussion ....................................................................................................... 66 

3.5. Statistical Analysis .............................................................................................. 67 

3.6. Automatic Clustering for Binary Correlated Sources ......................................... 75 

3.6.1. Methodology for Binary Case ......................................................................... 76 

3.6.2. Results and Discussion for Correlated Binary Case ........................................ 77 

3.7. Summary ............................................................................................................. 81 

Chapter 4 Content Delivery in a Network with a Single Shared Cache and Correlated 

Content ................................................................................................................. 82 

4.1. Introduction ......................................................................................................... 83 

4.2. System Model ...................................................................................................... 84 

4.3. Correlation-Aware Clustering Scheme (CACS) ................................................. 85 

4.3.1. CACS Methodology ........................................................................................ 86 

4.3.2. CACS Optimizer Module ................................................................................ 86 

4.3.3. CACS Objective Function and Formulation ................................................... 88 

4.4. Proposed Caching and Delivery Scheme ............................................................ 90 

4.4.1. Placement Phase .............................................................................................. 90 

4.4.2. Delivery Phase ................................................................................................. 91 

4.5. Performance Analysis and Discussion ................................................................ 94 

4.6. Summary ............................................................................................................. 97 

Chapter 5 Content Delivery in a Network with Multiple Shared Caches and Correlated 

Content under Uniform Demand ...................................................................... 98 

5.1. Introduction ......................................................................................................... 98 

5.2. System Model ...................................................................................................... 99 

5.3. Proposed Caching and Delivery Scheme .......................................................... 101 

5.3.1. Placement Phase ............................................................................................ 101 

5.3.2. Delivery Phase ............................................................................................... 102 

5.4. Delivery Rate Analysis...................................................................................... 105 



ix 

 

5.5. The Optimal Library Partitioning ...................................................................... 106 

5.6. Performance Analysis and Discussion .............................................................. 107 

5.7. Summary ........................................................................................................... 110 

Chapter 6 Content Delivery in a Network with Multiple Shared Caches and Correlated 

Content under Non-Uniform Popularity Demand ......................................... 111 

6.1. Introduction ....................................................................................................... 112 

6.2. System Model .................................................................................................... 112 

6.3. Popularity-Based Correlation-Aware Clustering Scheme................................. 114 

6.3.1. PB-CACS Objective Function and Methodology ......................................... 114 

6.4. Proposed Hybrid Caching and Delivery Strategy ............................................. 117 

6.4.1. Hybrid Cache Placement Strategy ................................................................. 117 

6.4.2. Delivery Phase ............................................................................................... 118 

6.5. Delivery Rate Analysis...................................................................................... 120 

6.6. Results and Discussion ...................................................................................... 122 

6.7. Summary ........................................................................................................... 124 

Chapter 7 Conclusions and Future Research Directions ............................................... 126 

7.1. Conclusions ....................................................................................................... 127 

7.2. Future Directions ............................................................................................... 131 

7.3. Publications ....................................................................................................... 132 

References  ........................................................................................................................... 133 

 

 

 

 



x 

 

List of Figures 

Figure 1.1: Global IP video traffic forecast by Cisco VNI from 2017 to 2022 [2] ........................ 2 

Figure 1.2: Different videos of a person of interest from the same event with the same scene and 

background ...................................................................................................................................... 4 

Figure 1.3: Cache-aided delivery system in a shared cache framework with multiple caches in the 

network ........................................................................................................................................... 5 

Figure 1.4: Example of a robot factory where all laborers are connected to a shared cache .......... 6 

Figure 1.5: Tension between the popularity principle and the coding principle in cache placement

......................................................................................................................................................... 8 

Figure 2.1: The achievable rate region in SW coding .................................................................. 25 

Figure 2.2: The setup of the Wyner-Ziv problem ......................................................................... 25 

Figure 3.1: The steps of assigning a cluster number to each data point by the proposed binary 

encoding scheme in the general clustering framework ................................................................. 37 

Flowchart 3.1: The objective function of the proposed clustering framework ............................. 40 

Figure 3.2: The process of evolving clusters and migration of data points to other clusters during 

different stages of the proposed clustering framework. ................................................................ 41 

Figure 3.3: The convergence curve of Example 3.2 in three different stages .............................. 42 

Figure 3.4: Convergence curve of (a) aggregation, (b) compound, and (c) D31 datasets considering 

BBA, BPSO, BGA, and BDA in the optimizer module. .............................................................. 50 

Figure 3.5: Convergence curve of (d) flame, (e) Jain, and (f) Pathbased datasets considering BBA, 

BPSO, BGA, and BDA in the optimizer module.......................................................................... 51 

Figure 3.6: Convergence curve of (g) R15, (h) spiral datasets considering BBA, BPSO, BGA, and 

BDA in the optimizer module. ...................................................................................................... 52 

Figure 3.7: Convergence curve of (i) appendicitis, (j) dermatology, and (k)Ecoli datasets 

considering BBA, BPSO, BGA, and BDA in the optimizer module. ........................................... 53 

Figure 3.8: Convergence curve of (l) glass, (m) Haberman, and (n) housevotes datasets considering 

BBA, BPSO, BGA, and BDA in the optimizer module. .............................................................. 54 

Figure 3.9: Convergence curve of (o) ionosphere, (p) iris, and (q) segment datasets considering 

BBA, BPSO, BGA, and BDA in the optimizer module. .............................................................. 55 

Figure 3.10: Convergence curve of (r) vehicle, (s) Wdbc, and (t) Wine datasets considering BBA, 

BPSO, BGA, and BDA in the optimizer module.......................................................................... 56 

Figure 3.11: The shape dataset in its original form before performing the proposed clustering .. 57 

Figure 3.12: Visual results of performing the proposed clustering framework on the shape datasets.

....................................................................................................................................................... 57 

https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20136_Tables%20editing.docx#_Toc120813987
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20136_Tables%20editing.docx#_Toc120813987


xi 

 

Figure 3.13: Convergence curve of (a) dataset 1, (b) dataset 2, and (c) dataset 3 considering BBA, 

BPSO, BGA, and BDA in the optimizer module.......................................................................... 80 

Figure 4.1: Cache-aided delivery network model with a single shared cache .............................. 85 

Flowchart 4.1: How the optimizer module and objective function collaborated to solve the 

clustering problem in the proposed CACS considering the given constraints of the system ....... 87 

Figure 4.2: Placing the set of achieved representatives as the selected side information into the 

shared cache .................................................................................................................................. 91 

Figure 4.3: Reverse water-filling algorithm in delivery rate optimization for clustered files in a 

cluster 𝑘......................................................................................................................................... 94 

Figure 4.4: Delivery rate memory trade-off in the proposed scheme compared to the conventional 

caching for N=100 users, m=100 files .......................................................................................... 95 

Figure 4.5: The expected distortion memory trade-off in the proposed scheme for different fixed 

delivery rates compared to the conventional approach for N=100 users, m=100 files ................ 96 

Figure 5.1: Cache-aided delivery network with multiple shared caches ...................................... 99 

Figure 5.2: The minimum of the Peak delivery rate occurred in memory size 𝑀 = 20 for a library 

of 𝑚 = 100 files, categorized into 𝐾𝐶𝑆 = [1: 100] clusters with different 𝛿𝑚𝑎𝑥 ≤ 0.231 .... 107 

Figure 5.3: The trade-off between the achieved number of clusters and the maximum distance in 

the clusters for 𝑚 = 130 files with different correlation level among sources .......................... 108 

Figure 5.4: Delivery rate comparison in a network with 𝑍 = 5 shared caches of size 𝑀 = 20. 109 

Figure 6.1: Content delivery network in a shared cache Framework with multiple caches under 

non-uniform popularity demand considering a hybrid placement strategy ................................ 114 

Flowchart 6.1: How the optimizer module and objective function collaborated to solve the 

clustering problem in the proposed PB-CACS considering system constraints ......................... 117 

Figure 6.2: The trade-off between the achieved number of clusters and the similarity among 

content files with 𝑚 = 130 in the proposed clustering solution ................................................ 123 

Figure 6.3: Uniformity of the aggregate popularity in the process of clustering by selecting 𝑚𝐻 =
7 high popular files and 𝐾𝑪 = 10 CSIs in the PB-CACS considering Zipf parameter 𝜉 = 1.4 123 

Figure 6.4: Delivery rate comparison in a network with m=100 content files and Z=10 shared 

cache each serving  𝑈𝑖=10 users ................................................................................................. 124 



xii 

 

List of Tables 

Table 3.1: Summary of used datasets with different features ....................................................... 43 

Table 3.2: Parameter configuration of the utilized optimization algorithms in the proposed 

framework and two of the comparative studies ............................................................................ 45 

Table 3.3: Comparison results for the shape dataset with considering BBA, BPSO, BGA, and BDA 

in the optimizer module in the proposed method.......................................................................... 46 

Table 3.4: Comparison results for the real-life dataset with considering BBA, and BPSO in the 

optimizer module in the proposed method.................................................................................... 47 

Table 3.5: Comparison results for the Real-life dataset with considering BGA, and BDA in the 

optimizer module in the proposed method.................................................................................... 48 

Table 3.6: Comparison results for the higher-dimensional dataset with considering BBA, BPSO, 

BGA, and BDA in the optimizer module in the proposed Method .............................................. 49 

Table 3.7: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and 

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the shape datasets ..................................................... 60 

Table 3.8: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and 

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the shape datasets ..................................................... 61 

Table 3.9: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and 

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ................................................. 62 

Table 3.10: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and 

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ................................................. 63 

Table 3.11: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and 

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ................................................. 64 

Table 3.12: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index and 

distortion deviation over 20 independent runs for the proposed framework, DCPSO, GCUK, K-

MEANS++, DBSCAN, EM, and NPIR for the real-life datasets ................................................. 65 

Table 3.13: Achieved Ranks by the Friedman Test for the Proposed Framework Considering four 

Different Optimizer Modules ........................................................................................................ 69 

Table 3.14: Achieved P-values by the Wilcoxon Rank-Sum Test................................................ 70 

https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471062
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471063
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471063
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471064
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471064
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471065
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471065
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471066
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471066
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471067
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471067
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471068
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471068
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471068
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471069
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471069
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471069
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471070
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471070
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471070
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471071
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471071
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471071
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471072
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471072
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471072
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471073
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471073
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471073
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471074
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471074
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471075


xiii 

 

Table 3.15: Achieved Ranks by the Friedman Test on the DB-index for the Proposed Framework 

Compared to Other Algorithms .................................................................................................... 71 

Table 3.16: Achieved Ranks by the Friedman Test on Distortion Deviation Measures for the 

Proposed Framework Compared to Other Algorithms ................................................................. 72 

Table 3.17: Achieved P-values by the Wilcoxon Rank-Sum Test on the DB-index for the Proposed 

Framework Compared to Other Algorithms ................................................................................. 73 

Table 3.18: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion Deviation Measures 

for the Proposed Framework Compared to Other Algorithms...................................................... 74 

Table 3.19: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion Deviation Measures 

for the Proposed Framework Compared to Other Algorithms...................................................... 79 

Table 3.20: Statistical Results of the Proposed Correlation-Aware Clustering Scheme Considering 

Four Different Optimizer Modules ............................................................................................... 79 

 

 

https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471076
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471076
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471077
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471077
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471078
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471078
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471079
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471079
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471080
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471080
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471081
https://liveconcordia-my.sharepoint.com/personal/b_merikh_live_concordia_ca/Documents/PhD%20Stuff/Thesis/Thesis%20123.docx#_Toc118471081


xiv 

 

List of Abbreviations 

ACDE Automatic Clustering Using Differential Evolution 

ACDE-O Automatic Clustering Using Differential Evolution with Oscillation 

ACPAHS Automatic Clustering using Parameter Adaptive Harmony Search Algorithm 

ACPSO Automatic Clustering based on Particle Swarm Optimization 

ADEFC Automatic Differential Evolution Based Fuzzy Clustering 

AGCUK Automatic Genetic Clustering for Unknown K 

AI Artificial Intelligence 

AKC-BCO Automatic Kernel Clustering with Bee Colony Optimization 

AP Access Point 

BA Binary Address 

BBA Binary Bat Algorithm 

BDA Binary Dragonfly Algorithm 

BGA Binary Genetic Algorithm 

BPSO Binary Particle Swarm Optimization 

BSC Binary Symmetric Channel 

CACS Correlation-Aware Clustering Scheme 

CC Coded Caching 

CDN Content Delivery Network 

CSI Clusters’ side information 

CS-index Compact-Separated index 

DA Decimal Address 

DB-index Davis-Bouldin index 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

DCPSO Dynamic PSO 

DE Differential Evaluation 

DSC Distributed Source Coding 

EM Expectation-Maximization 

FAPSO Firefly Algorithm and Particle Swarm Optimization 

FCM Fuzzy C-Mean 

GA Genetic Algorithm 

gBest Global Best 



xv 

 

GCUK Genetic-based clustering with an unknown number of clusters 

HetNet Heterogeneous Network 

HPF Highest Popularity First 

i.i.d Independent and identically distributed 

iABC Improved Artificial Bee Colony 

IC Index Coding 

IWO Invasive Weed Optimization 

LFU Least Frequently Used 

LRU Least Recently Used 

MBS Macro Base Station 

MinPts Minimum number of neighbors within epsilon radius in DBSCAN 

MOIMPSO Multi-objective Immunized Particle Swarm Optimization 

NC Network Coding 

NPIR The nearest point with the indexing ratio 

PB-CACS Popularity-Based Correlation-Aware Clustering Scheme 

PSI Popular side information 

PSO Particle Swarm Optimization 

QoE Quality of Experience 

QoS Quality of Service 

SA Simulated Annealing 

SBS Small Base Stations 

SMC Simple Matching Coefficient 

SW Slepian-Wolf 

TGCA Two-stage Genetic Clustering Algorithm 

WZ Wyner-Ziv 

ZB Zettabyte 

 

 

 

 



xvi 

 

List of Symbols 

𝐴 Loudness of emitted sound in BBA 

𝓐𝑚×𝑙 Dataset containing 𝑚 patterns with 𝑙 features 

𝐵 Length of a binary vector 

𝛽 Maximum number of requested representatives in a cache across all caches 

𝔠1, 𝔠2 Acceleration coefficients of the BPSO algorithm 

𝑐𝑖 Cluster 𝑖 

𝐶 Set of achieved clusters 

𝑪 Selected clustering solution upon performing the clustering scheme 

𝑪𝑆 Clustering solution 𝑆 

𝜉 Zipf distribution parameter 

𝐷𝑘,𝑖 Maximum allowable distortion for file 𝑖 within cluster 𝑘 

𝒹(. , . ) Distance measure 

𝒹𝑖,𝑗
𝐻  Hamming distance between two vectors 𝑖 and 𝑗 

�̅�𝐶
𝑚𝑎𝑥 Average of the maximum distance over all clusters 

𝑑(. , . ) Distortion measure 

𝜹 Given distortion 

𝛿𝐶
𝑚𝑎𝑥 Maximum distance within clusters in clustering solution 𝐶 

𝛿𝑐𝑖 Maximum intra-cluster distance in a cluster 𝑐𝑖 ∈ 𝐶 

𝛿𝑘,𝑖
2  Distance of a content file 𝑖 to its representative within cluster 𝑘 

∆𝐶 Distortion deviation over all clusters in the clustering solution 𝐶 

∆𝑃𝐶 Deviation of aggregate popularity in the clustering solution 𝐶 

�̅�𝐶
𝑚𝑖𝑛 Average of minimum inter-cluster distances over all clusters 

휂 Number of caches which has a request from the server in a set of 𝛽 

𝐹𝑟𝑖(𝑡) Frequency of particle 𝑖𝑡ℎ in the optimization algorithm at iteration  𝑡 

𝒇(.) Objective function 

ℱ Set of library content files 

𝑓𝑖 Content file 𝑖 in the library 

�̂�𝑖 The representative of cluster 𝑖  

𝑭 Set of all representatives by the achieved clustering solution 

𝑓𝑖
𝑗
 Requested file 𝑓𝑖 by user 𝑗 



xvii 

 

𝐹𝑘,𝑖 Notation of file 𝑖 located in cluster 𝑘 (after clustering) 

𝐹𝑘,𝑖
𝑗𝑧  Notation of file 𝑖 located in cluster 𝑘 requested by user 𝑗 from cache 𝑧 

φ𝑖
(𝑡) Position of particle 𝑖𝑡ℎ in the optimization algorithm at iteration  𝑡 

𝐻(𝑓i) The entropy of content file 𝑓𝑖 

𝐻(. |. ) Conditional entropy between two random variables 

𝐻(𝑓1, … , 𝑓𝑚) Joint entropy of 𝑚 content files 

𝐾 Number of clusters 

𝐾𝑪 Achieved number of clusters /representatives in clustering solution 𝑪 

𝐾𝑚𝑖𝑛/𝐾𝑚𝑎𝑥 Minimum/Maximum number of clusters in a clustering solution 

𝐿 Number of bits to address cluster numbers in the general clustering scheme 

𝜆 Optimal allowable distortion introduced to the files 

Λ𝑖,𝑗 Inter-cluster distance between cluster 𝑖𝑡ℎ and 𝑗𝑡ℎ for the DB-index validity measure 

𝑚 Number of content files in the library 

𝑚𝑘 Number of files within cluster 𝑘 

𝑚𝐶 Content files in the PB-CACS (clustered files) 

𝑚𝐻 Content files with high popularity (PSIs) 

𝑀 Size of each shared cache 

𝑀𝑅 Required memory size to store CSIs per shared cache 

𝑁 Total number of users in the network 

�̃� Binary random variable 

𝑝𝑖 Popularity of file 𝑖 

�̅�𝐶 Average aggregate popularity on all clusters in the clustering solution 𝐶 

𝑃𝑘 Aggregate popularity of cluster 𝑘 

𝒫(. , . ) Joint probability 

𝒫ℱ Joint distribution of the library content files ℱ 

𝑞𝑖 Demand for file 𝑖 ∈ ℱ 

𝓆𝑖 The probability of requesting the 𝑖𝑡ℎ file according to the Zipf distribution 

𝑄𝑧 All demands of cache 𝑌𝑧 

𝑄 Unique representatives requested across all caches 

𝑄′ Unique clustered files requested across all caches 

𝑅𝐶𝑀 Delivery rate required for the coded multicast messages 

𝑅𝑅𝑆 Delivery rate required for the refinement segments 

𝑅𝐶𝑀
𝑃  Peak delivery rate required for the coded multicast messages 

𝑅𝑅𝑆
𝑃  Peak delivery rate required for the refinement segments 



xviii 

 

𝑟𝑖 Pulse rate in BBA 

𝜌0 Crossover probability 

𝜌 Correlation parameter 

𝛴 Covariance Matrix 

𝜓 Set of all feasible ways of clustering a given dataset 

𝑇 An integer parameter for the sake of symmetry in splitting files into segments 

𝜗 A random number from a uniform distribution in  [0,1] 

𝑈𝑖 Number of users in SBS 𝑖 connected to the cache 𝑌𝑖 

Υ𝑖 Intra-cluster distances in the 𝑖𝑡ℎ  cluster for the DB-index validity measure 

𝑉𝑖(𝑡) Velocity of particle 𝑖𝑡ℎ in the optimization algorithm at the iteration  𝑡 

𝓌 Inertia weight 

𝑋𝑖 Encoded message of file 𝑖 

𝑌𝑖 Shared cache 𝑖 in the network 

𝑦𝑧 Mapped vector for requests of SBS 𝑧  

𝑍 Number of shared caches in the network 

휁 Maximum number of requested representatives per shared cache 

 

 

 

 

 



1 

 

 

Chapter 1  

Introduction 

During the last two decades, wireless networks have witnessed a dramatic rise in content-related 

data traffic due to the continuous development of cutting-edge technologies and smart applications 

along with the increasing number of internet users demanding high-quality services. 

According to Cisco studies, internet traffic has already exceeded the zettabyte (ZB) level and 

will reach 4.8 ZB per year by the end of 2022 [1], while over 72% of this traffic is predicted to be 

content-related due to the frequent use of streaming services, social media and smart applications 

in recent years [2].  

Figure 1.1 shows the IP video traffic predicted by the Cisco studies for 2017 to 2022. 
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Figure 1.1: Global IP video traffic forecast by Cisco VNI from 2017 to 2022 [2] 

1.1. Research Motivation 

As content-related internet traffic grows exponentially, delivery networks are forced to handle 

massive volumes of content, which is a serious challenge for current content delivery networks, 

especially during peak hours. Therefore, providing high-quality services for the end-users requires 

a solution beyond traditional content delivery networks, which is why designing efficient content 

delivery solutions have become increasingly important in the current and next-generation wireless 

networks [3]. 

In recent years, content caching has proved to be an efficient technique to improve the quality 

of services and reduce the high delivery data rate by storing some popular content close to the end-

users. Caching networks generally operate in two phases; the placement phase during off-peak 

hours before users reveal their demand and the delivery phase, which is accomplished when users’ 

demand is revealed to the server during peak hours.  

As the server is unaware of the demands during the placement phase, this phase must be 

carefully designed and implemented to improve the quality of services and maximize the network 

performance regardless of the requested content [4]. 

Conventionally, the most popular files were stored in local memories to provide a local caching 

gain in the network. This strategy randomly allocates some files to the memory in cases with a 
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uniform popularity demand distribution. A few years ago, Maddah-Ali and Niesen [5] introduced 

the coded caching (CC) strategy and improved the conventional results to reach a global gain by 

creating multicast opportunities under the assumption that each user is equipped with an individual 

cache in the network. Since then, this setting has been studied extensively from different angles 

[3]-[10], considering various system settings, demand characteristics, and source distribution. 

The advancement of caching networks with users having individual caches in the past few years 

has led to focusing on another aspect of caching networks which considers shared caches for a 

group of users [11]-[14]. A shared cache framework is highly beneficial in next-generation 

wireless networks as it allows users in a small base station (SBS) to access a nearby cache in the 

cell. Also, it is useful in a heterogeneous network (HetNet) environment [15] or as an upper layer 

of hierarchical caching networks in IoT-based applications [16].  

A few recent studies presented promising results in a shared caching setting, but their study has 

been focused on caching networks with independent sources. As discussed in [17], a library of a 

caching network could consist of sources with a high degree of similarity in many practical 

applications. Any event recordings with common scenes and background, news updates, different 

chunks of a video in video summarization, repeated measurements, new updates, augmented and 

virtual reality [17]-[19], and crowdsourced multi-view videos [20] are examples of such 

applications. Figure 1.2 illustrates an example of a scene of interest captured by multiple cameras 

in the field, which has the same scene and background in all videos from different views.  

Despite current advancements in caching networks with correlated sources, all these studies 

also assumed a setting where each user has been equipped with an individual cache. Thus, an 

efficient solution is still needed for a network with correlated content in a shared cache framework. 

Motivated by the aforementioned issues, our research explores a cache-aided delivery network 

with correlated content based on a shared cache framework to fill the gap between recent studies 

on shared caches with independent sources and individual caches with correlated sources. We 

show that the efficiency of current shared cache networks with independent sources does not carry 

over to a network with correlated sources in a shared setting. Therefore, finding an efficient 

solution to fill this gap is still necessary. 
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Figure 1.2: Different videos of a person of interest from the same event with the same scene and 

background1 

1.2. System Model and Problem Statement 

This research considers a centralized cache-aided delivery network with correlated content in a 

shared cache framework. In line with current studies, we consider a network consisting of one 

server, e.g., Macro base station (MBS), and multiple receivers, e.g., SBSs, over a shared error-free 

broadcast link. Each SBS is equipped with a shared cache and serves multiple users. It is assumed 

that each user is connected to only one SBS at the same time and can receive messages from the 

server and its SBS. The caching network operates in two phases;  

In the placement phase, a set of side information is extracted and placed into the caches 

according to a proposed placement strategy considering network settings.  

In the delivery phase, users reveal their requests independently from each other according to a 

uniform (Chapters 4 and 5) or non-uniform (Chapter 6) popularity demand distribution. If the 

connected cache to the user already has (some of) the content, the request (or a portion of the 

request) can be served locally. Otherwise, the server must transmit requested content not available 

 
1 The person of interest in these scenes is Alistair Johnston, #2 of the Canada soccer team during the 2022 World 

Cup Qualifying matches. Images vailable on: https://www.canadasoccer.com/news/canada-announces-squad-for-

september-2022-matches/ 

 

 

https://www.canadasoccer.com/news/canada-announces-squad-for-september-2022-matches/
https://www.canadasoccer.com/news/canada-announces-squad-for-september-2022-matches/
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in the shared cache via broadcast index coding messages and unicast/multicast of the encoded 

messages2.  

The goal is for every user to be able to reconstruct the file that it requests with the information 

received from the server and the cached content in the shared cache while the delivery rate of the 

system is also improved. It should be mentioned that the transmission rate is only considered for 

the delivery transmission and not for the placement phase, as the placement phase is accomplished 

during off-peak hours. 

Figure 1.3 illustrates the network model of a cache-aided delivery system in a shared cache 

Framework where each cache is connected to a different group of users. 

 

Figure 1.3: Cache-aided delivery system in a shared cache framework with multiple caches in the 

network 

 
2 We prefer to refer to the encoded messages as refinement segments throughout this research, and these two terms 

may be used interchangeably in the following chapters. 
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Figure 1.4: Example of a robot factory where all laborers are connected to a shared cache 

First, we explore the proposed networks by assuming a single shared cache under lossy caching, 

and then we extend our study to networks with multiple shared caches under uniform and non-

uniform popularity demands. Connecting users to a single shared cache is beneficial where they 

have a very small memory size. Consider robots as laborers in a factory or drones as operators in 

deserted areas. In such settings, providing a shared cache in the access point to be filled with the 

most useful content for the entire network during the placement phase leads to only transmitting 

small updates (e.g., recent maps and frequent updates of the locations under their coverage) during 

the delivery phase. Figure 1.4 illustrates a simple example of such networks. 

In this dissertation, we study the cache-aided delivery problem from an information-theoretic 

perspective and formulate it as distributed source coding with side information at the decoder. We 

focus on the content placement phase to reduce the peak delivery rate and the users’ expected 

distortion during the delivery time in the proposed network. More specifically, we are seeking the 

answer to the following questions throughout this research: 

• What content should be placed into the memory during the placement phase?  

• How should we place the selected content into the caches?  

• And what content should be transmitted during the delivery phase to serve all possible 

demands at a low delivery rate in the caching network? 

• Moreover, what is the trade-off between the cache size, delivery rate, and the user’s 

expected distortion under different settings in such a system? 
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To answer the above questions, we proposed two automatic clustering solutions using AI-based 

optimization techniques to extract the most efficient set of side information for the entire library 

considering the similarity among sources and the popularity demand distribution. Then, we utilize 

the side information for the caching strategy and proceed with the delivery phase under different 

popularity demands to serve all requests. 

1.3. Literature Review 

A literature review related to our study is presented in this section in two parts: first, we discuss 

related works on caching networks, and then we present related works on data clustering.  

1.3.1. Caching Networks 

The increasing number of internet users and IoT devices, in addition to the widespread use of 

social media and streaming services, has put significant stress on current content delivery 

networks. Content caching has emerged as an effective solution to combat this stress and reduce 

the high delivery data rate to improve the quality of services for the end-users in such networks.  

Over the past few years, many studies have been conducted to face the key challenges of 

caching networks from different angles. In general, one perspective is optimizing the delivery 

phase for specific demands and fixed cache content [21][22]. The other point of view is optimizing 

the content placement for a fixed delivery phase consisting of unicast or multicast transmissions 

[23]-[25].  

In the simplest form of content caching, the most popular files are stored in local memories 

close to the end-users; therefore, such requests will be locally served without requiring an extra 

transmission rate. Depending on the cache size, this approach selects some files randomly for local 

caching when demand distribution is uniform. Therefore, the network experiences a “local caching 

gain.” By leveraging the multicast nature of the shared link, the coded caching strategy with 

uncoded placement [5] revolutionized conventional results even for caches with distinct demands 

by reaching a “global caching gain.” While the local caching gain is proportional to the size of the 
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user’s cache, the global caching gain is proportional to the aggregate size of all the available caches 

in the network. 

The key to increasing multicast opportunities in the coded caching strategy is to involve diverse 

parts of the library content in the cache placement and store them symmetrically across different 

users (coding principle) [12][15]. However, in a caching network with non-uniform content 

popularity demand distribution caching higher popular content is preferable as it significantly 

reduces the delivery rate (popularity principle) [6][12][15].  

Even though the popularity principle reduces delivery rates, it forces caches to store almost the 

same content and prevents creating multicast opportunities. In this regard, developing a placement 

strategy that can simultaneously benefit from both local and global caching gains is extremely 

challenging since these principles conflict with one another.  

Figure 1.5 shows the tension between the popularity principal and the coding principle, which 

are moving in opposite directions. 

