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Abstract

The research community has witnessed the powerful po-
tential of self-supervised Masked Image Modeling (MIM),
which enables the models capable of learning visual rep-
resentation from unlabeled data. In this paper, to incor-
porate both the crucial global structural information and
local details for dense prediction tasks, we alter the per-
spective to the frequency domain and present a new MIM-
based framework named FreMAE for self-supervised pre-
training for medical image segmentation. Based on the ob-
servations that the detailed structural information mainly
lies in the high-frequency components and the high-level
semantics are abundant in the low-frequency counterparts,
we further incorporate multi-stage supervision to guide the
representation learning during the pre-training phase. Ex-
tensive experiments on three benchmark datasets show the
superior advantage of our proposed FreMAE over previ-
ous state-of-the-art MIM methods. Compared with various
baselines trained from scratch, our FreMAE could consis-
tently bring considerable improvements to the model perfor-
mance. To the best our knowledge, this is the first attempt
towards MIM with Fourier Transform in medical image seg-
mentation.

1. Introduction
Since Masked Language Modeling (MLM) obtained

great success in the field of Natural Language Processing
(NLP) [18], numerous works [25, 50, 40, 4, 49, 12] have
transferred this idea to the vision domain, making Mask Im-
age Modeling (MIM) an effective pre-training strategy. One
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Figure 1. The comparison of key ideas between MAE frameworks
and our proposed FreMAE. (a) MAE: randomly masks the patch
tokens and reconstruct raw pixels of original image. (b) Our Fre-
MAE: randomly masks the foreground pixels and reconstructs the
Fourier spectrum of original image.

of the most representative approaches is Masked Autoen-
coders (MAE) [25], which pre-trains the model by masking
partial regions within an image and reconstructing them.
After the pre-training, the model is fine-tuned on various
downstream tasks and achieves state-of-the-art (SOTA) per-
formance. Following-up works mainly focus on improv-
ing the accuracy and efficiency by introducing new designs,
such as ConvMAE [23] and Siamese Image Modeling [45].

Aiming to propagate the success of MAE, some recent
works applied MAE-based methods for medical image anal-
ysis [51, 44, 26] and achieved promising results across var-
ious benchmark datasets with different modalities, includ-
ing computed tomography images (CT) [36], magnetic res-
onance imaging (MRI) [27], to name a few. Despite mak-
ing methodological advancements and structural innova-
tions, these methods have not essentially solved the key
limitations of MAE. Although compared with other self-
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Figure 2. The visualization of the whole Fourier spectrum, high-
frequency components, and low-frequency counterparts respec-
tively, the high/low-frequency components of which are acquired
by applying the corresponding high/low-pass filters on the whole
Fourier spectrum. The inspiration for our FreMAE comes from the
observations that local details (like texture and contours) mainly
lie in the high-frequency components while the global and smooth
structural information is rich in the low-frequency counterparts.

supervised learning frameworks MAE can consistently help
the model extract generally useful features even with few
training samples (as proven by [30]), to some extent, MAE
solely takes raw pixels as reconstruction targets mainly de-
pending on local feature representation rather than fully uti-
lizing the global information. Besides, since the model is
expected to possess the ability of extracting features with
multiple semantic levels at different stages, only the output
from the last stage is fed into the decoder for the reconstruc-
tion task, lacking the supervision from other stages to pro-
vide multi-scale information. Furthermore, due to high ac-
quisition costs and patients’ privacy, the training samples of
commonly small-scale medical image datasets are relatively
limited, but none of these previous works have taken this
unique characteristic of medical image datasets into consid-
eration and made tailored designs. In summary, previous
works [25, 4, 48] crucially require a certain trade-off be-
tween the local details and contextual semantics.

Therefore, in order to fully exploit the potential of MAE-
based methods for medical image segmentation under the
circumstance of limited training samples, how to acquire
the global information while preserving the detailed local
features as much as possible has become the key problem.
Considering the nature of Fourier Transform in image pro-
cessing, it might be a possible solution. As studied in lots
of previous works [43, 14, 7, 5, 29] and shown in Fig. 2,
the detailed texture information mainly lies in the high-
frequency components and the low-frequency counterparts
carry rich global information. Following this observation,
an intuitive solution would be creatively exploring the pow-
erful potential of MIM coupled with Fourier Transform.

To this end, aiming at the circumstance of limited train-

ing samples in medical image analysis, we propose a new
MIM-based framework conducted in the Fourier domain,
namely FreMAE, which to our knowledge is the first work
to explore the potential of MIM with Fourier Transform
for 2D medical image segmentation. Specifically, our Fre-
MAE first masks out a portion of randomly selected im-
age pixels and then predicts the corresponding missing fre-
quency spectrum of the input image in the Fourier do-
main. Since medical images of the same organ essentially
correspond to similar features, we conduct difficult cross-
domain reconstruction tasks to avoid model learning with
shortcuts and achieve strong feature representation capa-
bility. Meanwhile, inspired by the previous findings [47]
that the detailed structural information mainly lies in the
high-frequency components and the high-level semantics
are abundant in the low-frequency counterparts, the pro-
posed bilateral aggregation decoder is leveraged to sequen-
tially apply the Fourier Transform on the original image
and low/high-pass filters on the converted Fourier spectrum
to get the expected reconstruction target. Such a multi-
stage supervision approach could better guide the model
pre-training, resulting in better representations for segmen-
tation. Besides, we propose an effective foreground mask-
ing strategy as the alternative to the original random mask-
ing, which is proven to be more suitable for textures and
details modeling for medical image segmentation. In sum-
mary, the main contributions of this work are as follows:
• We present the first study on exploring the powerful po-

