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Abstract

Dynamics and Performance of Tethered Airborne Wind Energy Systems

Amar Fayyad K. Akberali

This research work presents the dynamics and performance of tethered airborne wind energy

systems. To this end, aerodynamic theories for crosswind kite power systems (CKPSs)

and an aerostatic power system (APS) have been developed along with the tether models

for the respective systems. Two semi-analytical aerodynamic models based on the blade

element momentum (BEM) theory considering the effects of induction factor, reel-out ratio,

solidity factor, rotor incidence angle, side slip and tether drag are developed for CKPSs.

Aerodynamic model 1 is for lift mode CKPSs while Aerodynamic model 2 is for lift mode

or drag mode CKPSs or a combination of both. Verification and parametric studies proved

the accuracy of the models and gave insights into the combined effects of the operational

and geometric parameters. In addition, a semi-analytical aerodynamic model is developed to

predict the quasi-steady aerodynamic performance of APS using BEM considerations. The

theory which assumes a variable inflow is validated against an autogyro and yawed wind

turbine. Variation of aerodynamic performance parameters and optimum rotational speed

for the rotor of a 300 kW APS is studied. Moreover, two tether models based on lumped

mass modelling approach, one rigid and the other elastic, accounting for reel-in/reel-out had

been developed to analyze the coupled dynamics of the tether and airborne modules. The

results from the elastic and rigid tether models for a kite power system and an APS show

the shortcomings and advantages of one model over the other.
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Chapter 1

Introduction

1.1 Background

There has been an ever-increasing demand for energy in the past few decades to satisfy

human needs. For sustainable growth, it is important to replace the non-renewable sources

of energy which caters to most energy requirement at present with renewable sources. The

unequal concentration of resources required for producing non-renewable energy also caused

an energy crisis in certain parts of the world in the past decades.

This background leads to increased research and development of renewable sources of

energy. Several advancements have been made in solar energy, wind energy and geothermal

energy among others in the last few decades. One of the prominent ideas in wind energy is

airborne wind energy (AWE).

Miles Loyd proposed the idea of harvesting energy from high altitudes using the tethered

airborne module [10]. Numerous types of airborne wind energy systems (AWES) have been

proposed since then. Each of these systems has its airborne module connected to the ground

via a tether. The electricity is either generated on-board by converting wind energy into
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mechanical energy and transmitted to the ground via the tether or the motion of the airborne

module is transmitted mechanically via the tether to generate electricity at the ground.

Airborne wind energy (AWE) which concerns accessing and harnessing high-altitude wind

energy via either stationary or flying devices may be considered as the most recent, active

research and technological innovation in the wind energy industry [11]. In fact, AWE is

considered as one of “100 radical innovation breakthroughs for the future” according to a

recent report prepared by the European Commission [12].

The central premise of AWE, which makes it competitive with the existing wind energy

technologies, is to produce more energy using significantly less amount of material (or mass);

for example, Diehl [13] projected that a single 30 MW AWE system could be approximately

300 times lighter than four 7.5 MW wind turbines combined. Although such an amount

of mass saving may seem highly optimistic, mass savings of approximately 90% may be

attainable [14]. This is achieved by reaching higher altitudes of above 1300 m [15], where

winds are naturally stronger (because of the well-known logarithmic velocity profile within

the earth’s boundary layer) and steadier, via very light structures, such as high-molecular-

density synthetic tethers (instead of very heavy towers used in conventional wind turbines).

Today, there are dozens of enterprises and research institutions around the world, which are

pursuing a variety of AWE concepts, such as aerostatic systems, inflatable soft kites, and

aeroplane-like rigid kites; please refer to Ref. [7] for a list of the AWE major players; also,

see Ref. [16] for a review of AWE technologies. These concepts normally differ in how they

extract wind power and how they are deployed and retracted.

Crosswind kite power systems (CKPSs) are a type of AWE system, where one or multiple

tethered wings (or kites) fly trajectories which for most part are oriented perpendicularly

to the oncoming wind. Compared to non-flying AWE systems, crosswind systems have the

advantage of producing much larger aerodynamic forces (and thus much more power) due
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Figure 1.1: A schematic drawing showing the drag mode or on-board power generation. The image
was reproduced from Ref. [1].

to the fact that they can fly crosswind at many times the wind speed. Another advantage of

CKPSs is that they can sweep a very large area in the sky compared to aerostatic and non-

flying traction systems which harness wind energy from a very limited projected area. These

two advantages make CKPSs very attractive compared to other AWE concepts. Nevertheless,

high-speed flying kite systems come at the cost of being, in principle, more complex, perhaps,

more costly and less reliable. Thus, what makes a concept eventually superior is having a

lower levelized cost of energy.

One way of classifying different AWESs, and particularly CKPSs, is through the way

they generate power – the power generation mode. The two main classes are (1) ground-

based (or pumping-mode) power generation, and (2) on-board power generation. This type

of classification was made by Loyd [10] for the first time, who proposed the crosswind kite

power concept and also coined the words ‘drag mode’ (Figure 1.1) and ‘lift mode’ (Figure

1.2) and for the on-board generation and ground-based, respectively. Today, there are several
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Figure 1.2: Schematic drawings showing the lift mode or ground-based power generation: (a) reel-
out or power generation phase, and (b) reel in or power consumption phase. The images were
reproduced from Ref. [1].

companies, such as Makani (Figure 1.3)1 Windlift, and KiteX are pursuing the on-board

generation concept while others, such as Ampyx Power, Twingtec and Kitemill (Figure 1.4)

are seeking ground-based generation. Like the wind turbines, the operational altitude of

these prototypes are within earth’s atmospheric boundary layer and can vary between 150

m to 1300 m [2, 17]. of these Loyd [10] theoretically showed that the two power generation

modes are equivalent in terms of power output although some recent studies indicate the

1This Google X project was discontinued in September 2020.
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Figure 1.3: Figure showing the drag mode kite Makani M600. The image was reproduced from
Ref. [2].

Figure 1.4: Figure showing the lift mode kite from Kitemill. The image was reproduced from Ref.
[3].

superiority of one or the other; for example, see Refs. [1, 18]. The two modes are different

in the way they harness wind power: in the ground-based generation, strong tether tension

(produced as a result of aerodynamic forces acting on the kite) is transferred to the ground,
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which is usually used to spin a drum (and a generator) by unrolling the tether; in the on-

board generation, on the other hand, electricity is generated on-board via turbines mounted

on the flying kite and is transmitted to the ground via a conductive tether. The two modes

thus differ over several practical aspects, such as hardware, systems, and mechanisms. After

all, it is still unclear which one of the two modes of power generation would be superior in

practice.

Aerostatic power systems (APSs) shown in Figure 1.5 are tethered statically suspended

AWESs with rotating wings like an autogyro proposed by Roberts et al. [19]. The high speed

and persistent upper atmospheric winds often called jet streams are attractive to researchers

in wind energy. Extending for thousands of meters, they have velocities of up to 500 km/h

at their centres. However, this speed reduces radially from the core [20]. To utilise of wind

of such high power density, a suitable AWES has to be carefully placed and APS is one of

the most promising concepts. For an APS, since the tether and the airborne module are not

flying (not moving around in the air), the system is relatively dynamically stable and has the

Wind flow

TetherGround Station

AutoGyro

To the grid

Figure 1.5: Figure showing the aerostatic power system (APS).
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advantage to operate safely at higher altitudes with longer tethers. The lack of reel-in/reel-

out dynamics and crosswind motion reduces fatigue on the system and vibrations associated

with the change of acceleration during the transition from reel-in to reel-out and vice versa.

These aspects make APSs an attractive reliable AWE concept.

The APS generally contain an even number of rotors with some or all pairs executing

counter-rotation to balance the torque. The rotors mounted on the airframe are coupled

with generators to generate electricity onboard, which is then transmitted to the ground via

a tether. To the author’s best knowledge, the only companies pursuing this idea are Sky

Windpower shown in Figure 1.6 and Velocity Cubed [21].

Any airborne wind energy system (AWES) is essentially composed of (i) an airborne

module, (ii) a tether, and (iii) a base station. The generation system can be on-board or on

the ground. In either case, the tether mechanically holds the airborne module in the desired

place so that it does not drift away with the wind. It also mechanically transmits power to

the ground for a ground-based generation. The tether being a flexible member is prone to

vibrations which can be from the overall dynamics of the system or can be flow-induced.

Figure 1.6: Figure showing the APS from Sky Windpower. The image was reproduced from Ref.
[4].
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The tether in AWESs is very flexible/elastic as its typical diameter is only a few millime-

tres while it has a length of a few hundred meters. This makes the tether prone to vibrations

in transverse and longitudinal directions during the operation of AWES, which can cause

fatigue damage, wear and even potentially lead to a catastrophic failure. Under tension,

the tether acts like a rod in tension and it will not take the compressive load. This results

in cases of sudden re-tensioning of the tether after zero tension during operations leading

to snap loads. The snap loads can be detrimental to the tether as well as to the airborne

module and the base station [22]. In short, it is important to understand and predict the

behaviour of tether dynamics to overcome the major barrier in AWE, which is reliability

[23].

The AWES in which the dynamics of the airborne module is coupled with that of the

tether and the base station pose several open questions in aerodynamics, structural dy-

namics, optimization and control systems. The crosswind motion makes the crosswind kite

power system (CKPS) [11] attractive for lower altitudes and the aerostatic nature makes an

autogyro-like aerostatic power system (APS) [19] is compelling for a higher altitude. An

accurate analytical aerodynamic theory is needed to carry out parametric studies in the pre-

liminary design phase. A robust tether dynamic model is required to predict the complex

dynamics of the overall system in real-time.

1.2 Motivation

Horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) are the

predominant technologies used for wind energy extraction. In the past few decades, the

rated power of these devices has gone up which resulted in larger diameter rotors and taller

towers. The wind power is proportional to the cube (the third power) of the freestream
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velocity and a taller tower provides access to the more consistent and higher velocity at

higher altitudes. The increased rotor diameter improves the tip speed as well as tap energy

from a much larger area. However, wind turbines may be limited to a few hundred meters of

height due to the requirement of long tower and blades which will make them not practical

due to manufacturing constraints and high cost. This means much of the available wind

energy remains not utilised.

However, a tethered kite is not limited by the requirement of a tower or larger blades,

e.g. CKPS, to reach higher altitudes and to tap energy from a larger area. The AWESs

have the potential to be cheaper, lighter and easier to set up when compared to conventional

wind turbines. For these reasons, it seems like a promising technological transition for wind

energy devices.

1.3 Objectives

The main objective of this research work is to develop robust aerodynamic and tether dy-

namic models for the CKPS and APS. The goals are achieved in the steps described below.

1. Develop a steady-state aerodynamic theory for the CKPS.

2. Develop a quasi-steady aerodynamic theory for the APS.

3. Develop a dynamic tether model capable of accounting for reel-in/reel-out motion.

4. Analyse the stability and dynamics of the coupled system composed of the tether and

airborne module.
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1.4 Literature Review

1.4.1 Crosswind kite power system

Although AWE is a relatively new field for research, the body of literature on some subjects,

such as trajectory optimization and control is already extensive; some examples are [24–26]

with some recent ones, such as [27–29]. This is, however, not true for other subjects, such

as aerodynamic performance analysis of single or multiple kites, which has remained under-

developed virtually since Loyd’s [10] original contribution. Most studies either explicitly or

implicitly neglected interactions between a kite flying crosswind and the wind flow as well

as the aerodynamic interactions between multiple kites in a kite farm. More precisely, they

neglected the kite induction (or interference) factor and the wake flow dynamics. This is due

to the general perception that the kite would sweep an infinitely large area in the sky and

thus it would disturb the flow imperceptibly; please refer to Ref. [30] for more details.

However, neglecting the aerodynamic interactions has some important implications, one

of which, as shown, for example, by Zanon et al. [31] and Kheiri et al. [30], is the over-

estimation of the power output or the energy harvesting efficiency. Some recent studies,

such as Refs. [18, 32–34] have taken into account the effects of the kite induction. More

studies appeared recently, where the effects of the induction factor on the aerodynamic per-

formance of AWE systems have been incorporated. Pfister et al. [35] compared thrust and

power coefficients obtained from the blade element momentum (BEM) theory with those

from the free vortex model for an inclined/yawed tethered rotorcraft. They showed that the

results from the BEM model with numerical integration and tabulated aerodynamic coef-

ficients are in “reasonably good agreement” with those from the vortex model. Gaunaa et

al. [36] used the vortex theory to obtain the induction factor for a CKPS. The circulation

distribution and thus the wing planform was assumed to be elliptical. They showed that the
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induction factor values are overpredicted by the classic momentum model compared to the

vortex model. However, the results for the axial force (which is the driving force for power

generation in the ground-based generation mode) from the two models were found to be in

a generally good agreement with each other and with those from the actuator line-based

CFD simulations for a wide range of the kite-to-wind speed ratio and several values of the

kite-span-to-gyration-radius ratio.

Moreover, some studies have attempted to examine wake flow of a single or multiple kites.

Some notable computational studies are those by Haas et al. [37], Kheiri et al. [38], Kheiri

et al. [39], Haas et al. [33], and Haas et al. [40]. These studies employed Reynolds-Averaged

Navier-Stokes and Large-Eddy Simulation flow solvers and showed how the shape and the

velocity of the wake changes as a function of the downstream distance from the kites. Most

recently, two analytical models, one by Kaufman-Martin et al. [41] and one by Karakouzian

et al. [42], have also been developed. These models were developed based on mass and

momentum conservation equations, and using them one can quickly obtain the shape and

the velocity of the wake. Such models are instrumental in designing and optimising kite

farms since they can provide power output estimation also including kite-kite aerodynamic

interactions.

1.4.2 Aerostatic power system

Compared to CKPS, the amount of literature on APS is small because of the potential of

CKPSs for harvesting lower-altitude wind energy. Most works on APS focus on modelling

the steady-state aerodynamics of the rotor, statics of the rotor coupled with that of the

tether and system-level studies; some examples are Refs. [19, 21, 43, 44]. To the best of the

author’s knowledge, the dynamic models in the existing literature consider a single-element

tether model while ignoring the actual geometry of the airfoil.
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Roberts et al. [19] may be the first to propose the idea of using an APS for harness-

ing high-altitude winds. The steady-state aerodynamics, electrics, control of the APS while

describing the tether dynamics and energy storage is presented in [43]. Even though a

steady-state aerodynamic model based on the blade element momentum (BEM) theory is

sufficient for preliminary performance calculations, it cannot be employed for the dynamic

analysis of the APS. The aerodynamic theory also ignores the actual geometry of the airfoil

by approximating the force coefficients. The steady-state BEM presented assumes a uniform

inflow and also is not suitable for accommodating a wind profile. The validation of the aero-

dynamic theory is presented in [19], and even though the analytical results are in agreement

with the experiment at high tip speed ratios, the results deviates at low tip speed ratios

where the flow is highly turbulent and features separation. The tether dynamics is briefly

described but the dynamical equations and analysis is not presented.

Rong et al. [44] presented results for a tethered yawed wind turbine which is essentially an

APS in its energy harvesting mode. The paper obtained the optimum operating parameters

of the system using momentum theory. However, like Roberts et al. [43], the paper assumes

steady-state aerodynamic theory with uniform inflow ignoring the airfoil geometry thus mak-

ing it unfit for a sheared wind profile or dynamic model of APS. An attempt was made to

consider tether weight to estimate optimum operational conditions at the preliminary level

but it is insufficient for dynamic analysis.

Rancourt et al. [21] performed a design space exploration and optimisation of the APS

and provided guidelines for the future development of the concept. This could also be

considered as the first paper to study the concept at a system level. The rotor aerodynamics

is modelled using AeroDyn from National Renewable Energy Laboratory (NREL), and the

static analysis of the APS is presented considering the rigid tether. The focus of the paper

remains on the system-level study at steady state conditions, and dynamic analysis of the

12



system is missing. Even though verification of the aerodynamic package was presented,

validation for operational conditions of APS was not presented. The aerodynamic model

implemented for the analysis is quasi-steady. The rigid tether model used in the study

neglects the tether extension and thus the extra height and the higher wind velocity that

could have been accessed by the APS.

1.4.3 Tether modelling

A number of works have been done on tether modelling, some even considering all the major

aspects, such as Refs. [24, 26, 45–47], among others. However, the existing models are

mostly being used for optimization and control purposes rather than dynamic and aeroelastic

stability analyses. Most studies employ a lumped mass model (LMM) where the tether is

modelled as a series of point/lumped masses that are connected by mass-less links. The

links can be assumed to be rigid or elastic using linear springs and dampers. LMM has

been widely used in AWES modelling and space elevator concepts [48]. Most works in the

existing literature do not consider or give secondary importance to vibration studies. The

experiments conducted by Dunker [49] suggested that lock-in and galloping can occur in

static tethers and lock-in may be relevant in moving tethers. Modelling of aerodynamic

forces on tether also needs some improvements. Most studies have neglected the forces

altogether or only considered the forces acting normal to the tether. The aerodynamic force

in the tangential direction and apparent mass effects were neglected altogether.

Williams et al. [50] presented the modelling of a tethered crosswind kite system using the

LMM, where the tether is considered to be rigid. The tether modelling is done in the New-

tonian framework resulting in constraint forces. The reel-in/reel-out is facilitated by adding

and removing elements. The tether drag in the normal and tangential directions is modelled

in this work. The focus of the research remained on the analysis of the controller designed for
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the crosswind kite to maintain tension at the desired level. The verification/validation of the

tether model was not presented and the dynamic analysis of the system from an aeroelastic

perspective is also missing. The paper also presented only a rigid tether model and thus

longitudinal vibrations and effects of elasticity were neglected. A rigid tether model will fail

to capture the high-frequency oscillations which could be a major cause of fatigue and the

snap loads from longitudinal vibrations.

Milutinović et al. [46] introduced the modelling of a tethered rotating cylindrical balloon

that produces lift by the Magnus effect employing the lumped mass model (LMM). The

tether was modelled as elastic by considering a linear spring and damper in each element.

In contrast to most models, the dynamics of the winch is incorporated into the modelling.

The reel-in/reel-out was modelled by adding and removing elements similar to Williams et

al.[24]. The reason for the choice of a much more complex elastic tether model over the rigid

tether model is not presented. Even though verification of the static shape is presented,

an attempt to verify/validate the dynamics of the tether is missing. To avoid compressive

loading, the tether is assumed to be rigid during negative extensions. This will introduce

anomalies in the prediction of dynamics.

Fechner et al. [47] propose a modelling framework for tethered pumping kite employ-

ing LMM. The elastic tether is modelled using linear springs and linear dampers and the

reel-in/reel-out is modelled by dynamically changing the tether length. The kite has been

modelled in two ways: one using a point mass model and the other using a four-point mass

model. The dynamics of the ground station is also included. The reel-in/reel-out imple-

mented through the quasi-steady approach underpredicts the kinetic energy from the reel-

out. Even though this is a simpler algorithm for reel-in/reel-out, a verification/validation

with the dynamical reel-in/reel-out models/measured data is required to justify the adap-

tation of this method. The non-physical variable damping coefficient dependent on tether
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length might underpredict the dynamics. The wind gradient for the kite system is modelled

using power law and incorporates turbulence. It is observed that the wind turbulence did not

significantly affect the annual energy production of the investigated system [51]. The focus

of the work has been on developing a framework suitable for an optimum control system and

thus ignores aeroelastic and vibration analysis.