 

Figure 1.5: Tension between the popularity principle and the coding principle in cache placement 

Over the past few years, various studies have been conducted on developing placement schemes 

assuming an individual cache for each user under different settings, including different source 

distributions [5]-[10] and demand specifications [26]-[28], to address this challenge. 

Recent studies are focused on another aspect of caching networks that considers shared caches 

for a group of users. In such settings, considering a shared cache in the access points to be filled 

with the most useful content during the placement phase leads to transmitting only the small 

updates during the delivery phase. 

According to [5], when multiple caches are available in the network, coded caching rather than 

replication is the best strategy as it provides multicast opportunities and global caching gain. 
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However, multicast opportunities cannot be created for the connected users in a single shared cache 

setting as the framework is not distributed for that group of users. Thus, designing a cache-aided 

delivery network with shared caches is still being investigated from different aspects. 

In this regard, [11] has studied a network consisting of a server and several small base stations, 

each connected to a shared cache. They proposed a combination of coded-uncoded placement 

strategies and extracted the expected delivery rate of the system. Also, they formulated the near-

optimum partitioning placement for such systems. However, they assumed a homogenous number 

of users connected to each cache.  

Authors in [12] have also considered a network with a non-uniform popularity demand 

consisting of a server and multiple shared caches under homogenous and heterogenous user 

behavior. In this sense, they proposed a coded-uncoded placement strategy to consider the trade-

off between the coding and popularity principles. They extracted a closed-form expression of the 

transmission rate by formulating the problem as a constraint optimization problem. They have 

shown that the proposed placement strategy significantly reduces the transmission rate compared 

to the pure-coded or pure-uncoded schemes in the literature. 

A similar setting with shared caches is described in [13]. They proposed a coded placement 

strategy that considers the asymmetry in the number of users connected to each cache. They 

characterized the gain for the two-cache system and then extended it to a larger network. They 

concluded that coded placement would achieve more gains if the users’ connectivity were more 

asymmetric. It has been shown that their method is more effective than [14], which considers a 

similar setting with uncoded placement. 

Assuming each user can only request a subset of files, [27] analyzes the average rate for three 

placement schemes considering a heterogeneous user profile. They divided users into groups 

according to the request pattern of the shared and individual files. They showed that the lowest 

average rate under a small cache capacity is found when caching, and delivery of shared and 

individual files are decoupled. 

While recent studies presented promising results in a shared caching setting, they have 

investigated caching networks with independent sources. As discussed in [17]-[19], a library of a 

caching network could consist of sources with a high degree of similarity in many practical 
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applications. Any event recordings with common scenes and background, repeated measurements, 

news updates, different chunks of a video in video summarization, augmented and virtual reality 

[17]-[19],[30]-[34], and crowdsourced multi-view videos [20] are examples of such applications. 

The authors in [17] showed that exploiting the correlation among the sources can be considered 

leverage to reduce the delivery rate and improve network efficiency during peak hours. They have 

assumed a system consisting of a server with correlated sources and multiple users where each 

user is equipped with an individual cache in the network. They proposed a correlation-aware 

scheme for the placement phase that enables users to store some segments of the files based on 

their similarity to the rest of the library files. The delivery phase then considers transmitting the 

compression version of the requested files. They have studied the same system with an alternative 

for the placement phase in [31], in which a compressed version of some selected segments of each 

file is stored in each user’s cache. They have shown how joint compression of the selected 

segments prior to the placement phase can reduce load compared to other solutions in the same 

setup. 

A caching network consisting of a library with three correlated files and two receivers, each 

having an individual cache, is considered in [32]. They have proposed a two-step scheme in which 

the library files are compressed using Gray-Wyner source coding. Then the encoded segments are 

treated as independent content using a multiple-request cache-aided coded multicast scheme. They 

have characterized the rate-memory trade-off and examined the limits for the worst-case rate.  

The authors in [33] studied a coded caching scheme considering the correlation among the 

library files in a network where each user is equipped with an individual cache of the same size. 

They assumed that each file is divided into some subfiles shared between several users. They 

defined the level of commonness as the number of files that include a certain subfile and proposed 

one uncoded and one coded caching scheme for the placement phase, which has been optimized 

in terms of the achievable delivery rate. 

In [34], the same network setup with one server consisting of correlated sources and multiple 

users, each having an individual cache, is studied for applications with updated versions of 

dynamic data. They have considered a caching scheme in which users cache content pieces based 

on popularity and correlation with the rest of the library files. Then they receive compressed 
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versions of the requested files according to the information distributed across the network and their 

joint statistics during delivery time. 

Despite current advancements in caching networks with correlated sources, all these studies 

also assumed a setting where each user has been equipped with an individual cache. Thus, the 

challenges mentioned above have remained unsolved for a shared caching framework. Therefore, 

a solution is still needed for a network with correlated sources in a shared cache framework, which 

is the focus of this study. 

1.3.2. Data Clustering  

As Artificial Intelligence technologies expand and smart sensors and internet-connected 

devices are used more widely, wireless networks are faced with a large volume of unstructured 

data. This massive volume of content is highly beneficial in data analysis, social sciences, and 

many other modern applications if appropriately classified and analyzed in a meaningful way 

[36][37].  

Clustering is a popular unsupervised data analysis technique that captures the natural structure 

of a dataset and places similar objects into a set of groups to simplify the process of analyzing and 

understanding information coming from different sources. As a result, objects within a cluster have 

a higher degree of similarity. Nowadays, clustering analysis methods are widely used in many 

fields, such as wireless sensor networks, mobile networks, image and video processing, and data 

summarization [38]. In some applications of wireless sensor networks, having clusters with 

approximately the same distance is desirable, as it helps to introduce the optimum allocation of the 

maximum allowable distortion to the receivers and reduce the transmission rate. In most cases, 

however, there is no prior information specifying the number of clusters, which makes clustering 

difficult. 

Over the years, many optimization algorithms have been proposed to overcome the problems 

caused by traditional algorithms in cluster analysis. Tabu search algorithm [41], the simulated 

annealing (SA) algorithm [42], and the particle swarm optimization (PSO) algorithm [43], which 

is one of the most powerful optimization algorithms for data clustering in complex problems, are 

some of the well-known examples in this area. Van der Merwe and Engelbrecht [44] have 
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investigated the capability of several swarm intelligence algorithms in partitioning different types 

of datasets. They have also proposed a novel approach for clustering different datasets into an 

optimal number of clusters through an optimization process. In [45], the data clustering problem 

has been formulated as a single objective problem, and the standard global best (gbest) of the PSO 

algorithm has been used to identify the centroid of the clusters.  

Evolutionary algorithms have also been among the most frequently used metaheuristic 

algorithms for the clustering problem [46]. Hence, different types of this algorithm have been 

studied in the literature, ranging from a straightforward encoding to a more sophisticated solution 

similar to Falkenauer’s grouping genetic algorithm (GA) [47].  

In [48], the automatic data clustering problem has been addressed using a hybrid solution called 

FAPSO based on an improved firefly algorithm and the particle swarm optimization algorithm. 

The authors also investigate the applicability of the proposed solution in detecting the correct 

number of clusters according to the Davis-Bouldin index (DB-index) [49] and the compact-

separated index (CS-index) [50] as the validity measure. The proposed algorithm’s performance 

has been evaluated on thirteen benchmark datasets, and it has also been compared to other well-

known clustering algorithms. The experimental results indicated that the FAPSO outperforms the 

comparative studies in most cases in terms of the accuracy of the results. 

In [51], an automatic data clustering algorithm using an improved PSO algorithm (ACPSO) has 

been proposed to address the clustering problem. The proposed algorithm determines the correct 

number of clusters and adjusts the centroids. The authors have considered the 𝐾-means algorithm 

and a sigmoid function to adjust the cluster centroids and manage the infeasible solutions. This 

algorithm has been evaluated by considering four benchmark datasets in terms of consistency and 

accuracy.  

Abraham et al. [52] proposed a kernel-based automatic clustering using a modified PSO 

algorithm. This approach employs a kernel-induced similarity measure instead of the sum of 

square distances. They believed that using a kernel function in this solution leads to clustering 

linearly non-separable data into homogenous clusters in a high dimensional feature space 

transformation. This algorithm has been evaluated by considering five synthetic and three real-life 

datasets in terms of convergence, accuracy, and robustness.  
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In [53], Nanda and Panda proposed a multi-objective automatic clustering algorithm called 

MOIMPSO to classify the actions of 3D human models. This algorithm provides a Pareto optimal 

archive for automatic clustering problems by considering a developed hybrid evolutionary 

algorithm immunized PSO and two objective functions. Besides, a single best solution from the 

Pareto optimal archive has been provided to satisfy the users’ requirements. They have also 

evaluated the proposed algorithm on eleven benchmark datasets in terms of computation time and 

accuracy.  

Liu et al. [54] proposed a solution based on the genetic algorithm with unknown 𝐾 called 

AGCUK. They employed the DB-index as the validity measure of clusters. The performance of 

this algorithm has been evaluated on several artificial and real-life datasets in terms of determining 

the correct number of clusters and the accuracy of the clustering.  

Then, He and Tan [55] proposed a novel two-stage genetic algorithm called TGCA to solve the 

clustering problem. This algorithm uses the selection and mutation operators of the original genetic 

algorithm. The TGCA algorithm attempts to gradually reach globally optimal cluster heads by 

focusing on determining the correct number of clusters for each input. The experimental results on 

four artificial and seven real-life datasets in this study indicate that this algorithm shows high 

performance in determining the number of clusters and the accuracy of the clustering solution.  

In [56], the application of the differential evaluation (DE) algorithm is described for the 

clustering problem with an un-labeled large dataset. The proposed algorithm is called the ACDE 

algorithm and uses an improved differential evaluation algorithm for the data clustering problem. 

The ACDE algorithm has been evaluated by considering five benchmark datasets via DB-measure 

and CS-measure. The authors also reported the application of the ACDE algorithm to the automatic 

segmentation of images.  

Then, in [57], a new hybrid algorithm based on differential evaluation and fuzzy clustering 

called ADEFC is proposed to solve the automatic clustering problem. In this algorithm, the cluster 

heads are encoded in the vectors. The data points are then assigned to different clusters based on 

the Xie-Beni index, a validity measure for the clustering validation. The performance of the 

ADEFC algorithm has been evaluated on two synthetic and two real-life datasets. It has also been 

compared to the fuzzy C-mean algorithm and the variable-length genetic algorithm based on fuzzy 



14 

 

 

clustering. The authors indicated that the ADEFC has the capability of being considered for micro-

array data clustering.  

An improved differential evaluation algorithm with cluster number oscillation called ACDE-O 

has been proposed in [58]. Since poor initial guesses lead to inefficient clusters, a cluster number 

oscillation mechanism is used in this algorithm to improve searching and finding more possible 

clusters. This algorithm’s efficiency has been evaluated on three real-life datasets compared to the 

ACDE algorithm and reported better performance.  

Kuo et al. [59] proposed automatic kernel clustering with bee colony optimization (AKC-BCO) 

to address the weaknesses of the automatic clustering problem in determining the number of 

clusters and the accuracy of the clustering. The authors employed a kernel function to increase the 

capability of the clustering algorithm. The performance of the AKC-BCO has been evaluated on 

several benchmark datasets compared to three other clustering algorithms. The experimental 

results indicate that the AKC-BCO algorithm demonstrates superior performance in terms of not 

trapping in local optima, convergence speed, and accurate and stable clustering results.  

Then, in [60], Kuo and Zulvia proposed a hybrid solution of an improved artificial bee colony 

optimization and the K-means algorithm called iABC for the automatic clustering and customer 

segmentation problems. In this study, the onlooker bee exploration in the original ABC algorithm 

is improved by guiding their movements to a better location, leading to a better initial centroid in 

the K-means algorithm. Then, to increase the algorithm’s efficiency, only the worst cluster 

centroid will be improved through an updating process. The experimental results on several 

benchmark datasets show that the iABC algorithm provides better performance than the classical 

ABC algorithm. It has been discussed that the average value of the computational time for some 

datasets is less than the original ABC algorithm. The reason is that the iABC algorithm generates 

better solutions compared to the original ABC algorithm. However, its performance is not faster 

than the PSO and GA-based algorithms. 

In [61], the harmony search algorithm has been employed by Kumar et al. to present a parameter 

adaptive harmony search algorithm called ACPAHS for automatic data clustering problems. The 

number of clusters in the proposed algorithm is determined by using a real-coded variable-length 

harmony vector. The data points are assigned to clusters according to the developed weighted 
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Euclidean distance. The authors also reported the application of the proposed algorithm to the 

automatic segmentation of images. The efficiency of the ACPAHS algorithm has been evaluated 

on several real-life datasets and compared to four other well-known clustering techniques in terms 

of the determined number of clusters and the accuracy of the clustering solution. 

In [62], the problem of automatic data clustering has been solved based on an evolutionary 

metaheuristic algorithm known as invasive weed optimization (IWO). This algorithm can perform 

the clustering task without requiring any prior knowledge of the datasets and employs the genetic 

algorithm’s fitness function as the validity measure. The algorithm’s proficiency has been 

evaluated on nine artificial and four real-life datasets, and the results are compared to three other 

clustering algorithms. The experimental results have indicated that the IWO algorithm shows great 

performance in population size and computation time.  

Qaddoura et al. in [63] proposed an open-source, cross-platform framework called EvoCluster 

for data clustering. EvoCluster is a customizable framework that can employ various objective 

functions in addition to different well-known nature-inspired optimizers developed by other 

researchers to perform partitional clustering tasks. It can also evaluate the result according to 

different validity measures such as Purity, Entropy, squared error sum, and other common validity 

measures. Since this framework covers different algorithms and measures, it can be useful in 

different applications.  

A comprehensive survey on data clustering using metaheuristic algorithms can also be found 

in [56][64][65][66][67]. We have reviewed many related studies that focus on the clustering 

problem from different aspects in this section. Since cluster analysis is being exploited in diverse 

research fields, a unique algorithm cannot be a solution to all clustering scenarios due to the 

differences in the nature of the patterns and applications. Hence, considering the main purpose of 

this research, we remain focused on reaching clusters with approximately the same maximum 

distance while the number of clusters is in accordance with the number of inputs.  

Reaching clusters with the same radius can also be discussed under the cluster-level constraint 

and has many practical applications. The cluster-level constraint considers some available 

information about the underlying cluster structures in the form of limitations [68][69].  
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The facility location problem discussed in [70] is similar to the clustering problem with a 

cluster-level constraint. In this study, the authors propose two heuristic algorithms for the facility 

location problems that can be interpreted as clustering problems with upper bounds on the radius 

of the clusters.  

In [71], the authors study two types of cluster-level constraints in a search-based agglomerative 

hierarchical clustering algorithm. This algorithm forms initial partitioning using the must-link 

constraints and then merges some groups by taking constraints into account to meet the stopping 

criteria. Finally, they mentioned creating a feasible dendrogram is intractable since solving the 

clustering problem with unspecified 𝐾 is NP-complete under these constraints.  

One of the other exciting applications using cluster-level constraint approaches is discussed in 

[72] for a distributed sensor network. In such applications, each sensor has one master node, and 

the aim is to find balanced clusters of sensor nodes while attempting to minimize the distance 

between master and sensor nodes. The authors formulated the problem as a minimum cost flow 

problem and optimally solved it. 

Although many optimization algorithms have been used to solve traditional clustering 

problems, few studies have focused on applying AI-based optimization techniques to solve 

automatic clustering problems, and none of them concentrate on having clusters with the same 

maximum distance. Due to the requirement of an appropriate clustering solution in such 

applications, as part of this research, we proposed an automatic clustering framework using AI-

based optimization techniques to create clusters with approximately the same maximum distance 

without knowing the exact number of clusters. 

1.4. Research Contributions 

This research studies a cache-aided delivery network in a shared cache framework with 

correlated content under different settings. We focus on the content placement phase to reduce the 

delivery rate and the users’ expected distortion in the delivery phase of the caching network. The 

contributions to this dissertation are summarized as follows: 
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• Automatic data clustering using AI-based optimization techniques in a general 

framework: To extract the most efficient side information for the placement phase, we 

propose a systematic framework for automatic data clustering using AI-based 

optimization techniques. Our proposed clustering solution partitions the library content 

files into compact and well-separated clusters with approximately the same maximum 

distance without requiring prior knowledge about the exact number of clusters. The 

proposed solution has been designed in a general framework and can successfully cope 

with different types of datasets and distance measures. The proposed clustering scheme 

is highly effective in high-dimensional data and binary datasets with a high degree of 

similarity. 

• Single shared cache Scenario: As the first step toward this research, we study the 

proposed network in a single shared cache scenario. To address the key challenge of 

content placement, we propose a correlation-aware clustering scheme (CACS), 

developed based on the general framework, to extract the most efficient side information 

for the placement phase. This scheme categorizes content files with a high degree of 

similarity into the same group with approximately the same maximum distance per 

cluster, considering the distortion constraint of the system. We formulate the expected 

delivery rate by joint consideration of the rate-distortion function and caching strategy, 

where the limit for the maximum allowable distortion in the system is determined based 

on the Lagrange multipliers technique and reverse water-filling algorithm. Our 

simulation results show a considerable boost in network efficiency compared to legacy 

caching schemes. 

• Shared cache framework with multiple caches under uniform popularity demand: 

We study the proposed network in a shared cache framework with multiple caches 

where each cache is connected to a different group of users in the network. We utilize 

the proposed CACS to extract the side information for the entire library along. Then we 

address the caching placement and delivery scheme in a distributed platform. The 

placement phase considers splitting the representatives into segments and placing the 

segments according to codded caching strategy to maintain symmetry and reach the 

global caching gain. The delivery phase involves constructing the clusters’ 
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representatives and clustered files by transmitting codded multicast messages and 

refinement segments. Moreover, we introduce the optimum library partitioning 

formulated to minimize the worst-case delivery rate in the system.  

• Shared cache framework with multiple caches under non-uniform popularity 

demand: We propose a cache-aided delivery network in a shared cache framework with 

correlated content under non-uniform popularity demand distribution. To address the 

content placement challenge, we propose a popularity-based correlation-aware 

clustering scheme (PB-CACS) that considers both the popularity and similarity of 

library content to extract the most efficient side information for the entire library. Then, 

we consider a hybrid 3 placement, in which the popular side information is stored 

completely in all caches, and the clusters’ side information is split among different 

caches. In the delivery phase, coded multicast messages and refinement segments are 

transmitted to construct the requested cluster representatives and clustered files. Finally, 

we discuss the trade-offs between the cache size and the delivery rate in our system.  

1.5. Organization of Dissertation 

This thesis is organized as follows. Chapter 2 fully represents the fundamentals and theoretical 

backgrounds behind the proposed cache-aided content delivery network in this research. Chapter 

3 introduces the proposed automatic clustering solution in a general framework. In Chapter 4, our 

proposed solution to the cache-aided delivery network in a single shared cache is presented. 

Chapter 5 introduces the cache-aided delivery network in a shared framework with multiple caches 

under uniform demand distribution. Chapter 6 discusses our proposed solution considering the 

non-uniform demand popularity, and finally, Chapter 7 represents the conclusions and directions 

for future works. 

 

 

 
3 Hybrid placement in this model means that the placement strategy benefits from two models of placement 

simultaneously; some content is fully cached into the memory, while others are cached only in segments according to 

the coded caching strategy. 
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Chapter 2  

Background 

This chapter introduces the theoretical concepts and the fundamental background used in this 

research for the proposed cache-aided delivery network under different settings. 

2.1. Centralized vs. Decentralized Caching 

Cache-aided networks are categorized into two main classes: centralized [5] and decentralized 

[9] caching. A centralized cache-aided network assumes that all users, and consequently caches, 

are available during both phases of caching; therefore, they can all be counted on for the placement 

phase. However, a decentralized caching network is designed for applications where some of the 
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users are not available during the placement phase (For example, due to the mobility of users) and 

cannot participate in the placement phase. In this research, we consider a centralized approach for 

the proposed network. 

2.1.1. Centralized Coded Caching Strategy with Uncoded Placement 

The centralized coded caching strategy with uncoded placement [5] has emerged as a major 

breakthrough to combat the high delivery data rate requirement and improve the quality of 

experience (QoE) for the end-users in delivery networks. This strategy aims to minimize the peak 

load on the broadcast link through the caching and delivery scheme. 

This strategy assumes a network consisting of a single server with access to 𝑚 independent 

library files and 𝑁 users, where each user is equipped with an individual cache of size 𝑀 files. It 

is assumed that the server is connected to the users through a shared error-free broadcast link, and 

files follow a uniform popularity demand.  

This scheme splits each content file into (
𝑁
𝑇
) nonoverlapping subfiles, where 𝑇 = 𝑁𝑀 𝑚⁄  and 

caches each subfile in a distinct group of 𝑇 users in the placement phase. In the delivery phase, 

one coded message is sent to each subset of  𝑇 + 1 users by the server. The coded message is the 

bitwise XOR of all 𝑇 + 1  request subfiles. Therefore, the delivery rate to serve all users with one 

request for any 1 < 𝑀 < 𝑚 is calculated as: 

𝑅(𝑀) = 𝑁 (1 −
𝑀

𝑚
)𝑚𝑖𝑛 (

1

1+𝑁 𝑀 𝑚⁄
,
𝑚

𝑁
)   () 

Where 𝑁 (1 −
𝑀

𝑚
) is known as the local caching gain and 

1

1+ 𝑁 𝑀 𝑚⁄
  is known as the global 

caching gain. 

2.2. Placement and Delivery Phases Strategies 

Content placement strategy identifies selected content for placing into the cache during the 

placement phase. Generally, two kinds of placement strategies are discussed in studies: uncoded 

placement and coded placement [73][74]. In the uncoded placement strategy, some actual files or 
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subfiles are placed into the caches without manipulation according to the cache size. While in the 

coded strategy, the library files are divided into subfiles and processed by a certain coding method. 

Then the coded segments are placed into the caches according to the cache size.  

A content replacement is another placement strategy that replaces the old content with updated 

content. In this regard, a frequency-based strategy called least frequently used (LFU) and a 

recency-strategy called least recently used (LRU) are the most famous replacement strategies in 

studies [6][75]. 

The caching delivery strategy determines how requested files are delivered to receivers during 

the delivery phase considering the placement strategy. The linear network coding (NC) [77][78] 

or equivalently index coding (IC) technique [22][79] is typically used to create multicast 

opportunities and reduce bandwidth usage in the delivery phase. In cases where multicasting 

cannot improve the unicast rate, unicasting can also be considered [5][26][72]. 

As the content placement and delivery strategies directly affect each other, jointly designing 

placement and delivery strategies is another point of view to improve network efficiency 

[15][17][22][72]. This strategy aims to optimize both the placement and delivery phases 

simultaneously; hence, the placement phase will be designed in a way to minimize the delivery 

rate. 

2.3. Index Coding Technique 

Birk and Kol introduced index coding [22][79] as a transmission technique for a noiseless 

broadcast channel consisting of a transmitter and multiple receivers. In this technique, the 

transmitter wishes to deliver multiple packets to the receivers over a shared error-free broadcast 

link, where each receiver has already stored some packets in its own cache and demands a subset 

of the remaining packets. The goal is to minimize the required transmissions so that all users can 

decode the desired packets reliably with their own side information and received packets. 

Example 2.1: Consider a simple network with four users 𝑢1, 𝑢2, 𝑢3, 𝑢4 each with an individual 

cache, requesting messages 𝑎, 𝑏, 𝑐, 𝑑, respectively. Assume user 𝑢1 has message 𝑏 in its cache, 

user 𝑢2 has message 𝑎 in its cache, user 𝑢3 has message 𝑑 in its cache, and user 𝑢4 has message 𝑐 
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in its cache. As an alternative to transmitting all four messages 𝑎, 𝑏, 𝑐, 𝑑 separately, according to 

the index coding technique, we can transmit just two coded messages 𝑎⨁𝑏 and 𝑐⨁𝑑, which 

reduces the delivery rate by 1 2⁄ . The coded messages are the result of bitwise XOR operation 

between the two desired messages denoted by ⨁. 

 

The IC technique has recently gained significant attention in the delivery phase of caching 

problems. The difference between caching and IC problems is the available side information in the 

receivers; In the IC, the cached side information is fixed for the problem, while in the caching 

scenarios, the cached content is not predefined and should be properly designed during the 

placement phase. Moreover, in IC problems, demands are also assumed to be fixed for each 

receiver, while in caching scenario, one might be interested in all possible demands. 

2.4. Popularity Demand Distribution 

Generally, cache-aided delivery networks can be investigated under two content popularity 

distributions: uniform content popularity and non-uniform content popularity.  

In uniform content popularity demand, the assumption is that all library content files are 

requested according to a uniform distribution, and users have no preference in choosing one file 

over the others [5]. The traditional approach for the placement phase under the uniform popularity 

is randomly placing some of the content into the cache according to the memory size. In such 

cases, the worst-case demand delivery rate is usually evaluated as a performance criterion. 

Non-uniform content popularity demand is of great importance in the caching literature as it is 

more likely to occur in the real world. According to this model, only a small number of files are 
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highly requested by a large number of users, and the rest of the files will be demanded only from 

time to time in the network. In this sense, different popularity models have been considered in the 

literature [18][44], in which Zipf distribution is discussed as one of the most famous models in 

multimedia content popularity.  

The Zipf distribution models the relative popularity of a few population numbers and the 

relative obscurity of others. Based on this distribution, 𝓆𝑖 ∼ Zipf (𝜉,𝑚), the probability of 

requesting the 𝑖𝑡ℎ file among all 𝑚 library content files with the parameter 𝜉 is modeled as follows. 

𝓆𝑖 =
1 𝑖𝜉⁄

∑ 1 𝑗𝜉⁄
𝑚

𝑗=1

     () 

Lower values of parameter 𝛾 indicate a more uniform distribution, while high values indicate 

that a large number of users are interested in a small number of files. 

Conventionally, caches are allocated to the highest popular content under the non-uniform 

content popularity demand. Dividing files into groups with similar probability [6], categorizing 

library files into only two groups of popular and non-popular content files [10], and the multi-level 

popularity model [19] are the most well-known approaches used in designing caching schemes 

under non-uniform popularity demand. 

2.5. Distributed Source Coding with Side Information at the Decoder 

As mentioned earlier, we have an information-theoretic perspective on the caching scheme and 

formulate this problem in the context of distributed source coding (DSC) with side information at 

the decoder.  

DSC considers independently compressing and jointly decompressing the library sources by 

exploiting mutual correlation among them. These sources should be statistically dependent but 

physically separated [80]. The basic idea of the distributed source coding with a decoder side 

information problem is compressing the sources conditionally according to the available side 

information in the decoder so that less delivery rate is needed for the reconstruction of the sources 

at the decoder [81]. Lossless DSC considers discrete sources and perfect reconstruction at the 
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decoder, while lossy DSC allows for some distortion in the decoder, and the problem turns to a 

rate-distortion function. 

2.5.1. Lossless Source Coding 

The Slepian-Wolf (SW) coding is the simplest case of lossless distributed source coding, which 

considers the separate compression and joint lossless decompression of correlated discrete sources. 

Slepian-Wolf Theorem: Let 𝒰 and 𝒱 be two correlated random sources drawn independently and 

identically distributed, i.i.d, from joint distribution 𝒫(𝓊,𝓋). Therefore, the achievable rate region 

for compressing 𝒰 and 𝒱 with compressing rate ℛ𝓊 and ℛ𝓋 respectively is as follows.  

 ℛ𝓊 ≥ 𝐻(𝒰|𝒱)     

ℛ𝓋 ≥ 𝐻(𝒱|𝒰) 

ℛ = ℛ𝓊 + ℛ𝓋 ≥ 𝐻(𝒰,𝒱)    () 

It is shown that if we compress the first source up to its entropy, the second source can then be 

compressed as low as its conditional entropy given the first source and vice versa. 

Figure 2.1 illustrates this achievable rate region. As we can see, the SW rate region has two 

corner points (𝐻(𝒰),𝐻(𝒱|𝒰)) and (𝐻(𝒰|𝒱), 𝐻(𝒱)).  

The asymmetric SW coding scheme is a scheme that attempts to approach one of these two 

corner points. In Asymmetric coding, a source is compressed to its entropy rate while the second 

source is compressed at the minimum possible rate. Therefore, during the decompression process, 

the first source is decompressed, and then the second source is decompressed with the help of the 

first source. This point of view is equivalent to the source coding with decoder side information 

case where a source is already available at the decoder, and the other source is compressed to the 

minimum possible rate.  
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Figure 2.1: The achievable rate region in SW coding 

2.5.2. Lossy Source Coding 

Wyner-Ziv (WZ) coding generalizes SW coding from the lossless to the lossy case, which is 

similar to the generalization of the classic source coding problem to the rate-distortion problem 

[80][81].  

Assuming 𝒰 and 𝒱 be two joint i.i.d sources, the WZ problem aims to compress a block of 𝒰, 

lossily and recover an estimate �̂� at the decoder with the help of 𝒱.  

