

Abstract—The training and optimization of neural networks,

using pre-trained, super learner and ensemble approaches is

explored. Neural networks, and in particular Convolutional

Neural Networks (CNNs), are often optimized using default

parameters. Neural Architecture Search (NAS) enables

multiple architectures to be evaluated prior to selection of the

optimal architecture. Our contribution is to develop, and make

available to the community, a system that integrates open

source tools for the neural architecture search (OpenNAS) of

image classification models. OpenNAS takes any dataset of

grayscale, or RGB images, and generates the optimal CNN

architecture. Particle Swarm Optimization (PSO), Ant Colony

Optimization (ACO) and pre-trained models serve as base

learners for ensembles. Meta learner algorithms are

subsequently applied to these base learners and the ensemble

performance on image classification problems is evaluated. Our

results show that a stacked generalization ensemble of

heterogeneous models is the most effective approach to image

classification within OpenNAS.

Index Terms—AutoML, transfer learning, pre-trained

models, ensemble, stacking, super learner, PSO, ACO, CNN.

I. INTRODUCTION

 Open-source AutoML [1] solutions such as Auto-WEKA

[2] and TPOT [3] focus on creating simpler neural

architectures. Libraries capable of generating more complex

CNN architectures are also available [4]. In addition to

open-source options, many large corporations have

developed powerful online platforms to enable the generation

of neural architectures automatically. Chief among these

solutions is Google’s Cloud AutoML and Microsoft Azure’s

AutoML. However, the alternative of using commercial

platforms is expensive leaving users with few practical or

viable options.

 The development of an open-source NAS tool, OpenNAS1

[5] seeks to address these shortcomings by integrating

multiple open-source NAS approaches. With OpenNAS,

CNN architectures for grayscale and RGB image datasets are

found through the Swarm Intelligence (SI) heuristics of

Particle Swarm optimization (PSO) [6] and Ant Colony

optimization (ACO) [7]. Pre-trained models using VGG16,

VGG19 [8], ResNet50 [9] and MobileNet [10] architectures

were fine-tuned and used as feature extractors. Finally,

models derived using SI and pre-trained approaches were

combined into network ensembles and evaluated.

II. BACKGROUND

A. Convolutional Neural Networks

Initially proposed by LeCun [11], CNNs are feed-forward

Deep Neural Networks (DNNs) used for image recognition.

In this study, SI and ensemble approaches are used to find

better combinations of convolutional, pooling and fully

connected layers for CNN architectures.

B. Neural Architecture Search

The process of automatically finding and tuning DNNs is

referred to as Neural Architecture Search (NAS). Systems

implementing NAS typically consist of a search space, a

search algorithm and an evaluation strategy. The

architectures to be evaluated are set out in the search space,

the search algorithm determines how the search space is to be

explored and the evaluation strategy determines the best

architectures on unseen data. Brute force training and

evaluation of all possible model combinations is a crude

approach to NAS whereas an improvement is to use SI

heuristics. Ensembles, combining multiple models, is an

alternative which frequently generates better results.

C. Transfer Learning

Transfer learning is used widely in the deep learning

domains of computer vision and natural language processing

[12], [13]. The approach involves taking a model developed

for one task and applying it as the starting point for a new

model which carries out different tasks.

Training networks on large datasets, such as ImageNet,

can take days of GPU time. Through the use of transfer

learning, features learnt during this process and the

underlying model architecture, can be rapidly transferred to a

new model domain. Fortunately, many large corporations and

research institutions, have made such pre-trained models

publicly available.

As part of this research, several pre-trained models are set

as the starting point for new models which are fine-tuned and

evaluated. These networks included shallow networks such

as 16 layer and 19 layer VGG networks [8], a more complex

50 layer ResNet [9] and a 28 layer MobileNet [10]. Original

papers for each network type were studied to find the

classification error rates on benchmark datasets.

D. Swarm Intelligence

Swarm Intelligence (SI) is an important category of

heuristics within the domain of Evolutionary Computing.

While many SI algorithms exist, the most prominent are

Open-Source Neural Architecture Search with Ensemble

and Pre-trained Networks

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

33DOI: 10.7763/IJMO.2021.V11.774

Séamus Lankford

Manuscript received January 8, 2021; revised March 13, 2021. This work

was supported by the ADAPT Centre, which is funded under the SFI
Research Centres Programme (Grant 13/RC/2016) and is co-funded by the

European Regional Development Fund.

S. Lankford is with the Adapt Centre, Dublin City University, Ireland
(e-mail: seamus.lankford@adaptcentre.ie).

1 https://github.com/seamusl/OpenNAS-v1

https://github.com/seamusl/OpenNAS-v1

Particle Swarm Optimization (PSO) [14] and Ant Colony

Optimization (ACO) [15]. Open-source libraries can

facilitate SI implementation.

