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Abstract 

Defect-based testing is a powerful tool for finding errors in software, including 
medical device software. Many software manufacturers avoid this method be-
cause it requires a detailed defect taxonomy that is expensive to construct and 
difficult to validate. SW911 is new defect taxonomy for health software being 
developed by the Association for the Advancement of Medical Instrumentation. 
This paper explains how defect taxonomies have been used and the benefits 
to industry. The initial steps of the validation of SW91 include mapping vulner-
abilities from the Common Weakness Enumeration and a dataset from a med-
ical device software development company in Ireland. Finally, the paper de-
tails future plans for validation, including taxonomy based testing which will be 
used to validate the efficiency, reliability, ability to perform useful analyses and 
defect coverage of SW91. 
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 Introduction 

Medical devices increasingly rely on software to provide functionality [24]. Soft-
ware complexity and the rapid growth of the software industry make it difficult to con-
trol and prevent defects [17]. Due to the introduction of advanced technologies, the 
medical device software industry is facing massive growth of complex software [24]. 
This massive growth of medical device software leads to quality risks. 

The US Food and Drug Administration (FDA) reports that from 2005 to 2011, 
19.4% of medical device recalls were related to software [28]. Another study focused 
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on recalls of medical devices related to computer-based failures such as software, 
hardware, inputs, outputs, or battery. This study reported that 2,303,441 recalls out of 
12,024,836 were related to software. Software issues accounted for 33.3% of class I 
recalls, 65.6% of class II recalls and 75.3% of class III recalls [15,31]. The FDA recall 
process includes specifically identifying software-related recalls in order to improve 
medical device quality and to ensure patient safety [7].  

Software quality assurance (SQA) practices have been integrated into the soft-
ware development process to find defects and ensure software quality. SQA pro-
cesses aim to minimize software defects and show that software meets require-
ments. There are many SQA activities, such as testing and inspections, which can be 
used to validate software [30]. Research studies suggest that a defect taxonomy is 
the best way to prevent and control defects [5,8,9]. People use customized or original 
defect taxonomies in different domains such as the safety critical domain, the busi-
ness domain, and the telecommunications domain. Before they use defect taxono-
mies, they validate their defect taxonomies in terms of reliability, efficiency, and com-
pleteness.  

 This study focuses on validating a new defect taxonomy called SW91 [2]. This 
paper is structured as follows. Section 2 explains what a defect taxonomy is and how 
industries have used defect taxonomies during software development. Section 3 ex-
plains the benefits of using defect classification schemes. Section 4 explains the 
development of a new defect classification scheme for health software, SW91. Sec-
tion 5 explains initial steps taken to validate SW91. Section 6 explains a new testing 
method called “taxonomy based testing” which details how defect categories from a 
taxonomy can be used in testing. Section 7 outlines plans for future work where 
taxonomy based testing will be used to validate SW91. Section 8 presents the 
summary and conclusions. 

 State of the art – The use of defect taxonomies in industry 

A defect taxonomy is a system of hierarchical categories designed to be a useful aid 
for reproducibly classifying defects in the software development lifecycle [14]. There 
are many other terms for defect taxonomy including fault categorization, defect clas-
sification, fault classification scheme and bug taxonomy. In this paper, the terms de-
fect taxonomy and defect classification scheme are used interchangeably. This sec-
tion explains how different industries used various defect classification schemes for a 
variety of purposes in different phases of the software development lifecycle in order 
to improve software quality. 

In 1998, at the Motorola Corporate Software Centre, the GSM Products Divi-
sion’s Base Station Systems (GSMBSS) conducted a study on how the ODC scheme 
can be used to measure the progress of software development [4]. The ODC scheme 
was applied to an existing project with data collected by Fagan inspection [30]. After 
a successful feasibility study using the gathered data to verify the suitability of the 
ODC scheme, the team mapped defect data with minor modifications into the ODC 
scheme. This study proved that software development progress measurement and 
process improvement feedback can be produced from the data which was collected 
using an existing inspection method by adopting the ODC scheme. The authors of 
this study believed the ODC scheme can easily be applied to enhance software 
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quality and to improve customer satisfaction while developing defect prevention and 
qualitative process management techniques [4]. 