The fidelity of �̂� from 𝒰 is characterized using a distortion measure 𝑑(. , . ). In this regard, we 

are interested in finding the smallest rate required to ensure the average distortion 𝔼[𝑑(𝒰, �̂�)] is 

smaller than some predetermined value 𝜹.  

Figure 2.2 shows the setup of the WZ problem. 

 

Figure 2.2: The setup of the Wyner-Ziv problem  
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Then, the rate-distortion function 𝑅𝑊𝑍(𝐷) can be found by solving the optimization problem 

as follows: 

𝑅∗(𝐷) ≜  min
𝑞(𝑤|𝓊),�̂�

𝐼(𝒰;𝒲|𝒱)   () 

𝑠. 𝑡.       𝔼[𝑑(𝒰, �̂�)] ≤ 𝜹 

In other words, we have 𝑅𝑊𝑍(𝐷) = 𝑅∗(𝐷). 

2.6. AI-Based Optimization Techniques 

Most clustering problems can be described as typical optimization problem that tries to optimize 

a criterion and specify the clustering quality [66]. Therefore, using heuristic and meta-heuristic AI 

techniques in automatic clustering has been proposed as a superb solution to work with different 

applications and datasets and overcome the weaknesses of the classical approaches in recent years. 

Heuristic and meta-heuristic AI techniques are optimization techniques that do not require offline 

training but could provide an optimal or near-optimal solution for the formulated objective 

function, considering the system objectives and constraints. A comprehensive survey on data 

clustering using metaheuristic algorithms can also be found in [56][64][65][66][67]. 

Since assigning a cluster number to a data point has a discrete nature, we have adopted binary 

metaheuristics optimization algorithms in the AI-optimizer module of the proposed clustering 

scheme. To this end, we have considered four of the most well-known algorithms, including the 

binary bat algorithm (BBA) [82], binary particle swarm optimization (BPSO) [83], binary genetic 

algorithm [84], and binary dragonfly algorithm (BDA) [85]. 

2.6.1. Binary Bat Algorithm 

The bat algorithm is a heuristic optimization algorithm inspired by the echolocation behavior 

of bats, initially proposed to solve problems with continuous search spaces [86]. In [82], a binary 

version of this algorithm known as BBA is developed, which has a discrete search space and 

applies to binary problems.  
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In the original Bat algorithm, each artificial bat will update the velocity, position, and frequency 

vector according to (2.5), (2.6), and (2.7) during the course of iterations 𝑡. 

𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) + (𝜑𝑖
(𝑡) − 𝐺𝑏𝑒𝑠𝑡)𝐹𝑟𝑖   () 

𝜑𝑖(𝑡 + 1) = 𝜑𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)   () 

𝐹𝑟𝑖 = 𝐹𝑟𝑚𝑖𝑛 + (𝐹𝑟𝑚𝑎𝑥 − 𝐹𝑟𝑚𝑖𝑛)𝜗   () 

where 𝐹𝑟𝑚𝑖𝑛 and 𝐹𝑟𝑚𝑎𝑥 are the minimum and maximum frequencies, and 𝜗 is a random number 

from a uniform distribution in  [0,1]. Each bat for a local search carries out the random walk based 

on the optimal solution as given in (2.8). 

𝜑𝑛𝑒𝑤 = 𝜑𝑜𝑙𝑑 + 휀𝐴𝑡     () 

Where 휀 is a random number from a uniform distribution in  [−1,1], 𝜑𝑜𝑙𝑑 is a solution randomly 

selected from the current optimal solution, and 𝐴 shows the loudness of emitted sound. The 

loudness of the pulse emission of the bat 𝐴𝑖  and the velocity 𝑟𝑖 will be updated as follows. 

𝐴𝑖(𝑡 + 1) =  𝛼𝐴𝑖(𝑡)     () 

𝑟𝑖(𝑡 + 1) = 𝑟𝑖(0)[1 − exp(−𝓎𝑡)]    () 

Where 0 < 𝛼 < 1 and 𝓎 > 0 are constant. In the binary version of the bat algorithm, a V-

shaped transfer function is used to define a transformation probability from 0 to 1 for a position 

vector and oblige the particles with high velocity to switch their positions. Then a new position-

updating equation is also used to update the position of the particle. These equations are given in 

(2.11) and (2.12), respectively. 

𝑉 (𝑣𝑖
𝑘(𝑡)) = |

2

𝜋
 arctan(

𝜋

2
𝑣𝑖

𝑘(𝑡))|    () 

𝜑𝑖
𝑘(𝑡 + 1) = {

(𝜑
𝑖
𝑘
(𝑡))

−1
         𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑉 (𝑣𝑖

𝑘(𝑡 + 1))

𝜑𝑖
𝑘(𝑡)              𝑖𝑓  𝑟𝑎𝑛𝑑 ≥ 𝑉 (𝑣𝑖

𝑘(𝑡 + 1))
   () 

where 𝜑𝑖
𝑘(𝑡) and 𝑣𝑖

𝑘(𝑡) indicate the position and velocity of 𝑖𝑡ℎ particle at 𝑡𝑡ℎ iteration in 𝑘𝑡ℎ 

dimension and (𝜑𝑖
𝑘(𝑡))−1  is the complement of 𝜑𝑖

𝑘(𝑡). 
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2.6.2. Binary Particle Swarm Optimization 

Particle swarm optimization is one of the most widely used evolutionary due to its simplicity 

and low computation cost in solving a wide range of problems. The binary version of the PSO was 

originally proposed by Kennedy and Eberhart [87]. In this algorithm, each particle will update the 

position and velocity vectors as guidance for its movement in the discrete search space. This 

algorithm utilizes a transfer function to map the velocity vector to a probability vector, and then 

the probability vector is used to update the position of particles. This transfer function is a sigmoid 

function that returns 0.5 when the velocity equals 0. At this point, the probability of changing a 

variable is at the highest level. By contrast, as the velocity value goes toward the positive or 

negative infinity, the transfer function returns values close to 1 or 0. The related equations are 

given in (2.13), (2.14), and (2.15). 

𝑉𝑖(𝑡 + 1) = 𝓌𝑉𝑖(𝑡) + 𝔠1𝔯1 (𝜑𝑏𝑒𝑠𝑡(𝑖)(𝑡) − 𝜑𝑖(𝑡)) + 𝔠2𝔯2 (𝜑𝑏𝑒𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙(𝑖)(𝑡) − 𝜑𝑖(𝑡))   () 

𝜑𝑖(𝑡 + 1) = {
1             𝑖𝑓 𝑟 < 𝑇(𝑉𝑖(𝑡 + 1))

0            𝑖𝑓  𝑟 ≥ 𝑇(𝑉𝑖(𝑡 + 1))
    () 

𝑇(𝑉𝑖(𝑡 + 1)) =
1

1+𝑒
−(𝑉𝑖(𝑡+1))

   () 

Over the years, several studies [88][89][90] have improved the original BPSO by enhancing 

the updating position formula, as the original BPSO suffered from local minima trapping. The 

authors of [83] discussed how the transfer function affects the efficiency of the algorithm in the 

binary version for mapping the continuous search space to the discrete search space. They 

improved the performance and convergence speed of the algorithm by proposing two families of 

transfer functions and showed excellent performance with a V-shaped transfer function which has 

been used utilized in our study as well. 

2.6.3. Binary Genetic Algorithm 

The genetic algorithm is a population-based optimization method that formulates the problem 

as an objective function using the concept of genes from biology. The GA initializes by generating 

the initial population; then, three genetic operators are performed (i.e., selection, crossover, and 
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mutation) on some selected individuals from the current population iteratively to reach either a 

near-optimal solution or reach a predefined number of generations [91].  

For BGA [92], the decision variables are represented as chromosomes = [𝐺1, 𝐺2, … , 𝐺𝑛], while 

each gene 𝑔𝑖 in the chromosome is encoded by a binary vector of length 𝐵, in which 0 means not 

selected feature and 1 means selected feature for the decoding process. BGA uses a group of 

chromosomes known as population (𝑁pop) and goes through a process of updates or generations 

to evolve. The cost function can be represented as 𝒇(chromosome), which needs to be minimized 

or maximized based on the desired settings. The next step is natural selection and mating, in which 

a pair of chromosomes are selected to mate to generate further offspring in each generation. BGA 

first selects a set of fittest chromosomes (𝑁keep) from which the parents will be selected, and all 

other chromosomes are discarded and replaced by generated offsprings. Once the offsprings is 

generated, the mutation occurs as a random process to mutate the bits in the population. If the new 

population is ineffective in terms of cost, it will be discarded in the next generation or iteration. 

As a final step, BGA checks for convergence conditions as soon as the mutated population is 

generated. If the convergence conditions are met, the process stops; otherwise, BGA iterates 

through multiple generations and repeats the decoding, cost calculation, mating, and mutation 

process. 

2.6.4. Binary Dragonfly Algorithm 

While the dragonfly algorithm had been proposed for problems with continuous search spaces, 

the binary version of this algorithm (BDA) [85] has been developed for feature selection and 

demonstrated excellent performance in discrete search spaces.  

DA adopted the step and position vectors to solve the optimization problem. In a continuous 

search space, the position of dragonflies is updated by adding the step vector to the previous 

position. 

∆𝜑𝑡+1 = (𝓈𝒥𝑖 + 𝒶𝒯𝑖 + 𝒸𝒞𝑖 + ℊ𝒢𝑖 + ℯℰ𝑖) + 𝓌∆𝜑𝑡+1    () 

𝜑𝑡+1 = 𝜑𝑡 + ∆𝜑𝑡+1    () 
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 Where 𝓈 describes the separation weight, 𝒥𝑖 represents the separation of the 𝑖𝑡ℎ individual, 𝒶 

is the alignment weight, 𝒯𝑖 is the alignment of the 𝑖𝑡ℎ individual, 𝒸 is the cohesion weight, 𝒞𝑖 is the 

cohesion of the 𝑖𝑡ℎ individual, ℊ shows the food factor, 𝒢𝑖 is the food source of the 𝑖𝑡ℎ individual, 

ℯ indicates the enemy factor, ℰ𝑖 is the enemy position of the 𝑖𝑡ℎ individual,  

𝓌 is the inertia weight, and finally, 𝑡 is the number of iterations. The swarming behavior and 

mathematical model of this algorithm are given as follows: 

𝒥𝑖 = ∑ 𝜑 − 𝜑𝑗

𝓃

𝑗=1
     () 

𝜑𝑗 represents the 𝑗𝑡ℎ neighboring individual of the 𝜑 position, and 𝓃 is the neighborhood size. 

𝒯𝑖 = ∑ 𝑉𝑗
𝓃

𝑗=1
𝓃⁄      () 

𝑉𝑗 represents the 𝑗𝑡ℎ neighboring individual velocity. 

𝒞𝑖 = 
∑ 𝑉𝑗

𝓃

𝑗=1

𝓃
 − 𝜑    () 

𝒢𝑖 = 𝜑+ − 𝜑     () 

ℰ𝑖 = 𝜑− + 𝜑     () 

𝜑 represents the current individual’s position, 𝜑+ describes the position of the food source and 

𝜑− represents the enemy positions. 

In a binary search space, the following equations should be used to update the step vector: 

𝜑𝑡+1 = {
𝛽𝜑𝑡,           𝑖𝑓 𝑥 < 𝑇(∆𝜑𝑡+1)

𝜑𝑡,           𝑖𝑓  𝑥 ≥ 𝑇(∆𝜑𝑡+1)
     () 

𝛽 indicates a random number in the range [0,1], and 𝑇(∆𝜑𝑡+1) is as follows: 

𝑇(∆𝜑) = |
∆𝜑

√∆𝜑2+1
|    () 
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Chapter 3  

Automatic Clustering Using AI-Based Optimization 

Techniques in a General Framework 

 

This chapter provides an extensive evaluation and comprehensive discussion of the proposed 

clustering solution in a general framework. This chapter is important because it validates and 

facilitates the development of the other two clustering schemes presented as part of the placement 

phase of the proposed caching networks in the following chapters. 

Cluster analysis using AI-based optimization techniques has earned increasing popularity due 

to the excellent performance of such solutions in finding high-quality clusters in complex 

problems. This chapter proposes a novel framework for automatic data clustering, creating clusters 

with approximately the same maximum distance using meta-heuristic AI-based optimization 
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techniques. Such techniques do not require offline training but could provide an optimal or near-

optimal solution, considering the system objectives and constraints.  

The inherent problem with clustering using such algorithms is having a huge search space. 

Therefore, we have also proposed a binary encoding scheme for the particle representation in the 

AI-optimizer module to alleviate this problem. The proposed clustering solution does not require 

prior knowledge of the number of clusters and evolves based on re-clustering, merging, and 

modifying the small clusters to compensate for the distortion deviation between groups with 

different sizes.  

The performance of this framework has been evaluated over a wide range of synthetic, real-life, 

and higher dimensional datasets first by considering four different binary optimization algorithms 

in the AI-optimizer module. Furthermore, utilizing internal validity measures, it has also been 

evaluated in comparison with multiple classical and new clustering solutions as well as two other 

automatic clustering techniques in continuous search space. The experimental results show the 

proposed solution is highly efficient in creating well-separated and compact clusters with 

approximately the same distance in almost all datasets. Moreover, the application of the proposed 

framework to the correlated binary dataset is also investigated as a case study.  

Besides having a dynamic number of clusters, simplicity, customizability, and flexibility in 

adding extra conditions to the proposed solution are the advantages of the proposed framework. 

3.1. Introduction 

Over the years, many clustering algorithms have been proposed for different data types, 

algorithms, and applications. In general, partitional and hierarchal clustering algorithms are the 

two main approaches for cluster analysis in the literature [38],[66],[94]-[99]. The partitional 

algorithms can be performed in two different modes: hard and fuzzy. In the hard-clustering 

algorithm, each pattern only belongs to one cluster, while in the fuzzy algorithm, different 

membership degrees are assigned to each pattern in a group. Partitional algorithms are often non-

deterministic. These algorithms require a priori knowledge of the number of clusters [38][94].  
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The well-known 𝐾-means method is a famous example of this type that is initialized with a 

random solution and tries to partition a given dataset into a predefined number of clusters. 

Although it is an efficient and robust algorithm, the results strongly depend on the initial random 

guesses. Furthermore, this algorithm computes the local minimum and cannot guarantee the global 

optimum solution [95]-[97]. 

On the other hand, the hierarchical clustering algorithm develops a tree-based data structure to 

reach the exact number of clusters by splitting the tree at different levels. This algorithm creates a 

more deterministic and flexible mechanism than the partitional approach. However, the final 

grouping is static since each cluster’s assigned objects cannot move to other groups. Besides, 

hierarchical clustering exhibits poor performance when the separation of overlapping clusters is 

carried out [38][96][98]. In this case, the fuzzy clustering algorithm can express the overlapping 

nature of clusters much better than the hierarchical model. The fuzzy C-mean (FCM) algorithm 

[99] is a widely used clustering algorithm that divides objects into a C number of clusters. This 

number is determined by trial and error in advance. Although FCM is a powerful method, it is 

highly dependent on initial guesses; thus, it can be easily entrapped within local optima 

[38][66][99]. 

Being sensitive to initial solutions, entrapping in local optima, and requiring a priori knowledge 

of the number of clusters in most classical clustering algorithms made it challenging to handle this 

task in some applications. On the other hand, most real-world clustering problems can be described 

as a typical optimization problem that tries to optimize a criterion and specify the clustering quality 

[9]. Therefore, meta-heuristic AI-based techniques have been proposed as superb solutions in 

automatic clustering to overcome the weaknesses of the classical approaches in recent years 

[48][68].  

In a nutshell, metaheuristic algorithms can address the clustering problem via two main 

approaches. In one approach, the optimization algorithm tries to find the optimum centroids for 

the desired dataset. Then, it divides data points into predetermined clusters according to the 

identified centroids. This approach requires a priori knowledge of the exact number of clusters. In 

another approach, the optimization algorithm assigns each data point directly to a group and tries 

to reach the best possible solution over the course of iterations. The second approach is more 

convenient since the number of clusters is not required to be predefined, and a sufficient number 



34 

 

 

of clusters evolve during the entire clustering process. However, it suffers from a huge search 

space, which makes the overall solution extremely difficult without providing additional insights.  

The advantage of not requiring predefined information in the second approach motivated us to 

develop our clustering problem based on this solution. In this regard, we have formulated the 

clustering problem as an AI-based optimization problem and adopted a dynamic range of clusters 

in accordance with the input data to improve the convergence speed. 

3.2. Data Clustering Problem Formulation 

Let 𝓐𝑚×𝑙 represents a set of 𝑚 patterns, each having 𝑙 features. The data clustering problem 

considers a given dataset 𝓐𝑚×𝑙 and attempts to partition it into 𝐾 clusters 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝐾] such 

that 𝐾 ≤ 𝑚. In such partitioning, the following properties should be maintained: 

• ∀𝑖 ∈ {1,2,3, … , 𝐾}, 𝑐𝑖 ≠ ∅  

• ⋃ 𝑐𝑖 = 𝓐𝐾
𝑖=1   

• 𝑐𝑖 ∩ 𝑐𝑗 = ∅, ∀𝑖, 𝑗 ∈ {1,2, … , 𝐾}, and 𝑖 ≠ 𝑗  

Given dataset 𝓐𝑚×𝑙, the fitness function 𝒇 is defined as a partitioning adequacy measure to 

quantify the goodness of a partition based on the similarity of the patterns. Therefore, the clustering 

problem turns into finding optimal partitions among all other feasible solutions [94]. 

Euclidean distance is one of the most popular choices for distance measures to evaluate the 

similarity between data points in clustering problems. The Euclidean distance between any two 𝑙-

dimensional data points is given by: 

𝒹(𝒜𝑙 , 𝒜𝑙
′) = √∑ (𝒜𝑙

𝑖 − 𝒜𝑙
′𝑖)2𝑙

𝑖=1      () 

3.3. Proposed Data Clustering Framework 

The main idea of designing the proposed framework using AI-based optimization techniques is 

to reach a sufficient number of compact and well-separated clusters with approximately the same 

maximum distance within each group without requiring prior knowledge of the number of clusters. 
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To overcome the inconvenience of having a huge search space as well as not having a priori 

knowledge of the adequate number of clusters, we propose a binary encoding scheme for the 

particle representation of the optimization algorithm in a predetermined range [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥], where 

𝑚 is the total number of data points  and 𝐾𝑚𝑖𝑛 = 1, 𝐾𝑚𝑎𝑥 = ⌊√𝑚⌋. 

𝐾𝑚𝑎𝑥 is considered as ⌊√𝑚⌋ according to similar assumptions discussed in [100] for a clustering 

solution with the fuzzy C-mean model and [66] for automatic clustering using metaheuristic 

algorithms. They have mentioned that 𝐾 = √𝑚 usually provides a decent answer for such 

clustering solutions as a rule of thumb. Hence, we applied this assumption to our dynamic range 

of clusters in our proposed solution. We observed that considering this assumption along with the 

proposed binary encoding scheme provides excellent results in our proposed framework. 

Overall, the proposed framework operates in two main steps: First, each data point is directly 

equipped with an initial cluster number. Consequently, a primary clustering solution is formed at 

this step. The obtained clusters will then be re-clustered, merged, and modified based on some 

conditions to compensate for the distortion deviation between groups with different sizes and 

improve the result according to the desired objectives.  

Following is a detailed description of the AI-based optimizer module, the binary encoding 

scheme, and the objective function. 

3.3.1. AI-Based Optimizer Module 

The first step is to formulate the clustering problem in a way that is amenable to an AI optimizer 

module. The second step is utilizing AI-based optimization techniques in the optimizer module to 

find the near-optimum solution. In this way, the optimizer intelligently encompasses the process 

of finding a decent number of clusters with the same maximum distance in accordance with the 

dataset considering the defined constraint in the system. 

The AI-based optimizer module stands at the highest level of the proposed approach and 

considers the clustering problem as a black box that needs to be optimized iteratively. In this 

regard, the automatic clustering problem is formulated as a single objective optimization function 

based on the desired goals and system constraints. The AI-based optimizer takes a binary vector 
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as input and calculates the corresponding output according to some merit factors while minimizing 

this function during the entire process. In other words, the optimizer module checks combinations 

of the input to determine which input vector will yield the minimum output of the function.  

A wide range of binary optimization algorithms can be utilized for the AI-based optimizer 

module. This research considers the BPSO algorithm, the BBA algorithm, the BGA algorithm, and 

the BDA algorithm due to their excellent performance discussed in the literature. 

3.3.2. Binary Encoding Scheme 

Similar to other iterative metaheuristic algorithms [66], our approach requires a representation 

of a solution that is directly related to the objective function to be optimized. Therefore, a binary 

encoding scheme for particle representation has also been proposed in this research. The proposed 

binary encoding scheme assigns binary vectors with the length of 𝑚 × 𝐿 bits to each particle in the 

optimizer, where 𝐿 is the number of required bits to address each cluster number and calculated as 

 𝐿 = log2 𝐾𝑚𝑎𝑥    () 

The suggested binary vectors are considered the candidate solution and evaluated by the 

optimizer module iterations. For this purpose, every L bit of this vector is converted to the decimal 

equivalent in sequential order. These decimal numbers are assigned to data points as the initial 

cluster numbers.  

Example 3.1: A simple example of the proposed encoding scheme is shown in Figure 3.1 for 

𝑚 = 16 data points. In this case, 𝐾𝑚𝑎𝑥 = 4, and 𝐿 = 2; therefore, each particle is represented by 

a binary vector of length 𝑚 × 𝐿 = 32 bits.  

Then every 2-bit of the binary vector is converted to the decimal equivalent in sequential order. 

The decimal equivalents are considered the initial cluster numbers and will be assigned to the data 

points in the same order to form the initial clustering. 
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Figure 3.1: The steps of assigning a cluster number to each data point by the proposed binary 

encoding scheme in the general clustering framework 

3.3.3. Objective Function 

We formulate the data clustering problem as a single objective optimization problem with 

objective function 𝒇 that needs to be minimized iteratively over the set of all feasible ways of 

clustering a given dataset.  

The set of all feasible ways of clustering a given dataset is defined as 𝜓 = {𝐶1, 𝐶2, … , 𝐶𝑆(𝑚,𝐾)}. 

𝑆(𝑚,𝐾) is the total number of combinations in assigning 𝑚 files into 𝐾 clusters [66] obtained by 

the Stirling number of the second kind [118]. 

𝑆(𝑚,𝐾) =
1

𝐾!
∑  (−1)𝑖(𝐾

𝑖
)(𝐾 − 𝑖)𝑚𝐾

𝑖=0   () 

Once the initial clustering solution is formed, a representative is selected for each cluster. The 

representative is defined as the nearest data point to the current centroid in each group, where the 

centroid is the mean of all data points in each cluster. Then, data points will be re-clustered 

according to the identified representatives of the clusters. Consequently, the representatives will 

also be updated according to the recent changes. Re-clustering and updating the representatives 

will be repeated several times until no further changes are observed. 
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Although the achieved clustering solution up to this stage consists of separated clusters, it is not 

well-organized yet and needs to be revised to satisfy our goals. To reach clusters with 

approximately the same maximum distance while keeping the number of clusters less than 𝐾𝑚𝑎𝑥 , 

the distortion gap between the largest and the smallest clusters must be compensated. In this regard, 

the smallest clusters are identified and marked as defective, meaning they should be merged 

appropriately with adjacent clusters. To merge clusters, we compare the maximum distances of all 

clusters with the cluster with the largest maximum distance across all clusters according to 

inequality (3.4).  Clusters that do not satisfy this inequality are considered defective and merged 

with adjacent clusters. 

𝛿𝑐𝑖  ≤ 0.9 Max
𝐶

 {𝛿𝑐𝑖  }   () 

where 𝛿𝑐𝑖 is the maximum distance within the cluster 𝑐𝑖 ∈ 𝐶, for 𝑖 ∈ {1,… , 𝐾}, and 𝐶 ∈ 𝜓. 

The process of re-clustering and updating representatives is repeated to stabilize the clustering 

in this step. Once no change happens in the clusters, that solution is considered the best result for 

the corresponding input vector, and the following merit factors are calculated by the optimizer: 

• 𝐾𝑚𝑎𝑥 as the maximum number of clusters 

• 𝛿𝑐𝑖 as the maximum intra-cluster distance within each cluster 𝑐𝑖 ∈ 𝐶 

• ∆𝐶 as the distortion deviation over all clusters in a clustering solution 𝐶 

• �̅�𝐶
𝑚𝑎𝑥 as the average of the maximum distance over all clusters in a clustering solution 𝐶 

• �̅�𝐶
𝑚𝑖𝑛 as the average of minimum inter-cluster distances in a clustering solution 𝐶 

The definition of these parameters is given as follows.  

Definition 1: Considering 𝛿𝑐𝑖 as the maximum distance in each cluster 𝑐𝑖, then �̅�𝐶
𝑚𝑎𝑥 is defined 

as the average of the maximum distance of all clusters and is calculated as: 

�̅�𝑚𝑎𝑥

𝐶
=

1

𝐾
∑ 𝛿𝑐𝑖𝐾

𝑖=1    () 

where 𝑖 ∈ {1,2, … , 𝐾} and 𝐶 ∈ 𝜓. 

Definition 2: The distance deviation ∆𝐶 is defined as the difference between the maximum and 

the minimum value of maximum distance over all clusters and is defined as: 
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∆𝐶= max
𝑐∈𝐶

{𝛿𝑐𝑖} − min
𝑐∈𝐶

{𝛿𝑐𝑗}  () 

where 𝑖, 𝑗 ∈ {1,2, … , 𝐾} 𝑗 ≠ 𝑖, and 𝐶 ∈ 𝜓. 

Definition 3: Let 𝐸𝑖𝑗
𝒜  be the inter-cluster distance between data point 𝒜 within the cluster 𝑖 to 

the cluster-head 𝑗, where  𝒜 ∈ 𝑐𝑖, 𝑖 ∈ {1,2, … , 𝐾}, 𝑗 ∈ {1,2, … , 𝐾 − 1} and 𝑖 ≠ 𝑗. 

𝐸𝑖𝑗
𝒜  is calculated for all data points in all clusters to determine the inter-cluster distances. The 

minimum of 𝐸𝑖𝑗
𝒜  is determined for each cluster and denoted by 𝐸𝑐𝑖

𝑚𝑖𝑛.  

Then, �̅�𝑚𝑖𝑛

𝐶
 is calculated as the average of the minimum inter-cluster distances over all clusters 

given by: 

�̅�𝑚𝑖𝑛

𝐶
=

1

𝐾
∑ 𝐸𝑐𝑖

𝑚𝑖𝑛𝐾
𝑖=1    () 

Finally, the output of the function 𝒇 will be calculated according to the defined parameters, and 

the goal is to minimize it.  

𝒇 =
𝐾𝑚𝑎𝑥  ∆𝐶  �̅�𝑚𝑎𝑥

𝐶

�̅�𝑚𝑖𝑛
𝐶

   () 

Flowchart 3.1 summarizes all the steps within the objective function. 
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Flowchart 3.1: The objective function of the proposed clustering framework 
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Also, the following example illustrates the process of evolving clusters and migration of data 

points to other groups during different stages.  

Example 3.2. This evaluation has been performed on dataset R15 with 𝑚 = 320 points, which 

is one of the standard datasets in UCI machine learning [101] illustrated in Figure (3.2-a). We have 

considered the BBA optimization algorithm with 100 agents and 200 iterations for this experiment. 

Figure (3.2-b) shows the result of initial clustering, where an initial cluster number is assigned to 

each data point. Figures (3.2-c) and (3.2-d) show the clustering result after two re-clustering levels. 

Although the clusters are distinguishable in this stage, the smallest and largest clusters still have a 

considerable size difference. During Stages (e) to (h), the process of merging and modifying the 

small clusters is performed, and the result is evaluated according to output. As can be seen, the 

proposed framework provides a sufficient number of compact and well-separated clusters with 

relatively close values for maximum distance.  

Figure 3.3 illustrates the convergence curve of this example. The convergence curve is a very 

common tool to qualitatively present the results of a single-objective optimization algorithm.  

 
 

 

 

 

 

 

Figure 3.2: The process of evolving clusters and migration of data points to other clusters during 

different stages of the proposed clustering framework. 
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Figure 3.3: The convergence curve of Example 3.2 in three different stages 

As shown, the proposed framework demonstrates high convergence speed in a small number of 

iterations when we perform the merging and modifying steps to compensate for the distortion gap. 

3.4. Results and Discussion 

In this section, the performance of the proposed automatic clustering framework is evaluated 

on twenty-four benchmark datasets. The details of the used datasets and the parameter settings for 

this performance evaluation are also presented here. Then, simulation results and comparative 

studies are discussed. 

3.4.1. Dataset and Validity Measure 

This experiment collects twenty-four different synthetic and real-world datasets from the UCI 

Machine learning [101] and KEEL repositories [102]. This collection includes datasets with 

different shapes, densities, and dimensions ranging from 2 to 512, with diverse data points from 

106 to 3100.  