Sánchez-Arriaga and his colleagues have published many works on tether modelling of

kites. Sánchez et al. [52] present modelling and stability analysis of a tethered kite. The

rigid tether model presented is modelled as a series of N-Bars like in LMM and a continuous

elastic model is also introduced. The kite neither harvests wind energy nor does reel-in/reel-

out. Sánchez et al. [29] performed the dynamic modelling and analysis of tethered AWESs

operating in pumping and drag modes. The tether was modelled as a series of rigid rods, and

the reel-in/reel-out was modelled by dynamically changing the tether length. In [53], Sánchez

et al. introduced two models for the dynamic analysis of AWESs based on a multi-aircraft

configuration. The first model approximates the tethers involved to be massless, inelastic,

straight and of constant length. The aerodynamic drag acting on the tether is neglected.

In the second model, the tether is assumed to be elastic, has inertia, has aerodynamic drag

effects and follows the LMM approach for modelling.

Sánchez-Arriaga and his colleagues have extensively contributed to the rigid and elastic

tether modelling while including kite dynamics at different levels of complexity. However,

to the best of the author’s knowledge, a systematic comparison between rigid and elastic

tether models for both statically suspended systems and systems undergoing reel-in/reel-out

is yet to be done. The statics and dynamics of the tether have to be verified/validated for

both of these approaches. The comparison of models while treating the rigid models to be

massless and without aerodynamic drag also makes it difficult to understand the contribution

of elasticity. Although extensive research has produced robust models for control systems, a
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systematic study to address aeroelastic vibrations is still missing.

1.5 Main contributions

The main contributions of this thesis are (i) two simplified steady-state aerodynamic theories

accounting for induction which are instrumental for design and optimization of CKPSs, (ii)

a quasi-steady aerodynamic theory to analyze the dynamics and performance of tethered

APS and (iii) a comparative study about the short comings and advantages of the rigid

and elastic tether models for statically suspended and reel-in/reel-out AWESs. The main

research results were summarised in the following publications.

Journal paper:

• K. Akberali, A. F., Kheiri, M., Bourgault, F. (2021). Generalized aerodynamic models for

Crosswind Kite Power Systems. Journal of Wind Engineering and Industrial Aerodynamics,

215, 104664. https://doi.org/10.1016/j.jweia.2021.104664.

Conference poster:

• K. Akberali, A. F., Kheiri, M., Bourgault, F. (2022). Dynamics of tethered airborne wind

energy systems, AWEC 2021, June 2022, Milan, Italy.

Conference paper:

• K. Akberali, A. F., Kheiri, M., Bourgault, F. (2021). Dynamics of a tethered kite used

for harnessing high-altitude winds, AERO 2021- CASI (virtual event).

Working paper:

• K. Akberali, A. F., Kheiri, M., Bourgault, F. (2023). Dynamics of tethered aerostatic and

kite power systems.
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1.6 Road map

This section explains in brief how the thesis is structured. In addition to this introductory

chapter, there are four other chapters in this thesis. In Chapter 2, the two steady-state

aerodynamic models developed for the crosswind kite power system are explained. Chapter

3 presents the quasi-steady aerodynamic theory for the APS. The modelling and the results

from rigid as well as elastic tether models coupled with the outputs of the aerodynamic

models of a kite power system (KPS) and APS are presented in Chapter 4. Chapter 5

presents the concluding remarks and suggests future works.
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Chapter 2

Generalized aerodynamic models for

crosswind kite power systems

This chapter presents two novel semi-analytical models for predicting the aerodynamic per-

formance of crosswind kite power systems (CKPSs), where the kite induction effects on the

oncoming flow are taken into account. The blade element momentum theory forms the

backbone of the models. The effects of reel-out ratio, solidity factor, rotor incidence angle,

side-slip angle and tether drag are included in the formulation for the axial induction factor

and power output. For simplicity, the wake rotation and the tangential induction factor

are neglected. Aerodynamic model 1 is developed for predicting the reel-out power with

uniform inflow assumption, and it is suitable for CKPSs with ground-based power genera-

tion. Aerodynamic model 2, on the other hand, can predict both the reel-out and torque

powers with either uniform or non-uniform inflow assumption, and the model can be used

for CKPSs with ground-based, or on-board power generation, or with the combination of

the two. Some parametric studies have been conducted for a generic kite system with pre-

defined aerodynamic efficiency parameters to highlight the effects of incidence and side-slip
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angles. In addition, a particular CKPS and its variants are examined to show the individual

and combined effects of incidence angle, side-slip angle, tether drag and airfoil shape on the

induction factor and power output.

2.1 Definitions and preliminaries

The system under consideration is a rigid wing which rotates about a fixed point in space,

as shown in Figure 2.1.1 The wing may also reel-out while rotating. The imaginary axis

that passes through this point and is perpendicular to the plane of rotation will be referred

to as the rotation axis. The area swept by the kite, that lies on the plane of rotation, would

be annulus in shape. The pressure side of the wing will face the wind flow. The position

of the kite in space can be fixed in the spherical coordinate system as shown in Figure 2.1.

The freestream velocity, V∞, is assumed to be uniform in space and time and to be in the

X-direction; the rotation plane has an angle β with respect to the X-axis, which is commonly

called the side-slip angle, and an inclination of i with respect to the Z-axis, known as the

incidence angle (which is complementary to the elevation angle defined as the angle between

the rotation axis and the ground surface). The relative wind speed vector at the centre of

the rotation plane thus becomes

W =
(
V∞ sin i cos β − v − Vd

)
êr +

(
V∞ cos i cos β

)
êi − V∞ sin βêβ, (2.1)

where êr, êi, and êβ are, respectively, the unit vectors in the spherical coordinate system

(r, i, β); v is the induced flow velocity perpendicular to the plane of rotation, and Vd is the

kite reel-out speed, which is in the same direction as êr.

1In the present paper, the words ‘wing’ and ‘kite’ are used interchangeably.
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Figure 2.1: A schematic drawing representing a crosswind kite in the spherical coordinate system,
where i and β are the incidence and side-slip angles, respectively; also, V∞ is the undisturbed
freestream/wind velocity.

2.2 Theory

Here, the performance and loading of CKPSs are obtained using the blade element mo-

mentum (BEM) theory, which, in principle, lets the axial force (i.e. the force normal to

the rotation plane) and torque experienced by the flow in independent streamtubes, which

are predicted by the momentum theory, equal to those experienced by the elements of the

kite/wing, which are predicted by the blade element theory. The momentum theory is based

on Newton’s second law of motion and considers the thrust developed by the actuator disc

to be equal to the rate of change of momentum of fluid particles passing through the disc.

The blade element theory, on the other hand, formulates equations for the thrust and torque

generated by the kite based on the strip flow theory which uses aerodynamic coefficients and

the relative flow velocity at a finite number of elements along the span; for details regarding
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the momentum, blade element and BEM theories, the reader is referred to [54, 55].

2.2.1 Momentum considerations

The induced flow velocity perpendicular to the rotation plane (or the axial induced velocity),

v, is often expressed in the dimensionless form when obtaining power and thrust for a wind

energy extracting device. The dimensionless counterpart of v is called the induction or

interference factor which, for example, for a conventional wind turbine is defined as a =

v/V∞. Since a CKPS is normally inclined with respect to the freestream, and it may also

reel-out while spiraling in the sky, an alternative definition for the induction factor may also

be proposed as

ã =
v

V∞ sin i cos β − Vd

=
a

sin i cos β − e
, (2.2)

where V∞ sin i cos β−Vd is the relative flow velocity normal to the rotation plane, e = Vd/V∞

being the ratio of the reel-out speed to the freestream velocity or the reel-out ratio, for short.

In the formulation presented in the main body of this paper, a and, in general, dimension-

less variables that are obtained through normalization with respect to constant configuration-

independent parameters, are used. A similar practice is commonly adopted for yawed wind

turbines, where the axial induction factor is defined as the ratio of induced velocity (normal

to the rotor plane) to the undisturbed freestream velocity; please see, for example, [54, 56–

58]. Nevertheless, one may favour the use of alternative dimensionless variables, such as ã.

Appendix A provides the key formulae of the paper expressed in terms of an alternative set

of dimensionless variables.

From the momentum theory perspective, the axial induced flow velocity may be inter-

preted as the effect of the ‘solidity’ (i.e. the physical presence) of an actuator disc or energy

extracting device on slowing down the oncoming fluid flow [54]. Thus, one may think of an
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energy device as an intermediate system between a fully permeable disc (when no induction

is applied on the flow) and a complete blockage (when the induction is at maximum). This is

actually the physical basis for experimental studies which use porous discs (usually built by

assembling layers of metal mesh) to emulate the wake flow generated behind wind turbines;

for example, see [59–62].

Glauert [63] proposed the following expression for obtaining v over the rotor area of an

autogyro

v =
T

2πR2ρ∞Vres

, (2.3)

where T is the thrust, R is the radius of the rotor (or disc), ρ∞ is the airflow density, and

Vres is the resultant flow velocity at the disc.

For a wind energy extracting device, such as a conventional wind turbine, with the rotor

area of A = πR2, and Vres = V∞ − v, equation (2.3) may be rewritten as

T = 2ρ∞Av(V∞ − v) = 2ṁv, (2.4)

that can be easily confirmed from the classical actuator disc theory; ṁ being the mass flow

rate through the disc.

On the other hand, if the rotor area is thought as a wing of the span 2R and the average

chord length R (and thus the aspect ratio = 2 and planform area S = 2R2) and assuming

that the departure from the elliptical planform is negligible, then the induced angle of attack

may be obtained as

αi =
CL

π
=

L

(1/2)ρ∞V 2
∞Sπ

, (2.5)
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By letting = 2 and S = 2R2, equation (2.5) may be simplified to

v =
L

2πR2ρ∞V∞

, (2.6)

in which the fact that αi = v/V∞ (provided that v ≪ V∞) has been used.

As seen, equation (2.6) is identical to the Glauert’s equation considering the fact that

for the wing, the force acting normal to the planform is almost equivalent to the lift L, i.e.

T ≃ L, and Vres ≃ V∞.

From the above discussions, one may view the appearance of the induced flow velocities

for the two limiting configurations (i.e. wind energy extracting device and wing flying on a

rectilinear trajectory) as a result of two seemingly independent physical mechanisms: (i) the

effective solidity of an energy device, and (ii) the generation of a vortex sheet trailing from

the wing trailing edge. Thus, for an intermediate configuration, such as a finite-aspect-ratio

wing flying on a circular or a figure-of-eight trajectory, it may be reasonable to assume both

mechanisms of induced flow velocity generation to be active. Nevertheless, it should be noted

that for an energy extracting device with multiplicity of rotating blades the appearance of

induced flow velocities may also be linked to the generation of vortex rings from the tips of

rotating blades, forming a ‘vortex cylinder’ [54].

One reasonable interpretation of equation (2.4) can be made using the well-known con-

cept of the streamtube. A streamtube may be considered as a hypothetical control volume

enclosing the actuator disc and extending axially between two control surfaces located far

upstream (i.e. inlet) and far downstream (i.e. outlet) from the disc. Equation (2.4) may

then be explained as the axial flow momentum change between the inlet and the outlet of

the streamtube. Since the mass flow rate through the disc and thus through the streamtube

is ṁ, then the change in the axial component of the flow velocity between the inlet and the
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outlet is equal to 2v [64]. Since the relative axial flow velocity at the inlet of the streamtube

around the kite is V∞ sin i cos β−Vd, then using the definition of a, the relative flow velocity

at the outlet (or the relative wake velocity), Vw,rel, may be obtained as

Vw,rel = (V∞ sin i cos β − Vd)− 2v = V∞(sin i cos β − e− 2a). (2.7)

A constraint can be made on the numerical values of a (or on the maximum value of e) by

considering the fact that Vw,rel ≥ 0, meaning that there should not be a reverse flow at the

outlet. This leads to

0 ≤ a ≤
(sin i cos β − e)

2
. (2.8)

Glauert’s [63] equation may be re-written in the differential form which gives the thrust

over an annular element of the width dr as

dT = 4πρ∞Vresvrdr, (2.9)

where r is the local radial distance from the centre of rotation.

For the configuration shown in Figure 2.1, the resultant flow velocity at the rotor plane

(or disc) may be written as

V 2
res = (V∞ sin i cos β − v − Vd)

2 + (V∞ cos i cos β)2 + (V∞ sin β)2. (2.10)

Using equations (2.9) and (2.10), and the definition of the induction factor and the reel-out

ratio, one can write

dT =
1

2
ρ∞V 2

∞8πra
[
(sin i cos β − a− e)2 + (cos i cos β)2 + sin2 β

] 1

2

dr. (2.11)
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2.2.2 Blade element considerations

Figure 2.2 shows the velocity components on the plane of rotation for a kite at the azimuth

angle ψ, which is measured counterclockwise from the lowest kite position on the flight

trajectory. The component of the relative flow velocity tangential to the rotation plane at

the kite position is given by VT = rΩ + V∞ cos i cos β sinψ + V∞ sin β cosψ, Ω being the

rotational speed of the kite. As seen from the velocity triangle shown in Figure 2.3, the

relative flow velocity at the kite element is V 2
rel = V 2

P +V 2
T , where VP = V∞ sin i cos β−v−Vd

is the component of the velocity perpendicular to the plane of rotation. The time-averaged

value of V 2
rel over one cycle of rotation, i.e. Vrel

2, may be written as

−V∞ sin β

Direction of rotation

r

Ωr

ψ

VT

VR

V∞ cos i cos β

Figure 2.2: A schematic drawing showing the kite in the rotation plane; VT and VR are the tangential
and radial components of the in-plane relative flow velocity; V∞ is the freestream velocity, β and
i are the side-slip and incidence angles, respectively; also, Ω is the rotational speed, r the radial
distance, and ψ the azimuth angle.
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VP

φ

φ

φ

VT

θ∗

α Vrel
Chord line

dL

dFy

dD

Figure 2.3: A schematic drawing showing the velocity triangle for an airfoil element of the kite. In
the figure, Vrel is the relative flow velocity, and VT and VP are the components of Vrel, tangential
and perpendicular to the rotation plane, respectively; φ, α and θ∗ are the (time-averaged) inflow
angle, the angle of attack, and the effective pitch angle, respectively; also, dL, and dD are the
differential aerodynamic lift and drag, respectively, and dFy is the resultant aerodynamic force
normal to the rotation plane.

Vrel

2
=

1

2π

∫ 2π

0

V 2
rel dψ = V 2

∞

[
(sin i cos β − a− e)2 + λ2

r +
1

2
(cos i cos β)2 +

1

2
sin2 β

]
, (2.12)

where λr = (rΩ/V∞) is the local crosswind speed ratio; also, the fact that
∫ 2π

0
sin2 ψ dψ =

∫ 2π

0
cos2 ψ dψ = π, and

∫ 2π

0
sinψ dψ =

∫ 2π

0
cosψ dψ =

∫ 2π

0
sin 2ψ dψ = 0 have been used.

From the velocity triangle shown in Figure 2.3, the time-averaged, local inflow angle φ

may be obtained as (refer to Appendix B for the detailed derivation)

tanφ =
sin i cos β − e− a

λr

. (2.13)

The pitch angle θ is commonly defined as the angle between the plane of rotation and
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the zero-lift line of the airfoil section, that is measured positive in the counterclockwise

direction from the rotational plane [54]. If αL=0 represents the zero-lift angle of attack,

which is negative for a positive-cambered airfoil and vice versa, then for the convenience

of application, let us define θ∗ = θ − αL=0, where θ∗ may be called as the effective pitch

angle measured with respect to the chord line. If α is the effective angle of attack of the

airfoil/wing, then

α = φ− θ∗ − αi, (2.14)

where αi is the induced angle from tip vortex considerations and becomes relevant only when

airfoil data (not modified for three-dimensionality effects) is used and the analysis considers

a non-uniform inflow. When wing data is used, this is already incorporated in the data and

need to be substituted as zero.

The axial force acting on a differential element of the kite can be obtained by adding

differential components of lift and drag, dL and dD, respectively, along the rotation axis as

(see Figure 2.3):

dFy = dL cosφ+ dD sinφ. (2.15)

It should be noted that dL, dD, and φ and thus dFy, and in general, all the aerodynamic

variables involved in the blade element model are time-averaged over one cycle of rotation,

i.e. 0 ≤ ψ ≤ 2π, and the overbar is removed starting from here for the sake of clarity of the

formulation.

Using the definition of lift and drag and equation (2.12), dFy may be expressed as

dFy =
1

2
ρ∞V 2

∞cdr
(
cl cosφ+ ĉd sinφ

)[
(sin i cos β − a− e)2 + λ2

r +
1

2
(cos i cos β)2 +

1

2
sin2 β

]
,

(2.16)

where cl is the lift coefficient of the airfoil section of the kite, and ĉd = cd + CDT
is the
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total drag coefficient which is the sum of the kite airfoil drag coefficient, cd, and the tether

equivalent drag coefficient, CDT
, respectively; also, c is the chord length.

The local axial force coefficient may also be defined as

cy =
(
cl cosφ+ ĉd sinφ

)[
(sin i cos β − a− e)2 + λ2

r +
1

2
(cos i cos β)2 +

1

2
sin2 β

]
. (2.17)

As shown, for example, by [65, 66], the equivalent tether drag is obtained by finding the

moment due to the distributed drag, which acts in the same direction as that of the kite,

with respect to the ground station:

FDT
=

1

8
ρ∞Vrel

2ATCDS
, (2.18)

where AT is the projected area of the tether to the relative flow and CDS
is the drag coefficient

for the flow normal to the tether, which generally depends on the shape, surface roughness

and the flow Reynolds number.

The equivalent tether drag coefficient can be obtained by normalising the drag with

respect to the kite planform area Ak; thus,

CDT
=

1

4

AT

Ak

CDS
. (2.19)

If the tether is cylindrical, then AT = dTLT ; dT and LT being the tether diameter and length,

respectively; also, CDS
= 1 is normally taken, which is valid for the range of the Reynolds

number relevant to CKPSs [67].
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2.2.3 Aerodynamic model 1

Aerodynamic model 1 is developed considering the entire kite and the swept area as two

whole bodies; in other words, the inflow/loading is assumed to be uniformly distributed over

the rotation plane or swept area, and the kite is represented only by its span mid-point. The

following assumptions are made in order to build the model:

1. The incidence angle i is high and the side-slip angle β is low, i.e. sin i ∼ O(1) and

cos β ∼ O(1)

2. The kite crosswind speed is very large compared to the freestream velocity, i.e. λR =

(ΩR/V∞) ≫ 1, where R is the gyration radius or the radial distance of the kite mid-

span point from the rotation axis

3. The net aerodynamic force acting in the tangential (or rotation) direction is zero, which

ensures that the rotation takes place at a constant speed

In this section, the steady-state rotation is assumed to be achieved aerodynamically in

two different ways: (i) by adjusting the pitch angle of the kite system, θ∗, or (ii) by adding an

air brake that can increase drag of the kite system. The equations are written by assuming

that the steady state is achieved in the former way, and the latter is explained in the solution

procedure of the model.

Considering the kite at the steady state, one can write

CL sinΦ = ĈD cosΦ or tanΦ =
ĈD

CL

, (2.20)

where Φ is the kite inflow angle taken at the kite mid-span point, and CL refers to the entire

kite lift coefficient and ĈD = CD + CDT
, CD being the drag coefficient of the entire kite.
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Equation (2.11) is integrated over the swept area (i.e. ri ≤ r ≤ ro; ri and ro being

the inner and outer radii of the annular swept area); also, considering (a + e)2 ≈ (a +

e)2 sin2 i cos2 β based on assumption 1, one may obtain:2

T =
1

2
ρ∞AsV

2
∞4a

(
1− (a+ e) sin i cos β

)
, (2.21)

where As = π(ro
2 − ri

2) is the swept area.

