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 Abstract 

 

Bankruptcy Prediction by Deep Learning and Machine Learning Methods 

 

Parisa Zahiri 

 

 

       Bankruptcy prediction plays a crucial role in today’s businesses to survive in a competitive 

world. For avoiding the risk of bankruptcy, researchers have conducted significant research in field 

of artificial intelligence for predicting bankruptcy. However, the performance of deep learning 

methods is not well understood. To address this research gap, we make the following main 

contributions: We applied deep learning methods into Polish datasets in addition to traditional 

machine learning techniques. We applied several versions of convolutional neural networks and 

artificial neural networks to several datasets created from the available dataset. Specifically, we 

created 5 extra datasets for each year in addition to the entire datasets for five years. We 

incorporated some techniques to balance the datasets and measured the impacts these techniques 

have on performance measures. This step is important because the datasets are imbalanced, i.e., 

the proportion of firms experiencing bankruptcy is much lower than those who did not go bankrupt. 

For deep learning techniques, we also explored preprocessing approaches and measured their 

impacts on results. Specifically, we used validation on the same datasets of studies in the literature 

and compared our results with those available in the literature with the same test bed. Our results 

shed light on the impact of preprocessing and balancing techniques in deep learning, as well as 

different architectures for deep learning methods. We observed improvement, compared to the 

literature, in terms of accuracy and provided insights on the value of different deep learning 

architectures and preprocessing on the sensitivity of the results. 
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1. Introduction 

This research seeks to provide a flexible framework to address essential questions regarding 

bankruptcy prediction. In the competitive world in which we live in, being aware of bankruptcy 

laws is very essential for both investors and shareholders in difficult financial conditions. In 1542, 

England was the first country in which the bankruptcy laws were established. Although since then 

the bankruptcy laws have changed in many countries, its main concept and motivation is intact. In 

fact, the business or individuals who cannot refund their great debts declare bankruptcy to receive 

protection for paying back their debts. With these bankruptcy laws in place, it is of utmost 

importance that the companies would be able to predict their chance of bankruptcy in the future to 

be able to come up with different plans. One main ingredient to this end is the ability to predict 

their financial situation and specifically the chances of bankruptcy (Altman and Hotchkiss, 2010). 

Predicting bankruptcy has a significant impact on the market. Using bankruptcy prediction 

techniques may make markets more sustainable as it avoids future financial crisis. Also, one of the 

reasons for bankruptcy prediction goes back to the feeling of responsibility among auditors, 

creditors and stakeholders towards the future of their business. By doing so, the government and 

investment managers who lead financial institutions, banking business, manufacturing industry, 

etc. will be able to decide on what actions to take to save their companies from failure conditions 

and economic loss. Thus, the importance of predicting bankruptcy is increasing day by day, and 

to this end, the researchers have suggested several financial indicators for bankruptcy prediction, 

such as net revenue, net profit, liabilities, etc. Regardless of the advantages of prediction of 

bankruptcy, it is important to note that the cost of misclassification of predicting bankruptcy could 

be higher than the bankruptcy cost. While it is true that filing for bankruptcy lets companies to 

start their businesses again, but it may have a disastrous impact on their businesses in the future as 

these companies would not be able receive loans from the banking system anymore (Thorgren and 

Williams, 2020). Therefore, the researchers have made significant effort to predict the bankruptcy 

with the least error probability.  
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  Inspired from the research conducted by Zięba et al. (2016) the main goal of this thesis is to 

develop new models, relying on deep learning (DL) approaches, in order to forecast companies’ 

bankruptcy and validate them via Polish companies data sets, that is produced from Emerging 

Markets Information Service (EMIS) in the manufacturing sector. These data sets include 64 

quantitative features and are categorized into a binary classification including still operating and 

bankrupt companies with a detailed explanation about their features, which we will explain later 

in this thesis. We chose this data set because many firms, relative to other countries and time 

periods, went bankrupt in the manufacturing sector since 2004 in Poland, making it a rich data set 

for analysis. Also, this comprehensive data set includes many financial features for a long period 

of time according to Zięba et al.(2016). Our second goal is to compare the results obtained from 

DL models with the results of traditional machine learning (ML) methods, such as logistic 

regression by considering normalized and non-normalized input data.  

The above-mentioned goals can be further cascaded into the following objectives:  

1) To use data preprocessing to clean up the raw data. Data preprocessing includes the 

detection of missing and imbalanced data, and normalization to increase the predictive 

power of models.  

2) To apply ANN on the testing data set for the forecasting period of one year.  

3) To explore both accuracy and sensitivity of ANN models after tunning with 

different hyperparameters.  

4) To explore and investigate several DL approaches, namely, CNN models on five 

Polish data sets (for each year) and the entire five-year data set. Within the framework of 

CNN models, we also aim to explore various data preprocessing approaches to understand 

which of them improves the CNN models’ performances.  

5) To apply Logistic Regression on the annual and entire five-year data sets. 
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6) To compare the results of DL models with ML models in terms of various 

performance metrics by considering normalized and non-normalized data  

7) To greatly improve the accurate rate of detection of risky companies. 

8) To compare our results with those obtained in previous works used on the same 

database. 

       The rest of this thesis is structured as follows: Chapter two discusses similar studies on 

bankruptcy prediction that rely on statistics, economics and ML approaches in addition to similar 

research studies conducted on Polish data set, and also thesis contributions are summarized in this 

chapter. The third chapter describes the methodology adopted to achieve the objectives of this 

research. Chapter fourth discusses different data sets and the preprocessing approaches 

implemented on unbalanced data sets. The results of applying all DL and ML models on Polish 

data sets are provided in chapter five. Chapter six analyzes the outcomes and compares the results 

obtained from different prediction models. Chapter seven summarizes the concluding remarks and 

future research directions. 
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2. Literature Review 

2.1. Bankruptcy Prediction 

The bankruptcy prediction has progressed in late 1960s by the aid of statistical methods. The 

research conducted by Beaver (1966) and Altman (1968) are recognized as seminal studies in this 

field. In particular, Beaver (1966) and Altman (1968) used, respectively, Univariate Analysis and 

Multivariate Discriminant Analysis (MDA) to predict bankruptcy. Initializing generalized linear 

models by Ohlson (1980) in credit scoring area provided a number of benefits including the ability 

to assess the certainty of predictions and examine the impact of every indicator independently. 

Bellovary et al.(2007) reviewed various bankruptcy prediction approaches published over a long 

period of time, and compared their results. One of the first studies cited in Bellovary et al.(2007) 

was the research conducted by Merwin (1942) that introduced the importance of financial 

indicators in predicting bankruptcy.  

Employing ML algorithms in the field of risk assessment, such as financial distress prediction, 

has increased since 1990s (Atiya, 2001). Some successful ML methods, including Support Vector 

Machine (SVM) (Shin et al., 2005), Extreme Gradient Boosting (EXGboost) (Chen et al., 2015), 

Bagging, Boosting and Random Forest (RF) (Barboza et al., 2017) were used to predict 

bankruptcy. Furthermore, a strategy relying on neural networks (NNs), trained with back-

propagation and focusing on automatic feature extraction on the data, have been widely utilized in 

several studies (e.g., (Zhang et al., 1999) and (Tsai and Wu, 2008)). In fact, researchers are inclined 

to use these NN methods more than traditional ML models. For instance, Shah and Murtaza (2000) 

achieved a high prediction accuracy in the context of 60 firms including 6 bankrupts and 54 non-

bankrupts by using NN method. Also, ensemble classifier has been received attention by Alfaro et 

al. (2008) in the bankruptcy prediction field. 

Recently, significant scientific work in the field of bankruptcy prediction has emerged. For 

instance, Barboza et al. (2017) used new and standard ML models and introduced new features 

such as operating margin, change in return-on-equity, change in price-to-book, growth measures 
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related to assets, sales, and number of employees, as predictive variables. As the result of this 

research, the authors claimed that the bagging, boosting, and random forest models perform better 

than other standard models available in the literature and adding the above-mentioned features 

would improve the accuracy of the model. 

In another research, Liang et al. (2016) claimed to be among the first, combining different 

categories of financial ratios (FRs) and corporate governance indicators (CGIs) for bankruptcy 

prediction. The take home message of that paper is that combining the input features can help the 

accuracy but not in a significant way. 

Mai et al. (2019) in another research introduced DL models for bankruptcy prediction using 

both structured (accounting-based and market-based) and unstructured Managerial Discussion and 

Analysis (MD&A) from 10-K filings inputs with 36 predictor variables, and compared the 

accuracy ratio of each DL model. 

Matin et al. (2019) proposed a hybrid model by combining a Convolutional Neural Network 

(CNN) model and numerical variable. The authors used 3 different classification methods to 

classify the extracted features, including Neural Networks, Gradient boosted trees, and Logistic 

Regression. They also demonstrated that extracting patterns in the annual report text can improve 

the accuracy of the prediction model. 

The study of  Zhao et al. (2017), applied Kernel Extreme Learning Machine (KELM), which 

is designed for increasing the robustness of Extreme Learning Machine (ELM), to predict 

bankruptcy.  The authors concluded that the proposed model beats other methods such as support 

vector machines, extreme learning machine, random forest, fuzzy k-nearest neighbor method 

(based on particle swarm optimization) and the Logit model.  

Ding et al. (2015) used deep CNNs with 4 layers on real data sets to predict share price. The 

text from financial news were selected, and vectorized as an input to the proposed model. The 

authors concluded that the accuracy increased compared to previous models. 
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2.2. Bankruptcy Prediction on the Polish data set 

Artificial Intelligent methods including ML and DL techniques have been extensively applied 

on the Polish data set in order to predict financial failure.  

Zięba et al. (2016) used some extension of Extreme Gradient Boosting to classify companies, 

and they claimed that these results can be applied in every data in this field of research. Also, they 

developed a new method, called synthetic features, to ensure that data accurately represents higher-

order statistics.  

The goal of the research in García et al. (2019) was to investigate whether or not there is a 

connection between different types of positive samples and performance of ensemble classifiers, 

such as  Bagging, AdaBoost, Random Subspace, Diverse Ensemble Creation by Oppositional 

Relabeling of Artificial Training Example, Décor (DECORATE), Rotation Forest, Random Forest 

and Stochastic Gradient Boosting. The authors used 14 real data sets and categorized them into 

five different types of groups. The Polish data sets belonged to unsafe category. At the end, by 

using the above techniques for unsafe groups, they concluded that Decorate produced a better 

accuracy in comparison with other ML methods. 

The aim of another research  Xiaomao et al. (2019) was to figure out how much every feature 

affects the prediction accuracy of different models. After examining the results of applying some 

feature selection approaches on the Polish data set, the authors concluded that by using SHapley 

Additive exPlanation (SHAP) method, the (mean) accuracy will increase compared to other 

techniques. 

Marso and El Merouani (2020) suggested a hybrid model, comprising of a feedforward NN 

and cuckoo search algorithm, to forecast financial distress of companies in Polish data sets. After 

performing data preparation, they looked at the prediction power (accuracy) of three distinct 

models: LR, Back Propagation feedforward NN (BPNN), and Conic Section Function NN 

(CSFNN) on the data sets corresponding to one year and three years before bankruptcy. The results 

of applying CSFNN method ultimately outperformed other algorithms. They showed that the 
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accuracy of using CSFNN were %90.30 and %82.70 for one year and three years before 

bankruptcy, respectively. Also, in another study, (Marso and EL Merouani, 2020) used Artificial 

Bee Colony (ABC) combined with an ANN model, called ABCNN; Back Propagation Neural 

Network (BPNN); and Multiple Discriminate Analysis (MDA) for Corporate Bankruptcy 

Prediction (CBP). The accuracy of ABCNN technique were 92.04 and 80.94 for one year and three 

years before bankruptcy. 

Smiti and Soui (2020) proposed Borderline Synthetic Minority oversampling technique with 

Stacked AutoEncoder (BSM-SAES) approach to balance the Polish data sets and decreased the 

dimensionality of variables for predicting bankruptcy. 

