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Abstract

In this paper we exploit a relationship between certain pairwise balanced designs

with v points and periodic Golay pairs of length v, to classify periodic Golay pairs of

length less than 40. In particular we construct all pairwise balanced designs with v

points under specific block conditions having an assumed cyclic automorphism group,

and using isomorph rejection which is compatible with equivalence of corresponding

periodic Golay pairs, we complete a classification up to equivalence. This is done

using the theory of orbit matrices, and some compression techniques which apply to

complementary sequences. We use similar tools to construct new periodic Golay pairs of

lengths greater than 40 where classifications remain incomplete, and demonstrate that

under some extra conditions on its automorphism group, a periodic Golay pair of length

90 will not exist. Length 90 remains the smallest length for which existence of a periodic

Golay pair is undecided. Some quasi-cyclic self-orthogonal codes are constructed as an

added application.
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1 Introduction and preliminaries

Let a = [a0, . . . , av−1] be a {±1}-sequence of length v. The periodic autocorrelation function

of a for a given shift s is defined to be PAFs(a) =
∑v−1

i=0 aiai+s where the sequence indices are

read modulo v. A pair (a, b) of {±1}-sequences is a periodic Golay pair (PGP) if PAFs(a) +

PAFs(b) = 0 for all 1 ≤ s ≤ v − 1. We denote the set of all PGPs of length v by PGP(v).

PGPs generalize the better known Golay pairs, introduced in [14], which are known to have

applications in multislit spectroscopy, signal processing, digital communications and a variety

of other areas (see e.g., [18]). PGPs exist in far greater abundance and at lengths where no

Golay pairs may exist, but retain many of the properties required for these applications, so

they are also of significant value, but are of mathematical interest in their own right too.

A PGP(v) is used to construct Hadamard matrices of order 2v (see e.g., [9]). This fact

alone demonstrates that a PGP(v) for v > 1 can exist only if v is even. It is also well known

that v must be the sum of two squares. Another less obvious restriction is due to Arasu and

Xiang.

Theorem 1.1 (Corollary 3.6, [1]). If there exists a PGP(v) where v = ptu > 1, p ≡ 3 mod 4

is prime, and gcd(p, u) = 1, then u ≥ 2pt/2.

This proves that no PGP(18) exists. It is possible to compose a PGP(v) with a Golay pair

of length u to construct a PGP(uv), though Golay pairs of length u are only known to exist

for lengths u = 2a10b26c for a, b, c ∈ N, and it is conjectured that no others exist. It is shown

in [12] for example, that no Golay pair of length u exists if u has a prime factor congruent to

3 modulo 4. The literature on PGPs is reasonably extensive, we refer the reader to [8, 9, 10]

for recent progress, and to the references contained therein for further background. The

smallest v for which existence remains undecided is 90.

Let K be a set of positive integers. A pairwise balanced design PBD(v,K, λ) is a finite

incidence structure D = (P ,B, I) where P and B are disjoint sets and I ⊆ P × B, with the

following properties:

• |P| = v,

• if an element of B is incident with k elements of P , then k ∈ K,

• every pair of distinct elements of P is incident with exactly λ elements of B.

Elements of P and B are called points and blocks respectively. A 2-(v, k, λ) design, also

known as a balanced incomplete block design (BIBD), is a PBD(v,K, λ) where K = {k}. If

D is a 2-design, each point is incident with a constant number of blocks, denoted by r, and

called a replication number. If |B| = |P| then the 2-(v, k, λ) design is called a symmetric

design. An isomorphism from one design to other is a bijective mapping of points to points
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and blocks to blocks which preserves incidence. An isomorphism from a design D onto itself is

called an automorphism of D. The set of all automorphisms of D forms its full automorphism

group denoted by Aut(D).

Using the method outlined in [6] we can construct PBDs using orbit matrices. This

construction is described in Section 3. By constructing PBDs with appropriate parameters

and a presumed cyclic automorphism group, we can construct PGPs. We completely classify

PBDs with these conditions which correspond to PGP(v)s for all v ≤ 34, and we note that

there are no periodic Golay pairs of length 36 and 38.