On the other hand, the total axial force acting on the kite may be obtained by integrating

equation (2.16) over the kite span (i.e. b = ro − ri) and applying assumptions 1 and 2:

Fy =
1

2
ρ∞AkV

2
∞

(
CL cosΦ + ĈD sinΦ

)
λ2
R, (2.22)

where the kite inflow angle, Φ, can easily be found from equation (2.13) as

tanΦ =
sin i cos β − a− e

λR

. (2.23)

According to the BEM theory, the axial load acting on the kite is equal to the thrust

generated over the swept area, i.e. Fy = T ; thus, from equations (2.21) to (2.23) and the

fact that the inflow angle Φ is small (refer to assumption 2), one can write:

a
(
1− (a+ e) sin i cos β

)

(sin i cos β − a− e)2
=

1

4
σCL(

CL

ĈD

)2
[
1 + (

ĈD

CL

)2
]
, (2.24)

where σ = (Ak/As) may be defined as the kite solidity factor, in similar fashion it is defined

for conventional wind turbines.

By letting χ = CL(CL/ĈD)
2 – which may be called the aerodynamic efficiency – and

2For (a+e) ≤ 0.5, equation (2.21) provides a fair approximation of the exact expression given in equation
(2.11), and the numerical results for (a+ e) > 0.5 should be taken with a grain of salt.
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neglecting (ĈD/CL)
2, a may be obtained from the following quadratic equation:

(A+ sin i cos β)a2 +
[
e sin i cos β − 2A(sin i cos β − e)− 1

]
a+A(sin i cos β − e)2 = 0, (2.25)

where A = (1/4)σχ.

For a crosswind kite system with the known solidity factor σ, reel-out ratio e, incidence

angle i, side-slip angle β, tether equivalent drag coefficient CDT
and predefined constant

values of CL and (CL/CD), equation (2.25) can be solved directly to obtain the induction

factor a. Equation (2.8) should then be consulted to find the acceptable root. Once a is

found, equation (2.2) may be used to find ã.

If, however, the aerodynamic coefficients are not known a priori, then the solution may

be obtained through an iterative process, where values of CL and CD versus angle of attack α

for the kite should be at hand. Knowing also the equivalent tether drag coefficient CDT
, one

can make a table listing values of (CL/ĈD) versus α, for the use in the iterative process. As

discussed earlier in this section, one way to achieve the steady-state rotation is by adjusting

θ∗. Approach I provides the solution through finding iteratively the value of θ∗ such that

the net tangential aerodynamic force becomes nil; the pitch angle θ∗ cannot then be known

beforehand in this approach; see Table 2.1 for the algorithm.

An alternative to approach I, which we call approach II, is to achieve the steady state

with the help of a drag device, where the pitch angle θ∗ can be given as an input. Thus,

in approach II, the kite system drag, that is inclusive of the kite and tether drag, needs to

be adjusted such that C̃D = CL tanΦ, where C̃D is the adjusted drag coefficient. This also

means that ĈD in equation (2.25) is replaced with C̃D. The algorithm for approach II is

outlined in Table 2.2. In most cases, the adjusted drag coefficient is higher than the drag

coefficient obtained from data interpolation, i.e. C̃D > ĈD. In those cases, the required
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Table 2.1: Approach I for obtaining the induction factor

Step Task

1 Consider a guess value for a , i.e. aguess

2 With aguess and knowing e, i, β and λR, obtain the inflow angle Φ from equation
(2.23)

3 With Φ, obtain (ĈD/CL) from applying assumption 3

4 Obtain the angle of attack α as well as CL and CD by doing interpolations
within (ĈD/CL)− α, CL − α and CD − α tables, respectively

5 Obtain the pitch angle θ∗ from equation (2.14)

6 Obtain a new value for a (i.e. anew) from equation (2.25) and by considering
the condition in equation (2.8)

7 If |anew − aguess| < ε (ε being a small number), then converged values have
been obtained; otherwise, aguess = anew and go to step 2

Table 2.2: Approach II for obtaining the induction factor

Step Task

1 Consider a guess value for a , i.e. aguess

2 With aguess and knowing e, i, β and λR, obtain the inflow angle Φ from equation
(2.23)

3 With Φ and knowing θ∗, obtain the angle of attack α from equation (2.14)

4 Obtain CL and CD by doing interpolations within CL − α and CD − α tables,
respectively

5 Obtain the adjusted drag coefficient from C̃D = CL tanΦ

6 Obtain a new value for a (i.e. anew) from equation (2.25) and by considering

the condition in equation (2.8) while substituting adjusted drag coefficient C̃D

instead of the actual drag coefficient (ĈD)

7 If |anew − aguess| < ε (ε being a small number), then converged values have
been obtained; otherwise, aguess = anew and go to step 2

added drag (to maintain the steady-state flight condition) may be thought to be provided,

for example, through air brakes; this is, however, with the assumption that air brakes do not

have an impact on the lift coefficient. On the other hand, for cases where C̃D < ĈD and thus

the added drag is negative, one may assume that flow control strategies have been employed
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to reduce the drag over the kite. Nevertheless, this is only an imaginary solution where the

practical implementation could be quite complex.

It should be noted that, for the sake of brevity, only numerical results obtained via

approach II are provided in this paper. For all the results presented, so as to obtain a fair

comparison, the chosen λR is multiplied by sin i cos β for use in respective incidence and side-

slip angle cases as it will keep the ratio of the crosswind speed to wind speed available to the

rotational plane constant for all cases. It should also be noted that to ensure accuracy when

getting numerical results for a kite of a certain aspect ratio , flying at a certain Reynolds

number Re, the CL − α and CD − α tables (or 3D polars) for a wing of the same and Re

should be used. If polars for a wing with a different aspect ratio is available, they may be

‘corrected’ for the effect of using, for example, Prandtl’s equation [68].

The power harnessed by the kite may be expressed in two different ways depending

whether T or Fy is used for power calculation, i.e. P (s) = TVd and P (k) = FyVd, the former

being the swept-area-based power while the latter being the kite-area-based power. The

power output is usually expressed in the dimensionless form as:

C(s)
p =

P (s)

1
2
ρ∞AsV 3

∞

= 4ae
(
1− (a+ e) sin i cos β

)
, (2.26)

and

C(k)
p =

P (k)

1
2
ρ∞AkV 3

∞

= CL

(CL

ĈD

)2
(sin i cos β − a− e)2e, (2.27)

where C
(s)
p and C

(k)
p are the swept- and kite-area-normalised power coefficients, respectively.

As discussed in [1], for kite power systems, the kite-area-normalised power coefficient is a

more suitable performance metric, compared to the swept-area-normalised power coefficient

that is typically used in the literature. Thus, in most cases, the numerical values obtained

for C
(k)
p will be shown in the present paper. By letting i = 90◦, β = 0, CDT

= 0 (i.e. the
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kite is in the straight downwind configuration with no side-slip and negligible tether drag)

and replacing a with ã (refer to equation (2.2)) and using equation (2.24), equation (2.27)

reduces to (the proof is left to the reader)

C(k)
p =

χ

(1 + 1
4
σχ)2

(1− e)2e, (2.28)

which is exactly the same as the equation obtained in Ref. [1] for a CKPS in the straight

downwind configuration.

2.2.4 Aerodynamic model 2

Similar assumptions as those made in Section 2.2.3 are also considered here with the excep-

tion that the excessive aerodynamic force in the tangential direction is not wasted; instead,

it is used to produce additional torque power, which in turn, maintains the steady-state

rotation/flight. The torque power may be thought to be produced via on-board turbines

(similarly to that for drag mode CKPSs) or via a ground-based mechanism (similarly to

that for conventional wind turbines). Thus, model 2 may be considered as the aerodynamic

model for the hybrid reel-out-torque (or lift-drag) power generation. Unlike aerodynamic

model 1, model 2 is formulated for a non-uniform inflow distribution over the swept area,

which can also be adapted for a uniform inflow distribution, if needed.

Let us begin with the derivation for the non-uniform inflow distribution. We extend

assumption 2 mentioned in Section 2.2.3 such that it is valid for any point along the kite

span, i.e. λr ≫ 1; thus, equation (2.16) may be re-written as

dFy =
1

2
ρ∞V 2

∞cλ2
r(cl cosφ+ ĉd sinφ)dr. (2.29)
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Table 2.3: Approach III for obtaining the induction factor

Step Task

1 Divide the kite span into N number of elements of the length dr and choose
the first element to initiate the solution process; repeat the process for all the
elements

2 Consider a guess value for a , i.e. aguess

3 With aguess and knowing e, i, β and λr, obtain the local inflow angle φ from
equation (2.13)

4 With φ and knowing θ∗, obtain the angle of attack α from equation (2.14)

5 Obtain cl and cd by doing interpolations within Re− cl − α, and Re− cd − α
tabulated data, respectively; Re represents the sectional Reynolds’s number

6 If the condition in equation (2.32) is satisfied, obtain a new value for a (i.e.
anew) from equation (2.25) by replacing A with Ar = (1/4)σrχr; and by con-
sidering the condition in equation (2.8)

7 If |anew − aguess| < ε (ε being a small number), then converged values have
been obtained; otherwise, aguess = anew and go to step 3

On the other hand, equation (2.11) may be simplified as follows (see to the explanation given

for equation(2.21))

dT =
1

2
ρ∞V 2

∞8πra
(
1− (a+ e) sin i cos β

)
dr. (2.30)

By letting dFy = dT , which is the core concept of the BEM theory, we obtain a rational

equation for the local induction factor a = a(r) as

a
(
1− (a+ e) sin i cos β

)

(sin i cos β − a− e)2
=

1

4
σrχr, (2.31)

where σr = (c/2πr) is the local solidity factor and χr = (cl cosφ+ ĉd sinφ)/ tan
2 φ the local

aerodynamic efficiency.

The solution process is slightly different from those discussed in Section 2.2.3. The new

solution process (i.e. approach III) is outlined in Table 2.3. An additional condition given
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in equation (2.32) is used during the solution. This will guarantee solutions for cases with

torque available for auto-rotation:

(cl sinφ− ĉd cosφ) ≥ 0, (2.32)

which is similar to ensuring C̃D ≤ ĈD in Section 2.2.3 so that only practical solutions are

obtained.

The elemental (or local) values of the swept- and kite-area-normalised power coefficients

are expressed, respectively, as

dC(s)
p = 4ae

(
1− (a+ e) sin i cos β

)
, (2.33)

and

dC(k)
p = (cl cosφ+ ĉd sinφ)λ

2
re. (2.34)

It should be noted that for a kite of rectangular planform, the local solidity factor σr

may be linked to the overall solidity factor of the kite by normalising the redial distance r

as ξ = r/R; that is

σr =
σ

ξ
, (2.35)

where R = 1
2
(ri + ro) is the radius of gyration.

It should be noted that when obtaining the induction factor for the uniform inflow distri-

bution assumption, the solution procedure outlined in Table 2.3 can be used provided that

the local values of the solidity factor and aerodynamic efficiency are replaced with the overall

solidity factor σ and aerodynamic efficiency χ introduced in Section 2.2.3.
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2.3 Results and discussions

Figure 2.4 shows the contours for the variation of the induction factor a as a function of

the reel-out ratio, e, and the solidity factor σ, obtained from aerodynamic model 1 for pre-

defined values of CL = 1, and (CL/CD) = 10 and for different values of the incidence angle:

(a) (b)

(c) (d)

Figure 2.4: Contour plots showing the variation of the induction factor a as a function of the ratio
of reel-out speed to freestream velocity, e, and solidity factor σ from aerodynamic model 1: (a)
i = 90◦, (b) i = 80◦, (c) i = 70◦ and (d) i = 60◦; predefined values are CL = 1, (CL/CD) = 10,
CDT

= 0, and β = θ∗ = 0◦.
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(a) i = 90◦, (b) i = 80◦, (c) i = 70◦, and (d) i = 60◦; also, CDT
= 0, and β = θ∗ = 0◦. The

upper limit values of σ are typical solidity factors of modern conventional wind turbines (see,

e.g., Ref. [54]) whereas the lower limit values seem to be more representative of CKPSs. For

example, Makani’s M600 kite has the wing span of 25.7 m, the wing area of 32.9 m2, and it

flies in an orbit of the radius of 145 m [69]; these yield to σ ≃ 0.0045.

As seen from Figure 2.4, as the reel-out ratio e is increased, a decreases. This is because

by increasing e, the relative oncoming flow velocity that is available to the kite and thus

the induced velocity are reduced. In this case, to keep CL and (CL/CD) and more precisely,

the angle of attack, constant, the crosswind speed should be decreased as e is increased. In

contrast, as the solidity factor σ is increased, a is also increased, which is because a larger

kite (flying over the same swept area) can harness more power from the wind and thus induce

more flow retardation. On the other hand, in the limit of σ → 0, a → 0 since the kite harness

wind energy from an infinitely large swept area and its effect on the freestream is negligible.

In addition, as seen from Figure 2.4, by decreasing the incidence angle i from i = 90◦ to

i = 60◦, a is decreased since the component of the flow velocity normal to the rotation plane

is reduced; the acceptable range for e also narrows when i is decreased. It should be noted

that since in the derivation of equations it was assumed that sin i ∼ O(1), numerical results

presented here and later, for lower values of i, particularly for i = 60◦, should be taken with

a grain of salt.

In general, similar trends as those observed for a in Figure 2.4 are also observed for ã

for similar operational parameters (the plots are not presented here for the sake of brevity).

One exception is that for i = 90◦ (i.e. the straight downwind configuration), for any solidity

factor σ, ã is independent of e – a similar result was obtained by Kheiri et al. [30]. However,

as i is decreased, ã becomes increasingly dependent on e.

Figure 2.5 shows the variation of the kite-area-normalised power coefficient C
(k)
p (refer
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(a) (b)

(c) (d)

Figure 2.5: Contour plots showing the variation of the kite-area-normalised power coefficient, C
(k)
p =

P/(1/2)ρ∞V
3
∞Ak, as a function of the ratio of reel-out speed to freestream velocity, e, and solidity

factor σ from aerodynamic model 1: (a) i = 90◦, (b) i = 80◦, (c) i = 70◦ and (d) i = 60◦; predefined
values are CL = 1, (CL/CD) = 10, CDT

= 0, and β = θ∗ = 0◦. The solid line shows the locus of
the maximum power coefficient.

to equation (2.27) for the definition) as a function of e and σ, obtained from aerodynamic

model 1, for pre-defined values of CL = 1, and (CL/CD) = 10 and for different values of

the incidence angle: (a) i = 90◦, (b) i = 80◦, (c) i = 70◦, and (d) i = 60◦; also, CDT
= 0,
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and β = θ∗ = 0◦. The solid black line in the plots represents the locus of the optimal

power coefficient. As seen from Figure 2.5 (a), the maximum power occurs over the e = 1/3

line, independently from the solidity factor. For CKPSs with zero solidity factor, Loyd [10]

showed analytically that the maximum power is reached at e = 1/3; a similar conclusion was

made by Kheiri et al. [30] for straight-downwind (i.e. i = 90◦) CKPSs of arbitrary solidity

factor.

However, as seen from Figure 2.5 (b)-(d), the locus of the optimal power remains no

longer a single straight line. As i is decreased from i = 90◦ to i = 60◦, the optimal e

becomes increasingly dependent on σ, with the optimal points shifting generally towards

values lower than e = 1/3; this shift is more evident for smaller values of σ. In other words,

as the incidence angle is decreased, the kite should be reeled-out at a lower speed to produce

maximum power. A conceptually important observation from the power coefficient plots is

that the maximum of C
(k)
p for an arbitrary e lies on the σ = 0 line. This means that a kite

with given dimensions can harness the maximum power when flying on an infinitely large

swept area; this is consistent with the observations made by Loyd [10], Diehl [13], and Kheiri

et al. [1].

Figure 2.6 shows similar contour plots as those shown in Figure 2.4 but for kite systems

with CDT
= 0.025 and β = 15◦. When compared to Figure 2.4 plots, it is seen that a is

generally decreased due to the combined effect of a non-zero side-slip angle and a non-zero

tether drag coefficient. In addition, the acceptable range for e becomes narrower. Figure

2.7 shows the corresponding C
(k)
p plots. Compared to the plots in Figure 2.5, C

(k)
p has

been diminished over the entire plane since the non-zero β reduces the magnitude of the

component of freestream normal to the rotation plane, and the non-zero CDT
reduces the

aerodynamic efficiency of the kite.

Figure 2.8 shows the variation of (a,b) a, and (c,d) C
(k)
p as a function of e, obtained from
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(a) (b)

(c) (d)

Figure 2.6: Contour plots showing the variation of the induction factor a as a function of the ratio
of reel-out speed to freestream velocity, e, and solidity factor σ from aerodynamic model 1: (a)
i = 90◦, (b) i = 80◦, (c) i = 70◦ and (d) i = 60◦; predefined values are CL = 1, (CL/CD) = 10,
CDT

= 0.025, β = 15◦, and θ∗ = 0◦.

aerodynamic model 1 for a crosswind kite of a rectangular planform with Clark Y airfoil

sections and aspect ratio = 14.5; also, λR = 7.28, CDT
= 0, and β = θ∗ = 0◦. The plots have

been shown for (a,c) σ = 0, and (b,d) σ = 0.0048. The results have been obtained for four

different incidence angles: i = 90◦ (solid line), i = 80◦ (dashed line), i = 70◦ (dotted line),
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(a) (b)

(c) (d)

Figure 2.7: Contour plots showing the variation of the kite-area-normalised power coefficient, C
(k)
p =

P/(1/2)ρV 3
∞Ak, as a function of the ratio of reel-out speed to freestream velocity, e, and solidity

factor σ from aerodynamic model 1: (a) i = 90◦, (b) i = 80◦, (c) i = 70◦ and (d) i = 60◦; predefined
values are CL = 1, (CL/CD) = 10, CDT

= 0.025, β = 15◦, and θ∗ = 0◦. The solid line shows the
locus of the maximum power coefficient.

and i = 60◦ (dash-dotted line). As discussed in Section 2.2.3, the ratio of the crosswind

speed to wind speed available to the rotational plane is kept constant for different incidence

and side-slip angles by multiplying λR by sin i cos β.
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Figure 2.8: Plots showing the variation of (a,b) the induction factor a, and (c,d) the kite-area-

normalised lift power coefficient, C
(k)
p = P/(1/2)ρV 3

∞Ak, as a function of the reel-out ratio, e, for
different incidence angles i (solid line: i = 90◦, dashed line: i = 80◦, dotted line: i = 70◦, dash-
dotted line: i = 60◦) from aerodynamic model 1: (a,c) σ = 0, and (b,d) σ = 0.0048. The kite is a
uniform wing of the aspect ratio =14.5 and Clark Y airfoil sections; also, λR = 7.28, CDT

= 0, and
β = θ∗ = 0◦.