tential of masked image modeling with frequency domain
for medical image segmentation. The proposed FreMAE
is a generic self-supervised pre-training framework that
can be integrated with different model architectures (e.g.
both CNNs and Transformers).

• By designing a multi-stage supervision scheme coupled
with a well-designed bilateral decoder, we propose a
new cross-domain mask-reconstruction framework for
masked image modeling.

• A simple yet effective masking strategy among fore-
ground pixels is proposed as a better alternative to the
original random masking pixels strategy, providing more
precise and informative masks for the following self-
supervised representation learning.

• Without introducing extra training samples, extensive ex-
periments on three benchmark datasets and three rep-
resentative 2D baselines prove the superiority of the
proposed FreMAE, outperforming other alternative self-
supervised SOTA approaches.

2. Related Work

2.1. Masked Image Modeling

As a powerful self-supervised learning paradigm, MIM
has attracted increasing interests recently. By reconstruct-
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ing the masked portion of images, models could learn infor-
mative feature representations that are favorable for various
downstream tasks.
On Natural Images. Previous works of reconstruction
targets could be divided into three categories, including
discrete tokens[4, 40], feature maps[48, 50], and raw im-
age pixels[49, 25]. For example, BEiT [4] and BEiTV2
[40] added a classifier to predict masked visual tokens, and
it is supervised by the encoded image patches from of-
fline tokenizer. Inspired by the self-distillation paradigm in
DINO[9], iBOT [50] adopted a teacher-student framework
to perform MIM. The teacher network serves as an online
tokenizer to learn visual semantics from all image patches,
while the student network, only processes visible patches.
Moreover, MaskFeat [48] first explored features as predic-
tion targets. Besides, SimMIM [49] discarded the tokenizer
and patch classification, simply employing RGB values of
raw pixels as predicted targets. Without masked tokens
feeding into encoder, MAE [25] designed a simple decoder
to reconstruct image patches, leading to a considerable re-
duction of computation complexity during pre-training.
On Medical Images. At the same time, various works
[51, 44, 26] have explored the effectiveness of MIM pre-
training on various medical benchmark datasets. Zhou et
al.[51] applied MAE pre-training paradigm for medical im-
age segmentation and significantly improved the results.
Huang et al.[26] proposed a manually settled attentive re-
construction loss that pays more attention to the informative
regions. Tang et al.[44] explored the hierarchical structure
for full extraction of image features and constructed a self-
supervised pre-training framework with three proxy tasks.
However, random masking strategy of patches utilized pre-
viously are rough and may result in computation waste on
the useless background. Considering that informative fore-
ground and useless background are discriminate in medical
images, we design a masking strategy among foreground
pixels to obtain more effective masks, assisting models in
better representation learning. Moreover, our method could
cast off the reliance of the pre-training paradigm on specific
model structures, which is different from previous works
(e.g. Swin Transformer and CNN-based models can not be
directly integrated with MAE).

2.2. Fourier Transform

Recently, a series of research[41, 52, 28] have performed
Fourier Transform on images and leveraged the frequency
information to improve model performance and efficiency.
For example, [41] utilized Fast Fourier Transform (FFT)
as the alternative of self-attention modules in the origi-
nal Transformer, successfully acquiring global information
with low computation costs. [28] designed a novel focal
frequency loss for Fourier spectrum supervision to improve
popular image generative model performance.

Inspired by these previous researches [43, 14, 7, 5, 29],
we randomly mask the original image and reconstruct the
Fourier spectrum in the frequency domain to help the model
learn more generalized global representation. In addi-
tion, multi-stage supervision coupled with leveraged spe-
cific characteristics of FFT (i.e. high-pass and low-pass
frequency components) is also proposed to better guide the
model representation learning among different stages.

3. Methodology
In this section, we first briefly review some key prelimi-

nary knowledge for the ease of understanding our proposed
method. Then, the overall architecture of our FreMAE is
introduced, followed by the detailed elaboration of each
component, i.e. masking strategy, multi-stage supervision
scheme, bilateral aggregation decoder, and reconstruction
target. At last, the specific pre-training strategy is presented.