Lahmiri et al. (2020) used three distinct financial data sets featured with different types of 

attributes, including quantitative data set (similar to the first-year Polish companies’ data), 

qualitative data set and credit scoring data set, which was the combination of quantitative and 

qualitative data. The ensemble classifiers like AdaBoost, LogitBoost, RUSBoost, subspace, and 

Bagging were applied on those data sets. The results showed that the performance of AdaBoost 

with 0.0532 lowest error was better other ensemble financial classification methods for this Polish 

data set, and RUSBoost, LogitBoost, Bagging and Subspace had in order the lowest error after 

AdaBoost. 

After using five different classifiers, including RF, DT, ANN, KNN, and LR, Mahapatra et al. 

(2020) came to the conclusion that using preprocessing techniques such as filling missing data, 

normalizing, SMOTE increased the accuracy and F1-score apart from the PCA approach. The 

authors did not mention their exact accuracy numbers in their paper. 

Quynh and Phuong (2020) developed a prediction model that combines three methods, 

including RF, GB, and Bagging. Then, they were applied to the whole 5-year data from the Polish 

data set, after imputing missing values based on SMOTE approach. The authors chose theses 3 

models among 7 models including DT, LR, RF, Bagging, AdaBoost, GB, and EXB because of 

their high accuracy in comparison to others. Finally, the accuracy percent 99.52, AUC percent 

99.78, and F1-score percent 95.12 were achieved by these three models. 
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       In the study of  Pisula (2020), the authors used Polish data sets where their financial statements 

belonged to 2010-2018. They demonstrated that boosting ensembles including boosted trees, 

Stochastic Gradient Boosting Machine (GBM), boosted C5.0 trees and boosted logit outperformed 

bagging and stacking ensembles. 

The research of  Soui et al. (2020) was implemented with the aim of contributing to the 

bankruptcy prediction by Stacked Auto-Encoders (SAE) and SoftMax classifiers. A two-layer 

auto-encoder which followed by a SoftMax layer were used on the Polish data set corresponding 

to the first year. The proposed model obtained  98% accuracy and %96.1, where the AUC is greater  

than the one obtained in (Zięba et al., 2016). 

In another research, Shahee and Ananthakumar (2021) used an overlap-sensitive ANN, and 

implemented this method on the Polish data set. By applying this method, they found the 

overlapping features, and addressed the class imbalance and class overlapping by weighting the 

observations according to the position of their space before training the neural network. The results 

of AUC were 0.726, 0.673, 0.659, 0.739 and 0.787 respectively for each year. 

Aljawazneh et al. (2021) used three different data sets including polish data to evaluate the 

performance of various DL models and five ensemble approaches. After applying oversampling 

technique, the authors applied Deep belief network (DBN), Long-short term Memory (LSTM), 

Multilayer Perceptron With 6 Layers (MLP 6L), RF, SVM, K_NN, and XGBoost. MLP_6L with 

SMOTE_ENN technique recognized as the best method with %99.67 Accuracy. One shortcoming 

of this work was that they modified the number of total samples in their studies. 

The initial stage of research of  Keya et al. (2021) was the study of application of Recursive 

Feature Elimination (RFE). This technique removes the weak features of the Polish data set, so the 

researchers reached 12 significant attributes from 64 attributes by using this method. The data was 

then subjected to the SMOTE technique. They applied AdaBoost, Decision tree, Random Forest, 

J48, and Bagging after identifying the key features and balancing the data on the Polish data set. 

The Bagging approach surpassed other methods with an accuracy of 97%. 
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Zhang et al. (2021) developed a credit scoring prediction model which includes three stages 

with enhanced outlier adaptation on Polish data sets. Those stages are Bagging-based Local Outlier 

Factor (BLOF) based outlier adaptation method, the dimension-reduced feature transformation 

method, and the stacking-based ensemble learning method with PCA. In addition, five base 

classifiers: XGBoost, GBDT, Adaboost, RF, and LightGBM were selected for ensemble operation 

according to their superior performance on AUC indicator. The ensemble model with PCA attained 

the best credit scoring predictive power for the first, second- and third-year data sets; whereas, the 

dimension-reduced feature transformation method achieved the best results for the fourth and fifth 

year data sets. 

Another study on bankruptcy prediction based on Polish data sets belonged to the works of 

Jain et al. (2021). Firstly, the authors changed the imbalanced data to a balanced data by using 

SMOTE technique. Then, by using the fuzzy rough set, they decreased the size of the data set. In 

this step, they applied 6 ML algorithms on 5 Polish data sets, and finally they concluded that RF 

gave the high accuracy and specificity of %96.7 and %96.9 respectively on the second-year data. 

In the study of  Ren and Weiss (2021), the researchers applied different ML methods such as 

RF, DT, XGBoost and LR on Polish data set, one year before bankruptcy and a Chinese data set. 

Prior to implementing these approaches, the authors tried to identify the important features for 

theses models (except for) LR. The findings showed that while operation-related variables had 

more impact in the Polish data, asset-related features are more important in predicting bankruptcy 

in China. Also, they concluded that the XGBoost method achieved 97% accuracy after applying 

that feature selection strategy on the Polish data set. 

Acharjya and Rathi (2021) selected 15 attributes from 64 attributes of the Polish data set as 

chief features by using the PCA technique. The main goal of their work was to make a comparison 

between statistical, rough computing, and mixed computing methodologies. Then, Rough Set 

(RS), Rough Set hybridization of Neural Network (RSNN), Rough Set hybridization of Binary-

Coded Genetic Algorithm (RSBCGA), Rough Set hybridization of Real-Coded Genetic Algorithm 

(RSRCGA), Fuzzy-Rough hybridization of Real-Coded Genetic Algorithm (FRSRCGA) were 
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applied to the data. Finally, the results showed that the accuracy of RSBCGA outperformed other 

methods. 

2.3. The Existing Gaps in The Literature and Thesis Contributions 

       There is still a great need for research to advance the methods for predicting companies’ 

bankruptcy, although there has been much research in this field according to what we reported in 

the literature review section. Many studies have focused on forecasting bankruptcy for different 

financial institutions, companies, and the government by statistical and artificial intelligence 

approaches (Altman, 1968; Atiya, 2001; Beaver, 1966; Fedorova et al., 2013; Min and Lee, 2005; 

Ohlson, 1980). One of the most effective methods of AI that have contributed to predict bankruptcy 

are conventional ML approaches such as logistic regression, support vector machine, naïve bayes, 

decision tree etc. However, parsing the literature we observe that there are insufficient studies that 

applied DL techniques to bankruptcy prediction.  

 More specifically, we observe insufficient studies on Polish data set. In fact, the result of our 

literature review revealed that there is a need for applying more specific CNN models on this data 

set. The reason might be the challenge to convert the data and expand its dimension in order to 

apply such DL models.  

Moreover, it is not still clear what the impacts of different preprocessing techniques will be on 

a variety of performance measures when combined with DL approaches. This is important since 

the data set we are working with is imbalanced. That is, the proportion of bankrupted companies 

is way less that those that did not go bankrupt. Therefore, it is crucial to have an insight about the 

application of preprocessing techniques and DL approaches into our dataset.  

       The goal of this thesis is to predict the bankruptcy of Polish companies in the 1st, 2nd, 3rd, 

4th, and 5th year by improving, making new models and extending the work of Zięba et al. (2016). 

We used the data in each year as well as the entire data set to create six data sets and analyzed 

them. These data sets include financial data of bankrupt and non-bankrupt companies. This study 

focuses on the bankruptcy prediction of Polish manufacturing enterprises between 2000 and 2013. 
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However, the methodologies utilized should be valid and relevant to other industries as well. In 

contrast to previous works which emphasized on ML methods, we seek to find out how well DL 

models such as different CNN methods achieve the accuracy, sensitivity and specificity.  

       The main contributions of this thesis can be summarized as follows: 

1) Designing, applying and validating a CNN_1D model on the data with expanding 

the dimension of the data. In particular, we designed a format of data to be a shape of (64*1) 

such that CNN techniques can be applied to our non-image data set in a straightforward 

manner. 

2) Designing, applying and validating CNN_2D and CNN_2D Residual Network 

models on the data with expanding the dimension of the data. This requires converting the 

shape of the data from (64*1) to (8*8*1). These three new CNNs models are novel and have 

not been explored in previous studies. 

3) Evaluating whether or not various approaches of data preprocessing may enhance 

the power of CNNs methods for predicting the bankruptcy likelihood. This is particularly 

critical due to the unbalanced nature of our data set.  

4) In terms of applying ANN methods, our literature review revealed that just one 

paper thoroughly discussed about this model on our data set. However, it was not clear how 

much the accuracy and sensitivity could be improved by tunning various hyperparameters. 

Therefore, we investigated how many hidden layers and which optimizer could result in 

improvement in both accuracy and sensitivity. 

5) Comparison between the performance of the ML models, including LR with the 

three CNNs models and ANN models on six data sets in order to assess the performance of 

our proposed models.  

6) Improving the accurate rate of detection of risky companies 

7) Comparison between our results with those obtained in previous works validated 

on the same database. 
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3. Methodology 

    In this section, we describe the details of ML and DL techniques that are used for bankruptcy 

prediction on the Polish data set. The summary of our methodology is provided in the flow chart 

in Figure 1. 

 

Figure 1. Flow chart of proposed methodology 

 

 
In a broad view, we use three techniques: 1- logistic regression as a benchmark, 2- artificial 

neural networks (ANNs), and 3- convolutional neural networks (CNNs). In addition, we use some 

techniques such as synthetic minority oversampling technique (SMOTE) in order to address the 

issue of imbalance in the Polish data set. Also, we applied the algorithm which imputes the missing 

data with mean for handling the missing values of the data set. In the remainder of the section, we 

will provide details on each of the methodologies that we have used. The description of these 

methods is adapted from. (Bishop and Nasrabadi, 2006) 
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3.1. Logistic Regression 

Logistic regression is perhaps one of the widely used techniques of machine learning/data 

science in applications, where the response variable is dichotomous. For example, it is used in 

medical applications (Tu, 1996), social sciences (Pituch and Stevens, 2015), engineering 

(Khoshgoftaar and Allen, 1999), business (Wood, 2006), and economics (Strzelecka et al., 2020) 

to name a few. In essence, it is used for problems where the response variable can take binary 

values and several independent variables are available in the data set. In other words, logistic 

regression takes an input vector 𝒙  and corresponding target variable 𝑡 ∈ {0,1}  and decide 

(probabilistically) whether the input data belongs to 0 class 𝐶0 or 1  class 𝐶1. In big picture, logistic 

regression seeks to create a model for the conditional probability 𝑝(𝐶𝑘|𝑥) for the inference, 

which falls under the umbrella of generalized linear models. Specifically, one can use Bayes’ rule 

to find the posterior probability based on class conditional densities 𝑝(𝑥|𝐶𝑘) and prior 𝑝(𝐶𝑘). 

Specifically, when we have two classes, we have the following formula for a generalized linear 

model 

                                𝑝(𝐶1|𝑥) =
𝑝(𝑥|𝐶1)𝑝(𝐶1)

𝑝(𝑥|𝐶1)𝑝(𝐶1)+𝑝(𝑥|𝐶2)𝑝(𝐶2)
=

1

1+𝑒𝑥𝑝(−𝑎)
= 𝜎(𝑎)  

  

3.1 

where  

𝑎(𝑥) = 𝑙𝑜𝑔
𝑝(𝒙|𝐶1)𝑝(𝐶1)

𝑝(𝒙|𝐶2)𝑝(𝐶2)
 

3.2 

 

and 𝜎(𝑎) is the logistic sigmoid function given by the following formulation noting that 

𝑒𝑥𝑝(. ) is the exponential function 

                                                               𝜎(𝑎) =
1

1+𝑒𝑥𝑝(−𝑎)
.   3.3 

The S-shaped logistic function depicted in Figure 2 plays an important role in classification 

algorithms and it has useful properties such as  

                                                             𝜎(−𝑎) + 𝜎(𝑎) = 1.  3.4 
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In logistic regression the main modeling assumption is that the function 𝑎(𝑥) is linear in 𝑥. In 

particular, in logistic regression, we have 

𝑦(𝑥) = 𝑝(𝐶1|𝑥) = 𝜎(𝑤⊤𝑥) 3.5 

       where 𝑤 is the weight vector for the linear model and ⊤ denotes the transpose of a matrix 

(vector).  