Table 3.1 describes the summary of the datasets. 
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We have used internal validity measures to examine the quality of the proposed clustering 

scheme. In this regard, we have calculated the sum of intra-cluster and inter-cluster distance 

validity measures [38][94] to ensure the compactness and the separation of the clusters. We have 

also evaluated the proposed framework using the DB-index validity measure [49], which describes 

Table 3.1: Summary of used datasets with different features 

Dataset 
Number of 

features 
Number of 

points 
Number of Clusters 

Shape dataset 

Aggregation 2 788 6 

Compound 2 399 6 

D31 2 3100 31 

Flame 2 240 2 

Jain 2 373 2 

Pathbased 2 300 3 

R15 2 600 15 

Spiral 2 312 3 

Real-World 
dataset 

Appendicitis 7 106 2 

Dermatology 34 358 6 

Ecoli 7 336 8 

Glass 9 214 7 

Haberman 3 306 2 

Housevotes 16 232 2 

Ionosphere 33 351 2 

Iris 4 150 3 

Segment 19 2310 7 

Vehicle 18 846 4 

Wdbc 30 569 2 

Wine 13 178 3 

Higher-
dimensional 

dataset 

Dime064 64 1024 16 

Dime128 128 1024 16 

Dime256 256 1024 16 

Dime512 512 1024 16 
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a trade-off in maximizing intra-cluster compactness and inter-cluster separation. In the DB-index 

measure, the intra-cluster distances in the 𝑖𝑡ℎ  cluster and the inter-cluster distances between cluster 

𝑖𝑡ℎ and 𝑗𝑡ℎ are defined as follows: 

Υ𝑖,𝜏 = [
1

𝓃𝑖
 ∑ ∥ 𝒜 − 𝓂𝑖 ∥2

τ
𝒜∈𝑐𝑖

]
1

τ⁄

   () 

where 𝓃𝑖 is the number of elements in the 𝑖𝑡ℎ cluster denoted by 𝑐𝑖. �⃗⃗⃗� 𝑖 is the 𝑖𝑡ℎ cluster centroid 

and 𝜏 is an integer, and both 𝜏, 𝓉 ≥ 1.  

Λ𝑖,𝑗,𝓉 = {∑ |𝓂𝑖,ℓ − 𝓂𝑗,ℓ|
𝓉𝑙

ℓ=1 }
1

𝓉⁄ =∥ 𝓂𝑖 − 𝓂𝑗 ∥𝓉   () 

𝛷𝑖,𝜏,𝓉 = Max
𝑗∈𝐾,𝑗≠𝑖

{
Υ𝑖,𝜏+Υ𝑗,𝜏

Λ𝑖,𝑗,𝓉
}   () 

Finally, the DB-index measure is given by (3.12). 

𝐷𝐵(𝐾) =
1

𝐾
∑ 𝛷𝑖,𝜏,𝓉

𝐾
𝑖=1   () 

The smaller the value of the DB-index measure, the better the compactness and the separation. 

3.4.2. Experimental Results and Parameter Settings 

The experiments have been carried out on a PC with Windows 10 Professional 64-bit operating 

system, an Intel(R) Core ™ i7-10700K processor, and 48 GB RAM using MATLAB software 

2021 b. We have also used MATLAB packages4, Yarpize packages5, and NPIR source code6 [63] 

with its required python packages for the comparative study during this experiment. Besides, the 

IBM SPSS Version 27 has been used for performing the statistical analysis test.  

The comparison results are explained in two parts. The first set of results describes the effect 

of considering different binary optimization algorithms on the proposed framework. In this regard, 

we have evaluated the proposed framework performance using BBA, BPSO, BGA, and BDA 

algorithms in the optimizer module and presented the result for different cases. 

 
4 https ://www.mathworks.com/products/matlab.html. 
5 http://yarpiz.com/64/ypml101-evolutionary-clustering 
6 http://evo-ml.com/2019/10/28/npir/ 
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The parameter settings for the used algorithms are represented in Table 3.2.   

In order to evaluate each optimizer module, twenty independent trials are conducted on each 

dataset. Then the best and the worst cost, the average cost, and the standard deviation are reported. 

These comparison results are described in Tables 3.3, 3.4, and 3.5. The best entries are shown in 

boldface in all tables. 

 

Table 3.2: Parameter configuration of the utilized optimization algorithms in the 

proposed framework and two of the comparative studies 

BBA BPSO 

Parameter Value Parameter Value 

𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 

𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 

𝐾𝑀𝑎𝑥 √𝑚 𝐾𝑀𝑎𝑥 √𝑚 

𝐹𝑟𝑚𝑖𝑛, 𝐹𝑟𝑚𝑎𝑥 0.2 𝔠1, 𝔠2 2 

𝐴 0.25 𝑤 0.85 

𝑟 0.5   

BGA BDA 

Parameter Value Parameter Value 

𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 

𝐼𝑡𝑒𝑟𝑀𝑎𝑥 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 

𝐾𝑀𝑎𝑥 𝐾𝑀𝑎𝑥 𝐾𝑀𝑎𝑥 √𝑚 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.8 𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥 0.2, 0.9 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.001 𝛼 0.01 

  𝛽 0.09 

GCUK DCPSO 

Parameter Value Parameter Value 

𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 𝑃𝑜𝑝 𝑠𝑖𝑧𝑒 100 

𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 𝐼𝑡𝑒𝑟𝑀𝑎𝑥 200 

𝐾𝑀𝑎𝑥 √𝑚 𝐾𝑀𝑎𝑥 √𝑚 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 0.8 𝔠1, 𝔠2 1.494 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 0.001 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 0.75 
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Table 3.3: Comparison results for the shape dataset with considering BBA, BPSO, BGA, and 

BDA in the optimizer module in the proposed method 

Datasets 

BBA BPSO 

Best Worst Mean Std Best Worst Mean Std 

Aggregation 5.62 6.76 6.58 0.25 6.76 8.16 6.92 0.32 

Compound 12.69 22.47 18.70 2.91 16.63 24.00 20.56 2.33 

D31 2.16 6.74 4.87 1.39 3.66 7.88 6.59 0.78 

Flame 3.59 6.78 5.32 0.66 5.12 6.81 6.01 0.45 

Jain 6.04 7.28 6.21 0.35 6.04 7.12 6.18 0.32 

Pathbased 8.57 12.52 11.34 1.08 8.95 12.51 11.75 0.94 

R15 3.00 3.83 3.53 0.21 2.63 3.81 3.55 0.28 

Spiral 11.18 16.68 14.65 1.59 12.67 17.02 14.97 1.32 

Datasets 

BGA BDA 

Best Worst Mean Std Best Worst Mean Std 

Aggregation 6.47 7.25 6.68 0.16 6.47 7.66 6.77 0.22 

Compound 12.08 21.86 16.03 2.56 12.44 24.05 16.95 2.83 

D31 2.18 6.73 5.45 1.35 2.16 7.40 6.22 1.15 

Flame 3.50 6.22 5.34 0.68 5.43 6.42 5.92 0.33 

Jain 5.92 8.87 6.50 0.90 5.75 6.32 6.04 0.09 

Pathbased 10.05 12.14 11.60 0.58 9.59 12.44 11.83 0.63 

R15 1.54 3.80 2.95 0.79 1.54 3.81 3.45 0.51 

Spiral 11.12 15.92 14.16 1.32 12.77 16.67 14.92 1.11 
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Table 3.4: Comparison results for the real-life dataset with considering BBA, and 

BPSO in the optimizer module in the proposed method 

Datasets 

BBA BPSO 

Best Worst Mean Std Best Worst Mean Std 

Appendicitis 1.66 2.28 1.95 0.13 2.23 2.23 2.08 0.11 

Dermatology 26.69 41.53 36.35 4.16 43.59 43.59 39.49 2.80 

Ecoli 367.51 484.57 446.22 29.70 501.28 501.28 466.99 27.12 

Glass 7.78 8.14 8.12 0.08 8.42 8.42 8.18 0.10 

Haberman 44.92 46.86 45.79 0.99 46.86 46.86 45.40 0.86 

Housevotes 2.24 3.79 2.95 0.38 5.46 5.46 3.59 0.51 

Ionosphere 34.98 48.35 41.42 3.10 50.72 50.72 45.40 3.38 

Iris 2.01 3.20 2.68 0.40 3.33 3.33 2.97 0.22 

Segment 145.10 148.73 145.29 0.81 166.36 166.36 146.71 4.81 

Vehicle 140.68 141.73 141.48 0.41 226.51 226.51 151.81 23.68 

Wdbc 1861.93 1869.16 1864.61 3.45 1858.82 1867.87 1864.54 2.398 

Wine 139.27 296.37 210.93 47.56 296.37 296.37 244.10 32.78 
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Table 3.5: Comparison results for the Real-life dataset with considering BGA, 

and BDA in the optimizer module in the proposed method 

Datasets 

BGA BDA 

Best Worst Mean Std Best Worst Mean Std 

Appendicitis 1.66 2.24 2.03 0.14 1.66 2.28 2.00 0.17 

Dermatology 35.45 44.13 38.01 2.03 31.16 44.04 38.07 3.29 

Ecoli 388.90 487.49 447.70 26.49 404.82 524.54 462.88 28.41 

Glass 8.14 8.42 8.17 0.08 8.14 8.420 8.20 0.11 

Haberman 44.92 46.86 45.40 0.86 44.92 46.86 45.60 0.94 

Housevotes 2.03 3.33 2.81 0.38 2.35 3.54 2.99 0.34 

Ionosphere 36.05 47.56 42.15 3.58 36.80 48.65 43.04 3.41 

Iris 2.19 3.20 2.79 0.30 2.24 3.52 2.83 0.38 

Segment 145.10 168.93 150.73 9.61 145.10 168.93 150.55 9.68 

Vehicle 140.68 141.73 141.33 0.48 140.68 226.84 148.11 21.23 

Wdbc 1809.57 1928.53 1870.38 28.08 1857.94 1871.54 1864.76 3.451 

Wine 139.27 296.37 215.24 52.86 116.02 296.37 178.40 37.98 

 

 

 

 



49 

 

 

 

From the results, we can see the four binary optimization algorithms have reached a very 

competitive result. However, the performance of the proposed framework by considering the BBA 

algorithm in the optimizer module is more significant in most datasets.  

We have also provided the convergence curve of the shape and the real-world datasets by 

considering all four optimizer modules in Figures 3.4 to 3.10. The convergence curve is a useful 

tool to visualize how an algorithm improved the global best (gbest) as the first best path iteratively 

to reach the global optimum solution starting from a random solution. In our model, the global 

best represents the minimum of the objective function across all search agents in each iteration. 

In all these curves, the optimizer that reaches the minimum cost after passing all iterations is 

suitable for that specific dataset and can provide the best solution.  

Table 3.6: Comparison results for the higher-dimensional dataset with considering 

BBA, BPSO, BGA, and BDA in the optimizer module in the proposed Method 

Datasets 

BBA BPSO 

Best Worst Mean Std Best Worst Mean Std 

Dime064 13.06 13.07 13.06 0.00 13.10   13.18  13.14   0.01 

Dime128 12.95 13.20 13.06 0.05 13.01   13.14   13.07  0.03 

Dime256 3.56 5.15 4.24 0.40 3.84   4.84   4.36   0.29 

Dime512 3.02   4.78   3.95   0.48 3.55  4.87 4.14   0.38 

Datasets 

BGA BDA 

Best Worst Mean Std Best Worst Mean Std 

Dime064 13.14   13.14  13.14   0.00 13.10   13.10   13.10   0.00 

Dime128 12.93  13.12  13.03   0.04 13.68   13.81  13.74   0.03 

Dime256 3.74   4.92  4.25   0.27 4.12   5.07   4.61  0.29 

Dime512 3.28  5.14   4.26   0.50 3.05 5.54   4.27   0.62 
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Figure 3.4: Convergence curve of (a) aggregation, (b) compound, and (c) D31 datasets 

considering BBA, BPSO, BGA, and BDA in the optimizer module. 
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Figure 3.5: Convergence curve of (d) flame, (e) Jain, and (f) Pathbased datasets considering 

BBA, BPSO, BGA, and BDA in the optimizer module. 

 

 

 

 

 

 



52 

 

 

 

Figure 3.6: Convergence curve of (g) R15, (h) spiral datasets considering BBA, BPSO, BGA, 

and BDA in the optimizer module.  

 

 

 



53 

 

 

 

Figure 3.7: Convergence curve of (i) appendicitis, (j) dermatology, and (k)Ecoli datasets 

considering BBA, BPSO, BGA, and BDA in the optimizer module. 
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Figure 3.8: Convergence curve of (l) glass, (m) Haberman, and (n) housevotes datasets 

considering BBA, BPSO, BGA, and BDA in the optimizer module. 
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Figure 3.9: Convergence curve of (o) ionosphere, (p) iris, and (q) segment datasets considering 

BBA, BPSO, BGA, and BDA in the optimizer module. 
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Figure 3.10: Convergence curve of (r) vehicle, (s) Wdbc, and (t) Wine datasets considering BBA, 

BPSO, BGA, and BDA in the optimizer module. 
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Figure 3.11 shows the shape dataset in its original form without clustering. Figure 3.12 

illustrates the results of applying the proposed framework to the shape dataset to visualize some 

results. As can be seen, the proposed approach can generate different well-separated clusters while 

maintaining a trade-off between the number of clusters and their shape.  

 

Figure 3.11: The shape dataset in its original form before performing the proposed clustering 

 

Figure 3.12: Visual results of performing the proposed clustering framework on the shape 

datasets. 
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In the second part of the comparison results, the performance of the proposed framework has 

been compared with other classical and new clustering algorithms in terms of internal validity 

measures.  

We have considered the 𝐾-means ++ [103] as a representative of partitional clustering and the 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [104] as a 

representative of density-based models. Also, we have considered the Expectation-Maximization 

(EM) algorithm [105] and the Nearest point with indexing ratio (NPIR) algorithm [106]. EM is a 

famous example of distribution-based clustering that employs a fixed number of Gaussian 

distributions to reach the distribution of the objects. NPIR is one of the latest clustering algorithms 

and works based on finding the nearest neighbors. Moreover, we have considered two well-known 

optimization algorithms in the continuous search space. These two algorithms are known as GCUK 

[107], a genetic-based clustering with an unknown number of clusters, and DCPSO [108], the 

dynamic PSO.  

In this comparison, we have evaluated the sum of intra-cluster distances, the sum of inter-cluster 

distances, and the DB-index for twenty independent trials with each approach. We have also 

calculated the distortion deviation in all clustering solutions and compared the result. The 

distortion deviation, calculated in Eq. (3.6), shows the difference in the size (radius) of clusters in 

a clustering approach. We wish to keep it minimized in our proposed method. 

Our comparison study continues by utilizing the BBA in the optimizer module since it has 

provided excellent performance based on Tables 3.4 to 3.6; However, the other three algorithms 

have also shown competitive results, so they can also be considered in the optimizer module for 

the rest of the performance evaluation. 

For the comparative study, preliminary experiments have been done to determine the best 

settings for the required parameters to calculate internal validity measures. For GCUK and 

DCPSO, the parameter settings are described in Table 3.2. The EM algorithm needs to know the 

number of clusters in advance.  

The NPIR algorithm also requires prior knowledge of the number of clusters and the indexing 

ratio (IR) [106]. Therefore, we have performed multiple runs with various clusters in both 
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algorithms and also have considered different IR values suggested by the authors for the NPIR to 

find the most appropriate parameters for each dataset in these algorithms. 

The DBSCAN algorithm forms clusters based on density-based connectivity, and its 

performance is affected by MinPts and eps parameters. The MinPts can be selected based on 

dimensionality, and the eps can be specified based on the elbow in the k-distance graph [109]. 

Authors in [110] suggest using larger MinPts for a noisy and large dataset. Also, depending on the 

aim of clustering, you can decrease eps to avoid large clusters or increase it to avoid noise. Hence, 

we have run the DBSCAN algorithm with different MinPts and eps values for each dataset to select 

the value leading to the best results in terms of the mentioned validity measures.  



60 

 

 

 

Table 3.7: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index 

and distortion deviation over 20 independent runs for the proposed framework, DCPSO, 

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the shape datasets 

Algorithm 

                  Datasets 

 

  Measure 

Aggregation Compound D31 Flame 

Proposed 

Intra-C Distances 3183 ± 125 1450 ± 458 9329 ± 186 318 ± 21 

Inter-C Distances 327 ± 8 484 ± 308 394 ± 90 279 ± 12 

DB Index 0.57 ± 0.01 0.66 ± 0.07 0.75 ± 0.03 0.76 ± 0.09 

Distortion Deviation 1.69 ± 0.06 1.83 ± 0.04 0.37 + 0.01 0.48 ± 0.00 

DCPSO 

Intra-C Distances 3232 ± 262 1507 ± 135 6453 ± 302 527 ± 143 

Inter-C Distances 313 ± 11 303 ± 42 2792 ± 339 158 ± 118 

DB Index 0.63 ± 0.05 0.72 ± 0.07 0.75 ± 0.02 0.69 ± 0.05 

Distortion Deviation 4.8 ± 1.58 3.54 ± 1.44 4.89 ± 0.72 2.14 ± 0.69 

GCUK 

Intra-C Distances 3795 ± 110 1491 ± 303 7334 ± 373 411 ± 67 

Inter-C Distances 375± 48 798 ± 453 1871 ± 953 275 ± 157 

DB Index 0.69 ± 0.06 0.74 ± 0.08 0.79 ± 0.00 0.76 ± 0.04 

Distortion Deviation 6.50 ± 1.45 2.46 ± 0.75 4.13 ± 0.83 2.16 ± 0.69 

K-means++ 

Intra-C Distances 2937 ± 2 1159 ± 61 3169 ± 121 783 ± 6 

Inter-C Distances 271 ± 0.5 234 ±7 6170 ± 104 6 ± 0.04 

DB Index 0.64 ± 0.00 0.79 ± 0.06 0.65 ± 0.04 1.11 ± 0.00 

Distortion Deviation 1.72 ± 0.49 4.81 ± 0.86 1.81 ± 0.25 0.93 ± 0.22 

DBSCAN 

Intra-C Distances 3808 ± 537 871 ± 0.00 11202 ± 785 731 ± 30 

Inter-C Distances 207 ± 97 131 ± 0.00 365 ± 90 11 ± 1 

DB Index 0.65 ± 0.06 3.39 ± 0.00 0.76 ± 0.02 2.03 ± 1.64 

Distortion Deviation 10.77 ± 1.28 5.18 ± 0.00 7.54 ± 0.02 5.04 ± 1.44 

EM 

Intra-C Distances 3251 ± 286 1248 ± 80 3032 ± 200 819 ± 13 

Inter-C Distances 271 ± 13 222 ± 18 6371 ± 153 5.54 ± 0.05 

DB Index 0.65 ± 0.07 1.42 ± 0.74 1.14 ± 0.18 1.20 ± 0.02 

Distortion Deviation 7.06 ± 2.10 6.52 ± 1.22 4.13 ± 0.90 1.20 ± 0.60 

NPIR 

Intra-C Distances 3158 ± 142 1335 ± 42 2886 ± 6 766 ± 96 

Inter-C Distances 307 ± 53 180 ± 37 6085 ± 97 12 ± 1 

DB Index 0.85 ± 0.06 1.06 ± 0.13 0.55 ± 0.01 1.10 ± 0.15 

Distortion Deviation 7.73 ± 0.53 3.88 ± 0.14 1.76 ± 0.02 2.48 ± 1.25 
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Table 3.8: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index 

and distortion deviation over 20 independent runs for the proposed framework, DCPSO, 

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the shape datasets 

Algorithm 

                  Datasets 

 

  Measure 

Jain Pathbased R15 Spiral 

Proposed 

Intra-C Distances 1007 ± 81 930 ± 65 501 ± 11 1782 ± 121 

Inter-C Distances 653 ± 34 665 ± 48 655 ± 59 310 ± 56 

DB Index 0.64 ± 0.03 0.66 ± 0.00 0.36 ± 0.07 0.74 ±0.02 

Distortion Deviation 1.04 ± 0.001 0.57 ± 0.18 0.34 ± 00 0.84 ± 0.21 

DCPSO 

Intra-C Distances 1819± 746 1267 ± 216 508 ± 41 1823 ± 253 

Inter-C Distances 269 ± 181 340 ± 205 622± 48 179 ± 79 

DB Index 0.64 ± 0.03 0.66 ± 0.03 0.41 ± 0.04 0.74 ± 0.01 

Distortion Deviation 4.03 ± 2.21 3.30 ± 1.54 0.78 ± 0.10 2.15 ± 0.98 

GCUK 

Intra-C Distances 1427 ± 407 975 ± 184 512 ± 49 1968±198 

Inter-C Distances 553 ± 374 908 ± 465 656 ± 63 123 ± 32 

DB Index 0.69 ± 0.09 0.73 ± 0.03 0.42 ± 0.06 0.74 ± 0.00 

Distortion Deviation 4.89 ± 2.30 4.35 ± 1.72 0.71 ± 0.00 1.98 ± 0.99 

K-means++ 

Intra-C Distances 2623 ± 4 1435 ± 1 229± 12 1815 ± 0 

Inter-C Distances 18.00 ± 0.01 47 ± 0.07 644 ±11 40 ± 0.04 

DB Index 0.78 ± 0.00 0.66 ± 0.00 0.33 ± 0.02 0.87 ± 0.003 

Distortion Deviation 2.41 ± 0.13 1.20 ± 0.15 0.34 ± 0.18 0.34 ± 0.09 

DBSCAN 

Intra-C Distances 2809 ± 11 1528 ± 106 250 ±3 2908 ± 32 

Inter-C Distances 54 ± 0.09 47 ± 21 572 ± 0 9.94 ± 0.04 

DB Index 0.78 ± 0.00 1.67 ± 0.41 0.37 ±0.00 5.94 ± 0.07 

Distortion Deviation 53.97 ± 0.09 9.82 ± 0.70 0.84 ± 0.07 0.71 ± 0.08 

EM 

Intra-C Distances 2739 ± 0 1469 ± 0 273± 24 1829 ± 0 

Inter-C Distances 18 ± 4 48 ± 0 674 ± 25 36 ± 0 

DB Index 0.74 ± 1.39 0.68 ± 0.07 0.51 ± 0.09 0.99 ± 0.00 

Distortion Deviation 9.32 ± 0.00 7.15 ± 0.00 1.27 ± 0.27 0.83 ± 0.00 

NPIR 

Intra-C Distances 2647 ± 61 1699 ± 1 231 ± 7 1765 ± 70 

Inter-C Distances 18 ± 0.05 15.04 ± 0.01 640 ± 0 64 ± 19 

DB Index 0.76 ± 0.01 0.75 ± 0.00 0.33 ± 0.02 0.94 ± 0.02 

Distortion Deviation 6.99 ± 1.59 0.60 ± 0.27 0.57 ± 0.20 4.96 ± 2.64 
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Table 3.9: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index 

and distortion deviation over 20 independent runs for the proposed framework, DCPSO, 

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets 

Algorithm 

                  Datasets 

 

  Measure 

Appendicitis Dermatology Ecoli Glass 

Proposed 

Intra-C Distances 66 ± 6 2977 ± 170 13904 ± 1764 376 ± 87 

Inter-C Distances 1.86 ± 0.11 1206 ± 546 156 ± 12 125 ± 24 

DB Index 0.74 ± 0.02 1.01 ± 0.02 0.90 ± 0.01 0.68 ± 0.18 

Distortion Deviation 0.20 ± 0.09 3.53 ± 0.87 5.27 ± 3.44 3.30 ± 0.92 

DCPSO 

Intra-C Distances 72 ± 6 2987 ± 272 15729 ± 2307 333 ± 26 

Inter-C Distances 1.58 ± 0.12 588 ± 130 1848 ± 1890 154 ± 32 

DB Index 0.89 ± 0.02 1.06 ± 0.03 0.91 ± 0.06 0.60 ± 0.13 

Distortion Deviation 0.59 ± 0.22 5.30 ± 0.78 34.38 ± 17.27 4.31 ± 1.08 

GCUK 

Intra-C Distances 65 ± 12 3173 ± 239 14829 ± 2254 499 ± 29 

Inter-C Distances 11.23 ± 9.46 451 ± 64 3037 ± 2337 158 ± 30 

DB Index 0.93 ± 0.10 1.02 ± 0.05 1.06 ± 0.06 0.88 ± 0.02 

Distortion Deviation 0.53 ± 0.26 4.05 ± 2.13 30.87 ± 14.87 4.85 ± 1.06 

K-means++ 

Intra-C Distances 38 ± 0 2039 ± 39 10029 ± 178 243 ± 6 

Inter-C Distances 0.75 ± 0.01 397 ± 19 950 ± 77 135 ± 7 

DB Index 1 ± 0.03 1.01 ± 0.02 1.35 ± 0.11 0.72 ± 0.09 

Distortion Deviation 0.20 ± 0.10 4.02 ± 1.30 28.66 ± 5.73 4.31 ± 0.40 

DBSCAN 

Intra-C Distances 36 ± 0 2333 ± 115 10048 ± 191 188 ± 1 

Inter-C Distances 1.74 ± 0.01 772 ± 66 957 ± 71 20 ± 3 

DB Index 0.97 ± 0.01 1.41 ± 0.11 1.34 ± 0.02 0.83 ± 0.13 

Distortion Deviation 1.73 ± 0.00 19.27 ± 1.30 18.19 ± 0.33 4.33 ± 0.04 

EM 

Intra-C Distances 39 ± 0 3555 ± 304 11503 ± 809 233 ± 13 

Inter-C Distances 0.73 ± 0 292 ± 32 1793 ± 73 110 ± 10 

DB Index 1.06 ± 0.01 2.56 ± 0.59 2.20 ± 0.57 1.16 ± 0.22 

Distortion Deviation 0.13 ± 0.01 27.20 ± 4.27 44.08 ± 10.60 4.27±1.02 

NPIR 

Intra-C Distances 37 ± 2 2283 ± 106 12696 ± 358 226 ± 3 

Inter-C Distances 1.76 ± 0.77 262 ± 54 106 ± 58 120 ± 0 

DB Index 0.97 ± 0.30 1.67 ± 0.66 1.38 ± 0.19 1.50 ± 0.07 

Distortion Deviation 0.57 ± 0.08 12.02 ± 2.11 18.77 ± 5.01 3.78 ± 0.02 
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Table 3.10: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index 

and distortion deviation over 20 independent runs for the proposed framework, DCPSO, 

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets 

Algorithm 

                  Datasets 

 

  Measure 

Haberman Housevotes Ionosphere Iris 

Proposed 

Intra-C Distances 2001 ± 125 341 ± 20 1210 ± 75 157 ± 8 

Inter-C Distances 152 ± 2 32 ± 0 78 ± 0 5 ± 0.16 

DB Index 0.59 ± 0.00 1.26 ± 0.06 1.24 ± 0.02 0.43 ± 0.00 

Distortion Deviation 7.49 ± 1.5 0.07 ± 0.4 0.28 ± 0.14 0.20 ± 0.05 

DCPSO 

Intra-C Distances 2964± 596 400 ± 21 1427 ± 67 132± 10 

Inter-C Distances 301 ± 281 35 ± 29 85 ± 56 11± 7 

DB Index 0.63 ± 0.05 1.44 ± 0.19 1.34 ± 0.07 0.55 ± 0.9 

Distortion Deviation 13.49 ± 4.58 0.29 ± 0.12 1.42 ± 0.31 0.60 ± 0.28 

GCUK 

Intra-C Distances 2600 ± 647 408 ± 20 1422 ± 52 139 ± 11 

Inter-C Distances 700 ± 664 102 ± 34 262 ± 132 8 ± 7 

DB Index 0.72 ± 0.07 1.97 ± 0.07 1.70 ± 0.04 0.44 ± 0.10 

Distortion Deviation 11.53 ± 4.57 0.39 ± 0.16 1.42 ± 0.47 0.31 ± 0.12 

K-means++ 

Intra-C Distances 3054 ± 254 333 ± 0 831 ± 72 97 ± 0 

Inter-C Distances 17 ± 0 2.5 ± 0 3.7 ± 1.2 10 ± 0 

DB Index 1.22 ± 0.15 1.13 ± 0 1.30 ± 0.42 0.66 ± 0.00 

Distortion Deviation 5.61 ± 3.65 0.10 ± 0.01 0.74 ± 0.38 0.41 ± 0.00 

DBSCAN 

Intra-C Distances 247 ± 0 305 ± 0 479 ± 1 91 ± 12 

Inter-C Distances 11 ± 0 2.66 ± 0 2.40 ± 0 4.65 ± 1.85 

DB Index 1.13 ± 0.00 1.04 ± 0.00 1.21 ± 0.00 0.40 ± 0.15 

Distortion Deviation 21.18 ± 0.00 0.13 ± 0.09 3.45 ± 0.00 0.57 ± 0.19 

EM 

Intra-C Distances 3335 ± 0 333 ± 0 904 ± 0 104 ± 9 

Inter-C Distances 8.8 ± 0 2.54 ± 0 1.88 ± 0 9.30 ± 0.2 

DB Index 2.54 ± 0 1.13 ± 0.00 2.82 ± 0.01 0.77 ± 0.03 

Distortion Deviation 19.72 ± 0.00 0.12 ± 0.00 0.92 ± 0.08 0.89 ± 0.35 

NPIR 

Intra-C Distances 2716 ± 0 450 ± 0 845 ± 4 128 ± 0 

Inter-C Distances 18.55 ± 0 0.67 ± 0.09 11.08 ± 0.02 3.97 ± 0.01 

DB Index 0.91 ± 0.00 5.81 ± 0.91 1.17 ± 0.01 0.38 ± 0.00 

Distortion Deviation 22.48 ± 0.00 0.18 ± 0.02 2.16 ± 0.54 1.31 ± 0.00 
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Table 3.11: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index 

and distortion deviation over 20 independent runs for the proposed framework, DCPSO, 