3.1. Preliminaries: Fourier Transform

Since Discrete Fourier Transform (DFT) plays a vital
role in our proposed methodWe first give a brief review of
the 2D DFT that serves as an indispensable technique for
traditional signal analysis. Given a 2D signal F ∈ RW×H ,
its corresponding 2D-DFT can be defined as:

f(u, v) =

H−1∑
h=0

W−1∑
w=0

F (h,w)e−j2π(
uh
H

+ vw
W ), (1)

where F (h,w) represents the signal located at (h,w) in F,
while the u and v are indices of horizontal and vertical spa-
tial frequencies in Fourier spectrum. Correspondingly, the
2D Inverse DFT (2D-IDFT) is formulated as:

F (h,w) =
1

HW

H−1∑
u=0

W−1∑
v=0

f(u, v)ej2π(
uh
H

+ vw
W ). (2)

Both DFT and IDFT can be accelerated with their fast
version, FFT algorithm [37]. For medical images with var-
ious modalities, the Fourier Transform is operated on each
channel independently. Besides, as already shown in previ-
ous works [43, 14, 7, 5, 29], the detailed structural texture
information of an image mainly lies in the high-frequency
part of the Fourier spectrum while the global information is
rich in the low-frequency counterpart. Fig. 2 presents the
visualization of this intriguing characteristic.

3.2. The Proposed FreMAE

Overall Architecture. An overview of the proposed self-
supervised learning framework FreMAE is presented in Fig.
3. Given an input medical image slice X ∈ RC×H×W
with a spatial resolution of H ×W and C channels (# of
modalities), the proposed foreground masking strategy is
first employed on the original image slice to generate the
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Figure 3. The overall architecture of our proposed FreMAE. At first, the input medical image is corrupted by the foreground masking
strategy and then fed into the encoder, which consists of several stages with a hierarchical structure. The captured feature maps at different
stages (i.e. S1, S2, ... Sn) are fused by a bilateral aggregation decoder to generate the aggregated high-level and low-level feature represen-
tations (i.e. Ahigh and Alow). For the fused feature of each semantic level, an FMB is applied respectively to learn its recessive information
in the frequency domain, resulting in the acquired Plow and Phigh. Finally, the low-pass and high-pass Fourier spectrum are both adopted
as the reconstruction target to better guide the model to capture local details and global information. Note that only the encoder part is
retained after the fine-tuning phase.

masked image. Then, the generic encoder (i.e. according to
different pre-training requirements, both CNNs and Trans-
formers encoder can be integrated into our framework)
takes the masked image as input, capturing the masked vi-
sual features through the hierarchical structure. After that,
the encoded feature representations at different stages are
jointly fed into our well-designed bilateral aggregation de-
coder, gradually producing the reconstructed Fourier spec-
trum with both low-level detail information and high-level
semantic representation. By sequentially applying Fourier
Transform on the original image and low/high-pass filters
on the converted Fourier spectrum to acquire the expected
reconstruction target, the reconstruction loss (e.g. l1 loss) is
applied on the similarity between the reconstructed Fourier
spectrum and expected low/high-pass spectrum target, real-
izing the helpful multi-stage supervision scheme with both
low-level and high-level feature representations in an end-
to-end manner.

Masking Strategy. As experimentally illustrated in sev-
eral previous works[4, 40, 49, 25, 23, 45], random mask-
ing strategy is not only simple but also effective for MIM-
based self-supervised learning paradigm on large-scale nat-
ural images. However, different from natural images, the
distribution of foreground and background pixels in medi-
cal images is extremely unbalanced. So randomly select-
ing spatial positions of a medical image would inevitably
cause the generated mask to mostly cover background pix-
els and too many foreground pixels of the objects are re-
served, counting against the model’s reconstruction ability.
To this end, we propose a simple yet effective foreground
masking strategy to address this uneven distribution issue.

Specifically, given a binary mask M ∈ {0, 1}H×W ini-
tialized with zeros, its value at each spatial position is deter-
mined by whether the corresponding pixel value belongs to

the foreground or not. If a pixel belongs to the foreground
area, it will be filtered as one of the candidates to be masked
during self-supervised pre-training. Since a medical image
commonly consists of diverse channels, each one empha-
sizing a different foreground area, we take the overlapping
parts as the final masked regions. The overall foreground
masking strategy can be defined as:

Mn(x, y) =

{
0, Pn(x, y) = 0
1, Pn(x, y) 6= 0

, (3)

M =M1 ∩M2 ∩M3... ∩Mn, (4)

XM =M�X, (5)

where � is the Hadamard product, Pn(x, y) represents the
specific pixel value of the corresponding position (x, y),
Mn denotes the generated mask of the specific image
modality Mn. M and XM respectively indicate the final
mask of the original image and the masked image that will
be fed into the model for the following reconstruction task.
Generic Eencoder. As for the selection of encoder in
our framework, FreMAE is not restricted to any specific
kind of structure thanks to our pixel-wise foreground mask-
ing strategy. Dislike some previous MIM-based methods
can only be incorporated with various Vision Transform-
ers (e.g. Due to the random masking strategy of embedded
image patches, MAE is only applicable for ViT[19] with-
out the consideration of CNNs or hierarchical Transformer
architecture), our FreMAE is a generic and flexible frame-
work, which means both CNN-based and Transformer-
based models can be easily integrated with our FreMAE for
effective self-supervised pre-training. Taking the aforemen-
tioned masked image as input, the network encoder gradu-
ally encodes the masked image slice with the hierarchical
structure, producing the feature representations with diverse
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levels (i.e. from low-level detail information to high-level
semantics). In this paper, three previous SOTA methods for
medical image segmentation, i.e. the representatives of the
CNN-Transformer hybrid architectures and Vision Trans-
formers, are selected as the backbones to validate the effec-
tiveness of our method (more details are in Sec. 4).
Multi-stage Supervision Scheme. Both low-level details
and high-level global semantics are crucial, especially for
medical image segmentation. The expectation of an effec-
tive self-supervised learning paradigm is to guide the visual
backbone to learn the required feature representations with
different levels through the hierarchical structure. Follow-
ing this intuition, we propose to design a multi-stage super-
vision scheme to fully supervise the representation learning
of hierarchical stages.