 

Figure 2: Logistic sigmoid function 

       Although the linear assumption at first glance might look restrictive, the activation function 

𝜎(. ) makes the overall relationship nonlinear. Moreover, its application in many domains revealed 

that logistic regression performs quite robustly. In this model the number of parameters 

corresponds to the number of features, i.e., 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑀); that is, the feature vector is 𝑀 

dimensional, there will be 𝑀 parameters corresponding to 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑀). Clearly, if the 

number of features increases, the number of model parameters will also increase. One approach to 

reduce the number of parameters is to use basis functions or other reduction techniques.  

We next describe how to estimate the parameters of the LR model, represented by 𝑤. The 

main approach is the maximum likelihood estimation. Let (𝑥𝑛, 𝑡𝑛) for 𝑛 = 1,2, … ,  𝑁 be our data 

set where 𝑥𝑛 is the 𝑛th data point and 𝑡𝑛 ∈ {0,1} be the binary response associated with the 𝑛th 

data point. Let 𝑡 = (𝑡1, 𝑡2, … , 𝑡𝑁) and 𝑦𝑛 = 𝑝(𝐶1|𝑥𝑛). The likelihood function is given by 

𝑝(𝑡|𝑤) = ∏ 𝑦𝑛
𝑡𝑛(1 − 𝑦𝑛)1−𝑡𝑛𝑁

𝑛=1 . 3.6 

Then, cross entropy error function is defined as  
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                                                                𝐸(𝑤) = −𝑙𝑜𝑔𝑝(𝑡|𝑤).  3.7 

The goal is to minimize the above error function. Taking the derivative of this function yields 

  

𝛻𝐸(𝑤) = ∑(𝑦𝑛 − 𝑡𝑛)𝑥𝑛

𝑁

𝑛=1

 

3.8 

where 𝑦𝑛 = 𝜎(𝑎𝑛) and 𝑎𝑛 = 𝑤⊤𝑥𝑛. Unlike the usual regression model for which equating the 

derivative to zero provides a closed form solution; in logistic regression we must use iterative 

methods. Specifically, the standard method is to use Newton-Raphson iterative approach to find 

the minimum of the error function. The main ingredient for the algorithm is the Hessian matrix, 

denoted by 𝐻 which is calculated by taking the all the partial second derivatives of 𝐸(𝑤) with 

respect to 𝑤. Then, the iterative method uses the following equation 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 − 𝐻−1𝛻𝐸(𝑤). 3.9 

Next, we characterize the derivative and the Hessian. Let 𝑋 be the 𝑁 × 𝑀 design matrix whose 

𝑛th row is simply 𝑥𝑛
⊤, which plays an important role in linear models. Then we have 

                                                                  𝛻𝐸(𝑤) = 𝑋⊤(𝑦 − 𝑡)  3.10 

𝐻 = 𝑋⊤𝑅X 

where 𝑅 is a diagonal matrix with 𝑅𝑛𝑛 = 𝑦𝑛(1 − 𝑦𝑛), which can be interpreted as the variance 

of response. Although 𝐻 is not constant like in the usual linear regression, it is easy to show that 

𝐻 is positive definite, making the error function convex with a unique optimal point. 

This algorithm along with its advanced versions to cope with numerical issues are available in 

the library of Python and is used for the numerical results. 

3.2. Artificial Neural Networks 

 
              Artificial neural networks (ANNs) or simply neural networks are a class of ML/DL 

techniques widely used in many fields, such as  facial recognition (Singh et al., 2020),  stock 

market prediction (Vui et al., 2013), social media (Wong et al., 2017), aerospace (Sangwan et al., 
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2015), defense (Zhang et al., 2018), healthcare (Sordo, n.d.), handwriting analysis (Djamal et al., 

2013), and global change (Liu et al., 2010). In fact, the applicability of standard statistical methods 

such as logistic regression will become limited because of the so called curse of dimensionality. 

When the size of the problem becomes large, as is in real-world problems, the number of features 

significantly increase, which makes the problems of training and validation difficult. In addition, 

the performance of the standard statistical methods may significantly decline. 

One approach to address these issues is to use basis functions that can be adaptive in nature. 

That is, we can assume parametric forms for the basis functions and allow their parameters to 

change during the training phase. This is the big picture idea of ANNs or alternatively feed-forward 

NNs, or multilayer perceptron. By using these basis functions, the model becomes cleaner and 

more compact although more effort must be put forth for training purposes because these basis 

functions introduce a significant amount of nonconvexity to the model. 

       The NN terminology originated in biological systems where scholars were seeking to present 

information processing by mathematical models (McCulloch and Pitts, 1943) and (Rosenblatt, 

1961). In fact, some arguments have been made for the plausibility of this approach by connecting 

it to the basic mechanism of nature. However, the focus in ML is to provide reliable prediction for 

a variety of applications as mentioned above. ANN and its variants have been quite successful 

over the last couple of decades. Next, we will explain the mathematical foundations and models 

for ANNs and then describe parameter training and validation. 

3.2.1. Mathematical Model 

       Recall that in generalized linear models with input vector 𝒙 and parameter vector 𝒘 the 

relationship between the input and output is presented by  

𝑦(𝒙, 𝒘) = 𝑓(∑ 𝑤𝑗𝜙𝑗(𝒙)𝑀
𝑗=1 )                                                                     3.11 

where 𝜙𝑗(⋅)s are basis functions and 𝑓(⋅) is an activation function. For example, in a simple 

linear regression, both basis functions and activation function are identity. The main mathematical 

idea for ANNs is to: 1) make the basis functions depend on the parameters; and 2) allow the 
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parameters to be modified in the training phase. There are many ways to achieve these two 

modifications, but ANNs use a specific structure to this end by considering layers and activation 

functions. 

First, define 𝑀 linear combination of input variables as  

 

                                                                𝑎𝑗 = ∑ 𝑤𝑗𝑖
(1)

𝑥𝑖

𝐷

𝑖=1

+ 𝑤𝑗0
(1)

 

3.12 

 

where D is the number of features, superscript (1) denotes the first layer of the network and 

𝑗 = 1,2, … ,  𝑀. The technical terms for 𝑤𝑗𝑖
(1)

 are weights and for 𝑤𝑗0
(1)

 are biases. Also, the technical 

term for 𝑎𝑗 is activation. As can be seen, activations are simply a linear combination of input data. 

Then, the activations are transformed into 

                                                                            𝑧𝑗 = ℎ(𝑎𝑗)  3.13 

where activation function ℎ(⋅) is assumed to be nonlinear and differentiable. The standard 

activation functions are sigmoid and tanh. In ANNs, the quantities 𝑧𝑗 are called hidden units. Now, 

we combine 𝑧𝑗s to create output unit activations (we assume there is one hidden layer) 

                                                              𝑎𝑘 = ∑ 𝑤𝑘𝑗
(2)

𝑀

𝑗=1

𝑧𝑗 + 𝑤𝑘0
(2)

 

3.14 

where 𝑘 = 1,2, … ,  𝐾 and there are 𝐾 outputs. The superscripts (2) correspond to the second 

layer and similar to the first layer 𝑤𝑘0
(2)

 are biases. In our setting as an expository example, where 

there is only a single hidden layer, the next step is to transform the output activations 𝑎𝑘 to network 

outputs 𝑦𝑘. This transformation is carried out via the activation function. For instance, if we choose 

a linear activation function, we will reach to a simple linear regression because the composition of 

linear transformations will be linear at the end. These types of linear network are not of interest 

generally. If we have a binary output, we can choose the logistic sigmoid function and set 
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                                                                         𝑦𝑘 = 𝜎(𝑎𝑘).   3.15 

For categorical output we can choose a softmax activation function and so on. Therefore, for 

our Polish data set with binary outcomes we will have the following equation 

𝑦𝑘(𝒙, 𝒘) = 𝜎 (∑ 𝑤𝑘𝑗
(2)𝑀

𝑗=1 ℎ(∑ 𝑤𝑗𝑖
(1)𝐷

𝑖=1 𝑥𝑖 + 𝑤𝑗0
(1)

) + 𝑤𝑘0
(2)

)                                   3.16   

Figure 3 represents the schematics of ANNs. As can be seen from the figure, the system looks 

like neurons and synapsis, thus the name. Note that for simplicity we used a network with one 

hidden layer only. However, all the concepts can be easily generalized for multiple layers by using 

a linear function of weights and nonlinear activation functions in each layer. Recall that we pointed 

out to the adaptivity of parameter estimation, which is achieved by another type of generalization 

with skip layers. These skip layers can be constructed by connecting the input layer to output layer 

directly in our example of one hidden layer. 

 

Figure 3: Artificial Neural Network 

One crucial fact about the architecture of neural networks is that they must be feed-forward. 

That is, there should not be a closed directed cycle in the network because outputs should be a 

deterministic function of inputs and we cannot have cycles for estimation purposes. Finally, we 
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notice that given a set of inputs and outputs we may have a lot of possible weights. That is, many 

different values for weights will result in the same transformation function and results. In other 

words, the choice of weights for a given input and output is not unique. Next, we will describe 

neural network model training which is a backbone of DL estimation methods. 

3.2.2. Model Training 

  
Let the data set be comprised of input vectors {𝒙𝒏} for 𝑛 = 1,2, … ,  𝑁 and corresponding set 

of target vectors {𝒕𝒏}. Also let 𝑋 = {𝒙𝟏, … , 𝒙𝒏} and 𝒕 = {𝑡1, … , 𝑡𝑛}. The goal is to estimate 𝒘 in 

the ANN. The first step is to give a Bayesian flavor to the data set to estimate precision as well. If 

the outcome is continuous, which is not the case in Polish data set, the probability distribution of 

the target 𝑡 given 𝒙 is assumed to be normally distributed with mean 𝑦(𝒙, 𝒘) and precision 𝛽, 

where precision is the inverse of variance. Therefore, the likelihood function is given by 

 

       𝑝(𝒕|𝑋, 𝒘, 𝛽) = ∏ 𝑝(𝑡𝑛|𝒙𝒏, 𝒘, 𝛽)

𝑁

𝑛=1

 

3.17 

where we assume that the 𝑁 data points are independent. Using maximum likelihood 

estimation approach, one can easily show that the error function will become 

𝐸(𝒘) =
1

2
∑(𝑦𝑛 − 𝑡𝑛)2

𝑁

𝑛=1

 

3.18 

where 𝑦𝑛 is a shorthand notation for 𝑦(𝒙𝒏, 𝒘). This error function is a well-known formula. 

However, in Polish data set the outcome is binary. The standard approach to give a Bayesian flavor 

to construct the error function is to use Bernoulli random variable for the outcome. As noted earlier, 

we let 𝑡 = 1 denote class 𝐶1 and 𝑡 = 0 and class 𝐶2. Also, by using a logistic sigmoid activation 

function we have 

𝑦 = 𝜎(𝑎) =
1

1 + 𝑒𝑥𝑝(−𝑎)
 

3.19 
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where we can interpret 𝑦(𝒙, 𝒘) as the conditional probability that the outcome belongs to class 

1. The Bernoulli assumption implies that 

                                                       𝑝(𝑡|𝒙, 𝒘) = 𝑦𝑡(1 − 𝑦)1−𝑡                                                 3.20                                                                              

If we assume that all the data point are independent, the error function, which is sometimes 

called cross-entropy error function, is the negative likelihood and is given by the following formula 

𝐸(𝒘) = − ∑ (𝑡𝑛𝑦𝑛 + (1 − 𝑡𝑛)(1 − 𝑦𝑛))𝑁
𝑛=1                                        3.21 

This approach is flexible and can be used for more general outcomes like categorical outcomes 

and other activation functions like softmax. Now the crucial step is to find the parameter vector 𝒘 

to minimize the cross-entropy error function, which we will describe next. 