In 2004, Lutz and Mikulski [20] published work on the analysis of 199 anomalies 
from seven spacecraft at the Jet Propulsion Laboratory. The purpose of this study 
was to improve the safety of future missions. The ODC scheme was selected to clas-
sify the post-launch safety critical software anomalies in order to extract the defect 
signature. The following outcomes were highlighted from this study: 

 Training on documentation of anomalies can limit the reoccurrence of 
anomalies.  

 The benefit of maintaining the documentation of system requirements for the 
operational process has been identified. 

 Anomalies’ analysis enhances the reusability of knowledge from one system 
to another. 

 When comparing the outcomes from other methods related to operational risk, 
the anomaly patterns obtained by classifying the anomalies using the ODC 
scheme provided additional understanding of operational risks. 

Finally, the authors of this study stated classifying anomalies lead to understanding 
the anomalies triggers and contributed to preventing operational anomalies.  

Freimut et al. [10] conducted a study at Robert Bosch GmbH in the business unit 
for Gasoline Systems (GS) and published their work in 2005. Gasoline Systems de-
veloped electronic control units for gasoline engines with embedded software as a 
key component. To overcome the lack of information related to quality assurance and 
overall system quality at Bosch GS, it was decided to apply quantitative data man-
agement techniques in quality assurance strategies. They defined, introduced and 
validated a customized defect classification scheme to track defects which are in-
volved in software development and process measurement [10]. The following out-
comes were obtained after applying a defect classification scheme: 

 Defect flow distribution and its outputs were observed. 

 Identification of the defects introduced in early stages and identified in later 
stages. 

 Defect data from the case study which identified categories with a high num-
ber of defects. 

 Providing the measurement outputs to management. 
In 2007, Robillard et al. [26] published work detailing the measurable test efficien-

cy in a software product due to changing testing practices. This research was con-
ducted with a team that developed audio software for video games. Two different 
testing phases, A and B, were used to measure the test efficiency. Phase A used 
implicit testing practices to record defects. In the second phase, B, an “Easy to fol-
low” scheme was proposed to record the testing practices in order to make develop-
ers aware of the type of testing activities involved. A modified ODC scheme was 
used to record the defects in both testing phases and the following outcomes were 
observed [26]:  

 The distribution of defects for the type of activity conducted in each phase, 
such as design review, code inspection, and unit test. 

 The distribution of defects based on the discovery attributes. Discover attrib-
utes indicate who found the defects. 

 The distribution of defects based on the activity qualifier attributes. The activity 
qualifier attribute indicates whether defects were found opportunistically or 
during planned testing. 
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 The ODC scheme was selected to get a statistical understanding of software 
process measurement using both types of testing. 

In 2008, the ODC scheme was used in NASA flight projects. The ODC scheme 
was used as an extension of the COnstructive QUALity Model (COQUALMO) devel-
oped by Raymond Madachy and Barry Boehm from the University of Southern Cali-
fornia, USA. The ODC COQUALMO model was used for critical NASA flight projects 
[21]. The ODC scheme was successfully adopted in defect reduction strategies. The 
ODC COQUALMO model helped in providing a highly detailed view of the defect pro-
files and their impact on specific risks. The ODC COQUALMO model with automated 
risk minimization helped to meet the quality goals of NASA’s flight projects in a short-
er time with fewer resources [21]. 

In 2010, Li et al. [19] presented an extended and modified defect classification 
scheme named the Orthogonal Defect Classification scheme for Black-box Defect 
(ODC-BD) which was created based on the ODC scheme. This empirical study was 
aimed at helping black-box defect analysers and black-box testers to improve their 
testing efficiency and analysis. It was proved that the effort for defect analysis was 
reduced by 15% after applying the ODC-BD. The test efficiency, measured as the 
number of detected defects per unit time, in the first week, without using the ODC-BD 
scheme, was 0.075. In the second month, the test efficiency increased to 0.125 using 
the ODC-BD scheme [19]. This empirical study with 1660 black-box defects is a good 
example of measuring the black-box testing process with the ODC scheme. 