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets 

Algorithm 

                  Datasets 

 

  Measure 

Segment Vehicle Wdbc Wine 

Proposed 

Intra-C Distances 246834 ± 54297 107956 ± 7782 262665 ± 9839 17221 ± 663 

Inter-C Distances 6083 ±2971 528 ± 42 3655 ± 260 7288 ± 21 

DB Index 0.50 ± 0.09 0.54 ± 0.00 0.51 ± 0.00 0.47 ± 0.01 

Distortion Deviation 110 ± 45.87 22.40 ± 8.67 69.58 ± 35.89 16.96 ± 4.71 

DCPSO 

Intra-C Distances 373634 ± 7257 73457 ± 6883 188642 ± 52069 17253 ± 895 

Inter-C Distances 15215 ± 2472 846 ± 125 10456 ± 9420 7065 ± 6736 

DB Index 0.54 ± 0.14 0.48 ± 0.03 0.52 ± 0.05 0.48 ± 0.01 

Distortion Deviation 361 ± 21 22.49 ± 9.90 528 ± 171 53.33 ± 16.22 

GCUK 

Intra-C Distances 477924 ± 38190 84066 ± 6907 221180 ± 53611 19242 ± 6757 

Inter-C Distances 25576 ± 8408 3894 ± 5314 12662 ± 16499 84142 ± 8529 

DB Index 0.78 ± 0.05 0.72 ± 0.22 0.59 ± 0.13 0.55 ± 0.04 

Distortion Deviation 325 ± 38 56.65 ± 13.90 438 ± 125 82.94 ± 37.62 

K-means++ 

Intra-C Distances 270182 ± 24659 57195 ± 3886 152647 ± 0 17967 ± 836 

Inter-C Distances 17402± 86 2228 ± 160 1331 ± 0 1550 ± 45 

DB Index 0.69 ± 0.01 0.65 ± 0.017 0.50 ± 0.00 0.54 ± 0.006 

Distortion Deviation 122 ± 22 81.15 ± 41.96 2215 ± 0 205 ± 59 

DBSCAN 

Intra-C Distances 124129 ± 1294 16856 ± 56 93540 ± 1602 21726 ± 6405 

Inter-C Distances 3529 ± 375 1684 ± 6 786 ± 9 1173 ± 356 

DB Index 1.01 ± 0.02 0.63 ± 0.01 0.40 ± 0.01 0.59 ± 0.01 

Distortion Deviation 118 ± 3 46.02 ± 1.73 436 ± 22 184 ± 9 

EM 

Intra-C Distances 204704 ± 9713 55697 ± 1680 175896 ± 0 22874 ± 339 

Inter-C Distances 7185 ± 2785 1823 ± 345 1030 ± 0 1230 ± 17 

DB Index 2.97 ± 1.11 0.92 ± 0.09 0.70 ± 0.00 0.84 ± 0.02 

Distortion Deviation 791 ±2 71 167 ± 41 2558 ± 0 387 ± 147 

NPIR 

Intra-C Distances 160144 ± 6912 65104 ± 67 175454 ± 0 22535 ± 6782 

Inter-C Distances 2736 ± 656 359 ± 0 2113 ± 0 1023 ± 512 

DB Index 1.32 ± 0.09 0.44 ± 0.00 0.71 ± 0.00 0.58 ± 0.05 

Distortion Deviation 1331 ± 6 99 ± 0 3261 ± 0 424 ± 136 
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Table 3.12: Mean and standard deviation of the sum of intra/inter-cluster distances, DB-index 

and distortion deviation over 20 independent runs for the proposed framework, DCPSO, 

GCUK, K-MEANS++, DBSCAN, EM, and NPIR for the real-life datasets 

Algorithm 

                Datasets 

 

    Measure 

Dime064 Dime128 Dime256 Dime512 

Proposed 

Intra-C Distances 122308 ± 137 138102 ± 227 14106 ± 221 184041 ± 399 

Inter-C Distances 143803 ± 1169 18489 ± 409 27070 ± 914 38553 ± 1364 

DB Index 0.04 ± 0.00 0.07 ± 0.00 0.04 ± 0.00 0.15 ± 0.05 

Distortion Deviation 26.82 ± 2.88 30.55 ± 1.65 18.00 ± 3.64 16.78 ± 5.30 

DCPSO 

Intra-C Distances 21901 ± 517 11852 ± 683 18457 ± 1463 190630 ± 13235 

Inter-C Distances 9475 ± 520 201642 ± 796 19413 ± 1565 384915 ± 17197 

DB Index 0.20 ± 0.04 1.17 ± 0.23 0.10 ± 0.03 1.01 ± 0.03 

Distortion Deviation 45.81 ± 5.06 78.37 ± 13.54 43.06 ± 7.39 78.61 ± 4.49 

GCUK 

Intra-C Distances 21455 ± 599 12731 ± 703 19928 ± 2129 198168 ± 14725 

Inter-C Distances 10331 ± 629 21486 ± 707 18547 ± 2181 395861 ± 13172 

DB Index 0.14 ± 0.04 1.42 ± 0.11 0.09 ± 0.04 2.16 ± 0.13 

Distortion Deviation 46.22 ± 4.42 71.26 ± 14.56 41.84 ± 8.51 75.12 ± 6.42 

K-

means++ 

Intra-C Distances 12149 ± 246 13691 ± 359 13975 ± 164 16022 ± 436 

Inter-C Distances 144819 ± 475 205577 ± 612 296376 ± 765 418384 ± 684 

DB Index 0.04 ± 0.00 0.04 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 

Distortion Deviation 35.46 ± 1.81 46.91 ± 1.91 22.60 ± 2.67 27.71 ± 0.74 

DBSCAN 

Intra-C Distances 11958 ± 202 13182 ± 309 13400 ± 242 15106 ± 1798 

Inter-C Distances 144915 ± 484 205765 ± 973 296078 ± 1087 420203 ± 2817 

DB Index 0.08 ± 0.01 0.10 ± 0.01 0.07 ± 0.01 0.41 ± 0.07 

Distortion Deviation 36.82 ± 3.29 35.41 ± 4.16 24.83 ± 2.29 40.41 ± 3.42 

EM 

Intra-C Distances 12014 ± 277 13416 ± 467 13985 ± 226 152965 ± 939 

Inter-C Distances 143968 ± 499 205785 ± 739 286227 ± 1104 461964 ± 3321 

DB Index 0.06 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.68 ± 0.07 

Distortion Deviation 39.61 ± 2.69 47.85 ± 2.79 26.62 ± 3.03 38.12 ± 5.97 

NPIR 

Intra-C Distances 11677 ± 933 12935 ± 1060 14203 ± 920 151784 ± 1176 

Inter-C Distances 144075 ± 2259 205647 ± 2011 276229 ± 1520 471126 ± 2768 

DB Index 0.09 ± 0.03 1.15 ± 0.55 0.03 ± 0.00 0.67 ± 0.09 

Distortion Deviation 40.44 ± 2.15 54.46 ± 6.07 25.72 ± 4.17 35.85 ± 4.28 
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3.4.3. Discussion 

The numerical results over twenty-four datasets have been summarized in Tables 3.7 to 3.12.  

It can be seen that in comparison with k-needed clustering methods (NPIR, K-Means++, and EM), 

the proposed framework has shown an excellent performance in most of the datasets in terms of 

the DB-Index and the distortion deviation measures as the main focus in our clustering method. In 

some cases, such as D31 and R15 in the shape datasets and Ionosphere, Iris, and vehicle in the 

Real-world datasets, the NPIR algorithm has shown better performance in the DB-index measure. 

However, the proposed method has yielded a smaller distortion deviation in all these datasets.  

The reason why the proposed framework has reached a bit higher DB-index measure compared 

to the other algorithms in some datasets can be explained as follows. The proposed framework 

focuses mainly on reaching clusters with approximately the same distance while satisfying the 

other designed merit factors. This goal has been achieved by dividing the dataset into more or 

fewer groups compared to other algorithms in some cases; for example, D31, which contains 

several spherical clusters with high overlap. The proposed framework has divided D31 into fewer 

clusters compared to others. Consequently, the sum of intra-cluster distances has significantly 

increased while inter-cluster distances have considerably decreased. As a result, we have reached 

a higher DB-index measure. Yet, we have demonstrated the best performance in terms of the 

distortion deviation in this dataset.  

𝐾-means++ has shown highly competitive performance in the Pathbased and dermatology 

datasets in terms of the DB-index. It has also been able to achieve better performance in distortion 

deviation on spiral and Haberman datasets. However, by increasing the dimension and the data 

points as shown in higher-dimensional datasets, the proposed framework outperforms the 𝐾-

means++ in terms of the distortion deviation measure.  

The proposed algorithm has achieved the best DB-index measure in the Appendicitis dataset, 

but the EM algorithm reached the best distortion deviation in this case.  

On the other hand, the proposed framework has shown highly successful results in the automatic 

k-determination clustering methods (DBSCAN, DCPSO, and GUCK) in most datasets. DBSCAN 

algorithm has reached the best value of DB-index in the Housevotes and WDBC datasets. 
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Nevertheless, the proposed method has obtained the best distortion deviation among all other 

algorithms in both datasets. It should be mentioned that DBSCAN is fundamentally different from 

center-based clustering methods. Although the DB-index measure may not be considered a fair 

validity measure for this clustering method, we needed to evaluate the proposed solution in terms 

of the DB-index with other algorithms for the purpose of this research. Aside from this point, the 

algorithm has not performed well in reaching the minimum possible value of distortion deviation 

compared to the other algorithms.  

In a few datasets (such as Jain, Pathbased, and Spiral), the DCPSO and the GCUK algorithms 

have reached the same value as the proposed solution in the DB index. Nevertheless, the distortion 

deviation, which is a primary goal in this research, still yields lower figures in these datasets for 

the proposed framework. 

3.5. Statistical Analysis 

To validate the above numerical results, we have performed the Friedman non-parametric 

statistical test [111][112]. This test, similar to the ANOVA [48], can point out significant 

differences between the behavior of two or more algorithms.  

Table 3.13 describes the achieved ranks by the Friedman test in the proposed framework 

considering different optimizer modules. The ranks indicate that the optimizer module with all 

four optimization algorithms has shown excellent performance, especially among the BBA, BGA, 

and BPSO. However, BBA and BGA have been ranked better in most datasets with the proposed 

framework.  

Then, we performed another statistical test called the Wilcoxon rank-sum test [113][114] to 

draw a more meaningful conclusion from the results. The Wilcoxon rank-sum test for equal 

medians establishes a proper pairwise comparison between the algorithms. It compares the null 

hypothesis that two values are samples from a continuous distribution with equal medians against 

the alternative that they are not.  
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For evaluating the first set of comparison results, the Wilcoxon test has been applied to the 

optimizer module considering the optimization algorithm with the best average performance 

against the rest of the algorithms, according to Tables 3.3 to 3.6.  

The significance level is considered 0.05, which gives strong evidence against the null 

hypothesis. The achieved p-values by the Wilcoxon test for the first set of comparison results 

considering the optimizer module with different optimization algorithms have been reported in 

Table 3.14. As can be seen in some datasets (i.e., R15, Wine), the p-value by the optimizer module 

with one of the algorithms has a significant difference from others. On the other hand, the achieved 

p-values by the optimizer module with two or three other algorithms are not significantly different 

in some other datasets (i.e., Pathbased, Dermatology, Haberman, Housevotes, Wdbc, Dim256). It 

means the proposed framework utilizing all these optimizer modules exhibits similar performance 

for that dataset.  

We have also applied these non-parametric statistical tests to the second set of comparison 

results to compare the proposed framework with other algorithms statistically. During this 

experiment, we implemented the proposed framework considering the BBA optimizer.  

We have applied the statistical tests to the DB-index and distortion deviation measures achieved 

in the second set of comparison results. The achieved ranks by the Friedman test and the p-values 

by the Wilcoxon test for the second set of comparison results are reported in Tables 3.15 and 3.18. 

As shown, the proposed framework is able to reach the best or the second-best DB-index rank in 

multiple datasets. Besides, the proposed framework has achieved the best distortion deviation rank 

in almost all datasets, which is a great success.  

The reason why we have not achieved the lowest DB-index rank in a few datasets lies in how 

the problem has been formulated in our model. In line with the initial motivation of this research, 

reaching the minimum distortion deviation has been prioritized in our proposed model. Therefore, 

there might be cases where the proposed framework achieves the minimum distortion by dividing 

the data points into more or fewer groups, affecting the DB-index measure.  
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Table 3.13: Achieved Ranks by the Friedman Test for the Proposed Framework Considering 

four Different Optimizer Modules 

Datasets BBA BPSO BGA BDA 

Aggregation 1.65 2.65 2.08 3.63 

Compound 2.75 2.23 1.58 3.45 

D31 1.70 2.70 2.13 3.48 

Flame 2.10 2.78 1.93 3.20 

Jain 2.45 2.08 2.75 2.73 

Pathbased 2.10 2.60 2.25 3.05 

R15 2.90 2.55 1.68 2.88 

Spiral 2.45 2.65 2.10 2.80 

Appendicitis 2.00 2.35 2.70 2.95 

Dermatology 1.98 2.48 2.35 3.20 

Ecoli 2.25 2.75 2.10 2.90 

Glass 2.20 2.70 2.50 2.60 

Haberman 2.75 2.55 2.35 2.35 

Housevotes 2.15 2.40 1.85 3.60 

Ionosphere 2.05 2.55 2.20 3.20 

Iris 2.30 2.40 2.45 2.85 

Segment 2.20 2.60 2.68 2.53 

Vehicle 2.38 2.78 1.83 3.03 

Wdbc 2.20 2.55 2.65 2.60 

Wine 2.30 1.63 2.65 3.43 

Dim64 2.03 2.43 2.73 2.83 

Dim128 2.08 2.48 2.75 2.70 

Dim256 2.40 2.50 2.50 2.60 

Dime512 2.30 2.40 2.55 2.75 
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Table 3.14: Achieved P-values by the Wilcoxon Rank-Sum Test 

Datasets BBA BPSO BGA BDA 

Aggregation 1 0.0077 0.4849 0.0000 

Compound      0.000 0.2235 1 0.0000 

D31 1 0.0006 0.2439 0.0000 

Flame 0.6073 0.0032 1 0.0005 

Jain 0.2288 1 0.0711 0.0265 

Pathbased 1 0.0496 0.6262 0.0149 

R15 0.0023 0.0110 1 0.0009 

Spiral 0.2733 0.0909 1 0.0468 

Appendicitis 1 0.4092 0.0482 0.0058 

Dermatology 1 0.2789 0.4986 0.0087 

Ecoli 1 0.1636 0.8817 0.0133 

Glass 1 0.0251 0.0914 0.0482 

Haberman 0.1960 0.5065 1 1.0000 

Housevotes 0.3104 0.1988 1.0000 0.0000 

Ionosphere 1 0.1895 0.4249 0.0005 

Iris 1 0.2972 0.5883 0.0138 

Segment 1 0.0671 0.0335 0.1573 

Vehicle 0.1410 0.0129 1 0.0029 

Wdbc 1 0.9246 0.6750 0.7972 

Wine 0.0441 1.0000 0.0088 0.0000 

Dim64 1 0.1774 0.0094 0.0019 

Dim128 1 0.1794 0.0097 0.0226 

Dim256 1 0.3421 0.3421 0.1624 

Dime512 1 0.2733 0.0565 0.0962 
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Table 3.15: Achieved Ranks by the Friedman Test on the DB-index for the Proposed 

Framework Compared to Other Algorithms 

 DB-index ranks 

 Proposed DCPSO GCUK K-means++ DBSCAN EM NPIR 

Aggregation 1.2 3.6 4.8 4.4 3.95 3.2 6.85 

Compound 1.65 2.5 2.6 3.4 7 5.3 5.55 

D31 3.95 3.9 5.75 1.95 4.4 7 1.05 

Flame 2.35 1.5 2.35 4.6 5.25 6.75 5.2 

Jain 1.6 1.85 3.55 6.35 6.25 3.8 4.6 

Pathbased 1.9 2.35 4.95 3.25 7 3 5.55 

R15 3.05 5 5.35 2.05 3.7 6.65 2.2 

Spiral 2.35 1.9 1.75 4 7 6 5 

Appendicitis 1.45 2.8 3.75 4.9 4.45 6.35 4.3 

Dermatology 2.35 3.45 2.35 1.85 5.65 6.65 5.7 

Ecoli 1.4 1.65 2.95 5.05 5.1 7 4.85 

Glass 2.55 1.7 4.55 2.65 3.65 6 6.9 

Haberman 1.15 2 2.85 5.75 5.25 7 4 

Housevotes 3.9 4.75 6 3 1.05 2.3 7 

Ionosphere 3.2 3.95 6 4.2 2.45 7 1.2 

Iris 3.45 4.65 3.3 5.7 1.85 7 2.05 

Segment 1.4 1.85 3.9 2.85 5 7 6 

Vehicle 3.25 2.1 4.95 5.3 4.5 6.8 1.1 

Wdbc 3.65 3.5 4.55 2.6 1.1 5.8 6.8 

Wine 1.5 1.7 3.9 3.875 5.35 7 4.675 

Dim64 1.45 6.85 5.95 1.75 4.40 3.30 4.30 

Dim128 3.85 6.20 6.80 2.30 4.95 1.25 2.65 

Dim256 3.70 6.25 5.75 1.00 5.55 3.70 2.05 

Dim512 2.00 6.30 6.70 1.00 3.00 4.50 4.50 
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Table 3.16: Achieved Ranks by the Friedman Test on Distortion Deviation Measures for the 

Proposed Framework Compared to Other Algorithms 

 DB-index ranks 

 Proposed DCPSO GCUK K-means++ DBSCAN EM NPIR 

Aggregation 1.45 3.35 4.65 1.55 6.85 4.85 5.3 

Compound 1.4 3.25 2.15 5.35 5.5 6.7 3.65 

D31 1 6.65 6.05 3.45 2.1 5.3 3.45 

Flame 1.05 4.95 4.55 2.55 6.85 2.8 5.25 

Jain 1.1 3.35 3.55 2.25 7 5.9 4.85 

Pathbased 1.45 4.25 4.75 3 6.95 5.95 1.65 

R15 2.15 4.95 3.9 1.4 5.45 6.7 3.45 

Spiral 3.5 5.45 5.3 1.15 2.85 3.65 6.1 

Appendicitis 2.25 5.1 4.65 2.35 7 1.8 4.85 

Dermatology 1.95 3.3 2.35 2.4 6.05 6.95 5 

Ecoli 1.05 5.2 4.65 4.9 2.7 6.25 3.25 

Glass 2 4.25 5.15 4.5 4.95 4.6 2.55 

Haberman 2.3 3.7 2.95 1.3 5.9 4.85 7 

Housevotes 1.9 5.85 6.4 2.25 3.5 3.25 4.85 

Ionosphere 1.2 4.55 4.2 2.35 7 3 5.7 

Iris 1.5 4.25 2.45 3.2 4.1 5.7 6.8 

Segment 1.85 4.75 4.25 2.4 1.75 6 7 

Vehicle 1.3 1.7 4 5.25 3.25 6.75 5.75 

Wdbc 1 3.3 3.05 5 2.65 6 7 

Wine 1 2.15 2.85 4.375 4.75 6.25 6.625 

Dim64 1.00 6.00 6.40 2.60 2.70 4.30 5.00 

Dim128 1.10 6.50 6.25 3.50 1.90 3.70 5.05 

Dim256 1.30 6.50 6.40 2.55 3.35 4.20 3.70 

Dim512 1.00 6.60 6.40 2.05 4.45 3.95 3.55 
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Table 3.17: Achieved P-values by the Wilcoxon Rank-Sum Test on the DB-index for the 

Proposed Framework Compared to Other Algorithms 

 
DB-index 

DCPSO GCUK K-means++ DBSCAN EM NPIR 

Aggregation 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

Compound 0.0071 0.0026 0.0000 0.0000 0.0000 0.0000 

D31 0.0000 0.0001 0.0000 0.0000 0.0960 0.0000 

Flame 0.0060 0.9892 0.0000 0.0000 0.0000 0.0000 

Jain 0.7353 0.0077 0.0000 0.0000 0.0000 0.0000 

Pathbased 0.8392 0.0000 0.0574 0.0000 0.0000 0.0000 

R15 0.0043 0.0040 0.0970 0.2067 0.0000 0.2493 

Spiral 0.0294 0.0215 0.0000 0.0000 0.0000 0.0000 

Appendicitis 0.0000 0.0000 0.0000 0.0000 0.0000 0.5953 

Dermatology 0.0000 0.7972 0.2499 0.0000 0.0000 0.0000 

Ecoli 0.2287 0.0000 0.0000 0.0000 0.0000 0.0000 

Glass 0.1806 0.0001 0.2731 0.0175 0.0000 0.0000 

Haberman 0.2534 0.0000 0.0000 0.0000 0.0000 0.0000 

Housevotes 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 

Ionosphere 0.0001 0.0000 0.0010 0.0001 0.0000 0.0000 

Iris 0.0000 0.4570 0.0000 0.0002 0.0000 0.0000 

Segment 0.6949 0.0000 0.0009 0.0000 0.0000 0.0000 

Vehicle 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000 

Wdbc 0.4903 0.0083 0.0000 0.0000 0.0000 0.0000 

Wine 0.2534 0.0000 0.0000 0.0000 0.0000 0.0000 

Dim64 0.0000 0.0000 0.3548 0.0000 0.0000 0.0000 

Dim128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

Dim256 0.0000 0.0002 0.0000 0.0000 0.3734 0.0000 

Dim512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 3.18: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion Deviation 

Measures for the Proposed Framework Compared to Other Algorithms 

 
Distortion deviation 

DCPSO GCUK K-means++ DBSCAN EM NPIR 

Aggregation 0.0000 0.0000 0.5801 0.0000 0.0000 0.0000 

Compound 0.0005 0.0003 0.0000 0.0000 0.0000 0.0000 

D31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Flame 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Jain 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pathbased 0.0000 0.0000 0.0000 0.0000 0.0000 0.7338 

R15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 

Spiral 0.0000 0.0001 0.0000 0.0148 0.8168 0.0001 

Appendicitis 0.0000 0.0000 0.6488 0.0000 0.3304 0.0000 

Dermatology 0.0000 0.6554 0.1070 0.0000 0.0000 0.0000 

Ecoli 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Glass 0.0060 0.0000 0.0000 0.0002 0.0016 0.0010 

Haberman 0.0000 0.0040 0.0000 0.0000 0.0000 0.0000 

Housevotes 0.0000 0.0000 0.0127 0.0625 0.0001 0.0000 

Ionosphere 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 

Iris 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 

Segment 0.0000 0.0000 0.1961 0.6749 0.0000 0.0000 

Vehicle 0.6359 0.0000 0.0000 0.0000 0.0000 0.0000 

Wdbc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Wine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Dim64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Dim128 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 

Dim256 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 

Dim512 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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We have observed the performance of the proposed clustering framework in different datasets 

with varying numbers of data points and dimensions. According to our statistical analysis, the 

proposed clustering framework performs exceptionally well on datasets with small to mid-sized 

data points from different dimensions. From our perspective, having a dataset with high data points 

can slightly affect the performance of the clustering framework as an increase in data points 

directly affects the proposed binary encoding scheme and therefore increases the size of the search 

space in our proposed model. Meanwhile, increasing the dataset dimensions has no direct impact 

on the proposed approach and only affects the distance calculation process, as should be expected 

when working with higher-dimensional datasets. As also pointed out by [106], the Euclidean 

distance is not an appropriate distance measure for higher-dimensional datasets in general; Hence, 

considering an appropriate distance measure in such datasets should also enhance the results, 

which could be investigated in future studies. 

3.6. Automatic Clustering for Binary Correlated Sources 

The proposed clustering framework has been applied to a set of correlated binary datasets as a 

case study in this section. 

Binary data is the simplest case of categorical data in which only two possible values describe 

discrete attributes and can be reflected as a special case of quantitative data. Binary data clustering 

is a challenging task due to its high dimensionality and sparsity [115]. The correlated binary 

clustering is beneficial in various disciplines such as medical sciences, machine learning, big data, 

pattern recognition, image analysis [38][94], and many other recent applications such as cache-

aided networks and edge caching. In such cases, taking advantage of the similarity between the 

sample sets in the clustering solution can improve efficiency and reduce the delivery load. The 

presence of correlation in a binary dataset can be realized as the relevance of content files in the 

same category, such as the repeated measurements in remote sensing, the updated versions of 

dynamic content, augmented reality, news updates, etc. [38][17]. Moreover, correlated binary data 

clustering is widely used in medical studies, such as dental and radiologic studies. In such cases, 

the observations are taken from multiple representations of the same subject [116]. 
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3.6.1. Methodology for Binary Case 

In the binary case, each data point is a B-bit binary vector. Therefore, the B-dimensional binary 

dataset with m data points is indicated by 𝒜. 

𝓐𝑚×𝐵 = [
𝒜1

⋮
𝒜𝑚

] = [

𝑎1,1, 𝑎1,2 … , 𝑎1,𝐵

⋮ ⋮ ⋮
𝑎𝑚,1, 𝑎𝑚,2 … , 𝑎𝑚,𝐵

]

𝑚×𝐵

   () 

Since the proposed clustering, discussed in Chapter 3, is designed as a customizable general 

framework, it can also cater to binary datasets; therefore, all of the steps of problem formulation 

are the same as the general clustering framework. However, the definition of distance measure 

and representative selection has been tailored with binary space. 

In the binary case, the distance measure is the Hamming distance [38], defined as follows: 

𝒹𝑖,𝑗
𝐻 = {

1         𝑖𝑓 𝑎𝑖,𝐵 ≠ 𝑎𝑗,𝐵 , ∀𝑖 ≠ 𝑗

0                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    () 

The maximum distance of each cluster is calculated according to the Hamming distance 

measure between each data point 𝒜𝑖 and its representative �̂�𝑖 within each cluster 𝑐𝑖, where  𝑐𝑖 ∈ 𝐶, 

and 𝑖 = [1,2, … , 𝐾]. 

𝛿𝑐𝑖 = max
𝑐𝑖

𝒹𝐻(𝒜𝑖 , �̂�𝑖)      () 

Selecting a cluster representative in the binary case is carried out in two consecutive steps; First, 

a centroid is identified within each cluster by performing the majority rule. Then, one actual point 

within the clusters with the least distance to the centroid is selected as the representative. 

According to the majority rule, a decision is made based on the majority of alternatives.  

The following example shows how a centroid is determined based on the majority rule for a 

group of 4 binary data points. 
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Example 3.3: 

The similarity among correlated vectors is extracted by a statistic measure known as the simple 

matching coefficient (SMC) [105][118], which is closely related to the definition of the hamming 

distance on bit strings.  

Consider 𝒜𝑖 and 𝒜𝑗  as two different n-bit binary vectors in a cluster. Let 𝐵11 and 𝐵00 represent 

the number of bits that are 1 or 0 simultaneously among two vectors while 𝐵01 and 𝐵10 represent 

the number of bits that are not the same in each position. Then SMC is defined as follows. 

𝑆𝑀𝐶 =
𝐵00+𝐵11

𝐵11+𝐵00+𝐵01+𝐵10
     () 

Similar to the discussed experiment in the general framework, the goal is partitioning 𝓐𝑚×𝐵 

into 𝐾 number of compact and well-separated clusters with relatively close values for the 

maximum distance in each group, such that 𝐾 ≤ 𝑚.  

3.6.2. Results and Discussion for Correlated Binary Case  

In this section, the performance of the proposed correlation-aware clustering scheme has been 

analyzed on a set of correlated binary datasets. For this purpose, based on assumptions considered 

in [22] for generating correlated binary vectors, three synthetic binary datasets are generated with 

dimensions 128 × 100 bits and a similarity of 50%, 60%, and 70%.  