One key step to minimize the error function is to find its gradient and equal it to zero since it 

is a continuous function and then check the Hessian to see if it is local or global minimum. In fact, 

the goal is to solve 

                                                                          𝛻𝐸(𝒘) = 0  3.22 

However, there is no analytical solution for the equation above, unlike the regression, and we 

need to use numerical optimization methods to that end. There are several numerical techniques 

that are applied for numerically solving this equation for neural networks. For example, local 

quadratic approximation in which the Taylor approximation of the error function is used. However, 

this method needs the calculation of the Hessian matrix and could be computationally expensive. 

One approach that is discussed in literature and its advanced versions are proved useful in practice 

is gradient descent methods, which we explain next. 

Gradient descent methods start with an initial guess about the minimizer, which we call 𝒘𝟎. 

Let 𝜏 denote the iterations of the gradient descent method and 𝜂  be the learning rate. The algorithm 

proceeds as follows from one step to the next 

                                                               𝒘𝜏+𝟏 = 𝒘𝜏 − 𝜂𝛻𝐸(𝒘𝜏)   3.23 
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As can be seen, the important element in this formula is the gradient of the error function. 

There are several ways to estimate it, but the main approach is error backpropagation, which is a 

cornerstone of DL and we will describe it in detail. The learning rate is a tuning parameter and 

determines how fast we would like to traverse the direction of gradient. This method is continued 

until a notion of convergence is achieved. For example, if the norm between two consecutive 

iterations of the parameter vector is less than a given threshold. Some notes are in order. 

First, gradient descent algorithm will not necessarily converge to a global optimal solution. 

One approach to find better solutions is to run the entire algorithm starting from different initial 

points and pick the best among them. Second, assuming independent data set one can write the 

error function as 𝐸(𝒘) = ∑ 𝐸𝑛(𝒘)𝑁
𝑛=1  which can facilitate the procedure. Third, there is an online 

version of gradient descent algorithm which has shown success in practice for neural networks. 

The idea is to update the weight vector based on the current data. That is, we use the following 

formula where there is a subscript 𝑛 in the error function 

 

                                                             𝒘𝜏+𝟏 = 𝒘𝜏 − 𝜂𝛻𝐸𝑛(𝒘𝜏)  3.24 

This online version which is sometimes called stochastic gradient descent method has several 

advantages over the standard version. For example, it can handle redundancy much better: suppose 

we duplicate the data set; the error function is going to be multiplied by 2 and the standard version 

is searching the enlarged space requiring a double computational time. But the online version will 

not be affected by doubling. In addition, they are less likely to be trapped in local optimal points. 

Next, we will describe error backpropagation.  

3.2.3. Error Backpropagation  

 
Error backpropagation is an essential technique in DL whose task is to find the derivative of 

the error function efficiently. In big picture, it is used for feed-forward NNs and can be thought of 

as a local message passing scheme where information is passed alternatively back and forth. We 
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will describe this technique for a general neural network. Recall from the previous section that 

based on some natural assumptions the total error loss function can be represented by  

𝐸(𝒘) = ∑ 𝐸𝑛(𝒘)

𝑁

𝑛=1

 

3.25 

So, if we calculate ∇𝐸𝑛(𝒘), the gradient of the loss function is retrieved. For a jumpstart, let 

us assume that we have a linear relationship between the outputs 𝑦𝑘 and inputs 𝑥𝑖 in the following 

sense 

                                                                        𝑦𝑘 = ∑ 𝑤𝑘𝑖

𝑖

𝑥𝑖 
3.26 

 

 

with the error function 

                                                                 𝐸𝑛 =
1

2
∑(𝑦𝑛𝑘 − 𝑡𝑛𝑘)2

𝑘

 
3.27 

where 𝑦𝑛𝑘 = 𝑦𝑘(𝒙𝒏, 𝒘). Therefore, it is clear that in this setting we have 

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
= (𝑦𝑛𝑗 − 𝑡𝑛𝑗)𝑥𝑛𝑖 

3.28 

which has the following interpretations: Let 𝑤𝑗𝑖 be a link; 𝑥𝑛𝑖 can be thought of as the input of 

the link and 𝑦𝑛𝑗 − 𝑡𝑛𝑗 can be thought of as the error signal of the output of the link. Although we 

presented this derivation for a linear function, similar terms will show up if we use logistic sigmoid 

activation functions or softmax. Interestingly, this idea extends to multilayer networks as follows. 

Recall that each unit in the network is represented by 

                                                                          𝑎𝑗 = ∑ 𝑤𝑗𝑖𝑧𝑖

𝑖

 
3.29 

where 𝑧𝑗 acts as an activation unit that sends information to unit 𝑗. Then, the activation of unit 

𝑗 is a non-linear transformation of 𝑎𝑗 via the activation function ℎ(⋅) as follows 
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                                                                             𝑧𝑗 = ℎ(𝑎𝑗)  3.30 

By successive application of the above two formulae, we can calculate the activation of all 

hidden and output units starting from the input vectors. Thus, the name forward propagation. Now, 

the main step is to calculate the partial derivative of 𝐸𝑛 with respect to 𝑤𝑗𝑖. First, we observe that 

𝐸𝑛 depends on 𝑤𝑗𝑖 only through 𝑎𝑗. Therefore, using the chain rule we have 

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
=

𝜕𝐸𝑛

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
 

3.31 

To ease notation, let 𝛿𝑗 =
𝜕𝐸𝑛

𝜕𝑎𝑗
, which can be interpreted as errors. Due to the linear relationship 

between 𝑎𝑗 and 𝑤𝑗𝑖 we simply have 

                                                                             𝑧𝑖 =
𝜕𝑎𝑗

𝜕𝑤𝑗𝑖
 

3.32 

 

Finally, by substituting the above two formulae have 

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑧𝑖 

3.33 

Thus, we need to calculate the values of 𝛿𝑗s for all the hidden and output nodes. To that end, 

we first note that for the output nodes se simply have 

                                                                    𝛿𝑘 = 𝑦𝑘 − 𝑡𝑘  3.34 

which is easy to calculate. The next step is to calculate these 𝛿s for the hidden layers. We 

observe that change in 𝑎𝑗 results in a change in the error function through changes in 𝑎𝑘s. 

Therefore, by using the chain rule we have 

                                                                  𝛿𝑗 =
𝜕𝐸𝑛

𝜕𝑎𝑗
= ∑

𝜕𝐸𝑛

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑎𝑗
𝑘

 
3.35 

where summation above is over index 𝑘 which points to the nodes in the network that send 

information to node 𝑗, a direction that is backward compared to the flow of information in the 
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forward-feed neural networks. Thus, the name error backpropagation. Using the formulae stated 

above we conclude that  

 

                                                                    𝛿𝑗 = ℎ′(𝑎𝑗) ∑ 𝑤𝑘𝑗

𝑘

𝛿𝑘 
3.36 

which is the backbone of this method. In particular, in order to calculate the value of error in 

a hidden node we can propagate the errors from the upper nodes in the network, starting from the 

error values at the output level, which is easy to calculate.  

In summary, the error backpropagation works as follows: Starting from the input layers, 

calculate all the activations of all hidden and output nodes; calculate the error at the output level; 

backpropagate errors to find the errors in all hidden nodes of the network; use the formula to 

calculate desired derivatives.   

Finally, we briefly describe regularization in NNs. Recall that the number of hidden layers in 

a neural network is arbitrary. However, there is a subtle tradeoff in choosing 𝑀. If we assume a 

fully connected network, and if 𝑀 is large, the network can approximate any pattern in the training 

data set, but the danger of overfitting will become significant. If 𝑀 is small, it will be difficult for 

the NN to have a small error in training. Therefore, there is a tradeoff between underfitting and 

overfitting. One approach to find a reasonable value for 𝑀 is to train and validate the model for a 

variety of values for it and choose the best result. This approach is ad-hoc and data set dependent. 

There are also some general techniques such as consistent Gaussian priors and easy stopping that 

seek to systematically address this issue. In our implementation of the ANN for the Polish data set 

we choose one, two and three hidden layers. Furthermore, we also use convolutional neural 

networks to exploit the special structures and features of the Polish data set, which we will explain 

next. 
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3.3. Convolutional Neural Networks 

 
       Before we delve into the details of the construction of convolutional neural networks (CNNs) 

and how we applied them into the Polish data set, we will start with some motivation for such a 

design. Next, we will explain general structure for a convolutional neural network, and finally we 

describe the specific structures that we use for the CNNs for the application of Polish data set. 

 The main motivation for constructing CNNs is the concept of invariance, which implies that 

if the data is transformed in some ways, the output should not change. A major example is in image 

processing. Suppose that we have a handwritten digit as the input, like number 8. The same 

classification should be assigned (number 8) to the input if the position of the number in the image 

is changed, which is called translation invariance. Also, the same classification should be assigned 

if the size of the handwriting is changed, which is called scale invariance. Another example is in 

speech recognition in which small perturbation of nonlinear warping over time should not change 

the interpretation of the signal. This requirement poses a challenge to the traditional ANNs.     

 One way to address this challenge is to inject sufficiently large number of such transformed 

inputs into the data set. If there are a large number of them, one may expect that the ANN would 

learn these invariances and produce high quality solutions. However, this approach is impractical, 

and we need to develop other approaches for adaptive models that can exhibit the required 

invariances. There are three main approaches: 1- adding a regularization hyperparameter to the 

error function which penalizes the changes under the desired transformations, 2- adding a pre-

processing stage where desired features for transformations are extracted, and 3- convolutional 

neural networks where the invariance properties are naturally built into the structure of the ANNs. 

Because CNNs have been successful in many applications in DL, we used several of its variants 

into the Polish data set. Before explaining each of them, we will explain the major components of 

a general CNN. 

 As mentioned above, CNNs build the invariance properties of the problem into the structure 

of the neural network itself. Since the main application area of CNNs is in image processing, we 
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will explain CNNs in that context. Suppose we would like to recognize the digit written in a 

handwriting. The input is a set of pixel intensity values, and the output is a probability distribution 

over digits 0,1, … , 9. The inherit structure for transformation in this context is that the final result 

should be invariant under translations, scaling, rotation, and elastic deformation. In order to 

construct a CNN here, we note that the pixels near each other are more correlated than those distant 

pixels. We would like to exploit this property by extracting local features defined on small 

subregion of the input image. The information that we extract from each of these features can be 

combined in further layers of the network to detect higher-order features. If we continue this 

process, we would be able to get information about the whole image. This can help in image 

translation since local features that are extracted in one subregion can be used in other subregions. 

 

Figure 4: Convolutional Neural Networks 

       CNNs use three major mechanisms to extract the features: 1- local receptive fields, 2- weight 

sharing, and 3- subsampling. A schematic view of a CNN is depicted in Figure 4. As can be seen, 

we have an input layer, convolution layer, and subsampling layer. In the convolution layer units 

are organized in a feature map. Specifically, units in a feature map take inputs from their local 

receptive field, which is a small subregion of the input image. More importantly, the weights 

corresponding to units in each feature map is constrained to be the same. This property is important 

because it enables us to construct deep networks by restricting the number of weight parameters 
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for estimation. Recall that traditional networks may suffer from gradient vanishing or explosion in 

the error backpropagation method due to excessive number of weights for estimation.  

       Let us use an example to clarify this construction. Suppose a feature map is a 10 × 10 grid 

having 100 units in the convolution layer, where each unit takes inputs from a 5 × 5 pixel patch 

of the input image. Therefore, the number of weight parameters will be 26: 25 for the actual 

weights for this feature map and one more for the bias term in the linear formula. Note that after 

the linear combination, we will transform it using a nonlinear function such as sigmoidal. One can 

interpret each unit as a feature detector, that is, all the units in a feature map can detect the same 

pattern. However, the location of the pattern can be anywhere in the original image. There is 

another interpretation for the fact that the weights are the same for a feature map: The evaluation 

of activations for these units is equivalent to applying a kernel to the intensities of the image pixels. 

Therefore, if we shift the image, the activations of the feature maps will also shift, which makes 

the model invariant to translations and distortion of the input. Because our goal is to hopefully 

detect more features, we will consider several feature maps in the convolution layer, where each 

of those feature maps has its own weight sharing.  

