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Abstract

The matrix profile (MP) is a data structure computed from a time series which encodes
the data required to locate motifs and discords, corresponding to recurring patterns and
outliers respectively. When the time series contains noisy data then the conventional
approach is to pre-filter it in order to remove noise but this cannot apply in
unsupervised settings where patterns and outliers are not annotated. The resilience of
the algorithm used to generate the MP when faced with noisy data remains unknown.
We measure the similarities between the MP from original time series data with MPs
generated from the same data with noisy data added under a range of parameter
settings including adding duplicates and adding irrelevant data. We use three real world
data sets drawn from diverse domains for these experiments Based on dissimilarities
between the MPs, our results suggest that MP generation is resilient to a small amount
of noise being introduced into the data but as the amount of noise increases this
resilience disappears.

1 Introduction

Two well-used time series data mining examinations relate to motifs and discords [1]. A
time series motif is a pair of previously unknown sequences in a time series or
sub-sequences of a longer time series which are very similar to each other [2] while a
time series discord is a sub-sequence of a long time series which is the most different
from all the rest of the time series sub-sequences [3]. The matrix profile (MP) [4], is a
data structure computed from a time series which locates the distance to, as well as the
location of, the nearest neighbour of every sub-sequence in a time series. The MP
encodes all details required to provide a solution for the detection of motifs and discords.
This makes the MP suitable for detecting both outliers and recurring patterns. While
detecting these can be regarded as classical AI problems and can be identified using
other methods including machine learning, those other methods suffer from the curse of
dimensionality or are complex and have multiple parameters to be adjusted [5].
Anomalies and patterns are important characteristics often studied in time series
analysis. A similarity join [6] is a common technique for detecting such anomalies and
patterns in a time series however it is inefficient whereas MP algorithms can
significantly reduce computing time for these tasks [7].

The MP offers a solution to detection of outliers and recurring patterns through
efficient computation while it is also able to consider sub-sequences of any length and it
has several advantages. These include that it is an exact solution and provides no false
positives or false negatives and it includes an exact solution for motif discovery, discord
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discovery, time series joins, etc. In contrast to other algorithms which require building
and tuning access methods the matrix profile is parameter-free and is space-efficient,
with a space requirement which is linear in time series length with a small constant
allowing processing of massively large data sets. MP can also leverage parallel hardware
including multicore processors and GPUs [7]. It is domain agnostic and requires only
one input parameter, the sub-sequence length m. It has a time complexity of
O(n2 log (n)) that is constant across sub-sequence lengths [4]. It can be re-computed
incrementally as a time series grows and thus it can support real time applications [4].
A variation of the matrix profile algorithm called the Motif Discovery with Missing
Data (MDMS) has recently been introduced [8] with the ability to handle missing data
in that it can provide answers guaranteed to have no false negatives but which may
have false positives and we shall return to this point later.

The two main components of the matrix profile are a distance profile and a profile
index. A vector of minimum Z-Normalised Euclidean Distances constitutes the distance
profile. The initial nearest-neighbour index is included in the profile index which is
essentially the position of the sequence’s most comparable sub-sequence [4]. In
summary, the steps for computing the matrix profile from a time series X are as follows:

1. Choose a subsequence length m that is appropriate for the application. This
length should be smaller than the length of the time series X that is being
analysed;

2. Compute the matrix profile, which is an array of length n−m+ 1 where n is the
length of the time series X. The matrix profile contains the distances between
each subsequence of length m in X and its nearest neighbour subsequence in X.

3. Compute the matrix profile index, which is an array of length n−m+ 1 that
contains indices of the nearest neighbour subsequence for each subsequence in X.
This can be used to quickly retrieve nearest neighbour subsequences.

After computing the matrix profile and matrix profile index, they can be used to
efficiently perform various time series data mining tasks including exact motif discovery,
anomaly detection, and similarity search.

