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Abstract

Myoelectric Control for Active Prostheses via Deep Neural Networks

and Domain Adaptation

Elahe Rahimian Najafabadi, Ph.D.

Concordia University, 2022

Recent advances in Biological Signal Processing (BSP) and Machine Learning (ML),

in particular, Deep Neural Networks (DNNs), have paved the way for development

of advanced Human-Machine Interface (HMI) systems for decoding human intent

and controlling artificial limbs. Myoelectric control, as a subcategory of HMI sys-

tems, deals with detecting, extracting, processing, and ultimately learning from Elec-

tromyogram (EMG) signals to command external devices, such as hand prostheses.

In this context, hand gesture recognition/classification via Surface Electromyography

(sEMG) signals has attracted a great deal of interest from many researchers. De-

spite extensive progress in the field of myoelectric prosthesis, however, there are still

limitations that should be addressed to achieve a more intuitive upper limb pros-

thesis. Through this Ph.D. thesis, first, we perform a literature review on recent

research works on pattern classification approaches for myoelectric control prosthesis

to identify challenges and potential opportunities for improvement. Then, we aim to

enhance the accuracy of myoelectric systems, which can be used for realizing an accu-

rate and efficient HMI for myocontrol of neurorobotic systems. Beside improving the

accuracy, decreasing the number of parameters in DNNs plays an important role in a

Hand Gesture Recognition (HGR) system. More specifically, a key factor to achieve a

more intuitive upper limb prosthesis is the feasibility of embedding DNN-based mod-

els into prostheses controllers. On the other hand, transformers are considered to

be powerful DNN models that have revolutionized the Natural Language Processing

(NLP) field and showed great potentials to dramatically improve different computer

vision tasks. Therefore, we propose a Transformer-based neural network architecture

to classify and recognize upper-limb hand gestures. Finally, another goal of this the-

sis is to design a modern DNN-based gesture detection model that relies on minimal
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training data while providing high accuracy. Although DNNs have shown superior

accuracy compared to conventional methods when large amounts of data are available

for training, their performance substantially decreases when data are limited. Col-

lecting large datasets for training may be feasible in research laboratories, but it is

not a practical approach for real-life applications. We propose to solve this problem,

by designing a framework which utilizes a combination of temporal convolutions and

attention mechanisms.
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Chapter 1

Overview of the Thesis

1.1 Introduction

An upper-limb difference, be it due to an amputation, or by birth, can deteriorate

the quality of life. The individual can rely on a passive or robotic extension of their

residual limb to perform activities of daily living and to secure a manageable degree

of independence. Despite centuries of advancements, passive prostheses have shown

limited functionality, while active robotic prostheses have a significant potential to (re-

)enable the individual to conduct versatile tasks. For actuating the robotic prostheses,

Electromyography (EMG) [1–9] has been conventionally studied as a potential signal

modality that can translate the peripheral responses of residual muscle activations

into control commands.

Myoelectric control via surface EMG (sEMG) signals [10] has found several appli-

cations of significant engineering importance for the development of neuro-rehabilitation

devices, such as multi-function prostheses. These sEMG-based neuro assistive ma-

chines are generated for the replacement, restoration, and/or modulation of lost or im-

paired function in research and clinical settings [11]. Due to its non-invasiveness and

richness of neural information, sEMG has been used extensively in Human-Machine

Interface (HMI) systems for commercial/clinical upper-limb prosthetic control. Al-

though sEMG has significant utility for control of prosthetic systems, it is affected

by several factors, many of which degrade the quality of the signal and its infor-

mation content [12]. Such factors include pervasive electromagnetic noise, electrode

repositioning, dynamic motions artifacts, changes in electrode-skin impedance (e.g.,

1



because of sweating), and relative movement of the associated muscle with respect

to electrodes (including muscle fiber lengthening and shortening, which changes the

mappings in a stochastic fashion). Moreover, distribution and shape of the underlying

Motor Unit Action Potentials (MUAPs) that comprise the sEMG signal vary greatly

among subjects because of the anatomical variations in locations of the motor units

within the muscle tissue [13]. In summary, the efficacy and acceptance of myoelectric

prostheses are influenced by a number of factors such as noise, the expense of servic-

ing, and specifically intuitiveness of control. These factors can substantially influence

the performance of myoelectric control algorithms [13].

To tackle existing technical and computational challenges, researchers have been

developing advanced Biological Signal Processing (BSP) and Machine Learning (ML)

algorithms aimed towards enhancing a high spatio-temporal resolution for decoding

the intention of the user. In brief, although a major amount of research has been con-

ducted on the design and implementation of sophisticated BSP and ML techniques,

only marginal progress has been made in the clinically-viable commercial solutions

for prosthetic control. More effort is, therefore, needed to address the prosthesis users

needs within multidisciplinary initiatives. An ideal HMI needs to provide consistent,

direct, intuitive, and accurate mechanisms for control of a multi-function prosthetic

system with minimal need for training and calibration. Furthermore, an ideal HMI

should provide sensory feedback mechanisms to enable bidirectional interaction with

the environment, thus creating a closed control loop. More recent advanced HMI

systems, developed in research laboratories, have become increasingly sophisticated

to address some of the above-mentioned objectives. This has been achieved through

the use of embedded mechatronics systems in combination with state-of-the-art ML

modules and real-time BSP pipelines designed to achieve high dexterity and versatil-

ity. Recent evolution in Deep Neural Networks (DNNs) coupled with advancements

in rehabilitation technologies has resulted in a promising future to develop intuitive

myoelectric prostheses. In this context, the sEMG signals derived from the muscle

fibers’ action potentials, have been used in the literature for Hand Gesture Recogni-

tion (HGR) in advanced myoelectric prostheses. In this regard, gesture recognition

and classification has attracted a great deal of interest from many researchers due to

its high potential for improving the quality of control over the actions of prostheses,

which can significantly enhance the quality of lives of hand amputated individuals.
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1.2 Research Objectives

This Ph.D. thesis targets addressing the aforementioned challenges associated with

HGR via sparse multichannel sEMG signals through design and development of novel

DNN-based architectures (also referred to as deep MyoLearning). In this context, the

thesis targets achieving the following three main research objectives:

• Improving the Overall Accuracy of HGR: The first objective to design new

sEMG-based DNN-based models for prosthesis control is to achieve the highest

possible classification accuracy. In fact, high accuracy is of great importance

to achieve the ultimate goal of effectively tracking static and dynamic patterns

and converting classification results into smooth prosthetic actions. The sEMG

signals can be collected based on sparse multichannel sEMG or in more ad-

vanced cases using High-Density sEMG (HD-sEMG) devices. Although high

recognition accuracy is achievable by using HD-sEMG data, the performance

drops when the data is collected based on sparse sEMG devices. As a result,

the existing solutions developed based on sparse sEMG are still far from being

optimal.

• Reducing Complexity of DNN Architectures : A key factor for clinical

adoption of sEMG-based DNN architectures is the feasibility of embedding such

models into prostheses controllers. Computational cost requirements needed to

train conventional DNN architectures such as Convolutional Neural Network

(CNN), Long Short-Term Memory (LSTM), or CNN+LSTM models can easily

exceed many thousands of parameters, especially with the very deep models.

As a result, we are still far away from embedding a DNN model with thousands

of parameters in a prosthetics device. This motivates more research on reducing

complexity of the underlying architectures to design compact DNN models for

deep MyoLearning.

• Developing Adaptive Learning Solutions : Another key factor for practical

utilization of sEMG-based DNN architectures is reducing their training burden.

There is, therefore, a need to develop adaptive learning solutions with a focus on

designing a DNN model, which can be adopted for new subjects based on only a

few examples through a fast learning approach, i.e., reducing the training load.

More specifically, to fill the gap between Source data (train data) and Target
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data (Test data) a concept called domain adaptation is used. It is the ability to

apply an algorithm that is trained on one or more source domains to a different

target domain. In particulat, it is a subcategory of transfer learning. In domain

adaptaion, the source and target data have the same feature space but from dif-

ferent distributions, while transfer learning includes cases where target feature

space is different from source feature space. More specifically, given data or

experience on previous tasks, learning a new task more quickly and proficiently

is another key factor for the practical use of sEMG-based DNNs architectures.

Moreover, fast learning is another factor that should be improved in the field of

deep MyoLearning. Fast learning is an indication of human intelligence, which

involves recognizing an object just by looking at a few examples or quickly re-

peating an action a few times. This is a challenging task since many factors such

as electrode location and muscle fiber lengthening/shortening can affect the col-

lected sEMG signals. Moreover, the neurophysiology differences between users

and the changes caused by amputations result in more discrepancies between

different conditions.

1.3 Targeted Challenges

Despite recent advancements in the field of sEMG-based HGR and increase of its

potential clinical applications, there are still several open problems and challanges,

which require extensive investigations, including:

C1. Lack of Generalizability of DNN-based Architectures : Existing data-

driven approaches designed for HGR are developed based on a single deep model

that can hardly maintain proper generalization performance across various prog-

nostic scenarios.

C2. Joint Incorporation of Spatial and Sequential Information : A com-

mon strategy used for sEMG-based HGR is to convert the multichannel sEMG

recording over fix time windows into images and then use CNN-based image

classification models. The problem with such an approach is that only the

spatial information of sEMG signals are captured without considering the se-

quential nature of the sEMG signals. There is, therefore, a need to capture

both temporal and spatial information of the sEMG signals without the need
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for data augmentation and/or manual design of feature extraction to perform

the recognition task.

C3. High Memory Requirement and Parallelization : While the recurrent-

based models, such as LSTM, are advanced approaches to sequence modeling,

they do not allow parallelization during the training phase due to their sequen-

tial nature.

C4. Design of Compact DNN Models : Although DNN models have shown

promising results for HGR, these data-driven models have been challenged by

the need for a large number of parameters and structural complexity. The chal-

lenge is to design DNN architectures with small number of trainable parameters.

C5. Handling Sequential Inputs with Long-Time Dependencies : Designing

Recurrent Neural Networks (RNNs) to accurately handle sequential inputs with

long-term dependencies is very challenging because of the exploding and van-

ishing gradient problem. There is, therefore, a need to develop transformer

architectures for HGR task because the transformers do not have this prob-

lem as the distance to each element in the sequence is always O(1) sequential

operations away.

C6. Introducing Robustness against sEMG Signal Variations : The classi-

fication accuracy of DNN-based models is affected by several factors such as

users’ characteristics, which are not fully considered in the scientific field. Such

variabilities that exists in the nature of sEMG signals can affect myoelectric

prosthesis performance. There is, therefore, a need to develop adaptive meth-

ods that combine prior knowledge gathered from the source domain with new

information to provide robustness.

C7. Reducing the Training Load : Although DNNs have shown superior accuracy

compared to conventional methods when large amounts of data are available for

training, their performance substantially decreases when data are limited. Over-

coming the issue of having insufficient training data for the system recalibrations

is of great importance for sEMG-based HGR. However, collecting large training

data is time consuming (can take up to several days), and is cumbersome for
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the end-users. Collecting large datasets for training may be feasible in research

laboratories, but it is not a practical approach for real-life applications.

1.4 Thesis Contributions

Below, the contributions of the thesis are briefly outlined:

• Chapter 3 [2,7–9]: Accurate and Efficient sEMG-based Deep Learning

Models for HGR

– Motivated by the potentials of deep learning models in significantly im-

proving myoelectric control of neuro-prosthetic robotic limbs, a novel deep

learning architecture, namely the Hybrid Recognition Model (HRM) for

performing HGR via multi-channel sEMG signals [2, 7], is introduced in

Sub-section 3.1.2 targeting challenges C1 and C2. The HRM architecture

is aimed at enhancing the accuracy of myoelectric systems, which can be

used for realizing an accurate HMI for myocontrol of neuro-robotic sys-

tems. The HRM is developed based on an innovative, unconventional, and

particular hybridization of two parallel paths (one convolutional and one

recurrent) coupled via a fully-connected multilayer network acting as the

fusion center providing robustness across different scenarios. The hybrid

design is specifically proposed to treat temporal and spatial features in two

parallel processing pipelines and to augment the discriminative power.

– A second architecture, referred to as Temporal Convolutional Network

(TCN) [2, 8] is designed, which is developed based on dilated causal con-

volutions. It is worth mentioning that efficiency of a designed deep model,

especially its memory usage, is as important as its achievable accuracy in

practice. The TCN has significantly less memory requirement in train-

ing when compared with the HRM due to the implementation of novel

dilated causal convolutions that gradually increase the receptive field of

the network and utilize shared filter parameters. The training step of the

proposed architecture is considerably faster than that of RNNs due to the

absence of recurrent connections. Moreover, different from the existing

deep learning methods for HGR, in this approach, by applying Conv1d,
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the network itself is able to extract the hidden correlations existing be-

tween different signal sequences. This contribution targets challenges C2

and C3 in Sub-section 3.1.3.

– XceptionTime architecture [9] is designed by integration of depthwise

separable convolutions, adaptive average pooling, and a novel non-linear

normalization technique. By utilizing the depthwise separable convolu-

tions, the XceptionTime network has far fewer number of trainable pa-

rameters resulting in a more efficient and less complex network. This

novel XceptionTime architecture is designed to improve the performance

of HGR both in terms of the recognition accuracy and the complexity of

the system. This contribution targets challenge C4 in Section 3.2.

• Chapter 4 [3, 4]: Attention-Based Models for HGR

– To address the challenges with recurrent architectures and achieve high

accuracy for sparse multichannel sEMG, we proposed the design of the

TC-HGR [4], which is based on self-attention mechanism and temporal

convolution to address the aforementioned challenges with the recurrent

architectures (targeting challenge C3 in Section 4.2). The TC-HGR re-

duces the number of parameters, which is a key step forward to embed the

DNN models into prostheses controllers. Moreover, the TC-HGR divides

the sEMG signals into patches, which reduces the computational burden

of the system. The TC-HGR can access a long history through tempo-

ral convolutions and also can pinpoint specific information in the sEMG

signals through the attention mechanism.

– The TEMGNet [3] is designed on the basis of transformers to enhance

the accuracy of EMG classification. To the best of our knowledge, trans-

former models remain unexplored for the task of sEMG-based hand ges-

tures recognition, making it an urgent quest to investigate their potentials

within this domain. The TEMGNet architecture has been proposed to

eliminate recurrence or convolution using a self-attention mechanism that

targets challenge C5. The proposed TEMGNet architecture was designed

based on the Vision Transformer (ViT) architecture to improve recogni-

tion accuracy and to reduce structural complexity. In Section 4.3, we show
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that the proposed TEMGNet architecture outperforms its state-of-the-art

counterparts in terms of overall recognition accuracy and complexity.

• Chapter 5 [1, 5, 6]: Adaptive-Based Models for HGR

– The FS-HGR framework [1] provides a novel venue for adopting few-shot

learning, to not only reduce the training time, but also to eventually miti-

gate the significant challenge of variability in the characteristics of sEMG

signals. In other words, the proposed FS-HGR framework allows a myo-

electric controller, that has been built based on background data, to adapt

to the changes in the stochastic characteristics of sEMG signals using a

small number of new observations. This class of architectures is introduced

for sEMG meta-learning, where the meta-learner, via adaptation, quickly

incorporates and refers to the experience based on just few training obser-

vations. This contribution targets challenges C6 and C7 in Chapter 5.

1.5 Organization of the Thesis

Chapter 1 (this chapter) provided an overview and a summary of important contri-

butions made in the thesis. The reminder of the thesis is organized as follows:

• Chapter 2 provides the literature review of pattern recognition-based myo-

electric control leading to more advanced DNN-based frameworks (Deep My-

oLearning).

• In Chapter 3, we concentrate on presenting our proposed accurate and efficient

deep learning-based solutions for sEMG-based HGR. In particular, HRM and

TCN architectures are introduced in Sub-section 3.1.2 and Sub-section 3.1.3,

respectively. Furthermore, in Section 3.2, we propose the XceptionTime archi-

tecture.

• Attention-based models for HGR is investigated in Chapter 4. In this chapter,

we introduce two architectures named TC-HGR and TEMGNet in Section 4.2

and Section 4.3, respectively.

• Developing an adaptive learning method is provided in Chapter 5. This chap-

ter focuses on the FS-HGR architecture in particular.
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• In Chapter 6, we conclude the thesis and remaining work will be discussed.
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Chapter 2

Literature Review

The main focus of this chapter is on different myoelectric pattern-recognition control

algorithms, especially DNN-based approaches. As shown in Fig. 2.1, myoelectric

control algorithms can be classified into three main categories, namely:

• Conventional myoelectric control systems: Conventional myoelectric control

systems (e.g., on/off control or direct-proportional) offer several benefits such

as straightforward implementation. However difficulties such as limited Degree

of Freedom (DoF) due to crosstalk have lead researchers to focus on improving

myoelectric control systems by adopting the other categories.

• Pattern recognition control systems, which is the main focus of this research

project and will be described in details.

• Systems that map decoded MUAP pulse trains to control commands. This

category encompasses methodologies that map the extracted neural code from

sEMG to a proportional command signal.

Fig. 2.2 illustrates the schematic of a myoelectric pattern-recognition control pipeline,

which provides a platform for dexterous control of robotic arms and prosthesis. Gen-

erally speaking, pattern recognition control systems can be classified into:

(a) ML-based approaches,

(b) DNN-based methods (Fig. 2.1).

Myoelectric control techniques belonging to the former category (ML-based) typically,

consist of data acquisition, data segmentation, feature extraction, and classification
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While pattern-recognition control models developed based on conventional ML

techniques have shown promising results, it is important to develop control models

that are capable of meeting specific requirements of clinical practice, including: (i)

high accuracy, (ii) robustness, and (iii) capability of adaptation to environmental

changes. Therefore, recent evolution of neural networks coupled with advancements

in rehabilitation and assisted technologies have created a trending shift from classi-

cal ML-based approaches to DNN-based myoelectric control systems (Category (b)

above). Here, we refer to DNN-based myoelectric control systems as “deep MyoLearn-

ing”. These systems rely on the fact that the sEMG signal patterns are specific and

repetitive for particular movements. As such, several research works have focused

on development of advanced deep MyoLearning models for the task of myoelectric

pattern-recognition control. Deep MyoLearning can be categorized into regression-

based techniques (presented later in Section 2.2) and classification-based techniques

(described below in Section 2.3). Advanced deep MyoLearning technologies are po-

tentially capable of achieving the aforementioned requirements of clinical practice for

adoption in real-world applications.

In the following subsections, first, we provide a brief overview of public databases

as a unified platform to train and evaluate new deep MyoLearning models. Second,

we present state-of-the-art deep MyoLearning solutions together with their challenges

and opportunities for successful translation into practical settings.

2.1 Myoelectric Control Prosthesis Supporting Databases

Table 2.1 summarizes public scientific benchmark datasets that can be utilized to

develop, implement, and evaluate new DNN/ML architectures. These databases are

introduced for movement recognition and force control with the ultimate goal of facil-

itating development of non-invasive and naturally controlled robotic hand prosthesis.

The main focus of these datasets is to achieve one or more of the following objec-

tives: Provide a common evaluation platform, along with a repository of myoelectric

signals [15]; Increase the number of both non-disabled and amputated subjects partic-

ipating in the data collection [16–18]; Increase the type and number of gestures [16];

Collect sEMG signals with different acquisition setups [19], and; Increase the number

of sessions to explore repeatability in sEMG data and providing a unified platform
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for improving the robustness of robotic prosthetic hands [20, 21]. Other databases

such as [22] are collected to be used for estimation/reconstruction of finger move-

ment rather than motion/grip classification. Recently introduced dataset in [23] is a

multimodal database including EMG, inertial, gaze tracking, visual, behavioral and

clinical data, which provides a medium for prosthetic and phantom limb sensation

analyses. Finally, datasets introduced in References [20, 24–26] consist of HD-sEMG

measurements providing the foundation to develop and test DNN-based models based

on the HD-sEMG signals.

2.2 Pattern Regression for Myoelectric Control Sys-

tem

Regression-based techniques (typically, via combination of several regressors) have

been used to identify and estimate different movements in a continuous space across

several DoFs. Unfortunately, the prediction accuracy of such techniques is not yet

at a level to be used in practical settings. As an alternative, some researchers such

as [27] adopt a regression CNN to estimate wrist motions based on sEMG signals.