 Next, we will explain the sub-sampling layer which has some similarities and differences with 

the convolution layer. That is, the convolutional layer will play the role of the input for the units 

in the sub-sampling layer. Consider a feature map in the convolutional layer; we can construct 

planes in the sub-sampling layer where each unit there takes its input from a small receptive field 

in the convolutional layer. For our example, each sub-sampling unit may take its input from a 

2 × 2 subregion of the corresponding feature map in the convolutional layer. For the corresponding 

operations in this stage, the map takes the average over the 2 × 2 units in the convolutional layer 

and multiplies it by a weight with a possibly bias term. Then, it uses a nonlinear function such as 

sigmoidal function for the final transformation. One difference between the convolutional layer 

and sub-sampling layer is that in the sub-sampling layer the receptive fields are non-overlapping 

while for the convolutional layer they are overlapping. We also make sure that the regions are 

contiguous for the sub-sampling layer. Thus, compared to the convolutional layer we will have a 
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half number of rows and columns in the sub-sampling layer. This is critical because the model 

becomes less sensitive to shift perturbations in the corresponding region of the input image. 

 As noted, we described the ideas of CNNs for a single convolutional layer. However, in 

practice we can simply generalize this concept and consider network architects, where there are 

multiple layers of convolutional and sub-sampling layers. This makes the model more invariant 

with respect to aforementioned transformations. One might think that by an increase in the number 

of layers spatial resolution of the image will be deteriorated, but the increase in the number of 

features can compensate it. Finally, in the final layer of a CNN, the network is usually fully 

connected with a sigmoidal function for binary outcomes and softmax for categorical outcomes.     

       The process of training and validation for a CNN is similar to ANN. It usually uses error 

backpropagation. However, there is a subtle difference. In CNNs we need to ensure that the 

weights for a feature pattern remain the same and it needs a modification for the error 

backpropagation. In fact, as we mentioned earlier this is an appealing feature of CNN that needs a 

way smaller number of weights to train.  

       We applied the CNN technique to the Polish data set, and this is one of the main contributions 

of this thesis. The main idea is that the data set may have some invariant property because the 

scaling of values might not impact the result for bankruptcy. In addition, we might be interested 

in creating a model that is able to extract some features in this data set. To that end, we use three 

different CNN models: 1- CNN one-dimensional, 2- CNN two-dimensional, and 3- CNN_2D 

ResidualNetwork. The difference between one-dimensional and two-dimensional CNN is in the 

configuration of input. Because we have numerical feature variables in the Polish data set, we need 

to convert them to some sort of arrays to feed our model. More details are provided in chapter 5. 

       Another model that we use is a ResidualNetwork within a CNN.  CNN_ 2D ResidualNetwork 

add the original input to the output of the convolution block. As a result, the vanishing gradient 

problem of deep network is solved. Also, the typical activation function in these models is ReLU.  
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3.4.  Synthetic Minority Oversampling Technique (SMOTE) 

 
       One of the main techniques that we applied to the Polish data set for preprocessing is synthetic 

minority oversampling technique (SMOTE). First, we note that the Polish data set is very 

imbalanced. That is, the number of firms that do go bankrupt is way smaller than the number of 

firms that do not go bankrupt. Therefore, in our data set we have many rows with not bankrupt 

status and not many rows with bankrupt status. In general, imbalanced data poses significant 

challenges to ML models. In particular, their performance is typically poor for the minority class, 

which is the bankrupt status in our case. This is in fact bad news since these models are developed 

to have a good performance specially for the minority class.  

To address this issue, SMOTE uses a simple and intuitive technique. It duplicates data in the 

minority class and injects them into the data set to make the number of data points for minority 

class larger. Note that these new data points are synthesized form the available data. This is a data 

augmentation approach and potentially can improve the performance of any ML model on minority 

data points. There are several mechanisms for the duplication, but a typical approach is to select 

data that are close in feature space, draw boundaries among the examples in the feature space, and 

then choose a data point on the boundary.  

 One other technique that we applied to the Polish data set is data normalization. The goal is 

to make the scale of all the features balanced. This will make the training more efficient. In fact, 

because the features of the input data set have very different scales and dimensions, we applied 

this technique to our data set. This is based on the fact that non-normalized data can produce low-

quality solutions when applying ML models.  
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4. Experimental Settings 

4.1. Data Description 

The quality of the data set is crucial in ML/DL applications because the conclusion                                     

of the model depends on data quality. One major challenge in bankruptcy prediction models is that 

the data sets are usually not balanced in that the number of bankrupt companies is way less than 

the ones that did not go bankrupt. The data set we used for this thesis comes from Polish companies 

in the manufacturing sector because many companies went bankruptcy since 2004 in this sector in 

Poland. In fact, it does suffer from significant imbalanced data. In particular, the data set is from 

Emerging Markets Information Service (EMIS), which provides information on industry, news, 

macroeconomic statistics etc. In our case, the-still-operating companies were gathered from 2007 

to 2013, and the bankrupt companies were assessed in the period of 2000-2012. 

In this data set, there are formally two classifications for companies:  

1) The companies which went bankrupt shown by 1 (Positive). 

 

2) The companies which were not bankrupt shown by 0 (Negative). 

 

 The five individual data sets and sum of the whole years with some specific related numbers 

are shown in Table 1. 

Table 1: Data sets used with their corresponding numbers 

Year Bankruptcy 

after 

Number of 

observations 

Positive Negative Number of financial ratios 

1st 5 years 7027 271 6756 64 

2nd 4 years 10173 400 9773 64 

3rd 3 years 10503 495 10008 64 

4th 2 years 9792 515 9277 64 

5th 1 years 5910 410 5500 64 

Total NA 43405 2091 41314 64 
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we used the Weka software to combine all data together and calculated the accuracy of the 

entire five years data set since our data has an “arff” format. 

In the first year, the data includes the financial rates from the first year for bankruptcy 

prediction and related bankruptcy labels showing if bankruptcy will occur after 5 years. The 

number of companies, in this data set, that were bankrupted and not bankrupted is 271 and 6756, 

respectively, after the forecasting period.  

In the second year, the data includes the financial rates from the second year for bankruptcy 

prediction and related bankruptcy labels showing if bankruptcy will occur after 4 years. The 

number of companies, in this data set, that were bankrupted and not bankrupted is 400 and 9773, 

respectively, after the forecasting period.  

In the third year, the data includes the financial rates from the third year for bankruptcy 

prediction and related bankruptcy labels showing if bankruptcy will occur after 3 years. The 

number of companies, in this data set, that were bankrupted and not bankrupted is 495 and 10008, 

respectively, after the forecasting period.  

In the fourth year, the data includes the financial rates from the fourth year for bankruptcy 

prediction and related bankruptcy labels showing if bankruptcy will occur after 2 years. The 

number of companies, in this data set, that were bankrupted and not bankrupted is 515 and 9277, 

respectively, after the forecasting period.  

In the fifth year, the data includes the financial rates from the fifth year for bankruptcy 

prediction and related bankruptcy labels showing if bankruptcy will occur after 1 years. The 

number of companies, in this data set, that were bankrupted and not bankrupted is 410 and 5500, 

respectively, after the forecasting period. 

4.2. Definition of Input Variables 

The Polish data sets described above, provided by Zięba et al. (2016) for the first time, includes 

numerous observations, many missing values and very unequal  class distribution. By using 64 

financial features that most of them are financial ratios, the financial situation of companies is 
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predicted. In Table 2, we describe every indicator that used in this study(Zięba et al., 2016). These 

features are important to mention in order to understand the variables that are used for prediction. 

 Table 2: Features of Polish data set 

Features Description Features Description 

X1 Net profit / total assets X16 (Gross profit + depreciation) / total 

liabilities 

X2 Total liabilities / total assets X17 total assets / total liabilities 

X3 Working capital / total assets X18 gross profit / total assets 

X4 Current assets / short-term liabilities X19 Gross profit / sales 

X5 [(Cash + short-term securities + 

receivables – short-term liabilities) / 

(operating expenses – depreciation)] * 

365 

X20 (Inventory ∗ 365) / sales 

X6 Retained earning / total assets X21 Sales (n) / sales (n-1) 

X7 EBIT / total assets X22 Profit on operating activities / total assets 

X8 Book value of equity / total liabilities X23 Net profit / sales 

X9 Sales / total assets X24 Gross profit (in 3 years) / total assets 

X10 Equity / total assets X25 (Equity - share capital) / total assets 

X11 (Gross profit + extraordinary items + 

financial expenses) / total assets 

X26 (Net profit + depreciation) / total liabilities 

X12 Gross profit / short-term liabilities X27 Profit on operating activities / financial 

expenses 

X13 (Gross profit + depreciation) / sales X28 Working capital / fixed assets 

X14 (Gross profit + interest) / total assets X29 Logarithm of total assets 

X15 (Total liabilities ∗ 365) / (gross profit + 

depreciation) 

X30 (Total liabilities - cash) / sales 
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X31 (Gross profit + interest) / sales X48 EBITDA (profit on operating activities - 

depreciation) / total assets 

X32 (Current liabilities ∗ 365) / cost of 

products sold 

X49 EBITDA (profit on operating activities - 

depreciation) / sales 

X33 Operating expenses / short-term liabilities X50 Current assets / total liabilities 

X34 Operating expenses / total liabilities X51 Short-term liabilities / total assets 

X35 Profit on sales / total assets X52 (Short-term liabilities ∗ 365) / cost of 

products sold) 

X36 Total sales / total assets X53 Equity / fixed assets 

X37 (Current assets - inventories) / long-term 

liabilities 

X54 Constant capital / fixed assets 

X38 Constant capital / total assets X55 Working capital 

X39 Profit on sales / sales X56 (Sales - cost of products sold) / sales 

X40 (Current assets - inventory - receivables) / 

short-term liabilities 

X57 (Current assets - inventory - short-term 

liabilities) / (sales - gross profit - 

depreciation) 

X41 Total liabilities / ((profit on operating 

activities + depreciation) ∗ (12/365)) 

X58 Total costs /total sales 

X42 Profit on operating activities / sales X59 Long-term liabilities / equity 

X43 Rotation receivables + inventory turnover 

in days 

X60 Sales / inventory 

X44 (Receivables ∗ 365) / sales X61 Sales / receivables 

X45 Net profit / inventory X62 (Short-term liabilities ∗365) / sales 

X46 (Current assets - inventory) / short-term 

liabilities 

X63 Sales / short-term liabilities 

X47 (inventory ∗ 365) / cost of products sold X64 Sales / fixed assets 
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4.3. Missing Values and Imbalanced Data set 

 We encountered some observations in the data set that one or more attributes have missing 

values. The identification and recording of observations with missing data for these data sets is 

crucial. With paying close attention to the data, we recognized that there are some missing values 

for each data point. Thus, we have handled the missing values in order to improve the prediction 

results by substituting them with mean values. 

 It is important to understand the imbalanced distribution of data set because it impacts the 

prediction performance of the proposed models. As we analyzed the data, we observed that the 

number of bankrupt firms are less than not bankrupt ones significantly in these data sets. For 

example, the data of the first year comprised 271 bankrupt (Positive) and 6756 non-bankrupt 

(negative) companies. Thus, we have implemented some methods to balance our data sets as 

follows.  

4.4. Preprocessing 

       The preprocessing strategy depends mostly on the number of steps including normalization, 

imputing missing values and handling the imbalanced data.  

       The concept of "Re-scaling" data before training is one of the most significant topics in the 

field of data preparation. When the variables are on a smaller scale, e.g., in range [0,1] similar to 

our study, ML algorithms typically perform better. One scaling method is to use the Min-Max 

normalization function from Scikit-Learn library (https://scikit-learn.org/) in Python programming 

language. The formulation of the normalization is as follows:  

 

                                                                  𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  4.1 

       In the second step, we have used Simpleimputer class to impute the missing values by the mean 

throughout every column. By doing this, we replaced the NaN values in our data to their 

corresponding new number.  

https://scikit-learn.org/
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       As we mentioned in the first section, there is another important concern about this data set 

being imbalanced. For tackling this issue in classification problems, one popular approach that we 

also used is a technique called the SMOTE technique that relies on producing new samples of the 

minority class. This method increases the data points of the minority class in order to balance the 

imbalanced data set. It is important to know that these new data points are created by synthesizing 

the existing data(Fernandez et al., 2018). 