In 2012, Mellegård et al. [23] published their work on developing an effective and 
systematic software defect classification scheme at Volvo car corporation in Sweden. 
They developed a software defect classification scheme “the Light-weight Defect 
Classification scheme (LiDeC)”, which complements the IEEE standard classification 
for software anomalies [12,13]. This study demonstrated the customization of a ge-
neric defect classification scheme to classify defects. Adopting a customized defect 
classification scheme minimized the time required to find defects while helping to 
characterize the defects. The HP scheme has been used within Hewlett-Packard de-
partments for many different purposes such as root cause analysis and defect 
presentation [11,25]. 

In 2014, Nuno Silva and Marco Vieira [27] published their work which demon-
strated the importance of domain specific defect classification schemes. They fo-
cused on four systems from the aerospace and space industries. They demonstrated 
the following problems in adopting a generic classification scheme into a safety criti-
cal domain: 

 There are problems with adopting a generic defect classification scheme with-
out considering the defect propagation effects and the interconnection of de-
fects from different phases of the software development lifecycle. 

 Inability to cover all the defects with existing listed defect types, defect triggers 
and defect impacts. 

 Differentiating dimensions to keep the orthogonality of the defects was not 
easy to achieve. 

 Not showing the connection to the quality models. 

 There were difficulties getting the necessary level of information related to 
each defect to map with the defect type, defect trigger or defect impact. 

 Difficulties mapping non-functional defects. 

 Difficulties mapping the defects to a related standard. 
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The above points clearly demonstrate the problems in adopting a generic classifi-
cation scheme into a safety critical domain. This study highlights the need for im-
proved and domain specific defect taxonomies to classify defects. 

Since medical device software is often safety critical, the necessity of a domain 
specific defect classification scheme has been identified and a defect classification 
scheme is being developed for healthcare software called SW91 [29]. The develop-
ment of SW91 is explained in Section 4. 

This section detailed how different defect classification schemes were used in dif-
ferent industries from 1998 to 2014 and the importance of domain specific defect 
classification schemes. The next section discusses the benefits of defect 
classification schemes. 

 Benefits of defect classification schemes 

Bernd Freimut [11] has detailed various benefits of defect classification schemes 
including characterization of the defects found, defect prevention, control inspections, 
evaluate and improve technologies, control testing, plan testing and reduce field de-
fects.  

Vallespir et al. [32] stated a defect classification scheme makes it easy to find the 
injected defects while providing information on phases, activities, and disciplines 
throughout the software development lifecycle. Robert B. Grady from Hewlett Pack-
ard stated that the benefit of classifying defects is to help find the correct quality as-
surance activity. He stated: “As you categorize the defects, you will uncover a variety 
of symptoms. A typical first step will be for you to decide to do better or different in-
spections or tests” [25]. When combining both Vallespir et al. and Robert B. Grady’s 
statements, injected defects could be identified and classified by a defect classifica-
tion scheme. Those classified defects will inform the choice of the correct quality as-
surance activities. 

Kelly and Shepard stated a detailed defect classification scheme plays a signifi-
cant role in understanding the software development process [18]. Defect classifica-
tion schemes can be created for several different purposes in a software develop-
ment organization. These include: 

1. Making decisions during software development 
2. Tracking defects for process improvement 
3. Guiding the selection of test cases 
4. Analysing research results [18] 
Vogel has detailed a procedure for medical device software defect management. 