As emphasized in Sec. 1, high-level and low-level infor-
mation of an image distribute in different frequency bands
of the Fourier spectrum. So we propose to separately take
advantage of the low-pass and high-pass Fourier spectrum
as the supervision signal (i.e. reconstruction target). One
of the most intuitive ways is to utilize the identical high-pass
Fourier spectrum to directly supervise multiple low-level
stages and vice versa for low-pass counterparts. However,
there are mainly two drawbacks for this intuitive manner.
On the one hand, this manner is kind of unreasonable and it
violates the original intention of model learning at various
low-level stages cause the feature representations learned at
different low-level stages should be naturally different in-
stead of the same. On the other hand, such a supervision
method is too direct and simple, and does not make full use
of the correlation between the captured multi-stage features
by the hierarchical structure to help the model better per-
form the MIM pretext task.

With regard to this, a well-designed bilateral aggrega-
tion decoder is proposed to better solve the reconstruction
task in the frequency domain, further helping the encoder to
learn a more generalized and more meaningful feature rep-
resentation. Specifically, inside the proposed bilateral ag-
gregation decoder, the encoded features at different stages
are converged to the lowest stage (i.e. with maximum spatial
resolution) and the highest stage (i.e. with minimum spatial
resolution) in a bottom-up and top-down manner, respec-
tively. In other words, the bilateral aggregation decoder
separately aggregates the feature maps of different stages
to the lowest and highest resolution. Specifically, for ViT,
the feature maps of layers 4th, 8th, and 12th are upsampled
by 8, 4, and 2 times respectively to be fed to the BAD, fol-
lowing the deconvolution module in UNETR. To be clear,
the captured features of each adjacent stage will be fed into
the convolutional block to achieve the strict alignment of
both spatial resolution and channel dimension, which can
be expressed as:

Alow = Cat(C(S1),Dc(...,Cat(C(Sn−1),Dc(Sn))), (6)

Ahigh = Cat(C(Sn),Dc(...,Cat(C(S2),Dc(S1))), (7)
where Ahigh and Alow separately denote the bilaterally ag-
gregated high-level and low-level feature representations,
C, Dc and Cat indicate the convolutional block, decon-
volution block, and concatenation respectively, Si denotes
the feature maps output by the stage i.

Then, the aggregated feature representations at the low-
est stage and highest stage will be mapped to the frequency
domain through the introduced frequency mapping block
(as illustrated in Fig. 3), which are followed by the low-
pass and high-pass filters to get the corresponding high-pass
and low-pass prediction spectrum for the employed recon-
struction loss. Specifically, the frequency mapping block
(FMB) consists of a 2D-DFT, a Frequency Domain Percep-
tron (FDP), and a 2D-IDFT, which can be calculated as:

Plow = IDFT (W �DFT (Alow) + b), (8)

Phigh = IDFT (W �DFT (Ahigh) + b), (9)
where DFT and IDFT represent the Fast Fourier Trans-
form and Inverse Fast Fourier Transform. W and b are
both learnable parameters, � is the Hadamard product. In
this way, a powerful self-supervised framework for cross-
domain reconstruction is built with the benefit of the Fourier
Transform’s unique characteristics. Although such a cross-
domain reconstruction task is more difficult than intra-
domain reconstruction, it can also assist the model to learn
more robust feature representation, which is fully demon-
strated in the following experimental section.

3.3. Pre-training Strategy

Frequency Loss. To alleviate the weight imbalance be-
tween different frequency bands spectrums and facilitate
the reconstruction of difficult frequency bands, we adopt
focal frequency loss [28] as the loss function Lfreq to imple-
ment gradient updating of weights for both low and high-
frequency mapping, which is defined as:

Lfreq =
1

HW

H−1∑
u=0

W−1∑
v=0

ω(u, v)� γ(f(u, v), f̂(u, v))2,

(10)

where f(u, v) is the predicted 2D-DFT of spatial frequency
coordinate (u, v) while f̂(u, v) denotes its corresponding
Ground Truth value. γ(f, f̂) calculates the squared Eu-
clidean distance between actual and predicted values as
their frequency distance. And ω is the spectrum weight ma-
trix of a given location, which suppresses weights of easy
frequencies. The specific calculation formulas are as fol-
lows:

ω(u, v) = γ(f(u, v), f̂(u, v))β , (11)

γ(f, f̂) =

√
(R− R̃)2 + (I − Ĩ)2, (12)

β is the scaling factor for flexibility (β = 1 in default) .
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Overall Loss. During pre-training, our FreMAE learns
representation by solving content gestalt from both high-
pass and low-pass frequency:

L = Lfreq(FH(Plow),FH(T)) (13)
+αLfreq(FL(Phigh),FL(T)),

where FH and FL represent high-pass and low-pass fre-
quency filter respectively. T indicates the original images.
As shown in Fig. 3, Plow is obtained by highest-stage and
Phigh is the opposite. α is the weight of high-level semantic
information branches (α = 3 in default).