Using a PSO algorithm, an open-source python library for

CNN optimization, openCNN, was developed by Fernandes

et al [16]. An alternative ACO based approach, known as

DeepSwarm, was developed by Byla and Pang [17]. Both

libraries have been demonstrated to offer competitive

performance in the classification of CIFAR-10 [18] and

Fashion_Mnist data [19].

E. Ensemble Techniques

Cheng Ju et al. [20] explored the available options when

designing an ensemble for image classification. A detailed

analysis was conducted which encompassed the following

ensemble techniques: unweighted average, majority voting,

Bayes optimal classifier, stacked generalization and a super

learner: a cross-validation based stacking method. In their

study, the super learner proved the most accurate across all

methods.

The super learner approach is an extension of stacking in

that it creates an ensemble based on cross-validation. A

weighted combination of many candidate learners, developed

using different algorithms, are combined to build the super

learner [21].

The effects of an ensemble of DNN acoustic models in

automatic speech recognition is investigated by Geoffrey

Hinton at al [22]. The results clearly show the value of the

ensemble approach. Using the same architecture and training

methods as the baseline, 10 separate models were trained.

Sufficient diversity was introduced through randomly

initializing models with different initial parameter values.

Such a simple approach allowed averaged predictions of the

ensemble to significantly outperform individual models.

III. PROPOSED APPROACH

The number of hidden layers, the number of neurons per

layer, the type of activation function and the choice of

optimizer are among the parameters which need to be

optimized as part of a neural architecture search. NAS

implementation can be achieved through a variety of

approaches including transfer learning using pre-trained

networks, network morphism or swarm intelligence.

Furthermore, the performance of NAS derived networks can

often be enhanced through the use of ensembles.

A. Pre-trained Networks

The internal architecture of VGG16 is illustrated in Fig. 1.

As with all CNNs, the architecture is subdivided into a series

of blocks which are separated by pooling layers. These

blocks may be composed of either convolutional layers or

fully connected layers.

Each convolutional layer has set of kernels (i.e. filters)

with learnable parameters. The filter size, in both VGG16 and

VGG19, is set to 3x3 pixels whereas the number of filters

used varies between different blocks. With VGG

architectures, the number of filters increases from 64 to 512

as an image progresses through the layers. The filter size and

number of filters used are shown in Fig. 1. The effectiveness

of pre-trained VGG models, both as feature extractors and

fine-tuned models, in generating optimal architectures is

explored as part of the approach taken in this study.

Fig. 1. Architecture of VGG16.

In the context of this study, ResNet50 was also used which

is a 50 layer ResNet implementation. ResNet shares many of

the same characteristics of the VGG networks i.e. blocks of

convolutional layers followed by a fully connected layer and

SoftMax activation. However, Resnet differs from other

architectures in that it uses a principle known as skip

connections which reduces the problem of vanishing

gradients associated with deeper networks.

MobileNet, a family of computer vision neural networks

designed by Google, was also evaluated. Its shallow

architecture and fast performance allows for its use in mobile

devices. The structure is broadly similar to the architectures

of VGG and ResNet with convolutional layers feeding into a

fully connected layer that uses SoftMax classification.

Overall these networks can be viewed as performing two

clear functions: feature extraction carried out by

convolutional layers and classification which is implemented

by the fully connected layers.

Convolutional layers are used for feature extraction since

they concentrate on smaller regions of the image using

multiple small filters (e.g. 3x3 in the case of VGG). This

eliminates the need for feature engineering or extraction,

such as PCA, which is needed with other forms of artificial

neural networks.

With all approaches, the image is classified into various

classes using a fully connected (FC) neural network,

following feature extraction of the earlier convolutional

layers. The last layer in all architectures is the SoftMax layer

which converts the output of the previous layer into a

probability distribution which can be used for classification.

In the context of DNNs, there are two principal modes of

transfer learning namely feature extraction and fine-tuning.

These common features, identified above, enabled two types

of transfer learning to be incorporated in the approach taken

in the development of OpenNAS.

1) Feature extraction on pre-trained networks

Transfer learning was performed on the CIFAR-10 and

Fashion_Mnist datasets using filters, learned by

state-of-the-art networks. These pre-trained networks were

initially developed through training on large datasets such as

ImageNet. In this manner, transfer learning enabled the

pre-trained networks to classify images it was not trained on.

With feature extraction, pre-trained networks are treated as

feature extractors. Input images propagate through the

network and stop at a pre-specified layer. Outputs of this

layer are then treated as the features which is illustrated in Fig.

3.

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

34

Fig. 2. Super learner approach [21].

Fig. 3. Feature extraction.

Features, which are the output of the max-pooling layer,

were flattened into a feature vector. Given a dataset of N

images, the process of feature extraction was repeated for all

images in the dataset, resulting in a total of N feature vectors.

These features, were then trained on scikit-learn machine

learning models.