Unlike CNN-based classification methods, regression CNNs allow for independent and

simultaneous control so that several DoFs can be manipulated concurrently with dif-

ferent magnitude. This allows for more dexterous and realistic prosthetic motion

than low-DoF proportional control or discrete classification control. This CNN-based

regression technique was validated by real-time control tests that demonstrated su-

perior performance compared to SVM-based techniques [27]. Other research works

(e.g., [28]) predict grasping force levels based on a combination of Principal Compo-

nent Analysis (PCA) and DNN for control of a prosthetic hand. More specifically,

dimension reduction of time domain features are achieved by PCA, and then a sEMG-

force regression model is generated by using DNN. This is an important step toward

improving the grip of prosthetic hand based on force prediction.
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2.3 Pattern Classification for Myoelectric Control Sys-

tem

Table 2.2 summarizes the recent DNN-based algorithms for the task of pattern classi-

fication for multifunctional upper limb prosthesis control. DNN models are developed

to address one or more of the following three objectives:

• Achieving high accuracy [2, 24,29–32],

• Improving robustness [12, 25,33,34],

• Adaptability [25,35–38].

We explain these three objectives along with a brief overview of recent efforts devoted

to achieve each one.

2.3.1 High Accuracy

Several recent DNN-based pattern classification architectures (deep MyoLearning)

have been motivated by the observation that a small group of muscles play a significant

role in specific hand movements. Typically, the main focus of new DNN-based models

for prosthesis control is to achieve the highest possible classification accuracy. High

accuracy is indeed of paramount importance to achieve the ultimate goal of efficiently

tracking both static and dynamic patterns and translating the classification results

into smooth prosthesis actions. Early DNN-based works investigated the application

of HCF coupled with different ML classifiers such as LDA, SVM, random forests, and

KNN [16]. It was shown that among these traditional classification models, random

forests provide the highest accuracy. Next, a transition from conventional ML models

to deep MyoLearning took place, starting with design of simple DNN architectures.

The first design step for construction of DNN-based architectures is to select the type

of input for feeding deep learning models. Options include:

(i) Raw EMG signals resulting in an end-to-end deep model,

(ii) Time domain features,

(iii) Time-frequency features such as spectrograms using Short-Time Fourier Trans-

form (STFT).
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Initial approaches focused on utilization of DNN models in an end-to-end fashion

without the need to use predefined HCFs [2,24,29–31] (Item (i) above). For example,

it was shown in [29] that a simple CNN architecture (trained in an end-to-end fashion

based on raw signals) is capable of providing comparable results to those obtained

by classical ML techniques for classification of sEMG signals. Such results where

further extended to HD-sEMG signals, where end-to-end CNN architectures are de-

signed achieving significantly high accuracies [24]. Capitalizing on the high accuracy

achieved by CNN architectures with HD-sEMG data, it was concluded that patterns

present within HD-sEMG signals make them an ideal option for the development of

highly accurate DNN-based pattern classification models [24]. Such DNN-based mod-

els can include one of the following structures: (a) CNNs; (b) RNNs, or; (c) combined

architectures (i.e., hybrid CNN-RNN). More recently, the Temporal Convolutional

Network (TCN) was adopted in [2], which not only provides several advantages over

RNNs such as lower memory requirement and faster training but also increases the

receptive field of the network capturing the temporal information of sEMG. Alterna-

tively [31], defines the sEMG-based pattern classification as an image classification

problem to take advantage of Multi-Stream (MS) CNN architectures. The sEMG im-

age can be constructed based on traditional sEMG or HD-sEMG signals. HD-sEMG

signals are sampled at a high frequency, therefore, the size of instantaneous sEMG

images is the same as that of the electrode array used to record the HD-sEMG signals.

However, traditional sEMG signals are collected at a low sampling rate, therefore, a

sliding window of specific length is required to segment these signals and then con-

vert them to sEMG images. Alternatively, some researchers such as [30] proposed

hybrid CNN and RNN architecture to better capture spatial and temporal features

of sEMG signals for pattern classification tasks. It is shown [30] that hybrid CNN-

RNN architecture has a higher classification accuracy in comparison to networks in

which only CNN is adopted when both HD-sEMG and sEMG signals are used as the

input. Results obtained from hybrid DNN architectures compared favourably against

those from state-of-the-art classical ML approaches, showing that deep MyoLearning

outperforms its classical counterparts [30].

The most recent trend to further improve accuracy of pattern classification al-

gorithms is the integration of HCFs and deep features (Items (ii)-(iii) above). Such

algorithms [32] start by extracting HCFs, which are then used by DNN architectures
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to enhance the overall accuracy. Here, the focus is on learning from multiple feature

sets instead of designing an end-to-end learning model (i.e., learning only from raw

sEMG signals). For example, reference [32] first extracted multiple engineered fea-

ture sets from raw sEMG data, providing different representations of the underlying

sEMG signals. Extracted HCF sets were then converted to an image, which was pro-

vided as the input to a CNN-based framework for performing pattern classification.

Reference [39] concluded that combination of conventional feature extraction-based

methods with advanced DNN models, when coupled smartly and in an efficient fash-

ion, has the potential to achieve better results (compared to the case that either used

alone).

Despite the aforementioned developments and although existing scientific publi-

cations report high accuracy, the existing gap can be attributed, in part, to the fact

that classification accuracy of DNN-based models is affected by several factors not

being considered fully in scientific domain. The underlying factors include: Effects

of utilized pre-processing techniques; Nature of selected feature representations and

classification model; Number of participants in data collection both in terms of in-

tact and trans-radial amputees subjects; Number of gestures; Number of repetitions

of each gesture (increasing the number of repetitions for each movement will result

in fatigue); Acquisition setup ; Clinical parameters related to the amputation (e.g.,

remaining forearm percentage, phantom limb sensation, use of prostheses); Subject’s

characteristics; Electrode shifts; Effect of limb position, and; Non-stationary nature of

sEMG signals varying over days. Therefore, improving the accuracy of DNN models

is not the biggest hurdle limiting their use in clinical applications. Instead, there is an

urgent need to focus on alternative ML/DNN models, e.g., compact DNNs with far

less number of trainable parameters. To design a more proportional, intuitive, and

dexterous prostheses, the robustness of a DNN-based model is considered in some

research works, while others pay more attention to adaptability. Next, we review

these two research directions.

2.3.2 Robustness

Enhancing robustness for control of myoelectric prosthesis [29] is an effective approach

to bridge the gap between real-world usage and scientific developments under labo-

ratory conditions. One of the factors that affects robustness of myoelectric control is
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electrode shift, which occurs during prosthesis donning and doffing. Therefore, some

researches focus on compensating the effects of electrode shifts. Reference [33], for

instance, is one of the state-of-the-art research works, which improves the robust-

ness of a myoelectric control system by proposing an adaptive calibration of electrode

array shifts via Transfer Learning (TL). More specifically, CNN along with TL is

used to reduce the amount of sEMG data required, and to determine the patterns at

the initial position of HD-sEMG electrode array. Then, overlapped regions between

the training and testing images are identified and matched to estimate electrode ar-

ray shifts in an unsupervised fashion. When this system was then compared with

five classical methods, it was demonstrated to be robust to designated shifts, while

the performance of other methods dropped when there were shifts in electrode array

during the testing phase.

The use of the TL approach can, to some extent, overcome the issue of having

insufficient training data for the system recalibrations. Along a similar path, a super-

vised approach based on TL and CNNs is constructed in [34] to improve robustness to

electrode shifts. More specifically, a CNN network is pre-trained, and then fine-tuned

with the data obtained after electrode shifting. The CNN-TL approach demonstrates

superior performance over the architectures that train a CNN from scratch. Adverse

effects resulting from electrode shifts can similarly be introduced by limb position

changes. The authors in [12] proposed a robust Sparse Representation Classification

(SRC) model that is more robust to untrained effects, such as limb position changes,

that affect myoelectric prosthesis performance.

Another direction of recent research is to introduce robustness against variation

of HD-sEMG signals between different sessions, which is observed even for the same

user in the same experimental conditions across different sessions. Although high

recognition accuracy is achievable by using HD-sEMG data, the performance drops

when the data is collected in different sessions. In this regard, a deep domain adap-

tation is proposed in [25], which is robust to the inter-session recognition settings.

Furthermore, robustness enhancement is targeted by adopting a long-term approach

instead of focusing on short-term conditions. Commonly, short-term recordings of

sEMG data are used to train and evaluate different DNN-based frameworks. This is

a critical barrier to achieve robustness because of the day-to-day variant nature of

sEMG signals. Therefore, sEMG signals recorded on different days can be used to
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develop and test for robust DNN models. Despite recent targeted focus on improving

robustness in DNN-based myoelectric control models, more research is still needed,

particularly on the design of new classification models, a unified framework for TL

and domain adaptation, and long-term robustness.

2.3.3 Adaptability

Employing adaptive methods with a focus on transferring information and knowledge

between source and target domains (despite their inherit differences) is another at-

tractive direction for addressing the gap between scientific achievements and clinical

application of myoelectric prosthesis between these domains. More precisely, the goal

of adaptive approaches is to develop a learning algorithm that combines the prior

knowledge and experience gathered from the source domain with new information.

Generally speaking, the following two issues of prosthetic hand control can (partially

and possibly) be addressed by adaptive approaches:

(i) Training Time: The first problem is the extended training time required by

the end-user to mitigate the differences between the desired and performed

movements. Such a training process, which is time consuming, tedious and

unpleasant, can take up to several days.

(ii) Variability in the Nature of sEMG Signals: The second issue is the variability

in the nature of the sEMG signals. This variability is caused by:

– The time-dependent and stochastic nature of human neurophysiology, which

changes the mapping between neural drive and the sEMG recording over

time (partly due to fatigue).

– The dependency of neurophysiology on the dynamics and kinematics of

tasks.

– The variability of neurophysiology between different users and the changes

caused by amputations.

In addition, sEMG recordings vary based on electrode location. Given such

variations, therefore, probability distributions of sEMG signals obtained at each

time could be completely different from another observation. Consequently,

models trained based on some specific observations may not consistently and
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directly be reused over time. This would require retraining and recalibration,

which makes it difficult for the user. In many cases, this challenge limits the

use of these advanced myoelectric prostheses to research laboratories, where

calibration and recalibration can be done recurrently.

Capitalizing on potentials of adaptive DNN-based solutions, there has been a recent

surge of interest on adaptability of pattern classification DNN models. For example,

in [25], the authors defined HGR as a multi-source domain adaptation problem in

which the HD-sEMG signals are collected through multiple sessions. The proposed

deep domain adaption algorithm starts to adapt while the device is being worn and

stops when it is removed by the user; therefore, it is compatible to new sessions or

subjects.

As another example, the authors in [35] not only used TCNs to attain high per-

formance, but also utilized adaptive reinforcement training to integrate previously

unseen classes into model predictions. TL is another method that can be used to

reduce training data by taking advantage of inter-subject data for the purpose of

sEMG-based gesture recognition [38]. More precisely, the data-hungry nature of DNN

models is addressed by mapping a function between source and target domains, as

such facilitating pattern classification for a new user by pre-training the model on

multiple subjects.

Before the emergence of deep learning, the second issue was tackled intelligently

in [36, 37] via feature engineering rather than using different twists of data and clas-

sifier combinations. More specifically, they proposed the multi-user myoelectric that

can adapt to new users. Incorporation of such methodologies within the context of

DNN-based frameworks could potentially be a fruitful direction for future research.

2.4 Conclusion

As discussed previously in Section 2.3, concentrated efforts have been devoted to pro-

vide a pattern recognition control system for upper limb prosthesis with the following

characteristics: (i) high accuracy, (ii) robustness (e.g., against electrode shift or limb

position), and; (iii) adaptability. Another topic of recent focus is simultaneous and

proportional control through use of regression-based techniques (discussed in Sec-

tion 2.2). In addition, another key factor is the feasibility of embedding DNN-based
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models into prostheses controllers. Computational cost requirements needed to train

DNN-based models can easily exceed many thousands of parameters, especially with

the very deep models. As a result, we are still far away from embedding a model

with thousands of parameters in a prosthetics device, and more research on compact

DNN models is required. Despite extensive progress in the field of myoelectric pros-

thesis, however, there are still limitations that should be addressed to achieve a more

intuitive upper limb prosthesis.
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Chapter 3

Accurate and Efficient sEMG-based

Deep Learning Models for HGR

The problem of accurately and efficiently (computation-wise) recognizing a (possibly

large) set of hand gestures using sparse multichannel sEMG signals for myoelectric

control of neuro-prosthetic robotic limbs is still far from being solved. Motivated by

potentials of deep learning models in improving performance of such systems, this

chapter focuses on development of hand gesture recognition via deep learning-based

architectures. In this context, first in Section 3.1, we focus on improving gesture

recognition accuracy. In Section 3.2, then, we focus on reducing gesture recognition

complexity.

3.1 Improving Gesture Recognition Accuracy

While deep learning models have great potentials to improve the overall hand gesture

recognition accuracy, their performance for accurately recognizing a set of hand ges-

tures is still far from being acceptable. This section addresses this gap by proposing

two novel deep learning architectures, namely the Hybrid Recognition Model (HRM)

(Sub-section 3.1.2), and the Temporal Convolutional Network Model (TCN) architec-

ture (Sub-section 3.1.3). The proposed HRM framework aims to enhance accuracy

of myoelectric systems with the eventual goal of realizing an accurate and resilient

man-machine interface for myocontrol of neuro-robotic systems. In contrary to the

existing data-driven approaches, which are commonly developed based on a single
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deep model, the proposed hybrid architecture consists of two parallel blocks (one

convolutional and one recurrent). A fully connected multilayer fusion neural net-

work, which acts as the fusion centre, combines the output of the two parallel blocks

to form the target gesture classification. Such a hybrid architecture is specifically

designed to separately process temporal and spatial features via two parallel learning

pipelines to augment the discriminative power of each individual model.

In practice, training speed of a designed deep model, especially its memory usage,

is as important as its achievable accuracy. To maintain (or even improve) the achieved

accuracy of the HRM architecture, the TCN framework is developed based on dilated

causal convolutions, which increase the receptive field of the network. In other words,

the training step of the TCN architecture is considerably faster than that of HRM due

to the absence of recurrent connections. Moreover, different from HRM and existing

deep learning methods, by applying Conv1d, the TCN network itself can extract the

hidden correlations existing between different signal sequences.

3.1.1 Material and Methods

Before presenting the proposed hand gesture recognition architectures, below, we

discuss the utilized dataset for training purposes followed by the pre-processing step

used to prepare training, validation, and test sets.

Database: For development of the proposed DNN architectures, we used the second

dataset from Ninapro [16], which is called the DB2. Ninapro is a publicly available

hand gesture recognition dataset widely used in this field, which is collected via Delsys

Trigno Wireless EMG System with 12 wireless electrodes (channels). The electrical

activities of the muscles are recorded at the sampling rate of 2 KHz. The DB2 dataset

is collected from 40 healthy individuals performing 50 different gestures such as hand,

functional, wrist, and grasping movements coupled with different force patterns. The

population used for data collection consists of 12 females and 28 males within 29.9±3.9

age range. The DB2 dataset consists of three different exercise sets referred to as

Exercise set B, C, and D, where individuals participating in the data collection task

perform repeated movements (6 times, each lasting for 5 seconds). Each movement

task is followed by a rest period of 3 seconds. Here, we use Exercise B to design

and implement the proposed HGR models (i.e., the HRM and the TCN). Exercise

B consists of 17 different movements. As shown in Fig. 3.1, the utilized dataset

25





beginning and end of each movement. To improve the signal’s labeling, the Posterior

database is constructed, where labels are refined a-posteriori to only represent real

movements. As illustrated in Fig. 3.2, the restimulus signal, which is shown via solid

red lines, represents the actual movements. As shown in Fig. 3.2, in the “Posterior

database” the duration of trials for the active signals are not the same as individuals

have different response time to react to the incoming stimulus.

We follow the recommended configuration provided by the dataset producers and

use Repetitions 1, 3, 4, and 6 of the Prior Dataset for training purposes. Repetitions

2 and 5 from the Prior Dataset and the Posterior Dataset are then utilized to test

the trained models.

Pre-processing Step: Before implementation and training the two proposed archi-

tectures, we need to pre-process the input multi-channel sEMG dataset to remove

noise, artifacts, and also to transform the signals in a particular format to be used

as the input to each of the proposed architectures. In this regard, we pre-process

the Exercise B data from DB2 by applying a 4th order Butterworth low-pass filter

with a 20 Hz cutoff frequency. This filtering step is then followed by a normalization

step using the Z-score approach. To compare the proposed method with previous

literature and also to satisfy the acceptable delay proportional to motor intention

reaction time (which should be under 300 ms [40], the sEMG data for each channel is

segmented by a window of length of 100 ms (200 samples per window). Furthermore,

we consider sliding window with steps of 10 ms to construct the training, validation

and test data.

This completes a brief introduction to the utilized dataset and the pre-processing

step. Next, we introduce the proposed HRM followed by the design of the TCN in

Section 3.1.3.

3.1.2 Hybrid Recognition Model (HRM)

Fig. 3.3 illustrates a schematic of the proposed hybrid HRM architecture. The input

to the HRM is multi-channel sEMG signals. The multi-channel sEMG signal space is

used as the input to the network while applying the sliding window strategy mentioned

in Sub-section 3.1.1. The input of the model, therefore, is a two-dimensional matrix

composing of rtw number of columns (representing the size of the sliding window),

and rs number of rows (representing the number of channels (sEMG sensors)). The
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Figure 3.3: (a) The schematic of the proposed hybrid architecture, which consists of three main
blocks called the CNN Block, the LSTM Block, and Classifier Block.

proposed HRM architecture consists of three main blocks, i.e., the CNN block; the

LSTM block, and; the Fusion block. The details of these blocks are described in

details below:

(i) The CNN Block: This block is used to extract informative spatial features

from multi-channel sensory data. For this purpose, although, 2-D convolutional

layers are used in the model, the kernels have one dimensional (1-D) structure.

Using 1-D kernels within the CNN block makes the extracted features indepen-

dent from each other. In other words, the sensors’ data arrangement in the

segmented input window will not affect the final CNN block’s extracted fea-

tures. This part of the model is constructed by three convolutional layers. The

first and second CNN layers both comprise of 10 kernels with size of (1 × 10).

Each of these two CNN layers are then followed by Max-Pooling layers with the

filter of size of (1× 2). The third and last CNN layer has one filter with size of

(1× 3). After each convolutional layers, tanh activation function is used to add

non-linearity to the model.

(ii) The LSTM Block: Many to one sequential mapping structure is employed

for the LSTM path, which is used in parallel to the CNN block to extract the

hidden temporal correlations existing in multi-channel sEMG time series. The

LSTM block consists of 3 LSTM layers. The first two layers of the LSTM consist

of 32 cell structures followed by the third LSTM layer having 64 cell structure.

(iii) The Fusion Block: The features extracted by the CNN path is flattened and

then concatenated with the temporal features obtained by the LSTM block.
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Finally, the resulting vector is fed to the final block of the model, referred to as

the Fusion Block. This part of the proposed model is composed of three fully

connected layers, which allow the features resulted from the CNN and the LSTM

blocks to be incorporated by the proposed architecture. Both the first and the

second fully connected layers have 100 neurons followed by Rectified Linear Unit

(ReLU) function while the third layer consists 17 neurons representing the 17

output gesture classes.

It is worth clarifying the rational behind designing the HRM as parallel architecture

and not in a series format is that:

(a) Using a series architecture will increase the latency of the overall model as the

second model needs to wait for computations of the first model to be completed,

which is a negative factor for real-time HGR tasks; and,

(b) The error will more boldly propagate through the network once the output

features of one model are used as the input to the second one.

In the proposed parallel architecture, however, both the CNN and the LSTM paths

start with raw measurements as such error from one model will not propagate to the

second one directly. This completes the presentation of the proposed HRM. Next,

we present the TCN.

3.1.3 Temporal Convolutional Network (TCN)

In this section, we present details of the second model, the TCN architecture, which

can be considered as a compact DNN in comparison to the HRM and as such has a

faster training phase. In the TCN, different from the HRM, after the pre-processing

step, sEMG signals from the recording sensors (12 sensors used in the collection of the

DB2 dataset) are provided, separately, as inputs to a (1 × 1) convolution layer with

10 kernels. The features are concatenated channel-wise, which are then fed to the

first block of the TCN architecture. This input strategy will result in increasing the

number of input features, i.e., with signals from 12 sensors and using 10 kernels we

end up with 120 input features. In other words, this approach allows us to train 120

different features on the first layer of the network. Furthermore, as instead of using

Conv2D, we employed Conv1D, the network is equipped with the capability to extract
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Figure 3.4: (a) The schematic of the TCN architecture. (b) The identity block. (c) The Con-
volutional block. (d) The dilated causal convolution (dilation factor d is equal to [1, 2, 4, 8] for the
layers). The receptive field of the last neuron in the output layer is shown in “pink”.

hidden correlations between different signals without using the permutation approach

introduced in Reference 41. Fig. 3.4(a) illustrates the proposed TCN architecture. As

can be seen from Fig. 3.4(a), the proposed architecture consists of two main building

blocks, i.e., the Identity block (shown in Fig. 3.4(b)), and the Convolutional Block

(shown in Fig. 3.4(c)) which includes Dilated Causal Conv1D (shown in Fig. 3.4(d)).