In the next section we define PBDs up to isomorphism in order to carry out our classi-

fication up to isomorphism accordingly. Similarly we explicitly define equivalence of PGPs

and outline a procedure for efficiently computing the equivalence class of a given pair. We

will see that the isomorph rejection used in the construction of PBDs is compatible with

equivalence of corresponding PGPs. That is, the isomorph rejection only eliminates PBDs

corresponding to equivalent PGPs, so at least one representative from each equivalence class

of PGP remains. We then outline the construction of PBDs via orbit matrices in Section 3

and present our computational results in Section 4. As an added application we demonstrate

how the objects constructed and related orbit matrices can be used to construct quasi-cyclic

self-orthogonal linear codes over suitable finite fields in Section 5.

Computation in this paper consisted of programmes written for Magma [3] and GAP [13].

2 PBDs and periodic Golay pairs

Let (a, b) ∈ PGP(v), and let A and B be the circulant matrices with first rows a and b,

respectively. Then
[
A B

]
is a v × 2v matrix where the dot product of any two distinct

rows is zero, i.e. the top half of a Hadamard matrix. This is only possible if v is even, or

if v = 1. So by replacing each 1 with 0 and each −1 with 1 in
[
A B

]
to get

[
A′ B′

]
we have an incidence matrix of a pairwise balanced design PBD(v, {ka, kb}, λ), where ka and

kb denote the number of entries equal to −1 in a and b respectively. If the blocks label

the columns and points label the rows of
[
A′ B′

]
, we have v points, each incident with

r = ka + kb blocks, and any pair of points is incident with λ blocks. There are 2v blocks,

the first v being incident with ka points, the second v incident with kb points. Orthogonality

of rows in
[
A B

]
gives that λ = r − v

2
. Further, the cyclic group Cv acts transitively on

points and has two orbits on the set of blocks.

Thus by constructing a PBD(v,K, λ) with presumed automorphism group Cv acting tran-

sitively on points, we can construct the corresponding PGP.

3



2.1 Isomorphism of PBDs

During the construction of PBDs with a presumed automorphism group we avoid construc-

tion of mutually isomorphic designs. This process is called an isomorph rejection. When

constructing PBDs with parameters (v,K, λ) corresponding to periodic Golay pairs (a, b) of

length v, and thus having the presumed automorphism group Cv, for isomorph rejection we

use the normalizer N of the group Cv in Sym(v) (see [6]). The elements of N that are not in

the centralizer of Cv act in the same way on the sets of blocks corresponding to the sequences

a and b, respectively, while the elements of the centralizer can act independently on these

two sets of blocks of a PBD(v,K, λ).

2.2 Equivalence of periodic Golay pairs

Given a Golay pair (a, b) of length v, we can construct a new Golay pair of length v by applying

certain equivalence operations, see [7] for example. Any two periodic Golay pairs such that

one is obtainable from the other through some combination of equivalence operations are

members of the same equivalence class. In this section we outline similar operations that

when applied to a pair of {±1}-sequences, preserve the property of being a PGP. Moreover we

describe a computational procedure for efficiently computing equivalence classes, which helps

to classify the PGPs constructed in this paper. A similar tactic was applied to computing

equivalence of negaperiodic Golay pairs in [11].

Define C to be the circulant v × v matrix

0 1 0 · · · 0 0

0 0 1 0 0

0 0 0 0 0
...

. . .
...

0 0 0 0 1

1 0 0 · · · 0 0

.

and write a {±1}-sequence as a row vector a = [a0, a1, . . . , av−1], indexed modulo v. Let X

be the set of all pairs of {±1}-vectors of length v. We define equivalence operations of PGPs

of length v in terms of elements of Sym(X) as follows:

1. (a, b)α1 = (b, a); Swap a and b.

2. (a, b)α2 = (aC, b); Replace a with aC.

3. (a, b)α3 = ([av−i]1≤i≤v, b); Reverse a.