2) Fine tuning of pre-trained networks

With the implementation of fine tuning, hybrid model

architectures were created by removing the fully connected

layers from the top of the model.

In the OpenNAS design, two blocks were added each of

which had a fully connected layer, a batch normalisation

layer and a dropout layer. The new hybrid structure was then

trained. The inner layers of the model were unfrozen

allowing both the convolutional and fully connected layers to

be trained for a specific number of epochs. The resulting

fine-tuned model architecture is illustrated in Fig. 4.

Fig. 4. Fine-tuning.

B. Ensembles

 Ensembles were developed using stacked outputs from

base learners. Subsequently, meta learners generated new

models by using the stacked ensemble outputs to learn from

the base learners. Meta learners using several different

algorithms were evaluated. These algorithms include K

Nearest Neighbor (KNN) [23], Support Vector Clustering

(SVC) [24], Random Forest [25], Logistic Regression [26]

and Multi-Layer Perceptron (MLP) [27]. Combinations of

homogeneous or heterogeneous base learners were included

in creating the network ensembles.

 The approach taken in this paper is to focus on stacking

ensembles, scikit-learn ensembles and super learner

ensembles. With stacking, the accuracy of predictions was

improved by combining multiple weaker base learner models.

Outputs of N weak learners were combined to form the

feature set for a meta learner. Subsequently, the meta learner

learns from the prediction outputs of each base learner.

Fig. 5. Stacking approach.

The single level stacking model is further developed with a

multi stacked ensemble. With a multi stacked approach, the

meta learner is replaced by another set of base learners

increasing the model complexity.

The super learner approach is an extension of stacking to

k-fold cross-validation whereby all models use the same

k-fold splits of the data. The meta-model is fit on the

out-of-fold predictions from each model. The steps involved

in the super learner approach are outlined in Fig. 2 from

Hubbard’s original paper [21].

With OpenNAS, other options for neural architecture

search are also available. The system allows AutoKeras and

auto-model approaches to be used in the search process.

Swarm intelligence algorithms may also be selected for

optimization. The swarm optimization techniques currently

used are Particle Swarm Optimization and Ant Colony

Optimization.

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

35

2) Stacking with neural networks

As outlined in the system design, ensemble outputs are

used to create a stacked training dataset for a meta learner.

The meta learner is trained by firstly preparing the training

dataset and then using the prepared dataset to fit a

meta-learner model. In this manner, features of the meta

learner dataset are created using predictions from the base

learners.

The stacking ensemble approach adopted by OpenNAS

enables both heterogeneous and homogeneous ensembles of

base learners models to be evaluated. To develop meta

learners, the meta-algorithms chosen as the secondary

machine learning classifier included Random Forest, Logistic

Regression, KNN, MLP and SVC classifiers. With this

implementation, there are two principle modes of operation.

The first mode involves the creation of baser learners. These

learners are then used to create ensemble outputs to train

meta-learners. The second mode of operation simply loads

previously built base learners to create the ensemble for the

meta-learners.

3) Stacking with scikit-learn

With scikit-learn, ensemble stacking is achieved using the

Stacking Classifier library. For the purposes of this study,

two types of ensembles were implemented: a one layer

stacking ensemble and a multi stacked ensemble consisting

of two layers. With the one layer model, illustrated in Fig. 6,

two MLP classifiers with different learning rates were used as

the base models. The outputs from these learners feed into a

Random Forest which is used as the meta learner. A single

Stacking Classifier is required.

Fig. 6. Stacking with a single layer.

As illustrated in Fig. 7, the multi stacked implementation

consists of two layers of estimators. Layers of estimators are

joined using separate Stacking Classifiers. The first layer

consisted of a Random Forest, a KNN and 2 MLP classifiers

(again with different learning rates). The outputs, i.e.

predictions from layer 1 are passed to a layer consisting of a

Decision Tree and a Random Forest. Layer 2 outputs are then

combined with an SVC classifier to make the final prediction.

Fig. 7. Multi stacking.

4) Stacking with a super learner

Using the python ML-Ensemble [28] library, a super

learner was created. The configuration of base learners used

algorithms from Logistic Regression, SVC, KNN, Bagging,

Random Forest and Extra Trees. The approach is illustrated

in Fig. 8 and the meta model was implemented using a

Random Forest algorithm.

Fig. 8. Stacking with a super learner.

IV. DESIGN

A high level system architecture overview is presented in

Fig. 9. The system is organized into the following modules:

OpenNAS, pre-processor, trainer, ensemble and loader.

Transfer learning, as either a feature extractor or to fine-tune

the pre-trained networks, is incorporated in the pre-train

function.

Metaheuristics of Particle Swarm Optimization and Ant

Colony Optimization are used to search for the optimal neural

architecture as part of the SI design. Particle swarms were

created using a psoCNN library [16] and ant colonies were

implemented using the DeepSwarm library [17]. Existing

AutoML tools, such as AutoKeras [4], were also integrated

into the OpenNAS system.