Similar to the general framework, this scheme is also evaluated under the presence of the BBA, 

BPSO, BGA, and BDA in the optimizer module, and the convergence curve is illustrated in Figure 

3.12. For each algorithm, twenty independent trials have been performed on each dataset. The best 

and worst cost, the average cost, and the standard deviation have been reported in Table 3.19.  

𝒜1:  0    0    1     0    1     1     1    1 

𝒜2:  1    1    1     1    0     0    0     1 

𝒜3:  1    0    0     1    0     0    1     0 

𝒜4:  1    1    1     0    1     0    0     1 

Counting the number 

of 0s &1s vertically 

 Majority vector:      1     0    1      0     1      0     1    1 
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The statistical analysis is described in Table 3.20, which shows the binary scheme has high 

capabilities in performing the clustering task considering all four optimization algorithms in the 

optimizer module. However, the optimizer module considering the BBA and BDA provides superb 

performance in solving binary clustering problems since the fastest convergence rate belongs to 

the BBA, followed by the BDA optimizer.  

The BBA algorithm can take advantage of the loudness and pulse emission balance between 

the exploration and exploitation to accelerate the convergence rate toward the global optimum and 

not trap in local minima over the course of iterations. Besides, the V-shaped transfer function in 

the BBA algorithm helps the particles not go through the unpromising area of the search space, 

and therefore it contributes to having a fast convergence rate in this case. The BDA optimizer also 

inherits high exploration and exploitation from the DA algorithm and provides an excellent result. 

Furthermore, the convergence curves of this experiment show that by increasing the similarity 

among data points, the convergence speed significantly increases. Consequently, reaching the 

minimum cost can be achievable in fewer iterations. The reason is that, as the correlation among 

datasets increases, the similarity between data points becomes very large. As a result, the 

maximum Hamming distance between data points decreases; therefore, the clustering problem 

becomes a much simpler problem that can even be solved in less than half of the iterations. In such 

cases, the maximum distance in each cluster will be decreased as well. 
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Table 3.19: Achieved P-values by the Wilcoxon Rank-Sum Test on Distortion 

Deviation Measures for the Proposed Framework Compared to Other Algorithms 

Datasets 

BBA BPSO 

Best Worst Mean Std Best Worst Mean Std 

Dataset 1 13.22 27.59 17.44 5.75 27.59 27.59 21.53 6.55 

Dataset 2 13.23 13.98 13.72 0.22 14.13 14.13 13.93 0.12 

Dataset 3 0.00 13.93 12.16 4.17 13.98 13.98 13.78 0.15 

Datasets 

BGA BDA 

Best Worst Mean Std Best Worst Mean Std 

Dataset 1 27.65 27.65 18.81 6.17 12.67 27.48 17.01 5.67 

Dataset 2 14.26 14.26 13.91 0.18 13.25 14.02 13.79 0.17 

Dataset 3 13.96 13.96 13.65 0.18 12.95 13.84 13.57 0.25 

 

 

 

 

Table 3.20: Statistical Results of the Proposed Correlation-Aware Clustering 

Scheme Considering Four Different Optimizer Modules 

Datasets 
Friedman’s Rank P-Values 

BBA BPSO BGA BDA BBA BPSO BGA BDA 

Dataset 1 2.35 3.25 2.7 1.7 0.13 0.0003 0.0071 1 

Dataset 2 2.05 3.05 2.8 2.1 1 0.0026 0.0051 0.4249 

Dataset 3 1.85 3.5 2.45 2.2 1 0.0016 0.2184 0.4093 
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Figure 3.13: Convergence curve of (a) dataset 1, (b) dataset 2, and (c) dataset 3 considering 

BBA, BPSO, BGA, and BDA in the optimizer module. 
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3.7. Summary 

Clustering algorithms are developed as a powerful tool to analyze the massive amount of data 

produced by cutting-edge technologies. Over the years, various meta-heuristic searching 

techniques have been proposed to achieve optimal or near-optimal solutions due to the challenges 

such as defining a suitable objective function and ambiguity in data clustering definition.  

In this chapter, the clustering problem is formulated as an optimization problem with the 

motivation to reach well-separated clusters with approximately the same maximum distance. This 

framework utilized an AI-based optimizer module considering metaheuristics binary optimization 

algorithm. It adopts a dynamic range of clusters in accordance with the input data to tackle the 

problem of determining the exact number of clusters in advance. Hence, users do not need prior 

knowledge of the number of clusters. We have also proposed a binary encoding scheme for the 

particle representation in the proposed framework.  

Furthermore, we examined the proposed clustering framework for correlated binary datasets as 

a case study. A wide range of practical applications can benefit from such datasets, including 

repeated measurements in remote sensing, medical studies, cache-aided networks with correlated 

content, and crowdsourced multi-view video uploading. 

According to the results, we have successfully reached a fair number of well-separated clusters 

with approximately the same maximum distance for each cluster in most datasets. This chapter can 

be considered the opening for further research to improve the distortion deviation between clusters 

in other applications. Future studies can consider the proposed automatic clustering framework 

with approximately the same maximum distance in each cluster as a multi-objective optimization 

algorithm problem and consider the maximum distance of the clusters as an objective to possibly 

improve the distortion deviation gap.  
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Chapter 4  

Content Delivery in a Network with a Single Shared 

Cache and Correlated Content   

 

So far, we have comprehensively described and evaluated the proposed clustering scheme in a 

general framework. This framework is an essential part of our research as it will be used to develop 

two novel clustering schemes for the placement phase of the proposed caching networks in the 

current and following chapters.  

Caching networks are typically analyzed under uniform or non-uniform popularity demand 

distributions. In this regard, this chapter considers a uniform demand distribution and studies the 

proposed network under lossy caching.  
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Developing the lossy caching scenario is highly beneficial in many practical applications, 

particularly involving multimedia content, as files can be downloaded at different quality levels 

depending on the channel and traffic conditions or the capabilities of the device. For example, the 

description of a file requested by a laptop user may require high quality, while a mobile user can 

be satisfied with a much lower-resolution description [119]. 

4.1. Introduction 

In this chapter, we study a content delivery caching network considering a single shared cache. 

Connecting all receivers to a single shared cache is beneficial in many practical applications. 

Consider robots as laborers in a factory or drones as operators in deserted areas. In such settings, 

providing a shared cache in the access point to be filled with the most useful content during the 

placement phase leads to transmitting only small updates (e.g., recent maps and frequent updates 

of the locations under their coverage) during the delivery phase.  

Networks with multiple caches can reduce delivery rates by taking advantage of multicast 

opportunities and global caching gains in addition to local gains; But networks with a single cache 

can not benefit from the global caching gain as only one local cache is available in the network. 

The optimal caching strategy for a single-cache network with independent library sources is the 

highest popularity first (HPF) scheme in which the highest popular files are placed into the cache 

[6]. In cases where files have no priority over each other and demand popularity is uniform, some 

files are randomly allocated to memory (random placement) according to the memory size. 

In this chapter, we show that the gain of the conventional random placement in a single-cache 

network with independent sources does not carry over to a single-cache network with correlated 

content; thus, an efficient solution is still needed for such a setting.  

We address the caching strategy and examine the trade-off between the delivery rate and the 

memory size from an information-theoretic perspective. As content placement is the key challenge 

in such networks, we first introduce a clustering scheme to extract the efficient side information 

for the entire library during the placement phase considering the similarity among content and the 

maximum distortion constraint in the system.  
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 Then, we formulate the expected delivery rate by joint consideration of the rate-distortion 

function and caching strategy, where the limit for the maximum allowable distortion in the system 

is determined based on the Lagrange multipliers technique and reverse water-filling optimization. 

Our extensive simulations validate the proposed scheme, which provides a considerable boost in 

network efficiency compared to the legacy caching scheme. 

In the remainder of this chapter, we first describe the system model and introduce the 

correlation-aware clustering scheme for the placement phase. Next, we describe the caching and 

delivery strategy and analyze the delivery rate of the system.  

4.2. System Model  

In this chapter, we study a centralized cache-aided delivery network consisting of a server, 

multiple users, and a single cache over a shared error-free broadcast link. The network model is 

illustrated in Figure 4.1. 

All 𝑁 users have access to a single shared cache of size 𝑀 = 𝐾𝑪 files, where 𝐾𝑪 is the number 

of representatives determined by the clustering solution 𝑪 upon performing the proposed clustering 

scheme in the placement phase.  

The proposed caching strategy operates in two phases; in the placement phase, the clustering 

scheme is performed to identify the side information for placing into the shared cache. Then in the 

delivery phase, encoded messages are transmitted as refinement segments enabling users to 

reconstruct their requested files by jointly decoding the received message and the side information 

in the shared cache. 

The server has access to a library of 𝑚 uniformly popular content files 𝑓𝑖 ∈ ℱ = {𝑓1, … , 𝑓𝑚} 

with the same length. In line with studies on lossy caching scenarios [119][120], the library content 

files in this chapter are assumed to be zero-mean correlated gaussian sources. Thus, we have 

generated 𝑚 correlated gaussian random variables 𝑓𝑖~𝒩(0, 𝛴), where covariance matrix 𝛴 is 

given by 
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(

𝜎1
2 𝜌12𝜎1𝜎2 ⋯ 𝜌1𝑚𝜎1𝜎𝑚

𝜌12𝜎1𝜎2 𝜎2
2 ⋯ 𝜌2𝑚𝜎2𝜎𝑚

⋮ ⋮ ⋱ ⋮
𝜌1𝑚𝜎1𝜎𝑚 𝜌2𝑚𝜎2𝜎𝑚 ⋯ 𝜎𝑚

2

)    () 

 

Figure 4.1: Cache-aided delivery network model with a single shared cache 

4.3. Correlation-Aware Clustering Scheme (CACS) 

The CACS aims to extract the most efficient side information for the entire library during the 

placement phase taking into account the similarity among sources and the maximum allowable 

distortion in the system. The application of this scheme is not limited to the correlated gaussian 

sources, and it can also work with correlated binary sources considering an appropriate distance 

measure. 

The CACS is designed to provide a sufficient number of compact and well-separated clusters 

with approximately the same maximum distance per cluster without requiring prior knowledge of 

the exact number of clusters.  

Achieving clusters with approximately the same maximum distance is useful to introduce the 

optimum allocation of the maximum allowable distortion to the files and reduce the transmission 

rate. Later in the delivery phase, we discuss this point more extensively. 
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4.3.1. CACS Methodology 

The CACS operates in two general steps. First, the AI-based optimizer module assigns an initial 

cluster number to each data point to form a primary clustering. The primary clusters are then re-

clustered, merged, and modified based on the designed condition described in Eq. (3.3) to 

compensate for the distortion deviation between clusters of different sizes and improve the result.  

This modification leads clusters to gradually achieve the same maximum distance without 

increasing the number of clusters. Following that, the AI-based optimizer module optimizes the 

clusters in accordance with the objectives over iterations.  

The cluster representative is selected in two consecutive steps; First, a centroid (approximated 

center) is identified within each cluster. Then, one actual point within the clusters with the least 

distance to the centroid is selected as the representative. In binary sources, a centroid is determined 

according to the majority rule, where a decision is made based on the majority of bits in each 

position [Chapter 3, section 3.6.1]. 

The CACS can adopt any appropriate distance measure based on the problem settings; In this 

regard, we consider the squared error measure for gaussian content files in this chapter and the 

hamming measure for binary content files in Chapters 5 and 6.  

4.3.2. CACS Optimizer Module 

The AI-based optimizer module stands at the highest level of the proposed approach and 

considers clustering as a problem that must be minimized over the course of iterations.  

The AI-based optimizer module checks combinations of the input to determine which candidate 

solution yields the minimum output of the objective function. The optimizer module creates binary 

vectors of length 𝑚 × 𝐿 bits as a candidate solution to be assigned to the particles in the utilized 

binary optimization algorithm. 𝐿 is the number of bits that are required to define a cluster number 

as a binary address (BA) for the optimizer module and is calculated as 𝐿 = log2 𝐾, where 𝐾 is the 

number of clusters. The candidate solution then converts to the decimal address equivalent (DA) 

to form the initial clustering.  
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The number of clusters is initialized by 𝐾 = ⌊√𝑚⌋. However, the value of 𝐾 will be optimized 

as needed over the merging and modifying steps to comply with the maximum distortion constraint 

for the system while clusters obtain the same maximum distance. If the constraint still allows for 

more distance within each cluster, it means the number of clusters can be reduced to meet the 

condition. While if the maximum distance per cluster exceeds the distortion constraint, the number 

of clusters should be increased to meet the condition. 

As shown in the general framework, the proposed clustering can be implemented using a variety 

of binary optimization algorithms in the AI module. Here we used the binary bat algorithm [83] in 

the AI module due to its excellent performance, which is comprehensively discussed and analyzed 

in Chapter 3. 

Flowchart 4.1 shows how the AI module and objective function collaborated to solve the clustering 

problem in the proposed CACS. 

 

Flowchart 4.1: How the optimizer module and objective function collaborated to solve the 

clustering problem in the proposed CACS considering the given constraints of the system 
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4.3.3. CACS Objective Function and Formulation 

The CACS is formulated as a single objective AI-based optimization problem with objective 

function 𝒇 that needs to be minimized iteratively over the set of all feasible clustering solutions, 

denoted by 𝜓 = {𝐶1, 𝐶2, … , 𝐶𝑆(𝑚,𝐾 )}, where 𝑆(𝑚,𝐾 ) is defined by Eq. (3.3). 

Our goal is to find the clustering solution 𝑪 with 𝐾𝑪 clusters and maximum distance 𝛿𝑪
𝑚𝑎𝑥 

within each cluster, where 𝒇(𝑪) = Min {𝒇(𝐶) | 𝐶 ∈  𝜓}. To this end, we define 𝐺(𝐶) and 𝐸(𝐶) as 

two functions reflecting the criteria to ensure the compactness and the separation of the clusters 

considering the given maximum distortion constraint 𝜹 in the system. 

The objective function 𝒇 is defined as follows 

𝒇(𝐶) = Min(
𝐶∈𝜓

𝐺(𝐶)

𝐸(𝐶)
)

𝑠. 𝑡.  𝛿𝐶
𝑚𝑎𝑥 ≤ 𝜹         

   () 

Such that 

𝐺(𝐶)
𝐶∈𝜓

=𝐾𝐶  .  �̅�
𝑚𝑎𝑥

𝐶
. 𝛥𝐶    () 

𝐸(𝐶)
𝐶∈𝜓

= 
1

𝐾𝑪
∑ 𝐸𝐶𝑖

𝑚𝑖𝑛𝐾𝑪
𝑖=1    () 

Where  �̅�𝑚𝑎𝑥

𝐶
, 𝛥𝐶, and 𝐸𝐶𝑖

𝑚𝑖𝑛 are defined by equations (3.5), (3.6), and (3.7), respectively, in the 

general clustering framework in Chapter 3.  

Below are the summarized steps of the objective function algorithm followed by the binary 

optimization algorithm utilized in the optimizer module.  
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Objective Function Algorithm: 

 Input: candidate solution, ℱ, 𝑚 , 𝐿 , 𝜹 

1: Cluster initialization based on the DA assigned to each data point 

2: Determining clusters’ representatives based on the two-step rule and 

updating the clusters based on recent changes 

3: if the current clustering solution is different from the previous one 

4: flag=0 

5: while flag=0 do (2) 

6: else 

7: find 𝛿𝑐𝑖, ∀ 𝑐𝑖 ∈ 𝐶, ∀𝑖 ∈ {1,2, … , 𝐾𝐶} 

find Max
𝑐𝑖 ∈ 𝐶

 {𝛿𝑐𝑖  } 

8: end if 

9: while  ∀ 𝑐𝑖 ∈ 𝐶, 𝛿𝑐𝑖  ≤ 0.9 Max
𝑐𝑖 ∈ 𝐶

 {𝛿𝑐𝑖 }  

    10:   Merge clusters w.r.t the maximum distortion 𝜹 constraint 

11: do (2) & (3) 

12: end while 

13: 
Calculate 𝐾𝐶, 𝛿𝐶

𝑚𝑎𝑥 

14: Calculate  �̅�𝑚𝑎𝑥

𝐶
. Δ𝐶 

15: Calculate 𝐺(𝐶)
𝐶∈𝜓

=𝐾𝐶  .  �̅�
𝑚𝑎𝑥

𝐶
. Δ𝐶  

16: Calculate 𝐸(𝐶)
𝐶∈𝜓

= 
1

𝐾𝑪
∑ 𝐸𝐶𝑖

𝑚𝑖𝑛𝐾𝑪
𝑖=1  

17: 
Calculate 𝒇(𝐶) =

𝐺(𝐶)

𝐸(𝐶)
 

 Output over the course of iterations: 𝑪, 𝐾𝑪, 𝛿𝑪
𝑚𝑎𝑥 
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4.4. Proposed Caching and Delivery Scheme 

Here we describe the caching strategy in two phases: placement and delivery. 

4.4.1. Placement Phase 

During the placement phase, the CACS is performed and the 𝐾𝑪 representatives corresponding 

to the achieved clustering solution 𝑪 are identified as the selected side information for the rest of 

the library content. The set of all representatives of the clustering solution 𝑪 is denoted by 𝑭 =

{�̂�1, … , �̂�𝐾𝑪
}. The selected side information is then placed into a shared cache with size 𝑀 = 𝐾𝑪 to 

minimize peak delivery rate. 

Figure 4.2 presents a simple illustration of the placement phase. 

Binary bat Algorithm: 

 Initialize: the bat population 𝕏𝑖 = (1,… , 𝑛), 𝑉𝑖 = 0 

1: Define pulse frequency 𝐹𝑟𝑖 

2: Initialize pulse rate 𝑟𝑖 and the loudness 𝐴𝑖 

3: while (𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 

4: 
Generate new solutions by adjusting frequency and updating velocities 

and positions 

5: if (𝑟𝑎𝑛𝑑 > 𝑟𝑖) 

6: Select a solution (gbest) among the best solutions randomly 

7: 
Change the dimensions of the positions vector in line with the 

dimensions of gbest 

8: end if 

9: Generate a new solution by flying randomly 

10: if (𝑟𝑎𝑛𝑑 <𝐴𝑖& 𝒇(𝑥𝑖) < 𝒇(𝑔𝑏𝑒𝑠𝑡)) 

11: Accept the new solutions 

12: Increase 𝑟𝑖 and reduce 𝐴𝑖 

13: end if 

14: Rank the bat and find the current 𝐺𝑏𝑒𝑠𝑡 

15: end while 
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Figure 4.2: Placing the set of achieved representatives as the selected side information into the 

shared cache 

4.4.2. Delivery Phase 

In the delivery phase, demands are revealed to the server. Each user uniformly requests a file 

𝑓𝑖
𝑗
∈ ℱ from the server, where 𝑖 ∈ {1,2, … ,𝑚} is the index of the requested file and 𝑗 ∈ 𝑁 is the 

index of the requesting user.  

Let 𝐹𝑘,𝑖 be the notation of the file 𝑓𝑖 after clustering, where 𝑘 ∈ 𝐾𝑪 and shows the file 𝑓𝑖 is 

located in which cluster. As the server has global knowledge of the populated caches and clustered 

files, such demands will be satisfied by transmitting an encoded message 𝑋𝑖 to the user 𝑗 ∈ 𝑁 in 

response to each requested file 𝐹𝑘,𝑖
𝑗

. The size of encoded messages is ℎ(𝐹𝑘,𝑖
𝑗

|�̂�𝑘) ≤ ℎ(𝐹𝑘,𝑖), where 

�̂�𝑘 denotes the relevant representative, and ℎ(. |. ) describes the conditional entropy. 

 These messages are generated in order to enable users to reconstruct their requested files by 

jointly decoding the received message and the side information available in the single shared 

cache.  

The expected delivery rate of the system is formulated in Theorem 4.1 based on a joint 

consideration of the rate-distortion function and the caching strategy, where the limit for the 

maximum allowable distortion at the receivers is determined based on the Lagrange multipliers 

technique and reverse water-filling algorithm.  

Theorem 4.1. The expected delivery rate of the proposed system considering a clustering 

solution 𝑪𝑆, with 𝐾𝐶𝑆 clusters and 𝑚𝑘 files per cluster 𝑘 ∈ 𝐾𝐶𝑆, during the placement phase is as 

follows 
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                                               𝔼{𝑅(𝐷)} =
1

𝐾𝐶𝑆
∑

1

𝑚𝒌
∑

1

2
𝑙𝑜𝑔 (

𝛿𝑘,𝑖
2

𝐷𝑘,𝑖
)

𝑚𝑘

𝑖=1

𝐾
𝐶𝑆

𝑘=1

                                             (4.5) 

Where 

 𝐷𝑘,𝑖 = {
𝜆        𝑖𝑓 𝜆 < 𝛿𝑘,𝑖

2 ,

𝛿𝑘,𝑖
2     𝑖𝑓 𝜆 ≥ 𝛿𝑘,𝑖

2 ,
                       (4.6) 

Where 𝜆 is chosen to minimize the total distortion as well as the expected delivery rate.  

Proof. Consider the case of a clustering solution 𝑪𝑆 with 𝐾𝐶𝑆 clusters in the placement phase, 

i.e., 𝑪𝑆 = [𝐶1
𝑆, 𝐶2

𝑆 , … , 𝐶𝐾
𝐶𝑆

𝑆 ], where each cluster 𝑘 ∈ 𝐾𝐶𝑆, includes a subset of library content and 

a representative. Based on the optimizer module and the objective function of the clustering 

scheme in our system design, files within a cluster have a random distance with respect to the 

cluster representative and could be considered independent normal random variables 

𝐹𝑘,1, 𝐹𝑘,2, … , 𝐹𝑘,𝑚𝒌
 with regard to the cluster representative, �̂�𝑘; where 𝐹𝑘,𝑖~𝒩(0, 𝛿𝑘,𝑖

2 ), and 𝛿𝑘,𝑖
2  is 

a function of  𝛿𝑘
𝑚𝑎𝑥, the maximum distance within a cluster 𝑘.  

The rate-distortion function [81] for our clustering solution can be written as 

𝑅(𝐷) = min
𝔼d(𝐹𝑘,�̂�𝑘)≤𝐷

𝐼(𝐹𝑘; �̂�𝑘)  (4.7) 

The distortion measure is the squared error distortion, and it is considered between the clustered 

files and the corresponding cluster representative. 

Then, the mutual information function can be expanded as 

𝐼(𝐹𝑘; �̂�𝑘) = ℎ(𝐹𝑘) − ℎ(𝐹𝑘|�̂�𝑘) 

Considering 𝑚𝑘 files within a cluster 𝑘 

≥ ∑ℎ(𝐹𝑘,𝑖)

𝑚𝒌

𝑖=1

− ∑ℎ(𝐹𝑘,𝑖|�̂�𝑘)

𝑚𝒌

𝑖=1

 

 = ∑𝐼(𝐹𝑘,𝑖; �̂�𝑘)

𝑚𝒌

𝑖=1
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≥ ∑𝑅(𝐷𝑘,𝑖)

𝑚𝒌

𝑖=1

                                   

= ∑
1

2
𝑙𝑜𝑔 (

𝛿𝑘,𝑖
2

𝐷𝑘,𝑖
)

𝑚𝒌

𝑖=1

                                                                          (4.8) 

Where 𝐷𝑘,𝑖 = 𝐸(𝐹𝑘,𝑖 − �̂�𝑘)
2
. As for the number of files within each cluster, i.e., 𝑚𝑘, it is 

considered a random variable during the clustering phase. However, upon successful clustering, 

𝑚𝑘 can be considered as a constant parameter for each cluster 𝑘 in the determined clustering 

solution 𝑪𝑆. 

Lagrange Multipliers Technique. To evaluate the optimal 𝜆 that achieves the objectives of 

minimizing the total distortion and the delivery rate, we have used the Lagrange multipliers 

technique. Considering Eq. (4.8), the function can be written as 

𝐽(𝐷) = ∑
1

2
log (

𝛿𝑘,𝑖
2

𝐷𝑘,𝑖
)

𝑀𝒌

𝑖=1

+ 𝜆∑𝐷𝑘,𝑖

𝑀𝒌

𝑖=1

 

Differentiating with respect to 𝐷𝑘,𝑖 and setting equal to zero gives 

𝜕𝐽

𝜕𝐷𝑘,𝑖
= −

1

2

1

𝐷𝑘,𝑖
+ 𝜆 = 0 

This implies 𝐷𝑘,𝑖 = 𝜆′ that is a very interesting finding, wherein the optimum allocation of 

delivery rate is achieved by considering equal distortion for all files. Based on Eq. (4.8), it is 

observed that the optimization is achieved if 𝐷𝑘,𝑖 = 𝜆′ ≤ 𝛿𝑘,𝑖
2  for all 𝑖. Alternatively, if the 

distortions 𝐷𝑘,𝑖 increase so does 𝜆′ until it exceeds 𝛿𝑘,𝑖
2 , as in Eq. (4.6).  

The concept can be interpreted according to the reverse water-filling, see Figure 4.3. This 

implies that the delivery rate is available only for the files with variances greater than constant 𝜆. 

No delivery is expected for the files with a variance lower than 𝜆. In other words, 𝜆 reflects the 

limit of the maximum allowable distortion introduced to the files.                      ■ 
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Figure 4.3: Reverse water-filling algorithm in delivery rate optimization for clustered files in a 

cluster 𝑘 

4.5. Performance Analysis and Discussion 

We have evaluated the performance of the proposed caching scheme in this section, where the 

conventional random placement strategy is used as the benchmark. 

According to our problem settings, the library content files are considered zero-mean correlated 

gaussian random variables. In order to simulate the library content files, we have first generated a 

vector of uncorrelated gaussian random variable 𝑊 and then multiplied it by a matrix φ, where 

φφ𝑇 = 𝛴 and 𝛴 is the desired covariance matrix. It should be noted that φ can be created by using 

the Cholesky decomposition of 𝛴, or from the eigenvalues and eigenvectors of 𝛴. 

We have used the MASS package library in the R programming language7 for this experiment. 

We have considered library content files with at least 0.75 similarities among library content 

for the following experiments.  

Figure 4.4 compares the delivery rate-memory trade-off between the conventional random 

placement and the proposed caching schemes, considering different threshold values 𝜆. The 

 
7 https ://www.geeksforgeeks.org/simulate-bivariate-and-multivariate-normal-distribution-in-r 
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memory size describes the total number of files placed in the cache during the placement phase, 

whereas the expected delivery rate represents the average delivery rate per requested file per user 

during the delivery phase.  

It can be seen that the delivery rate of both the conventional approach and the proposed scheme 

decreases as the memory size increases. However, our proposed scheme requires much lower 

delivery rates for the same memory size to accomplish the delivery phase.  

In Figure 4.4, we have also evaluated the effect of increasing the distortion threshold in the 

proposed scheme, which implies allowing some distortion levels in the received files on the user 

side. The threshold is considered based on the maximum proportion of the distortion introduced to 

the corresponding file. As the threshold increases, the delivery rate decreases, which is due to the 

allowable distortion that is reflected on the received files. The trade-off between the expected 

distortion and memory size is investigated as follows. 

Figure 4.5 shows the trade-off between the users’ expected distortion and the memory size in 

the proposed caching scheme and the conventional approach considering different fixed delivery 

rates. The expected distortion implies the average of the distortion introduced per requested file 

per user, and the memory size describes the total number of files placed in the cache during the 

placement phase. 

 

Figure 4.4: Delivery rate memory trade-off in the proposed scheme compared to the conventional 

caching for N=100 users, m=100 files 
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Figure 4.5: The expected distortion memory trade-off in the proposed scheme for different fixed 

delivery rates compared to the conventional approach for N=100 users, m=100 files 

It can be seen that by increasing the memory size, the expected distortion drops in both 

approaches for a fixed delivery rate. However, our proposed scheme has yielded a significant 

reduction in the expected distortion for all different delivery rates compared to the conventional 

approach. 

Another observation is that increasing the delivery rate leads to reducing the expected distortion 

for a fixed memory size in both schemes. Still, this reduction is considerably boosted in our 

proposed solution compared to the conventional scheme. For instance, for the expected delivery 

rate of 0.1, the expected distortion of our proposed scheme significantly drops to lower than 10−3 

even for the memory size of 40 files, while the conventional scheme hardly reaches a distortion 

level 10−1.  

It is seen that the conventional approach has the highest expected distortion, even by increasing 

the delivery rate from 0.1 to 0.5. Meanwhile, the proposed approach reaches significantly better 

results by adopting a much lower delivery rate (e.g., 0.025 to 0.1). 
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4.6. Summary  

This chapter investigates a cache-aided delivery network with correlated content and a single 

shared cache connected to multiple users to combat the high delivery data rates. The proposed 

placement scheme considers a correlation-aware clustering scheme that categorizes content files 

into clusters with approximately the same maximum distance by considering the similarity among 

the content files. During the delivery phase, encoded messages are delivered to users in order to 

meet all demands. We have formulated the expected delivery rate of the system by joint 

consideration of the rate-distortion function and caching strategy. The limit for the maximum 

allowable distortion of the system is determined based on the Lagrange multipliers technique and 

reverse water-filling optimization. Finally, we have analyzed the trade-off between the memory 

size, the delivery rate, and the users’ expected distortion. Our simulation results show that the 

proposed caching scheme exhibits excellent performance in reducing the delivery rate and users’ 

expected distortion compared to the conventional scheme.  
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Chapter 5  

Content Delivery in a Network with Multiple Shared 

Caches and Correlated Content under Uniform 

Demand 

5.1. Introduction 

This chapter extends our previous study to a cache-aided network with multiple shared caches. 