Fig 1 shows an example of some original time series data representing the volume of
traffic in Dublin City Centre and the MP plot derived from that data. The motif is a
repeated pattern in the original time series with a matching area demonstrating low MP
distance values while the discord or anomaly is a mismatch region demonstrating high
MP distance values. Even if the MP distance value evaluated is non-zero, a localised
MP minimum value may be utilised to detect a near match, which is an essential
characteristic of the MP [4].

There are numerous algorithms that compute the MP. The brute force approach of
the Naive algorithm is inefficient and the current best-in-class is SCRIMP++ [9].
STAMP Incremental, or STAMPI, is also useful because it facilities the MP to be
incrementally maintained [4] which means it can be used in real time applications. Once
a MP is generated there are techniques to extract the top-K repeated
patterns/anomalies in a given time series using the MP data structure [10] and to
perform segmentation analysis to allow navigation through the resultant MP.

Applications of the MP for time series data mining have already generated many
insights [11]. One study discovered motifs using MP in retail product sales time series
and used them to analyse the temporary sales correlations among products thus
indicating that customers’ product preferences are not stable and change with time [12].
The MP has also been used in anomaly detection on IT operations time series data to
address the issue of monitoring IT systems’ Key Performance Indicators [13]. The MP
has offered market analysis based techniques in terms of stock-market financial time
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Fig 1. Sample time series data from Dublin city centre traffic flow with matrix profile
illustrating motif and discord regions.

series data [14], while recent research has shown that in predicting COVID-19 cases, a
hybrid of the MP and an attention-based long short-term memory (LSTM) model
performed best when compared to other models [15].

The MP algorithm has enabled the discovery of motifs from time series of
substantial lengths where previously the memory and processing requirements
obstructed exact motif search from time series which have a length of more than one
hundred million data points [7]. This scalability characteristic of the MP algorithm is
attractive but its most useful and important feature is its generalisation across any
application-agnostic time series [16].

One of the known drawbacks with the MP is its performance on large-scale sets of
noisy data, such as occur in most natural applications [10] and that is the specific issue
we focus on in this paper and where we make our contribution. Many time series data
in real world applications have noise which could interfere with the generation of an
accurate MP. In some forms of time series analysis such as generating periodograms,
algorithms such as the Lomb-Scargle [17] have been developed that are tolerant to
unequally sampled data, to data sets with missing values and to data sets with other
forms of noise. In such cases it is the tolerance of the algorithm itself that handles the
noise in the data but that is not the case for algorithms which generate the MP.

Earlier we mentioned that a very recent variation of the matrix profile algorithm
called MDMS can handle missing data in the original time series by providing answers
which are guaranteed to have no false negatives [8]. That paper acknowledges that there
is no other algorithm that can find motifs in the way the matrix profile does, in the
presence of missing data. The paper generates pseudo missing data in the same way as
we do here, and their definition of missing data covers random insertions (referred to as
“spikes”, noise or corrupted data and gaps in data capture corresponding to blocks of
missing data. The work uses data from two case studies, seismological data and activity
data, but the amount of data corruption is quite small, corresponding to deletion of 50
individual data points and removal of two blocks of data of length 25 values each from
time series of the order of thousands of values. The performance of the MDMS
algorithm is evaluated by examining the before and after matrix profiles and comparing
the resulting graphs manually rather than in a quantitative way.

Prior to the very recent single example of work on developing an algorithm to handle
missing or noisy data in generating the matrix profile mentioned above, the standard
approach has been to eliminate the noise from, or to fill the gaps in the data. A recent
example of that approach can be seen in work by Berjab et al. [18] where the authors
concentrated on recovering missing data but do not deal with other forms of noisy data.
That work focused on detecting false data injection attacks with missing data appearing
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with probabilities between 0.001 and 0.002 in two test datasets of 2.5 million and 20.9
million data points respectively. Our work here focuses on real world cases where noisy
data can take many other forms and can occur much more frequently.