“Classification” is the second of eight steps. Vogel’s defect procedure supports the 
need for defect classification schemes in medical device software development. He 
stated the importance of classification in medical device software as follows: “the 
classification is important for later determination on the recommendations and means 
for verifying any changes made to deal with the defect”. Safety critical domains have 
utilized defect classification schemes to reduce defects and to improve analysis 
[21,24,27]. Safety critical domains have a requirement for a unique defect classifica-
tion scheme tailored to their unique needs [33]. The medical device software industry 
is such a safety critical domain and hence should have its own domain specific defect 
classification scheme. 
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The Association for the Advancement of Medical Instrumentation (AAMI) is devel-
oping a defect classification scheme for health software which includes medical de-
vice software. Section 4 explains the development of the defect classification scheme 
for health software called SW91. Prior to the development of SW91, there has been 
no defect classification scheme specifically developed for use in the medical device 
software industry. It is hoped that applying a defect classification scheme into the 
medical device software industry will bring similar benefits observed in Sections 2 
and 3. 

 AAMI and Development of SW91  

AAMI is a non-profit organization founded in 1967 [1]. AAMI is developing a de-
fect classification scheme named “Classification of Defects in Health Software-
SW91” as a standard. This work started in 2014 and aims to provide a common lan-
guage to classify defects and improve software quality in health software including 
medical device software [29]. SW91 was published in September 2016 for first public 
comment and again published in April, 2017 for the second round of public comment. 
It is expected that the final version of SW91 will be published later in 2017. SW91 
includes defect categories from planning a system to maintenance and release of a 
system.  

It contains multi-level defect categories such as parent level and bottom level. 
Each defect category has its own defect code with a unique number. The numbering 
system followed in SW91 is flexible to allow new categories to be added as neces-
sary under any parent level of defect category. The next section explains how SW91 
has been validated to date. 

 Validation of SW91 

Before starting the validation of SW91, a brief comparison was done among other 
relevant defect classification schemes such as the ODC scheme, the IEEE Standard 
Classification for Software Anomalies and the HP scheme. Bernd Freimut analyzed 
different defect classification schemes based on their structure and their usability 
[11]. In the literature defect classification schemes were validated for their reliability, 
ability to perform useful analysis, and efficiency [10,19,20,22]. These terms will be 
considered in the validation of SW91. In addition to the above terms, the defect cov-
erage of SW91 will also be validated by this research. Our plan has following three 
different tracks:  

1. Mapping defects from databases. 
2. Mapping defects from medical device software companies. 
3. Taxonomy based testing. 

Section 5.1 explains the first track of the validation and explains how SW91 was 
mapped with open source data. Section 5.2 presents the second track of validation. 
The third track of validation is a new approach using taxonomy based testing. Sec-
tion 6 explains how taxonomy based testing has been used in other industries. 
Section 7 explains future plans to use taxonomy based testing to validate SW91. 
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5.1 Mapping SW91 with CWE 

The CWE is an open source list containing common software weaknesses and 
their vulnerabilities. CWE Version 2.9 [6] was the latest version available when the 
mapping was started. CWE Version 2.9 contains 1004 vulnerabilities. This version of 
CWE has multiple views such as full dictionary view, development view, research 
view and fault pattern view.  

Prior to the mapping, it was necessary to select the appropriate view of vul-
nerabilities from the CWE. After carefully analysing the multiple views, SW91 was 
mapped with the cross section view from the CWE. The approach to the mapping 
and the selection of the cross section view was discussed and finalized with the 
SW91 development team. The SW91 development team is composed of members 
from a number of relevant disciplines such as medical device product development, 
software engineering, software quality, and regulatory policy with members consid-
ered to be expert in their field. 

The cross section view contains a selection of software weaknesses which 
represent the range of weaknesses captured in the CWE. These weaknesses include 
a total of 158 vulnerabilities [6]. From the CWE cross section, out of 158 vulnerabili-
ties, 150 vulnerabilities were successfully mapped with SW91’s defect categories. 
This was a manual one to one mapping. In my initial mapping it was not possible to 
find a suitable category from SW91 for the following eight vulnerabilities from the 
CWE cross section:  
173: Improper Handling of Alternate Encod-
ing 

486: Comparison of Classes by Name 

175: Improper Handling of Mixed Encoding 502: Deserialization of Untrusted Data 

222: Truncation of Security-relevant Infor-
mation 

798: Use of Hard-coded Credentials 

434: Unrestricted Upload of File with Dan-
gerous Type 

323: Reusing a Nonce, Key Pair in 
Encryption 

The one to one mapping was reviewed by the SW91 development team who 
paid particular attention to the eight vulnerabilities that could not be mapped. The 
team members checked for the possibility of mapping with SW91’s existing defect 
categories and there was a discussion on adding new defect categories and chang-
ing the name of a defect category, in order to ensure that all vulnerabilities could be 
mapped to a suitable defect category.  