4. (a, b)α4,k = ([aki]0≤i≤v−1, [bki]0≤i≤v−1); For any k < v coprime to v replace both a and b

with [aki]0≤i≤v−1 and [bki]0≤i≤v−1 respectively. This is referred to as a decimation of a

and b.
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5. (a, b)α5 = ([(−1)iai]0≤i≤v−1, [(−1)ibi]0≤i≤v−1); Negate every odd indexed entry of both

a and b.

Remark 2.1. It is commonly written that negating one of the sequences is an elementary

equivalence operation. We note that (a, b)α5α2α5α
−1
2 = (−a, b), i.e., negating a sequence is

incorporated in these operations.

Let G ≤ Sym(X) be the group 〈α1, α2, α3, {α4,k : (k, v) = 1}, α5〉 of order 32v2ϕ(v) where

ϕ is the Euler-phi function.Then X is a G-set and if any element of a G-orbit is a PGP, each

element of the orbit has this property. Thus the action of G on a PGP (a, b) produces its

equivalence class.

Let Mon(n,X) denote the set of n× n monomial matrices with non-zero entries in a set

X. To efficiently calculate equivalence classes we construct a matrix representation m : G→
Mon(2v, 〈−1〉) of G. Let δyx = 1 if x = y and 0 otherwise, and let f(n) be the remainder

after division of n by v. We define K(k) = [δ
1+f((j−1)k)
i ]1≤i,j≤v where k is coprime to v. Let

T = [δji (−1)i−1]1≤i,j≤v, and let R = [δv+1−j
i ]1≤i,j≤v. We describe the images of the generators

of G under m as follows.

m(α1) =

[
0 I

I 0

]
, m(α2) =

[
C 0

0 I

]
, m(α3) =

[
R 0

0 I

]
,

m(α4,k) =

[
K(k) 0

0 K(k)

]
, m(α5) =

[
T 0

0 T

]
.

Under this definition we observe that m : G → Mon(2v, 〈−1〉) is an injective homomor-

phism and is thus a 2v-dimensional matrix representation of G. Let a ◦ b denote the vector

of length 2v obtained from the concatenation of a and b. We observe that for any g ∈ G,

if (a, b)g = (c, d) then (a ◦ b)m(g) = c ◦ d. Thus given a pair (a, b) we calculate the orbit

(a ◦ b)m(G), and obtain the equivalence class, in concatenated form. Given a list of PGPs,

it is now a manageable task to test equivalence of any distinct pairs. In [11] it was feasible

in this manner to complete a classification of all negaperiodic Golay pairs of length up to

20, by allowing the matrix group to act of the set of all {±1}-vectors, and testing the auto-

correlation of representatives of each class. A complete test for longer sequences remains an

arduous task, but testing equivalence of a given list is still relatively quick.

2.3 Compression

For any sequence a = [a0, . . . , av−1] of length v and positive integer m dividing v we can

construct a compressed sequence a(m) = [
∑ v

m
−1

i=0 aim+j]0≤j≤m−1 of length m by summing every

mth entry in the sequence. This is referred to as m-compression in [10]. For example, a
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sequence [a0, . . . , a9] of length 10 can compress to a sequence of length 2, i.e., [a0+a2+a4+a6+

a8, a1+a3+a5+a7+a9], or a sequence of length 5, i.e., [a0+a5, a1+a6, . . . , a4+a9]. Compression

preserves complementarity in sequences. For shorthand we write (a, b)(m) = (a(m), b(m)).

Proposition 2.2. If (a, b) ∈ PGP(v) then for any m dividing v, the pair of sequences (a, b)(m)

are complementary.