De Paepe et al. [19] have recently applied noise elimination on real internet traffic
time series data and subsequently detected anomalous behaviours through generating a
matrix profile. Related work in [20] has demonstrated how the elimination of noise as a
pre-process to MP generation can help in anomaly detection from noisy data. This was
tested on the Numenta Anomoly Benchmark [21], a well-known collection of data sets
which focus on detecting anomalies from time series which contain noisy data. The
Numenta Anomoly Benchmark has recently been superseded by the more comprehensive
ADBench [22] which has 57 data sets each with different noise levels and it benchmarks
the effectiveness of 30 different algorithms for anomaly detection on noisy data. The
noise filtering in [20] was achieved with the same overall computational complexity as
MP generation but was tested on a time series of only 2,000 data values with synthetic
noise added. Furthermore there was no investigation into the impact different amounts
of noise have on the generation of the MP. It may be that MP generation has a
tolerance to a certain amount of noise inherent in the data used to generate it that we
do not yet know about and that is what we investigate and report on here.

In the work in this paper we measure the effect of noise on standard MP generation
without the overhead of pre-filtering as reported in [18,19] and elsewhere. Our
motivation is that pre-filtering noise from a time series may also dilute whatever
anomalies, discords or motifs exist in the original data. In this paper we generate MPs
from three data sets of different sizes and we artificially introduce noise at different
levels of intensity to pollutecorrupt each data set using noise creation techniques and
parameters from ADBench [22]. The amount and types of data corruption we introduce
into the original datasets are far in excess of those reported in other work which uses
either noise elimination or works with missing data [8]. We then re-generate MPs and
compare the characteristics of MPs on clean data with the equivalent MPs from data
with noise added where the amount and types of noise introduced to corrupt the data is
more realistic than reported elsewhere, and that is the main contribution of this paper.
This addresses the underlying research question of what is the actual impact of noise of
different types and different magnitudes, on MP outputs.

2 Materials and methods

We present details of three case studies where we apply the matrix profile in different
domains to time series data from real-world scenarios and then we describe how we add
noise to each data set.

2.1 Case study 1: keystroke timings

Lifelogging involves gathering digital records or logs of a person’s lifestyle, activities,
and encounters during a typical day, in an automatic fashion [23]. Such data is collected
by an individual and is not normally shared with others or made public. Lifelogs
represent a personal record that may be analysed either directly by the individual
gathering the data, or by others on their behalf [24]. This is done in order to observe
long-term behavioural patterns and changes in terms of health, well-being or cognitive
changes, as well as to facilitate retrieval of information from the individual’s past [25].

One form of automatic lifelogging is keystroke dynamics which uses a software
application, a keystroke logger, to collect timing information about every key pressed on
a keyboard or mobile device when the individual has been typing [26]. Precise timing
information on keystrokes, namely the time taken to type two adjacent characters, is
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captured to the nearest millisecond. We can then examine inter-keystroke timings to
determine differences among individuals or differences within the timings for an
individual. The initial application of this analysis was in the area of user authentication
based on the feature that every individual has unique keystroke timing patterns [27]. A
more recent application is analysing a user’s cognitive processes while typing, where we
compare timings from an individual’s baseline gathered over a period of time with the
current dynamic [28] to determine writing fluency. In turn, writing fluency can reveal
when the subject was pausing and revising their writing indicating revision rather than
creation of new material.

Keystroke timing data was collected in a previous study using the Loggerman
logging tool [29]. Timing information for keystrokes was obtained for one user for
2,522,186 characters typed over a 12-month period and the data is available at [30]. For
privacy reasons the specific characters typed were anonymised via random mapping
which is consistent across the data-set, permitting the extraction of character and
bigram timing information. This typing data is already noisy because of occasional data
missing because the Loggerman tool stops recording keystrokes when it suspects the
user is about to enter a username, password or other confidential information and it
does this in a very conservative way. The keystroke timing information in [30] was
processed to compute the time elapsed between all adjacent typed characters and those
bigrams typed greater than 1,000ms apart were removed. In this paper we focus on the
timing for most frequently occurring bigram which occurs 56,545 times when typed in
less than 1,000ms during the several months of recording.