These blocks are designed as follows:
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(i) The Identity Block: This Block, shown in Fig. 3.4(b), is one of the main

blocks of the TCN architecture. This block consists of the following components:

– Shortcut (Skip Connection): Although very deep networks are capable of

extracting highly complicated features, using deep network may not always

lead to achieving a better result. This is because highly deep networks,

typically, suffer from the issue of vanishing gradient, referred to as the

Degradation problem. In this work, by inspiring from ResNets [42], we

address the degradation problem by adding a shortcut or a skip connec-

tion to the identity block, where the dimension of input and output are

identical.

– Dilated Causal Convolutions: A critical issue for the time-series modeling

of sEMG signals for hand gesture recognition is how to prevent leakage of

data from future samples to past instances. Causal convolutions [43, 44]

are used to address this problem. Another advantage of incorporating

the causal convolutions is that they do not have recurrent connections.

Therefore, the required training time is substantially less than that of

RNNs. Despite having these benefits, however, the receptive field of causal

convolutions is small. By inspiring from [43, 44], we used dilated causal

convolutions within the Identity block of the proposed architecture to ad-

dress the issue related to the limited receptive field of casual convolutions.

Fig. 3.4(d) illustrates how dilated causal convolutions can increase the re-

ceptive field. In general, for one dimensional sEMG input sequence x ∈ R
n

with a filter f : {0, . . . k − 1} → R on element s of the sequence, dilated

causal convolution DCC is defined as follows:

DCC(x ∗d f)(s) =
k−1∑

i=0

f(i) . xs−d·i, (1)

where d is the dilation factor, k is the filter size, and s−d · i shows the past

direction. When the depth of the model is increased, the dilation factor

d is exponentially increased; i.e., d = 2l at layer l of the model. More

specifically, the dilation factors d is exponentially increased by a factor of
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2 in each layer l = 1 . . . L where L is the number of layers of the dilated

causal convolutions in the proposed TCN model (Figure 3.4). The dilation

factor in the TCN model is as follows:

d ∈
[
20, 21, . . . 2L−1

]
(2)

A dilated convolution reduces to a regular convolution when d = 1.

– Weight Normalization: To increase the training process and following the

intuition provided by Reference [45], weight normalization beside normal-

izing the input signals are utilized within the Identity Block.

– Activation Function (ELU): Exponential Linear Unit (ELU) [46] is used

as the nonlinear activation function and is the last component within this

block.

This completes the description of the Identity block. Next, we present the

Convolutional Block.

(ii) The Convolutional Block: This block is employed when the input and output

dimensions do not match. This happens as the number of filters used within

the dilated causal components can vary from one block to another, which in

turn results in a miss-match between the dimension of the input sequence and

that of the output sequence. For instance, such a miss-match happens when, for

example, 64 filters are used in the first block while the number of filters utilized

in the second block is 128. To deal with such scenarios, the Convolutional block

is introduced. The difference between this block and the identity block is that

there is a (1× 1) convolution layer in the shortcut path, which resizes the input

to a different dimension to match up with the output sequence. Fig. 3.4(c)

illustrates a Convolutional block.

(iii) TCN Network Structure: As stated previously, the signals provided as in-

puts into the TCN architecture are separately fed to a (1×1) convolutions layer

with 10 kernels. The outputs are then concatenated channels-wise and fed to

the first residual block of the network. The proposed architecture has 3 Con-

volutional Blocks and 2 Identity Blocks together 2 (1× 1) Convolutions layers
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and 2 fully connected layers. The details of the TCN architecture are provided

below:

– The first Convolutional Block has 64 kernels with size 5. The dilation

factor for dilated causal convolutions is set equal to 1.

– Similarly, the first Identity Block of the architecture has 64 kernels with

size 5. On the contrary to the previous convolutional block, here the factor

for the dilated causal convolutions is set equal to 2. Therefore, the output

neurons in this block have extended the receptive field.

– The second Convolutional Block has 128 kernels with size 5 and an in-

creased dilation factor of 4.

– The second Identity Block has 128 kernels with size 5 with now dilation

factor of 8.

– The third Convolutional Block has 256 kernels with size 5 and dilation

factor of 16. The receptive fields of the blocks are increased as we move

deeper into the network.

– The outputs from the third Convolutional Block, which has 256 channels,

are fed to (1× 1) Convolutions with 64 kernels, and then ELU activation

function is applied on the output.

– There are another (1× 1) Convolutions followed by ELU activation, which

reduces the size of the input channels to 2.

– The first fully connected layer reduces the size of its input features to 150.

– The second fully connected reduces further reduces the size of the features,

i.e., from 150 features to 17, which is equal to the number of classes.

We used Adam optimizer as the optimizer algorithm with a learning rate set of 0.001.

The learning rate changes in a cycle with a length of 100 epochs. After 20 epochs, we

divided the learning rate by 2, but after 100 epochs instead of dividing the learning

rate by 2, we multiply it by 14.4. Therefore, the learning rate at the beginning of

each cycle will be 90% of the learning rate at the beginning of the previous cycle.

Finally, the dropout[47] is set equal to 0.3.
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3.1.4 Experiments and Results

In this section, we evaluate the performance of the proposed HRM and TCN architec-

tures based on different criteria and provide comparisons with recent state-of-the-art

results [48] obtained based on the same dataset.

Existing research works [24, 30, 38, 49] used different datasets for evaluation pur-

poses ranging from private ones, e.g., Reference [49], or public datasets such as

Ninapro, Capgmyo [24], or CSL-HDEMG datasets. Ninapro consists of sparse multi-

channel sEMG signals, while the Capgmyo and CSL-HDEMG are based on HD-sEMG

signals. As stated previously, the focus of the thesis is on hand gesture recognition

via sparse multi-channel sEMG. Therefore, we used Ninapro database. More specifi-

cally, in this part, we focused on classifying 17 hand and wrist movements of Exercise

B from DB2 database and followed the recommended configuration provided by the

dataset producers to construct train and test sets. For evaluation purposes and to

have a fair comparison, the following criteria needs to be considered:

(i) The results should be evaluated over the same dataset;

(ii) Training and testing sets must be similar for fair comparison, and;

(iii) The window length used to segment sEMG signals should be the same.

Although References [24,30,38] used the Ninapro database, different sections such as

DB1, DB3, DB5, or other sub-database of the DB2 database, i.e., Exercises C or D

are used rendering fair comparison impossible. Some other works developed based

on the Ninapro database, used different train/test sets other than the recommended

ones or used other window lengths to segment the sEMG signals. Consequently, we

have focused our comparison on Reference [48].

In brief, Reference [48] is considered a hybrid setting but with two CNN paths

designed in parallel. The first CNN path (referred to as Block 1 or B1 in short)

consisted of five convolution layers and two maximum pooling layers, while the second

parallel CNN path (referred to as Block 2 or B2 in short) only has five convolution

layers. The main architecture, referred to as the C-B1B2, which achieved maximum

accuracy of 83.79% on the Posterior Dataset, no results are provided for the Prior

Dataset. Reference [48] also considered alternative architectures of similar nature

by changing different features of the network such as convolution kernel size. For
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Table 3.1: The Accuracy between our model and Reference [48].

Data Method Accuracy (%)

Ours
Prior data Hybrid Model 98.01

Posterior data Hybrid Model 97.35

Ours
Prior data TCN Model 90.14

Posterior data TCN Model 92.5

[48]

Prior data - -

Posterior data

C-B1B2 83.79

CC 77.96

C-2B1 82.16

C-2B2 82.49

C-DK 79.23

C-SK 78.52

C-Sk2 81.3

example, in the C-2B1 model, Block1 is used in parallel with itself, while in the C-

2B2 model, Block2 is used in parallel with itself. In the C-DK model, convolution

is conducted with a different kernel. Finally, models C-SK and C-SK2 use smaller

kernel sizes. Results based on the aforementioned variations are provided in Table 3.1

for comparison purposes.

We evaluate the proposed models based on both Posterior and Prior datasets.

In computing the overall accuracies, we use trials (repetitions) to evaluate our ar-

chitecture. Table 3.1 shows the average accuracy obtained from the proposed HRM

architecture. It can be observed that the proposed hybrid architecture consisting of

a CNN block designed in parallel with an LSTM path significantly outperforms its

counterpart and improves the recognition accuracy from 83.79% to 97.35% on the

Posterior data.

Our proposed HRM achieves 98.01% accuracy on the Prior dataset, which is even

higher than the best result reported in Reference [48] for the Posterior dataset. We

would like to point out that having better results on the Prior dataset in comparison

to the Posterior dataset is due to the fact that the model is trained based on the
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(b) Posterior data.

Figure 3.5: Confusion matrix of the HRM

Prior dataset. This further shows the superiority of the HRM in comparison to its

counterpart, considering the fact that the results obtained from the Prior dataset are

expected to be less than those obtained based on the Posterior dataset.

Along the same trend, the TCN improves the recognition accuracy from 83.79%

to 92.5% on the Posterior data. It can be observed that the proposed architecture

considerably improves the recognition accuracies in the Posterior dataset when com-

pared to its existing solutions. As expected, accuracy on the posterior data is better

than that obtained from the Prior dataset because the labels associated with the du-

ration of the movement are refined, therefore, representing the real movements. Our

proposed framework archives 90.14% accuracy on the Prior dataset, which is even

higher than the best result reported in Reference [48] for the Posterior dataset.

The HRM’s confusion matrix on the Prior dataset is obtained, as shown in

Fig. 3.5(a), to analyze the classification performance on testing data. Fig. 3.5(b)

shows the HRM’s confusion matrix for the Posterior dataset. There are 17 rows (and

correspondingly 17 columns) in the confusion matrices each associated with one of

the 17 movements. We would like to point out that the total number of repetitions for

each movement (we have the total number of 17 movements) in the test set (as speci-

fied by the DB2 dataset) is equal to 80. This is because, 2 repetitions are specified to

be used for test purposes (i.e., Repetitions 2 and 5) each with 40 subjects. Therefore,
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(b) Posterior data.

Figure 3.6: Confusion matrix of the TCN

in Figs. 3.5(a) and 3.5(b) the maximum number of the diagonal entries is equal to

80 showing the perfect classification of each movement. It can be observed that the

diagonal entries in these confusion matrices obtained from the proposed architecture

are fairly close to 80 indicating its superior classification performance.

Similarly, the TCN’s confusion matrix on the Prior dataset is obtained, as shown

in Fig. 3.6(a), while Fig. 3.6(b) shows the TCN’s confusion matrix for the Posterior

dataset. These results corroborate our earlier conclusion on the superiority of the

proposed architecture.

This completes developments and discussions on proposed DNN-based architec-

tures for the task of improving hand gesture recognition accuracy based on sEMG

signals. Next, we shift the focus to designing a less complex network for the task at

hand.

3.2 Reducing Gesture Recognition Complexity

This section considers the problem of reducing the number of parameters of the de-

signed DNN-based model for HGR. In this context, a novel deep learning model,

referred to as the XceptionTime architecture is proposed (Sub-section 3.2.2). The
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proposed XceptionTime is designed by integration of depthwise separable convolu-

tions, adaptive average pooling, and a novel non-linear normalization technique. At

the heart of the proposed architecture is several XceptionTime modules concatenated

in series fashion designed to capture both temporal and spatial information-bearing

contents of the sparse multichannel sEMG signals without the need for data augmen-

tation and/or manual design of feature extraction. In addition, through integration

of adaptive average pooling, Conv1D, and the non-linear normalization approach,

XceptionTime is less prone to over-fitting, and more importantly is independent from

the input window size. Finally, by utilizing the depthwise separable convolutions, the

XceptionTime network has far fewer number of parameters resulting in a compact

(less complex) network.

3.2.1 Material and Methods

In this section, first, the database on which the proposed model is evaluated is de-

scribed. Then, the pre-processing approach for preparing the data set will be ex-

plained.

Database: Performance of deep learning techniques using sparse multichannel sEMG

is yet far being optimal in terms of:

(i) Recognition accuracy;

(ii) Complexity of the system, and;

(iii) Sufficiency of number of subjects and movements.

Therefore, the proposed architecture will be evaluated on a public identified scientific

benchmark database, Ninapro [16,17], which is the most widely accepted benchmark

for evaluation of different models developed based on sparse multichannel sEMG sig-

nals. The first Ninapro database [16, 17], referred to as the DB1, is used in this

work, where the sEMG signals are acquired using Otto Bock MyoBock 13E200 with

10 wireless electrodes (channels) at a sampling rate of 100 Hz. The DB1 consists of

27 intact (healthy) subjects, where each subject has to repeat 52 gestures including

finger, hand, and wrist movements. The subjects repeated each gestures 10 times,

each time lasted for 5 seconds followed by 3 seconds of rest. For the sake of compar-

ison and following the recommendations provided by the database and also previous
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to commonly used Minmax normalization, which linearly distributed signal values be-

tween the pre-defined range, the proposed µ-law normalization magnifies the outputs

of sensors with small magnitude (in a logarithmic fashion), while keeping the scale

with those sensors having larger values over time. As an illustrative example, Fig. 3.7

shows the 1 Hz low-pass filtered sEMG signals obtained from 10 sensors correspond-

ing to the first repetition from Subject 1 performing the second gesture. As can be

observed in Fig. 3.7(a), except from sensors 1, 8, and 9, the values of the remaining

sensors are close to zero. However, by using the proposed µ-law normalization (as

shown in Fig. 3.7(b)), the outputs of the sensors will be amplified more non-linearly.

Moreover, compared to Minmax normalization, which is very sensitive to the presence

of outliers, the µ-law normalization can handle the outliers. In summary, the µ-law

normalization is a strategy to preserve relative changes among the sensor values while

capturing the magnitude of the sensors.

3.2.2 XceptionTime Architecture

To provide the related context, we should point out that a common strategy [24, 29,

31,51] used for hand gesture recognition is to convert the multichannel sEMG record-

ing over fix time windows into images and then use CNN-based image classification

models to perform the recognition task. The problem with such an approach is that

only the spatial information of sEMG signals are captured without considering the

sequential nature of the sEMG signals. Motivated by this fact, Reference [30] pro-

posed a hybrid CNN and RNN architecture where both spatial and temporal features

of the sEMG signals are captured. However, in [30], raw signals are first converted to

images (via six sEMG image representation approaches) and then fed to the hybrid

CNN-RNN architecture. The results obtained in [30] show that accuracy in classifica-

tion depends critically on the characteristic of the constructed images, revealing that

there is still a major question what is the optimal approach for converting sEMG sig-

nals into images and if this is subject dependent [52]. Moreover, in this work [30], the

algorithm proposed in Reference [41] is utilized, which fuses various signal sequences

as an activity image used for training purposes. Although utilization of the aforemen-

tioned algorithm allows each sEMG sequence to be adjacent to all other sequences,

this requires readjustment of the input signals adding to the complexity of the model.
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To overcome these problems, in the Sub-Section 3.1.3 we developed a new composite

architecture, the TCN [8], to eliminate the need for converting the raw sEMG sig-

nals into images. Such an approach directly fed the sEMG signals into the proposed

temporal-convolutional network architecture capitalizing on the time-series nature of

the underlying signals. Although this approach has its advantages, i.e., there is no

need for readjustment, and the number of parameters is much less than their counter-

parts using RNN modules, high accuracy can only be achieved by using the complete

sEMG sequence (a large window of sEMG sequence). On the other hand, the model

in [53] is trained separately for each subject limiting its generalization capabilities to

be used as a subject-independent model. Finally, in [32], the authors extracted 11

classical sEMG feature sets and then combined these features with a CNN framework.

Although this can help with the computational expense of the technique, extraction

of optimal engineered features and construction of optimal classifier are particularly

challenging and can saturate the achievable accuracy in many cases.

In [54], inspired by the Inception V4 architecture, a new deepnet model has been

recently proposed and named as “InceptionTime” for time series classification. In [54]

it is shown that InceptionTime, which is an equivalent of AlexNet for time series

data, is more accurate and faster than its existing counterparts in time series classifi-

cation. On the other hand, in [55], by replacing the Inception modules with depthwise

separable convolution, a new architecture is designed and named as Xception, which

has better performance than Inception V3 on a large image classification dataset.

Motivated by the prior works [54, 55], we propose a novel deep architecture, the

XceptionTime, which is more accurate than the existing model for sparse sEMG-based

hand gesture recognition. Furthermore, by deploying adaptive average pooling, the

proposed end-to-end XceptionTime architecture is independent of the time window,

meaning that for utilization of different time windows, e.g., 50 ms, 100 ms, or 150

ms, there is no need to reconfigure and retrain the XceptionTime model. Besides,

by replacing the fully connected layers with adaptive average pooling, the proposed

XceptionTime model is less prone to overfitting because there are no extra parameters

to optimize [56]. By deploying adaptive average pooling, the proposed architecture

is more robust to temporal translation of the inputs as the temporal information will

sum out.

In the following, first, the proposed XceptionTime module is introduced followed
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One key difference between the proposed XceptionTime module and Inception-

Time module previously proposed in [54], is deploying Depthwise Separable Convolu-

tions, which significantly mitigates the required number of parameters in the network.

In Depthwise Separable Convolution [58, 59], two convolutions are deployed, i.e., the

Depthwise Convolution, and the Pointwise Convolution. In Depthwise Convolution,

each channel of the input is convolved separately and then stacked together; therefore,

the temporal convolution is done without changing the depth. The consequent out-

put from the Depthwise convolution is fed to the Pointwise convolution, where 1× 1

convolutions are utilized to transform the number input channels from the Depthwise

convolution into a new channel depth. Later in Section 3.2.3, it will be shown that

by using the depthwise separable convolutions, not only the recognition accuracy will

be increased, but also the number of parameters will be reduced significantly.

To summarize, as shown in Fig. 3.8(a), the time series input with Cin number

of channels is first fed to two parallel paths. The first path consists of a bottleneck,

reducing the dimensionality of the input, followed by three sets of depthwise separable

convolution each with f number of filters with kernel size l, where l is set to 11, 21, or

41. In the second path, the input is fed to a MaxPooling layer followed by a Conv1×1

component, which produces an output with f channels. Finally, the resulted feature

maps of Depthwise Separable Convolutions and skip connections are concatenated

in a channel-wise fashion. As shown in Fig. 3.8(a), the time series input with Cin

channels are transformed to output with Cout number of channels, where Cout is four

times that of the number of filters (f) used in the bottleneck as well as in the depthwise

separable convolutions.

XceptionTime Architecture: The XceptionTime architecture is constructed based

on the proposed XceptionTime modules (Fig. 3.8(a)). More specifically, after prepro-

cessing, sEMG signals acquired from 10 sensors are segmented by a window with a

length of W ∈ {50ms, 100ms, 150ms, 200ms}. The sliding window with steps of 10

ms is considered for segmentation of the sEMG signals. The proposed XceptionTime

architecture (Fig. 3.8(b)), includes 4 XceptionTime modules where the number of

filters (f) are set to 16, 32, 64, and 128, respectively. Moreover, two residual con-

nections are deployed in the XceptionTime architecture to address the degradation

problem. Each residual connection consists of a Conv1 × 1 layer, to match up the
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input and output dimensions, followed by Batch Normalization, which is for regular-

ization and also to reduce the internal covariate shift effect. Moreover, in order to

learn the complex structure of data, ReLU is applied to the summation of outputs of

residual connection and the XceptionTime module.

As stated previously, one of the novelties of the proposed XceptionTime architec-

ture is the independency of the architecture from the length of the time window. In

other words, for an arbitrary window length, the XceptionTime architecture remains

unchanged without any need of reconfiguration. To realize this objective, the output

yielded from summation of the 4th XceptionTime Module and residual Connection is

fed to an Adaptive Average Pooling layer, which transforms the input with window

size W to a fixed length of 50. Then, the dimension of the time series input will

be reduced to the number of the classes (i.e., 52 in our settings) by stacking three

Conv1×1, each followed by Batch Normalization and ReLU. Finally, a second Adap-

tive Average Pooling layer is used to convert the length of the input signal to one.