With the ensemble module, there are options to build

custom stacked ensembles using either homogeneous or

heterogeneous base learners. In addition, there are options to

create ensembles using either scikit-learn stacking or a super

learner. Base learner outputs are subsequently passed to a

suite of meta learner algorithms.

The system outputs include the generation of optimal

neural architecture models and their associated architecture

diagrams.

V. EMPIRICAL EVALUATION

A. Experimental Setup

Two datasets were chosen for the experimental design,

namely CIFAR-10 [18] and Fashion_Mnist [19]. A primary

research objective is the development of a Neural

Architecture Search tool which chooses the optimal

architecture for generic datasets of either grayscale (one

channel) or colour (three channel) images. The CIFAR-10

dataset meets this requirement in that it is a challenging

dataset of colour images. The Fashion_Mnist dataset is also

suitable since it is a well-tested and well understood dataset

of black and white images.

For reference, the state of the art (SOA) accuracy achieved

on CIFAR-10 is 98.5% whereas with Fashion_Mnist, the

SOA accuracy is 94.6% [29].

Full models were developed using a lab of machines each

of which has an AMD Ryzen 7 2700X processor, 16 GB

memory, a 256 SSD and an NVIDIA GeForce GTX 1080 Ti.

1) CIFAR-10

CIFAR-10 is a dataset of 60,000 32x32 colour images in

10 classes. There are 6,000 images per class creating a

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

36

well-balanced dataset. Furthermore, the dataset is divided

into five training batches and one test batch, each with 10,000

images. Therefore, there are 50,000 training images and

10,000 test images. The test batch contains exactly 1,000

randomly-selected images from each class. Training batches

contain the remaining images in random order and contain

exactly 5,000 images from each of 10 classes. CIFAR-10

includes the following image categories: airplane,

automobile, bird, cat, deer, dog, frog, horse, ship and truck.

Fig. 9. OpenNAS system design.

2) Fashion_Mnist

Fashion_MNIST is a dataset of grayscale images

consisting of a training set with 60,000 examples and a test

set of 10,000 examples. Each sample is a 28x28 grayscale

image, associated with a label from 10 classes. Fashion item

images are labelled according to the following classes:

T-shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt,

Sneaker, Bag and Ankle boot.

B. Pre-trained Models

Using fine-tuning of pre-trained networks, models were

developed with 5 and 10 epochs of training over five

independent training runs. The pre-trained networks of

VGG16, VGG19, MobileNet and ResNet50 were evaluated.

Models were developed using both CIFAR-10 and

Fashion_Mnist datasets. A summary of the test results, and

their evaluation is presented in the tables and discussion

below.

1) Models trained on CIFAR-10 dataset

TABLE I: PRE-TRAINED TEST RESULTS ON CIFAR-10 (5 EPOCHS)

Model Acc
(Mean)

Acc
(Max)

Acc
(StDev)

Run (s)

Layers
(Base)

VGG16 0.888 0.891 0.003 2533 16

VGG19 0.885 0.889 0.003 2931 19
MobileNet 0.813 0.825 0.007 2270 28

ResNet50 0.815 0.823 0.006 3331 50

The key findings of the experimental results for pre-trained

models over 5 epochs, illustrated in Table I, indicate the most

accurate pre-trained model for the CIFAR-10 dataset used

VGG16 as the base model (88.8%). In terms of model

accuracy there is little difference between VGG16 (Acc:

88.8%) and VGG19 (Acc: 88.5%). The VGG16 and VGG19

models both perform well.

The consistency of results between VGG16 and VGG19 is

not surprising given that the models are the same apart from

an extra layer in each of the last two convolutional blocks in

VGG19. MobileNet (Acc: 81.3%) and ResNet50 (Acc:

81.5%) lagged significantly in terms of accuracy.

TABLE II: PRE-TRAINED TEST RESULTS ON CIFAR-10 (10 EPOCHS)

Model Acc
(Mean)

Acc
(Max)

Acc
(StDev)

Run (s)

Layers
(Base)

VGG16 0.883 0.892 0.006 5024 16

VGG19 0.890 0.893 0.003 5837 19
MobileNet 0.814 0.821 0.006 4470 28

ResNet50 0.807 0.812 0.007 6583 50

Model training times over 10 epochs, outlined in Table II,

are approximately double those of models trained for 5

epochs, as one would expect. Using a greater number of

epochs, with its associated longer training times, does not

lead to better model accuracy. In fact, accuracy for all models

trained over 10 epochs was nearly identical to that achieved

over 5 epochs of training. Pre-trained models were

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

37

effectively converging at lower levels of training.

Similar to the 5 epoch trained models, the standard

deviations on accuracies were low indicating that consistent

results can be achieved without significant outliers. The

findings indicate that training over 5 epochs creates better

performing pre-trained hybrids. It was therefore decided to

maintain a cycle of 5 epochs of training for the pre-trained

hybrid models.