To calculate the MP on the keystroke timing data the only parameter needed is the
window size, in addition to the time series of 56,545 values. Our choice of window size
was a sequence of 20 characters, large enough to capture patterns, while not being
smaller than a potential sub-sequence pattern. Once generated, the matrix profile
provides an array of z-normalised Euclidean distances to their nearest neighbour (i.e.
the MP values), including other values such as the MP indices. Fig 2 shows the 56,545
keystroke timing occurrences and the MP for the most frequently occurring bigram.

Fig 2. Occurrences and MP for the top occurring bigram

2.2 Case study 2: movement sensors on new-born calves

Improving efficiency in the area of animal management and livestock welfare has
resulted in the emergence and use of precision agriculture technologies [31]. This
includes the gathering of continuous data on the activities and behaviour of cattle which
has great potential for both effective food production and improved animal welfare [32].

Wearable 3-D accelerometers can be used to monitor animal behaviour [33]. In the
case of new born calves, an accelerometer attached to a collar around the neck was used
to measure movements such as walking, trotting and running. Locomotor play, a

June 16, 2023 5/16



repetitive and exaggerated movement, is also demonstrable in young calves via
behaviour consisting of jumping, bucking and running [33].

Raw data from a neck-worn AX3 accelerometer sensor [34] on new-born calves was
used where the sensor was worn from birth for several weeks by each calf. The data is
available at [35]. Attributes from the movement data include the timestamp and the
values for x-acceleration, y-acceleration, and z-acceleration. An additional movement
attribute independent of sensor orientation was derived known as the acceleration
magnitude (Amag), for use as a single time-series for analysis [33] and shown in Eq 1.
This eliminates the impact of rotation of the sensor around its neck of the calf as the
collar rotates and produces a measure of how quickly the velocity of the calf changes in
any direction.

Amag =

√
accelx

2 + accely
2 + accelz

2 (1)

The sampling frequency for the AX3 accelerometer was 12.5Hz, resulting in more than
one hundred million data points from each calf’s accelerometer over the logging period
which was approximately 6 weeks. Movement values were re-sampled to one minute
intervals by calculating the mean of the Amag values contained within non-overlapping
one minute intervals. Similar to the case study on keystroke dynamics, a window size
was selected to generate a MP for the acceleration magnitude. The raw movement data
aggregated to one sample every minute for the logging period yielded 60,480 data points
per calf and a value of 60 was chosen for the window size when generating the MP to
represent a span of one hour to capture any recurring motifs and discords. For the
purpose of generating the MP and adding noise, we used the movement data from one
calf from the herd.

2.3 Case study 3: city centre traffic volumes

The Sydney Coordinated Adaptive Traffic System (SCATS) is used to collect traffic
volume data across many cities worldwide, including Dublin, Ireland [36]. By also
managing the timing of traffic signals to control traffic flow, SCATS acts as an
intelligent transportation system. The mechanics of its operation are that it detects
vehicle presence in each lane at points on roads typically just before junctions, as shown
in Fig 3 as well as counting the number of pedestrians at sites waiting to cross a road.
The sensors are installed under the road surface as inductive loops and the data from all
the sensors in a city feeds into a control system for the city’s traffic management. While
it has advantages, the SCATS data is noisy and it cannot provide insights into what is
normal traffic behaviour or what are deviations from that normal behaviour. This
results in reactive responses by control room staff who monitor data streams
manually [37]. Since a labelled training data-set is not available it is not possible to
detect traffic anomalies by building a classification model.

SCATS traffic volume data from January to May 2022 was provided for analysis by
Dublin City Council and is available at
https://data.gov.ie/dataset/dcc-scats-detector-volume-jan-jun-2022. A
count of the volume of traffic on approaches to road junctions is an indicative
representation of overall traffic flow within regions of the city. The accuracy of data
from the sensors at each site cannot be guaranteed due to faulty detectors or to sensor
communication issues thus making this data noisy. In order to indicate patterns in the
flow of traffic for the city centre as well as to combat data collection errors, the sum of
total traffic volume for the city centre was computed per hour for a 5-month logging
period. A window size of 24 was selected to generate the MP, representing a full one
day. The total amount of data consisted of 5 months recording from 132 traffic sensors
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Fig 3. Traffic signals and 132 SCATS sensor locations in Dublin city centre marked as
red dots.

with overall traffic volume sampled hourly yielding a total of 475,200 individual data
values aggregated into a time series of 3,600 data points.