Proposition 2.2 is a special case of [10, Theorem 3]. This special case is easily proved by

calculating PAFs(a
(m)) + PAFs(b

(m)) for any s ≤ v/m. Compression is a useful tool in the

construction (or proving non-existence) of PGPs, as we know that if a PGP(v) exists, then

for any m dividing v this PGP(v) must compress to a pair of complementary sequences of

length v
m

. As an example, suppose we were attempting a complete enumeration of PGPs of

length 18 (of which there are none). By compressing to sequences of length 6, each entry

is a sum of three terms, giving four possible entries, namely ±1 and ±3. To do a complete

search (disregarding equivalence), we construct 412 possible pairs of sequences to test for

complementarity, rather than 236, thus reducing computation by a factor of 212. This does

however add the task of rebuilding the sequences of length 18. Fortunately, the entries equal

to ±3 correspond to only one possible set of three terms in the longer sequence, but each ±1

entry could correspond to one of three.

Helpfully, compression is often compatible with the equivalence operations for PGPs.

Namely, we observe that

• (a, b)(m)α1 = ((a, b)α1)
(m),

• (a, b)(m)α2 = ((a, b)α2)
(m),

• (a, b)(m)α3 = ((a, b)α3)
(m), and

• (a, b)(m)α4,k = ((a, b)α4,k)(m) for k coprime to v.

Thus we may sort pairs of sequences up to equivalence according to the above operations,

and test representatives for complementarity before building larger sequences. For example,

this approach was implemented in order to carry out a complete classification of PGP(20),

by compressing to sequences of length 4 with entries in {±1,±3,±5}.

3 Main construction

Adhering to a procedure of [6] we construct PBDs from orbit matrices. We give the necessary

definitions and describe the procedure here.

Let D be a pairwise balanced design PBD(v,K, λ) with a replication number r, and G ≤
Aut(D). We denote the G-orbits of points by P1, . . . ,Pm, G-orbits of blocks by B1, . . . ,Bn,
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and put |Pi| = ωi, |Bj| = Ωj, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Further, we denote by γij the number

of blocks of Bj incident with a representative of the point orbit Pi. The following equalities

hold:

0 ≤ γij ≤ Ωj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (1)
n∑

j=1

γij = r, 1 ≤ i ≤ m, (2)

m∑
i=1

ωi

Ωj

γij ∈ K, 1 ≤ j ≤ n, (3)

n∑
j=1

ωt

Ωj

γsjγtj = λωt + δst · (r − λ), 1 ≤ s, t ≤ m. (4)

Definition 3.1. A (m × n)-matrix M = (γij) with entries satisfying conditions (1) − (4)

is called a point orbit matrix of a pairwise balanced design PBD(v,K, λ) with orbit length

distributions (ω1, . . . , ωm) and (Ω1, . . . ,Ωn).

Orbit matrices are often used in the construction of designs with a presumed automor-

phism group. The construction of designs admitting an action of a presumed automorphism

group consists of the following two basic steps (see [16]):

1. Construction of orbit matrices for the given automorphism group;

2. Construction of block designs from the obtained orbit matrices. This step is often called

an indexing of orbit matrices.

Each orbit structure for the group G decomposes into orbit structures for a normal sub-

group H � G. Such a decomposition is called a refinement of an orbit structure. In [6] an

algorithm for refinement of orbit matrices of a 2-design using a principal series of an abelian

automorphism group of that design is described and is generalized using a composition series

of a solvable automorphism group in [5]. The construction of PBDs corresponding to PGPs

of length v using orbit matrices, consists of the following steps:

1. Find all possible combinations of numbers ka and kb of a PBD(v, {ka, kb}, λ) corre-

sponding to PGPs. For a fixed combination of numbers ka and kb, we are proceeding

with the construction of PBD(v, {ka, kb}, λ). The cyclic group G ∼= Cv acts transitively

on points and has two orbits on the set of blocks. For the cyclic group G there is exactly

one orbit matrix M = [ka kb].

2. Construction of PBDs(v, {ka, kb}, λ) for the orbit matrix M . Since the group G is

cyclic, it can be written as direct product of cyclic subgroups as G ∼= Cv1 × . . .× Cvn .
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For a construction of PBDs(v, {ka, kb}, λ) we can use a principal series {1} = G0 /G1 /

G2 / . . . / Gn = G, Gi
∼= Cv1 × . . .×Cvi , of the group G to construct refinements of the

orbit matrix M as presented in [6]. In the ith iteration of the refinements we construct

all the orbit matrices for the group Gn−i, having in mind the action of the group G.