Training of all pre-trained hybrid models led to overfitting.

All pre-trained models show overfitting at early stages. The

rapid model convergence can be attributed, in some part, to

the use of an image generator.

2) Models Trained on Fashion_Mnist Dataset

TABLE III: PRE-TRAINED TEST RESULTS ON FASHION_MNIST

Model Acc
(Mean)

Acc
(Max)

Acc
(StDev)

Run (s)

Layers
(Base)

VGG16 0.932 0.936 0.003 3033 16

VGG19 0.933 0.936 0.001 3533 19

MobileNet 0.910 0.913 0.004 2706 28

ResNet50 0.913 0.918 0.005 3917 50

From Table III, an analysis of models trained using

Fashion_Mnist data clearly shows that higher accuracies can

be achieved using a simpler dataset. Mean model accuracy

varied between 91.0% and 93.3% for Fashion_Mnist relative

to a range of 80.7% to 89.0% for CIFAR-10.

The findings of test runs carried out on the one channel

dataset of Fashion_Mnist are consistent with what was

observed with CIFAR-10. There are 2 clear groups namely

the higher performing VGG16 and VGG19 set compared

with the lower performance of MobileNet and ResNet50. The

difference at just 2% is much less marked than is the case for

CIFAR-10 models where the mean accuracy differential is

8%. It can concluded that the shallower models of

VGG16/VGG19 again perform better than the deeper models

of MobileNet and ResNet50.

The average run time for classifying Fashion_Mnist data

was notably faster than CIFAR-10 (approximately 40% faster)

across all model types. Again, this is line with expectations

given that CIFAR-10 is a more challenging dataset. As

expected, MobileNet, designed as a light weight model, was

the fastest of all model types for both Fashion_Mnist and

CIFAR-10.

Training the hybrid models on Fashion_Mnist showed

similar characteristics to CIFAR-10 training. A high degree

of overfitting occurred which again illustrates rapid accuracy

convergence for pre-trained models on both triple channel

and single channel datasets.

3) Summary of pre-trained evaluation

Several key observations can be made when assessing

pre-trained model performance on CIFAR-10 and

Fashion_Mnist. It can be seen, from Tables I-III, that deeper

models are not necessarily more accurate than shallower

networks. In all cases, it was observed that pre-trained hybrid

models converge rapidly. This is not surprising given that

such models have well developed weights from extensive

prior training on large datasets such as ImageNet.

The relative performance of pre-trained models with

regard to validation accuracy is also highlighted in Table I

and Table II. Of the four models evaluated, ResNet50 and

MobileNet perform worse on both Fashion_Mnist and

CIFAR-10 relative to the VGG architectures. Given that

MobileNet is primarily designed for lightweight mobile

applications, this finding is not surprising.

C. Stacking with Neural Networks

Using CIFAR-10 and Fashion_Mnist datasets, stacking

ensembles were evaluated using Random Forest, KNN,

MLPC, SVC and Logistic Regression as meta learners. Both

homogeneous and heterogeneous stacking ensembles were

created.

The homogeneous ensembles used in this study simply

consisted of two members. ACO ensembles consisted of two

members whose architecture was derived from an ACO

search whereas the PSO ensembles were developed using a

PSO heuristic.

In addition, the performance of heterogeneous ensembles

was also explored. The ensemble, Hetero-4 comprised of four

models using two VGG16 and two VGG19 models. The

Swarm ensemble was also a four model ensemble consisting

of two ACO trained models and two PSO trained models.

1) Ensemble performance on CIFAR-10

The relative performance of all meta learners in classifying

CIFAR-10 data is clearly illustrated in Fig. 10. Two clear

groups are identified in the relative performance of all meta

learners in classifying CIFAR-10 data. The higher

performing group of the Random Forest and KNN classifiers

stand out in comparison to the poorer performing group

consisting of the MLPC, SVC and Logistic Regression

algorithms. For lower performing ensemble groups, the

differential is substantial. In the case of the VGG16 ensemble,

there is a difference of 3.7% in accuracy achieved between

using a Random Forest and an SVC approach. The accuracies

achieved by higher performing meta learners across all

ensemble types are summarized in Table IV and in Table V.

Fig. 10. Relative mean performance of ensembles on CIFAR-10.

Ensembles consisting of weaker members performed

worse than ensembles with higher performing members. This

is evident from Table IV where the Hetero-4 ensemble

achieves 84.7% using Random Forest whereas the Swarm

ensemble came in at 92.5%.

 With this study, the impact of the number and diversity of

models, on overall ensemble accuracy can be seen.

Increasing the number of models within an ensemble often

increases ensemble accuracy. The Hetero-6 ensemble

performed significantly better (93.1%) compared with its

Hetero-4 counterpart (84.7%) using a Random Forest meta

learner. Heterogeneous ensembles, containing diverse

models, were seen to offer better performance compared to

their homogeneous counterparts.