Fig 4 shows the time series for the hourly traffic volume for Dublin city showing a
regular daily pattern while Fig 5 shows the matrix profile for the traffic volume with
some discords and motifs.

Fig 4. Traffic volume for Dublin city between January and May 2022.

2.4 Adding noise to time series data

Since one of the objectives of the matrix profile is to pinpoint instances in a time series
that deviate significantly from the time-series as a whole, there is interest to determine
the limitations to the MP in terms of stability and robustness under different levels of
data noise. As noted in [19] and [20], time-series data from real-world applications
usually suffer from noise and data corruption to some extent. However the impact of
this on the matrix profile has only been researched in relation to noise elimination as a
pre-filter before generating a MP. This paper examines the impact of noise on the MP
algorithm without pre-filtering.

The ADBench [22] is a comprehensive review of 30 algorithms for anomaly detection
on 57 benchmark data sets and covers their performances under different levels of
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Fig 5. MP values for Dublin city between January and May 2022.

supervision, anomaly types and noisy and corrupted data. For the noise and data
corruption settings, ADBench considers three types of noise namely duplicated
anomalies, the insertion of irrelevant features, and annotation errors. Interestingly,
these anomalies all involve additions to the time series data and not the removal of any
data but because that is what ADBench does, we will do likewise in this paper.

In an ideal situation, to evaluate the tolerance of the MP to noisy data we would
generate MPs from data sets with labelled anomalies in a supervised setting, we would
add noise to these, recompute the MPs and compare the characteristics of the before
and after MPs. Since the three data-sets used in this study are unlabelled we use
workarounds similar to those who used the Numenta benchmark in [21].

ADBench defines duplicate anomalies as likely to repeat multiple times in data for
reasons such as recording errors. We added duplicated data values to each of our three
data sets using the same parameters as Adbench namely that a randomly selected 5% of
additional data values were denoted as anomalies then duplicated up to 6 times in
multiple runs. That means up to an additional 25% of data added as we add duplicates
times 2, times 3, times 4, times 5 and times 6.

For the irrelevant features noise type, ADBench indicates these are likely to be
caused by measurement noise or inconsistent measuring units meaning that detecting
anomalies such as discords and motifs in a time-series would be more difficult as they
may be hidden. We added irrelevant features to each of our three real-world data sets
using the same parameters as in ADBench. Irrelevant data points were randomly added
values to each time series in stages with additions of 1%, 5%, 10%, 25% and up to 50%
of the total data points. The added values came from generating features from the
uniform distribution

Unif (min(X),max(X))

where min() and max() refer to the minimum and maximum values in the time series
X and where we assume data values in the time series have a normal distribution. We
include these in the original data. Irrelevant data points were added randomly into the
original series without shuffling the order of data points in the original series. For
adding noise to our three data sets we used the code available at
https://github.com/Minqi824/ADBench/

In order to measure the impact of noise on the data used to generate a MP, we
compare the MPs generated from clean data and from data with noise added. In effect
the comparison of two MPs is the comparison between two resulting time series. The
metrics we use to describe and compare MPs include the mean, maximum and minimum
values of each MP though we are wary that these descriptive statistics can hide much of
the similarities or differences between MPs, as illustrated by Anscombe’s Quartet [38].

Since the two MPs being compared will be of different lengths because of the
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addition rather than removal of noise data to the original, increasing it by up to 25% of
the total MP length in some cases, we use dynamic time warping [39] to account for
matching under this constraint. The implementation we use is FastDTW developed by
Salvador and Phillip [40] and the distance measure between the two MPs is the absolute
difference between matched values. This is a dissimilarity measure with identical MPs
yielding a value of 0 and as the value increases it reflects increasingly dissimilar MPs.