4. Experiments and Results
In this section, focusing on solely exploiting the given

training samples (i.e. without introducing any extra data)
for 2D medical image segmentation, extensive experiments
on three benchmark datasets are conducted to fully verify
the effectiveness of FreMAE.

4.1. Experimental Setup

Data and Evaluation Metrics. Our proposed method is
evaluated on three benchmark datasets for medical seg-
mentation. The Brain Tumor Segmentation 2019 challenge
(BraTS 2019) dataset [34, 2, 3] is composed of multi-
institutional pre-operative MRI sequences, including 335
patient cases for training and 125 cases for validation. Each
sample contains four modalities (FLAIR, T1, T1c, T2) with
the size of 240× 240× 155, and the corresponding ground
truth consists of 4 classes: background (label 0), necrotic
and non-enhancing tumor (label 1), peritumoral edema (la-
bel 2) and GD-enhancing tumor (label 4). The Dice score
and the Hausdorff distance (95%) metrics are used for eval-
uating the segmentation accuracy of different regions, in-
cluding enhancing tumor region (ET, label 4), regions of
the tumor core (TC, labels 1 and 4), and the whole tumor
region (WT, labels 1,2 and 4). The International Skin Imag-
ing Collaboration 2018 (ISIC 2018) dataset [46, 16] is a
collection of 2594 RGB images of skin lesion for train-
ing, around 100 samples for validation, and 1000 samples
for testing. Five metrics are specifically employed for the
quantitative assessment of model performance, including
Dice, Jaccard Index (JI), Accuracy, Recall, and Precision.
The Automated Cardiac Diagnosis Challenge 2017 (ACDC
2017) dataset [6] is collected from different patient cases us-
ing MRI scanners, including 3D cardiac MRI cine for both
end-diastolic (ED) and end-systolic (ES) phases instances.
The publicly available training dataset consists of 100 pa-
tient scans, which are split into 80 training samples and 20
testing samples. The ground truth contains 3 classes: right
ventricle (RV), myocardium (Myo) and left ventricle (LV).
Implementation Details. The proposed method is im-
plemented in PyTorch [39] and trained with two NVIDIA

Geforce RTX 3090 GPUs. The specific training hyper-
parameter configurations of our FreMAE on BraTS 2019,
ISIC 2018 and ACDC 2017 can be found in Table 2, 3, 4
respectively.

4.2. Results and Analysis

Comparison with Previous SSL Frameworks. Based on
five-fold cross-validation on the BraTS 2019 training set,
we perform a fair comparison between our proposed Fre-
MAE and previous self-supervised learning methods on var-
ious baselines including TransBTSV2 [31], UNETR [24],
and Swin UNETR [44], demonstrating the effectiveness and
generalization capability of our FreMAE. For comprehen-
sive comparisons, we select multiple self-supervised learn-
ing methods (i.e., MAE [25], SimMIM [49], DINO [9] and
Swin UNETR [44]), among which MAE and SimMIM have
achieved promising results on natural images, DINO is a
representative contrastive learning method, and Swin UN-
ETR has a pretraining method for medical image analysis.

As presented in Table 1, our FreMAE shows great supe-
riority over all three baselines. Compared to training from
scratch, the Average Dice scores on three baselines are si-
multaneously increased by 1.14%, 1.38%, and 0.98% re-
spectively after pre-trained with our proposed MIM-based
framework. In comparison with MAE on UNETR and
SimMIM on Swin UNETR, our FreMAE greatly improves
model performance (i.e. ↑ 0.52% and ↑ 0.36% on Aver-
age Dice) with the benefit of exploiting MIM in the fre-
quency domain for global representation learning. Since
contrastive learning methods mainly focus on learning high-
level semantics by instance discrimination task, neglect-
ing the fine-grained representation learning results in poor
results for UNETR with DINO pre-training. In contrast,
FreMAE takes advantage of the smooth structure informa-
tion of organs and detailed contours and textures as super-
vision signals, better guiding the model’s high-level and
low-level representation learning. Additionally, the Swin
UNETR pre-training method achieves inferior performance.
We believe the reasonable explanation for this phenomenon
is that the Swin UNETR pre-training method heavily re-
lies on the number of training samples to acquire the use-
ful prior knowledge (i.e. it can not help models to capture
the helpful representations as expected under the circum-
stance of limited pre-training samples). On the contrary,
without introducing any extra samples, our FreMAE can
greatly boost the model performance compared with ran-
dom initialization, which exactly proves the effectiveness
and data-efficient characteristic of our method. In summary,
our FreMAE with the advantages of the frequency domain
is a generic and powerful MIM-based framework, which
could bring consistent improvement in model performance
without introducing extra data.
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Baseline Backbone Pre-train Method Dice Score (%) ↑
ET WT TC Average