We use Adam optimizer for training purpose with learning rate of 0.001. The learn-

ing rate changes in a cycle with a length of 20 epochs. After 20 epoch, we divided

the learning rate by 2. These models are trained with a mini-batch size of 32. For

measuring the classification performance the Cross-entropy loss is considered.

3.2.3 Experiments and results

In this section, the performance of the proposed XceptionTime architecture is evalu-

ated through a comprehensive set of different experiments and provide comparisons

with 6 state-of-the-art models [24,29–32,53] developed recently on the same dataset to

illustrates superior performance of the proposed XceptionTime over its counterparts.

Experiment 1: In this experiment, referred to as “First Exp.” in the results, the

objective is to validate our claim that by incorporation of Depthwise Separable Con-

volutions within the proposed XceptionTime architecture, a much smaller model size

with significantly reduced complexity will be achieved. For this purpose, we imple-

mented a variant of the proposed architecture, where referred to as XceptionTime-V2,

where standard convolutions are deployed within the XceptionTime Module instead

of Depthwise Separable Convolutions. Table 3.2 shows the results, where it can be
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Table 3.2: (First Exp.): Comparison between the proposed XceptionTime model and
XceptionTime-V2 model. (Second Exp.): Result of the proposed model and XceptionTime-V2
when the input is normalized by Minmax.

Exp. Normalization Model
Accuracy (%) Model

Parameters
50 ms 100 ms 150 ms 200 ms Trial

First µ-law
XceptionTime 81.71 87.40 90.76 92.30 95.43 413,516

XceptionTime-V2 81.24 86.81 89.79 91.71 94.59 1,918,476

Second Minmax
XceptionTime 71.49 82.63 88.94 90.51 92.20 413,516

XceptionTime-V2 68.95 79.56 87.17 89.61 90.08 1,918,476

Table 3.3: Accuracy when the proposed XceptionTime Model is trained on a combination of
different window lengths (i.e. 50, 100, 150, 200) and then tested on different windows.

Exp. Model
Accuracy (%)

50 ms 100 ms 150 ms 200 ms Trial

Third XceptionTime 77.87 87.64 91.81 93.91 95.44

observed that while the accuracy associated with the XceptionTime is slightly bet-

ter than XceptionTime-V2, the number of parameters is significantly reduced. For

example, the accuracy for the proposed XceptionTime model for window length 200

ms is 95.43% using 413, 516 number of parameters, while XceptionTime-V2 achieves

accuracy of 94.59% but using extensively higher 1, 918, 476 of parameters.

Experiment 2: In this experiment, referred to as “Second Exp.” in the results,

the objective is to validate the effectiveness of using the proposed non-linear µ-

normalization within the proposed XceptionTime architecture. In this regard, in

Table 3.2, results trained by using Minmax normalization is shown for both variants

of the proposed framework. From Table 3.2, it is observed that the accuracy of the

model will decrease when Minmax normalization is applied to the input. For in-

stance, accuracy of the proposed XceptionTime framework with µ-law normalization

in window length of 50 ms is 81.71%, whereas using Minmax normalization within the

proposed XceptionTime framework reduces the accuracy to 71.49%. Another observa-

tion is that the degradation effect of discarding the proposed nonlinear normalization

approach on XceptionTime-V2 is higher.

Experiment 3: The third experiment is performed to validate our claim that the
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Table 3.4: Comparison of the proposed XceptionTimel with the state-of-the-art literature
(number of parameters for [24,29,31] are reported from [53]).

Accuracy (%) Model
Parameters50 ms 100 ms 150 ms 200 ms Trial

XceptionTime (First Exp.) 81.71 87.4 90.76 92.3 95.43 413,516

XceptionTime (Third Exp.) 77.87 87.64 91.81 93.91 95.44 413,516

GengNet [24] - - - 77.8 76.1 500,000

WeiNet [31] 81.7 83.4 84.4 85 - 2.5M

HuNet [30] - - 86.8 87 97.3 -

AtzoriNet [29] - - 66.59 - - 85,000

TsinganosNet [53] - - - - 89.76 85,000

WeiNet [32] 85.8 86.8 87.4 88.2 - -

proposed XceptionTime is applicable to different window sizes without the need for re-

configuration. We evaluate the performance when the proposed architecture is trained

based on a combination of different window sizes. In other words, instead of training

the XceptionTime model just with a specific time window (as is done for reporting

the results in Table 3.2), inputs with different window sizes are fed into network to

increase the robustness of the network during training. However, for the effectiveness

of the training process, only windows with the length of 50, 100, 150, and 200 are used

as input. Table 3.3 illustrates the results obtained from XceptionTime trained with a

combination of different window lengths and then tested separately on each window

size. As can be seen, the performance of the model, except for time window 50, is

improved in comparison to the case where the model was just trained with a specific

window length (Table 3.2(First Exp.)). In other words, not only the proposed model

can handle different window sizes simultaneously, by utilizing this property the perfor-

mance can be boosted. Finally, Table 3.4 shows performance of the proposed model

in comparison to the state-of-the art results obtained over the same DB1 dataset of 52

hand gestures. As shown in Table 3.4, our architecture outperforms existing solutions

while maintaining a reduced number of parameters.
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3.3 Conclusion

In this chapter, we targeted the problem of hand gesture classification using deep

learning-based architectures by focusing on improving the accuracy in Section 3.1

and reducing the overall complexity (number of trainable parameters) in Section 3.2.

For the former category, we have proposed two architectures, referred to as the HRM

and the TCN. Generally speaking, although the performance of deep learning al-

gorithms can motivate their use for multichannel electrode space, applying/training

deep models based on signals obtained from sparse multichannel sEMG devices is

very challenging as such datasets are typically shallow. The HRM architecture is

proposed to address this gap by designing a hybrid architecture. Moreover, we have

proposed the TCN architecture, which is based on dilated causal convolutions to in-

crease the receptive field of the network and process the input sequence as a whole,

instead of sequentially as in HRM. For the problem of reducing the computational

burden, we proposed the XceptionTime architecture, which is designed by integration

of depthwise separable convolutions, adaptive average pooling, and a novel non-linear

normalization technique. To the best of our knowledge, it is the first time that

the proposed innovative XceptionTime architecture is introduced and has not been

designed/utilized previously in sEMG-based HGR recognition. Its performance is

evaluated via the benchmark sparse sEMG dataset outperforming its state-of-the-art

counterparts.
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Chapter 4

Attention-Based Models for HGR

In Chapter 3, we focused on improving accuracy and reducing complexity of deep

neural networks for sEMG-based hand gesture recognition. In this chapter, we focus

on attention-based models to further improve the performance for the task at hand.

The reminder of the chapter is organized as follows: The database and pre-processing

step are described in Section 4.1. Afterwards, Section 4.2 describes the proposed

TC-HGR architecture, which is designed based on the attention mechanism and tem-

poral convolution networks. Finally, the proposed TEMGNet framework, which is

based on the transformer architecture is presented in Section 4.3.

4.1 Material and Methods

Before presenting the proposed TC-HGR and TEMGNet architectures, below, we

discuss the utilized dataset for training purposes followed by the pre-processing step

used to prepare training, validation, and test sets.

Database: To train and evaluate the proposed TC-HGR and TEMGNet architec-

tures, we used the second Ninapro dataset [16] called DB2, which is a widely used

public dataset. While the dataset has been previously described in Subsection 3.1.1,

we briefly present it here for completeness and ease of reference. As stated in Subsec-

tion 3.1.1, DB2 is collected by the Delsys Trigno Wireless EMG system, which has 12

channels and records the electrical activities of muscles at 2 kHz. Moreover, the DB2

dataset consists of the sEMG signals from 40 healthy subjects performing 50 different

hand gestures. Each gesture is repeated 6 times, each lasting for 5 seconds followed
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by 3 seconds of rest. The 50 different gestures in the DB2 dataset are presented in

three sets of exercises (i.e., B, C, and D). In this chapter, we focus on Exercise B,

which consists of 17 different gestures. More specifically, Exercise B consists of 9

basic wrist movements with 8 isometric and isotonic hand movements. Following the

recommendations provided by the Ninapro dataset, the training set consists of 2/3

of the repetitions of each gesture (i.e., 1, 3, 4, and 6), and the test set consists of the

remaining repetitions (i.e., 2 and 5).

Pre-processing Step: For developing TC-HGR architecture, we used the raw time-

domain sEMG signals. The sEMG signals are pre-processed and smoothed using a 1st

order 1 Hz low-pass Butterworth filter. Moreover, to amplify the magnitude of sensors

with small values, we scaled the sEMG signals logarithmically as stated previously

in Subsection 3.2.1. More specifically, we utilized the µ-law transformation, which is

primarily used for quantization in the speech processing domain and re-purposed in

our works for normalizing the sEMG signals. This completes the steps performed to

pre-process the sEMG signals and prepare the input to be provided to the TC-HGR

and TEMGNet architectures. Next, we present the detailed structure of the former

architecture.

4.2 Temporal Convolutions-based Hand Gesture Recog-

nition (TC-HGR)

Developing a DNN architecture with fewer parameters can tackle the challenge of

structural complexity and reduce the gap between academic research and practi-

cal settings for myoelectric prosthesis control. DNN models have shown promising

results with respect to other algorithms for decoding muscle electrical activity, espe-

cially for recognition of hand gestures. Such data-driven models, however, have been

challenged by their need for a large number of trainable parameters and their struc-

tural complexity. In the previous chapter (Chapter 3), we have targeted this issue

by incorporating different advanced deep models such as hybrid CNN-LSTM archi-

tecture, dilated causal convolutions, and depthwise separable convolutions. In this

section, instead, we focus on the use of attention mechanism and propose the novel

Temporal Convolutions-based Hand Gesture Recognition (TC-HGR) architecture to
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reduce this computational burden.

4.2.1 The TC-HGR Architecture

In this section, first, we provide an introduction, followed by presentation of the pro-

posed TC-HGR framework. Finally, we discuss detailed architecture of the TC-HGR.

As stated previously, HGR via sEMG signals [9, 53, 60, 61] has been investigated in

the literature as the most promising approach for myoelectric control of prosthetic

systems. In particular, HGR has been the focus of different research works [2,8], given

its unique potentials to improve the quality of control and consequently to enhance

the quality of life of amputees. Although academic researchers have used advanced

ML and DNN models to achieve promising laboratory results in HGR, translating

these new techniques into the daily lives of amputees has faced several critical chal-

lenges [13,62]. One of the key challenges is the dependency of DNN models on a large

number of trainable parameters, which leads to structural complexity and limits their

applicability to clinical settings [63]. Therefore, there is an urgent and unmet quest

to develop DNN-based learning frameworks that focus on reducing the number of

parameters and maintaining high performance.

Following our discussion in the previous chapters, performance of DNN models

developed based on sparse multi-channel sEMG is still significantly lower than that

of HD-sEMG systems, which has a high number of densely located electrodes to sig-

nificantly increase the information rate [24, 30, 31]. For instance, in Reference [31],

the HGR accuracy of 99.7% is reported using HD-sEMG, which is reduced to 84.4%

when sparse multi-channel sEMG signals are used. In this context, we aim to de-

sign a novel DNN architecture using sparse multi-channel sEMG signals provided

by the Ninapro [16, 17] database, which is one of the most widely accepted sparse

multi-channel sEMG benchmark datasets. We designed the novel TC-HGR to re-

duce computational burden while maintaining high accuracy, which is of paramount

importance to translate the classification results into smooth actions.

A common strategy for classifying hand movements with DNN-based algorithms

is converting sEMG signals into images and then using CNNs to detect hand move-

ments [24, 31, 32, 48]. sEMG signals are, however, sequential in nature, and CNNs

cannot extract temporal features. In this regard, recent literature [30, 63] used re-

current architectures such as LSTM networks to consider the sequential nature of
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sEMG signals. In addition, LSTMs and CNNs can be combined as a hybrid archi-

tecture [2] to jointly extract the temporal and spatial properties of sEMG signals.

Although sequence modeling with recurrent networks is a common approach, it can

have disadvantages, such as lack of parallelism during training, exploding/vanishing

gradient, and extensive memory/computation requirements [43]. Therefore, Refer-

ence [43] proposed TCs for extracting temporal information in time series tasks while

addressing the aforementioned challenges of the recurrent architectures. In addi-

tion, Reference [63] proposed the concept of temporal dilation of LSTM to reduce

the computational cost, memory, requirement, and model complexity. On the other

hand, attention-based architectures such as Transformers [64,65] show great potentials

for widespread adoption in different Artificial Intelligence (AI) applications. In par-

ticular, the transformer-based architectures could improve the recognition accuracy

compared to their state-of-the-art counterparts (where LSTM or hybrid LSTM-CNN

are adopted). However, transformers are limited by the memory and computation

requirements of the quadratic operation in attention for long sequences or images.

Therefore, in [64], the authors proposed dividing the images into patches and then

using the flattened patches as the input for the transformers. Inspired by the progress

of attention mechanism and TCs [66], we aim to design a DNN-based architecture

based on the combination of attention and temporal convolutions.

TC-HGR architecture: After pre-processing, we segment the sEMG signals based

on a window of size W ∈ {200ms, 300ms}, resulting in the dataset D = {(Xi, yi)}Mi=1.

More specifically, Xi ∈ R
C×L is the i

th

segment with label yi, for (1 ≤ i ≤ M). Here,

C indicates the number of channels in the input segment, and L is the length of the

segmented sequence, which represents the number of samples obtained at a frequency

of 2 kHz for a window of size W . As illustrated in Fig. 4.1, the TC-HGR frame-

work has been developed based on “Embedded Patches” and two modules, namely

Temporal Convolution Block and Self-Attention Module with Residual Connection,

which is described below:

(i) Embedded Patches: In a similar way to the ViT architecture [64], the input

segment Xi is divided into N non-overlapping patches. Here, N = L/P , where

P shows the size of each patch. This patching mechanism helps reduce memory

and computation requirements. As shown in Fig. 4.1, the sequence of linear

projections of these patches are fed as input to the TC-HGR architecture. More
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Figure 4.1: The proposed TC-HGR architecture: (a) Each input segment X (for simplicity,
we dropped the index i) is divided into N non-overlapping patches. Then, each patch is flat-
tened and mapped to model dimension D (blue block). We refer to the output of this pro-
cess as Embedded Patches. The sequence of the Embedded Patches is passed into the Self-
Attention module, which includes the residual connection (purple block). Afterward, we used
Z number of Temporal Convolution Blocks to access a long history (orange block). (b) Each
Temporal Convolution Block consists of two dilated causal convolutions, each followed by a ReLU
activation function. Again, we used residual connections to concatenate the output and input.
Finally, a Linear Layer (LL) is adopted to output the class label.

specifically, each patch is first flattened and then is mapped into the model

dimension D with a trainable linear projection. The output of this projection

is called the “Embedded Patches”.

(ii) Temporal Convolution Block: In recent literature (such as [43]), the au-

thors represented TCs for the sequence modeling tasks and showed that tem-

poral convolutions could outperform recurrent networks such as LSTMs in a

wide range of datasets and time-series tasks. More specifically, TCs offer sev-

eral advantages over recurrent networks such as processing the input sequence

as a whole rather than sequential training, low memory requirements, sta-

ble gradient, and capturing the past information with flexible receptive field
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size. Inspired by the performance of TCs for the sequential data, we used

“Temporal Convolution Block” (represented via an orange box in Fig. 4.1) in-

stead of recurrent networks for the sEMG-based gesture recognition. As shown

in Fig. 4.1, each Temporal Convolution Block consists of dilated causal convo-

lutions, where the dilation rate R increases exponentially, i.e., (1, 2, 4, 8, . . .), to

access a receptive field that exceeds the length of the input sequence. More-

over, each dilated causal convolution is followed by a ReLU activation function.

The number of Temporal Convolution Blocks are based on the logarithmic scale

with the number of patches N . More specifically, we used Z = ⌈log2 N⌉ number

of Temporal Convolution Block for an input segment X with a sequence length

of L.

(iii) Self-Attention Module with Residual Connection: In the proposed TC-

HGR architecture, we used the “Temporal Convolution Block” along with the

“Attention” mechanism. In [65], the authors showed that the attention mecha-

nism allows a model to present important information in a given input sequence.

Moreover, the attention mechanism has recently been used [6] in the context of

sEMG-based hand gesture recognition, where experiments have demonstrated

the ability of attention to identifying specific pieces of information in the se-

quential nature of the sEMG signals. On the other hand, in References [1,66], it

was shown that temporal convolutions and attention are complementary mech-

anisms, i.e., the former captures a long history while the latter identifies a

specific type of information. An attention block measures the pairwise similar-

ity of each query and all keys to assign a weight to each value. Then, the output

is computed, which is the weighted sum of the values [65]. The keys, values,

and queries are packed together into matrices K, V , and Q, respectively. The

output matrix is then computed as follows:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V , (4)

where dk denotes the dimension of K and Q. In the TC-HGR architecture, we

also used residual connections to concatenate the output and input.

This completes the description of the proposed TC-HGR architecture, next, we

present our results to evaluate its HGR performance.
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Table 4.1: Descriptions of TC-HGR architecture variants.

Window size W Model ID Number of Patches N Model dimension D Params

200 ms

1 10 12 49,186

2 10 16 68,445

3 16 12 69,076

4 16 16 94,965

300 ms

1 10 12 52,066

2 10 16 72,285

3 15 12 67,651

4 15 16 92,945

4.2.2 Experiments and Results

In this section, the performance of the proposed TC-HGR architecture is evaluated

through a comprehensive set of experiments as presented below.

Results and Discussions: In Table 4.1, different variants of the TC-HGR architec-

ture are presented based on a window size of W ∈ {200ms, 300ms}. For training,

Adam optimizer was used across all the models with a learning rate of 0.0001. Fur-

thermore, we used a mini-batch size of 32. The performance of each model is evaluated

using Cross-entropy loss. In Table 4.2, the averaged recognition accuracy of the pro-

posed TC-HGR architecture and its variants are reported over all subjects. In what

follows, we focus on three different experiments:

(i) Experiment 1 - Effect of the Model’s Dimension D: In this experiment,

the objective is to investigate the effect of D of the proposed TC-HGR archi-

tecture on the recognition accuracy. In this regard, Table 4.2 has shown the

results for D ∈ {12, 16} for both window sizes. From Table 4.1 and Table 4.2, it

is observed that the accuracy of the model will improve when the D is increased

from 12 to 16 for the same Number of Patches N . More specifically, “Model 2

versus Model 1” and “Model 4 versus Model 3” are more accurate in both the

200 ms and 300 ms window sizes. However, from Table 4.1, it can be observed

that the number of trainable parameters has increased when D is increased
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Table 4.2: Classification accuracies for TC-HGR architectures variants for different Window Size
(W ).

Model ID 1 2 3 4

W
=

1
5
0

m
s Accuracy (%) 79.78 80.22 80.00 80.72

STD (%) 6.5 6.5 6.5 6.4

W
=

2
0
0

m
s Accuracy (%) 80.29 80.63 80.51 80.83

STD (%) 6.7 6.8 6.7 6.6
W

=
2
5
0

m
s Accuracy (%) 80.34 80.99 80.73 81.35

STD (%) 6.4 6.5 6.6 6.6

W
=

30
0

m
s Accuracy (%) 80.84 81.59 80.95 81.65

STD (%) 6.4 6.5 6.5 6.7

from 12 to 16, which leads to more complexity. For instance, for W = 200

ms and N = 10, Model 2 has 68, 445 parameters, while this number is 49, 186

for Model 1 (Table 4.1). While increasing D can potentially improve perfor-

mance, the implementation of prosthetic controllers is limited by its structural

complexity.

(ii) Experiment 2 - Effect of the Number of Patches N : This experiment

is included to evaluate the effect of increasing N on the performance of the

proposed TC-HGR. From Tables 4.1 and 4.2, it is observed that for the same

W and D, accuracy increases as the number of patches N increases from 10 to

16. More specifically, “Model 3 versus Model 1” and “Model 4 versus Model 2”

classified the hand gestures with higher accuracies in both window sizes. This is

because use of more patches results in a larger effective sequence length, which

in turn improves the overall performance. Increasing the number of patches,

however, makes the structure more complex. For instance, for W = 300 ms and

D = 12, Model 3 has 67, 651 parameters, while Model 1 has 52, 066 parameters

(Table 4.1).