Figure 6 shows a schematic of how MP dissimilarity is calculated for data which has
noise from duplicated anomalies x2 added. The original MP has length x1 and the
duplicates add another 5% making the length x2. The MP for the original data is
shown in blue, and the MP for the data with noise is shown in red. The lengths of the
green lines (there should be one for each data point in the original data) correspond to
absolute differences between corresponding values from the MPs as matched by the
dynamic time warping algorithm. Each of the generated MPs will have a maximum
value which is y1 in the case of the MP from the original data (in blue) and y2 in the
case of the MP from the noisy data. To normalise the dissimilarity between the two
MPs we divide the sum of the absolute differences between corresponding values (the
sum of the lengths of the green lines in Fig 6 by the the number of values in the original
time series and also by the maximum value of the MP from the original data, y1.

Fig 6. Schematic of DTW dissimilarity calculation and normalisation between MPs.

In FastDTW the radius parameter is used to approximate the exact DTW. If the
radius is equal to the length of the times series being examined, then FastDTW is
optimised and is equal to DTW. If the radius is less the time series length then
FastDTW is not as accurate as DTW but is more computationally efficient though this
has been questioned recently [41]. We selected a radius of 30 for FastDTW for all data
as a fixed width radius is sufficient so long as it is “wide enough” to allow the insertion
of duplicates and irrelevant features without disruption of the similarity computation.

We now present the results from generating MPs on each of the original time series
data sets and on MPs where noise has been added. For these time series there is good
variety among the sizes of the time series with sizes of 3,600 (traffic), 56,545
(keystrokes) and 60,480 (calf movements).
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3 Results

We added noise to the original data sets consisting of duplicated anomalies up to 6
times and irrelevant features up to 50%, regenerated MPs for the 10 different parameter
settings and in Tables 1, 2 and 3 we compare the MPs from noisy data against the MP
for the original data, for each data set.

Signal Type Σ abs diffs Mean Max Min
MP values

Keystrokes

Original Matrix Profile 0 1.87 3.63 0.33
Duplicated Anomaly × 2 9,306 1.88 3.71 0.37
Duplicated Anomaly × 3 10,669 1.88 3.58 0.36
Duplicated Anomaly × 4 11,856 1.86 3.61 0.34
Duplicated Anomaly × 5 12,820 1.86 3.58 0.39
Duplicated Anomaly × 6 14,053 1.86 3.56 0.39

Keystrokes

Irrelevant Features - 1% 9,683 1.80 3.64 0.30
Irrelevant Features - 5% 15,333 1.54 3.76 0.33
Irrelevant Features - 10% 19,528 1.39 3.85 0.38
Irrelevant Features - 25% 25,787 1.42 3.86 0.42
Irrelevant Features - 50% 27,368 1.66 3.2 0.47

Table 1. Matrix Profile value changes for keystroke timing data (N=56,545) with noisy
data added under different parameter settings.

Signal Type Σ abs diffs Mean Max Min
MP values

Calf AMag

Original Matrix Profile 0 5.10 8.28 0.63
Duplicated Anomaly × 2 23,585 5.41 8.05 0.06
Duplicated Anomaly × 3 31,467 5.71 8.15 0.09
Duplicated Anomaly × 4 38,424 5.93 8.21 2.32
Duplicated Anomaly × 5 50,321 6.04 8.21 2.79
Duplicated Anomaly × 6 51,830 6.19 8.27 2.45

Calf AMag

Irrelevant Features - 1% 19,811 5.09 8.09 0.05
Irrelevant Features - 5% 32,825 5.46 7.90 0.06
Irrelevant Features - 10% 47,781 5.92 7.85 2.10
Irrelevant Features - 25% 97,028 6.68 7.96 3.88
Irrelevant Features - 50% 117,820 7.01 8.13 5.12

Table 2. Matrix Profile value changes for calf movement data (N=60,480) with with
noisy data added under different parameter settings.