Such systems are beneficial in current and next-generation wireless networks as they can be 

applied to small base station architecture. It allows users in an SBS to access the nearby caches 

and be served locally for some parts of demands to reduce the strain on the backhaul. Also, it is 
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useful in a HetNet environment or as an upper layer of hierarchical caching networks in IoT-based 

applications.  

We examine the proposed network under a uniform popularity demand distribution in this 

chapter. To this end, the side information for the entire library is first extracted by using the 

correlation-aware clustering scheme discussed in Chapter 4. Next, we introduce the placement 

strategy based on the coded caching solution with uncoded placement. We describe the delivery 

phase by considering the transmission of the coded multicast messages and refinement segments. 

Following that, we discuss how increasing the number of users affects the peak delivery rate of 

our proposed system. Furthermore, we introduce the optimum library partitioning of the system 

formulated to minimize the peak delivery rate in the network. 

In the remainder of this chapter, we first describe the system model and the caching and delivery 

strategy to analyze the delivery rate of the system. Then we introduce the optimum library 

partitioning of the system and present simulation results. 

5.2. System Model 

Consider a centralized cache-aided delivery network with a server, 𝑁 total users, and 𝑍 SBSs 

over a shared error-free broadcast link. The network model is illustrated in Figure 5.1. 

 

Figure 5.1: Cache-aided delivery network with multiple shared caches 
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Each SBS 𝑖 ∈ {1,… , 𝑍} is equipped with a shared cache 𝑌𝑖, which is connected to 𝑈𝑖 number of 

users, where 𝑈𝑖 ∈ {𝑈1, … , 𝑈𝑍} and ∑ 𝑈𝑖
𝑍
𝑖=1 = 𝑁, and 𝑍 ≤ 𝑁. It is assumed that each user is 

connected to only one SBS and can receive messages from its SBS as well as the server.  

The proposed caching strategy operates in two phases; in the placement phase, the CACS is 

performed to identify the side information for placing into the shared caches according to a coded 

caching strategy with uncoded placement. Then in the delivery phase, multicast coded messages 

and refinement segments are transmitted to enable users to reconstruct their requested files by 

jointly decoding the received message and the side information in the shared cache. 

The server has access to a library of 𝑚 uniformly popular content files ℱ = {1,… ,𝑚} with the 

same length. In line with studies on coded caching scenarios [5][6], the library content files in this 

chapter and the next chapter are assumed to be binary content files. In this regard, the library with 

correlated content could be modeled according to the classical binary symmetric channel (BSC) 

correlation model with crossover probability 𝜌0 ∈ [0,0.5]. 

Let �̃� be an i.i.d binary random variable generated according to the Bernoulli distribution 

�̃�~𝐵𝑒𝑟𝑛 (1 2⁄ ) and (𝑓1, 𝑓2, … , 𝑓𝑚) be the output of a set of BSC with crossover probability 𝜌0 fed 

by the same input �̃�. Thus, based on the model for correlated binary content files [17][18], each 

content file is represented by a vector of i.i.d binary symbols with the same length. Since symbols 

of the content files are correlated according to a joint distribution 𝒫ℱ, for a block length of 𝐵 bits 

𝑓𝑖 ∈ 𝔽2
𝐵 and 𝐻(𝑓i) = 𝐵 bits, and ∀𝑓𝑖 , 𝑓𝑗 ∈ ℱ, 𝐻(𝑓𝑖|𝑓𝑗) ≤ 𝐵; therefore 𝐻(𝑓1, … , 𝑓𝑚) ≤ 𝑚𝐵 bits. 𝔽2

𝐵 

denotes the set of binary sequences of length 𝐵 bits. 

We consider 𝜌 = 1 − 𝜌0 as the correlation parameter in this chapter. It is clear that 𝜌0 close to 

zero indicates highly correlated sources while 𝜌0 close to 0.5 indicates roughly no correlation 

between binary sources. This correlation model can describe different communication scenarios 

in which sources share common information, but each also has an individual component (e.g., A 

wireless network in which a set of nodes collect and transmit correlated data arising from the same 

physical phenomenon to a common sink) [121][122].  
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5.3. Proposed Caching and Delivery Scheme 

We present the caching strategy in two following phases:  

5.3.1. Placement Phase 

First, upon performing the CACS, the 𝐾 clusters’ representatives are identified as the selected 

side information for the rest of the library. Then the placement phase is carried out according to 

the CC strategy with uncoded placement to take advantage of the multicast opportunities. Contrary 

to the CC scheme, we only store representatives in our model. However, the rest of the library 

(clustered files) will also be accessible at a low delivery rate by transmitting refinement segments 

to the requesting users since delivery of the clustered files has been formulated as distributed 

source coding with side information. 

Let parameter 𝑇 define integer values 𝑇 ∈ [0, 𝑍]. Then, the available memory size of each 

shared cache to store the obtained 𝐾 representatives is defined as 𝑀 ∈ 𝐾𝑇 𝑍⁄ , i.e., 𝑀 ∈

{0, 𝐾 𝑍⁄ , 2𝐾 𝑍⁄ ,… , 𝐾}.  

Recall that 𝑭 = {�̂�1, … , �̂�𝐾} denotes the set of 𝐾 representatives. We divide each �̂�𝑘, 𝑘 ∈ 𝐾 , 

into (
𝑍
𝑇
) non-overlapping chunks of size 1 (𝑍

𝑇
)⁄ . The chunks of each �̂�𝑘 are labeled as follows 

�̂�𝑘 = (�̂�𝑘,𝜏: 𝜏 ⊂ [𝑍], |𝜏| = 𝑇)    () 

where 𝑇 = 𝑍𝑀 𝐾⁄  and [𝑍] ≜ {1,… , 𝑍} 

Then, each shared cache 𝑧 ∈ [1, 𝑍] fills its caches as follows: 

𝑌𝑧 = (�̂�𝑘,𝜏: 𝑘 ∈ [𝑭], 𝜏 ⊂ [𝑍], |𝜏| = 𝑇, 𝑧 ∈ 𝜏)    () 

In other words, each cache 𝑌𝑧 stores all chunks �̂�𝑘,𝜏 if 𝑧 ∈ 𝜏.  

In this way, each shared cache stores  𝐾(𝑍−1
𝑇−1

) number of representative chunks in total. In this 

case 𝐾(𝑍−1
𝑇−1

)
1

(𝑍𝑇)
 memory size is required as the size of each chunk is 1 (𝑍

𝑇
)⁄  file, which results in 

𝐾(𝑍−1
𝑇−1

)
1

(𝑍𝑇)
=

𝐾𝑇

𝑍
= 𝑀 files and satisfy the memory size constraint. 
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The following example shows how a set of side information is placed in the shared caches. 

Example 5.1: Consider the proposed network with 𝑍 = 4 shared caches, each with size 𝑀 = 1 

file. Assume the library files are categorized into 𝐾 = 4 clusters by performing the CACS scheme, 

which results in a representative set 𝑭 = {�̂�1, … , �̂�4}.  

Since 𝑇 = 𝑀 𝑍 𝐾⁄ = 1, each �̂�𝑖 is split into (
4
1
) = 4 chunks of size 1 4⁄  file. Hence, caches are 

filled as follows: 

𝑌1 = {�̂�1,1, �̂�2,1, �̂�3,1, �̂�4,1} 

𝑌2 = {�̂�1,2, �̂�2,2, �̂�3,2, �̂�4,2} 

𝑌3 = {�̂�1,3, �̂�2,3, �̂�3,3, �̂�4,3} 

𝑌4 = {�̂�1,4, �̂�2,4, �̂�3,4, �̂�4,4} 

 

The next section explains how the delivery phase works according to this placement setting.  

5.3.2. Delivery Phase 

During the delivery phase, users reveal their requests to the SBSs. Depending on the cache size 

and requested files, some of the demands can be locally satisfied, while others need to be processed 

by the server. Demands received by the server are either associated with representatives or 

clustered files. In both cases, the relevant representative should be first constructed. 

Let 𝑄𝑧 includes all the demands of the cache 𝑌𝑧, 𝑧 ∈ 𝑍, to be processed by the server. Then, all 

files in a 𝑄𝑧 are mapped to the relevant representatives and create a vector of unique demanded 

representatives across all caches denoted by 𝑄 in the server. 

All unique requested clustered files across all SBSs are also assigned to the demand vector 𝑄′. 

Lastly, requests will be satisfied in one of the following ways: 
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1. Demands corresponding to the representatives (Demand vectors 𝑄 ):   

• When 𝑀 = 𝐾: such demands are locally served as they are fully cached and accessible 

by all users. 

• When 𝑀 < 𝐾: Such demands are served by transmitting coded multicast messages in 

accordance with the cached content. Consider a case where one distinct representative 

is requested in each shared cache, therefore; request vector 𝑄 = (𝑞�̂�1
, … , 𝑞�̂�𝑧

) is created, 

where 𝑞�̂�𝑖
 means the representative �̂�𝑖 is requested in cache 𝑖 ∈ 𝑍. Consider subset 𝒮 ⊂

[𝑍] of cardinality |𝑇 + 1| shared caches. In this case, every 𝑇 cache in 𝒮 shared a chunk 

in their memory that is needed at the rest of the shared caches in 𝒮. Therefore, the server 

transmits the following coded message 

  ⨁
𝑧∈𝒮

𝑞�̂�𝑠
, 𝒮\{𝑧}, ∀𝒮 ⊆ [Z] , |𝒮| = T + 1    () 

Where ⨁ indicates the bitwise XOR operation and 𝒮 is the subset of shared caches that 

receives the coded message. The size of each coded message is 1 (𝑍
𝑇
)⁄  file.  

Example 5.2 shows the transmitted coded multicast messages during the delivery phase. 

2. Demands corresponding to the clustered files (Demand vector 𝑄′):  

All unique requested clustered files across all SBSs are assigned to the demand vector 𝑄′. As 

the server has global knowledge of the populated caches and the clustered files, let such files in 

the 𝑄′ be described by their cluster numbers for convenience, i.e., 𝐹𝑘,𝑖, where 𝑖 ∈ 𝑚𝑘 and 𝑘 ∈  𝐾. 

Also, let 𝐹𝑘,𝑖
𝑗𝑧  describes the requested file 𝐹𝑘,𝑖 by the user 𝑗 ∈ 𝑁 connected to cache 𝑧 ∈ 𝑍.  

Then, demands corresponding to the clustered files will be satisfied by transmitting a refinement 

segment in addition to the coded multicast messages. To this end, in response to each request in 

𝑄′, the server creates an encoded message 𝑋𝑖 of size 𝐻(𝐹𝑘,𝑖
𝑗𝑧 |�̂�𝑘) ≤ 𝐻(𝐹𝑘,𝑖) to be transmitted to the 

requesting user, where 𝐻(. |. ) denotes the conditional entropy, and �̂�𝑘 is the corresponding 

representative. As such, users can reconstruct the desired content by jointly decoding the 

refinement segment and the side information available in the cache. 
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It is clear that the refinement segment needed for the same file in different SBSs is transmitted 

just once due to the broadcast nature of the medium. 

The following example shows how the delivery phase works in accordance with the populated 

caches in the network. We have considered a simple case in this example to focus on the delivery 

solution. 

Example 5.2: Consider the proposed cache-aided network with 𝑍 = 2 shared caches 𝑌𝑖, for 𝑖 =

[1, 2], connected to 𝑈1 = 14 and 𝑈2 = 16 users, results in 𝑁 = ∑ 𝑈𝑖
2
𝑖=1 = 30 total users. Let the 

size of the cache be 𝑀 = 1 file. Assume the server consists of 𝑚 = 30 uniform popular files with 

size 𝐵 bits that are categorized into 𝐾 = 2 clusters by performing the CACS scheme results in a 

representative set 𝑭 = {�̂�1, �̂�2} and maximum distance 𝛿𝑚𝑎𝑥 = 0.2 per cluster.  

Therefore, 𝑇 = 𝑀 𝑍 𝐾⁄ = 1 and each �̂�𝑖 is split into (
2
1
) = 2 chunks of size 1 2⁄  file. Hence, 

the caches are filled as follows: 𝑌1 = {�̂�1,1, �̂�2,1} , and 𝑌2 = {�̂�1,2, �̂�2,2} 

 

In this example, we investigate the delivery rate for the worst-case demand, which assumes all 

the files are requested in the network. Therefore, both representatives are needed in each cache, 

requiring the following coded multicast messages 

Coded multicast messages (with size 𝐵 2⁄  ) 

    decode �̂�12   ⇐   �̂�12⨁�̂�11  ⇒    decode �̂�11 

     decode �̂�22   ⇐   �̂�21⨁�̂�22  ⇒    decode �̂�21 

Therefore, 𝑅𝐶𝑀 = 2 ∗ 𝐵 2⁄ = 𝐵 bits or 1 file. 

Refinement segments (with size 𝐵 5⁄  ): 

(𝐹𝑘,𝑖|�̂�𝑘) = 𝐵 5⁄  for all the clustered files. Therefore, 𝑅𝑅𝑆 = 28 ∗ 𝐵 5⁄ = 5.6 files 
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Thus, 𝑅 = 𝑅𝐶𝑀 + 𝑅𝑅𝑆 = 6.6 files are required to serve all 30 users with 30 unique requests in 

the proposed network. 

5.4. Delivery Rate Analysis 

The delivery rate of the proposed system includes two components; 𝑅𝐶𝑀 which is needed for 

constructing the representatives and the 𝑅𝑅𝑆 which is required for the refinement segments. Hence, 

the total delivery rate of the proposed system is 

𝑅 = 𝑅𝐶𝑀 + 𝑅𝑅𝑆    () 

Coded multicast messages account for most of the delivery rate; therefore, the peak delivery 

rate occurs when 

• firstly, requests from each SBS involve all clusters; thus, all representatives must be 

constructed in all SBSs via coded multicast messages.  

• Secondly, all the clustered files are also requested in the network, for which we need to 

assume 𝑁 = 𝑚, implying that the total number of users and files is the same. 

In order to analyze the peak delivery rate, the upper bounds for 𝑅𝐶𝑀 and 𝑅𝑅𝑆 are described next. 

Consider the case of reaching the clustering solution 𝑪𝑆 with 𝐾𝐶𝑆 clusters during the placement 

phase. Let ζ describe the maximum number of requested representatives per shared cache in the 

system. The coded multicast delivery rate 𝑅𝐶𝑀 in a network with 𝑍 shared caches, each having a 

memory size of 𝑀 = 𝐾𝑪𝑆𝑇 𝑍⁄  files for 𝑇 ∈ [0: 𝑍] to construct a set of 휁 ∈ [1: 𝐾𝑪𝑆] representatives 

in all receivers is given by 

𝑅𝐶𝑀(𝑀) = 𝑍휁 (1 −
𝑀

𝐾
𝑪𝑆

)min (
1

1+ 𝑍 𝑀 𝐾
𝑪𝑆⁄

,
𝐾

𝑪𝑆

𝑍𝜁
)   () 

In cases where 휁 = 𝐾𝑪𝑆, the upper bound for 𝑅𝐶𝑀 is achieved, representing the case when 

requests from each SBS involve all clusters, and therefore, all representatives must be constructed 

in all SBSs via coded multicast messages. 

The coded multicast delivery rate 𝑅𝐶𝑀 can be achieved by treating each of the 휁 sets of 

representative demands independently and then applying the coded multicast scheme proposed in 
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[5, Theorem 1] for each set of representative demands. The second term in the minimum function 

is considered for the cases when multicasting does not improve the unicast rate.  

Since we are interested in the peak rate 𝑅𝐶𝑀, we assume that all SBSs request all representatives, 

i.e., 휁 = 𝐾𝑪𝑆, which results in the peak rate 𝑅𝐶𝑀
𝑃  as follows 

𝑅𝐶𝑀
𝑃 (𝑀) = 𝑍𝐾𝑪𝑆 (1 −

𝑀

𝐾
𝑪𝑆

)min (
1

1+ 𝑍 𝑀 𝐾
𝑪𝑆⁄

,
1

𝑍
)   () 

The delivery of the clustered content occurs by transmitting refinement segments according to 

the representatives since the caching problem is formulated as distributed source coding with side 

information at the decoder. Such messages describe the difference between the requested content 

and the cached representatives. Therefore, the peak delivery rate 𝑅𝑅𝑆
𝑃  which upper bounds the 

delivery rate 𝑅𝑅𝑆 required for transmitting clustered content to the requesting users across all 𝑍 

shared caches in the system is given by: 

                            𝑅𝑅𝑆 ≤ 𝑅𝑅𝑆
𝑃 = ∑ ∑𝐻(𝐹𝑘,𝑖|�̂�𝑘)

𝑚𝒌

𝑖=1

𝐾
𝑪𝑆

𝑘=1

                                                            (5.7) 

5.5. The Optimal Library Partitioning 

The optimum library partitioning achieved by the CACS is formulated with the objective of 

minimizing the peak delivery rate 𝑅𝑃 of the system considering constraint 𝛿𝐶
𝑚𝑎𝑥 < 𝜹. 

𝑅𝑃(𝑍,𝑀,𝑚, 𝑭, 𝜹)

= min
𝛿𝐶

𝑚𝑎𝑥<𝜹
{(𝑍𝐾𝑪𝑆 (1 −

𝑀

𝐾𝑪𝑆
)min (

1

1 +  𝑍 𝑀 𝐾𝑪𝑆⁄
,
1

𝑍
))

+ ∑ ∑𝐻(𝐹𝑘,𝑖|�̂�𝑘)

𝑚𝒌

𝑖=1

𝜁

𝑘=1

 }                                                                                                 (5.8) 

The first term of the min {.} function comes from the upper bound of the coded multicast messages 

for the worst-case demand 휁 = 𝐾𝑪𝑆. The second term represents the rate 𝑅𝑅𝑆, required for the 

refinement segments under the worst-case demand assumption.  



107 

 

 

 

Figure 5.2: The minimum of the Peak delivery rate occurred in memory size 𝑀 = 20 for a 

library of 𝑚 = 100 files, categorized into 𝐾𝐶𝑆 = [1: 100] clusters with different 𝛿𝑚𝑎𝑥 ≤ 0.231 

From this point of view, we are interested in finding the clustering solution 𝐶∗ with parameters 

𝐾𝐶∗ , 𝛿𝐶∗
𝑚𝑎𝑥 that minimize the 𝑅𝑃. Therefore, 𝑀𝑜𝑝𝑡 = 𝐾𝐶∗ is considered the optimum library 

partitioning for this setting. 

It should be mentioned that the peak rate 𝑅𝑃 is significantly impacted by the coded multicast 

messages in our model; hence, a balance should be maintained between the number of achieved 

representatives and the global cache size in the network during the placement phase in order to 

decrease the number of multicast messages in the delivery phase.  

Figure 5.2 shows how the delivery rate decreases to a certain point by increasing memory size 

but rises again once it touches its minimum. 

5.6. Performance Analysis and Discussion 

The performance of the proposed caching and clustering schemes is evaluated here. The 

experimental results have been carried out on a PC with Windows 11 Professional 64-bit operating 

system, an Intel(R) Core ™ i7-10700K processor, and 48 GB RAM using MATLAB software 

2021 b. 
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We start our evaluation with Figure 5.3, which illustrates the trade-off between the achieved 

number of clusters, the maximum distance within each cluster, and the similarity among the library 

sources in the correlation-aware clustering scheme. This scheme categorizes the library files into 

clusters with approximately the same maximum distance in all clusters.  

This evaluation is performed on 𝑚 = 130 files with different correlation level among the 

source files. This simulation is performed by considering the BBA algorithm in the optimizer 

module. The parameter setting for the BBA solution is described in Table 3.2. 

It is observed that increasing the number of clusters reduces the maximum distance within the 

clusters. On the other hand, we can see the effect of having higher correlated sources in the library. 

Increasing the correlation among the library files results in clustering solutions with fewer groups 

and lower maximum distance in the clusters. 

If the constraint of the system allows for more distance within each cluster, it means the number 

of clusters can be reduced to meet the condition. While if the maximum distance per cluster 

exceeds the system constraint, the number of clusters should be increased to meet the condition. 

 

Figure 5.3: The trade-off between the achieved number of clusters and the maximum distance in 

the clusters for 𝑚 = 130 files with different correlation level among sources 
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Figure 5.4: Delivery rate comparison in a network with 𝑍 = 5 shared caches of size 𝑀 = 20 

As shown in Figure 5.4, our next evaluation examines the effect of increasing the number of 

users connected to the shared caches in a delivery network with multiple caches under uniform 

popularity demand. This evaluation is performed considering 𝑚 = 100 content files with 0.80 

similarities among the library content in a network with 𝑍 = 5 shared caches of size 𝑀 = 20. We 

have investigated the delivery rate of the system for the worst-case demand, which assumes a 

different content is requested by the users and results in the worst-case delivery rate of the system. 

For this evaluation, we have considered the proposed scheme compared to other studies, 

including local caching with unicast delivery, coded caching strategy with uncoded placement [5], 

and shared cache solution with coded placement [13]. Local caching with unicast delivery 

considers the conventional local caching solution, in which 𝑀/𝑚 of each content is stored in all 

caches, followed by a unicast delivery to transmit the remaining portions (1 − 𝑀/𝑚) of the 

requested content to each user. Coded caching with uncoded placement is considered based on [5], 

which takes advantage of a global caching gain of (
1

1+𝑍𝑀/𝑚
) beside the local caching gain for each 

set of requests. Shared caches with coded placement [13] assume a network with 𝑍 shared caches 

and 𝑁 users and divide users into 𝑍 groups. This scheme places both the coded and uncoded pieces 

of the content into the caches according to the connectivity pattern of each cache, where the 

optimal parameters for the caching scheme are obtained by solving a linear program.  
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We can see that although [13] reaches a lower delivery rate by increasing the number of users 

in each SBS compared to the coded caching strategy with uncoded placement, our approach 

achieves a higher gain due to the careful extraction of content for the placement phase. Our scheme 

places less load on the system as the number of users increases because we are required only to 

transmit extra refinement segments at low rates after a certain point.  

5.7. Summary 

As the demand for high delivery data rates continues to rise, content caching has become an 

important technique for reducing the delivery rate and improving the quality of service in current 

delivery networks. This chapter studies a cache-aided network with correlated sources and multiple 

shared caches, where each cache is connected to a group of users. The proposed approach considers 

the CACS for content placement that divides library content into clusters with approximately the 

same maximum distance by considering the similarity among the sources and the maximum 

allowable distortion in the network. Then, the representatives are used as the side information for 

the placement phase according to the coded caching strategy with uncoded placement. The 

delivery phase considers transmitting the coded multicast messages and refinement segments to 

serve all demands. We have formulated the peak delivery rate for the worst-case demand of the 

system by joint consideration of the delivery for the refinement segments and the caching strategy. 

We have also addressed the optimum partitioning with the objective of minimizing the peak rate. 

Our simulation results show that the proposed scheme exhibits excellent performance in reducing 

the peak delivery rates compared to others. Further studies can consider the proposed caching 

scheme in case of non-uniform demand. Also, considering a coded strategy in such a network can 

be studied as future work.  
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Chapter 6  

Content Delivery in a Network with Multiple Shared 

Caches and Correlated Content under Non-Uniform 

Popularity Demand 

 

Designing an effective placement scheme is crucial to maximizing caching gains and reducing 

the peak delivery load of cache-aided delivery networks. So far, we have addressed this challenge 

in joint consideration with the delivery phase of a cache-aided network under uniform demand and 

observed that a symmetric placement strategy for the extracted side information significantly 

reduces the delivery rate in such networks.  
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This chapter extends our previous study in Chapter 5 to account for heterogeneous user 

preferences as well. In this chapter, we study a more general case with a non-uniform popularity 

demand, resulting in a more complicated caching design and analysis since some files will be more 

popular than others. 

6.1. Introduction 

Conventionally, the HPF caching strategy is used in cache-aided networks with non-uniform 

demands; This strategy utilizes the popularity parameter to place the most popular files in all 

caches [5]. A few years ago, the coded caching strategy emerged as a major breakthrough in 

different types of caching networks to increase global gain and combat the high delivery data rates. 

A typical analysis of caching networks with coded caching strategy under heterogeneous user 

preferences is to design a placement strategy under this setting and evaluate the system’s 

performance accordingly [123][124]. In this regard, content placement using file grouping is a 

common method to reduce the complexity of the problem. The authors in [6] propose grouping 

files on the basis of their popularity to allocate different chunks of caches to different groups. Still, 

they consider the same identical placement for the files within each group. Several other studies 

[7][10][124] proposed partitioning files in groups for caching networks with independent library 

content, demonstrating that file grouping in different ways is an effective method to cope with 

non-uniform popularity demand. Motivated by the above, we propose a content placement strategy 

based on joint consideration of the popularity and the similarity of library content in this chapter 

and then evaluate the peak delivery rate in the proposed network. 

In the remainder of this chapter, we first describe the system model and introduce a clustering 

scheme based on the popularity and similarity of library content for the placement phase. Next, we 

describe the caching and delivery strategy and analyze the delivery rate of the system. 

6.2. System Model 

Consider a cache-aided delivery network with a server, 𝑁 total users, and 𝑍 SBSs over a shared 

error-free broadcast link. The network model of the proposed system is illustrated in Figure 6.1. 
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Each SBS 𝑖 ∈ {1,… , 𝑍} is equipped with a shared cache 𝑌𝑖, which is connected to 𝑈𝑖 number of 

users, where 𝑈𝑖 ∈ {𝑈1, … , 𝑈𝑍} and ∑ 𝑈𝑖
𝑍
𝑖=1 = 𝑁, and 𝑍 ≤ 𝑁. We assume each user is connected to 

only one SBS and can receive messages from its SBS and the server.  

The server has access to a library containing 𝑚 content files ℱ = {1, … ,𝑚} with the same size. 

The correlated library content files are considered based on the same model discussed in Chapter 

5, in which each file is represented by a vector of i.i.d binary symbols of length 𝐵 bits, 𝑓i ∈ 𝔽2
𝐵; 

thus, for a block length of 𝐵, 𝐻(𝑓i) = 𝐵 bits and 𝐻(𝑓1, … , 𝑓𝑚) ≤ 𝑚𝐵 bits. 

We also consider a popularity parameter in this chapter to investigate the network under non-

uniform popularity demand. The popularity of each content file 𝑖 ∈ ℱ is denoted by 𝑝i, where 

∑ 𝑝i = 1𝑚
𝑖=1 . Without loss of generality, we assume that the file popularity is decreasing in the 

index, i.e., 𝑝𝑗 ≥ 𝑝𝑖 where 𝑗 ≥ 𝑖.  

We also define 𝑃𝑘 as an aggregate popularity parameter for each cluster 𝑘 ∈ 𝐾𝑪, which 

represents the sum of the popularity of files per cluster 𝑘, i.e., 𝑃𝑘 = ∑ 𝑝𝑖
𝑚𝑘
𝑖=1 , and ∑ 𝑃𝑘 = 1

𝐾𝑪
𝑘=1  

where 𝑚𝑘 indicates the number of files within cluster 𝑘 and could be different across clusters. We 

use this parameter later in designing the objective function. 

We aim to optimize the content placement of the proposed network under non-uniform 

popularity demand distribution to reduce the delivery rate during peak hours. To address the 

placement challenge, we propose a popularity-based correlation-aware clustering scheme (PB-

CACS) that considers both the popularity and similarity of library content, extracting two types of 

side information for the entire library known as; 

▪ Popular side information (PSI)  

▪ Clusters’ side information (CSI) 

Then, we consider a hybrid placement strategy in which PSIs are fully stored in all caches, 

while CSIs are divided into chunks and stored in different caches based on the coded caching 

solution. 

Next, coded multicast messages and refinement segments are transmitted in the delivery phase 

to construct the requested CSIs and clustered files.  
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Figure 6.1: Content delivery network in a shared cache Framework with multiple caches under 

non-uniform popularity demand considering a hybrid placement strategy 

6.3. Popularity-Based Correlation-Aware Clustering Scheme 

The proposed PB-CACS identifies the side information for the entire library based on joint 

considerations of the similarity and popularity of library content files during the placement phase. 

The proposed clustering scheme categorizes the library content into a set of highly popular files 

along with a sufficient number of compact and well-separated clusters with approximately the 

same aggregate popularity and maximum distance per cluster.  

It is worth mentioning that we are interested in reaching clusters with the same aggregate 

popularity to be able to formulate a non-uniform popularity case into a uniform popularity case. 