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

38

TABLE IV: ENSEMBLE MEAN PERFORMANCE ON CIFAR-10

Model RF KNN Best

Member

Delta

Run

Time (s)

Hetero-6 0.931 0.930 0.900 3.07% 341

Swarm 0.925 0.921 0.900 2.46% 254

PSO 0.918 0.916 0.900 1.80% 198
ACO 0.895 0.889 0.848 4.67% 76

Hetero-4 0.847 0.841 0.755 9.22% 170
VGG19 0.818 0.822 0.755 6.31% 86

VGG16 0.817 0.816 0.743 7.43% 76

2) Ensemble performance on fashion_mnist

 The relative performance of meta learners in classifying

Fashion_Mnist data, using different types of ensembles, was

investigated. The findings, illustrated in Fig. 11, are

consistent with previous observations. Similar to the

CIFAR-10 evaluations, there were two distinct groups of

meta learners namely the higher performing set of Random

Forest and KNN compared with the weaker performance of

MLPC, SVC and LR. For all ensemble types, Random Forest

was again the strongest performer of all meta learners.

Fig. 11. Relative mean performance of ensembles on Fashion_Mnist.

 Consistent with a previous observation, it can be seen that

the ensemble set with the highest number of members offers

the greatest performance. The Hetero-4 ensemble, with 4

members, achieves an accuracy of 93% compared with a

slightly lower accuracy of 92.2% on the VGG16 ensemble of

two members.

TABLE V: ENSEMBLE MEAN PERFORMANCE ON FASHION_MNIST

Model RF KNN Best

Member

Delta

Run

Time (s)

Hetero-4 0.930 0.924 0.831 9.89% 156
VGG16 0.922 0.913 0.807 11.43% 75

VGG19 0.906 0.903 0.831 7.52% 83
ACO 0.902 0.904 0.867 3.44% 33

PSO 0.747 0.768 0.686 6.09% 93

D. Scikit-Learn Stacking and Super Learner

For the purposes of this study, the effectiveness of

scikit-learn in classifying CIFAR-10 and Fashion_Mnist data

was evaluated. Scikit-learn stacking was compared with a

super learner approach, which is a stacking ensemble

variation incorporating cross fold validation.

1) Scikit-learn and super learner on CIFAR-10

On first inspection of CIFAR-10 classification in Table VI,

the accuracy results for both the super learner (49%) and

scikit-learn (52%) appear poor. The performance of these

approaches is governed by the algorithms chosen for the base

learners and meta learners. Several variations of base learner

and meta algorithms were tested. Variations included

increasing the number, and diversity, of base learners. A

multi stacked approach, with 2 layers, was also implemented.

The accuracy of all OpenNAS approaches showed little

deviation and stayed within a range of 49% to 53%.

Experiments conducted, as part of the original Auto-Sklearn

paper indicate a baseline accuracy of 51.7% on CIFAR-10

demonstrating a consistency with the results observed as part

of this study [30], [31].

TABLE VI: SCIKIT-LEARN STACKING AND SUPER LEARNER PERFOMANCE

ON CIFAR-10

 Accuracy (Mean) Runtime (s)

1 Layer 0.524 8852
2 Layers 0.520 11910

Super Learner 0.490 5507

2) Scikit-learn and super learner on fashion_mnist

By comparison with the findings for CIFAR-10, the

accuracies obtained on Fashion_Mnist when using either the

scikit-learn or the super learner approach are much improved.

As previously noted, Fashion_Mnist is a less challenging

dataset given that it contains grayscale images.

 The accuracies achieved, and their associated run times,

are illustrated in Table VII. In comparing approaches, the

super learner approach offered better performance in both its

accuracy (88.7%) and run time of 2144 seconds.

TABLE VII: SCIKIT-LEARN AND SUPER LEARNER

PERFORMANCE ON FASHION_MNIST

 Accuracy (Mean) Runtime (s)

Super Learner 0.887 2144
2 Layers 0.877 3366

1 Layer 0.869 2418

VI. DISCUSSION

For the CIFAR-10 dataset, the highest performing model is

a heterogeneous ensemble of six base models feeding into a

Random Forest meta learner, which in itself is an ensemble.

Effectively this creates an ensemble of ensembles to ensure

an accuracy of 93.1%. The base models consisted of two

ACO derived models, two PSO derived models, two

pre-trained models (i.e. one VGG16 and one VGG19 model).

The accuracy achieved by the ensemble is significantly

higher (3.1%) when compared with the best performing

models in previous OpenNAS studies [5]. In comparison to

approaches, which rely solely on SI heuristics [17], the

difference is even greater (4.41%).