(iii) Experiment 3 - Effect of Window size W : As shown in Table 4.2, in-

creasing the window size leads to more accuracy. This is because the larger the

window size, the more information is provided for the proposed TC-HGR archi-

tecture. In other words, machine learning model would have higher exposure

to the signals from the gesture. For instance, for both “Models 2 and 1”, the
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window size 300 ms leads to greater accuracy and complexity. However, both

“Models 3 and 4” classified hand gestures more accurately while reducing the

complexity because number of patches for W = 300 ms is less than W = 200

ms. We would like to point out the window length is required to be under 300

ms to satisfy the acceptable delay time [40]. With a larger window, the results

would likely improve. However, the use of shorter windows (e.g., 200 ms) pro-

vides an extra time (100 ms) to perform the pre-processing and classification

tasks, which allows staying within the target 300 ms. We have also trained

and evaluated two other window size; i.e. 150 ms and 250 ms for our proposed

architecture.

Statistical Comparisons of Different TC-HGR Variants for Window Size

of 300 ms: To examine the importance and significance of TC-HGR variants, we

perform statistical tests for all models considering W = 300 ms. By following [1], the

Wilcoxon signed-rank test [67] is used in which each user is considered as a separate

dataset. As illustrated in Fig. 4.2, we conduct comparison between the model with

the least number of parameters (i.e., Model 1) and other models. (i.e., Model 2, 3,

and 4). The performance distribution between 40 users for each model is illustrated in

Fig. 4.2. We adjusted the resulted p-values using Benjamini-Hochberg false discovery

rate. The results are given in Table 4.3 for window size 300 ms.

Comparison with the State-of-the-art Research [63]: We have also compared

the results with a recent state-of-the-art model [63] in which the same dataset is

used for performance evaluations. More specifically, Reference [63] proposed models

based on recurrent architectures (i.e., LSTM) with dilation. As shown in Table 4.4,

for window size of 200 ms, our methodology can outperform both recurrent networks

and traditional ML approaches such as SVM. For instance, it can be observed that the

accuracy for our proposed Model 4 is 80.72% with only 94, 965 number of parameters,

while the best accuracy for the Reference [63] is 79% with 1, 102, 801 parameters.

Moreover, as shown in Table 4.4, for window size of 300 ms, the accuracy of the

proposed Model 4 is 81.65%, while for “pure LSTM with dilation” and SVM proposed

in [63], the accuracy is 79.7% and 30.7%, respectively. Although in [63] the authors

reached to 82.4% accuracy with “4-layer 3rd Order Dilation” which is a hybrid dilation-

based LSTM, they used 1, 102, 801 number of parameters which is 11.9 times larger
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Table 4.5: Gestures’ classification results for Model 4. The description of the gestures are presented
in the References [16,17].

Gesture Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Accuracy (%) 89.39 84.63 84.20 82.51 74.80 84.39 82.32 77.72 83.19 77.16 72.25 76.55 84.25 83.56 87.76 77.08 86.22

given in References [16, 17]. As shown in Table 4.5, the accuracy of model degrades

when the gestures are similar. For example, the model distinguish index 11 and 12

which corresponds to the wrist supination and pronation with a lower accuracy. This

result is not far from expectation as the muscle groups which are predominantly used

during these two gestures are exactly the same [68]. Finally, we evaluated effectiveness

and robustness of the proposed method through Monte Carlo (MC) simulations [69].

For evaluating the convergence of proposed approach, in particular 100 MC runs

are performed where at each run sensor measurements are contaminated by additive

Gaussian noise based on a specific level of Signal to Noise Ratio (SNR). MC simulation

results (100 times and SNR = 25 dB) for the proposed Model 4 is 81.19% ± 6.6%,

while without MC simulation the accuracy for the same model is 81.65%±6.7%. The

achieved accuracy show remarkably stable performance of the proposed model. The

MC simulations motivate further research to improve the overall model stability to

deal with higher noise levels (low SNR values).

This completes developments and discussions on TC-HGR architecture for the

task of improving HGR accuracy based on sEMG signals. Next, we shift the focus to

designing a transformer-based architecture for the task at hand.

4.3 Transformer-based EMG Architecture (TEMGNet)

As stated previously, DNN-based models require large training sets and, typically,

have high structural complexity, i.e., they depend on a large number of trainable

parameters. To address these issues, in this part, we develop a framework based on

the Transformer architecture for processing sEMG signals.

4.3.1 The TEMGNet Architecture

The TEMGNet framework is developed for processing sEMG signals by capitalizing

on recent advancements of the Transformer architecture. Transformers are considered

to be powerful DNN models that have revolutionized Natural Language Processing
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(NLP) and Computer Vision (CV). However, transformer models have remained un-

explored for the task of myoelectric control of bionic limbs. In this regard, we propose

a ViT-based neural network architecture (referred to as the TEMGNet) to classify

and recognize upper-limb hand gestures from sEMG to be used for myocontrol of pros-

theses. To evaluate its efficacy, the second subset (exercise B) of the NinaPro DB2

dataset was utilized, where the proposed TEMGNet framework achieved a recognition

accuracy of 82.93% and 82.05% for window sizes of 300 ms and 200 ms, respectively,

outperforming its state-of-the-art counterparts. Moreover, the proposed framework

is superior in terms of structural capacity while having seven times fewer number of

trainable parameters.

Prior Research: As discussed in the previous chapters, recognizing limb motions

using sEMG signals allows for the control of rehabilitation and assistive systems

(such as bionic limbs and exoskeletons). Surface EMG signals are obtained non-

invasively by sensors on the skin surface that measure the electrical activity of the

muscle’s motor units [60, 61]. The information obtained from sEMG signals is used

to decode discriminative and repeatable patterns that can be utilized to effectively

classify the intended motor commands of the user. In this context, several attempts

have been made to classify hand movements using traditional ML methods. While

these conventional approaches (such as LDA and SVM [29]) have been successfully

implemented, their performance might degrade when applied to large-scale data set

consisting of a sizable number of movements. This has motivated a recent surge

of interest in applying DNNs within this domain, with the aim of addressing the

shortcomings of traditional ML solutions.

Processing sEMG signals using DNN architectures has the potentials to provide

significantly improved performance. CNN is the commonly used DNN architecture

for recognizing upper-limb hand gestures in which sEMG signals are translated into

images [9,24,31]. CNN-based models, however, target learning spatial features and are

ineffective for the extraction of temporal features from sEMG sequential data. RNNs,

such as LSTM, have been therefore proposed in recent studies [63,70] to capture the

temporal information from sEMG signals. To capture both spatial and temporal

characteristics of sEMG signals, LSTM and CNN can be combined [2, 7], resulting

in a hybrid solution such as the one proposed in Chapter 3 (Section 3.1.2). Another

example is Reference [30], where authors composed six image representations of raw
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sEMG signals that were then fed as input to a hybrid CNN-LSTM architecture. We

showed in Chapter 3 (Section 3.1.3) that dilated causal convolutions in CNN-based

architectures have great potential to surpass the pure RNN architecture in term of

overall accuracy [8, 43]. In addition, dilated LSTM models have shown the potential

to enhance accuracy and reduce computational cost [63].

While the above-mentioned models are advanced approaches to sequence model-

ing, they do not allow parallelization during the training phase due to their sequential

nature. For this reason, recurrent-based models are slow to train. The transformer

neural network architecture has been proposed to eliminate recurrence or convolu-

tion using a self-attention mechanism [65]. In brief, the main building block of the

transformer architecture, which makes it a unique and powerful DNN model, is the at-

tention mechanism. Attention is a familiar word to use based on which we selectively

focus on one piece of information and ignore others. A neural network is seen as an

attempt to mimic the computational power of the human brain. The attention mecha-

nism is a way to mimic and execute the function of selective focus. Transformers were

first applied to NLP tasks, with the goal of solving sequence-by-sequence tasks while

handling long-range dependencies [65]. The transformer model architectures, such as

Bidirectional Bidirectional Encoder Representations from Transformers (BERT) [71]

and Generative Pre-Training (GPT) [72], achieved state-of-the-art results in many

NLP tasks. In addition to the NLP field, Transformers have been applied to address

a variety of other problems, including CV tasks [64]; Electroencephalogram (EEG)-

based speech recognition [73]; EEG decoding [74]; Electrocardiogram (ECG)-based

heartbeat classification [75]; sleep stages classification [76], acoustic modeling [77],

and ECG classification [78].

Contributions: In the above context, we hypothesize that novel models, designed

on the basis of transformers, would enhance the accuracy of EMG classification. This

will be a major step towards the ultimate utilization of deep learning models for

commercial prosthetic systems. Therefore, here we propose, design, and evaluate the

performance of a novel transformer model for hand gesture recognition. The pro-

posed TEMGNet framework was designed based on the ViT architecture to improve

recognition accuracy and to reduce structural complexity. Here:

• We illustrate that transformers can be trained for sEMG dataset without the

need to use pre-trained models and fine-tuning.
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• We show that the proposed TEMGNet architecture outperforms its state-of-

the-art counterparts in terms of overall recognition accuracy and complexity.

In summary, the main contributions of this work are as follows:

• For the first time, we propose a novel deep learning architecture (the TEMGNet)

for hand gesture recognition via the utilization of transformers for processing

sEMG signals.

• The proposed transformer-based architecture improves the recognition accu-

racy compared to its state-of-the-art counterparts (where LSTM or CNN are

adopted) with the significantly reduced number of trainable parameters. This

can be considered a significant step forward towards feasibly embedding DNN-

based models into prostheses controllers.

We examined the effect of several variants of the TEMGNet architectures on both

recognition accuracy and the number of required trainable parameters. We also con-

ducted statistical tests to assess the significance of the proposed architecture. Finally,

we present a visualization of position embedding similarities, showing that the model

is capable of encoding position information and considering the sequential nature of

sEMG signals.

The TEMGNet Framework: The main fundamental block of the Transformer

architecture is the attention mechanism. It is noteworthy to mention that attention

along with other architectures such as CNN and/or LSTM has recently been uti-

lized [1,4–6,30] to classify hand movements based on sEMG signals, where the results

showed the ability of attention to learn the temporal information of multi-channel

sEMG data. Unlike prior works that aimed to combine CNN or LSTM architectures

with self-attention, in this section, we will show that the proposed ViT-based ar-

chitecture, which is solely based on the attention mechanism, has the capability to

outperform the previous networks. The overall structure of the proposed TEMGNet

architecture is shown in Fig. 4.3. In the following, first, we describe the building

blocks of the proposed architecture, and then the overall structure of the network.

The proposed architecture is inspired by ViT [64], which closely follows the original

transformer model. Within the TEMGNet framework, after completion of the pre-

processing step, the collected sEMG data was segmented via a sliding window of
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Figure 4.3: The proposed TEMGNet architecture: (a) Each segment of sEMG signal X is split into
a sequence of fixed-size non-overlapping patches. The constructed patches are then flattened (the
blue one) and projected linearly (the green block). The output of this step is referred to as “Patch
Embedding.” Afterward, position embeddings are added to the patch embeddings. The resulting
sequence of these embedded patches is then fed to the transformer encoder (the gray block). For
the classification, a trainable [cls] token x

cls is added to the sequence. (b) The transformer encoder:
This module consists of L layers, each consisting of two LayerNorm modules, an MLP, and an MSA
module.

length 200 ms with steps of 10 ms (for comparison purposes, the results for a window

of 300 ms are also provided). The segmentation step transforms the sEMG dataset

into D = {(Xi, yi)}Mi=1, consisting of M segments, where the i
th

segment is denoted

by Xi ∈ R
S×W , for (1 ≤ i ≤ M), with its associated label denoted by yi. Here,

S denotes the number of sensors, and W shows the number of samples collected at

2 kHz for a window of 200 ms (or 300 ms). The main objective of the TEMGNet

architecture is to learn the mapping from the sequence of segment patches to its

corresponding label yi. As shown in Fig. 4.3, the TEMGNet architecture consists

of the following modules; i.e., Patch Embeddings, Position Embedding, Transformer

encoder, and finally a Multi-Layer Perceptron (MLP) head. The description of these
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blocks are as follows:

(i) Patch Embeddings: As shown in Fig. 4.3(a), at first, we split the segmented

input X (for simplicity, we drop the segment index i) into N number of non-

overlapping patches. Here, we set the size of each patch to (S × S); therefore,

the number of patches will be equal to N = W/S. Each patch is then flattened

into a vector x
p
j ∈ R

S2

, for (1 ≤ j ≤ N). A linear projection is then applied to

embed each vector into the model dimension d. For the linear projection, we

used a matrix E ∈ R
S2×d, which is shared among different patches. The output

of this projection is called patch embeddings (Eq. 5 below).

In a similar way as in the BERT framework [71], the beginning of the sequence

of embedded patches is appended with a trainable [cls] token x
cls, to capture

the meaning of the entire segmented input. Finally, we will add position embed-

dings denoted by Epos ∈ R
(N+1)×d to the patch embeddings that will allow the

transformer to capture the positional information. The formulation governing

patch and position embeddings is given by

Z0 = [xcls;xp
1E;xp

2E; . . . ;xp
NE] +Epos. (5)

(ii) Position Embeddings: The sEMG signal is sequential data that is presented

in a specific order. If we change this order, the meaning of the input might also

change. The transformer does not process the input sequentially and for each el-

ement, it combines information from the other elements through self-attention.

Since the architecture of the transformer does not model the positional infor-

mation, there is a need to explicitly encode the order of the input sequence

so that the transformer knows that one piece is after another and not in any

other permutation. This is where positional embedding comes in. Positional

embedding is a form of identifier, a clear reference for the transformer that

encodes the location information within the sequence. Therefore, positional

embeddings are order or position identifiers added to the input to identify the

relative position of each element in the sequence for the transformer. There

are different ways to encode spatial information into the input of transformer
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using positional embedding, e.g., Sinusoidal positional embedding, Relative po-

sitional embeddings, Convolutional embedding, 1-dimensional positional em-

bedding, and 2-dimensional positional embedding [64, 77]. Following [64], the

standard trainable 1-dimensional positional embeddings are used in this study.

(iii) Transformer Encoder: The resulting sequence of vectors Z0 is fed as an

input to a standard transformer encoder. We are basically treating all of the

constructed patches as simple tokens provided into the transformer. In fact, the

encoder block is similar to the main transformer encoder block proposed by [65].

As shown in Fig. 4.3(b), the transformer encoder consists of L identical layers.

Each layer consists of two modules, i.e., a Multihead Self-Attention Mechanism

(MSA) and an MLP module (defined later in Eqs. 6, 7). MSA is built based

on the Self-Attention (SA) mechanism. The MLP module consists of two linear

layers and a Gaussian Error Linear Unit (GELU) activation function.

To address the degradation problem, a layer-normalization [79] is applied, which

is then followed by residual skip connections

Z
′

l = MSA(LayerNorm(Zl−1)) +Zl−1, (6)

Zl = MLP (LayerNorm(Z
′

l )) +Z
′

l , (7)

for l = 1 . . . L. The final output of the transformer can be represented as follows

ZL = [zL0; zL1; . . . ; zLN ], (8)

where zL0 is used for classification purposes. Finally, zL0 is passed to a Linear

Layer (LL), i.e.,

y = LL(LayerNorm(zL0). (9)

This completes the description of the proposed TEMGNet architecture. Next,

we present the description of SA and MSA, respectively.

(iv) Self-Attention (SA): Let us define the input sequence as Z ∈ R
N×d consisting

of N vectors, each with an embedding dimension of d. The SA mechanism was

first introduced in [65]. Generally speaking, the SA mechanism is defined with
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the aim of capturing the interaction between different vectors in Z. In this

regard, three different matrices, namely Queries Q, Keys K, and Values V are

computed via a linear transformation, i.e.,

[Q,K,V ] = ZW QKV , (10)

where W QKV ∈ R
d×3dh shows the learnable weight matrix. Here, dh denotes the

size of each vector in Q, K, and V . After that, the pairwise similarity between

each query and all keys is obtained using the dot-product of Q and K, which is

then scaled by
√
dh and translated into the probabilities P ∈ R

N×N using the

softmax function as follows

P = softmax(
QKT

√
dh

). (11)

Finally, for each vector in the input sequence, the corresponding output vector

resulted from the SA mechanism is computed by taking the weighted sum over

all values V as follows

SA(Z) = PV , (12)

where SA(Z) ∈ R
N×dh . Such an attention mechanism helps the model to focus

on important parts from a given sEMG input sequence.

(v) Multihead Self-Attention (MSA): In the MSA, the SA mechanism is ap-

plied h times in parallel, allowing the model to attend to parts of the input

sequence for each head differently. More specifically, MSA consists of h heads

where each head has its own learnable weight matrix {W QKV
i }hi=1. For the

input sequence Z, we applied the SA mechanism for each head (Eqs. (10)-

(12)). Then the outputs of h heads are concatenated into a single matrix

[SA1(Z);SA2(Z); . . . ;SAh(Z)] ∈ R
N×h.dh and once again projected to obtain

the final values as follows

MSA(Z) = [SA1(Z);SA2(Z); . . . ;SAh(Z)]WMSA, (13)

where WMSA ∈ R
h.dh×d and dh is set to d/h, this description completes the
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Table 4.6: Descriptions of TEMGNet architecture variants.

Window size Model ID Layers Model dimension d MLP size Params

200 ms

1 1 32 128 20,049

2 2 32 128 32,657

3 3 32 128 45,265

4 1 64 256 64,625

300 ms

1 1 32 128 20,593

2 2 32 128 33,201

3 3 32 128 45,809

4 1 64 256 65,713

proposed TEMGNet architecture.

Next, we present the results and experiments.

4.3.2 Experiments and Results

In this section, the performance of the proposed TEMGNet architecture is evaluated

through a comprehensive set of experiments. In particular, we evaluated different

variants of the TEMGNet architecture. The results are summarized in Table 4.6,

where the performance of the model for window sizes of 200 ms and 300 ms is shown.

For all model variants, we set the size of the input patch to 12× 12. All models were

trained using Adam optimizer [80] with betas = (0.9, 0.999), and the weight decay

set to 0.001. These models were trained with a batch size of 512. Cross-entropy loss

was used for measuring classification performance.

Table 4.7 summarizes the classification accuracies for different TEMGNet archi-

tecture variants. The computed gesture recognition accuracy was averaged over all

subjects. As shown in Table 4.7, by increasing the model dimension d from 32 to 64

(Model 1 to Model 4), the accuracy improved approximately by 2% for both window

sizes. However, Model 4 had higher number of trainable parameters in comparison to

Model 1, resulting in higher complexity (Table 4.6). In a second experiment, we ex-

amined the effect of increasing the number of layers. As shown in Table 4.7, for both

window sizes of 200 ms and 300 ms, Model 2 had a higher accuracy than Model 1.
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Table 4.7: classification accuracies for TEMGNet architectures variants. The STD represents the
standard variation in accuracy over the 40 users.

W
in

d
ow

2
0
0

m
s

Model ID 1 2 3 4

Accuracy (%) 80.39 81.23 80.85 82.05

STD (%) 5.86 6.31 6.32 5.78

W
in

d
ow

3
0
0

m
s

Model ID 1 2 3 4

Accuracy (%) 80.88 81.54 81.42 82.93

STD (%) 5.97 5.99 5.94 5.83

However, by increasing the number of layers to 3, no improvements had been observed

in classification accuracy. We used the statistical tests to show the significance level of

different model variants, i.e., Model 1, 2, 3, and 4. Therefore, we followed [1,38] and

used the Wilcoxon signed-rank test [67], considering each participant as a separate

dataset. As shown in Fig. 4.4, the difference in accuracy between Model 1 and Model

4, for both window sizes of 200 ms and 300 ms was considered statistically significant

by the Wilcoxon signed-rank test as the (∗∗∗∗ : p ≤ 1.00e− 4).

In Fig. 4.4, a p-value is annotated by:

• Not significant (ns): 5.00e − 02 < p ≤ 1.00e + 00,

• ∗ : 1.00e − 02 < p ≤ 5.00e − 02,

• ∗∗ : 1.00e − 03 < p ≤ 1.00e − 02,

• ∗∗∗ : 1.00e − 04 < p ≤ 1.00e − 03,

• ∗∗∗∗ : p ≤ 1.00e − 04.s

In Fig. 4.4, the performance distribution across 40 users for each model is shown.

The boxplot for each model shows the Interquartile Range (IQR), which is based

on dividing the performance of each model for 40 users into quartiles. The median

performance is shown by a horizontal line in each boxplot.

In Table 4.8, we provide comparisons with the state-of-the-art models [63] de-

veloped recently on the same dataset to illustrate the superior performance of the

proposed TEMGNet architecture over its counterparts. The proposed TEMGNet
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Fig. 4.5 shows the position embedding similarities for the window size of 300 ms.