TransBTSV2 [31] CNN-Transformer - 77.11 90.32 82.90 83.44
TransBTSV2 [31] CNN-Transformer FreMAE 79.65 (+2.54) 90.80 (+0.48) 83.33 (+0.43) 84.59 (+1.15)

UNETR [24] ViT-B/16 [20] - 75.28 88.42 76.33 80.01
UNETR [24] ViT-B/16 [20] MAE [25] 75.18 (-0.10) 88.95 (+0.53) 78.47 (+2.14) 80.87 (+0.86)
UNETR [24] ViT-B/16 [20] DINO [9] 75.22 (-0.06) 88.33 (-0.09) 75.89 (-0.44) 79.81 (-0.20)
UNETR [24] ViT-B/16 [20] FreMAE 76.50 (+1.22) 88.86 (+0.44) 78.82 (+2.49) 81.39 (+1.38)

Swin UNETR [44] Swin-B [33] - 76.68 89.89 79.98 82.18
Swin UNETR [44] Swin-B [33] SimMIM [49] 77.59 (+0.91) 90.47 (+0.58) 80.34 (+0.36) 82.80 (+0.62)
Swin UNETR [44] Swin-B [33] Swin UNETR [44] 77.85 (+1.17) 89.63 (-0.26) 78.65 (-1.33) 82.04 (-0.14)
Swin UNETR [44] Swin-B [33] FreMAE 78.38 (+1.70) 90.06 (+0.17) 81.05 (+1.07) 83.16 (+0.98)

Table 1. Comparison with previous self-supervised learning frameworks. ‘-’ represents training from scratch. Without introducing any
extra samples, our FreMAE can consistently boost the model performance by a large margin compared with randomly initialized baselines.

Config Pre-training Fine-tuning
optimizer Adam Adam

base learning rate 10−4 10−4

weight decay 10−5 10−5

batch size 64 64
lr decay schedule cosine decay cosine decay
training epochs 250 500

Table 2. Training settings on BraTS 2019 dataset.

Config Pre-training Fine-tuning
optimizer SGD SGD

base learning rate 10−3 5× 10−4

weight decay 10−8 10−8

batch size 12 12
lr decay schedule poly poly
training epochs 125 300

Table 3. Training settings on ISIC 2018 dataset.

Config Pre-training Fine-tuning
optimizer SGD SGD

base learning rate 10−2 10−2

weight decay 10−4 10−4

batch size 16 16
lr decay schedule poly poly
training epochs 300 1200

Table 4. Training settings on ACDC 2017 dataset.

Evaluation on Brain Tumor Segmentation. Compara-
tive experiments are also conducted on BraTS 2019 valida-
tion set. As shown in Table 5 (a), our FreMAE achieves
superior performance than previous methods with the Dice
scores of 79.74%, 90.23%, and 81.25% on ET, WT, and TC
respectively. In addition, it is notable that our method real-
izes a considerable decrease of Hausdorff distance on TC,
reaching 6.934mm. These quantitative results are powerful
evidence of the availability and effectiveness of using our
method on MRI benchmarks.
Evaluation on Skin Lesion Segmentation. We also ver-
ified the generality of FreMAE on RGB images dataset
namely ISIC 2018 compared with the other seven well-

(a) BraTS 2019

Method Dice Score (%) ↑ Hausdorff Dist. (mm) ↓
ET WT TC ET WT TC

3D U-Net [15] 70.86 87.38 72.48 5.062 9.432 8.719
V-Net [35] 73.89 88.73 76.56 6.131 6.256 8.705

Attention U-Net [38] 75.96 88.81 77.20 5.202 7.756 8.258
Chen et al. [13] 74.16 90.26 79.25 4.575 4.378 7.954

Li et al. [32] 77.10 88.60 81.30 6.033 6.232 7.409
Frey et al. [22] 78.70 89.60 80.00 6.005 8.171 8.241
TransUNet [10] 78.17 89.48 78.91 4.832 6.667 7.365
Swin-UNet [8] 78.49 89.38 78.75 6.925 7.505 9.260

TransBTSV2 [31] 78.63 90.09 80.23 3.729 6.194 7.725
TransBTSV2 79.74 90.23 81.25 3.209 5.875 6.934

+FreMAE +1.11 +0.14 +1.02 -0.520 -0.319 -0.791

(b) ISIC 2018
Method JI Dice Accuracy Recall Precision

U-Net [42] 81.69 88.81 95.68 88.58 91.31
U-Net++ [53] 81.87 88.93 95.68 89.10 90.98
AttU-Net [38] 81.99 89.03 95.77 88.98 91.26