In the last iteration we obtain the orbit matrices for the trivial group i.e. incidence

matrices of PBDs(v, {ka, kb}, λ).

Remark 3.2. It is well known that a PGP(v) exists only if v is the sum of two squares.

Specifically, if (a, b) ∈ PGP(v), then where ra and rb denote the sum of the entries in a and

b respectively, it holds that r2a + r2b = 2v. It follows that we can limit the possible choices of

ka and kb so that 2(ka − v
2
)2 + 2(kb − v

2
)2 = v.

During the construction, elements of the normalizer of the presumed automorphism group,

i.e. the elements of NS(G), where S = S(P) × S(B), can be used to decrease the number

of constructed orbit matrices. This process is known as isomorph rejection. In Section 2.1

we explained the action of the elements of NS(G) when constructing PBDs corresponding to

periodic Golay pairs (a, b) of length v. We have to determine correspondence between the

elements of the normalizer NS(G) of an automorphism group G ∼= Cv of a PBD and the

equivalence operations of PGPs.

Let A = {αi | i = 0, . . . , n−1}, where αi(x) = x+i (mod n), for x = 0, 1, . . . , n−1, be the

cyclic group of order n. Then the centralizer CSn(A) equals A, and the normalizer NSn(A)

is the semidirect product A : M , where M = {βj | gcd(j, n) = 1}, βj(x) = jx (mod n), for

x = 0, 1, . . . , n− 1. Note that the order of M is ϕ(n), where ϕ is the Euler-phi function.

Let G ∼= Cv be an automorphism group of a PBD(v, {ka, kb}, λ) corresponding to PGPs.

The elements of the centralizer CS(G) correspond to the equivalence operation α2 for the

periodic Golay pairs (replace a with aC) when acting on the first orbit of blocks of G (orbit

that corresponds to a), or a composition of the equivalence operation 1 (swap a and b) and the

equivalence operation 2 when acting on the second orbit of blocks of G (orbit corresponding

to b). The elements of the normalizer NS(G) that are not in the centralizer CS(G) correspond

to the equivalence operation α4 for the periodic Golay pairs (decimation of a and b), or a

composition of the equivalence operations α2 and α4, or a composition of the equivalence

operations α1, α2 and α4. Hence, with isomorph rejection we eliminate PBDs that lead to

periodic Golay pairs (a, b) that are equivalent to some of the already constructed periodic

Golay pairs. Consequently, with the above described construction we obtain PBDs that

correspond to all equivalence classes of PGPs of length v.
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4 Results

In this section we give the results of our computational classifications of isomorphism classes

of PBDs and equivalence classes PGPs with various parameters. In general, isomorphism of

PBDs is a stronger condition than equivalence of PGPs so there are often several isomorphism

types of PBDs corresponding to the same PGP equivalence class. Numerical results from our

classifications of equivalence classes of PBDs and PGPs are given in the following subsections.

For more detailed information which couldn’t be included in this manuscript, representatives

of each class of PBD and PGP are hosted here:

http://www.math.uniri.hr/~ddumicic/results/PGpairs_PBDs.html.

4.1 PBD classifications

In Table 1 we present the number of isomorphism classes of PBDs with presumed automor-

phism group Cv corresponding to the existence of PGP(v) up to v = 34, constructed as

described in Section 3, and more detailed results are given in Table 2 and Table 3. In order

to check the correctness of the obtained number of isomorphism classes of PBDs we have

used different composition series of the group, as shown in Table 3.

v 4 8 10 16 20 26 32 34

Classes 3 4 8 62 448 816 10208 5856

Table 1: Number of isomorphism classes of PBDs
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v {ka, kb} r λ # nonisomorphic Full automorphism group