As seen from Figure 2.8 (a), the induction factor for a zero-solidity CKPS is zero for all

values of e and for any of the incidence angles, for the same reasons discussed in relation to

Figure 2.4. For a CKPS with σ = 0.0048, Figure 2.8 (b) shows that a is generally dependent
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on both e and i. In contrast to what was shown in the contour plots for cases with pre-

defined aerodynamic coefficients (see Figure 2.4), a generally increases as e is increased and

in fact, rapidly at higher values of e; this is more evident for larger values of i, such as

i = 80◦, and i = 90◦. This may seem at first glance to contradict the results shown in Figure

2.4. The difference between the trends for a shown in Figure 2.8 and Figure 2.4 may be

linked to different assumptions used here and there. In contrast to cases shown previously,

no assumptions were made here on the value of CL and (CL/CD) for the kite. The value of

CL was found iteratively from the experimental wing data given in [70], which we corrected

for the aspect ratio effect; the drag coefficient was adjusted based on the value of CL and

the inflow angle to achieve steady-state rotation aerodynamically, as explained in Section

2.2.3 and Table 2.2. By increasing e, the inflow angle Φ is decreased, which consequently

results in a lower angle of attack and thus lower CL; the adjusted drag coefficient C̃D, on

the other hand, is reduced more significantly since C̃D = CL tanΦ; thus, (CL/C̃D) and the

aerodynamic efficiency χ generally increase, which result in a higher induction factor; see

Figure 2.9 which shows the variation of (CL/C̃D) as a function of e. As also seen from Figures

2.8 and 2.9, the acceptable range for e narrows as i is decreased; this was also seen from the

results for the systems with pre-defined aerodynamic coefficients; see Figures 2.4 and 2.6.

Figure 2.8 (c) shows that the maximum acceptable C
(k)
p is reached at a lower reel-out

ratio as the incidence angle is decreased from i = 90◦ to i = 60◦; this is again consistent with

observations made on systems with pre-defined aerodynamic coefficients; however, here, the

optimal values of e are much larger than e = 1/3; see Figures 2.5 and 2.7. It should be

reminded to the reader again that the main reason for the marked difference between the

optimal reel-out ratio found here and those in the preceding figures is that the aerodynamic

coefficients are not kept fixed here as e is varied. This should be kept in mind when comparing

the optimal values of e.
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Figure 2.9: Plots showing the variation of the adjusted lift-to-drag ratio, (CL/C̃D), as a function
of the reel-out ratio, e, for different incidence angles i (solid line: i = 90◦, dashed line: i = 80◦,
dotted line: i = 70◦, dash-dotted line: i = 60◦) from aerodynamic model 1: (a) σ = 0, and (b) σ
= 0.0048. The kite is a uniform wing of the aspect ratio =14.5 and Clark Y airfoil sections; also,
λR = 7.28, CDT

= 0, and β = θ∗ = 0◦.

Figure 2.8 (d), on the other hand, shows that for the kite with σ = 0.0048, the maximum

acceptable C
(k)
p may be reached at a higher or a lower reel-out ratio as i is decreased from

i = 90◦ to i = 60◦. An interesting observation is that the optimal values of e for the four

different incidence angles are very close to each other. It should be noted that the above

observations are strictly valid for the specified configuration, and much more numerical

results, particularly for different values of λR, are needed to draw some general conclusions.

Such numerical studies are, however, beyond the scope of the present paper and are deferred

to a future publication.

Figure 2.10 shows similar plots as those in Figure 2.8, but for kite systems with CDT
=

0.025, and β = 15◦; the rest of the system parameters remain the same. No major difference

in the general trends of the curves is seen in the induction and power coefficient plots. The

only noticeable difference is that the acceptable range for e narrows rather significantly for

both σ = 0 and σ = 0.0048, which in turn limits the maximum achievable power to lower
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Figure 2.10: Plots showing the variation of (a,b) the induction factor a, and (c,d) the kite-area-

normalised lift power coefficient, C
(k)
p = P/(1/2)ρV 3

∞Ak, as a function of the reel-out ratio, e, for
different incidence angles i (solid line: i = 90◦, dashed line: i = 80◦, dotted line: i = 70◦, dash-
dotted line: i = 60◦) from aerodynamic model 1: (a,c) σ = 0, and (b,d) σ = 0.0048. The kite is a
uniform wing of the aspect ratio =14.5 and Clark Y airfoil sections; also, λR = 7.28, CDT

= 0.025,
β = 15◦, and θ∗ = 0◦.

values. This is very much expected as the tether drag reduces the overall aerodynamic

efficiency, and the side-slip angle reduces the wind flow available to the kite.

Figure 2.11 presents the numerical results for a CKPS with the same system parameters
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Figure 2.11: Plots showing the variation of (a,b) the induction factor a, and (c,d) the kite-area-

normalised lift power coefficient, C
(k)
p = P/(1/2)ρV 3

∞Ak, as a function of the reel-out ratio, e, for
different incidence angles i (solid line: i = 90◦, dashed line: i = 80◦, dotted line: i = 70◦, dash-
dotted line: i = 60◦) from aerodynamic model 1: (a,c) σ = 0, and (b,d) σ = 0.0048. The kite is a
uniform wing of the aspect ratio =14.5 and SD7032 airfoil sections; also, λR = 7.28, CDT

= 0.025,
β = 15◦, and θ∗ = 0◦.

as those in Figures 2.8 and 2.10, but with this difference that the kite has the more modern

SD7032 airfoil section instead of Clark Y airfoil considered previously.3 When comparing

3SD7032 airfoil was designed by Selig and Donovan [71] and is considered as a low-speed airfoil. It is

47



the induction factor and power coefficient curves shown in Figure 2.11 (for SD7032) with

those in Figure 2.10 (for Clark Y), one can see that they follow generally similar trends.

Nevertheless, as seen, for the given system parameters, for both zero- and non-zero solidity

factors, the kite with SD7032 airfoil could potentially produce slightly more power than the

kite with Clark Y airfoil.

Figure 2.12 shows the variation of (a,b) the kite-area-normalised reel-out power C
(k)
p , and

(c,d) the kite-area-normalised total power C
(k)
PT as a function of e, obtained from aerodynamic

model 2 for a kite of a rectangular planform with = 14.5 and Clark Y airfoil sections; also,

λR = 7.28, CDT
= 0, and β = θ∗ = 0◦. The plots have been shown for (a,c) σ = 0, and

(b,d) σ = 0.0048. As discussed in Section 2.2.4, aerodynamic model 2 assumes that the

steady-state motion of the kite is achieved by extracting a torque power due to excessive

aerodynamic forces in the flight direction. Thus, the total power will be the sum of the

reel-out power and the torque power.

Comparison between the reel-out power coefficients shown in Figure 2.12 (a,b) and those

in Figure 2.8 (c,d) indicates only slight differences between predictions of the two models.

This appears reasonable as both models were built based on the same steady-state assump-

tion. Figure 2.12 (c,d) shows that the kite-area-normalised total power is maximized at e = 0

where the reel-out power is zero and the total power is only due to the torque power. As e is

increased above zero, the total power coefficient decays almost linearly with e, in most cases.

On the other hand, as e is increased, the contribution of the reel-out power to the total

power gradually increases, and it becomes the only contribution to the total power at higher

values of e. It is interesting to see from the curves for different values of σ and i that the

maximum torque power is almost two times the maximum reel-out power. This is, however,

with the assumption that the two systems (i.e. one in the torque power mode and the other

commonly used for sailplanes and was also used by TwingTec for one of their crosswind kite prototypes [72].
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Figure 2.12: Plots showing the variation of (a,b) the kite-area-normalised lift (or reel-out) power

coefficient, C
(k)
p = P/(1/2)ρV 3

∞Ak, and (c,d) the kite-area-normalised total power coefficient C
(k)
PT =

PT /(1/2)ρV
3
∞Ak , as a function of the reel-out ratio, e, for different incidence angles i (solid line:

i = 90◦, dashed line: i = 80◦, dotted line: i = 70◦, dash-dotted line: i = 60◦) from aerodynamic
model 2: (a,c) σ = 0, and (b,d) σ = 0.0048. The kite is a uniform wing of the aspect ratio =14.5
and Clark Y airfoil sections; also, λR = 7.32, CDT

= 0, and β = θ∗ = 0◦.

in the reel-out power mode) have the same operational and aerodynamic parameters, such

as solidity factor and crosswind speed, which may not be practically feasible or desirable. A

similar result was found by Kheiri et al. [1] when comparing the potential for a drag mode
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CKPS with that for a lift mode system, but when the two systems have the same pre-defined

aerodynamic coefficients.

Figure 2.13 shows the variation of (a) the induction factor a, (b) the induction factor ã,

(c) the kite-area-normalised (reel-out) power C
(k)
p , and (d) the swept-area-normalised power

C
(s)
p , as a function of the dimensionless radial distance which is defined as r/ro, r being the

local radial distance from the rotation axis and ro the radial distance of the furthest tip of

the kite (see Section 2.2.3). The results are for a kite of the rectangular planform of = 14.5

and Clark Y airfoil sections, flying in the Re ≃ 22 × 106 flow regime; also, σ = 0.0048,

e = 1/3, i = 90◦, and β = θ∗ = 0◦.

Four different sets of results have been shown in Figure 2.13 plots. The CFD results

(solid line) were obtained by post-processing data from a CFD simulation; please refer to

Appendix C for details about the CFD simulation. The other three sets of results, i.e. ‘2D

polars’ (dashed line), ‘3D polar (Exp.)’ (dotted line), and ‘3D polars’ (dash-dotted line) were

obtained using the aerodynamic model 2. The 2D polars results refer to those obtained using

the Clark Y airfoil data with no consideration of the kite aspect ratio whereas the 3D polars

refer to those from the airfoil data ‘corrected’ via Prandtl’s equation for the finite aspect

ratio effects. The airfoil aerodynamic data were obtained for different values of Re using the

XFLR5 program.4 The 3D polar (Exp.) results refer to those obtained using experimental

data of Silverstein [70], corrected here for = 14.5.

As seen from the plots in Figure 2.13, the induction factor and power coefficient have

similar spanwise distributions whether they are obtained computationally or theoretically. In

particular, based on the CFD results, the induction factor and the power coefficient increase

non-linearly with r/ro within the inner tip region (0.66 ≤ r/ro ≤ 0.72) of the kite; the

increase becomes nearly linear over the inboard region (0.72 ≤ r/ro ≤ 0.92); this is followed

4http://www.xflr5.tech/xflr5.htm
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Figure 2.13: Plots showing the variation of (a) the induction factor a, (b) the induction factor

ã, (c) the local kite-area-normalised lift power coefficient, C
(k)
p = P/(1/2)ρV 3

∞cdr, and (d) the

local swept-area-normalised lift power coefficient, C
(s)
p = P/(1/2)ρV 3

∞2πrdr, as a function of the
dimensionless radial distance r/ro, r and ro being, respectively, the local radial distance and the
radial distance of the furthest tip of the kite from the rotation axis. Four sets of results were shown:
CFD (solid line with marker), aerodynamic model 2 with 2D polars (dashed line), aerodynamic
model 2 with 3D polar (Exp.) (dotted line), and aerodynamic model 2 with 3D polars (dash-dotted
line). The kite is a uniform wing of the aspect ratio =14.5 and Clark Y airfoil sections; also, σ
= 0.0048, λR = 7.32, e = 1/3, i = 90◦, CDT

= 0, and β = θ∗ = 0◦.
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Table 2.4: Comparison of the average induction factors (a and ã), swept-area-normalised power

coefficient, C
(s)
p , kite-area-normalised power coefficient, C

(k)
p , and the kite-area-normalised thrust

coefficient, C
(k)
T , obtained computationally [8] and from aerodynamic model 2 (i.e. 2D polars, 3D

polar (Exp.), and 3D polars) for a kite of a uniform planform and of the aspect ratio = 14.5 and
Clark Y airfoil sections; also, σ = 0.0048, λR = 7.28, e = 1/3, i = 90◦, CDT

= 0, and β = θ∗ = 0◦.
The values in the parentheses are errors relative to the CFD results.

CFD [8] 2D polars 3D polar (Exp.) 3D polars
a 0.085 0.097 (14.4%) 0.080 (5.8%) 0.085 (0.6%)
ã 0.127 0.145 (14.4%) 0.120 (5.8%) 0.128 (0.6%)

C
(s)
p 0.065 0.074 (12.4%) 0.062 (4.7%) 0.066 (0.9%)

C
(k)
p 13.623 15.317 (12.4%) 12.989 (4.7%) 13.750 (0.9%)

C
(k)
T 40.870 45.950 (12.4%) 38.967 (4.7%) 41.250 (0.9%)

by a non-linear drop in the vicinity of the outer tip (0.92 ≤ r/ro ≤ 0.98) of the kite. Based

on the theoretical results, however, both the induction factor and power coefficient increase

almost linearly from the inner tip towards the outer tip of the kite. As seen, the slope of the

theoretical lines are similar to each other and to that of the computational distribution in

the inboard region.

The quantitative agreement between 2D polars and CFD results within the kite inboard

region is surprisingly good although it is poor when the values averaged over the entire

kite/swept area are compared; the maximum relative error is around 14%. On the other

hand, results produced using 3D polars and 3D polar (Exp.) show much better quantitative

agreement with CFD results when the average induction factor and power coefficient values

are compared; the maximum relative errors are about 1% and 6%, respectively; see Table

2.4 for more details. The superiority of 3D polars over 2D polars for the strip flow load pre-

dictions over a finite-aspect-ratio wing has long been known; see, for example, [73, Chapter

8]; also, [74, Chapter 4].

Apart from the quality of the quantitative agreement between theoretical and compu-

tational results, one may notice a major discrepancy between the distributions predicted

computationally and theoretically within the inner and outer tip regions. The discrepancy
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may be linked to “tip losses” which arise because, in real wind energy harvesting devices,

such as wind turbines, there is always a finite number of lifting surfaces (e.g. blades) that

rotate over the swept area. These losses are normally dealt with separately from the losses

due to finite aspect-ratio lifting surfaces [75]. These losses are not originally accounted for in

the BEM-based models, including the one used in the present paper, in which it is assumed

that the actuator disc has infinite number of blades. There have been several attempts to

include the effects of tip-losses for wind turbines and propellers; some early works are those

by Prandtl [76], Goldstein [77], and Glauert [78]; for more details, see Refs. [54, 55, 79]. The

incorporation of the effects of tip-losses into the present paper model is deferred to a future

study. Also, further CFD simulations are warranted to be used for comparison purposes to

ensure that the analytical model can consistently predict the performance of CKPSs with

high accuracy.

2.4 Conclusion

Two novel aerodynamic models were presented, which can be used for predicting the per-

formance of a crosswind kite flying steadily on a circular path. The BEM theory based on

Glauert’s equation formed the backbone of the equations developed in the present paper.

Unlike previous models found in the literature, the new models include the effects of in-

cidence angle, side-slip angle, and tether drag in the formulations for the induction factor

and power coefficient. Aerodynamic model 1 was developed for performance prediction of

pumping/lift mode kites whereas aerodynamic model 2 is suitable for either pumping mode,

drag mode or the combination of the two, which the authors would like to call the hybrid

mode. In addition, aerodynamic model 2 can also be used for non-uniform inflow problems.
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Numerical results obtained using aerodynamic model 1 for CKPSs with pre-defined aero-

dynamic coefficients showed that the maximum kite-area-normalised power coefficient is

achieved when the solidity factor is zero and decreases as the solidity factor is increased. It

was found that the optimal reel-out ratio (i.e. the reel-out ratio corresponding to the maxi-

mum power coefficient) shifts towards lower values as the incidence angle is decreased and the

side-slip angle is increased. It was also found that the power coefficient generally decreases

as the incidence angle is decreased (i.e. the elevation angle is increased) and the side-slip

angle is increased. The induction factor, on the other hand, was found to be increasing with

the solidity factor and decreasing with the reel-out ratio.

Some numerical results were obtained for CKPSs with Clark Y airfoil sections and for

a given crosswind speed ratio, zero side-slip angle and zero tether drag coefficient using

aerodynamic model 1. For the kite with non-zero solidity factor, it was shown that the

induction factor generally increases as the reel-out ratio and incidence angle are increased.

The power coefficient was found to be increasing as the reel-out ratio and the incidence angle

were increased; the optimal reel-out ratio was found to be weakly dependent on the incidence

angle. On the other hand, for the zero-solidity kite system, the induction factor remained

zero for any reel-out ratio and every incidence angle. The optimal reel-out ratio was found

to occur at higher values as the incidence angle was increased.

Numerical results for the kite systems with a non-zero side-slip angle and tether drag

coefficient were found to follow generally similar trends as those for the systems with zero

side-slip and tether drag. The maximum power coefficient, however, was found to decrease in

magnitude and to occur at lower values of reel-out ratio when the side-slip angle and tether

drag coefficient were non-zero. Similar trends were found for kites with the SD7032 airfoil

section although power coefficients were slightly higher compared to those for kites with the

Clark Y airfoil section.
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Some numerical results were also obtained with aerodynamic model 2, assuming uniform

inflow, for the same kite systems analysed with aerodynamic model 1. No key difference was

noticed between the reel-out power coefficient variations predicted by the two models. On the

other hand, the results suggested that potentially more wind power may be harnessed if the

kite operates in purely drag (or torque) mode or alternatively in hybrid lift-drag mode instead

of purely lift mode. This is subject to the assumption that some key operational parameters,

such as solidity factor and crosswind speed remain the same. This is an important finding,

but more in-depth analyses by considering other system configurations are warranted before

making a generalization.

Finally, some numerical results were obtained for a kite in the straight downwind con-

figuration with aerodynamic model 2 and with the non-uniform inflow assumption. Three

different sets of tabulated aerodynamic data were used in the solution process, and numerical

results were compared with CFD results. The results for uncorrected 2D airfoil data were

found to be in a very good agreement with CFD results over the inboard region of the kite

span while the two sets were noticeably different (both qualitatively and quantitatively) over

the outboard regions. The average numerical values obtained via corrected wing data were

found to be in a very good agreement with the CFD results. Nevertheless, more CFD results

for various kite systems are desirable for further validating the results from aerodynamic

model 2.
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Chapter 3

Quasi-steady aerodynamic model of

an aerostatic power system

This chapter presents a numerical model for predicting the quasi-steady aerodynamic per-

formance of an aerostatic power system (APS), in which the induced velocity is treated as a

function of radius and azimuthal angle of the blade. The model is developed based on quasi-

steady blade element momentum theory. The wake rotation and the tangential induced

velocity are considered. The aerodynamic model is validated against a 3-bladed yawed wind

turbine rotor and a 2-bladed autogyro rotor. Results for optimum tip speed ratio, varia-

tion of thrust and power during rotation and other performance coefficients are presented.

Although the aerodynamic model is developed to predict on-board power generation of an

autogyro, it can be extended to yawed turbines and propellers. It could also predict ground

based or a combination of on-board and ground based power generation if required.
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3.1 Definitions and preliminaries

The aerostatic power system (APS) under consideration is an autogyro consisting of four

similar rotors mounted on an airframe tethered to the ground as shown in Figure 3.1. For

simplicity, it is assumed that the aerodynamic performance parameters of the system would

be equal to the number of rotors, Nr, times the aerodynamic performance parameters of one

rotor. The representative rotor is identical to the other rotors but assumed to be fixed at

the centre of gravity of APS and will be representative of theory and formulations explained

here. The axis about which the rotor rotates is referred to as the rotation axis. The airframe

considered for this work is assumed to lie in a plane and the rotation axes of the rotors

are perpendicular to it. The area swept by the rotor blades will lie on a plane that is

perpendicular to the rotation axis and will be in the shape of a disc, i.e there is no coning in

the rotor. The sign convention for the pitch follows wind turbine convention and is positive

when pitched down. The wind will be directed to the pressure side of the rotor. The rotor

is fixed in space using right handed Cartesian co-ordinate systems. The wind velocity V∞ is

Wind flow

TetherGround Station

AutoGyro

To the grid

Figure 3.1: Figure showing a tethered aerostatic power system (APS).
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assumed to follow a steady shear profile in the X-direction of the inertial co-ordinate system

for results presented in this work. However, the wind velocity can be steady, unsteady or

uniform depending on the requirement of analysis.