Other work which has examined the impact of noise on the matrix profile has done
so by directly comparing the two matrix profile graphs, one before and one after
corrupting the time series data [8] In our work rather than “eyeball” the two MP graphs
which would be unwieldy because of their sizes (56,545, 60,480 and 3,600 data points
respectively) we extract quantitative characteristics of the before and after matrix profile
graphs, and this is part of the novelty of this paper. In addition to presenting the mean,
maximum and minimum values of the before and after matrix profiles, as well as the the
sum of the absolute differences between corresponding MP values, in Table 4 we present
the normalised dissimilarities for each noise parameter setting and for each data set.

June 16, 2023 10/16



Signal Type Σ abs diffs Mean Max Min
MP values

Traffic

Original Matrix Profile 0 0.34 2.25 0.13
Duplicated Anomaly × 2 1,739 0.91 4.09 0.13
Duplicated Anomaly × 3 2,724 1.39 4.23 0.20
Duplicated Anomaly × 4 2,992 1.70 4.49 0.20
Duplicated Anomaly × 5 3,864 1.99 4.52 0.26
Duplicated Anomaly × 6 4,701 2.17 4.66 0.48

Traffic

Irrelevant Features - 1% 764 0.54 3.29 0.13
Irrelevant Features - 5% 2,109 1.08 3.96 0.16
Irrelevant Features - 10% 2,705 1.59 3.84 0.20
Irrelevant Features - 25% 4,567 2.47 4.46 0.61
Irrelevant Features - 50% 11,617 3.17 4.46 1.34

Table 3. Matrix Profile value changes for traffic movement data (N=3,600) with noisy
data added under different parameter settings.

Data set Keystrokes Calf AMag Traffic
N = 56,545 60,480 3,600

MP Length 56,545 60,480 3,600
Maximum value 3.63 8.28 2.25

Duplicated Anomaly × 2 0.045 0.047 0.214
Duplicated Anomaly × 3 0.051 0.062 0.336
Duplicated Anomaly × 4 0.057 0.076 0.369
Duplicated Anomaly × 5 0.062 0.100 0.477
Duplicated Anomaly × 6 0.068 0.103 0.580

Irrelevant Features - 1% 0.047 0.039 0.094
Irrelevant Features - 5% 0.074 0.065 0.260
Irrelevant Features - 10% 0.095 0.095 0.333
Irrelevant Features - 25% 0.125 0.193 0.563
Irrelevant Features - 50% 0.133 0.235 1.434

Table 4. Normalised dissimilarities between MPs generated from clean data and from
data with various noise parameter settings, for each data set.

4 Discussion

By introducing noise into a time series of data, which may or may not be anomalies,
this will disrupt the generated MP and thus the noise itself will be detected as
anomalies because the MP cannot make a distinction between noise and real data. In
particular, duplicates introduced as noise will appear in a MP as a pattern and will
really disrupt the generated MP.

The results in Tables 1, 2 and 3 as well as in Table 4 present several insights which
we discuss in turn. Before examining these we point out that at the high end of the
data corruption the amount of noise we introduce to the time series is exceptionally
large and not likely to occur in any useful real world application. Our reason for going
to these extreme noise levels is to discover the resilience of the MP generation algorithm
at all noise levels, from minor to very large. Thus in examining the results, the most
important are at where we introduce duplicate anomalies x2 and irrelevant features at
1% or 5%.
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The introduction of irrelevant features have greater impact on generated MPs than
the introduction of duplicate values, making the MPs more dissimilar to the MP on the
original data. This occurs for each data set and arises because this noise parameter
pollutes the original time series extensively, adding up to 50% additional noisy data. We
also observe that MPs for noisy traffic data (N=3,600) are more dissimilar to the MP
from the original data than for the keystrokes data (N=56,545) which in turn are less
than for the calf data (N=60,480). This means that the longer the time series, the more
dissimilar the resulting MPs according to FastDTW. This can be seen when comparing
dissimilarity values across columns in Fig 4 as well as in the sums of the absolute values
of the differences between points in the MPs in Tables 1, 2 and 3 though these are not
normalised.