PBDs

4

{1,1} 2 0 1 S4

{3,1} 4 2 1 S4

{3,3} 6 4 1 S4

8
{4,2} 6 2 2 C8, C8 : E4

{6,4} 10 6 2 C8, C8 : E4

10

{4,3} 7 2 2 C10

{6,3} 9 4 2 C10

{7,4} 11 6 2 C10

{7,6} 13 8 2 C10

16

{6,6} 12 4 16

C16, QD32, C16 : C2,

(((C4.D8) : C2) : C4) : C2,

(C16 : C4) : C2

{10,6} 16 8 30
C16, C16 : C2,

(C2 ×D16) : C2, (C4.D8) : C2

{10,10} 20 12 16

C16, QD32, C16 : C2,

(((C4.D8) : C2) : C4) : C2,

(C16 : C4) : C2

20

{9,7} 16 6 112 C20

{11,7} 18 8 112 C20

{13,9} 22 12 112 C20

{13,11} 24 14 112 C20

Table 2: Results using the composition series {1}� Cv

v {ka, kb} r λ Cv1 # orbit matrices # nonisomorphic Full

for Cv1 PBDs autom. group

26

{11,10} 21 8
C2 274

204
C26,

C13 1 C2 × (C13 : C3)

{15,10} 25 12
C2 458

204
C26,

C13 1 C2 × (C13 : C3)

{16,11} 27 14
C2 505

204
C26,

C13 1 C2 × (C13 : C3)

{16,15} 31 18
C2 505

204
C26,

C13 1 C2 × (C13 : C3)

32
{16,12} 28 12 C16 2 5104 C32, C32 : C2

{20,16} 36 20 C16 2 5104 C32, C32 : C2

34

{16,13} 29 12 C2 5362 1464 C34

{18,13} 31 14 C2 6604 1464 C34

{21,16} 37 20 C2 7842 1464 C34

{21,18} 39 22 C2 7842 1464 C34

Table 3: Results using the composition series {1}� Cv1 � Cv1
× Cv2

∼= Cv, for v ∈ {26, 32, 34}
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For v = 40, a lower bound of 565 for the number of isomorphism classes of PBDs is

obtained via a partial classification. The obtained PBDs each have automorphism group

isomorphic to C40. We use these PBDs to derive the lower bound for |PGP(40)| given in

Table 4.

4.2 PGP classifications

Throughout this section, for shorthand we write {±1}-sequences in the form [rni
i ] where ri is

the length of a run of consecutive equal entries, ni is the number of consecutive runs of length

ri. For example the sequence [1, 1,−, 1,−,−,−, 1,−, 1,−] would be written as [2, 12, 3, 14].

Up to length 34 the procedure of Section 3 was completed with no added restrictions, and

the equivalence classes of PGPs for length v ≤ 34 obtainable in this manner are enumerated.

At length v = 40 a partial classification was obtainable but a complete classification is out

of reach with current methods. Following this, we use a refinement of the same procedure

to perform targeted searches, and as an example we give a new PGP(74). We further use

this approach to rule out the existence of a PGP(90) with automorphism group H ∼= (C5 :

C2)× C2 × C9, with C90 ≤ H.

4.2.1 Classification up to v = 34

Table 4 illustrates the number of equivalence classes of PGPs of length v constructed accord-

ing the procedure of Section 3. The classification is complete for v ≤ 34, and we give a lower

bound due to a partial classification, based on a small proportion of the search space, where

v = 40.

v 2 4 8 10 16 20 26 32 34 40

Classes 1 1 2 1 11 34 53 838 373 ≥ 323

Table 4: Equivalence classes of PGPs

Remark 4.1. A referee brought of a paper of Balonin and Doković [2] to our attention

which we were previously unaware of, where a classification of PGPs of length up to 40 was

completed by other means. Up to length 32, our results are identical, however only 256

equivalence classes of length 34 are reported in [2]. We communicated with the authors and

have confirmed that 256 of the equivalence classes found in this work coincide with the classes

of [2], and the extra 117 equivalence classes we find are new. There are 9301 equivalence

classes of length 40 according to [2], which unsurprisingly greatly surpasses the lower bound

we find here based on a restricted search.
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4.2.2 Periodic Golay pairs of length 74

In [9] the authors constructed two nonequivalent PGP(74)s; the first examples of this length.