Out of the eight vulnerabilities which could not initially be mapped, five 
vulnerabilities were mapped with newly added defect categories or defect categories 
that required name changes. Three vulnerabilities were assigned to an existing de-
fect category. This one to one mapping established that all of the CWE cross section 
vulnerabilities could be mapped to at least one defect category from SW91. 

From the completed one to one mapping, a subset of vulnerabilities was se-
lected by an experienced team member. The selected subset included eighteen vul-
nerabilities from all phases of the software development life cycle.  One to many 
mapping was conducted for those eighteen vulnerabilities. In one to many mapping, 
each vulnerability was mapped with possible different defects categories from SW91. 
The purpose of the one to many mapping was to show the usability of SW9. The ini-
tial one to many mappings was conducted by me. Then the SW91 development team 
reviewed the mapping.  
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In the validation process out of eighteen mappings, five mappings were ac-
cepted by the team without any changes. Three mappings were changed by adding 
additional defect categories into the existing mapping. Two mappings were changed 
by adding additional defect categories and deleting some mapped categories. Three 
mappings were changed by adding additional defect categories including the reason 
for why those categories were selected. Two mappings were changed by deleting 
few mapped categories from the mapped defect categories. One mapping was 
changed by deleting defect category and including the reason for why other catego-
ries were selected. Finally two mapping were totally deleted and replaced with new 
mapped categories.  

For example vulnerability 642: External Control of Critical State Data was 
mapped with the following two categories from SW91 by me. The third defect catego-
ry was added by the team members when they were validating the one to many 
mapping:  
1. Failure to Protect (5.3.2.3.3): Software permits access to an object that should 

be protected (for security reasons rather than for coherency), assuming the de-
sign is correct. Fehler! Textmarke nicht definiert.  

2. Private Data Declared Public (5.3.1.6.2): An object is declared as public when it 
should be private. The object may be accessible to functions that should not use 
it, creating an unintended dependency or security vulnerability.Fehler! Textmarke 
nicht definiert.  

3. Security (3.8): The defects are related to security issues in the architecture, such 
as compromising of sensitive information, choosing an inappropriate authentica-
tion protocol, not using access control, or communication integrity. It may also in-
clude the use of unsigned software and the introduction of unknown changes after 
the software is deployed. Note that many issues related to security involve re-
quirements inadequacies, and many security vulnerabilities might be caused by 
poor design or implementation activities. Capturing all the causes and contributing 
factors for a security defect should involve identifying possible Requirement De-
fects (2.*), Design Defects (4.*) and Implementation Defects (5.*) rather than cat-
egorizing every failure associated with security as a Security (3.8) defect. Fehler! 
Textmarke nicht definiert. 

  

 

This one to many mapping shows how a user can select multiple different defect catego-
ries from SW91 to map to a particular vulnerability. This subset of mappings was added as 
an annex in SW91. This CWE mapping was conducted as part of the validation of SW91. 
This work was carried out to determine the defect categories and their coverage in SW91 
when compared with publicly available vulnerabilities. This mapping also shows difficulties in 
reliability mapping data, with different people coming up with different mappings. The next 

Figure 1: CWE MappingFehler! Textmarke nicht defi-

niert. 
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section explains another part of the validation carried out with empirical data from a medical 
device software development company.2 

5.2 Mapping SW91 with data from a medical device software com-
pany 

As a part of the validation process, we contacted a medical device software develop-
ment company to request empirical data to map with SW91. Company A from Ireland devel-
ops medical device software and web-based applications. The benefits of defect classifica-
tion schemes and the need for a defect classification scheme in the medical device software 
industry were explained to the management of company A. Data was obtained from compa-
ny A. The following data has been used in this mapping: 