3.2 Dynamics and control

Although the focus of this work is the prediction of aerodynamic performance, to justify the

feasibility of the chosen configuration, the control of dynamics is explained in a simplified

manner [43]. The APS is capable of pitch, roll and yaw by changing the collective pitch.

Even though cyclic pitch allows to smooth the force and torque outputs, it is neglected to

simplify the analysis. Hence, in this work pitch refers to the collective pitch. The APS

has four rotors; the adjacent rotors rotate in the opposite directions and the opposite rotors

rotate in the same direction.

• Thrust can be increased by lowering the pitch and vice versa.

• In general, torque can be increased by increasing pitch and vice versa.

• Roll is controlled by changing pitch of right and left pairs of rotors.

• Pitch is controlled by changing pitch of pair of rotors at front and back.

• Yaw control is by changing pitch on pairs of opposing rotors

3.3 The co-ordinate systems

To apply the aerodynamic equations and to find the position of APS and it’s components in

space, various co-ordinate systems are defined. All the co-ordinate systems defined in this

work are right handed Cartesian co-ordinate systems. The angle of rotation is positive when
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the rotation of co-ordinate systems are anticlockwise and negative when clockwise. This

section discusses various co-ordinate systems used.

3.3.1 Inertial co-ordinate system

The inertial co-ordinate system, Oe : îe, ĵe, k̂e, shown in Figure 3.2, is fixed to the earth with

the Y -axis pointing up. The X-axis and Z-axis are perpendicular to each other and the

X-axis points right. The wind velocity is defined in the inertial co-ordinate system along

the X-axis.

3.3.2 Body co-ordinate systems

There are multiple body co-ordinate systems defined for the APS. The body co-ordinate

system Oi : îi, ĵi, k̂i, represents the rotor rotation by an angle i about the Z-axis of Oe,

as shown in the Figure 3.2 and Figure 3.3(a). The angle i is referred to as the incidence

angle and is complementary to the angle tether makes with the horizontal. It defines the

inclination of the rotor with respect to the X-axis of Oe. The body co-ordinate system

Oβ : îβ, ĵβ, k̂β, is obtained by the rotation of the rotor about the X-axis of Oi, as shown in

i
e

j
e

O
e

O
i

j
i

i
i

Wind flow

i

r te

Figure 3.2: Figure showing the inertial co-ordinate system.
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Figure 3.3: Figure showing transformation of one co-ordinate system into another by rotation; (a)
Oe to Oi rotation, (b) Oi to Oβ rotation, (c) Oβ to Ob1 rotation (d) Ob1 to Ob2 rotation for a 3-
bladed rotor, (e) Ob2 to Ob3 rotation for a 3-bladed rotor and (f) Ob1 to Ob2 rotation for a 2-bladed
rotor.

Figure 3.3(b), by an angle β which is called the side-slip angle. The side-slip angle defines

inclination of the rotor with the Z-axis of Oe. Each blade is assigned a body co-ordinate

system such that the blades are aligned along the X-axis of the respective systems. Hence,

if there are three blades, three body co-ordinate systems Ob1 : îb1, ĵb1, k̂b1, Ob2 : îb2, ĵb2, k̂b2

and Ob3 : îb3, ĵb3, k̂b3 are defined. Ob1 is set as the reference to define the azimuth angle, Ψ of

the blades, which defines rotation of the blades about the Y -axis of Oβ as shown in Figure

3.3(c). Each of these co-ordinate systems will have their Y -axis aligned with that of the Oβ.

If there are three blades, the co-ordinate systems Ob1, Ob2 and Ob3 are separated by 120◦.

In the case of a two-bladed rotor, Ob1 and Ob2 are separated by 180◦.
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3.4 Co-ordinate transformations

The calculations are easier if certain vectors are expressed in a particular co-ordinate system.

A vector,
−→
WA = (XA, YA, ZA) in a co-ordinate system OA, can be represented in another co-

ordinate system, OB as
−→
WB = (XB, YB, ZB) by using a transformation matrix TAB, where

−→
WB = TAB

−→
WA. The transformation matrix from OB to OA will simply be T T

AB. The co-

ordinate transformations used in this work follows conventions of Schaub et al. [80].

The rotation from Oe to Oi is shown in Figure 3.3(a) and the transformation matrix is

given as

Tei =




cos i sin i 0

− sin i cos i 0

0 0 1



. (3.1)

The rotation from Oi to Oβ is shown in Figure 3.3(b) and the transformation matrix can be

given by

Tiβ =




1 0 0

0 cos β sin β

0 − sin β cos β



. (3.2)

The rotation from Oβ to Ob1 is shown in Figure 3.3(c) and the transformation matrix is

given by

Tβb1 =




cosΨ 0 − sinΨ

0 1 0

sinΨ 0 cosΨ



. (3.3)
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Considering three blades, rotation from Ob1 to Ob2 is shown in Figure 3.3(d) and the trans-

formation matrix is given as

Tb1b2 =




− sin 30◦ 0 − cos 30◦

0 1 0

cos 30◦ 0 − sin 30◦



, (3.4)

and the rotation from Ob2 to Ob3 is shown in Figure 3.3(e) and the transformation matrix is

given by

Tb2b3 =




− sin 30◦ 0 − cos 30◦

0 1 0

cos 30◦ 0 − sin 30◦



. (3.5)

Considering only two blades, rotation from Ob1 to Ob2 is shown in Figure 3.3(f) and the

transformation matrix from is

Tb1b2 =




−1 0 0

0 1 0

0 0 −1



. (3.6)

3.5 Position and velocity vectors

If r is the radial distance of a blade element from the centre of the rotor, then in the respective

blade co-ordinate system, the vector is expressed as

−→rb =

[
r 0 0

]T
. (3.7)
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Hence a point at a distance of r on blade 3 is expressed in Oe as

−→rbe = T T
eiT

T
iβT

T
βb1

T T
b1b2

T T
b2b3

−→rb3. (3.8)

A point at a distance of r on blade 2 is expressed in Oe as

−→rbe = T T
eiT

T
iβT

T
βb1

T T
b1b2

−→rb2. (3.9)

A point at a distance of r on blade 1 is expressed in Oe as

−→rbe = T T
eiT

T
iβT

T
βb1

−→rb1. (3.10)

If −→rte is the position vector of the end point of the tether connected to the centre of gravity

of the APS (or centre of the equivalent rotor), as shown in Figure 3.2, the position vector of

a blade element in Oe is

−→rpe =
−→rte +

−→rbe. (3.11)

When a non-uniform wind profile is used, the position vector of each blade element, −→rpe is

used in the calculation of the respective wind velocity. Since the wind velocity is defined

in Oe, it is to be converted to respective blade co-ordinate system for the calculation of

aerodynamic forces. If
−→
Vwe is the wind velocity vector defined in Oe for the blade element,

then the wind velocity in body co-ordinate system Ob3 for blade 3 would be

−→
Vwb = Tb2b3Tb1b2Tβb1TiβTei

−→
Vwe. (3.12)
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For blade 2, in Ob2, the wind velocity would be

−→
Vwb = Tb1b2Tβb1TiβTei

−→
Vwe. (3.13)

For blade 1, in Ob1, the wind velocity would be

−→
Vwb = Tβb1TiβTei

−→
Vwe. (3.14)

3.6 Wind model

The non-uniform wind velocity is modelled using the power law [81]

VZ = VZr
(
Z

Zr

)α, (3.15)

where VZ is the wind velocity at height Z above the ground level, Zr is the reference height

and α is the wind shear exponent, which is typically 0.2 [81]. For this study, Zr = 10 m and

VZr
= 6 m/s were taken.

The wind velocity vector is given as

−→
V w = VZ îe. (3.16)

3.7 Aerodynamic model

The averaged forces and power produced by an APS can be found using the blade element

momentum (BEM) theory discussed in Chapter 2. However, an unsteady/quasi-steady BEM

is required to accurately predict the aeroelastic behaviour of the APS because of the unsteady
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nature of wind from atmospheric turbulence, couple dynamics of airborne module with that

of tether and wind shear.

The aerodynamic forces on the APS are estimated using the quasi-steady (BEM) theory.

Quasi-steady BEM like the conventional BEM theory assumes that the flow takes place in

independent stream tubes. In principle, BEM equates axial load and torque predicted by the

momentum theory with those predicted by the blade element theory to find the unknown

angle of attack and induced velocity.

Momentum theory employs the concept of an actuator disc that represents turbine as

a infinitesimally thin disc with infinite number of blades allowing aerodynamic analysis

without the requirement of a specific design. The air that passes through the disc experiences

a momentum exchange. Since the mass flow rate is constant along the stream tube and

since the change in cross sectional area across the disc is negligibly small, the momentum

change across the disc is taken into account by superimposing an induced velocity, v, on

the freestream velocity. In principle, the momentum theory follows Newton’s second law

of motion and finds the momentum change for a given loading on the disc. The loading

predicted by the blade element theory is based on the strip flow theory. Thus, the two

theories combined as the BEM theory give two equations to find the two unknowns, angle

of attack and induced velocity. For further details, the reader can refer to chapter 2, Burton

et al. [54] and Sorensen et al. [55] for conventional BEM theory and Hansen et al. [82] for

unsteady/quasi-steady BEM. If a blade element is considered, it’s velocity triangle will be as

shown in Figure 3.4. The formulations presented below are in the respective blade co-ordinate

system of the element. The relative velocity vector on the element,
−→
Vrel = (VXrel, VY rel, VZrel)

is given by

−→
Vrel =

−→
Vwb +

−→
Vrot +

−→v , (3.17)
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Figure 3.4: Figure showing the velocity triangle for blade element.

where −→v is the induced velocity,
−→
Vrot is the rotational velocity given by

−→
Vrot =

[
0 0 rΩ

]T
, (3.18)

where r is radial distance of the element and Ω, the angular velocity. The spanwise compo-

nent of the relative velocity vector (i.e., VXrel) is neglected.

The angle of attack of the element is

α = Φ− (Γ + θ0 + αi), (3.19)

where Γ is the twist of the blade, θ0 is the collective pitch, αi is the induced angle of attack.

For simplicity, direct incorporation of αi is neglected in this work. The inflow angle, Φ, for

the element can be found as

Φ = tan−1

(−−→
VY rel

−−→
VZrel

)
. (3.20)
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The lift force acting on the element is given by

dL =
1

2
ρ∞|

−→
Vrel|

2cdrcl, (3.21)

where ρ∞ is the freestream density, c is the chord length of the element, dr is the width

of the element and cl is the coefficient of lift of the element. The drag force acting on the

element is

dD =
1

2
ρ∞|

−→
Vrel|

2cdrcd, (3.22)

where cd is the coefficient of drag of the element.

The unit vector normal to the rotor and in the direction of thrust acting on fluid is give

by

n =

[
0 −1 0

]T
. (3.23)

The magnitude of the wake velocity for the blade element is given by

|
−→
V ′| = |

−→
Vwb + n(n.−→v )|. (3.24)

The normal component of the induced velocity at the element is

vn = n.−→v . (3.25)

The tangential component of the induced velocity at the element is

vt = k̂bx.
−→v . (3.26)

As per [82] the normal component of the induced velocity at the element from momentum
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theory is

vn =
−NbdL cos(Φ)

4πρrF |
−→
V ′|

, (3.27)

where Nb is the number of blades on the rotor; F is the Prandtl’s tip loss factor for the

element of blade x, which is given as [54]

f =
Nb

2

R− r

r sin(Φ)
,

F =
2

π
cos−1(e−f ), (3.28)

where, R is the radius of the rotor. The tangential component of the induced velocity at the

element from momentum theory consideration is written as

vt =
NbdL sin(Φ)

4πρrF |
−→
V ′|

. (3.29)

The normal force coefficient from the element is,

Cn = cl cos(Φ) + cd sin(Φ). (3.30)

The tangential force coefficient from the element is,

Ct = cl sin(Φ)− cd cos(Φ). (3.31)

The thrust from the element is

dT =
1

2
ρ∞|

−→
Vrel|

2cdrCn. (3.32)
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The mechanical power from the element is

dP =
1

2
ρ∞|

−→
Vrel|

2cdrCtrΩ. (3.33)

Tip speed ratio, λ, defined as

λ =
RΩ

|
−→
Vw|

, (3.34)

is a non-dimensional parameter important in predicting optimum operational condition.

The solidity of the rotor, σ given as

σ =
Nbc

πR
, (3.35)

is a non-dimensional number that gives an idea about the blade area in rotor area.

The blade is discretised into elements of width dr and the equations of quasi-steady BEM

can be solved following the approach mentioned in Table 3.1 to obtain dT and dP at time

Table 3.1: Approach for solving quasi-steady BEM

Step Task

1 Consider a guess value for induced velocities vn and vt, i.e. vnguess
and vtguess .

2 Find Vrel from (3.17) for known λ and
−→
V w and obtain the inflow angle Φ using

(3.20).

3 Obtain the angle of attack α from (3.19) for already chosen Γ and θ0.

4 Find cl and cd from cl − α and cd − α tables for the corresponding Reynolds
number.

5 Obtain dL from (3.21) and dD from (3.22).

6 Find the new vn from (3.27) and new vt from (3.29), i.e. vnnew
and vtnew

7 If (|vnguess
− vnnew

| + |vtguess − vtnew
|) > κ (κ is a very small number), then

vnguess
= vnnew

and vtguess = vtnew
and go to step 2.

8 If (|vnguess
−vnnew

|+ |vtguess −vtnew
|) < κ, converged values have been obtained.

9 Find dT from (3.32) and dP from (3.33).
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t for each element. The summation of the elemental thrust, dT , and the elemental power,

dP , along the radius of the blade provides the total thrust, Tbx, and power, Pbx for blade x.

The total thrust, T and power, P of the rotor is found by adding the thrust and power of

all the blades.

The coefficient of thrust is given by

CT =
T

1
2
ρ∞πR2|

−→
Vw|2

. (3.36)

The coefficient of power is given by

CP =
P

1
2
ρ∞πR2|

−→
Vw|3

. (3.37)

3.8 Validation

Since APS operates in windmilling mode while extracting energy, the theory presented is also

applicable to a yawed wind turbine. Hence, for the validation of the theory and equations,

experimental results published by Bastankhah et al. [9] on yawed wind turbines and exper-

imental results published by Roberts et al. [7] for a potential rotor for APS are considered.

Bastankhah et al. [9] presents a study on the design and performance of miniature three-

bladed horizontal-axis wind (HAWT) with a rotor diameter of 0.15 m. The study is a good

candidate for validation since the thrust coefficient, CT and power coefficient, CP of the

turbines reach 0.8 and 0.4, respectively, which are close to large scale turbines. The design

details of the HAWT and the velocity profile are mentioned in [9] and [83]; the blade as well

as airfoil characteristics are also given in [84] and [85]. Table 3.2 lists the values of CT and

CP obtained experimentally and numerically for different values of the tip-speed ratio, λ,

and incidence angle, i. As seen from Table 3.2, the agreement between present numerical
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Table 3.2: Table showing coefficient of power, CP , and coefficient of thrust, CT , for different values
of the tip-speed ratio, λ, and incidence angle, i; ‘Exp’ refers to experimental values reported in [9]
while ‘Num’ refers to numerical values obtained using the present quasi-steady BEM.

λ i CP (Exp.) CP (Num.) Error (%) CT (Exp.) CT (Num.) Error (%)

3.0

-90 0.32 0.32 0.0 0.78 0.76 2.6
-100 0.32 0.30 6.7 0.77 0.72 6.9
-110 0.29 0.27 7.4 0.73 0.69 5.8
-120 0.23 0.22 4.5 0.64 0.62 3.2

3.5

-90 0.38 0.35 8.6 0.85 0.81 4.9
-100 0.37 0.34 8.8 0.84 0.77 9.1
-110 0.32 0.30 6.7 0.77 0.73 5.5
-120 0.25 0.24 4.2 0.65 0.65 0.0

4.0

-90 0.37 0.35 5.7 0.88 0.83 6.0
-100 0.35 0.34 2.9 0.85 0.79 7.6
-110 0.29 0.30 3.3 0.73 0.75 2.7
-120 0.22 0.23 4.3 0.61 0.67 9.0

4.5

-90 0.30 0.32 6.3 0.82 0.84 2.4
-100 0.25 0.31 19.4 0.72 0.80 10.0
-110 0.22 0.26 15.4 0.64 0.76 15.8
-120 0.17 0.19 10.5 0.55 0.67 17.9

values and experimental values is quite well for λ ≤ 4, where the maximum relative error

is less than 10%. However, for λ = 4.5, the relative error becomes large. As mentioned by

Bastankhah et al. [84], the output power measurement of the miniature turbine is difficult

and the range of error bar reported for the experiment increases with increasing λ and could

be the major reason for the discrepancy at higher λ.

Roberts et al. [7] provides experimental results on a twin rotor gyromill which is the

system under consideration in this work. The rotor had a tip radius of 1.26 m with a solidity

of 0.06 [19]. The blade was made of NACA 0012 airfoil sections with a chord length of 0.13

m. The twist of the blade is linear and is given as

Γ = θ1
r

R
, (3.38)

where θ1 is -8◦.
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The results presented in this work has continued to use (3.38) for defining the blade

twist. The NACA 0012 aerodynamic data from [86] was used. The collective pitch was 8◦.

A comparison is made by plotting the dimensionless torque as a function of the dimensionless

velocity V∞ cos(i)/(ΩR), obtained experimentally [7] against those obtained numerically via

the present quasi-steady BEM model; see Figure 3.5. As seen from the figure, the numerical

results from the quasi-steady BEM model are in the best agreement with the experimental

results, compared to the other models. At higher values of V∞ cos(i)/(ΩR) (i.e. near stall)

the present numerical results predict a similar trend as the experimental results while other

models show an obvious deviation. Nevertheless, there is a discrepancy between quasi-steady

BEM and experimental results. One reason for such a discrepancy may be the fact that the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

Figure 3.5: The variation of non-dimensional torque against non-dimensional wind velocity. The
results from existing theories, such as Extended Gessow and Crim [5], Gessow and Myers [6], and
Gessow and Myers with allowance for stall [6] along with the results from the present study are
shown against the experimental results of Roberts et al’s [7].
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accuracy of the present model’s results is considerably dependent on the accuracy of the

input aerodynamic data.

3.9 Results and discussion

Since the primary objective of this work was the development of a quasi-steady aerodynamic

model, a detailed parametric study is not performed. The geometric and operational param-

eters of the autogyro given in Table 3.3 are chosen based on the information given in [19]

and [21]. The parameters of the equivalent rotor mentioned in the Table 3.3 is to study the

thrust and power variations shown in Figure 3.6, variation of angle of attack, inflow angle,

Table 3.3: APS rotor parameters

Parameter Value Parameter Value
Nr 1 θ1 -8◦

Nb 2 θ0 8◦

c 0.8 m i -40◦

R 10 m β 0◦

Z 766 m λ 6

0 0.16 0.32 0.48 0.64 0.8
5.6

6.1

6.6

7.1

7.6

(a)

0 0.16 0.32 0.48 0.64 0.8
36.0

38.4

40.8

43.2

45.6

48.0

(b)

Figure 3.6: Plots showing the variation of (a) thrust from the blades (kN), and (b) power from the
blades (kW) for one cycle of rotation of the rotor as predicted by the quasi-steady BEM theory for
parameters mentioned in Table 3.3.
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coefficient of lift and coefficient of drag of an airfoil on blade 1 shown in Figure 3.7 and the

optimum tip speed ratio shown in Figure 3.8.