A search for pairs using the orbit matrix M = [ka kb] = [38 43] of a PBD(74, {38, 43}, 42)

with presumed autmorphism group C74 returned a third inequivalent class represented by

the pair

[4, 12, 5, 15, 2, 3, 14, 2, 3, 1, 2, 3, 2, 14, 5, 23, 1, 2, 1, 22, 4, 2, 13, 22],

[22, 5, 2, 12, 32, 1, 7, 5, 1, 2, 12, 22, 14, 22, 1, 2, 3, 4, 1, 5, 13, 4, 12].

4.2.3 Periodic Golay pairs of length 90

Since the existence of a PGP(90) is still undecided, we implement here the construction given

in Section 3 as an attempt to obtain one.

We use the orbit matrices of the corresponding PBD(90, {ka, kb}, λ)s under the action of

the cyclic automorphism group G ∼= C90
∼= C2×C5×C9 which acts with the point and block

orbit lengths distributions (90) and (90, 90), respectively.

As given in Section 3, the first step is to find all possible combinations of numbers ka

and kb of a PBD(v, {ka, kb}, λ) corresponding to PGPs. We determine that all possible

PBDs with the group G as the presumed automorphism group are PBD(90, {39, 42}, 36),

PBD(90, {39, 48}, 42), PBD(90, {42, 51}, 48) and PBD(90, {48, 51}, 54), having the replica-

tion numbers 81, 87, 93 and 99, respectively. Since there exists exactly one orbit matrix

M = [ka kb] for the cyclic group G, in each case we have that the corresponding orbit

matrices are M1 = [39, 42], M2 = [39, 48], M3 = [42, 51] and M4 = [48, 51].

Further, for the construction of the PBDs we use a principal series of the group G, e.g.

{1} � C5 � C2 × C5 � C2 × C5 × C9. In the first iteration of the refinement of the orbit

matrices M1, M2, M3 and M4 we construct all orbit matrices for the group C2 × C5 and in

the second iteration, all orbit matrices for the group C5. In Table 5 we present the number

of orbit matrices obtained in these iterations.

r 81 87 93 99

# orbit matrices for C90 1 1 1 1

# orbit matrices for C2 × C5 362 361 356 363

# orbit matrices for C5 16232 15331 16536 15330

Table 5: Number of orbit matrices

Due to the large number of possibilities in the last iteration of the refinement of the orbit

matrices, we cannot complete the search for the incidence matrices of the PBDs. However,

to reduce the number of possibilities and finish the search, we consider the automorphism

group H ∼= (C5 : C2) × C2 × C9, as a presumed automorphism group of the PBDs. In this
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approach, we use the composition series {1}/C5 /C5 : C2 /(C5 : C2)×C2 /(C5 : C2)×C2×C9

of the solvable automorphism group H (see [5] for more information). We assumed that the

group C2 acts in such a way that the point and block orbits for the group C5 : C2 are the

same as for the group C5. Hence, the orbit matrices for the group C5 : C2 are the same as

the orbit matrices for the group C5.

For each of the obtained orbit matrices for the group C5 (i.e. the group C5 : C2) we try to

build all corresponding orbit matrices for the trivial group, which are the incidence matrices

of PBDs, having in mind the action of the group H.

As a result, we get that PBD(90, {39, 42}, 36), PBD(90, {39, 48}, 42), PBD(90, {42, 51}, 48)

and PBD(90, {48, 51}, 54) with the automorphism group H ∼= (C5 : C2) × C2 × C9, where

C5 : C2 acts in all orbits of length five do not exist.