The pre-trained networks of MobileNet and RestNet50

delivered the poorest performance with CIFAR-10. The other

pre-trained networks, using VGG architectures, performed

very well on the same dataset. However the accuracy of the

VGG ensembles was still 4% lower than the highest ranking

ensemble, Hetero-6.

Many of the characteristics exhibited with CIFAR-10 were

also seen in Fashion_Mnist classification. The lowest

performing models were again the pre-train set of Resnet50

and MobileNet. The VGG16 and VGG19 models both

performed well on Fashion_Mnist. In relation to the best

performing ensemble, it is worth noting the highest

performing base learner had an accuracy of 83.1% but still

managed to deliver overall accuracy of 93%. A marginally

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

39

higher ensemble accuracy should be possible if better

performing base models were included. It was shown that a

mean accuracy of 93.3% on Fashion_Mnist could be

achieved using a VGG19 model.

Scikit-learn stacking and super learner approaches

performed poorly on CIFAR-10. Clearly, they are not suited

to the classification of complex triple channel image datasets,

which demand a convolutional neural network approach to

achieve accuracies greater than 90%. Run times associated

with various ensemble types are illustrated in Tables I-IV.

The difference in run time between stacking ensembles and

that of the scikit-learn or super learner approaches is very

significant. In fact, in classifying CIFAR-10, the run time of

the slowest stacking ensemble (Hetero-6) is 15 times faster

than the quickest of the super learner and scikit-learn

approaches. The use of pre-built base models enabled such

fast performance from stacking ensembles whereas the super

learner and scikit learn approaches required new models to be

built.

VII. CONCLUSION

With OpenNAS, a heterogeneous ensemble achieved the

highest accuracy in classifying CIFAR-10 data. The accuracy

achieved with OpenNAS ensembles is competitive with the

current state of the art.

Meta learner algorithms have a significant impact in

determining stacking ensemble accuracies. The Random

Forest classifier is consistently the best meta learner,

irrespective of the underlying ensemble.

The super learner and scikit-learn stacking approaches are

fundamentally designed for simpler neural networks using

classifier algorithms from the scikit-learn suite. However,

they have also been shown to perform well on convolutional

neural networks which classify less complex grayscale image

datasets such as Fashion_Mnist.

While Keras offers a powerful framework for neural net

development, the strengths of the sci-kit learn library should

not be overlooked. In particular, in the absence of pre-built

base learners, it was shown how an scikit-learn or a super

learner approach can be used to quickly develop high

performing ensembles for simpler datasets. However,

creating a stacking ensemble of pre-built models is

significantly faster than building models from scratch using

either scikit-learn or a super learner.

It has been found that custom, heterogeneous stacked

ensembles of pre-built SI and pre-trained models deliver

superior performance for colour image datasets, both in

accuracy and run time.

REFERENCES

[1] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine

Learning: Methods, Systems, Challenges, Springer Nature, 2019.
[2] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,

“Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka,” The Journal of Machine Learning Research,

vol. 18, no. 1, pp. 826–830, 2017.

[3] R. S. Olson and J. H. Moore, “Tpot: A tree-based pipeline optimization
tool for automating,” Automated Machine Learning: Methods, Systems,

Challenges, p. 151, 2019.

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

40

VIII. FUTURE WORK

Given the previously discussed modular design, future

work could be carried out within each subcomponent. This

work could be broadly classified into either further

development work or the evaluation of different system

configurations.

Development work would focus mainly on more rapid

convergence of models during system training, while

reducing the amount of overfitting.

Greater use of specific techniques to reduce overfitting

should be employed. Many of these techniques are well

established and routinely used in deep learning. Hinton et al

[32], outline how data augmentation and dropout can be

applied to good effect in dealing with overfitting.

While dropout layers were added to the blocks attached to

the pre-trained networks investigated in this study, the effect

of different dropout rates was not examined. A standard

dropout rate of 0.5 was applied. A configurable parameter

could easily be created which would enable testing the

effectiveness of various dropout rates.

Large weights could be penalised by adding a cost to the

network’s loss function through the use of L1 and L2

regularisation. Similar to the dropout rate, a configurable

parameter could be used for the hybrid and pre-train modes.

Future work could also consider the reduction in pre-train

network capacity through the removal of specific layers or

the reduction in the number of elements of some of the

hidden layers.

With regard to system settings, the number of

configurations evaluated for the SI components was quite

limited due to the long run times associated with model

development. As outlined in the design, there are many

parameters associated with training models using PSO. The

effect of modifying population size and the number of

iterations was investigated. However, it would be interesting

to study the effects of modifying the parameters for CNN

architecture, CNN training and the probability settings.

Exploration of the effects of modifying parameters

associated with Ant Colony Optimization would also be

worthwhile. The study primarily focused on changing both

the number of ants and the number of training epochs.

However, increased accuracy could be achieved, and insights

gained, from modifying default pheromone settings and

providing a greater set of CNN layer parameters to choose

from in the configuration files.