Figure 3.6(a) shows the variation of thrust produced and Figure 3.6(b) shows the variation

of power produced by each blade in one cycle of rotation of the rotor. As seen, the thrust on

the blades cyclically changes between 7.5 kN and 5.7 kN. The power produced by the blades

cyclically varies between 46 kW and and 38 kW. Since the blades are 180◦ apart, so is the

0 0.16 0.32 0.48 0.64 0.8
3.0

4.2

5.4

6.6

7.8

9.0

(a)

0 0.16 0.32 0.48 0.64 0.8
0.35

0.44

0.53

0.62

0.71

0.80

7.00

7.42

7.84

8.26

8.68

9.10
10-3

(b)

Figure 3.7: Plots showing the variation of (a) angle of attack, α in (◦) and inflow angle, Φ in (◦),
and (b) coefficient of lift, cl, and coefficient of drag, cd, at r = 0.7R on Blade 1 for one cycle of
rotation of the rotor.

3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3.8: Figure showing variation of coefficient of power, CP with respect to tip speed ratio, λ
for different incidence angles i = -30◦, -45◦ and -60◦. The filled markers show optimum λ for the
respective i.
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phase difference in thrust and power produced by the respective blades. The variation of

the resultant velocity due to the wind profile and the inclination of rotor is the reason why

thrust and power varies during the rotation of blades.

Figure 3.7(a) shows the variation of the angle of attack, α, and inflow angle, Φ, in (◦)

and Figure 3.7(b) shows the change in coefficient of lift, cl and coefficient of drag, cd at

r = 0.7R on Blade 1 for one cycle of rotation of the rotor. The angle of attack varies

between approximately 6.0◦ and 8.7◦ and the inflow angle between approximately 3.8◦ and

6.5◦. The minimum value for cl is 0.41 and the maximum value attained is 0.71. The cd

varies between 0.007 and 0.009; cl, cd and Φ are in phase with α since it is a quasi-steady

aerodynamic model.

The variation of Cp with respect to λ for incidence angles of−30◦,−45◦ and−60◦ is shown

in Figure 3.8. As seen, for every incidence angle, Cp increases with λ, reaches a maximum

value and then drops. A similar behaviour is observed for horizontal- and vertical-axis wind

turbines. This may be attributed to the increase in the relative velocity at the blade due to

increasing λ; however, eventually at higher values of λ, the rotor blocks the flow and thus

Cp decreases. At a given λ (except very low values), Cp increases with the incidence angle.

This could be due to the availability for higher freestream velocity component to the rotor.

The optimum tip speed ratios are shown by filled markers and are 6, 8 and 9 for incidence

angles of −30◦,−45◦ and −60◦, respectively.

3.10 Conclusion

This work presents the aerodynamic modelling of an APS using a quasi-steady BEM theory.

The APS with four rotors is fixed in space by knowing the tether length, incidence angle

and side slip angle. The aerodynamics presented is that of an equivalent rotor placed at the
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center of the APS, that is assumed to represent any rotor on the system. For the calculation

of unknown induced velocity and angle of attack, the presence of the blades is assumed to

affect momentum of flow through only a part of the disc. Unlike most existing models in

the literature, which are either time-averaged or unsteady models, the proposed model is

quasi-steady. This means that it is more accurate than the time-averaged models and is

solved faster than the unsteady models. Such an aerodynamic model can conveniently be

coupled to the structural dynamic model of the tether for examining the dynamics of the

whole system.

The quasi-steady BEM model for APS was validated against a yawed wind turbine rotor

with three blades and an autogyro rotor with two blades. It was found that the quasi-steady

BEM is more accurate than the time-averaged models, particularly in the stalled region.

However, the quality of the predictions was found to be heavily dependent on the accuracy

of the input aerodynamic data.

It was found that the total thrust and power of the rotor, as well as the angle of attack,

inflow angle, coefficient of lift and coefficient of drag of airfoil sections of a blade vary with

the azimuth angle. The phase difference between the thrust and power of each blades is

equal to the angle between the blades. While rotating, the advancing blades on the rotor

produce higher thrust and power than the retracting blades. The highest thrust for blade

1 is observed at an azimuth of 45◦ and lowest at 275◦. The angle of attack, inflow angle,

coefficient of lift and coefficient of drag on any airfoil on blade is found to be in phase. The

lowest value of these parameters are observed at azimuth angle of 45◦ and the highest at 275◦

for an airfoil on blade 1. This is observed due to the variation of component of wind which

is parallel to the rotor which is maximum and opposite to the rotational velocity at azimuth

angle 45◦. It was also found that the coefficient of power increases with the incidence angle.

It increases with increasing the tip speed ratio, reaches a maxima and decreases with further
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increase in the tip speed ratio. The optimum tip speed ratio increases with the increase in

incidence.

The model can further be improved by the incorporation of a dynamic wake inflow model

to make the model dynamic, dynamic stall to take care of rapid change of the angle of attack,

yaw model that takes restoring yaw moment into consideration, turbulence and gust models

for the wind model to predict more realistic operational characteristics, among others.
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Chapter 4

Dynamics of tethered airborne wind

energy systems

Almost all airborne wind energy (AWE) systems are tethered and thus the reliability and

efficiency of the system are affected by the tension fluctuations in the tether and flow in-

duced vibrations. This chapter presents the numerical results of the dynamics of a tethered

aerostatic power system (APS) and a tethered kite power system (KPS). The APS is an

autogyro which works on the principle of autorotation whose aerodynamics is predicted by

an unsteady BEM model. The KPS considered for the study is a traction kite connected to

a winch generator via a tether. Due to aerodynamic forces from the kite, the tether reels

in and out to cyclically drive the winch-generator to generate electricity. To understand the

effect of elasticity, a rigid tether model as well as an elastic tether model are developed.

The tether is modelled as interconnected links with lumped masses having negligible rotary

inertia in either case. The (longitudinal) elasticity of the tether is accounted for by linear

springs and the structural damping is modelled by viscous dampers. The wind profile fol-

lowing the power law is used for the study, and the aerodynamic forces acting on the tether
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are predicted using the independence principle. The airborne modules of the systems are

modelled as point masses. The verification results of the tether models are indicative of its

accuracy.

4.1 Definitions and preliminaries

4.1.1 System definition

The tethered aerostatic power system (APS) has an autogyro that is statically suspended in

the air and connected to the ground via a tether. The wind rotates the rotor of the autogyro

which can be explained by the principle of auto-rotation and the mechanical energy thus

produced is converted to the electrical energy by means of electrical generators coupled to

the rotor. The construction and aerodynamics of the autogyro is explained in chapter 3. The

electricity produced on-board of the autogyro is transmitted to the ground via conductors

Tether

Ground Station

AutoGyro

To the grid

Wind flow

Figure 4.1: Schematic of the autogyro producing electric power on board which is then transmitted
to the ground via a tether in APS.
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Figure 4.2: Schematic of KPS in which the kite executing reel-in/reel-out motion drives the winch-
generator via a tether generating electricity at the ground.

encapsulated by insulator which are structurally supported. The construction and mass

modelling of the tethered APS closely follows [21]. The schematic of APS is shown in Figure

4.1.

The kite power system (KPS) consists of a kite that can reel-in/reel-out in the air while

being connected to a winch-generator at the ground by a tether. The aerodynamics of the

kite is controlled so as to cyclically drive the winch coupled to the electrical generator. The

tether reels-out from winch generating electricity and reels-in at the expense of energy. Thus

tether is a medium to mechanically transmit power from kite to ground and is simply a

structural member. The mechanism of power generation is similar to that of the crosswind

kite power system operating in pumping mode as explained in chapter 2. Figure 4.2 shows

the schematic of power generation using KPS.

4.1.2 Wind model

A power law wind profile is adopted here [81]:
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VZ = VZr
(
Z

Zr

)α, (4.1)

where VZ is the wind velocity at height Z above the ground level, Zr is the reference height

and α is the wind shear exponent, which is typically taken as 0.2 [81]. For this study, Zr = 10

m and VZr
= 6 m/s are taken.

The wind velocity vector is written as

−→
V w = VZ î, (4.2)

where î is the unit vector along the x-axis of the inertial coordinate system.

4.2 Tether modelling

4.2.1 Framework

The equations of motion are formed within the Lagrangian framework expressed as [87]

d

dt
(
∂L

∂q̇i
)−

∂L

∂qi
+

∂R

∂q̇i
= Fnci , i = 1, ..., N (4.3)

δW =
N∑

i=1

Fnciδqi, (4.4)

where qi are the generalised coordinates, L = T − V is the Lagrangian of the system, T

being the kinetic energy of the system and V being the potential energy of the system;

R is Rayleigh’s dissipation function; also, δW is the virtual work due to non-conservative

forces, Fnci are the non-conservative generalised forces, and δqi are the corresponding virtual

displacements.

81



4.2.2 Rigid tether model

See Figure 4.3 which shows the discretization scheme. The inertial coordinate system is a

Cartesian system in the two-dimensional space and is denoted by O : î, k̂. The tether is

assumed to be uniform and homogeneous. The tether is discretized into N number of rigid

links with negligible rotary inertia, and the mass of each link is concentrated at its centre as

shown in Figure 4.3. In comparison to the analytical solution for catenary, the model with

mass concentrated at the center has the advantage of predicting better static shape for the

same N , when compared to mass concentrated at the node model. The ith lumped mass,

mi, is quantified as

mi =
ρALt

N
, i = 1, ..., N (4.5)

O

m
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Figure 4.3: Schematic of the rigid tether model showing the inertial frame O : î, k̂, the wind velocity,
Vw, lumped masses m1,m2, ...,mN , rigid links of length L1, L2, ..., LN , generalised coordinates
θ1, θ2, ..., θN , aerodynamic drag on tether element D1, D2, ..., DN , unit vectors normal to the tether
element n̂1, n̂2, ..., n̂N , reel-out velocity Vro, reel-in velocity Vri, kite mass ma, external force of
magnitude Fa at the angle β and the direction of gravity.
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where ρ is the density of tether, A is the cross-sectional area of the tether and Lt is the

unstretched length of the tether.

The airborne module is modelled as a point mass, with mass ma at the farthest end of

the tether. The generalised coordinates of the rigid tether model are in the polar coordinate

system. A body axes frame is defined on each lumped mass to calculate the aerodynamic

drag acting on the tether element.

The position vector of the airborne module is given by

−→
R a =

N∑

j=1

Lj[cos(θj )̂i+ sin(θj)k̂], (4.6)

where

Lj =
Lt

N
, (4.7)

is the length of the jth rigid tether element and θj is the corresponding generalised coordinate.

The velocity vector of the airborne module thus becomes

−→
V a =

d
−→
R a

dt
=

N∑

j=1

Lj θ̇j[− sin(θj )̂i+ cos(θj)k̂]. (4.8)

The position vector of the centre of the ith tether element is given by

−→
R i =

N∑

j=i

PjLj[cos(θj )̂i+ sin(θj)k̂], (4.9)

where Pj = 1/2 if i = j, else Pj = 1; thus its velocity vector is obtained as

−→
V i =

d
−→
R i

dt
=

N∑

j=i

PjLj θ̇j[− sin(θj )̂i+ cos(θj)k̂], (4.10)
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where the overdot represents a time-derivative.

The kinetic energy of the system can be obtained as

T =
1

2
ma

−→
V a.

−→
V a +

N∑

i=1

1

2
mi

−→
V i.

−→
V i, (4.11)

which can be extended as follows

T =
1

2

N∑

i=1

N∑

j=i

P 2
j miL

2
j θ̇

2
j +

ma

2

N∑

j=1

L2
j θ̇

2
j +

1

2

N∑

i=1

N∑

j=1

N∑

k=j+1

2PjmiLjLkθ̇j θ̇k cos(θk − θj)

(4.12)

+
ma

2

N∑

j=1

N∑

k=j+1

2LjLkθ̇j θ̇k cos(θk − θj). (4.13)

On the other hand, the expression of the potential energy of the system is given as

V = mag
N∑

j=1

Lj sin(θj) +
N∑

i=1

mig
N∑

j=i

PjLj sin(θj), (4.14)

in which g is the gravitational acceleration.

The virtual work due to non-conservative forces can also be written as

δW =
−→
F a.δ

−→
R a +

N∑

i=1

Di.δ
−→
R i, (4.15)

where
−→
F a is the force exerted by the airborne module on the tether, and

−→
D j is the aerody-

namic drag acting on the jthe element of the tether; the virtual displacement of the airborne

module, δ
−→
R a, and that at the jth element (or lumped mass), δ

−→
R j, are given by

δ
−→
R a =

N∑

j=1

Ljδθj(− sin(θj )̂i+ cos(θj)k̂), (4.16)
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and

δ
−→
R i =

N∑

j=i

PjLjδθj(− sin(θj )̂i+ cos(θj)k̂), (4.17)

respectively.

Following the independence principle [67], Di can be written as

−→
D i =

1

2
ρ∞|

−→
V Reli · n̂i|(

−→
V Reli · n̂i)LjdCdn̂i, (4.18)

where ρ∞ is the free-stream density, d is the diameter of the tether, and Cd is the normal

drag coefficient of the tether; also,
−→
V Reli and n̂i are the relative flow velocity and the unit

normal vector at the ith element given by

−→
V Reli =

−→
V w −

−→
V i, (4.19)

and

n̂i = sin(θi)̂i− cos(θi)k̂, (4.20)

respectively.

The ith generalised force is give by

Fnci = Li(− sin(θi) î+ cos(θi) k̂) · [
−→
F a +

i∑

j=1

Pj

−→
D j]. (4.21)

The final equation of motion in the first-order (or state space) form for the ith mass (or
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element) may be written as

[
i∑

j=1

P 2
j mj +ma]L

2
i θ̈i +

i∑

j=1

N∑

k=j,k 6=i

Aimj[LiLkθ̈k cos(θk − θi)− LiLkθ̇k
2
sin(θk − θi)]

+
N∑

k=1,k 6=i

ma[LiLkθ̈k cos(θk − θi)− LiLkθ̇k
2
sin(θk − θi)] + gLi cos(θi)[

i∑

j=1

Pjmj +ma]

= Li(− sin(θi) î+ cos(θi) k̂) · [
−→
F a +

i∑

j=1

Pj

−→
D j], i = 1, ..., N (4.22)

where Ai =
1
2
if j = r or j = i, else Ai = 1.

The numerical results are obtained by solving the system of ordinary differential equations

in time.

To derive the equations of tension in tether, it is assumed that the the value of tension

between any two adjacent lumped masses is the same. Tension in the first tether element

(i.e., between the first lumped mass and the airborne module) is given by

T1 =

√(
|
−→
F a| cos(β)−maẍa

)2

+
(
|
−→
F a| sin(β)−mag −maz̈a

)2

, (4.23)

where ẍa and z̈a are given by

ẍa = −

N∑

i=1

Liθ̈i sin(θi)−
N∑

i=1

Liθ̇
2
i cos(θi), (4.24)

z̈a =
N∑

i=1

Liθ̈i cos(θi)−
N∑

i=1

Liθ̇
2
i sin(θi). (4.25)

Tension in the last tether element (i.e., between the ground and the lumped mass closest to
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the ground) is given by

TN = (4.26)
√√√√(

T1 sin(θ1) +
N∑

i=1

Di · k̂ −

N∑

i=1

miz̈i −

N∑

i=1

mig
)2

+
(
T1 cos(θ1) +

N∑

i=1

Di · î−

N∑

i=1

miẍi

)2

,

where ẍi and z̈i are written as

ẍi = −

N∑

j=i

PjLj θ̈j sin(θj)−
N∑

j=i

PjLj θ̇
2
j cos(θj), (4.27)

and

z̈i =
N∑

j=i

PjLj θ̈j cos(θj)−
N∑

j=i

PjLj θ̇
2
j sin(θj), (4.28)

respectively.

4.2.3 Elastic tether model

Figure 4.4 shows the discretization scheme for the elastic tether. Here, the inertial coordinate

system is denoted by O : î, ĵ. Unlike the rigid tether, the position of the first lumped

mass is representative of the position of the airborne module. The tether is modelled as

N interconnected links of the same length. The mass of each link is concentrated at the

respective node, as shown in the Figure 4.4. Except for m1, which is inclusive of the airborne

module mass and half of the tether element mass, the ith lumped mass, mi, is the average

of the mass of adjacent elements

m1 = ma +
ρALt

2N
, mi =

ρALt

N
, i = 2, ..., N. (4.29)

The combination of a linear spring and a viscous damper in each element accounts for
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Figure 4.4: Schematic of the elastic tether model showing the inertial frame O : î, ĵ, the wind veloc-
ity, Vw, lumped masses m1,m2, ...,mN , extensible links of length L1,L2, ...,LN , stiffness of tether
elements k1, k2, ..., kN , damping coefficient of tether elements c1, c2, ..., cN , generalised coordinates
x1, x2, ..., xN and y1, y2, ..., yN , aerodynamic drag on tether element D1, D2, ..., DN , unit vectors
normal to the tether element n̂1, n̂2, ..., n̂N , reel-out velocity Vro, reel-in velocityVri, external force
of magnitude Fa at the angle β and the direction of gravity.

elasticity and structural damping of the tether, respectively. In contrast to Section 4.2.3, the

Cartesian coordinates are chosen as the generalised coordinates in the elastic tether model.

As seen in the following, this considerably simplifies the derivations since the coordinates

of each lumped mass, and thus their velocities and virtual displacements, can be expressed

independently from other lumped masses.
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The position vector of the ith lumped mass is given by

−→
R i = xiî+ yiĵ, (4.30)

and thus, the velocity vector becomes

−→
V i =

d
−→
R i

dt
= ẋiî+ ẏiĵ. (4.31)

The expressions of the kinetic and potential energies of the system are given as

T =
1

2

N∑

i=1

mi[ẋ
2
i + ẏ2i ], (4.32)

and

V =
N∑

i=1

[migyi +
1

2
kis

2
i ], (4.33)

respectively; ki and si are the stiffness and extension of the ith tether element, respectively.

Assuming the tether is made of a linear-elastic material, ki may be written as

ki = N
EA

Lt

, (4.34)

in which E is the Young’s modulus of elasticity of the material.

The longitudinal extension of the elements can be obtained as follows

si = Li − Li, i = 1, 2..., N − 1

sN = LN − LN , i = N, (4.35)
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where Li is the length of the elastic element given by

Li =
√

(xi − xi+1)2 + (yi − yi+1)2, i = 1, 2..., N − 1

LN =
√
x2
N + y2N , i = N. (4.36)

The damping due to viscous dampers can be included using the Rayleigh’s dissipation

function (see equation (4.3))

R =
N∑

i=1

1

2
ciṡ

2
i , (4.37)

where ci is the damping coefficient of the ith element, which can be obtained as

ci = 2ζ
√

kimi, (4.38)

in which ζ is the damping ratio.

It should be noted that in the present model, ci remains constant as the tether length

(and thus the length of each element) varies, for the reasons given in Appendix D. A similar

approach can also be found in the work of Milutinović et al. [46] while some other studies

(e.g., Ref. [47]) apparently considered variable damping coefficients.