       By doing all above steps including normalizing, imputing missing values and solving the 

unbalanced data problem, the data is prepared to achieve good results (without bias) after applying 

the proposed DL models. 

 

4.5. Training Data and Validation  

       We used 80 percentage of the data in order to train our models and the rest to assess whether 

or not the models will perform well on a new data set, which are respectively  called training data 

and test data (Shmueli, 2017).  

 

4.6. Performance Metrics 

       The main metrics for evaluation for our proposed models are based on three statistical indices 

including classification accuracy, sensitivity, and specificity. Accuracy is defined as the total 

proportion of individual companies that are correctly classified.  The sensitivity of a model is its 

ability to determine bankrupt firms correctly, while the specificity of model shows its ability to 

correctly rule out non-bankrupt companies from the bankrupt ones. In particular, we have the 

following formulations 

Accuracy=
TP+TN

TP+TN+FP+FN
  

Sensitivity=
TP

TP+FN
  

Specificity=
TN

TN+FP
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        where:   

True positive (TP) = the number of cases correctly identified as the bankrupt companies.  

False positive (FP) = the number of cases incorrectly identified as the bankrupt companies.  

True negative (TN) = the number of cases correctly identified as the non-bankrupt companies. 

False negative (FN) = the number of cases incorrectly identified as the non-bankrupt 

companies. 
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5. Computational Experiments 

This section describes the details and outcomes of implementing several ML and DL methods, 

such as LR, ANN, CNN One-Dimensional, CNN Two-Dimensional and CNN ResidualNetwork 

with fine tuning on the Polish data sets. It also provides a comparison between the results of applied 

models. The results of all methods are executed in Google Colab platform 

(https://colab.research.google.com). The details of every step are described next. 

5.1. Results of Logistic Regression   

After preprocessing and cleaning the data (normalizing the data and imputing the missing 

values), we applied LR in two different situations: 1) by using SMOTE method, 2) without using 

SMOTE technique to see whether or not balancing the data affects the accuracy and sensitivity. 

As can be seen, the accuracy and the sensitivity metrics are reported in Table 3 and Table 4. These 

two are commonly used to assess the performance of a LR classifier, especially when we have 

imbalanced data sets. 

       Table 3: Results of applying LR (without SMOTE) 

Year Accuracy  Sensitivity  

First year 0.9623 0.04 

Second year 0.9626 0.0 

Third year 0.9476 0.01 

Fourth year 0.9443 0.02 

Fifth year 0.9247 0.10 

Total 0.9627 0.02 

 

        After analyzing the result of applying Logistic Regression, as we thought the sensitivity was 

not good enough as the data was so imbalanced. In fact, the number of bankrupted companies was 

https://colab.research.google.com/
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only ~5% of the whole data set. So, we used SMOTE technique in order to solve that problem, and 

the results are shown in Table 4. 

 Table 4:Results of applying LR (after SMOTE) 

Year Accuracy  Sensitivity 

First year 0.70 0.76 

 
Second year 0.71 0.84 

 
Third year 0.70 0.78 

 
Fourth year 0.70 0.66 

Fifth year 0.79 0.78 

 
Total 0.59 0.79 

 

 

       As one can compare the results of Table 3 and Table 4, after applying the SMOTE technique, 

the sensitivity increased significantly. We can make a conclusion that by changing the imbalanced 

data set to a balanced one, we can considerably improve the prediction power of the number of 

bankrupted companies. 

5.2. Results of Artificial Neural Networks 

 In the following tables, we can see the results of applying NN methods on the data tuned with 

different hyperparameters without Smote and with Smote technique after pre-processing the data. 

In this study, we explored and investigated both accuracy and sensitivity of ANN models. We used 

one, two and three fully connected layers with different units. To be consistent, we ran each model 

100 times and reported the accuracy and sensitivity of each test. In addition, we explored different 

optimizers in Python. As can be seen, the following tables provide insight about each combination 

of (preprocessing, number of units in ANN, and optimizer) and how accuracy and sensitivity are 

changing within each tuple. As the loss function, for all these experiments, we used binary cross-

entropy as there are 2 classes in output layers. 
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           In the two following tables, one can see the results with these parameters: 

One hidden layer, units=64, optimizer=Adam. 

 Table 5:Results of applying ANN (1, 64, Adam) (without SMOTE) 

Year Accuracy  Sensitivity 

First year 0.97 0.43 

Second year 0.965 0.098 

Third year 0.953 0.196 

 
Fourth year 0.95 0.07 

 

Fifth year 0.93 0.41 

 
Total 0.97 0.294 

 
 

 Table 6: Results of applying ANN (1, 64, Adam) (with SMOTE) 

Year Accuracy  Sensitivity 

First year 0.95 0.65 

 
Second year 0.93 0.51 

 
Third year 0.923 0.514 

 
Fourth year 0.9 0.54 

 
Fifth year 0.94 0.67 

 
Total 0.93 0.54 

 

 

 

       In the two next tables, one can see the results with these parameters: 

Two hidden layers, units of every layer=64, optimizer=Adam. 
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 Table 7: Results of applying ANN (2, 64, 64, Adam) (without SMOTE) 

Year Accuracy  Sensitivity 

First year 0.975 

 

0.65 

Second year 0.97 0.295 

Third year 0.96 0.34 

 
Fourth year 0.95 

 

0.27 

 
Fifth year 0.94 0.566 

Total 0.97 

 

0.364 

 

 Table 8: Results of applying ANN (2, 64, 64, Adam) (with SMOTE) 

Year Accuracy  Sensitivity 

First year 0.96 0.63 

Second year 0.96 0.39 

Third year 0.92 0.44 

Fourth year 0.93 

 

0.407 

 
Fifth year 0.94 

 

0.677 

Total 0.95 0.61 

   

 

 

       In the two next tables, one can see the results with these parameters: 

Two hidden layers, units of first layer=128, units of second layer=32, optimizer=RMSprop. 
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 Table 9: Results of applying ANN (2, 128, 32, RMSprop) (without SMOTE) 

Year Accuracy  Sensitivity 

First year 0.975 0.57 

Second year 0.97 0.34 

Third year 0.95 0.33 

 
Fourth year 0.95 0.26 

 
Fifth year 0.94 0.44 

 
Total 0.975 0.4 

 
 

 Table 10: Results of applying ANN (2, 128, 32, RMSprop) (with SMOTE) 

Year Accuracy  Sensitivity 

First year 0.96 0.57 

Second year 0.96 0.58 

Third year 0.92 0.44  

Fourth year 0.94 0.46 

Fifth year 0.94 0.61 

Total 0.96 0.56 

    

 

       In the two next tables, one can see the results with these parameters: 

Three hidden layers, first units=32, second units=32, third units=32, optimizer=Adam. 
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 Table 11: Results of applying ANN (3, 32, 32, 32, Adam) (without SMOTE) 

Year Accuracy  Sensitivity 

First year 0.98 0.61 

 
Second year 0.97 0.35 

 
Third year 0.96 0.36 

 
Fourth year 0.93 0.23 

 
Fifth year 0.93 0.54 

Total 0.97 0.31 

 

 Table 12: Results of applying ANN (3, 32, 32, 32, Adam) (with SMOTE) 

Year Accuracy  Sensitivity 

First year 0.97 0.61 

Second year 0.96 0.34 

 
Third year 0.93 0.44 

 
Fourth year 0.93 0.31 

 
Fifth year 0.92 0.61 

 
Total 0.97 0.47 

 

     

 

 

 

       In the two next tables, one can see the results with these parameters: 

Three hidden layers, first units=128, second units=128, third units=128, optimizer=Adam. 
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 Table 13: Results of applying ANN (3, 128, 128, 128, Adam) (without SMOTE) 

Year Accuracy  Sensitivity 

First year 0.973 0.61 

Second year 0.96 0.32 

Third year 0.952 0.34 

Fourth year 0.94 0.35 

Fifth year 0.92 0.59 

Total 0.971 0.41 

 

 Table 14: Results of applying ANN (3, 128, 128, 128, Adam) (with SMOTE) 

 Year Accuracy  Sensitivity 

First year 0.96 0.59 

Second year 0.96 0.45 

Third year 0.92 0.3 

Fourth year 0.94 

 

0.32 

Fifth year 0.93 0.54 

Total 0.96 0.55 

 

 

The next graph will show each data on the horizontal axis and the sensitivity on vertical axis 

after using smote technique.   
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Figure 5: Sensitivity with different network architecture applied on different years 

From the results of Table 5 to Table 14 and Figure 5, it can be concluded that using the SMOTE 

technique has a significant impact on improving the sensitivity, which is regarded as an important 

performance evaluation factor in the bankruptcy prediction. Also, we can conclude that whether 

we use the SMOTE technique or not, the accuracy is almost the same. Another important point 

that can be understood from these tables is that when we tuned the data with various 

hyperparameters, the best results belong to using 1 hidden layer with 64 units, as well as applying 

the Adam optimizer. Therefore, we used these results, best results for ANN, to compare with 

traditional ML techniques like LR and CNN methods, with and without implementing a data 

normalization technique. 

5.3. Results of Convolutional Neural Network 

       In this study, we explored and investigated accuracy, sensitivity, and specificity of three CNN 

models: CNN_1D, CNN_2D and CNN_2D_ResidualNetwork tunning with different 

hyperparameters.  

        If we want to apply CNN models to this data, it is important that we change the data structure 

to based on the CNN model targets (1_D or 2_D). After reshaping the data set, for all three models, 

we used two fully connected layers at the end of the models’ pipeline, followed by a sigmoid 
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activation layer to predict whether the companies will bankrupt or not. To be consistent, we run 

each model with 100 epochs and 100 batch_size and reported the accuracy of test data. We also 

used RMSprop optimizer to run all models.  

5.3.1. Convolutional Neural Network_1D 

       One of the main contributions of this thesis is the novel application of CNNs on the Polish 

data set. We have several approaches of applying CNNs. As the first approach, we trained a 

CNN_1D model on every input. To that end, we expanded the dimension of both the training and 

test data. Then, we had each sample with the shape of (64*1). To elaborate more, let us explain 

with an example with the first-year data set. The number of observations and features for this data 

set are 7027 and 64 respectively. For using CNN_1D, we need to add one more dimension as the 

channel. The data is reshaped from (7027, 64) to (7027, 64*1). Therefore, every sample of this 

data set reshaped in an array of dimension (64*1). Our network has two encoder blocks, and each 

block has 2 one-dimensional convolutional layers, followed by 2 fully connected layers.  Rectified 

Linear Units (ReLU) is used as the activation function in the middle layer, and in the last layer we 

used Sigmoid activation function. By selecting batch size of 100, a patch of (100*64*1) is pushed 

to the model and the output is a list of 100 binary element which shows either the company was 

bankrupted or not. Figure 6 shows the schematic of this method for better understanding of the 

procedure.  

 

Figure 6: CNN_1D 
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       The following tables report the results of applying CNN_1D on the data with four approaches 

of preprocessing the data: 1) with normalization, imputing missing values and SMOTE technique, 

2) without normalization, 3) without normalization and SMOTE technique, 4) without SMOTE. 

The results of each combination provide insight about the importance of each element on the 

performance. 