In experiments where we introduce duplicated anomalies x2, these duplicates appear
at 5% of the time thus should be equivalent to the introduction of irrelevant features at
5%. However the resulting MPs are not equivalently dissimilar to the MP from the
original data with large differences in the results for the keystroke (9303 vs. 15333), calf
movement (23585 vs 32825) and traffic (1739 vs. 2109) data sets (these results are
bolded in Tables 1, 2 and 3 and in Table 4 for convenience). The reason for this is
because the introduction of a duplicate introduces a pattern, the duplicate itself which
is detected by the MP as a motif whereas when introducing an irrelevant feature there
is no pattern so its not a MP motif. This is shown by the max values in the traffic MP
being higher as duplicates are added appearing as discords where the maximum value in
the MP for the original data goes from 2.25 to 4.09 when duplicated anomalies x2 are
added.

The calf data appears to be quite regular anyway so the maximum value of 8.28 in
the original MP did not change much when duplicates and irrelevant noise features were
added. The high minimum value of 0.63 in that MP indicates there were already some
patterns in the calf data as calves have movement habits to do with their 24 h circadian
rhythm. When either kind of noise was introduced the patterns in the original data
disappeared in the resulting MPs with the minimum value dropping from 0.63 for the
original data to 0.06 and 0.05 when duplications x2 and irrelevant feature at 1% were
added. As more noise was added, the noise itself had a pattern shown as the minimum
values increased with more and more noise added. For the keystrokes data in Table 1
the minimum values were not affected by the addition of either kind of noise so MPs
maintained their detection of patterns and the maximums remained approximately the
same.

In an unsupervised setting where we do not have annotations or ground truth in the
data to work with, we cannot pre-filter anomalies unlike the approaches taken in [19,20]
or in [18]. Thus determining the capacity of the MP generation algorithm itslef to work
with noisy data is important. Our results have discovered that when the amount of
noise in the original data is minor such as duplicates occurring at 5% or irrelevant
features at 1%, the generated MPs are dissimilar to the MPs from the original data in
approximate proportion to the amount of noist. As more and more duplicates are
added, the generated MPs get more and more dissimilar to the original MP but not to a
significant extent and this is true for the keystrokes and calf data but not for the traffic
data. An equivalent observation about adding irrelevant features cannot be made in
Table 4 because of the volume of noise added, up to 50% at the extreme level, for any of
the data sets. For the traffic data, when an additional 50% of irrelevant data is added,
the dissimilarity value between the MP from the original and the noisy data, has risen
to 1.434. The explanation for this is that the MP from the noisy data is so very
different to the original MP that the DTW algorithm, even for a comparatively short
time series of 3,600 values, cannot detect any equivalent pairs across the MPs.
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5 Conclusions

The matrix profile has proved to be a useful tool in terms of making most time series
data mining tasks intuitive and to require less effort compared to other methods such as
using a dimensionality reduced representation via a brute force approach. The MP
provides no false negatives or false positives in terms of motif and discord discovery,
time series joins and classification via shapelet discovery for example, because it
provides an exact solution. The ability to use the MP in a simple manner without any
tuning, apart from selecting the window size, makes it relatively parameter free.

This paper has presented three case studies where the matrix profile has enabled the
identification of discords and motifs in relation to human typing behaviour, movement
of new-born calves and vehicular traffic flow in a city centre. The contribution of the
paper is to demonstrate effect of introducing various forms of data corruption into the
time series data and to show that such data corruption has led to the generation of MPs
which are similar to the MPs from the original data provided the amount of noise is
small and only for some data sets. Our results have also shown that once the amount of
noise increases, the generated MPs are very different from the original MPs. If the
original time series is short (N=3,600 in our case) then introducing even a small amount
of noise leads to a more significant change in the generated MP.

The experimental results in this paper provide some direction to encourage further
development of algorithms for generating the matrix profile where there is known to be
different forms of data corruption including missing single and blocks of data, insertion
of irrelevant data and transposition of one data value to another. Further work in this
area should also examine the impact of noise on generating an incrementally updated
matrix profile, on the impact of noise on hyper-large time series and possibly on the
introduction of other types of noise into the time series data.
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