The virtual work due to non-conservative forces can be obtained as

δW =
−→
F a.δ

−→
R 1 +

N∑

i=1

−→
D i.δ

−→
R i, (4.39)

where the virtual displacement vector δ
−→
R i can be written as

δ
−→
R i = δxiî+ δyiĵ. (4.40)

The drag forces are estimated at the centre of the elements, and the average of forces
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acting on two adjacent elements is placed on the ith node, that is given by

−→
D 1 =

1
2
ρ∞|

−→
V Rel1 · n̂1|(

−→
V Rel1 · n̂1)L1dCdn̂1

2
, i = 1

−→
D i =

1
2
ρ∞|

−→
V Reli · n̂i|(

−→
V Reli · n̂i)LidCdn̂i

2
+

1
2
ρ∞|

−→
V Reli−1 · n̂i−1|(

−→
V Reli−1 · n̂i−1)Li−1dCdn̂i−1

2
, i = 2, 3..., N, (4.41)

in which
−→
V Reli is the relative velocity at the ith tether element given by

−→
V Reli =

−→
V w −

−→
V ci, (4.42)

where
−→
V ci is the velocity vector of the centre of the ith element:

−→
V ci = (ẋi −

ẋi − ẋi+1

2
)̂i+ (ẏi −

ẏi − ẏi+1

2
)ĵ, i = 1, 2, ..., N − 1

−→
V cN = (

ẋN

2
)̂i+ (

ẏN
2
)ĵ, i = N. (4.43)

The unit vector normal to the ith tether element, n̂i, can be obtained as

n̂i = sin(θi)̂i− cos(θi)ĵ, (4.44)

where

θi = tan−1

(
yi − yi+1

xi − xi+1

)
, i = 1, 2, ..., N − 1

θN = tan−1

(
yN
xN

)
. i = N. (4.45)

The final equations of motion in the first-order (or state space) for when N > 1 can be
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written as

m1ẍ1 + k1(x1 − x2)

(
1−

L1√
(x1 − x2)2 + (y1 − y2)2

)
+

c1(x1 − x2)

(
(x1 − x2)(ẋ1 − ẋ2) + (y1 − y2)(ẏ1 − ẏ2)

(x1 − x2)2 + (y1 − y2)2

)
= (

−→
F a +

−→
D 1) · î, i = 1 (4.46)

miẍi + ki(xi − xi+1)

(
1−

Li√
(xi − xi+1)2 + (yi − yi+1)2

)
−

ki−1(xi−1 − xi)

(
1−

Li−1√
(xi−1 − xi)2 + (yi−1 − yi)2

)
+

ci(xi − xi+1)

(
(xi − xi+1)(ẋi − ẋi+1) + (yi − yi+1)(ẏi − ẏi+1)

(xi − xi+1)2 + (yi − yi+1)2

)
−

ci−1(xi−1 − xi)

(
(xi−1 − xi)(ẋi−1 − ẋi) + (yi−1 − yi)(ẏi−1 − ẏi)

(xi−1 − xi)2 + (yi−1 − yi)2

)

=
−→
D i · î, i = 2, 3, ..., N − 1 (4.47)

mN ẍN + kNxN

(
1−

LN√
x2
N + y2N)

)
−

kN−1(xN−1 − xN)

(
1−

LN−1√
(xN−1 − xN)2 + (yN−1 − yN)2

)
+ cNxN

(
xN ẋN + yN ẏN

x2
N + y2N

)
−

cN−1(xN−1 − xN)

(
(xN−1 − xN)(ẋN−1 − ẋN) + (yN−1 − yN)(ẏN−1 − ẏN)

(xN−1 − xN)2 + (yN−1 − yN)2

)
=

−→
DN · î, i = N

(4.48)

in the x-direction, and
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m1ÿ1 +m1g + k1(y1 − y2)

(
1−

L1√
(x1 − x2)2 + (y1 − y2)2

)
+

c1(y1 − y2)

(
(x1 − x2)(ẋ1 − ẋ2) + (y1 − y2)(ẏ1 − ẏ2)

(x1 − x2)2 + (y1 − y22)

)
= (

−→
F a +

−→
D 1) · ĵ, i = 1 (4.49)

miÿi +mig + ki(yi − yi+1)

(
1−

Li√
(xi − xi+1)2 + (yi − yi+1)2

)
−

ki−1(yi−1 − yi)

(
1−

Li−1√
(xi−1 − xi)2 + (yi−1 − yi)2

)

+ ci(yi − yi+1)

(
(xi − xi+1)(ẋi − ẋi+1) + (yi − yi+1)(ẏi − ẏi+1)

(xi − xi+1)2 + (yi − yi+1)2

)

− ci−1(yi−1 − yi)

(
(xi−1 − xi)(ẋi−1 − ẋi) + (yi−1 − yi)(ẏi−1 − ẏi)

(xi−1 − xi)2 + (yi−1 − yi)2

)

=
−→
D i · ĵ, i = 2, 3, ..., N − 1 (4.50)

mN ÿN +mNg + kNyN

(
1−

LN√
x2
N + y2N)

)
−

kN−1(yN−1 − yN)

(
1−

LN−1√
(xN−1 − xN)2 + (yN−1 − yN)2

)
+ cNyN

(
xN ẋN + yN ẏN

x2
N + y2N

)
−

cN−1(yN−1 − yN)

(
(xN−1 − xN)(ẋN−1 − ẋN) + (yN−1 − yN)(ẏN−1 − ẏN)

(xN−1 − xN)2 + (yN−1 − yN)2

)
=

−→
DN · ĵ, i = N

(4.51)

in the y-direction.

If N = 1, the equations of motion become

m1ẍ1 + k1x1

(
1−

L1√
x2
1 + y21

)
+ c1x1

(
x1ẋ1 + y1ẏ1√

x2
1 + y21

)
= (

−→
F a +

−→
D 1) · î, (4.52)

m1ÿ1 +m1g + k1y1

(
1−

L1√
x2
1 + y21

)
+ c1y1

(
x1ẋ1 + y1ẏ1√

x2
1 + y21

)
= (

−→
F a +

−→
D 1) · ĵ. (4.53)

The numerical results are obtained by solving the system of ordinary differential equations

in time. After obtaining the time history of xi, yi, (i = 1 · · ·N) and ẋi, ẏi, (i = 1 · · ·N),
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equations (4.35) and (4.36) can be used to obtain the longitudinal extension of each element

and its time derivatives, from which tension can be obtained:

Ti = kisi + ciṡi. (4.54)

It is worth noting that, in the elastic tether model, even though the damping coefficient

remains the same irrespective of the tether length, the stiffness of each element is N times

the stiffness of the full-length tether.

4.2.4 Reel-in/reel-out model

The two widely used approaches to implement reel-in/reel-out were developed by Williams

et al. [50] and Fechner et al. [47]. In the Williams et al.’s approach, the length of each

element is kept constant and a new element of variable length is added to account for the

reel-out or removed to implement the reel-in. If the existing tether had N elements, this

newly added variable length element becomes the (N +1)th element and is treated as rest of

the elements upon reaching a critical length. The reel-in/reel-out is dynamically treated by

this method. However, introduction of new elements might create unrealistic perturbations

in the elastic tether model and removal of elements might effect position and velocities of

remaining elements if not treated carefully. The number of elements is variable and thus the

algorithm to implement this method will require a state space vector of variable dimensions.

Interested readers are referred to Williams et. al. [50] for further reading.

In contrast to the above mentioned approach, Fechner et al.’s method employs a fixed

number of elements which vary equally in their unstretched length during reel-in/reel-out.

The reel-in/reel-out creates a variation in the overall unstretched length of the tether, Lt. The

dynamics is predicted by re-discretising the tether of the new length into N elements at every
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Table 4.1: reel-in/reel-out algorithm for rigid tether model

Step Task

1 For time t, initialize θi and θ̇i from t−∆t (For t = 0, initial conditions can be
the static solution).

2 Find Lt and
−→
F a for time t from the known variations.

3 Update mi as per equation (4.5), and Lj by equation (4.7), knowing N .

4 Find the new
−→
V w from equations (4.2) and (4.1) by using the updated

−→
R i

from equation (4.9).

5 Update
−→
V i in equation (4.10) and find

−→
V Reli from equation (4.19).

6 Find n̂i using equation (4.20) and update
−→
D i in equation (4.18).

7 Solve equations of motion (4.22) for time t.

instant. This method has the the advantage of having a state space vector with constant

dimension and a stable algorithm which does not complicate the dynamical calculations

associated with adding or removing elements. However, this approach may be called quasi

static since it includes the effects of tether reel-in/reel-out only through the instantaneous

tether length.

Fechner et al.’s approach is followed in this study. Since the mass of airborne module is

typically 30 to 40 times the tether mass, the author assumes that the kinetic energy deficit

due to the quasi static modelling of tether reel-in/reel-out can be neglected. The variation of

tether length, Lt and the variation of external force/thrust,
−→
F a are assumed to be known a

priori. Such an input cycle is shown in Figure 4.10. The equations of motion of rigid tether

given by (4.22) and elastic tether by (4.46) to (4.51) are then solved in time for a new tether

with constant N at each time step.

The algorithm mentioned in Table 4.1 is followed to implement reel-in/reel-out for the

rigid tether model for an instant of time. On the other hand, the algorithm for the reel-

in/reel-out of the elastic tether can be found in Table 4.2. When compared to the rigid
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Table 4.2: reel-in/reel-out algorithm for elastic tether model

Step Task

1 For time t, initialize xi, yi, ẋi and ẏi from t−∆t (For t = 0, initial conditions
can be the static solution).

2 Find Lt and
−→
F a for time t from the known variations.

3 Update mi as per (4.29), Lj by (4.7) and ki in (4.34) knowing N .

4 Find how much Lj changed by marching from the previous instance and add
it with (4.36) to obtain the new Li.

5 Find the new
−→
V w from equations (4.2) and (4.1) by using the updated

−→
R i

from equation (4.30).

6 Update
−→
V ci in (4.43) and find

−→
V Reli from (4.42).

7 Update θi from (4.45) to find the n̂i using (4.44).

8 Update the
−→
D i in (4.41).

9 Solve the elastic tether model equations of motion (4.46) to (4.51) for time t.

tether model, the elastic tether model needs more sophisticated algorithm. The tether drag

found at the nodal points is the average of tether drag of adjacent elements, the stiffness

values of elements needs to be updated, tether angles need to be calculated and the variation

of tether length during reel-in/reel-out velocity is calculated based on the rigid length.

4.3 Verification of the model

To the best of the author’s knowledge, no studies exist that experimentally study the dynam-

ics of tethers in AWE applications. Due to lack of such experimental data, some comparisons

are made against analytical results from similar applications as to verify the tether models.

The analytical equation for a catenary cable is used to verify the static shape and for ver-

ifying the effect of aerodynamics on the tether. The dynamic equation for plucked string

vibration is used to verify the dynamics as well as the distribution of the damping coefficient.
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Throughout this work, the tether material is chosen to be dyneema [88]. In the case of APS,

the structural support will be provided by dyneema. Dyneema is assumed to have a density

of 970 kg/m3, Young’s modulus of elasticity of 109 GPa and an ultimate tensile strength of

3.9 GPa [89]. A safety factor of 3 is used for diameter calculations [88].

4.3.1 Verification of the statics

The analytical solution for the shape of an elastic catenary in static equilibrium [90] is used

for the verification of the statics of the tether model:

aT =
Fx

γeg
, (4.55)

x = aT sinh−1

(
s

aT

)
+ aT

γeg

EA
s, (4.56)

z =
√
a2T + s2 +

γeg

2EA
s2 − aT , (4.57)

where Fx is the horizontal component of tension (or end-force); s is the curvilinear coordinate

along the catenary, and γe is the mass per unit length.

By assuming numerical values for EA, γe, and Fx and considering s in the range of

0 ≤ s ≤ Lt, x and z can be found from equations (4.56) and (4.57), respectively. The vertical

component of tension (or end-force) can then be obtained from the analytical solution as

Fy =

(
z1 − z2
x1 − x2

)
Fx +m1g. (4.58)

The same inputs used in the analytical equations are used in the tether model to predict

the static shape numerically. It should be noted that Fx and Fy define Fa in the equations of

motion of the tether. The equations governing the statics of the rigid and elastic tether are
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Figure 4.5: Figure showing verification of numerically predicted shape of catenary against analytical
solution of catenary for N = 1, 2, 10, 20, 40 and Lt = 500m.

obtained by letting the time-dependent terms to zero in equation (4.22) for the rigid tether

and in (4.46) to (4.51) for the elastic tether. Also, note that the aerodynamic drag is put to

zero in the tether models.

Figure 4.5 shows the results from the verification study of the static shape of the elastic

tether for different values of N . It is observed that with N = 20, the tether model predicts

the shape very close to that of the catenary from the analytical solution. Studies were also

conducted to ensure that the rigid and elastic tether models predict the static shape in

agreement with the analytical solution for different N , Lt, E, A, and
−→
F a. In order to verify

the effect of wind on the tether shape, the aerodynamic forces were also taken into account.

It was observed that depending on the wind direction, the tether moved to the either side

of the horizontal axis. It was also observed that even though the analytical solution could

only predict the catenary in the first quadrant, by varying
−→
F a, the numerical model could

predict shape in all four quadrants.
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4.3.2 Verification of the dynamics

The analytical solution for the dynamics of a plucked string is used for the verification of

the tether model. This is done by reducing the tether model to a numerical model for the

plucked string. Consider an elastic string of the unstretched length Lt, which is fixed at the

two ends and initially pulled from the middle by h in the transverse direction. The string

is then let free to vibrate. The time-dependent displacement of the string in the transverse

direction, z(x, t), can be obtained analytically, as follows [74]

z(x, t) =
8h

π2

∞∑

i=1,3,...

(−1)

i− 1

2

i2
sin

(
iπx

Lt

)
cos(ωit), (4.59)

where ωi is the angular frequency of the ith mode shape given by

ωi =
iπ

Lt

√
T

γe
, (4.60)

in which γe is the mass of the tether per unit length, and T is the tension in the tether,

which is obtained from

T = EAǫ, (4.61)

where ǫ the axial strain in the tether:

ǫ =

√
1 + (

2h

Lt

)2 − 1. (4.62)

Equations (4.46) to (4.51) which govern the dynamics of the elastic tether can be reduced

to the equation of the plucked string by defining the farthermost end coordinates (x1, y1) as

(Lt, 0) and by substituting time derivatives of (x1, y1) with zero. Also, ma and m1 are given

negligibly small values (e.g. 10−6) while setting Vw, Fa, Di and g to zero for the analysis.
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Figure 4.6: Plots showing the variation of (a) amplitude of centre of string in (m), and (b) frequency
as predicted by the analytical equation and numerical model for N = 20.

For comparison of results, a string of the length Lt = 1 m and axial rigidity EA = 25

N is used; also, h = 0.1 m is taken. In the analytical solution given by equation (4.59), the

first 15 odd (i.e. symmetric) modes were used. The numerical plucked string model is solved

for N = 2, 10, 20, 40, and 80.

Figure 4.6(a) shows the variation of the amplitude of the mid-point of the string as a

function of time, obtained both analytically and numerically. Figure 4.6(b) shows the cor-

responding frequency contents obtained from a fast Fourier transformation (FFT) analysis.

The tension fluctuations of the last tether element, TN , is a function of the last tether angle,

θN , for both elastic and rigid tether models. Hence, θN is an ideal candidate for conver-

gence studies. The fundamental frequency predicted by FFT analysis of θN showed that it

converged to 0.40 for a N = 40 and remains unchanged for further values of N while ana-

lytical results predicted 0.48 as shown in Figure 4.6(b). However, since N = 20 predicted a

fundamental frequency of 0.39 which is close to 0.40, considering the computational expense

and accuracy, N = 20 is considered for further studies. The results remained the same

irrespective of varying the stiffness of the tether for different values of E and A.
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4.4 Results and discussions

We present numerical results for two different systems: (i) a tethered autogyro, which we

call an APS (aerostatic power system), and (ii) a tethered kite power system (KPS). It is

assumed that the tether movement is not affecting the aerodynamics of either the autogyro

or the kite. The APS and KPS considered in this work are capable of producing 300 kW

and 13 kW, respectively.

4.4.1 Numerical results for the APS

Table 4.3 gives the design parameters of the APS. The thrust calculated from the unsteady

blade element momentum (BEM) model (see Chapter 3) is used as the force applied at the

farthest end of the tether. See Figures 4.7(a) and 4.7(b) for the variation of the thrust and

the corresponding nominal power output of the APS over a cycle. Since the aerodynamic

model for APS does not account for cyclic pitch or other corrections for smoothing the thrust

and power outputs, they vary cyclically, as shown in Figure 4.7.

Figures 4.8(a) and 4.8(b) show the variation of TN and θN as a function of time, respec-

tively, obtained by the elastic and rigid tether models. Note that in the case of elastic tether

model the time history of TN also includes the longitudinal dynamics, i.e. sN , in addition to

θN . Thus, Figure 4.8 also represents the dynamic response of the two generalised coordinates

of LN .

Table 4.3: Tethered APS parameters

Lt 1000 m dt 7.5 mm
keq 4600 N/m mt 42 kg
β = 90◦ − i 50◦ mk 1350 kg
V (zr = 10m) 6 m/s α 0.2
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Figure 4.7: Plots showing the variation of (a) thrust output of APS in (kN), and (b) power output
in (kW ) as predicted by the unsteady blade element momentum theory.
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Figure 4.8: Plots showing the variation of (a) tension in the last tether element, TN (kN), and
(b) tether angle close to ground θN in (◦) as predicted by the numerical elastic tether model with
ζ = 0.01 and rigid tether model for inputs from APS shown in Figure (4.7).

Figure 4.8(a) shows that the rigid tether model predicts slightly higher values of TN . This

could be attributed to the additional degree of freedom of the elastic tether model. While

the tension predicted by the rigid tether model fluctuates approximately by 1.5 kN which is

in a similar range of the thrust fluctuation, the tension output from the elastic tether model

fluctuates approximately by 0.1 kN. As seen, the tension predicted by the elastic tether

model is out of phase with respect to the thrust input while the rigid tether model predicts

an in-phase response.
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Figure 4.9: Plots showing FFT results based on (a) Tension in the last tether element, TN and (b)
Tether angle close to ground θN as predicted by the numerical elastic tether model with ζ = 0.01
and rigid tether model for inputs from APS shown in Figure (4.7).

Figure 4.8(b) shows that, except for the high frequency contribution superimposed on

the lower frequency wave, the responses predicted by the rigid and elastic tether models are

reasonably similar. While the response of θN from the rigid tether fluctuates approximately

by 0.5◦, the response from the elastic tether varies by 0.01◦ only.

Figure 4.9(a) shows the results from FFT analysis of TN and Figure 4.9(b) shows that

of θN obtained from the rigid and elastic tether models. As seen from Figure 4.9(a), both

tether models predict the same fundamental frequency, i.e. 2.6075 Hz, which is equal to

the frequency of the thrust and is the expected behaviour of a system undergoing forced

vibrations. The elastic tether model also predicts a lower frequency 0.2912 Hz whose presence

is also evident in Figure 4.9(a). This lower frequency appears to be a subharmonic frequency,

i.e. 0.2912/2.6075 ≈ 1/9. The higher frequency 5.2150 Hz seen from the FFT results of the

elastic tether model also corresponds to a superharmonic of the fundamental frequency.

Similarly is 7.8225 Hz, which is observed in the FFT results of the rigid tether model. As

seen from the FFT analysis of θN presented in 4.9(b), the elastic tether model still predicts

the frequency of the thrust input, 2.6075 Hz, as the fundamental frequency while the rigid

tether model predicts 0.0272 Hz as the fundamental frequency, which is evident from the
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response shown in Figure 4.8(b).

4.4.2 Numerical results for the KPS

The thrust and power cycles shown in Figure 4.10(a), the tether length and reel-in/reel-out

velocity variation shown in Figure 4.10(b) and the parameters mentioned in Table 4.4 are

the inputs for the tethered KPS. The thrust and power cycles shown are hypothetical and

not based on an aerodynamic model for the KPS.