To encode position information, learnable position embedding was added to the patch

embeddings. This is a key factor for the transformer to consider the sequential nature

of the sEMG signals. Fig. 4.5 shows that position embedding vectors learn distance in

a segment of sEMG signals. More specifically, the size of each patch was set to 12×12.

Therefore, there are N = 50 patches for a window of 300 ms, i.e., the input patch index

varied from 0 to 49. Each row in Fig. 4.5(a) and Fig. 4.5(b) represents the similarity

of the position embedding vector of each patch to all positional embeddings. It is

observed that the main diagonal in Fig. 4.5(a), (b) shows higher similarities between

the neighboring ones. Moreover, position embedding similarities in Fig. 4.5(b) are

greater than in Fig. 4.5(a), which means that the proposed Model 4 encode the

sequential nature of sEMG signals better than Model 1.

4.4 Conclusion

In this chapter, first, we proposed a novel architecture referred to as the TC-HGR for

HGR from sparse multichannel sEMG signals. The proposed model showed strong

capability in addressing several existing challenges of gesture recognition based on

the temporal convolutions and attention mechanism. We showed that by proper

design of convolution-based architectures, we can extract temporal information of the

sEMG signal and improve the performance. Moreover, the proposed architecture can

reduce the required number of trainable parameters with respect to the state-of-the-

art, which is a key enabling factor to reduce the complexity and embed DNN-based

models into prostheses controllers. In the second part of the chapter, we proposed

a novel transformer-based framework, the TEMGNet, for HGR from sEMG signals.

We showed that the proposed architecture has the capacity to reduce the number of

trainable parameters by 55 times and 2.45 times with respect to the state of the art [63]

and the proposed TC-HGR, respectively, while improving the performance. This is a

major step toward the utilization of deep learning for the control of prosthetic systems.

It is noteworthy to mention that misplacement or displacement of sensors and time

variability between days is an open topic of our research which is not addressed here.

This can be considered as a limitation for this research work and a future research

direction.
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Chapter 5

Adaptive-Based Models for HGR

In the previous chapters, we focused on improving accuracy and reducing complexity

of DNN-based models for the problem of sEMG-based HGR. The main objective of

this chapter is to design a modern DNN-based gesture detection model that relies on

minimal training data while providing high accuracy [6]. In this chapter, we introduce

(for the first time) the concept of few-shot training for myoelectric systems. Few-shot

learning is a variant of domain adaptation with the goal of inferring the required

output based on just one or a few training observations. Few-shot learning minimizes

the need for recalibration and would allow the user to retrain the ML core of control,

by only few basic exercises instead of extensive recalibration procedures. For this

purpose, we propose an innovative Few-Shot learning- Hand Gesture Recognition

(FS-HGR). The proposed meta-learning FS-HGR architecture takes advantage of

domain knowledge and requires a small amount of training data (when compared

with traditional counterparts) to decode new gestures of the same or new users.

In other words, the proposed FS-HGR generalizes after seeing very few observations

from each class by combining temporal convolutions with attention mechanisms. This

allows the meta-learner to aggregate contextual information from experience and to

pinpoint specific pieces of information within its available set of inputs.

The chapter is organized as follows: In Section 5.1, we present the dataset used

in development of the proposed FS-HGR framework together with the pre-processing

step. The proposed FS-HGR architecture is developed in Section 5.2. Experimen-

tal results and different evaluation scenarios are presented in Section 5.3. Finally,

Section 5.4 concludes the chapter.
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5.1 Material and Methods

In this section, first, the database on which the proposed model is evaluated is de-

scribed. Then, the pre-processing approach for preparing the data set will be ex-

plained.

Database: The proposed FS-HGR architecture was evaluated on the Ninapro [16,

17, 81] benchmark database, which is a publicly available dataset for hand gesture

recognition tasks. Similar to the previous chapters, in this work, the second Ninapro

database [16] referred to as the DB2 was utilized. As stated before, Delsys Trigno

Wireless EMG system with 12 wireless electrodes (channels) was used in the DB2

dataset to collect electrical activities of muscles at a rate of 2 kHz. The dataset

consists of signals collected from 28 men and 12 women with age 29.9 ± 3.9 years,

among whom 34 are right-handed and 6 are left-handed. The DB2 consists of 50

gestures including wrist, hand, grasping, and functional movements along with force

patterns from 40 healthy (intact-limb) subjects. The subjects repeated each move-

ment 6 times, each time lasted for 5 seconds followed by 3 seconds of rest. More detail

on the Ninapro database are described in Reference [16].

In addition to DB2, the 5th Ninapro database [19] referred to as the DB5 is

also used for evaluation of the FS-HGR architecture. DB5 dataset is recorded with

two Thalmic Myo armbands including 16 active single-differential wireless electrodes,

recording muscular activity at a rate of 200 Hz. More specifically, the DB5 dataset

consists of signals collected from 10 intact-limb users performing 52 movements in-

cluding basic movements of the fingers, isometric, isotonic hand configurations, basic

wrist movements, and grasping and functional movements. Each movement in the

DB5 dataset is repeated 6 times, each lasting for 5 seconds followed by 3 seconds of

rest. The DB5 dataset was presented in three sets of exercises which more details are

provided in [19]. It is noteworthy to say that to follow the same criteria in [38,87] and

also to have a fair comparison, in this chapter, we only consider the lower armband

in DB5.

Pre-processing Step: Following the pre-processing procedure established in Sub-

section 3.2.1, we used a 1st order low-pass Butterworth filter to smooth the electrical

activities of muscles. Along a similar path described in Subsection 3.2.1, we applied

µ-law transformation to magnify the output of sensors with small magnitude (in a
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logarithmic fashion), while keeping the scale of those sensors having larger values over

time.

As discussed in Subsection 3.2.1, we empirically observed that the normalization

of the scaled sEMG signals is better than non-scaled sEMG signals. For example,

the results obtained without scaling for a window of length 50 ms was 71.49%, while

normalization of scaled sEMG signals has improved the results to 81.71%. In this

work, we noticed a similar trend and as such continued using normalization of scaled

sEMG signals. This completes a brief introduction of the utilized dataset and the

introduced pre-processing step. Next, we develop the proposed Meta Learning-based

FS-HGR framework.

5.2 The FS-HGR Architecture

Prior Research: A common strategy used for hand gesture recognition in re-

cent works is applying DNN with the focus on improving hand gestures classifi-

cation performance on “never-seen-before repetitions”. Along this line of research,

several state-of-the-art works [2, 8, 9, 24, 29–32, 48, 82, 83] mainly used the Ninapro

database [16, 17, 81], which is a public dataset providing kinematic and sEMG sig-

nals from 52 finger, hand, and wrist movements. The Ninapro database is similar to

data obtained in real-world conditions, and as such it allows development of advanced

DNN-based recognition frameworks.

The common approach in recent studies [2,8,9,24,29–32,48,82,83], following the

recommendations provided by the Ninapro database, is to train DNN-based models

on a training set consisting of approximately 2/3 of the gesture trials of each sub-

ject. The evaluation is then performed on the remaining trials constituting the test

set. Although existing DNN techniques achieve promising performance on never-seen-

before repetitions, they fail to function properly if the repetition is not extensively

explored [66,84,85]. For example, in Reference [38], the authors reported the average

accuracy over the 10 participants of the Ninapro DB5 for one to four training rep-

etitions (one repetition is equal to 5 seconds of data). The accuracy decreases and

the model fails to function properly if the repetition is not extensively explored. For

example, for one to four training repetitions the accuracies are equal to 49.41± 5.82;

60.12 ± 4.79; 65.16 ± 4.46, and; 68.98 ± 4.46, respectively. Thus, for a new user or
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a new gesture, a significant amount of training should be conducted and the whole

learning process should be redone, assuming a small variation between the new class

and the previous classes. If the aforementioned change is more than minimal, there

may be the need to recalibrate the whole process for all classes. In addition, exist-

ing DNN-based methodologies require large training datasets and perform poorly on

tasks with only a few observations being available for training purposes.

In Reference [86], the authors proposed a domain adaptation method that maps

both the original and target data into a common domain, while keeping the topology

of the input data probability distributions. For this purpose, the authors used a

local dataset, where the sEMG data was acquired by repetitive gripping tasks while

data was collected from 8 subjects. In addition to the above, TL was also used

to adopt a pre-trained model and leverage the knowledge acquired from multiple

subjects and speed up the training process for the new users. In [38,87], the authors

proposed a TL-based algorithm adopting CNN to transfer knowledge across multiple

subjects for sEMG-based hand gesture recognition. The authors in [38, 87], applied

the Myo armband to collect sEMG signals and used the fifth Ninapro database, which

contains data from 10 intact-limb subjects. The pre-training for each participant was

done employing the training sets of the remaining nine participants and the average

accuracy was obtained over the 10 participants of the Ninapro DB5 [19]. Finally,

References [25, 49] applied deep learning along with domain adaptation techniques

for inter-session classification to improve the robustness for the long-term uses. Due

to the variability of the signal space, the generalizability of existing techniques is

questionable and it is not clear how they would perform in real-life scenarios when the

training data is limited. It is not clear how these models would perform on scenarios

with larger number of subjects and postures. For example, in References [49], 7

subjects participated in the experiment and 7 movements were classified. As another

example, in References [25], the authors separately used three datasets to train and

evaluate their model based on HD-sEMG signals. The first dataset referred to as the

CSL-HDEMG consists of 5 subjects performing 27 gestures. The second and third

datasets referred to as CapgMyo DB-b and DB-c, respectively, consist of 23 subjects

performing 8 gestures for DB-b and 12 gestures for DB-c. In summary, the number

of subjects and movements in previous studies were relatively small - particularly

in comparison with the Ninapro database, therefore, making it difficult to explore
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the generalizability of the existing techniques and has motivated us to focus on this

relatively large-scale sEMG database.

In summary, there is an urgent need to develop adaptive learning methods with

the focus on designing a classifier which can be adopted for new subjects based on only

a few observations through a fast learning approach. This is a challenging task since

many factors, such as electrode location and muscle fiber lengthening/shortening,

can affect the collected sEMG signals. Moreover, the differences between users and

the changes caused by amputations result in discrepancies between different condi-

tions [13, 61]. To the best of our knowledge, this is the first time that Few-shot

Learning is adopted in the literature to classify 49 hand gestures on new subjects

using a small (one to five) number of training observations.

Contributions: Although classical pattern-recognition-based myoelectric control

has been widely studied in academic settings over the last decades, the advanced

methodologies have not been used in many commercial examples. This is due to

a noticeable gap [13, 62] between real-world challenges and existing methodologies.

Among the reasons for this gap are:

(i) Training Time: The first problem is the extended training time required by

the end-user to mitigate the differences between the desired and performed

movements. Such a training process, which is time consuming, tedious and

unpleasant, can take up to several days in practice.

(ii) Variability in the characteristics of sEMG Signals: The second issue is the

variability in nature of the sEMG signals. This variability is caused by (a)

Time-dependent and stochastic nature of the neural drive to muscles; (b) De-

pendency of the neural drive to the dynamic and kinematics of tasks, and; (c)

Variability in neural control strategies between different users and the changes

caused by amputations. In addition, sEMG recording could vary based on elec-

trode location. Given such variations, therefore, the probability distributions of

sEMG signals may be different over time. Consequently, models trained based

on some specific observations may not consistently and directly be reused over

time. This would require retraining and recalibration, which cannot be done

often in real-life applications.

Recently, DNNs have been designed and used by our team [2,8,9,88] and other research

77



groups [29–32,82,89,90], for myocontrol, achieving superior classification performance

than conventional approaches. For example, in Reference [29], which is among the

first DNN-based methods developed for the analysis of sEMG data, it was shown that

results of a DNN with a very simple architecture are comparable to the average result

of classical methods. More specifically, the average classification accuracy obtained

using a simple CNN architecture on Ninapro DB2 was reported as 60.27 ± 7.7%.

The average classification accuracy obtained using all the classical methods on this

dataset is 60.28 ± 6.51%. The best classical classification method (Random Forests

(RF) with all features) obtained an average classification accuracy of 75.27± 7.89%.

It is worth noting that the DNN performance depends on several factors such as

pre-processing and the designed architecture. The optimization of parameters is,

therefore, fundamental for the performance. Consequently, there have been several

efforts to design advanced DNN architectures. For instance, the average classification

accuracy obtained based on recent works [30,32] is 82.95%, which shows their superior

performance compared to classical methods. However, DNNs need large training data

to achieve high performance. This may be feasible in laboratory conditions but poses

constraints in the practical use of prostheses in real-life applications. There is an

unmet need for the design of a modern gesture detection technique that relies on

minimal training data while achieving high performance.

Meta-learning can be formalized as a sequence-to-sequence learning problem. The

bottleneck is in the meta-learner’s ability to internalize and refer to experience. To

address this shortcoming for the gesture recognition task based on sparse multichan-

nel sEMG, inspired by [66], we proposed a class of model architectures by combining

temporal convolutions with attention mechanisms to enable the meta-learner to ag-

gregate contextual information from experience. This integrated architecture allows

the meta-learner to pinpoint specific pieces of information within its available set of

inputs. Our main goal is to construct and train a hand gesture recognition model that

can achieve rapid adaptation. Next, we first elaborate on the meta-learning concept.

The Meta-Learning Problem: A supervised learning task starts with a given

dataset D = {(Xi, yi)}Mi=1, consisting of M observations, where the i
th

observation

is denoted by Xi, for (1 ≤ i ≤ M), with its associated label denoted by yi. The

main objective is to learn a (possibly non-linear) function f(·) defined based on its
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Dmeta−val, and meta-test Dmeta−test sub-datasets. Furthermore, one needs to con-

struct different tasks (as shown in Fig. 5.1) within each meta-dataset. Task Tj ∈ D

is episodic and is defined by two components, a support-set Dsupport
j and a query-set

Dquery
j , i.e., Tj = (Dsupport

j ,Dquery
j ).

Within the context of meta-learning, our focus is specifically on few-shot learning

(typically referred to as k -shot learning with k being a small integer), which is briefly

described next. In a N -way k -shot classification, our goal is training on Dmeta−train,

where the input is the support-set Dsupport
j and, a query instance X

query
j ∈ Dquery

j .

To be more precise, Dsupport
j = {(Xi, yi)}k×N

i=1 , where N classes are selected from

the meta-train set, and then k observations are selected from each of these classes.

To make predictions about a new test data point, X
query
j ∈ Dquery

j , we produce a

mapping function f(·) that takes as input Dsupport
j and X

query
j to produce the la-

bel ŷqueryj = f(Dsupport,Xquery
j ; θ). Hyper-parameter selection is performed by using

Dmeta−val. Generalization performance of the meta-learner is then evaluated on the

Dmeta−test [84].

Fig. 5.1 shows a N = 5-way k = 1-shot classification task, where inside each purple

box is a separate dataset Tj consisting of the support-set Dsupport
j (on the Left-Hand

Side (LHS) of the dashed line) and the query-set Dquery
j (on the Right-Hand Side

(RHS) of the dashed line). In the illustrative example of Fig. 5.1, we are considering

a 5-way 1-shot classification task where for each dataset, we have one observation from

each of the 5 classes (each given a label 1 to 5) in the support-set and 1 observation for

evaluation from the query-set of that specific task. For training the model Dmeta−train

is used, where each Task Tj is drawn from p (T ) distribution, while during the test

procedure Dmeta−test is used, which consists of unseen tasks randomly sampled from a

different distribution (i.e., T̃j ∼ p (T̃ )), where p (T̃ ) is similar in nature to p (T ). As

shown in Fig. 1, task T̃j is associated with a dataset D̃j splitting into two parts, i.e.,

the support-set D̃support
j and the query-set D̃query

j (Fig. 1). For each task, we measure

performance on the D̃query
j based on the knowledge of its cosponsoring D̃support

j .

Description of the FS-HGR Model: In few-shot classification, the goal is to

reduce the prediction error on data observations with unknown labels given a small

training set. Inspired by [66], the proposed FS-HGR network receives as input a se-

quence of observation-label pairs Dsupport
j = {(Xi, yi)}k×N

i=1 , followed by Dquery
j , which

consists of an unlabelled observation. The meta-learning model predicts the label
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Figure 5.2: For each task Tj , the set of observations and labels are concatenated together and
sequentially fed to the model. The final observation is concatenated with a null label instead of True
label. The network is supposed to predict the missing label of final observation based the previous
labels that it has seen. In N -way k -shot classification, N shows the number of classes which are
selected from whole set of labels, and k shows the observations that are sampled from each of those
N classes.

of the final observation based on the previous labels that it has seen. During the

training phase, first, we select N classes, with k observations per Dsupport
j (in terms

of our running illustrative example, for each task, we have k = 1 observation from

each of the underlying N = 5 classes). For constructing the Dquery
j , we select an extra

observation from one of those selected classes. Afterwards, each set of the observa-

tions and labels are concatenated together (the final observation is concatenated with

a null label instead of the ground truth label as it is used for evaluation purposes),

and then all (N × k + 1) are sequentially fed to the network. Finally, the loss Lj is

computed between the predicted and ground truth label of the (N × k +1)th observa-

tion. During such a training mechanism, the network learns how to encode the first

N×k observations to make a prediction about the final observation [66]. The training

procedure is described in Algorithm 1 and the schematic of the model is shown in

Fig. 5.2.

5.2.1 The Building Modules of the FS-HGR Architecture

After completion of the pre-processing step, sEMG signals acquired from NS number

of sensors are segmented by a window of length of W = 200 ms selected to satisfy

the acceptable delay time [40], i.e., the window length W is required to be under 300

ms. With a larger window of 300 ms, the results would likely improve. However,
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Algorithm 1 The training procedure

Input: Dmeta−train, and; mapping function f (·) with parameters θ.
Require. p (T ): distribution over tasks
1: while not done do
2: Sample batch of tasks Tj ∼ p (T )
3: for all Tj do
4: Split Tj into Dsupport

j and Dquery
j

5: Predict the missing label of final observation of Tj: ŷquery =
f (Dsupport

j ,Dquery
j ; θ)

6: end for
7: Update θ using ΣTj∼p (T )LTj (ŷ

query, yquery)
8: end while

the use of shorter windows (e.g., 200 ms or 260 ms) provides an extra time (100 ms

and 40 ms, respectively) to perform the pre-processing and classification tasks, which

allows staying within the target 300 ms. A second reason for using a window of

duration 200 ms is to perform a fair comparison with prior works [24,29,30,32,48,83]

reported in Table 5.1. Finally, sliding window with steps of 50 ms is considered for

segmentation of the sEMG signals. By using overlapping, there are more observations

for training the underlying architecture. In [30, 83], a sliding window with steps of

100 ms was considered for segmentation of the sEMG signals. On the other hands,

in [32,48] a sliding window with steps of 10 ms was used. In all these previous studies,

the window size was 200 ms. The larger the overlapping size, the more training

data are available, i.e., the more augmentation. However, extended augmentation

increases the training time. In our work, for providing a fair comparison and to

keep a reasonable training time, we considered a sliding window with steps of 50

ms, which is approximately between the values considered in the prior works. The

building modules of the FS-HGR architecture are as follows:

1) The Embedding Module: To develop the FS-HGR for few-shot learning, we

aimed to first extract a 128-dimensional feature vector from each observation

with size of (W = 200×NS = 12), The “Embedding Module” is, therefore, used

to extract a 128-dimensional feature vector, which is then provided as input to

the proceeding modules within the proposed architecture.

Adopting a proper Embedding Module has a significant effect on the results. For

validating our claim, therefore, we utilized four different Embedding Modules:

(i) The first Embedding Module, referred to as the FC Embedding, consists
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(iii) T-Block Embedding I : This third Embedding Module utilizes the Tempo-

ralBlock Module (which will be described in next sub-section) consisting

of f = 128 1D-Convolutions with kernel size kS = 2, and dilation factor

d = 1 as its first block. The TemporalBlock Module is followed by two FC

layers to decrease the input’s sequence length to 1 as shown in Fig. 5.3(c),

and;

(iv) T-Block Embedding II : This embedding is similar in nature to the one

described above in Item (iii), however, here the goal is to examine the effect

of increasing the size of the receptive field. As such, the fourth Embedding

Module utilizes two TemporalBlock Modules with d = 1 and d = 2. It is

noteworthy to mention that the first FC layer in both LSTM and T-Block

Embedding modules are followed by ReLU activation function.