DeepLabv3+ [11] 82.32 89.26 95.87 89.74 90.87
CPF-Net [21] 82.92 89.63 96.02 90.62 90.71
BCDU-Net [1] 80.84 88.33 95.48 89.12 89.68
Ms RED [17] 83.45 89.99 96.19 90.49 91.47

TransBTSV2 [31] 81.96 92.56 95.88 90.21 90.78
TransBTSV2 83.53 93.39 96.44 90.18 92.61

+FreMAE +1.57 +0.83 +0.56 -0.03 +1.83

(c) ACDC 2017
Method RV Myo LV Average

U-Net [42] 86.91 87.17 90.65 88.25
AttU-Net [38] 86.78 86.93 91.84 88.52
Swin-UNet [8] 86.62 88.72 92.44 89.26
TransUNet [10] 87.04 88.51 92.85 89.47

TransBTSV2 [31] 86.80 87.76 91.87 88.81
TransBTSV2 [31] 87.12 88.87 92.69 89.56

+FreMAE +0.32 +1.11 +0.82 +0.75
Table 5. Performance comparisons on BraTS 2019, ISIC 2018 and
ACDC 2017 datasets.

performed algorithms. It could be seen from Table 5 (b)
that, with the informative feature representations obtained
from pre-training stages, our method could reach great
performance on ISIC 2018 the five-fold cross-validation.
Specifically, compared with previous SOTA methods, our
results are higher on both JI, Dice, Accuracy, and Precision
metrics. It is worth noting that our method promotes 1.57%
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and 1.83% on Dice score and Precision compared to train-
ing from scratch, demonstrating that FreMAE also presents
strong capability on skin lesion segmentation.

Evaluation on Cardiac sSegmentation. To evaluate the
generalization ability of our proposed FreMAE, we also
conduct experiments of cardiac segmentation on MRI scans
utilizing the ACDC 2017 dataset [6]. Since the official
evaluation is supported by the online evaluation platform,
the five-fold cross-validation is performed on ACDC 2017
training set. The quantitative results on ACDC 2017 train-
ing set are presented in Table 5 (c). It is obvious that with
boosted model performance in comparison with baseline,
our framework once again achieves comparable or even
higher Dice scores than previous SOTA methods.

5. Visual Comparison for Qualitative Analysis
Segmentation Results. Firstly, the skin lesion segmen-

tation results on ISIC 2018 dataset is presented in Fig. 4.
It can be obviously seen that the model can generate much
more accurate and fine-grained segmentation masks com-
pared with baseline with the benefit of employing our pro-
posed FreMAE. Simultaneously, we compare the segmen-
tation performance of different self-supervised methods, in-
cluding MAE, DINO, and FreMAE on the BraTS 2019
dataset with visualization results. As shown in Fig. 5, our
method promotes the detailed pixel delineation of brain tu-
mors and obtains more accurate predictions.

Reconstruction Results. To convincingly prove the su-
periority of our FreMAE, we further supplement more vi-
sual comparison of reconstruction results on BraTS 2019
dataset for qualitative analysis. As is shown in Fig. 6,
our method can nicely achieve the reconstruction task of
Fourier spectrum and generate the corresponding recon-
struction spectrum approximately the same as original im-
age. To be mentioned, for each image slice, the first row is
the original image and the second row is our reconstruction
results of the Fourier spectrum.

5.1. Ablation Studies

We conduct extensive ablation experiments to prove the
effectiveness of our FreMAE and validate its design ratio-
nale based on five-fold cross-validation on the BraTS 2019
training set, while TransBTSV2[31] is selected as our base-
line for ablation studies.

Reconstruction Target and Supervision Scheme.
Firstly, we explore the effect of different types of re-
construction targets and verify the effectiveness of our
introduced multi-stage supervision scheme. The quantita-
tive results are presented in Table 6. In comparison with
random initialization in the first row, introducing either
high-pass Fourier spectrum or low-pass counterpart as the

low-level target high-level target Dice Score (%) ↑
ET WT TC Average

- - 77.11 90.32 82.90 83.44
high-pass - 77.82 90.60 83.60 84.01(+0.57)

- low-pass 77.44 90.12 82.89 83.48(+0.04)

original image original image 79.33 90.23 81.95 83.83(+0.39)
all frequency all frequency 79.12 90.80 82.58 84.17(+0.73)

low-pass high-pass 79.01 90.41 83.00 84.14(+0.70)
high-pass low-pass 79.65 90.80 83.33 84.59(+1.15)

Table 6. Ablation study on the reconstruction target and supervi-
sion scheme.

Masking strategy Dice Score (%) ↑
ET WT TC Average

baseline 77.11 90.32 82.90 83.44
random mask 79.07 90.64 83.19 84.30(+0.86)

block wise mask 79.03 90.00 82.11 83.71(+0.27)
foreground mask 79.65 90.80 83.33 84.59(+1.15)

Table 7. Ablation study on the masking strategy.

reconstruction target at the corresponding low-level or high-
level stage both lead to better segmentation performance
to some extent. On the basis of this kind of single-level
supervision manner, we further explore the effectiveness
of a multi-level supervision scheme. As can be clearly
seen in Table 6 below the dividing line, simultaneously
taking advantage of high-pass and low-pass frequency
components, that carry abundant local details and global
structural information, results in the best segmentation
accuracy with the highest Average Dice Score of 84.59%,
fully demonstrating the powerful potential and rationale de-
sign of our FreMAE. No matter whether the reconstruction
target is adjusted to the original image, the whole Fourier
spectrum, or exchanged low/high-level target, it will all
lead to a considerable decrease in model performance,
which once again proves the strong theoretical rationale of
exploiting FFT with the proposed FreMAE.