The time history of TN is shown in Figure 4.11(a) and that of θN is shown in Figure

4.11(b), obtained from the elastic and rigid tether models. Unlike the response from the

APS model, the tension predicted by both tether models are in phase with the external

force input. As seen, tension fluctuations due to sudden changes in acceleration caused by

Table 4.4: Tethered KPS parameters

Lt 200 m dt 1.8 mm
keq 1425 N/m mt 0.5 kg
β 30◦ mk 20 kg
V (zr = 10m) 6 m/s α 0.2
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Figure 4.10: Plots showing the variation of (a) Power (kW ) and Thrust (kN), and (b) Tether
length (m) and reel-in/reel-out velocity (m/s) used as inputs in tethered KPS.
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Figure 4.11: Plots showing the variation of (a) Tension in the last tether element, TN in (kN), and
(b) Tether angle close to ground θN in (◦) as predicted by the elastic tether model with ζ = 0.01
and rigid tether model for inputs for KPS as shown in Figure (4.10).

the reel-in/reel-out are captured by the elastic but not by the rigid tether model. These

fluctuations tend to decrease in amplitude over the period mainly because of the structural

damping. The capability of predicting these high frequency fluctuations is crucial for tether

life estimation studies as well as for designing proper control systems for the winch system

on the ground. It appears that since the weight of the airborne module of the KPS is smaller

compared to the APS, the value of tension predicted by the tether models closely follows

that of the external force input. It is observed from Figure 4.11(b) that θN values predicted

by the two tether models are in phase and their mean values are approximately the same.

Interestingly, when the tether is under a low tension, the elastic tether model predicts larger

amplitude oscillations compared to the rigid tether model whereas the opposite happens

when the tether is pulled by a high force. This means that although the rigid tether model

provides a conservative estimation of oscillations at high tensions, it underestimates those

when the tension is low.

Figure 4.12 shows the variation of actual power available at the ground as predicted

by the elastic and rigid tether models. Due to the proportionality of the power output to
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Figure 4.12: Figure showing the variation of Power in (kW ) predicted as the output of the KPS
based on the actual variation of tension shown in Figure (4.11a) .
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Figure 4.13: Figure showing FFT results based on tether angle close to ground, θN as predicted
by the elastic tether model with ζ = 0.01 and rigid tether model for inputs for KPS as shown in
Figure(4.10).

the reel-in/reel-out velocity, its trend is similar to that of the reel-in/reel-out velocity. The

fluctuations of tension from the elastic tether model are reflected in its power output while

the rigid tether lacks this capability.

Figure 4.13 shows the FFT of TN obtained from the elastic and rigid tether models.

Both tether models predict the same fundamental frequency of 0.008 Hz which is the same

as the frequency of the external force. Even though both tether models have captured

the predominant frequencies (which are superharmonics of the fundamental frequency), the
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rigid tether model fails to capture the high-frequency oscillations observed in the tension

fluctuations. However, this observation is not very obvious in Figure 4.13 because of the

scale of graph but can easily seen in Figure 4.11(a).

4.5 Conclusion

This research work presents the numerical modelling and analysis of the dynamics of the

tethered AWE systems in two dimensions. The modelling was done in the Lagrangian

framework using generalised coordinates. The lumped mass model facilitated faster solutions

and adding or removing sophisticated aspects to the model. The model can account for

fixed and variable tether length, thus proving its merit in a variety of other applications

like kites/balloons/drones that are statically suspended or reel-in/reel-out. The airborne

module was modelled as a point mass, reducing its degrees of freedom into two. The results

presented from the study are only for one-way coupling implying that the aerodynamics of

the airborne module remains unaffected by the tether dynamics. A continuous system can be

approached by increasing N at the expense of computational requirements. The rigid tether

model had N degrees of freedom while the elastic tether model had 2N . The mechanics of

the tether models was successfully verified against the analytical solutions for the equilibrium

of a catenary cable and the dynamics of a plucked string.

The aerodynamic force from the airborne module was treated as an input in the tethered

APS. On the other hand, the inputs for tethered KPS were the external force/thrust, reel-

in/reel-out velocity and the length variation. The reel-in/reel-out algorithm implemented

followed a quasi-static approach as it assumed a new tether of different lengths each time.

Hence, the kinetic energy of the tether predicted is less than the true value. This difference

is small and assumed to not had affected the overall dynamics.
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The tension at the ground and power output were in phase with the aerodynamic force

input and closely followed it for rigid and elastic tether models of the KPS and the rigid

tether model of the APS. However, the tension at the ground predicted by the elastic tether

model of APS was out of phase with that of the thrust input and did not fluctuate as much

as the input thrust. The elastic tether model could predict the high-frequency fluctuations

in tension due to reel-in/reel-out for the KPS but the rigid tether model failed to. For the

elastic tether, tension incorporated the longitudinal displacement of the tether element. A

step change in thrust would introduce infinite tension in the tether.

The tether angle of the last element predicted by either model was in phase. In the

case of the tethered APS, the rigid tether model predicted a slightly higher value of tether

angle and its variation, when compared to the elastic model which predicted a negligibly

small variation of the angle. Even though the response for the first cycle showed similar

amplitudes predicted by both models in KPS, higher damping was observed for the tether

angle in the elastic model. The elastic model showed high-frequency oscillations which were

not captured by the rigid model.

Since the results presented are for one-way coupling, the tether dynamics was not affecting

the power output of APS. However, since tension times the reel-in/reel-out velocity is the

power in the KPS cycle, its power cycle closely followed the trend of reel-in/reel-out velocity

while including the fluctuations in tension.

Fourier transform of tension response and the response of the last tether angle gave the

frequency distribution from elastic and rigid tether models for APS. For the FFT of tension

variation, both models predicted the same fundamental frequency which is the frequency of

external aerodynamic force input. Elastic tether predicted frequencies higher and lower than

the fundamental frequency. For the FFT of tether angle, the elastic model predicted the

same frequency as the thrust input as the fundamental frequency while the rigid tether model
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did not. The fundamental frequency and the harmonics predicted by the Fourier transform

of tension in the last tether element were the same in both tether models for KPS. Higher

frequencies were observed in the response from the elastic tether models for both APS and

KPS.

Future works may include the extension of the tether dynamics formulation to three di-

mensions, the inclusion of a 3-DOF or a 6-DOF flight dynamic model for the flying airborne

module, the inclusion of a dynamic model for the ground station, and adopting of a dynamic

reel-in/reel-out algorithm, among others. These extensions will permit fully-coupled simu-

lations of the dynamics of more promising AWE systems like crosswind kite power systems.
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Chapter 5

Conclusion and future work

The idea of harvesting wind energy from high altitudes using tethered airborne modules

constitutes the domain of airborne wind energy (AWE) and such systems are called air-

borne wind energy systems (AWESs). AWESs typically consist of a tether connecting the

airborne module to the ground. This research work was focused on three of these systems:

(i) crosswind kite power system (CKPS), (ii) aerostatic power system (APS), and (iii) kite

power system (KPS). The CKPS consists of a kite harvesting wind energy through crosswind

motion and is capable of on-board generation or ground-based generation; the APS com-

prises an autogyro generating electricity on-board via windmilling, and the KPS contains a

traction kite generating electricity at the ground by periodically reeling in and out. In this

research work, the aerodynamic and dynamic modelling and analysis of the above-mentioned

systems were presented. Two steady-state aerodynamic theories were developed for CKPSs

in Chapter 2, a quasi-steady aerodynamic theory was developed for the APS in Chapter

3, and the rigid and elastic tether models developed for statically suspended systems and

systems involving reel-in/reel-out were presented in Chapter 4.
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Chapter 2: Generalized aerodynamic models for cross-

wind kite power systems

Chapter 2 presents two steady-state aerodynamic models based on Glauert’s equations for

CKPSs executing circular trajectories. Aerodynamic model 1 assumes uniform inflow and can

be used only for kites in pumping/lift mode; however, aerodynamic model 2 is capable of non-

uniform inflow considerations and in addition to the lift mode, it can predict the performance

of kites in drag mode or a combination of both. Unlike the existing literature, the effects

of incidence angle and side-slip angle and tether drag were included in the formulation of

the induction factor and power coefficient. Performance variables of the kite like coefficient

of power, reel-out ratio and induction factor were predicted using predefined aerodynamic

coefficients, and they show a different trend than when predicted with airfoil data for a chosen

airfoil. For example, the former model predicted a decreasing induction factor with reel-out

ratio while the latter predicted an increasing trend. The choice of type of airfoil affects

the performance of the kite but does not make a difference in the trends of performance

coefficients. In general, the analysis suggested that a larger swept area for the kite means

more wind power produced and less induction. The inclination of the rotor plane to the

wind flow reduces the power output and the value of optimum reel-out ratio. Assuming the

operational parameters remain the same, the analysis suggested that the drag mode or hybrid

lift-drag mode kite can harvest more wind energy than the lift-mode kite. Even though this

is an important finding, a system-level study is required to validate the finding. Results from

aerodynamic model 2 using corrected wing data were found to be in good agreement with

computational fluid dynamics (CFD) results.
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Chapter 3: Quasi-steady aerodynamic model of an aero-

static power system

Chapter 3 presents the aerodynamic modelling of an APS by means of the quasi-steady BEM

theory. The induced velocity and angle of attack are found by equating forces predicted by

momentum and blade element theory separately. This model is more accurate than the time-

averaged models and gives solutions faster than the dynamic models, which make it ideal

for coupling with the tether model. Like other BEM models, the quality of the results is

very sensitive to the input aerodynamic data. The performance parameters from each blade

(e.g., thrust and power) have a phase equal to the angle between the blades. The maximum

thrust from blade 1 is observed at an azimuth angle of 45◦ and the lowest at 275◦. The angle

of attack, inflow angle, coefficient of lift and coefficient of drag of any airfoil are in phase

and is at a 180◦ phase difference with the thrust and power from the respective blade. The

inclination of the rotor to the wind reduces its performance. The aerodynamic model was

validated against experimental data on a yawed wind turbine and an autogyro rotor.

Chapter 4: Dynamics of tethered airborne wind energy

systems

Chapter 4 presents the mathematical modelling and analysis of the dynamics of a tethered

APS and KPS. An inelastic rigid tether model and an elastic tether model were developed

following the lumped mass model approach. The tether dynamics and the aerodynamics

of the airborne module were one-way (or weakly) coupled. The reel-in/reel-out was im-

plemented by dynamically changing the tether element length. The kinetic energy of the
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tether predicted this way is slightly less than the true value. However, this method accu-

rately captures the kinetic energy of the airborne module and since the mass of the airborne

module is considerably larger than the tether, the numerical error caused by the kinetic

energy deficit can be neglected. The model follows general characteristics of a forced oscil-

lation; for example, tension at the ground is in phase with that of the aerodynamic force

input at the end point of the tether. The drag caused by the motion of tether in air is

observed to dampen the high-frequency oscillations in the system. The equations of motion

in the elastic tether model have two different time scales associated with longitudinal and

transverse waves, resulting in a numerically stiffer problem than the rigid tether model with

only transverse waves. The rigid tether model captures the flexible effects like sagging but

does not take comparatively high-frequency longitudinal oscillations resulting from elasticity

into account. This, however, results in faster numerical solutions. The tether models were

verified statically and dynamically, using the analytical solution of a hanging catenary and

that of a vibrating plucked string, respectively. Since the the tether models developed in

this research work can handle tethers with dynamically changing lengths, their worthiness

extends to kites/balloons/drones that are statically suspended or do reel-in/reel-out.

Future works

The models and tools developed in this thesis can further be improved in terms of accuracy

and completeness. More extensive verification/validation studies can also be performed. The

following actions are suggested for future studies:

• To perform verification of the steady-state aerodynamic models presented in Chapter

2, using CFD simulations that incorporate inclined rotor planes and wind shear

• To conduct a system-level study to determine the potential of various power generation
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modes

• To develop an unsteady version of the BEM model presented in Chapter 3, by incorpo-

rating a dynamic inflow model and a dynamic stall model for rapidly changing angles

of attack

• To include gust and turbulence models into the aerodynamic model of Chapter 3, which

will help in obtaining more realistic values of power output

• To extend the tether models presented in Chapter 4 to three dimensions and to include

a flight dynamic model (for the airborne module) for real-world applications

• To incorporate the ground station dynamics and dynamic reel-in/reel-out models to

provide much more accurate solutions for AWESs like CKPSs
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Appendix A

Alternative formulae

Consider the following definitions for the induction factor and crosswind speed ratio

ã =
v

V∞ sin i cos β − Vd

, λ̃r =
Ωr

V∞ sin i cos β − Vd

. (A.1)

The time-averaged, local inflow angle φ may be written as

tanφ =
1− ã

λ̃r

. (A.2)

The thrust acting on the swept area may be written as

T =
1

2
ρ∞AsV

2
∞4ã(1− ã)(1− e sin i cos β)(sin i cos β − e). (A.3)

The equation for finding the induction factor may be obtained as

ã(1− e sin i cos β)

(1− ã)(sin i cos β − e)
=

1

4
σCL(

CL

ĈD

)2[1 + (
ĈD

CL

)2]. (A.4)
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The equations for the swept- and kite-area-normalized power coefficients are written as

C(s)
p = 4ã(1− ã)e(sin i cos β − e)(1− e sin i cos β), (A.5)

C(k)
p = CL(

CL

ĈD

)2(1− ã)2e(sin i cos β − e)2, (A.6)

respectively.

For the straight-downwind configuration with no side-slip (i.e. i = 90◦ and β = 0◦),

equations (A.3) to (A.6) will reduce exactly to the equations given in [30].

127



Appendix B

Finding the time-averaged, local

inflow angle φ

The local inflow angle φ can be averaged over a cycle (i.e. 0 ≤ ψ ≤ 2π) as:

φ =
1

2π

∫ 2π

0

tan−1(
VP

VT

) dψ,

=
1

2π

∫ 2π

0

tan−1

(
V∞ sin i cos β − v − Vd

rΩ + V∞ cos i cos β sinψ + V∞ sin β cosψ

)
dψ,

=
1

2π

∫ 2π

0

tan−1

(
sin i cos β − a− e

λr + cos i cos β sinψ + sin β cosψ

)
dψ,

=
1

2π

∫ 2π

0

tan−1

(
A

1 +B sinψ + C cosψ

)
dψ,

=
1

2π

∫ 2π

0

tan−1

(
A

1 +X

)
dψ, (B.1)

where the expressions for VT and VP were given in Section 2.2.2; also, A = (sin i cos β − a−

e)/λr, B = (cos i cos β)/λr, C = sin β/λr, and X = B sinψ + C cosψ.

Since in the present paper the incidence angle i and the side-slip angle β are assumed

to be large and small, respectively, even for moderate values of λr, B, C and thus X are
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expected to be small, i.e. B ∼ O(ǫ), C ∼ O(ǫ), and X ∼ O(ǫ). Now, let us define f as

f(X) = tan−1(A/(1 +X))). The first and second derivatives of f with respect to X may be

obtained as

f ′(X) =
−A

(1 +X)2 + A2
, f ′′(X) =

2A(1 +X)
[
(1 +X)2 + A2

]2 . (B.2)

The Taylor’s expansion of f(X) can be written as:

f(X) = f(0) + f ′(0)X + f ′′(0)
X2

2
+O(ǫ3)

= tan−1 A−
A

1 + A2
X +

2A

(1 + A2)2
X2

2
+O(ǫ3). (B.3)

With this, equation (B.1) may be re-written as

φ =
1

2π

∫ 2π

0

[
tan−1 A−

AX

1 + A2
+

AX2

(1 + A2)2

]
dψ +O(ǫ3)

= tan−1 A−
1

2π

∫ 2π

0

AX

1 + A2
dψ +

1

2π

∫ 2π

0

AX2

(1 + A2)2
dψ +O(ǫ3),

= tan−1 A−
A

2π(1 + A2)

∫ 2π

0

(B sinψ + C cosψ) dψ

+
A

2π(1 + A2)2

∫ 2π

0

(B2 sin2 ψ + C2 cos2 ψ + BC sin 2ψ) dψ +O(ǫ3). (B.4)

The first integral on the r.h.s. of equation (B.4) is zero considering the fact that
∫ 2π

0
sinψ dψ =

∫ 2π

0
cosψ dψ = 0; also, considering

∫ 2π

0
sin2 ψ dψ =

∫ 2π

0
cos2 ψ dψ = π, and

∫ 2π

0
sin 2ψ dψ = 0,

the second integral reduces to π(B2 + C2); thus,

φ = tan−1 A+
A(B2 + C2)

2(1 + A2)2
+O(ǫ3). (B.5)

Now, let us obtain the expression on the r.h.s correct to O(ǫ) by neglecting all the terms of
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the order of O(ǫ2) and higher:

φ = tan−1 A+O(ǫ2), (B.6)

which can be rewritten as

tanφ = A =
sin i cos β − a− e

λr

+O(ǫ2), (B.7)

that is exactly the same expression given in equation (2.13).
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Appendix C

Some details about the CFD results

presented in Table 2.4 and Figure 2.13

The CFD simulation was performed using Ansys Fluent’s (Academic 19.1) unsteady Reynolds-

averaged Navier-Stokes (URANS) flow solver closed by the k− ω SST turbulence model [8].

The dimensional parameters of the crosswind kite system were: Ω = 0.738 rad/s, V∞ = 12.5

m/s, R = (ro + ri)/2 = 123.3 m (radius of gyration), b = (ro − ri) = 53.94 m (kite span),

c = 3.72 m (chord length). The simulation was ran up to 51 cycles to ensure the wake flow is

fully developed up to large downstream distances from the rotor. Each cycle of the kite rota-

tion took almost 24 hours of CPU time on a cluster with 12 cores and 192 GB of RAM. The

solution time step was considered to be equivalent to 1 degree of rotation (i.e. approximately

0.02 s). The simulation domain was 20×9×9 Km (L×W×H) in size, and the blockage ratio

was 0.02%. A uniform spatio-temporal flow velocity of V = (1−1/3)×12.5 = 8.33 m/s with

the turbulent intensity of 1% was imposed at the inlet (i.e. the velocity inlet condition); the

rest of the boundary conditions were: zero gauge pressure at the outlet (i.e. the pressure

outlet condition), symmetry over the top, bottom and sides of the domain, and no-slip over

131



all faces of the kite. Also, the SIMPLE algorithm was used for pressure-velocity coupling.
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Appendix D

Damping coefficient consideration

As per [87], the equivalent damping, ceq, of N dampers of damping coefficients, c1, c2, ..., cN

connected in series like in the numerical tether model is given by

1

ceq
=

1

c1
+

1

c2
+ ...+

1

cN
. (D.1)

This equation which is also used in some of the literature on tether modelling suggests

that the damping coefficient of each tether element is N times the damping coefficient of the

whole tether, ceq. However, equation (4.38) suggests that the damping coefficient of each

tether element is in fact the same as that of the entire tether. This is because ki = Nk while

mi = m/N . This analysis agrees well with the notion that the damping is primarily depen-

dent on the material properties. To overcome this dilemma, we performed some numerical

analysis on the fundamental frequency and amplitudes of a plucked string, considering no

damping, constant damping as N varies, and variable damping as N varies. The idea is

that, as N is increased to sufficiently large numbers, the frequency and amplitudes of vibra-

tions should converge to certain values. Also, for lightly damped systems, it is well-known

that the damped frequency will be very close to the undamped fundamental frequency [87].
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Comparing the fundamental frequencies and amplitudes from string vibrations for different

scenarios of damping, the results for the constant damping case are closer to those for the

undamped case. Hence, it was concluded that the damping coefficient is to be treated as a

constant.
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