Therefore, we can easily maintain symmetry among representatives during the placement phase 

and create coded multicast messages efficiently. 

6.3.1.  PB-CACS Objective Function and Methodology 

Similar to the proposed CACS in Chapter 4, the PB-CACS is formulated as an AI-based 

optimization problem with objective function 𝒇 that needs to be minimized iteratively over the set 
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of all feasible clustering solutions defined by 𝜓 = {𝐶1, 𝐶2, … , 𝐶𝑆(𝑚,𝐾 )}, where 𝑆(𝑚,𝐾 ) is the set 

of all feasible clustering solutions defined by Eq. (3.3).  

In addition to the similarity in the PB-CACS, a popularity parameter and a popularity-related 

constraint are also considered in the objective function of this scheme. In this regard, we define 

�̅�𝐶, as the average aggregate popularity over all clusters in the clustering solution 𝐶, given by 

�̅�𝐶 =
1

𝐾𝐶
∑ 𝑃𝑘

𝐾𝐶
𝑘=1    () 

where  𝑃𝑘 = ∑ 𝑝𝑖
𝑚𝑘
𝑖=1 .  

We also define 𝑃𝐶
𝑚𝑎𝑥 and 𝑃𝐶

𝑚𝑖𝑛 as the maximum aggregate popularity and minimum aggregate 

popularity parameters of all 𝐾𝐶 clusters in the clustering solution 𝐶. 

𝑃𝐶
𝑚𝑎𝑥 = max

∀𝑘∈𝐾𝐶

{𝑃𝑘}   () 

𝑃𝐶
𝑚𝑖𝑛 = min

∀𝑘∈𝐾𝐶

{𝑃𝑘}   () 

Moreover, for each clustering solution 𝐶, we define the deviation of aggregate popularity ∆𝑃𝐶, 

given by: 

∆𝑃𝐶 = 𝑃𝐶
𝑚𝑎𝑥 − 𝑃𝐶

𝑚𝑖𝑛   () 

Then, we define 𝐽(𝐶) as a function that reflects the compactness of the clusters, given by: 

𝐽(𝐶)
𝐶∈𝜓

=𝐾𝐶  .  �̅�
𝑚𝑎𝑥

𝐶
. Δ𝐶  .  ∆𝑃𝐶  () 

where 𝐾𝐶 is the number of clusters obtained by the clustering solution 𝐶, and �̅�𝑚𝑎𝑥

𝐶
 and  𝛥𝐶 are 

defined as described in chapter 3 by Eqs. (3.5) and (3.6).  

Finally, considering 𝐸(𝐶) described in Eq. (4.4) as a function that reflects the separation of the 

clusters in the clustering solution 𝐶, we introduce the objective function as follows 

𝒇(𝐶) = Min(
𝐶∈𝜓

𝐽(𝐶)

𝐸(𝐶)
)

𝑠. 𝑡 .  
𝑃𝐶

𝑚𝑎𝑥≤ �̅�𝐶+𝑃𝐶
𝑚𝑖𝑛

𝛿𝐶
𝑚𝑎𝑥≤𝜹

   () 
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We iteratively minimize 𝒇(𝐶) subject to two constraints; one is with respect to the given 

distortion of the system, and the other is to ensure reaching clusters with the same aggregate 

popularity.  

However, the PB-CACS goes through an extra step to meet the aggregate popularity constraint. 

The PB-CACS consists of three main steps. 

1. Cluster Initialization step: Initially, each content file is equipped with a cluster number 

in order to form a primary clustering solution; then, the primary solution will be 

repeatedly re-clustered and updated according to the representatives until no change is 

seen in the clusters. 

2. Merging and Modifying step: Following the achievement of the clustering solution in 

step 1, the achieved clusters will be re-clustered, merged, and modified based on a 

designed condition, Eq. (3.4), to compensate for the distortion deviation between 

clusters of different sizes and improve the result. This condition leads clusters to 

gradually achieve the same maximum distance without increasing the number of 

clusters. The AI-optimizer module then optimizes the achieved clusters over the course 

of iterations based on the problem objectives. 

3. Aggregate Uniformity step: The final step involves optimizing clusters based on a 

uniformity condition to reach the same aggregate popularity per cluster 𝑐𝑖 ∈ 𝐶, 

according to the aggregate popularity constraint for all clusters defined as: 

𝑃𝐶
𝑚𝑎𝑥 ≤ �̅�𝐶 + 𝑃𝐶

𝑚𝑖𝑛  () 

As long as the uniformity condition is not met, the highest popular content file in the library 

will be removed from the library and stored in the set 𝑚𝐻; then, the library will be updated based 

on recent changes, and the clustering scheme will proceed according to the updated library. As a 

result of performing all the above steps, the clustering solution 𝑪 is obtained, consisting of 𝑚𝐻 

number of highly popular content and 𝐾𝑪 representatives, while achieved clusters have 

approximately the same maximum distance 𝛿𝑪
𝑚𝑎𝑥 and aggregate popularity 𝑃𝑪.  

Flowchart 6.1 explains the above steps and illustrates how the optimizer module and objective 

function collaborated to solve the clustering problem in the proposed PB-CACS, considering the 

given constraints of the system. 
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Flowchart 6.1: How the optimizer module and objective function collaborated to solve the 

clustering problem in the proposed PB-CACS considering system constraints  

6.4. Proposed Hybrid Caching and Delivery Strategy 

The proposed network operates in two phases: The cache placement and the delivery phase. 

6.4.1.  Hybrid Cache Placement Strategy 

Let 𝑪 represents the achieved clustering solution by the PB-CACS during the placement phase. 

Then, library files fall into one of the following groups based on the achieved 𝑪: 

▪ 𝑚𝐻 content files with very high popularity, known as popular side information (PSIs) 

▪ 𝐾𝑪 cluster representatives, known as clusters’ side information (CSIs) 

▪ 𝑚𝐶 = (𝑚 − 𝑚𝐻 − 𝐾𝑪) files, known as Clustered files 
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We consider a hybrid strategy for the placement phase, in which PSIs are fully stored in all 

shared caches. At the same time, distinct portions of CSIs are placed in different caches based on 

the coded caching strategy with uncoded placement, which is introduced in section 5.3.1 of 

Chapter 5. 

 In contrast with the coded caching strategy with non-uniform demands [6], our model stores 

only PSIs instead of all files in the same group. Still, the rest of the library would be accessible at 

a low rate to the requesting users by sending refinement segments in our model. The reason is that 

delivery of the clustered files has been formulated as distributed source coding with side 

information at the decoder. 

It is worth recalling that we have partitioned the library files into clusters with the same 

aggregate popularity in our scheme. Therefore, different clusters do not have any priority over 

each other; Hence, we allocate the same memory size to each CSI and preserve the symmetry 

across different groups. 

Recall that the parameter 𝑇 defined as integer values 𝑇 ∈ [0, 𝑍]. Then, the available memory 

size to store CSIs per shared cache is defined as 𝑀𝑅 ∈ 𝐾𝑪𝑇 𝑍⁄ , i.e., 𝑀𝑅 ∈

{0, 𝐾𝑪 𝑍⁄ , 2𝐾𝑪 𝑍⁄ ,… , 𝐾𝑪}, where 𝐾𝑪 is the number of clusters achieved by the clustering scheme 

and 𝑍 is the number of shared caches in the network. 

The process of dividing CSIs into chunks and placing chunks in different caches is similar to 

what we have discussed in section 5.3.1 of Chapter 5. In this regard, Eqs (5.1) and (5.2) indicate 

how CSIs could be divided into chunks, labeled, and then placed in different caches.  

This solution requires a maximum memory size of 𝑀 = 𝑚𝐻 + 𝑀𝑅 files per shared cache.  

6.4.2.  Delivery Phase 

During the delivery phase, users reveal their demands to the SBSs. Demands corresponding to 

the PSIs will be locally served as these files are fully stored in all SBSs, while the rest of the 

demands should be processed by the server.  

Let 𝑄𝑧 represents all the distinct requests of cache 𝑌𝑧, ∀𝑧 ∈ 𝑍, to be processed by the server. 

Demands received by the server are either associated with representatives or clustered files. In 
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both cases, the relevant representative should also be constructed. Therefore, the server maps all 

requested files in a demand vector 𝑄𝑧, to the relevant distinct representatives. We assume the 

mapped vector is sorted ascending by the index of the requested representatives and denoted by 

𝑦𝑧 ⊆ {𝐾1, … , 𝐾𝑪}, for each demand vector 𝑄𝑧 , ∀𝑧 ∈ 𝑍. 

Similar to what we have discussed in section 5.3.2 of Chapter 5, the rest of the demands will be 

satisfied in one of the two following ways: 

1. Demands corresponding to representatives (CSIs): 

▪ When 𝑀𝑅 = 𝐾𝑪: These demands are locally served since such content files have been 

fully cached and are accessible to all users. 

▪ When 𝑀𝑅 < 𝐾𝑪: Such demands are served by receiving coded multicast messages in 

accordance with the cached content. The server sends the multicast coded messages to 

𝑇 + 1 caches for each subset of the requested chunks according to Eq (5.3).  

In recent years, a few efficient solutions have been proposed to optimize the caching strategy 

by focusing on highly popular demands and the coded multicast messages in caching networks 

with non-uniform demands. However, it is still a challenge to serve files from the less popular 

groups at a low rate; Such requests could cause an unexpected spike in the system load if they are 

not considered in the placement phase of the caching strategy. A key part of our problem 

formulation involves targeting this group to satisfy such demands at a low rate as follows:  

2. Demands corresponding to the clustered files:  

Similar to the uniform case, all unique requested clustered files across all SBSs are assigned to 

a demand vector 𝑄′ in the server. Such demands will be served by transmitting a refinement 

segment in addition to the coded multicast messages required for constructing the CSIs. In this 

regard, the server transmits encoded messages 𝑋𝑖 of size 𝐻(𝐹𝑘,𝑖
𝑗𝑧 |�̂�𝑘) ≤ 𝐻(𝐹𝑘,𝑖) to the requesting 

user 𝑗 as a refinement segment so that the user, where 𝐻(. |. ) describes the conditional entropy, 

and �̂�𝑘 is the corresponding representative. As a result, users can reconstruct the clustered file 𝐹𝑘,𝑖 

by jointly decoding the received message and the available side information in the cache.  

The refinement segments needed for the same file in different SBSs are transmitted just once 

due to the broadcast nature of the medium. 
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6.5. Delivery Rate Analysis 

Let 𝛽 denote the maximum number of requested representatives in a mapped vector 𝑦𝑧 among 

all 𝑍 caches. We assume the server creates 𝛽 sets of demand and then serves the demands from 

each set together; In order to create each set, the first element with the lowest index is picked from 

each 𝑦𝑧 vector. Since the number of requested representatives is not necessarily the same in all 𝑦𝑧, 

the number of elements in each set can be different, reflecting the number of caches with a request 

in this set. Then, we denote the number of caches with a request from the server in each set by 휂. 

Example 6.1 illustrates this step in a simple way. 

Example 6.1: Assume the library content is categorized into 𝐾 = 4 clusters with 

representatives 𝑭 = {�̂�1, … , �̂�4} by the PB-CACS scheme in the proposed network with 𝑍 = 3 

shared caches. Then, the mapped vector 𝑦𝑧 for each SBS is as follows  

𝑦1 = {�̂�1, �̂�2, �̂�3, �̂�4} → 𝑦1 has the maximum number of requested representatives = 4 

 𝑦2 = {�̂�1, �̂�3, �̂�4}   

 𝑦3 = {�̂�2, �̂�3, �̂�4} 

 

Therefore, 𝛽 = 4 sets and 휂1 = 3, 휂2 = 3, 휂3 = 2, and 휂4 = 1 

According to Eq. (5.4), the total delivery rate of this proposed system also includes two 

components; 𝑅𝐶𝑀 which is needed for constructing CSIs and the 𝑅𝑅𝑆 which is required for the 

refinement segments; hence 𝑅 = 𝑅𝐶𝑀 + 𝑅𝑅𝑆.   

In this regard, the delivery rate for transmitting the refinement segments is calculated based on 

Eq. (5.7), while the delivery rate for the coded multicast messages is calculated as follows. 
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Consider the case of reaching the clustering solution 𝑪𝑆 with 𝐾𝐶𝑆 clusters during the placement 

phase. The coded multicast delivery rate in a cache-aided network with 𝑍 shared caches, each 

having a demand vector 𝑄𝑧, ∀𝑧 ∈ 𝑍, and 𝑀𝑅 = 𝐾𝑪𝑆𝑇 𝑍⁄  cached files is given by 

𝑅𝐶𝑀(𝑀𝑅) = ∑ Min(
( 𝑍
𝑇+1)−(

𝑍−𝜂𝑖
𝑇+1

)

(𝑍𝑇)
 , 휂𝑖(1 −

𝑀𝑅

𝐾
𝐶𝑆

))
𝛽
𝑖=1     () 

where 𝑇 = 𝑀𝑅 𝑍 𝐾𝑪𝑆⁄ , 𝑇 ∈ [0: 𝑍], 𝛽 describes the maximum number of requested 

representatives (CSIs) across all mapped vectors, and 휂 describes the number of caches with a 

request from the server in each set of 𝑖. 

The coded multicast delivery rate 𝑅𝐶𝑀 can be achieved by treating each set 𝑖 ∈ 𝛽 representative 

demands independently and then applying the coded delivery scheme proposed in [5, Theorem 1] 

for each set of 𝛽 demands.  

In this case, for each set of 𝛽, the server sends the XOR of the 𝑇 + 1 requested segments to  

𝑇 + 1 caches, as each cache has stored 𝑇 Z⁄  of all segments of each representative. Thus, each SBS 

can reconstruct one requested representative after ( 𝑍
𝑇+1

) coded multicast transmissions, where the 

size of the coded messages is 1 (
𝑍
𝑇
)⁄ .  

Accordingly, ( 𝑍
𝑇+1

) transmissions are needed to serve all caches with one set of demands. 

However, there might be some cases where all demands of an SBS be associated with only one 

cluster or belong to only PSIs. In such cases, the demand vector 𝑄𝑧 and consequently, the mapped 

vector 𝑦𝑧 can be empty or have fewer requests than the rest of the caches; hence, for some sets of 

𝛽 , they have no demand for the server to meet. In this regard, we assume 휂𝑖 as the maximum 

number of caches that contributes to the multicast transmission in set 𝑖 ∈ 𝛽; thus, the number of 

unnecessary transmissions is (𝑍−𝜂𝑖
𝑇+1

). As a result, the number of coded transmissions is ( 𝑍
𝑇+1

) −

(𝑍−𝜂𝑖
𝑇+1

) for each set of 𝛽 requested representatives, where the size of each coded message is 1 (
𝑍
𝑇
)⁄ . 

The second term in the min (.) function is derived from the unicast rate and considered for the 

cases when multicasting does not improve the rate; therefore, the minimum of the function is 

transmitted. 
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If demands involve all clusters in all SBSs, then all CSIs must be constructed in all SBSs; that 

is the worst-case demand for the multicast rate in our model and leads to the coded multicast peak 

rate. In such a case 𝛽 = 𝐾𝑪𝑆 and 휂 = 𝑍 in all sets; thus, the upper bound (normalized by the file 

size 𝐵) will be reached as follows: 𝑇 = 𝑀𝑅 𝑍 𝐾𝑪𝑆⁄  

𝑅𝐶𝑀
𝑃 = 𝐾𝑪𝑆

( 𝑍
𝑇+1)

(𝑍𝑇)
     

         = 𝐾𝑪𝑆
𝑍−𝑇

𝑇+1
      

   = 𝐾𝑪𝑆

𝑍(1−𝑀𝑅 𝐾
𝑪𝑆)⁄

1+Z𝑀𝑅 𝐾
𝑪𝑆⁄

    () 

Therefore, the peak delivery rate of the system is given by: 

𝑅𝑃(𝑀𝑅) = 𝐾𝑪𝑆

𝑍(1−𝑀𝑅 𝐾
𝑪𝑆)⁄

1+Z𝑀𝑅 𝐾
𝑪𝑆⁄

+ ∑ ∑ 𝐻(𝐹𝑘,𝑖|�̂�𝑘)
𝑄𝑘

′

𝑖=1

𝐾
𝑪𝑆

𝑘=1     () 

Where 𝑄𝑘
′ ⊆ 𝑚𝑘 is the number of unique requested clustered files of cluster 𝑘 ∈ 𝐾𝑪𝑆 in all 

SBSs. 

6.6. Results and Discussion 

The performance of the proposed clustering solution and the caching strategy is evaluated in 

this section. In line with existing studies, we consider the Zipf popularity distribution 𝓆 with 

parameter 𝜉 to describe the non-uniform popularity demand given by Eq. (2.2).  

The evaluations are performed by considering the BBA algorithm in the AI-optimizer module 

with 100 bat populations over 200 iterations. The parameter setting for the BBA solution is 

described in Table 3.2. 

Figure 6.2 illustrates the trade-off between the achieved number of clusters, the maximum 

distance within each cluster, and the similarity among the library content in the proposed PB-

CACS.  As can be seen, the achieved number of clusters reduces by increasing the similarity among 

sources for a fixed maximum distance value. On the other hand, if the system specification allows 

for more distance within each cluster, the number of clusters can be reduced.  
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Figure 6.2: The trade-off between the achieved number of clusters and the similarity among 

content files with 𝑚 = 130 in the proposed clustering solution  

 

Figure 6.3: Uniformity of the aggregate popularity in the process of clustering by selecting 𝑚𝐻 =

7 high popular files and 𝐾𝑪 = 10 CSIs in the PB-CACS considering Zipf parameter 𝜉 = 1.4 

Figure 6.3 exhibits the process of partitioning library content into a set of highly popular side 

information and several clusters with approximately the same aggregate popularity in each cluster. 

As can be seen, desired clustering solution has been achieved by selecting 𝑚𝐻 = 7 highly popular 

files and partitioning the rest of the library into 10 clusters. In that case, the achieved clusters reach 

approximately the same aggregate popularity shown by the red line. 
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Figure 6.4 illustrates the performance of the proposed scheme compared to other studies for a 

random demand request, including the famous HPF solution with an uncoded prefetching strategy 

in addition to the state-of-the-art coded-uncoded placement strategy for shared caches with 

independent sources [11]. We have assumed the same number of highly popular files fully placed 

in all shared caches in both our solution and the coded-uncoded strategy to have a fair comparison.  

We can see that all three solutions reduce at almost the same rate for the smaller memory size, 

while our solution and the coded-uncoded strategy enjoy a higher reduction by increasing the 

memory size. Although the coded-uncoded strategy exhibits a great performance, our proposed 

strategy yields a higher gain after a certain point due to the careful extraction of content as side 

information considering the similarity and popularity of sources for the placement phase. 

Additionally, our problem formulation allows us to serve less popular requests at a low rate, 

preventing unexpected spikes for such requests in the system load. In fact, with this comparison, 

we show how leveraging similarities among sources, besides the popularity of demands, results in 

significant reductions in the delivery rates in such networks. 

 

Figure 6.4: Delivery rate comparison in a network with m=100 content files and Z=10 shared 

cache each serving  𝑈𝑖=10 users  

6.7. Summary 

This chapter proposes a content delivery network in a shared cache framework with correlated 

content under non-uniform demand popularity distribution, where each cache is responsible for 
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serving a group of users. Our goal is to optimize the content placement in order to reduce the peak 

delivery rate of the system. To this end, we formulate the caching problem as a source coding with 

side information at the decoder scenario. To address the content placement challenge, we propose 

a popularity-based correlation-aware clustering scheme to extract the most efficient side 

information for the entire library with the joint consideration of the popularity and similarity 

among library files considering a given distortion in the system. Then, a hybrid placement strategy 

is used, which consists of storing highly popular content in all caches and caching the cluster 

representatives according to the coded caching strategy. The delivery phase includes transmitting 

coded multicast messages and refinement segments to construct the representatives and clustered 

files, respectively. We have studied the peak delivery rate consisting of the rate for refinement 

segments and the coded multicast. Further studies can be conducted on the proposed network under 

heterogeneous user preferences in each SBS. Furthermore, adopting coded prefetching can be 

considered a future work in networks with correlated sources and shared caches. 
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Chapter 7  

Conclusions and Future Research Directions 

The exponential growth of content-related data traffic has posed a serious challenge for current 

delivery networks, requiring them to come up with innovative solutions beyond traditional CDNs 

to combat this challenge. Therefore, investigating novel techniques besides infrastructural 

development is crucial to be able to reduce the delivery rate while providing high-quality services 

for end users. Content caching has proved to be an efficient technique in reducing the delivery rate 

by storing some content close to the end users. 

This research considers a shared cache framework architecture, allowing users in SBSs to 

access the deployed cache in the cell. As such, we are able to efficiently overcome the imbalanced 

network load and high data rate challenge while improving user experience. This setting is highly 
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beneficial in next-generation wireless networks, HetNet environment, or as an upper layer of 

hierarchical caching networks in IoT-based applications.  

7.1. Conclusions 

In this dissertation, we have examined the use of shared caches for users within an SBS in a 

network with correlated content under different settings. We have addressed the content placement 

and delivery phase in such settings and calculated the rate memory trade-off, the peak rate, and the 

expected delivery rates of the system.  

This dissertation concludes with the following remarks: 

▪ Caching networks are directly affected by cached content; therefore, designing an 

efficient placement solution along with a practical delivery strategy is crucial to 

developing efficient cache-aided content delivery networks. Meanwhile, exploiting the 

similarity among library content plays a crucial role in reaching a more efficient content 

placement and delivery strategy in cache-aided networks with correlated content and 

shared caches. 

▪ We have formulated the caching problem as a source coding with side information at 

the decoder; therefore, the first challenge is identifying the most efficient side 

information for the entire library. Our solution to this challenge is to develop two 

clustering schemes based on AI-based optimization techniques to categorize library 

content into clusters with the same maximum distance according to the similarity of the 

content and the popularity of demands, considering the distortion constraint of the 

system. The representative of the clusters is then selected as the side information for the 

placement phase. 

▪ In Chapter 3, we comprehensively examined the proposed clustering in a general 

framework and investigated its performance considering a wide range of datasets and 

different algorithms in the AI-optimizer module. Our model has demonstrated excellent 

performance against comparative studies based on extensive simulation results and 

statistical analysis. This clustering framework is essential to our research as it facilitated 

the development of two new clustering schemes, the CACS and the PB-CACS, as part 
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of the placement phase of the proposed caching networks, taking into account both 

similarity and popularity of library sources. 

o We have discussed that achieving clusters with approximately the same 

maximum distance in both proposed schemes (CACS and PB-CACS) is useful 

in introducing the optimum allocation of the delivery rate and maximum 

allowable distortion to the files.   

o We have observed a trade-off between the achieved number of clusters, the 

maximum distance within each cluster, and the similarity among content in the 

CACS solution; We have shown that the maximum distance within the clusters 

can be reduced by increasing the number of clusters in the clustering solution. 

At the same time, increasing the correlation among the library content results in 

clustering solutions with fewer groups and lower maximum distance within the 

clusters. 

o We have also stated that we are interested in clusters with the same aggregate 

popularity in the PB-CACS; The reason is that we have found that in this way, 

we can easily maintain symmetry among representatives during the placement 

phase and create coded multicast messages efficiently. 

▪ In Chapter 4, we discussed a delivery network with a single shared cache and 

correlated content under lossy caching.  

o We have shown that the efficiency of the current shared cache networks with 

independent sources does not carry over to the same caching network with 

correlated content, which implies why an efficient solution is still required in 

such systems.  

o We exploited the correlation among library content in the placement phase by 

utilizing the proposed CACS. We have also optimized the expected delivery rate 

and the users’ expected distortion in the delivery phase by joint consideration of 

the rate-distortion function and our proposed caching strategy, which resulted in 

a significant reduction in the delivery rate.  

o A key challenge in optimizing the expected delivery rate in our model is the limit 

for the maximum allowable distortion in the system. We have addressed it based 
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on the Lagrange multipliers technique and reverse water-filling optimization 

algorithm. In this regard, we found that the optimal allocation of delivery rate is 

achieved by considering equal distortion for all files, which validates our 

intention to create clusters with approximately the same maximum distance in 

the first place. 

o We have discussed the performance of the proposed scheme, and we have 

demonstrated that our proposed scheme requires much lower delivery rates for 

the same memory size to accomplish the delivery phase. Also, we have 

illustrated that the proposed scheme has yielded a significant reduction in the 

expected distortion for different delivery rates compared to the comparative 

study. 

▪ In Chapter 5, we discussed a delivery network with multiple shared caches and 

correlated content under uniform popularity demand.  

o First, we extracted the side information for this network according to the CACS. 

We then carried out the placement phase based on the coded caching strategy to 

take advantage of the multicast opportunities and global caching gain. Yet 

contrary to the CC scheme, we only store representatives in our model, while 

the rest of the library is accessible at a low rate by sending refinement segments 

to the requesting users in this model. The delivery phase involves constructing 

the clusters’ representatives and clustered files by transmitting coded multicast 

messages and refinement segments, respectively.  

o By formulating the problem based on the DSC solution and ensuring that content 

is carefully extracted for the placement, we have demonstrated a higher gain in 

this system. Our study has examined the impact of increasing the number of 

users connected to each cache. We have observed that our scheme puts less load 

on the system as users increase because we need to transmit only extra 

refinement segments after a certain point. While with a pure coded caching 

strategy, we must transmit more coded multicast messages as users increase, 

which adversely affects delivery rates.  
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o Our analysis on increasing the number of users also implies why a shared cache 

framework should be designed differently than a network with an individual 

cache for each user. In a network with individual caches, increasing users 

contribute to the global memory size and, therefore, the global gain. However, a 

shared cache framework requires a different strategy since increasing the 

number of users connected to each cache only increases delivery rates as more 

demands are placed on the server. 

o We have also discussed the optimum library partitioning formulated to minimize 

the worst-case delivery rate in the system. We have demonstrated that the worst-

case demand is significantly impacted by the coded multicast messages in our 

model; hence, a balance should be maintained between the number of achieved 

representatives and the global cache size in the network during the placement 

phase in order to decrease the number of multicast messages in the delivery 

phase. We have illustrated how the delivery rate decreases to a certain point by 

increasing memory size but rises again once it reaches its minimum. 

▪ In Chapter 6, we discussed a delivery network with multiple shared caches and 

correlated content under non-uniform popularity demand.  

o In this system, we extract two sets of side information upon performing the PB-

CACS solution in the placement phase; the popular side information and the 

clusters’ side information. As such, we introduce a hybrid placement strategy in 

which the popular side information is stored completely in all caches, and the 

clusters’ side information is split among different caches. In the delivery phase, 

coded multicast messages and refinement segments are transmitted to construct 

the requested cluster representatives and clustered files. 

o We have shown in this network that our proposed strategy yields a higher gain 

after a certain point due to the careful problem formulation and caching strategy 

considering both the popularity and similarity of library content in the placement 

phase.  

o Additionally, our problem formulation allows us to serve less popular requests 

at a low rate, preventing unexpected spikes for such requests in the system load. 
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We have illustrated how leveraging similarities among content, in addition to 

the popularity of demands, results in significant reductions in the delivery rates 

in such networks. 

7.2. Future Directions 

This research has been conducted on formulating the caching network as a DSC problem and 

optimizing the content placement of a shared cache framework to maintain a balanced load while 

improving the quality of experience for users. There are promising research directions arising from 

this framework, which can be investigated further as outlined below: 

▪ Investigating the studied framework under non-ideal channel conditions: It is possible 

to extend the proposed framework with shared caches to networks with non-ideal 

conditions where the broadcast link is not error-free. The challenge with noisy channels 

is not only determining what should be cached during the placement phase or what 

should be transmitted in the delivery phase but also addressing how to transmit the 

required content is very important. In such a scenario, a joint-source channel coding 

technique can be used as an efficient solution to reduce the delivery rate and the 

expected distortion in receivers.   

▪ Investigating the studied framework under heterogeneous cache size: another line of 

research can focus on having shared caches of different sizes in the network, posing 

exciting challenges to the coding design. In a conventional coded caching scheme with 

homogenous cache sizes, the placement procedure results in caching segments of equal 

sizes. Therefore, a maximal clique of different segments is formed that can be utilized 

to create efficient coding opportunities in the delivery phase. However, a network with 

heterogeneous cache sizes would prevent us from maintaining symmetry and diversity 

as described in the conventional coded caching strategy since the size of the transmitted 

segment would also be heterogeneous. One possible solution is to perform zero-padding 

so that all segments can be aligned for coding. Grouping caches with approximately the 

same size could also be considered a potential solution to this challenge which should 

be investigated considering the system model and constraints. 
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▪ Investigating a case for a network with a dense deployment of SBS: Having a dense 

deployment of SBS increases the possibility of some users accessing more than one 

cache simultaneously. In such a scenario, the placement strategy should be designed so 

that such users can take advantage of diverse cache content simultaneously to increase 

the global caching gain of the network.  
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