Masking Strategy. Then we investigate the influence of
different masking strategies to prove the effectiveness of
the proposed foreground masking strategy. Table 7 shows
the performance comparison of our FreMAE with differ-
ent masking strategies. It can be clearly seen in Table
7 that the original random masking leads to an accuracy
increase ↑0.86% on Average Dice score from 83.44% to
84.30%, which is really promising. However, by replac-
ing the vanilla random masking with our simple yet pow-
erful foreground masking strategy, the model performance
on segmentation tasks can be further boosted by a consider-
able margin, which shows the great superiority of selecting
masked pixel candidates solely among foreground over con-
ventional masking strategy.

Masking Ratio. After investigating the influence of vari-
ous masking strategies, we further conduct experiments to
seek the optimal masking ratio for our current framework.
As presented in Table 8, our FreMAE with a masking ra-
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Image Ground Truth Baseline Ours

Figure 4. The visual comparison of skin lesion segmentation results on ISIC 2018 dataset with TransBTSV2 as the baseline.

Baseline DINO MAE Ours GT

Figure 5. The visual comparison of MRI brain tumor segmentation results with UNETR as baseline. The blue regions denote the enhancing
tumors, the red regions denote the non-enhancing tumors and the green ones denote the peritumoral edema.
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Figure 6. The visualization of reconstruction results by our FreMAE in the frequency domain.

Masking Ratio Dice Score (%) ↑
ET WT TC Average

baseline 77.11 90.32 82.90 83.44
0.75 78.99 90.42 83.03 84.15(+0.71)
0.50 79.19 90.80 83.18 84.39(+0.95)
0.25 79.65 90.80 83.33 84.59(+1.15)
0.15 79.37 90.23 82.88 84.16(+0.72)

0.15, 0.20, 0.25 78.99 90.63 83.33 84.32(+0.88)
0.25, 0.50, 0.75 79.23 90.62 82.88 84.24(+0.80)

Table 8. Ablation study on the masking ratio.

tio of 0.25 achieves the best model performance. Once
the masking ratio is either too low or too high, the recon-
struction task in the frequency domain would be too easy
or too hard, which may hinder the model from expected
representation learning during self-supervised pre-training.
Besides, trying to take a step further, we also attempt to
introduce a novel dynamic masking strategy (i.e. the mask-
ing ratio gradually increases from the lowest to the highest
during pre-training) for better guidance of the expected fea-
ture representation learning, which endows the SSL with
easiest-to-hardest reconstruction level. However, none of
these attempts bring further accuracy improvements. Thus,
the static masking strategy with masking ratio of 0.25 is se-

lected as our default setting.

Training samples Dice Score (%) ↑
ET WT TC Average

baseline 77.11 90.32 82.90 83.44
0.3%(i.e. 1 sample) 79.05 90.60 82.51 84.05(+0.61)

10% 79.06 90.41 83.43 84.30(+0.86)
100% 79.65 90.80 83.33 84.59(+1.15)

Table 9. Ablation study on the number of samples for self-
supervised pre-training.

Number of Pre-training Samples. Specifically, we fur-
ther investigate the effect of different percentages of train-
ing samples used for our proposed FreMAE. The quantita-
tive results are presented in Table 9. It is clear in Table 9
that the model performance is consistently improved with
more and more employed training samples for the proposed
FreMAE. Besides, it is also surprising that by solely intro-
ducing 1 sample for pre-training our FreMAE can boost the
model performance by a large margin (i.e. ↑ 0.61% on Av-
erage Dice score) compared with the randomly initialized
baseline, demonstrating that our method is a data-efficient
self-supervised learning paradigm.
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6. Conclusion

In this paper, we presented the first study on exploring
the powerful potential of MIM with frequency domain on
pre-training deep learning models for medical image seg-
mentation tasks. We focus on 2D medical image segmen-
tation and propose a new framework FreMAE taking ad-
vantage of both the rich global information and local de-
tails in the Fourier spectrum. Deviating from the conven-
tional paradigm as previous MIM methods, realizing recon-
struction in the frequency domain empowers the frak with
stronger representation learning capability. Besides, by
fully exploiting the specific characteristics contained in dif-
ferent frequency bands, the multi-stage supervision scheme
can greatly boost the segmentation performance. Compre-
hensive experiments on three benchmark datasets quantita-
tively and qualitatively demonstrate that our FreMAE sig-
nificantly improves the segmentation performance of base-
lines trained from scratch and shows great superiority over
previous self-supervised SOTA approaches.
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