 
 

 
 
The first four data sets were mapped with SW91 defect categories. Figure 2 displays 

the mappings of data from company A to SW91 defect categories. In mapping A of Figure 2 
the defects from company A mapped to nineteen distinct defect categories from SW91. 
Some slight changes of wording were observed between the defects from the defect data 
and SW91 defect categories. For example, a defect from the defect data for a “function X” 
was described as “Units not converting correctly”. This defect was included in the mapping 
between SW91 defect category and received defect as “Type Conversion” for “function X”.  

Then, in mapping B of Figure 2 control flow diagrams from the software design 
specification document were mapped with eighteen distinct defect categories from SW91. 
The software design specification document clearly explained the software and the con-
straints of the system. In addition, control flow diagrams in the software design specification 
document described the functionality of the system step by step. In this mapping, all ele-
ments from the control flow diagrams were mapped into defect categories from architectural 
defects, design defects, and implementation defects in SW91. Since SW91 uses a hierar-
chical structure of defects, it was easy to jump into the relevant defect category at the appro-
priate level. For example, if a control flow diagram has a processing step containing a state-
ment “Count <1”, then searching for a relevant defect category from the implementation de-
fects is straight forward rather than searching for defects from other phases of software de-
velopment such as requirement defects or maintenance defects. Here the following defect 
categories were assigned to the above processing step “Count <1”: 

 Mixed Sign   Invalid Path  

 Use Before Check   Operator  
The URS document includes forty-two requirements. In mapping C of Figure 2, forty 

requirements were mapped with thirty-eight distinct defect categories from SW91. Each re-
quirement from the URS document has associated prioritized risks. Despite the URS docu-
ments and software design specification documents being prepared for the company’s own 
use, it was possible to map them with SW91.  
 
 
A separate mapping of the testing protocols and SW91 defect categories was not performed 
because the testing protocols are already linked with the software design specification and 
the user requirements from URS document. 

                                                      
2 This capture is from the draft version of the standard that was out for public comment.  

This is not intended to represent the final version of the standard.   

1 Defects 4. Risks 

2. Software Design Specification 5. Testing Protocols 

3. User Requirement Specification (URS)  
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So the defect categories 
from SW91 were used in 
both mapping B and C can 
be directly linked with the 
respective the testing pro-
tocols 

From this mapping, 
five common SW91 defect 
categories have been iden-
tified from all three map-
pings A, B and C. In this 
approach, whenever the 
requirements have been 
gathered and company A 
does this mapping, it will 
enable them to see the 
possible defect categories 
for each requirement. This 
type of mapping also al-
lows goal oriented test 
cases to be written, con-
sistent with the taxonomy 
based testing approach. 
Those goal oriented test 
cases will be based on the 
requirements and respec-
tive mapped defect catego-

ries from SW91.  Execu-
tion of these goal orient-
ed test cases will save   

time finding defects when a test 
case fails. This mapping will improve software quality by identifying defects at an ear-
lier stage of software development such as identified common five defects.Since 
company A has detailed control flow diagrams, mapping each stage of the control 
flow diagram with SW91 defect categories will help to minimize defects at the devel-
opment phase. When we have the anticipated defect categories for every stage, de-
velopers can work to avoid those defects. Quality assurance engineers run tests to 
find the mapped defect categories. This will minimize the time to find the defects and 
it will help to prevent defects at the earliest possible phase of software development.  
Company A has risks for every requirement in their URS document. Those risks are 
prioritized by severity. If every requirement is mapped with defect categories from 
SW91, the risks can be used to prioritize which defects should be fixed first.  