 

 Table 15: Results of CNN_1D (with normalization, imputing missing values and SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.97 0.1 0.99 

Second year 0.76 0.38 0.77 

Third year 0.88 0.48 0.89 

Fourth year 0.77 0.47 0.78 

Fifth year 0.91 0.43 0.94 

Total 0.92 0.43 0.93 

  

 

 

Table 16: Results of CNN_1D (without normalization) 

Year Accuracy  Sensitivity Specificity 

First year 0.89 0.71 0.89 

Second year 0.89 0.48 0.90 

Third year 0.81 0.63 0.82 

Fourth year 0.71 0.73 0.70 

Fifth year 0.89 0.59 0.91 

Total 0.94 0.40 0.96 
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 Table 17: Results of CNN_1D (without normalization and SMOTE) 

  Year Accuracy  Sensitivity Specificity 

First year 0.96 0 1 

 
Second year 0.97 0.1 0.99 

Third year 0.95 0 0.99 

Fourth year 0.95 0.01 0.99 

Fifth year 0.92 0.02 0.99 

Total 0.96 0 1 

 Table 18: Results of CNN_1D (without SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.96 0 1 

Second year 0.97 0 1 

Third year 0.95 0 1 

Fourth year 0.95 0 1 

Fifth year 0.92 0.06 0.98 

Total 0.96 0 1 

5.3.2. Convolutional Neural Network_2D 

       In the second approach for applying CNN, we implemented the CNN_2D model. To prepare 

the data, each sample was reshaped from (64*1) to (8*8*1). For instance, for the first-year dataset 

mentioned in CNN_1D section, we need to reshape the data from (7027, 64) to (7027, 8*8*1) for 

CNN_2D models. Our network has two encoder blocks. Each block has two-dimensional 

convolutional layers, followed by 2 fully connected layers. In the middle layers and the last layer, 

we used ReLu and Sigmoid activation functions, respectively. The schematic of this approach is 

shown in Figure 7 in details in order to understand how it works. 



48 

 

 

Figure 7: CNN_2D 

Similar to CNN_1D we implemented several variations of CNN_2D on the data with some 

different ways in the next tables: 1) with normalization, imputing missing values and SMOTE 

technique, 2) without normalization, 3) without normalization and SMOTE technique, 4) without 

SMOTE. These results also shed light on the importance of each feature on the performance 

metrics. 

 

 

 

 Table 19: Results of CNN_2D (with normalization, imputing missing values and SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.44 

 

0.78 0.44 

Second year 0.154 0.90 0.13 

Third year 0.856 

 

0.27 0.887 

Fourth year 0.746 

 

0.61 0.754 

Fifth year 0.906 

 

0.31 0.955 

Total 0.51 0.558 0.508 
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 Table 20: Results of CNN_2D (without normalization) 

Year Accuracy  Sensitivity Specificity 

First year 0.91 0.57 0.92 

Second year 0.93 0.32 0.94 

Third year 0.85 0.40 0.87 

Fourth year 0.87 0.38 0.89 

Fifth year 0.86 0.49 0.89 

Total 0.88 0.59 0.88 

  

Table 21: Results of CNN_2D (without normalization and SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.96 0.22 0.99 

Second year 0.96 0.14 0.99 

Third year 0.95 0.23 0.98 

Fourth year 0.93 0.22 0.96 

Fifth year 0.93 0.23 0.98 

Total 0.96 0.14 0.99 

Table 22: Results of CNN_2D (without SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.96 0 1 

Second year 0.97 0 1 

Third year 0.95 0 1 

Fourth year 0.95 0 1 

Fifth year 0.92 0.01 

 

0.99 

Total 0.96 0 1 
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5.3.3. Convolutional Neural Network_2D_ResidualNetwork 

       ResidualNetwork (ResNet) is as a particular type of NN. Because of the vanishing gradient 

problem, deep networks are challenging to train. So, skip connections are used in the model to 

solve that issue. What skip connections do in CNN_2D_ResidualNetwork is adding original input 

to convolution block's output. By doing that, the more vanishing gradient problem decreases, the 

more the model learning speed increases. 

        In the proposed model of our study, additional layers are added to our CNN network that are 

effective in tackling complicated problems in order to improve accuracy and performance. The 

same as CNN_2D, we expanded the dimension of each sample, and we reshaped the matrix from 

(64*1) to (8*8*1). Our network has two encoder blocks, and each block has 2 two-dimensional 

convolutional layers. The output of second convolutional layer concatenates with the input of 

first convolutional layer as the residual connection. Then, the output of second block will be 

connected to 2 fully connected layers. In the middle layers, we used ReLU activation function. 

       The schematic of this method is shown in Figure 8 to better understand their structure and 

their work. 

 

Figure 8: CNN_2D_ResidualNetwork 
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           The next tables show the results of applying CNN_2D_ResidualNetwork on the data with 

four approaches like the previous CNN models: 1) with normalization, imputing missing values 

and SMOTE technique, 2) without normalization, 3) without normalization and SMOTE 

technique, 4) without SMOTE. 

 

 

 Table 23: Results of CNN_2D_ResidualNetwork (with normalize, imputing missing values and SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.62 0.08 1 

Second year 0.97 0 1 

Third year 0.93 0.07 0.97 

Fourth year 0.65 0.22 0.91 

Fifth year 0.73 0.77 0.72 

Total 0.94 0.06 0.97 

 

 

 

 Table 24: Results of CNN_2D_ResidualNetwork (without normalize) 

Year Accuracy  Sensitivity Specificity 

First year 0.93 0.47 0.94 

Second year 0.84 0.52 0.848 

Third year 0.92 0.44 0.94 

Fourth year 0.89 0.33 0.92 

Fifth year 0.85 0.37 0.89 

Total 0.88 0.41 0.90 
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 Table 25: Results of CNN_2D_ResidualNetwork (without normalization and SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.97 0.04 1 

Second year 0.96 0.13 0.99 

Third year 0.95 0.07 0.99 

Fourth year 0.95 0.04 0.99 

Fifth year 0.93 0.34 0.98 

Total 0.97 0.17 0.99 

 Table 26: Results of CNN_2D_ResidualNetwork (without SMOTE) 

Year Accuracy  Sensitivity Specificity 

First year 0.96 0 1 

Second year 0.97 0 1 

Third year 0.94 0 1 

Fourth year 0.95 0 1 

Fifth year 0.92 0.01 

 

0.99 

 
Total 0.96 0 1 

         After comparing theses results, one main insight that we can glean is that when we imputed 

missing values and applied the SMOTE technique (without normalization of data), we obtained 

the best results. So, in the next step, we wanted to check how the results may change with respect 

to different learning rates. To that end, we obtained the new results by implementing three different 

CNN models without data normalization approach (the best one among other approaches 

according to the results of previous steps) with 3 different Learning Rates (LR): 10−3, 10−4, and 

10−5. The following tables show the results after applying CNN_1D, CNN_2D and 

CNN_2D_ResidualNetwork with LR = 10−3, 10−4, 10−5. These tables provide insight about the 

role that learning rate plays in deep learning applied to our data set. 
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 Table 27: Results of CNN_1D (LR = 10-3) 

Year Accuracy  Sensitivity Specificity 

First year 0.86 0.75 0.86 

Second year 0.13 0.94 0.09 

Third year 0.11 0.98 0.05 

Fourth year 0.11 0.99 0.06 

Fifth year 0.08 1.00 0 

Total 0.09 0.97 0.05 

Average 0.23 0.938 0.185 

 

 

 

 

 

 

 Table 28: Results of CNN_1D (LR = 10-4) 

Year Accuracy  Sensitivity Specificity 

First year 0.89 0.71 0.89 

Second year 0.89 0.48 0.90 

Third year 0.81 0.63 0.82 

Fourth year 0.71 0.73 0.70 

Fifth year 0.89 0.59 0.91 

Total 0.87 0.48 0.89 

Average 0.84 0.60 0.85 
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Table 29: Results of CNN_1D (LR = 10-5) 

Year Accuracy  Sensitivity Specificity 

First year 0.89 0.61 0.897 

Second year 0.84 0.42 0.85 

Third year 0.85 0.48 0.87 

Fourth year 0.77 0.42 0.78 

Fifth year 0.70 0.74 0.702 

Total 0.88 0.50 0.89 

Average 0.82 0.528 0.83 

 

 

 

 

 Table 30: Results of CNN_2D (LR = 10-3) 

Year Accuracy  Sensitivity Specificity 

First year 0.93               0.607 

 

               0.94 

 

Second year 0.918 0.394 0.93 

Third year 0.898 0.43 0.923 

Fourth year 0.88 0.417 0.90 

Fifth year 0.918 0.36 0.96 

Total 0.90 0.54 0.91 

 
Average 0.907 0.458 0.927 
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 Table 31: Results of CNN_2D (LR = 10-4) 

Year Accuracy  Sensitivity Specificity 

First year 0.91 0.57 0.92 

Second year 0.93 0.32 0.94 

Third year 0.85 0.40 0.87 

Fourth year 0.87 0.38 0.89 

Fifth year 0.86 0.49 0.89 

Total 0.88 0.59 0.88 

Average 0.878 0.4583 0.8983 

 

 

 

 

 Table 32: Results of CNN_2D (LR = 10-5) 

Year Accuracy  Sensitivity Specificity 

First year 0.937 0.53 0.95 

Second year 0.95 0.24 0.97 

Third year 0.696 0.691 0.696 

Fourth year 0.686 0.514 0.696 

Fifth year 0.898 0.622 0.92 

Total 0.93 0.33 0.954 

Average 0.8495 0.4878 0.8643 
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 Table 33: Results of CNN_2D_ResidualNetwork (LR = 10-3) 

Year Accuracy  Sensitivity Specificity 

First year 0.93              0.372 

 

             0.947 

 

Second year 0.89 0.41 0.91 

Third year 0.87 0.49 0.889 

Fourth year 0.679 0.65 0.681 

Fifth year 0.889 0.58 0.914 

Total 0.688 0.79 0.684 

Average 0.827 0.539 0.841 

 

 

 

 

 Table 34: Results of CNN_2D_ ResidualNetwork (LR = 10-4) 

Year Accuracy  Sensitivity Specificity 

First year 0.93 0.47 0.94 

Second year 0.84 0.52 0.848 

Third year 0.92 0.44 0.94 

Fourth year 0.89 0.33 0.92 

Fifth year 0.85 0.37 0.89 

Total 0.88 0.41 0.90 

Average 0.906 0.395 0.92 
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 Table 35: Results of CNN_2D_ResidualNetwork (LR = 10-5) 

Year Accuracy  Sensitivity Specificity 

First year 0.30 0.98 0.273 

Second year 0.64 0.68 0.643 

Third year 0.821 0.50 0.838 

Fourth year 0.76 0.50 0.774 

Fifth year 0.81 0.69 0.818 

Total 0.85 0.56 0.86 

Average 0.696 0.651 0.701 

 

The results show the most effective learning rate for each CNN: i.e., learning rate 10−4 for 

CNN_1D, learning rate 10−3 for CNN_2D and learning rate 10−3 for 

CNN_2D_ResidualNetwork. As can be seen, the result of accuracy, sensitivity and specificity for 

the data of the first year is better than the data of other five data sets. One reason for this observation 

could be the ratio of bankrupted firms to non-bankrupted firms is minimal in data set one. 