5 Construction of quasi-cyclic self-orthogonal codes

A linear [n, k]q code C is a k-dimensional subspace of V = Fn
q where Fq denotes the finite

field of order q. It has a basis consisting of the rows of a k×n matrix M called the generator

matrix. Its orthogonal complement C⊥ in V is the set {v ∈ V : v · c = 0 ∀ c ∈ C}. In

other words the codewords of C⊥ are the transposes of the column vectors in the kernel of

M . We say S is self-orthogonal if C ⊆ C⊥. Two codes are equivalent if one of the codes can

be obtained from the other by permuting the coordinates and permuting the symbols within

one or more coordinate positions.

A code is `-quasi-cyclic if for every codeword c ∈ C, the codeword c(`) belongs to C where

c(`) = [cv−`, . . . , cv−1, c0, c1, . . . , cv−`−1]. Equivalently, C is `-quasicyclic if it is equivalent to

a code with generator matrix of the form [A1, . . . , A`] where each Ai is circulant. We often

just say quasi-cyclic when ` = 2.

Let D be a PBD(v, {k1, k2}, λ) corresponding to a PGP(v). The incidence matrix of the

design D spans a quasi-cyclic code C of length 2v over a field GF(pn). Moreover, if p is a

prime dividing k1 + k2 and λ then the code C is self-orthogonal. In this section we will show

how self-orthogonal codes can be constructed using PBDs corresponding to a PGPs.

We will use the following Theorems, that can be found in [5, 6]:

Theorem 5.1. Let Ω be a finite non-empty set, G ≤ S(Ω) and H a normal subgroup of G.

Further, let x and y be elements of the same G-orbit. Then |xH| = |yH|.

Theorem 5.2. Let Ω be a finite non-empty set, H / G ≤ S(Ω), x ∈ Ω and xG =
h⊔

i=1

xiH.

Then the group G/H acts transitively on the set {xiH|i = 1, 2, . . . , h}.
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We have the following result, similar to the result given in [15].

Theorem 5.3. Let D be a PBD(v, {k1, k2}, λ) corresponding to a PGP(v). Then the cyclic

group G ∼= Cv is a subgroup of Aut(D). Let H be a subgroup of G and M be a point orbit

matrix with respect to the group H. Then the matrix M spans a quasi-cyclic self-orthogonal

code C of length 2v
|H| over the field GF(pn), where p is a prime dividing k1 + k2 and λ.

Proof. The group H acts with m = v
|H| orbits on points and n = 2m orbits on blocks on

D having all orbits of length |H|. By Theorems 5.1, and 5.2, each G-orbit of D decomposes

to H-orbits of the same size and the cyclic group G/H acts transitively on H-orbits on points

and in two H-orbits on blocks. Hence, the code C spanned by the matrix M is quasi-cyclic.

From equality (4) it follows that
n∑

j=1

γsjγtj = λ · |H|+ δst · (k1 + k2 − λ), 1 ≤ s, t ≤ m.

It follows that when p is a prime dividing k1 + k2 and λ the code C is a self-orthogonal

code of length
2v

|H|
. 2

The following result can be proved in a similar way. This result resembles the result given

in [17, Theorem 1.113].

Theorem 5.4. Let D be a PBD(v, {k1, k2}, λ) corresponding to a PGP(v). Then the cyclic

group G ∼= Cv is a subgroup of Aut(D). Let H be a subgroup of G and M be a point orbit

matrix with respect to the group H. Then the matrix M spans a quasi-cyclic self-orthogonal

code C of length 2v
|H| over the field GF(pn), where p is a prime dividing |H| and k1 + k2 − λ.
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[2] N. A. Balonin, D. Ž. Doković, Symmetry of two-circulant Hadamard matrices and peri-

odic Golay pairs, (in Russian) Inf. Control Syst. 3 (2015), 2–16.

[3] W. Bosma, J. Cannon, Handbook of Magma Functions, Department of Mathematics,

University of Sydney, 1994. http://magma.maths.usyd.edu.au/magma.
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[9] D. Ž. Doković, I. S. Kotsireas, Some new periodic Golay pairs, Numer. Algor. 69 (2015),

523–530.
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