As we discussed in Section 5, in terms of the validation of a defect 
classification scheme, the reliability of SW91 can be observed here. Normally, the 
reliability of a defect classification scheme is determined by the mapping of the same 

Figure 2: Mapping company A's data to SW91 
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defects by different people. If different people map the same defects with the same 
defect categories from a classification scheme, then it is decided that the defect clas-
sification scheme has good reliability. Here, the same defects from three different 
documents including URS, control flow diagram from software design specification 
document and defects from defect data mapped to the same categories in SW91. 
Due to the confidentiality of the data from company A, we are unable to detail all the 
mappings here. This section explained how an initial empirical validation was carried 
out with data from a medical device software development company. Future work in 
this research will use taxonomy based testing as another method of validating SW91. 
Next section presents an explanation of taxonomy based testing. Section 7 explains 
plans for future work involving taxonomy based testing. 

 Taxonomy based testing 

Defect taxonomies can be used in testing [3]. Creating the test cases for the de-
fect categories from a defect taxonomy gives better test coverage [3,15]. Michael 
Felderer and Armin Beer have conducted significant research on defect taxonomy-
supported testing (DTST) [9]. They stated, “Defect taxonomies can be applied to con-
trol the design of tests and the quality of releases to keep testing manageable alt-
hough time and resources in projects are limited”. In their research, a novel process 
of system testing using a defect taxonomy has been proposed and implemented. A 
case study was used to explain how a taxonomy can be integrated into the standard-
ized test process defined by the ISTQB. The proposed test process contains five 
steps. The first four steps of the DTST process were integrated into the first step of 
the ISTQB test process called “Test Planning and Control”. The next section explains 
future work with taxonomy based testing. 

 Future work 

To continue the validation of SW91, our future work will focus on taxonomy based 
testing in a medical device software development company. This taxonomy based 
testing will consider the following points in terms of the validation of SW91: 

 

 The efficiency of SW91  Useful analyses enabled by SW91 

 The reliability of SW91  Defect coverage 
 
Defect data will be requested from medical device software companies. This data 

will initially be used to check the defect coverage and reliability of SW91. After gath-
ering other necessary data for taxonomy based testing, requirements will be mapped 
with SW91 defect categories. Test cases will be generated based on those mapped 
requirements. During the testing process, test cases generated from mapped re-
quirements with SW91 defect categories will be executed and the results will be 
observed. 
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Figure 3: Modified IEC 62304 V model and taxonomy based testing 
 
This method of validation will be used to assess the quality of SW91 in terms of 

efficiency, reliability, performance of useful analyses and defect coverage. Since 
SW91 includes defect categories for all phases of the software development lifecycle, 
taxonomy based testing will be used to examine the efficiency of SW91 in finding de-
fects at an earlier stage of the medical device software development lifecycle. When 
it comes to the reliability of SW91, if a statistically significant number of quality assur-
ance engineers at a medical device software company mapped the same given de-
fects with same defect categories this will demonstrate the reliability. Fehler! Ver-
weisquelle konnte nicht gefunden werden. explains the modified V model from 
IEC 62304 and how SW91 defect categories link with each phase of medical device 
software development. At the end of the taxonomy based testing, if SW91 helped to 
increase the test efficiency and helped to reduce similar software defects in future 
phases, this will be considered as the validation of SW91 in terms of useful analyses. 
If SW91 covers all identified defects from requirements capture to the final system, 
this will be considered a validation of defect coverage. Section 8 details the summary 
and conclusions of this paper. 

 

 Summary and Conclusion 

This paper explained software quality problems in medical device software industries 
and why quality assurance practices may fail to identify defects. The benefits of de-
fect taxonomies were outlined with the empirical examples from the literature. The 
necessity for a domain specific defect taxonomy in safety critical domains was also 
explained. The development of a new defect classification for health software (SW91) 
is underway to address this need in the medical device domain. Validation methods 
for defect taxonomies from the literature were also presented. As a validation of this 
newly developed defect classification for health software, two mapping were com-
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pleted. Firstly, with CWE’s vulnerabilities and, secondly, with data from a medical 
device company. These mappings examined the reliability and the defect coverage of 
SW91. Finally, our future work will utilize taxonomy based testing to validate the effi-
ciency, reliability, enabling of useful analyses and defect coverage of SW91. Taxon-
omy based testing will also improve the software quality in medical device software. 
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