 In the last step, we used 10_fold cross validation to evaluate our three DL models and LR 

model and calculate standard deviation and average of performance metrics. Note that because the 

system for implementing these approaches did not access to a GPU, the results of standard 

deviation and average of each CNN models are calculated for first year data only. This data set 

resulted the best outcomes among others. Table 36 provide a summary of 10-fold cross validation 

corresponding to the three DL models and LR model applied on the first year the Polish data set. 
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 Table 36: Results for 10_fold cross validation 

CNN Average 

accuracy 

Average 

sensitivity 

Average 

specificity 

Std_accuracy Std_sensitivity Std_specificity 

CNN_2D_Residual 

Network 

0.88 0.637 0.889 0.03 0.11 0.03 

CNN_2D 0.919 0.45 0.938 0.01 0.13 0.01 

CNN_1D 0.87 0.60 0.88 0.03 0.14 0.03 

LR 0.595 0.399 0.59 0.05 0.09 0.05 

 

As we can see in this table, the low standard deviation for accuracy shows low deviation from 

the mean for each fold which is an indicator of model robustness on this dataset. While, this rate 

is a little higher (~.1) for our sensitivity metric, knowing that dataset is heavily imbalanced and 

less than 3% of dataset are positive, this fluctuation is acceptable. We can conclude that the degree 

that our all ML/DL models performance change, when using test dataset versus training dataset, 

is minimal. By Comparing the result of 10-fold validation and the result observed from the 

train/test dataset, we also conclude that our test dataset in previous analysis represents a good 

distribution of the whole dataset and we can also rely on this result. 
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6. Discussion 

In this thesis, we created a novel approach for bankruptcy prediction by the aid of DL models 

(CNN). Our analysis is based on the database from Polish companies in the 1st, 2nd, 3rd, 4th, and 

5th year. This data set contains 43405 observations totally over 5 years. We designed several CNNs 

and trained and validated them by using this data set with different learning rates. We also 

conducted a 10_fold cross-validation for each model. Furthermore, we compare the results of our 

DL models including the proposed CNN models with the best learning rate, and ANN models with 

a standard ML technique (LR) in this section. We summarize the best results from every model in 

Table 37 and Table 38. In fact, Table 37 provides an overview of the performance of each model 

and highlights the best in terms of accuracy and sensitivity when the missing data was imputed, 

SMOTE technique was applied, and normalization was not used. Also, Table 38 gives us the best 

accuracy and sensitivity when the missing data was imputed, SMOTE technique was applied, and 

normalization was used. In fact, the important difference between the two tables is that we did not 

apply normalization technique for the first one, while we used normalization for the second one. 
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Table 37: Comparison the results of different models (without normalization, with imputing missing values, with SMOTE) 

Year 

Accuracy  Sensitivity 

ANN CNN_1D CNN_2D 

CNN_2D_ 

Residual 

Network 

LR ANN CNN_1D CNN_2D 

CNN_2D_ 

Residual 

Network 

LR 

First 

year 
0.96  0.89   0.93  0.93  0.65  0.61  0.71  0.61  0.37  0.69  

 

Second 

year 
0.96 0.89 0.918 0.89 0.58 0.44 0.48 0.394 0.41 0.69 

 

 

Third 

year 
0.92 0.81 0.898 0.87 0.64 0.46 0.63 0.43 0.49 0.75 

 

 

Fourth 

year 
0.92 0.71 0.88 0.679 0.735 0.45 0.73 0.42 0.65 0.66 

 

 

Fifth 

year 
0.94 0.89 0.918 0.889 0.79 0.59 0.59 0.36 0.58 0.83 

 

 

Total 0.95 0.87 0.90 0.688 0.60 0.59 0.48 0.54 0.79 0.80  

 

 
Table 38:  Comparison the results of different models (with normalization, with imputing missing values, with SMOTE) 

Year 

Accuracy Sensitivity 

ANN CNN_1D CNN_2D 

CNN_2D_ 

Residual 

Network 

LR ANN CNN_1D CNN_2D 

CNN_2D_ 

Residual 

Network 

LR 

First 

year 
0.95 0.97 0.44  0.62 0.70 0.65 0.1 0.78  0.08 0.76 

Second 

year 
0.93 0.76 0.154  0.97 0.71 0.51 0.38 0.90  0 0.84 

Third 

year 
0.92 0.88 0.856  0.93 0.70 0.51 0.48 0.27  0.07 0.78 

Fourth 

year 
0.90 0.77 0.746  0.65 0.7 0.54 0.47 0.61  0.22 0.66 

Fifth 

year 
0.94 0.91 0.906  0.73 0.79 0.67 0.43 0.31  0.77 0.78 

Total 0.93 0.92 0.51  0.94 0.59 0.54 0.43 0.56  0.06  0.79 
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As shown in Table 37, the obtained accuracy of ANN models is higher than other four 

methods. Then, CNN_1D method achieved the best accuracy after ANN. In general, we observe 

that the accuracy for both models is almost the same for all data sets. However, the lowest accuracy 

is observed for the LR model. In terms of sensitivity, the CNN_1D achieved the highest sensitivity 

for the 1st year and 4th year in comparison to other methods, and the LR model produced the highest 

sensitivity for other data sets. In fact, the CNN_1D model is competitive with the LR method 

according to the sensitivity criterion. Also, it is evident that the accuracy and sensitivity of the LR 

model are in the same range. Furthermore, regarding sensitivity, the LR, ANN, CNN_1D, 

CNN_2D, CNN_2D_ResidualNetwork models have the sensitivity numbers ranging between 66% 

and 83%, 44% to 61%, 48% to 73%, 36% to 61%, 37% to 79%, respectively. 

As it is clear from Table 38, the ANN model achieved the highest accuracy in comparison to 

other methods.  Our results show that when we used normalization, the accuracy of all the models 

increased except the CNN_2D model. As for the sensitivity, the LR model achieved the largest 

one except for 1st and 2nd years, where the best results is obtained by CNN_2D model. In other 

words, the CNN_2D model holds the second place. In contrast, overall 

CNN_2D_ResidualNetwork has the smallest sensitivity for most data sets. This poor performance 

of CNN_2D_ResidualNetwork with normalized data may hint that concatenation of normalized 

data in our application might be suboptimal. Additionally, with respect to sensitivity, the LR, 

ANN, CNN_1D, CNN_2D, and CNN_2D_ResidualNetwork models have the sensitivity numbers 

ranging between 66% to 84%, 51% to 67%, 1% to 48%, 27% to 90%, and 0% to 77%, respectively. 

We can make a conclusion that the LR model achieved the best performance for the range of 

sensitivity compared to other methods, which is the main metric in this data set. Nevertheless, 

some of the developed DL models are quite competitive. 
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       In the last step, we compared our best results with those obtained in other studies that 

considered the same datasets. 

Table 39: Comparison of the obtained results in this study with the results of previous studies (accuracy) 

Study  features  classifier  performance  

Zięba et al  64  EXGB 1st year:  0.95 

2nd year: 0.94 

3rd year: 0.94 

4th year: 0.94 

5th year: 0.95 

Lahmiri et al  64 AdaBoost  1st year:  0.946 

Xiaomao et al 64 XGBG 

XGBG 

XGBSC 

XGBS 

XGBG 

1st year:  0.95 

2nd year: 0.93 

3rd year: 0.93 

4th year: 0.93 

5th year: 0.95 

Marso and El 

Merouani 

64 BPNN 

ABCNN 

3rd year: 81.05 

5th year: 0.92 

Keya et al 12 Bagging 1st year: 0.97 

Marso and El 

Merouani 

64 CSFNN 3rd year: 82.79 

5th year: 90.30 
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Smiti and Soui 64 BSM-SAES 1st year:  0.96 

2nd year: 0.96 

3rd year: 0.950 

4th year: 0.980 

5th year: 0.96 

This study  64 CNN_1D 

CNN_2D_ResidualNetwork 

CNN_2D_ResidualNetwork 

ANN 

ANN 

ANN 

1st year:  0.97 

2nd year: 0.97 

3rd year: 0.93 

4th year: 0.92 

5th year: 0.94 

Total: 0.95 

As you see when we applied these different DL models, the accuracy is higher than the results 

of the previous studies in most data sets. So, the results of our proposed models are compatible 

with the previous contributions in the literature.  

Table 40: Comparison of the obtained results in this study with the results of previous studies (sensitivity) 

Study  features  classifier  performance  

(Sensitivity) 

Aljawazneh et al 64       DBN (With SMOTE_ENN) 2nd year: 0.85 

Aljawazneh et al 64       DBN (With SMOTE) 2nd year: 0.83 

This study 64 CNN_2D 2nd year: 0.90 

According to Table 40, we can compare our result with this paper in terms of sensitivity. In 

the first paper, the researcher used the SMOTE_ENN technique to balance the data, while we used 

SMOTE method. However, they achieved the very same results. 
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7. Conclusion 

In this study, we created five Polish data sets, each for one year, in addition to the entire whole 

data set for bankruptcy prediction based on their financial ratios. This data sets include financial 

data for bankrupt companies from 2007 to 2013 and for non-bankrupt ones from 2010 to 2012 

with 64 financial ratios. After preprocessing the data and using the SMOTE algorithm, we 

developed and applied the new DL models, convolutional neural network (CNN), including 

CNN_1D, CNN_2D, CNN_2D_ResidualNetwork, and ANN models on these six data sets. We 

compared the results of our proposed DL methods with the results of applying conventional ML 

methods such as logistic regression (LR) and the results of the previous work that used the same 

data sets. 

      By analyzing and comparing the extensive numerical results presented in the previous 

sections, we can make a conclusion that the plain LR method is not an efficient model for this data 

set mainly because it should be trained on an unbalanced data set for classification purposes. In 

fact, the inconsistent distribution of the bankrupted and non-bankrupted samples in the data set 

makes a substantial adverse effect on the model prediction and creates bias. It is necessary that we 

balance the data with some technique like SMOTE in the first step, and then apply the LR model. 

By doing this, the sensitivity of the model will increase significantly while its accuracy also will 

become reasonable.  

        In terms of developed DL models, as can be seen in the previous sections, we applied the 

ANN model and tuned the model with different hyperparameters. We also used three different 

CNN models including CNN_1D, CNN_2D and CNN_2D_ResidualNetwork with four various 

data preprocessing approaches and calculated accuracy, sensitivity, and specificity of each model. 

After conducting extensive experiments, we can conclude that by imputing the missing values and 

applying the SMOTE technique, without data normalization, the CNN models achieve better 

performance metrics. Afterwards, by examining three learning rates, we showed that the CNN 

models work better when the data is balanced and missing values are handled, and learning rate 

equals to 10−4 for CNN_1D, 10−3 for CNN_2D_ResidualNetwork and 10−3 for CNN_2D. To 
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further assess the performance of these CNN models, we used a 10_fold cross validation approach 

for the data set, which produced the best results for the 1st year data. Furthermore, we calculated 

the standard deviation and average of performance metrics over all these 10-fold cross validations. 

        Finally, we summarize the novel findings of this thesis. In terms of the accuracy criterion, DL 

methods are dominant in almost all the data sets. Therefore, they may be the model of choice for 

this type of data sets. In terms of the sensitivity criterion, DL methods are competitive with 

traditional methods. In particular, we observed that normalizing the data set adversely impacted 

the sensitivity of deep learning methods while it slightly improved that of the traditional methods. 

One may argue that since the data set contains features that reflect financial ratios for which the 

magnitude of the feature itself might be informative, normalization may hurt feature selection, 

which is the backbone of DL methods. That is, because feature selection is mainly designed for 

the detection of invariance properties in the data set and financial data may lack such properties, 

normalizing the data might negatively impact the sensitivity. Also, although DL is typically a more 

suitable for image and voice processing, the results of this thesis show that applying CNN_1D 

method with proper settings can provide a significant improvement in terms of model sensitivity, 

which is a key performance metric, in analyzing the bankruptcy prediction.  

       There are also some limitations for the deep learning methods we used in this work, which 

may make them not applicable in other data sets and sectors. For example, the response variable 

that we have is binary, i.e., the firm is bankrupt or not. However, the response variable may be 

categorical for other data sets and our proposed methods do not directly apply. Also, the 

independent variables in our data sets are all numerical. If they become categorical or non-

numerical, our proposed methods may not directly apply either.   

        Current study can be extended in the following directions. First of all, a major property of our 

data set is that it is imbalanced, and we used the SMOTE technique to make it balanced. We have 

several results indicating that applying this technique is crucial for improved results. However, 

there are many other techniques to make the data set balanced such as class weight technique. 

Therefore, a natural question is: What would be the results of other balancing techniques on the 
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results? Secondly, we designed and applied three CNN architectures to our data set. However, one 

can design more sophisticated deep learning architectures by considering different convolutions 

and apply them to this data set. Nonetheless, our results show that a simple CNN_1D method 

outperforms more complex architectures. Third, and more importantly, it is interesting to consider 

an ensemble model, where we create many simple CNN models and report some measure, such as 

the average, over all these simple models. This is similar to a random forest approach where the 

results of simple decision trees are combined for the final reports. We expect that the ensemble 

approach will improve validation results and address potential overfitting. Fourth, we have 

analyzed the results of logistic regression as the benchmark. One may use other benchmarks such 

as support vector machines or random forest for classification purposes. Note that although some 

of these benchmarks have already been applied to this data set, a combination of data 

normalization, balancing techniques and so on will create new benchmarks. Fifth, the data set does 

not keep track of firms over time. If such a data becomes available, that is, we have the features of 

a firm over time and the final result of bankruptcy, we can apply time series methods which can 

potentially provide novel insights to this problem where the static model cannot.    
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