2) The TemporalBlock Module: Inspired by [2,8,43,44,66], the proposed FS-HGR

few-shot learning architecture utilizes Dilated Causal 1D-Convolutions over the

temporal dimension. The proposed architecture, therefore, provides several ad-

vantages over RNNs such as low memory requirement and faster training. In

addition, and unlike conventional CNNs, by incorporation of dilated causal con-

volutions, we increased the receptive field of the network and as such benefit

from the time-series nature of the input. As shown in Fig. 5.4(a), each Tem-

poralBlock consists of two dilated causal 1D-convolutions, each with dilation

factor d , kernel size kS , and f number of filters. To learn the complex structure

of the underlying data, each dilated causal 1D-convolutions is followed by a

ReLU activation function. More details are provided in Algorithm 2. Finally,

by concatenating the results and the input, the training speed can be consid-

erably improved. This module takes an input with size (Cin × l) and output a

tensor with size (Cout × l). Here, l denotes the sequence length and is equal to

(N × k + 1).

3) The TemporalConvNet Module: The benefit that comes with the designed

“TemporalConvNet” module is that its training procedure is much faster and

efficient compared to LSTM or Gated Recurrent Unit (GRU) architectures.

In other words, through this approach one complete sequence can be processed

through only one forward pass, while in RNN-based models this, typically, needs
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Algorithm 2 The TemporalBlock Module

function: TemporalBlock(input, dilation factor d , kernel size kS , number of filters
f ):

1: output1 = DilatedConv(input, d , kS , f )
2: activation1 = relu(output1)
3: output2 = DilatedConv(activation1, d , kS , f )
4: activation2 = relu(output2)
return concat(input, activation2)

Algorithm 3 The TemporalConvNet Module

function: TemporalConvNet(input, sequence length l = (N × k + 1), kernel size
kS , number of filters f ):

1: Z = ⌈log2 l⌉
2: for i in 0, .., Z − 1 do
3: input = TemporalBlock(input, 2i, kS , f )
4: end for
return input

several passes due to temporally linear hidden state dependency. The Tempo-

ralConvNet module consists of a series of TemporalBlock modules with expo-

nentially growing dilation factors d . More specifically, as shown in Fig. 5.4(b),

for an input with sequence length l = (N × k + 1), the TemporalConvNet con-

sists of Z = ⌈log2 l⌉ number of TemporalBlock modules. The dilation factors d

for the TemporalBlock modules are equal to [1, 2, 4, ..., 2Z−1], respectively. The

algorithm of this module is provided in Algorithm 3.

Algorithm 4 The Attention Module

function: Attention(input, key size dk , value size dv):
1: K = affine(input, dk)
2: Q = affine(input, dk)
3: V = affine(input, dv)
4: logits = matmul(Q, transpose(K))
5: probs = softmax( logits√

dk
)

6: output = matmul(probs, V )
return concat(input, output)

4) The Attention Module: The final constituent module within the proposed

FS-HGR architecture is referred to as the “Attention Module," included with

the objective of pinpointing a specific type of information within the available
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(possibly significantly large) context [65]. Attention mechanism has been re-

cently utilized [89] within the context of sEMG-based hand gesture recognition,

where the experiments showed attention’s capability to learn a time-domain

representation of multichannel sEMG data. By integrating the TemporalCon-

vNet, described above, and the Attention Module, essentially we provided the

FS-HGR architecture with the capability to access the past experience without

any limitations on the size of experience that can be used effectively. Further-

more, in the FS-HGR framework we used the Attention Module at different

stages to provide the model with the ability to learn how to identify and select

pieces of useful information and its appropriate representation from its expe-

rience. As shown in Fig. 5.4(c), to get queries, keys, and values, three linear

transformations are applied to the input. The attention mechanism then com-

pares queries to each of the key values with a dot-product, scaled by
√
dk , which

results compatibility scores. To obtain attention distribution over the values,

softmax function is applied to the scores. Then, we computed the weighted

average of the values, weighted by the attention distribution. In practice, the

keys, values, and queries are packed together into matrices K, V , and Q, re-

spectively. Then, the results and inputs are concatenated together. More details

are provided in Algorithm 4 and Reference [65].

This completes description of the modules incorporated to construct the proposed

FS-HGR framework. Next, we present its overall architecture.

The FS-HGR Architecture: The overall structure of the proposed FS-HGR archi-

tecture consists of four Attention modules, where the first three ones are followed by

a TemporalConvNet module. The final Attention module is followed by a FC layer

to produce the label of the final observation in each task Tj. More specifically, after

feeding each observation with size (W ×NS) to an Embedding Module, we obtained

a 128-dimensional feature vector (Fig. 5.3). Then, for constructing each task Tj with

sequence length l (Fig. 5.2), the set of observations (each observation is converted to

a 128-dimensional feature vector) and labels are concatenated. The final observation

in the sequence is concatenated with a null label instead of a True label. The net-

work is supposed to predict the missing label of the final observation based on the

previous labels that it has seen. In summary, to perform the hand gesture recognition

task, the FS-HGR framework is constructed based on different modules as shown in
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Fig. 5.4(d).

5.3 Experiments and Results

In this section, we describe a comprehensive set of experiments to analyse and evaluate

the proposed FS-HGR framework. At stated previously, in few-shot classification,

we would like to classify inputs in N classes when we have just k observations per

class. More specifically, for N -way k -shot classification, to construct each Task Tj =

(Dsupport
j ,Dquery

j ), for (1 ≤ j ≤ NTasks), first, we randomly select N classes from the

total number of N available classes in the meta-set (N ≪ N ). Then, we select k

observations from each of those selected N classes. These k observations together

constitute the support-set Dsupport
j . An additional observation is randomly selected

to form the query-set Dquery
j . In the experiments, there are a total of N = 49 classes

in the meta-set, each class corresponding to a specific hand gesture. For example,

consider the N = 10-way k = 5-shot classification scenario. To construct each Task,

we randomly select N = 10 out of the N = 49 available classes and then from each

class randomly select k = 5 observations to form the support-set (Dsupport
j ) for the

jth Task. Additionally, one extra observation is randomly selected from one of the

N = 10 classes to form the query-set (Dquery
j ) for the jth Task. In the N = 10-way

k = 5-shot classification scenario, therefore, each task consists of N × k + 1 = 51

number of observations selected randomly. In a training experiment, we consider

10, 000 iterations per epochs. Therefore, with a batch-size of 64, we create 640, 000

tasks per epoch. We consider 25 epochs for training. As a final note, within the

few-shot learning context, it is common to report the results based on different values

of N and k . In the experiments, we followed the common practice of using N = 5

and N = 10 together with k = 1 and k = 5. By increasing the number of classes

(N) in each Task Tj, the classification accuracy will decrease. At the same time,

by increasing the number of observations per class (k), the classification accuracy is

expected to improve as there are more observations from each of the underlying N

classes.

In all experiments, Adam optimizer was used for training purposes with learning

rate of 0.0001. Different models were trained with a mini-batch size of 64 except

in 10-way 5-shot classification where mini-batch size of 32 was used. For measuring

88



Table 5.1: Experiment 1: 5-way, 1-shot, 5-shot, and 10-shot classification accuracies on new
repetitions with few-shot observation. The classification on new repetitions with few-shot observation
are performed by using Meta-supervised Learning approach. This table also shows a comparison
between our methodology (Meta-supervised) learning and previous works where Supervised learning
methodology, i.e., DNN and Classical ML methods are used.

Proposed Method (FS-HGR) 5-way Accuracy (%) ± STD

M
et

a-
S
u
p
er

v
is

ed

L
ea

rn
in

g

Embedding Module 1-shot 5-shot 10-shot

FC Embedding 72.59 ± 0.15 85.13 ± 0.15 89.26 ± 0.14

LSTM Embedding 75.03 ± 0.15 84.06 ± 0.14 88.45 ± 0.12

T-Block Embedding I 73.46 ± 0.15 85.94 ± 0.13 89.40 ± 0.14

T-Block Embedding II 74.89 ± 0.15 85.88 ± 0.14 89.70 ± 0.15

Previous Works Method Accuracy (%)

D
N

N
-b

as
ed

M
et

h
o
d
s

Wei et al. [32] CNN 83.70

Hu et al. [30] Hybrid CNN-RNN 82.20

Ding et al. [48] CNN 78.86

Zhai et al. [83] CNN 78.71

Geng et al. [24] CNN 77.80

C
la

ss
ic

al

M
et

h
o
d
s Zhai et al. [83] SVM 77.44

Atzori et al. [29] RF 75.27

Pizzolato et al. [19] RF 72.25

the classification performance, the loss Lj was computed between the predicted and

ground truth label of (N × k +1)th observation in each task Tj. The average loss was

computed using Cross-entropy loss. Finally, the average accuracy is reported on the

(N × k + 1)th observation. In the following, we present three evaluation scenarios.

Experiment 1: Classification on New-Repetitions with Few-Shot Obser-

vation. The first experiment shows that our proposed network is applicable when

we had new repetitions with few-shot observation on the target. We evaluated our

proposed architecture when Dmeta−train consisted of the 2/3 of the gesture trials of

each subject (following Reference [29], repetitions 1, 3, 4, and 6 repetitions were used

for training purposes), and Dmeta−test consisted of the remaining repetitions. Ta-

ble 5.1 shows our results when using few-shot classification as well as previous works

which used supervised learning. From Table 5.1, it can be observed that the proposed

FS-HGR architecture outperformed existing methodologies when evaluated based on

the same setting, i.e., 89.70% best accuracy with the FS-HGR compared to 83.70%
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Table 5.2: Train and Test time for one Task Tj using 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot
for Experiment 1.

The Embedding Module

5-way Accuracy

1-shot 5-shot 10-shot

train time test time train time test time train time test time

FC Embedding 0.736 ms 0.175 ms 3.034 ms 0.856 ms 6.378 ms 1.428 ms

LSTM Embedding 1.242 ms 0.537 ms 4.930 ms 1.598 ms 10.417 ms 2.815 ms

T-Block Embedding I 1.41 ms 0.382 ms 6.46 ms 1.352 ms 13.59 ms 2.396 ms

T-Block Embedding II 4.27 ms 0.488 ms 19.05 ms 1.841 ms 38.43 ms 3.613 ms

best accuracy achieved by the state-of-the-art.

Reference [29], used different classifiers such as KNN, SVM, RF, and LDA. The

average classification accuracy obtained using all the classical methods on the DB2

dataset is 60.28± 6.51%. They show that the highest average classification accuracy

is 75.27± 7.89%, obtained with RF. Reference [83] showed that the average accuracy

of SVM on all movement types is 77.44%. Finally, in Reference [19], the best accuracy

is reported with RF classifier, which is 72.25± 7.13%. It can be seen from Table 5.1

that DNN-based methods provide improved performance.

The average of training and testing times for one Task Tj using 1-shot, 5-shot, and

10-shot for Experiment 1 are summarized in Table 5.2. It is noteworthy to say that

the time of processing depends on the hardware. In this work, we used a “NVIDIA’s

GeForce GTX 1080 Ti Graphic Cards”.

Experiments 2: Classification on New-Subject with Few-Shot Observation.

In this scenario, like the previous experiment, the second Ninapro database DB2 was

utilized. It consists of 49 gestures plus rest from 40 intact-limb subjects. In this

experiment, to validate our claim that the proposed FS-HGR architecture can classify

hand gestures of new subjects just by training with a few observations, we split the

DB2 database into Dmeta−train, Dmeta−val, and Dmeta−test such that the subjects in

these meta-sets are completely different (i.e., there is no overlap between the meta-

sets). In other words, Dmeta−train consists of the first 27 subjects, while Dmeta−val

includes the sEMG signals from the 28th subject to 32ed subject (5 subjects). Finally,

we evaluated our model on the remaining subjects, i.e., Dmeta−test consists of the final

8 subjects in the DB2 database.

It is noteworthy to mention that the proposed network is trained once and shared

across all participants (which is different from previous works that trained the model
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Table 5.3: Experiment 2(a): 5-way and 10-way, 1-shot and 5-shot classification accuracies based
on new subjects with few-shot observation. In this experiment, we adopted four different Embedding
Modules: (i) FC Embedding; (ii) LSTM Embedding; (iii) T-Block Embedding I, and; (iv) T-Block
Embedding II.

The Embedding Module
5-way Accuracy (%) ± STD 10-way Accuracy (%) ± STD

1-shot 5-shot 1-shot 5-shot

FC Embedding 62.87 ± 0.13 78.90 ± 0.15 43.47 ± 0.15 68.59 ± 0.14

LSTM Embedding 64.46 ± 0.16 79.82 ± 0.14 49.58 ± 0.17 69.93 ± 0.19

T-Block Embedding I 67.81 ± 0.14 81.08 ± 0.14 50.31 ± 0.14 69.94 ± 0.18

T-Block Embedding II 66.98 ± 0.15 81.29 ± 0.17 52.05 ± 0.15 70.71 ± 0.18

Table 5.4: Comparison of 5-way, 1-shot and 5-shot classification accuracies between the Experiment
2(a) and 2(b) based on new subjects with few-shot observation.

The Embedding Module

Experiment 2(a) Experiment 2(b)

5-way Accuracy (%) ± STD

1-shot 5-shot 1-shot 5-shot

FC Embedding 62.87 ± 0.13 78.90 ± 0.15 72.69 ± 0.15 86.08 ± 0.14

LSTM Embedding 64.46 ± 0.16 79.82 ± 0.14 75.56 ± 0.17 89.14 ± 0.12

T-Block Embedding I 67.81 ± 0.14 81.08 ± 0.14 75.11 ± 0.14 89.66 ± 0.13

T-Block Embedding II 66.98 ± 0.15 81.29 ± 0.17 77.08 ± 0.15 90.47 ± 0.12

separately for each participant). For constructing task Tj, however, we can feed data

in two different approaches:

• Experiment 2(a): In the first approach, for constructing Dsupport
j for each task

Tj, we selected all of the N classes from a specific user, which was randomly

selected from the existing participants. This is the more realistic and practical

scenario.

• Experiment 2(b): In the second approach, for constructing Dsupport
j , N classes

were selected from different participants.

Table 5.3 shows few-shot classification accuracies for Experiment 2(a) based on
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four different embedding modules. The adaptive learning method of the proposed

FS-HGR focuses on transfer learning information between a source and a target

domain despite the existence of a distribution mismatch between Dmeta−train and

Dmeta−test. The results reported in Table 5.3 show that the proposed mechanism

achieves acceptable results despite the fact that the sEMG signals are user-dependent.

Table 5.4 shows a comparison of 5-way classification accuracies between Experiments

2(a) and 2(b). As was it expected, Experiment 2(b) achieved better results, which is

due to the presence of variations among the probability distribution of sEMG signals

obtained from different subjects. However, this is not a practical setting as in practice

all of the N classes in Dsupport
j comes from the same user (i.e., Experiment 2(a)).

It is worth mentioning that Experiment 2(a) is the more realistic and challenging

one, while Experiment 2(b) is included for completeness and comparison purposes.

The rational behind Experiment 2(a) is that a prosthesis hand will be utilized by a

user, therefore, the model should be able to distinguish different hand movements of

this specific person. In this sense, Experiment 2(a) is more realistic than Experiment

2(b). In Experiment 2(a), for constructing Dsupport
j , we selected all the N classes

from a specific user, which was randomly selected from the participants. However,

in Experiment 2(b), for constructing Dsupport
j , N classes were selected from different

participants, which implies that observations were obtained from different distribu-

tions/people, so the model would more easily discriminate these observations. For

Experiment 2(a), we have conducted a statistical hypothesis test to evaluate if there is

significant evidence to reject the hypothesis that lower and higher shots have similar

accuracies. We followed Reference [38] and used the Wilcoxon signed-rank test [67]

considering each participant as a separate dataset. Table 5.5 compares accuracy for

each subject in the test set in Experiment 2(a) for 5-way 1-shot and 5-way 5-shot. The

difference in accuracy between 1 and 5 shots was considered statistically significant

by the Wilcoxon signed rank test as the (p < 0.05).

Experiment 3: Classification on New-Gestures with Few-Shot Observa-

tions: In this scenario, the goal is evaluating the capability of the proposed FS-HGR

architecture when the target consists of solely out-of-sample gestures (i.e., new ges-

tures with few-shot observation). Performing well in this task allows the model to

evaluate new observations, exactly one per novel hand gesture class. In this exper-

iment, the Ninapro database DB2 was used. The DB2 dataset includes three sets
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Table 5.5: 5-way, 1-shot and 5-shot classification accuracies based on new subjects with few-shot
observation (Experiment 2(a)). In this experiment, we obtained the accuracy for each subject in
the test set using T-Block Embedding II. The Wilcoxon signed rank test is applied to compare the
different shots (e.g., 1-shot and 5-shot). Null hypothesis is rejected when H0 = 0 (p < 0.05).

The Subject
5-way Accuracy (%)

1-shot 5-shot

Subject 33 71.94 85.62

Subject 34 73.48 85.49

Subject 35 64.84 77.68

Subject 36 64.58 78.53

Subject 37 64.25 82.52

Subject 38 63.75 77.81

Subject 39 61.82 76.50

Subject 40 71.29 86.30

H0 = 0 (p < 0.05) 0 (0.01172) -

Table 5.6: Experiment 3: 5-way, 1-shot, 5-shot, and 10-shot classification accuracies based on new
gesture with few-shot observation.

The Embedding Module
5-way Accuracy (%) ± STD

1-shot 5-shot 10-shot

FC Embedding 45.94 ± 0.16 67.20 ± 0.14 79.87 ± 0.15

LSTM Embedding 46.05 ± 0.16 71.76 ± 0.14 81.58 ± 0.16

T-Block Embedding I 49.78 ± 0.15 71.57 ± 0.13 83.41 ± 0.14

T-Block Embedding II 45.48 ± 0.17 73.36 ± 0.17 83.97 ± 0.17

of exercises denoted by Exercise B, C, and D. Exercise B includes 8 isometric and

isotonic hand configurations and 9 basic movements of the wrist; Exercise C consists

of 23 grasping and functional movements; and finally, Exercise D consists of 9 force

patterns. For training purposes, Dmeta−train consisted of the first 34 gestures of each

user, which is equal to approximately 68% of the total gestures. Dmeta−val included 6

gestures or 12% of the total gestures. The remaining gestures (9 gestures), were used

in Dmeta−test for evaluation purposes. Exercises B and C were, therefore, used for

training and validation, and Exercises D, with different gestures, were used for test
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purposes. Table 5.6 shows the efficiency of the proposed model when we had out-of-

sample gestures in the target. The model predicted unknown class distributions in

scenarios where few observations from the target distribution were available.

Flowchart of the FS-HGR Framework: We have included a flowchart (Fig. 5.5)

for the proposed method applied to Experiment 2. Experiments 1 and 3 are similar

in nature to Experiment 2. Fig. 5.5(a) shows the preparation of a batch of tasks for

Experiment 2(a) and 2(b). Fig. 5.5(b) shows the training, validation, and test steps.

Comparison with State-of-Art TL-based Model: Moreover, we have compared

the proposed FS-HGR framework with the TL technique of Reference [38] for cross-

user scenarios. To provide a fair comparison, we have used the same public dataset

utilized in [38], i.e., Ninapro DB5. The Ninapro DB5 [19] was recorded with the Myo

Armband, and contains data from 10 healthy participants performing a total of 53

movements (rest included) divided into three exercise sets. The performance of their

proposed TL-based architecture is investigated based on the second exercise set of

DB5, which contains 18 (rest included) number of gestures. More specifically, in their

proposed approach, the pre-training for each participant was performed by employing

the training sets of the remaining nine participants. Finally, the average accuracy over

the 10 participants was reported. Furthermore, the data is first separated by applying

sliding windows of 52 samples (260 ms) with an overlap of 235 ms. We followed the

same criteria and obtained the average accuracy over the 10 participants for cross-

user model (Experiment 2(a)) for 5-way 5-shot and 5-way 10-shot classifications.

In addition to the results of Reference [38], we have included results of cross-user

models based on classical hand-crafted features developed in References [16,19,91–93],

coupled with traditional classifiers (RF, and LDA). Results are reported in Table 5.7.

It is observed that the proposed FS-HGR method outperforms classical and state-of-

the-art TL-based models over this cross-user scenario.

Providing the Results for Ninapro DB5: First, we evaluate the performance

of the proposed FS-HGR architecture for new repetitions with few-shot examples

for DB5 dataset. We considered 2/3 of the gesture repetitions of each subject for

training and validation purpose. The remaining repetitions constitute the test set.