CONFLICT OF INTEREST

The author declares no conflict of interest.

AUTHOR CONTRIBUTION

As the sole author, Séamus Lankford, conducted the whole

of this research and wrote the paper.

ACKNOWLEDGMENT

The author wishes to acknowledge the support received by

Dr Diarmuid Grimes of the Munster Technological

University. Furthermore, the author would also like to thank

the School of Computing at Dublin City University (ADAPT

centre) for their support.

[4] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural

architecture search system,” in Proc. 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019, pp.

1946–1956.

[5] S. Lankford and D. Grimes, “Neural architecture search using particle

swarm and ant colony optimization,” in Proc. 28th AIAI Irish

Conference on Artificial Intelligence and Cognitive Science, 2020.
[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

ICNN’95-International Conference on Neural Networks, vol. 4. IEEE,
1995, pp. 1942–1948.

[7] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative

learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66,

1997.
[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” arXiv preprint arXiv:1409.1556,

2014.
[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778.

[10] H.-Y. Chen and C.-Y. Su, “An enhanced hybrid mobilenet,” in Proc.

2018 9th International Conference on Awareness Science and
Technology (iCAST). IEEE, 2018, pp. 308–312.

[11] L. C. Yann, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” in Proc. the IEEE 86, no.

11, 1998, pp. 2278-2324.

[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.

1345–1359, 2009.
[13] M. E. Taylor and P. Stone, “Transfer learning for reinforcement

learning domains: A survey,” Journal of Machine Learning Research,

vol. 10, no. Jul, pp. 1633–1685, 2009.
[14] B. A. Garro and R. A. Vazquez, “Designing artificial neural networks

using particle swarm optimization algorithms,” Computational
Intelligence and Neuroscience, 2015.

[15] M. Mavrovouniotis and S. Yang, “Training neural networks with ant

colony optimization algorithms for pattern classification,” Soft
Computing, vol. 19, no. 6, pp. 1511–1522, 2015.

[16] F. E. F. Junior and G. G. Yen, “Particle swarm optimization of deep
neural networks architectures for image classification,” Swarm and

Evolutionary Computation, vol. 49, pp. 62–74, 2019.

[17] E. Byla and W. Pang, “Deepswarm: Optimising convolutional neural
networks using swarm intelligence,” in UK Workshop on

Computational Intelligence, Springer, 2019, pp. 119–130.
[18] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” vol. 55,

2014.

[19] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” 2017.

[20] C. Ju, A. Bibaut, and M. van der Laan, “The relative performance of
ensemble methods with deep convolutional neural networks for image

classification,” Journal of Applied Statistics, vol. 45, no. 15, pp.

2800–2818, 2018.

[21] M. J. Van der Laan, E. C. Polley, and A. E. Hubbard, “Super learner,”

Statistical Applications in Genetics and Molecular Biology, vol. 6, no.
1, 2007.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a

neural network,” 2015.

[23] N. S. Altman, “An introduction to kernel and nearest-neighbor

nonparametric regression,” The American Statistician, vol. 46, no. 3,
pp. 175–185, 1992.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[25] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[26] D. R. Cox, “The regression analysis of binary sequences,” Journal of

the Royal Statistical Society: Series B (Methodological), vol. 20, no. 2,
pp. 215–232, 1958.

[27] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing

Automaton Project Para, Cornell Aeronautical Laboratory, 1957.
[28] S. Flennerhag, “mlens documentation,” 2017.

[29] X. He, K. Zhao, and X. Chu, “Automl: A survey of the
state-of-the-art,” 2019.

[30] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter,

“Auto-sklearn 2.0: The next generation,” 2020.
[31] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,

and F. Hutter, “Auto-sklearn: efficient and robust automated machine
learning,” Automated Machine Learning Cham, 2019, pp. 113–134.6.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp.84–90, 2017.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Séamus Lankford is a PhD candidate with the Adapt

Centre in Dublin City University. His PhD concentrates

on neural machine translation of low resource languages
with a specific focus on the Irish language. At the

Munster Technological University (MTU), Séamus
lectures in the area of Physical Computing and

supervises undergraduate projects in machine learning.

He is the placement coordinator and industry point of
contact for software development students. Having

graduated from University College Cork (UCC) with a BE (hons) in
electrical engineering, he worked both as an engineer and as a software

developer with the ESB, the European Space Agency and Motorola prior to

joining MTU. His postgraduate qualifications include an MBA (UCC) and
an MSc in artificial intelligence (CIT). His MSc focused on the NAS aspect

of AutoML and he developed an open-source neural architecture search tool
(OpenNAS) for CNN image classification. His research interests are in the

areas of AutoML, machine learning, natural language processing and

machine translation.

International Journal of Modeling and Optimization, Vol. 11, No. 2, May 2021

41

https://creativecommons.org/licenses/by/4.0/