Table 5.8 shows the performance of model when FS-HGR is applied for HGR task. In

this experiment, we used two Embedding Modules, i.e., FC and LSTM Embedding.
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Table 5.8: 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot classification accuracies based on new
repetitions with few-shot observation for Ninapro DB5. In this experiment, we adopted two different
Embedding Modules: (i) FC Embedding and (ii) LSTM Embedding

The Embedding Module
5-way Accuracy (%) ± STD

1-shot 5-shot 10-shot

FC Embedding 66.75 ± 0.14 79.48 ± 0.13 79.56 ± 0.15

LSTM Embedding 69.61 ± 0.15 78.75 ± 0.14 83.17 ± 0.15

Table 5.9: 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot classification accuracies based on new
gestures with few-shot observation for Ninapro DB5. In this experiment, we adopted two different
Embedding Modules: (i) FC Embedding and (ii) LSTM Embedding

The Embedding Module
5-way Accuracy (%) ± STD

1-shot 5-shot 10-shot

FC Embedding 40.23 ± 0.14 65.95 ± 0.15 75.29 ± 0.15

LSTM Embedding 39.56 ± 0.15 65.14 ± 0.14 74.91 ± 0.16

It can be observed that the Embedding Module could affect the overall accuracy.

Moreover, by increasing the number of shots, the accuracy will be improved. It is

noteworthy to mention that the performance of the proposed FS-HGR architecture

for this experiment is evaluated based on the second set of exercises DB5, which

includes 17 movements.

Moreover, it is shown that the proposed FS-HGR model can be used for new

movements based on only a few examples. More precisely, the test set consists of

completely new gestures. This is a challenging task because unlike the experiment for

new repetitions, here, the probability distribution of the test set is not the same as

training set. In other words, the model leverage the experience from source gestures to

adapt to the variations in the new gestures in the target. Table 5.9 shows the efficiency

of the proposed model when we had out-of-sample movements in the test set. The

model predicted unknown class distributions in scenarios where few observations from

the target distribution were available. It is worth to mention that in this experiment,

52 movements in DB5 are used. More specifically, 68% of total gestures are considered

for the training purpose, while the validation set consists of 12% of the total gestures.

The test set consists of the remaining gestures (20% of the total gestures).

97



Discussions on the Training Time of the FS-HGR Framework: It is worth

noting that adoption of few-shot learning within the FS-HGR framework has re-

sulted in reduction in the required training time for users. In previous studies, such

as [24,29,30,32,48,83], for each user’s gesture, 4 repetitions, each one lasting 5 seconds,

were required for calibrating (fine-tuning) the model for a new user. Therefore, for a

dataset consisting of 49 gestures, 49×4×5 = 980 seconds of data must be collected to

calibrate (fine-tune) the model for a new user. On the other hand, traditional hand-

crafted methods, such as the Canonical Correlation Analysis (CCA)-based approach

proposed in [36], require 3-to-5 seconds of EMG data per movement class (determined

empirically) for calibration. While this calibration set is much smaller than the train-

ing set previously used [24, 29, 30, 32, 48, 83], it is developed for a smaller number of

subjects. In the proposed FS-HGR approach, however, the model is tuned to a new

user by seeing a small number of observations (each of duration 200 ms). For a new

user in a N -way k -shot classification problem, we just need to see k -shot from each

gesture. Each shot is a window of size 200 ms. For example, in 5-way 1-shot sce-

nario, the duration of the required data from a new user for calibration (fine-tuning)

is 49 × 200 ms = 9.8 seconds (which is 980/9.8 = 100 times less than in previous

methods). It is worth noting that increasing the number of shots (while improving

the accuracy) increases the required number of training observations. For instance,

in a 5-way 5-shot problem, the 5- shots (windows of length 200 ms) come from one

repetition, i.e., for each new user only one repetition from each class, lasting 1 second,

is required. In other words, we do not need to collect data for the same number of

repetitions as in previous works. Therefore, the total duration of the required data

from a new user would be 49 × 5 × 200 ms = 49 seconds, which is still much lower

than conventional deep learning-based approaches. In a practical setting, the number

of utilized shots can be adjusted based on the required level of accuracy and training

time, which provides flexibility for practical use.

The Average Prediction Accuracy for Each Class: Moreover, Table 5.10 shows

the average prediction accuracy by the network for each class for 5-way, 1-shot, 5-shot,

and 10-shot classification accuracies on new repetitions with few-shot observation for

T-Block Embedding II.

Investigating the Effect of Input Modalities: The raw time-domain sEMG

signals and time-channel-frequency spectrograms are the two different modalities as
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Table 5.11: Parameters used in design of Spect-Embed1, Raw-Embed, and Spect-Embed12. Each
module repeats the following block for 3 or 4 times {3× 3 conv, batch norm, ReLU, MaxPool 2D}.

Name Input # Blocks
# Channels
in each block

Kernel-size of MaxPool
in each block

Spect-Embed1 Spectrogram 4 128, 128, 128, 128 (1,3), (2,3), (2,3), (2,3)

Raw-Embed Raw sEMG 3 8, 16, 32 (1,2), (3,4), (2,25)

Spect-Embed2 Spectrogram 3 8, 16, 32 (1,2), (3,4), (2,5)

inputs for the FS-HGR architecture. For utilizing raw sEMG as the input, we follow

the pre-processes approach described in Section 5.1 and use a 1st order low-pass

Butterworth filter to smooth the sEMG signals. Moreover, for scaling the sEMG

signals, the µ-law transformation is applied to sensors with small values, amplifying

their output in a logarithmic fashion (Eq. 3). This transformation keeps the scale

of sensors with larger magnitudes over time. Next, the Minmax normalization is

applied to the scaled inputs. It has been experimentally observed that scaling sEMG

signals with the mentioned pre-processing approach leads to better output. The

spectrogram is calculated using a 256-point Fast Fourier Transform (FFT) with a

Hamming window and hop-length of 72. This procedure converts each segment of

raw sEMG to a spectrogram with 129 frequencies covering the range (0− 1, 000 Hz).

Then and following the procedure in [38, 83], to decrease the baseline drift, the first

frequency is removed. Moreover, we removed the frequencies in range (700 − 1, 000

Hz) because the majority of the sEMG energy does not lie in this band.

To make multidimensional input compatible with the proposed architecture, we

develop the Embedding Module, which repeats the following block several times {3×3

conv, batch norm, ReLU, Max Pool 2D}. This module extracts a 128-dimensional

feature vector from raw sEMG signals or corresponding spectrogram. Each feature

vector is then concatenated with its corresponding label to form the input for the next

stage. It is noteworthy to mention that raw sEMG signals acquired from NS number

of sensors which are segmented by a window of length of W = 200 ms. We adopt

three Embedding Modules, namely Spect-Embed1, Raw-Embed, and Spect-Embed12 as

detailed in Table 5.11.

Table 5.12 shows the performance of the proposed FS-HGR when faced with new

repetitions with few-shot observations on the target. Following Experiment 1 in

Section 5.3, we evaluate the FS-HGR when Dmeta−train consists of the 2/3 of the
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Table 5.12: 5-way, 1-shot and 5-shot classification accuracies on new repetitions with few-shot ob-
servations, performed by using meta-learning approach. The table also shows a comparison between
the proposed FS-HGR Meta-supervised learning methodology and previous works where Supervised
learning is used.
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Embedding 5-way Accuracy

Module 1-shot 5-shot

Spect-Embed1 70.71% 80.40%

Raw-Embed 71.23% 83.99%

Spect-Embed2 61.51% 74.54%
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Previous Works Accuracy

Wei et al. [32] 83.70%

Hu et al. [30] 82.20%

Ding et al. [48] 78.86%

Zhai et al. [83] 78.71%

Geng et al. [24] 77.80%

Table 5.13: 5-way, 1-shot and 5-shot classification accuracies based on new subjects with few-shot
observation.

The Embedding Module
5-way Accuracy

1-shot 5-shot
Spect-Embed1 52.31% 69.61%
Raw-Embed 66.45% 76.39%

Spect-Embed2 54.64% 70.77%

gesture trials of each subject, repetitions 1, 3, 4, and 6 are used for training), and

Dmeta−test consists of the remaining repetitions. Table 5.12 also shows the results

associated with the proposed few-shot classification approach and previous supervised

learning-based methodologies. From Table 5.12, it can be observed that the proposed

FS-HGR architecture outperforms existing methodologies when evaluated based on

the same setting, i.e., 83.99% best accuracy from the FS-HGR compared to 83.70%

best accuracy achieved by the state-of-the-art.

Moreover, to classify the hand gestures of new subjects, we followed Experiment 2

in Section 5.3 and split the DB2 database into Dmeta−train, Dmeta−val, and Dmeta−test

such that the subjects in these meta-sets are completely different (i.e., there is no

overlap between the meta-sets). More specifically, Dmeta−train consists of the first 27
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Table 5.14: 5-way, 1-shot and 5-shot classification accuracies based on new gesture with few-shot
observation.

The Embedding Module
5-way Accuracy

1-shot 5-shot
Spect-Embed1 38.35% 57.1%
Raw-Embed 47.28% 72.19%

Spect-Embed2 38.78% 58.06%

subjects, while Dmeta−val includes the sEMG signals from the 28th subject to 32ed sub-

ject. Finally, we evaluated our model on the remaining 8 subjects. For constructing

each task Tj, we constrained ourselves to sample all of N classes from a specific user,

randomly selected from the existing participants, which is a more realistic and prac-

tical scenario. Table 5.13 shows the results for the classification on new-subject with

few-shot observations based on three Embedding Modules. The results of Table 5.13

show that the proposed FS-HGR achieved acceptable results in transferring informa-

tion between a source and a target domain despite the existence of a distribution

mismatch between them.

Moreover, we evaluate the capability of the proposed FS-HGR architecture when

the target consists of solely out-of-sample gestures (i.e., a new gesture with few shot

observations). We followed the same procedure for the Experiment 3 in Section 5.3

here. Therefore, Exercises B and C were used for training and validation, and Exer-

cises D with totally different gestures were used for test purposes. Table 5.14 shows

the efficiency of the FS-HGR when provided with out-of-sample gestures. It can be

observed that the model can predict unknown class distributions in scenarios where

few examples from the target distribution is available.

As shown in Table 5.12, Table 5.13, and Table 5.14 , the network has better

performance when it receives the raw sEMG signal as the input. The Raw-Embed

has similar structure to that of the Spect-Embed2, and the main difference is the

input format. Therefore, it can be concluded that the network itself can extract more

informative features, improving the overall performance. Moreover, in Experiment

1, where Dmeta−train and Dmeta−test have the same distribution, the Spect-Embed1

has better performance than Spect-Embed2. The intuition is that deeper structure

of Spect-Embed1 helps it to mimic data distribution better than Spect-Embed2. In

contrast, as shown in Table 5.13 and Table 5.14, the performance of Spect-Embed1

drops in comparison with Spect-Embed2. The main reason is that data distribution in
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Dmeta−train and Dmeta−test is not the same anymore. Therefore, the simpler structure

in Spect-Embed2 contributes to its generalization resulting in better performance on

the test-set having a different distribution from that of the train-set.

5.4 Conclusion

In this chapter, we proposed a novel few-shot learning recognition approach for the

task of hand gesture recognition via sEMG signals. The proposed FS-HGR frame-

work could quickly generalize after seeing very few observations from each class. This

is achieved by exploiting the knowledge gathered from previous experiences to accel-

erate the learning process performed by a new subject. The experience gained over

several source subjects is leveraged to reduce the training time of a new target user.

The ability to learn quickly based on a few observations is a key characteristic of the

proposed FS-HGR framework that distinguishes this novel architecture from its pre-

vious counterparts. A second contribution of the chapter is its capability to address

the user-dependent nature of the sEMG signals. The proposed FS-HGR framework

transfers information between a source and a target domain despite the existence of

a distribution mismatch among them. This would dramatically reduce the number

of required cumbersome training sessions leading to a drastic reduction in functional

prosthesis abandonment. In this chapter, we have shown that for a new user/gesture

when the distributions of sEMG signals is different from that of the training data, the

model can still classify the hand movements. This is because the knowledge gained

during the training phase is leveraged for the new users/gestures. Other factors such

as time variability between days, and type of amputations affect the distributions of

sEMG signals. These factors were not investigated in the proposed architecture while

are relevant to study in future research. A third factor that can affect distributions of

sEMG signals is misplacement or displacement of sensors (electrode locations/shift),

which is an open topic of research that has not been addressed in this chapter. This

can be applied to any existing research focusing on the processing of sEMG. We

believe that the proposed approach has the potential to also address this problem,

however, we have not completed our experiments and thus cannot strongly mention

that. We consider this as a limitation for our current study and a future research di-

rection. As a final note, we would like to mention that multi-channel EMG recording
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has become a common trend and there are commercialized wearable sensors. It is

correct that the higher number of sensors results in higher complexity of electronics,

but thanks to recent advances in the area of wearable sensors, this has been achieved

and is progressing.

104



Chapter 6

Conclusion and Future Direction

While passive prostheses are typically used for aesthetic purposes, active prostheses

can perform different functionalities such as gripping, grasping, and functional move-

ments, to name but a few. Active prostheses can be categorized into: (i) Body-Powered

Prostheses, in which the opening and closing are achieved by a harness and cables that

are worn over the user’s shoulder, and; (ii) Electrically-Powered Prostheses, which are

controlled by neural information sources and are referred to as myoelectric prostheses.

In the latter case, once an amputee wants to move their phantom limb, the intent is

first encoded in a nerve impulse, which is communicated naturally from the brain to

the residual muscles, producing electrical activities. Myoelectric control is performed

by measuring these electrical activities and actuating a prosthesis device to provide

natural and intuitive control for the user. The main focus throughout this Ph.D. thesis

was on active myoelectric prostheses. We first presented an review of different my-

oelectric pattern-recognition control algorithms, especially DNN-based approaches.

Then we focused on three important research objectives associated with HGR, i.e.,

improving overall accuracy of sparse sEMG-based HGR, reducing complexity of DNN

architectures, and developing adaptive learning solutions. In the following, we first

summarize the thesis contributions, and then discuss potential directions for future

research.

6.1 Summary of Contributions

The thesis contributions can be summarized as follows:
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• Accurate and Efficient sEMG-based Deep Learning Models: In Chap-

ter 3, we discussed one of the most important HGR research objectives, which is

improving the accuracy of myoelectric systems, and proposed the HRM architec-

ture. Since this network is developed based on a hybrid deep learning technique,

it outperforms CNNs in the HGR problem. We expanded on this research by

presenting TCN architecture developed based dilated causal convolutions. The

proposed TCN architecture is capable of processing the input sequence as whole,

rather than sequentially as in RNNs. Moreover, unlike LSTMs that can easily

consume a lot of memory to store partial results, in the TCN architecture, the

filters are shared in a layer resulting in low memory requirements for training.

Our results show that the two proposed approaches are capable of increasing

the recognition accuracy when compared to the existing solutions. Then, we

moved on to the second research goal of myoelectric control, which is to design

an efficient DNN-based architecture for the HGR problem. In this context, we

presented the XceptionTime architecture, which incorporates depthwise separa-

ble convolutions, adaptive average pooling, and a novel non-linear normalization

technique to classify the hand gestures. The proposed XceptionTime architec-

ture has reduced number of trainable parameters resulting in a more compact

(reduced complexity) and efficient solution.

• Attention-Based Models: Capitalizing on the fact that attention-based mod-

els have revolutionized several ML fields, including NLP, Computer Vision, and

speech recognition, we demonstrated that attentions-based architectures have

the potential to improve the analysis of sEMG signals and bridge the gap be-

tween recent academic research and clinical settings. In this regard, in Chap-

ter 4, we focused on increasing the accuracy and reducing the number of pa-

rameters for the HGR problem by utilizing attention-based architectures. We

presented TC-HGR architecture, which is based on self-attention mechanism

and temporal convolutions to classify the hand gestures. Then, we proposed

the TEMGNet architecture based on transformer. In particular, the TEMGNet

architecture is entirely based on attention mechanisms, with no recurrence or

convolutions. We demonstrated that the TEMGNet architecture outperforms

its existing state-of-the-art counterparts in terms of overall recognition accuracy

and complexity.
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• Adaptive-based Model: One important, and at the same time, challeng-

ing problem, within the hand gesture classification scope, is developing a novel

framework based on the formulation of Few-Shot Learning to infer the required

output given only one or a few number of training examples. Therefore, in

Chapter 5, we proposed an architecture (refered to as the FS-HGR) that learns

such a mapping using a small number of data and quickly adapts to a new

user/gesture by combing its prior experience. The proposed FS-HGR architec-

ture’s ability to learn quickly based on a few observations is a key feature that

distinguishes this novel architecture from its predecessors.

6.2 Future Direction

Below, we present few fruitful directions for future research:

• Factors such as time variability between days and type of amputations affect

the distributions of sEMG signals. These factors were not investigated in the

thesis while are relevant to study in future research. A third factor that can

affect distributions of sEMG signals is misplacement or displacement of sensors,

which is an open topic of research that has not been addressed in this thesis.

We consider this as a limitation for our current study and a future research

direction.

• Most of the literature concentrate on algorithm development based on intact

(healthy) subjects. No or few amputees were used to validate some approaches [94].

Pattern recognition for prosthesis control is inherently dependent on the unique

and repeatable patterns of sEMG signals. It is, therefore, critical to investigate

the effects of different levels of amputation on the capabilities of DNN-based

solutions.

• There is a need to develop advanced prostheses for people who have a high

level of amputation. More specifically, there are more solutions available for

the transradial prostheses than the transhumeral ones, although both make

up a similar percentage of the population [94]. This can be attributed to the

fact that it is easier to restore hand function for the lower level of amputation

since more muscles are available. Therefore, there is an unmet need to improve
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myoelectric prostheses control for transhumeral amputees. Moreover, most of

available databases provide sEMG signals for intact subjects. Only a few ones

have collected signals from transradial amputated patients and none exist for

transhumeral patients. Consequently, to develop robust pattern recognition-

based control algorithms for myoelectric prostheses, there is a need for public

databases, which focus on amputee subjects, especially the transhumeral sub-

jects [14, 94].

• Enrichment of sEMG signals with other measurement modalities can be con-

sidered a fruitful direction for future research. For example, sensor fusion tech-

niques such as coupling sEMG electrodes with Inertial Measurements (IMs) can

increase classification performance [32]. Moreover, it was shown [95] that replac-

ing the EMG signals with IM information rather than combining the two, has

the potential to increase the classification accuracy for some specific gestures.

These findings are important, combining sEMG signals with IMs can help re-

searchers resolve the non-stationarity problems with the sEMG signals. On the

other hand, the combination of computer vision and sEMG signals is one of the

most recent developments in this field and offers promising prospects for hand

movement classification and future study. More specifically, the performance of

sEMG-based hand gesture recognition is negatively impacted by the changes in

arm posture or muscle fatigue. On the other hand, by utilizing vision sensors, a

significant stream of environmental data can be provided, which might be cru-

cial in determining the intended gestures. However, visual data can be affected

by its own artifacts, including changes in lighting. Therefore, combining sEMG

signals with visual sensors is a promising potential for future study given the

complimentary properties of these modalities.

• While DNN-based approaches have shown promising recognition results for my-

oelectric control, such data-driven solutions, typically, fail to provide sensory

feedback to the limb amputee end users. In other words, hand motions combined

with a sense of touch can enhance the smoothness of human interactions with

the environment. It is, therefore, critical to recover the lost sensory touch in

the upper limb prosthesis through sensory neuro-prosthesis, enhancing the dex-

terous control of myoelectric prosthesis. Capturing the human hand’s sensory
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perception can be achieved by electronic skin (e-skin), which has embedded sen-

sors providing sensory precepts (e.g., touch, temperature, pressure, and pain)

from the environment. Consequently, several recent works such as [96] have

focused on providing a sensation feedback loop such that amputees can interact

with their environment more easily. This is another fruitful direction for future

research.

• Another possible research direction to improve myoelectric prostheses is real-

time ML, where prosthetic devices are considered as goal-seeking agents. Fol-

lowing an autonomous system perspective, agents can adapt to the environmen-

tal changes. For instance, incorporation of Reinforcement Learning (RL)-based

methods can allow an amputee interacting with the prosthetics agent, which

in turn learns, over time, how to perform different patterns. Use of RL-based

models has the potential of providing personalized myoelectric prosthesis con-

trol.

• When designing myoelectric prosthesis, restoring functionality of a hand is not

the only important factor. Other concerns such as cost, comfort, cosmetic

acceptance, intuitiveness, stability, and durability are important to fulfill the

amputated user’s needs [14].
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