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This paper presents the angle of the shoulder joint as basic research for developing a machine 

interface using EEG. The raw EEG voltage signals and power density spectrum of the voltage 

value were used as the learning feature. Hebbian learning was used on a multilayer perceptron 

network for pattern classification for the estimation of joint angles 0o, 90o and 180o of the 

shoulder joint. Experimental results showed that it was possible to correctly classify up to 63.3% 

of motion using voltage values of the raw EEG signal with the neural network. Further, with 

selected electrodes and power density spectrum features, accuracy rose to 93.3% with more 

stable motion estimation. 
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INTRODUCTION 

In the recent past, Japan and indeed the world, have witnessed a 

declining birthrate and aging of their population. This has caused 

an increase in the number of older adults in the country. In such 

a social situation, the burden on social welfare for the aged and 

the ill is heightened. It is highly desired to reduce the load on the 

caregiver by developing systems that support the independence 

of the care recipients. This system promotes the independence of 

the individuals and thereby improves the quality of life.  

 

Devices that seek to increase, maintain and or improve the 

functional capability of the user are considered assistive 

technologies. In cases of disability or senility, the range of 

equipment’s range from special communication devices, mobility 

devices like wheelchairs, hearing aids, control interfaces amongst 

others. Focusing on controlled devices, control schemes vary with 

different methodologies utilized in various research undertakings. 

Modalities like joystick control, input buttons, bio-signals, 

gesture recognition amongst others have been used.   

In this research, the primary control mechanism has been on bio-

signals owing to its ease of recording from different human body 

aspects. Among the biological signals, the approach using 

electroencephalography (EEG), electrooculography (EOG) and 

electromyography (EMG) methods are employed since they are 

less invasive with a considerable cost-effective measurement 

system. 

 

EMG has been used by different authors in applications like 

ergonomics, prosthesis, robot controls, smart homes, muscle 

rehabilitation amongst others [1]–[4]. Similarly, EOG research 

targeting areas like robot control, human-machine interface, 

game control schemes, affective computing amongst others have 

been developed. EEG has found usage in locked-in patients who 

have lost motor control. Authors [5] and [6] used EEG to 

communicate with patients using speller tasks. Other brain-

computer interfaces have been applied in varying fields [7]. 

Commercially, Research Laboratories have been developing a 

system that operate equipment using EEG signal, for example, 

moving electric beds and wheelchairs by measuring subtle 

changes in blood flow in the brain and sends the signal to 

electronic devices via a network [8], [9]. The Army Combat 

Capabilities Development Command’s Army Research 

Laboratory has also shown interest in the usage of EEG towards 

cognition and ergonomics of military operations [10], [11]. 

Through this and other endeavors, a man-machine interface that 

uses a biomedical signal as an input is being actively developed. 

http://ajeeet.ft.unand.ac.id/
http://jnte.ft.unand.ac.id/
http://jnte.ft.unand.ac.id/
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This research is focused on the EEG, which is said to be the 

highest order among biological signals to estimate the state of 

human shoulder movements. In other EEG studies, neural 

networks may be used for mental task classification and epileptic 

wave detection, but in this study, they are used for motion 

estimation. EEG contains a lot of information and is useful for the 

communication of elderly people and people with physical 

disabilities who place importance on intuition and low burden. 

Moreover, since the brain is the center of the nervous system, its 

function is likely to be maintained even in diverse age and illness-

related complications. As such, there are many cases where EEG 

can be used even if the person becomes paralyzed or suffer from 

a stroke. 

 

To record EEG, the setup involved the measurement of the 

surface potential of 14 lead-out sites on the scalp. The proposed 

system captures EEG signals emanating from arm motion to 

estimate shoulder movements using a neural network. As a 

preprocessing of the estimation, Fourier transformation is 

performed to make the characteristics of the EEG signal of each 

motion more conspicuous, considering changes in the physical 

condition of the subject and the measurement environment. The 

performance is experimentally evaluated using test subjects with 

a custom-built robot for visual feedback. Additionally, optimal 

electrode position is investigated to improve the accuracy of the 

proposal. 

 

The rest of the document is organized as follows; Section 2 

describes the methods applied where, EEG system setup, Fourier 

transformation and its usage in EEG feature extraction, as well as 

neural network training schemes, are described. In section 3, the 

results of the experiment are reported. In the section, motion 

estimation results and discussion are given for varying 

experimental settings. The paper ends with a conclusion that 

summarizes the findings and outlines the challenges and 

recommendations for further work.  

 

METHODOLOGY 

Electroencephalography (EEG) measurement 

In literature, the brain is subdivided into four major lobes, Frontal, 

Parietal, Occipital, and Temporal lobes, which are tied to 

different bodily functions. The frontal lobe is generally mandated 

with higher executive functions including emotional regulation, 

planning, and problem-solving. Additionally, the region contains 

the primary motor cortex, the major region responsible for the 

voluntary movement of different body parts. The parietal lobe is 

largely responsible for integrating somatosensory information 

(touch, temperature, pain etc.). It also plays a part in coordinating 

hand-eye motions. The Temporal lobe on the other hand contains 

regions dedicated to processing the sensory information (hearing, 

recognizing language, etc.). Some regions of the temporal lobe 

also assist in making sense of complex visual information (in face 

recognition and scenes for example). Finally, the occipital lobe is 

considered the major visual processing centre of the brain. 

Located at the back portion of the brain, its role is interpreting 

visual stimuli and information. By recording brain activity, it is 

possible to discriminate which action the brain is executing. One 

such approach is the use of electroencephalography to record 

brain waves.  

 

The electrical activity emanating from the spontaneous potential 

of the brain is referred to as EEG, a short form of 

Electroencephalogram. It is mainly recorded by electrodes placed 

on the scalp, sphenoid floor, eardrum, surface of the brain, deep 

brain, etc. Since EEG signals contain all physiological signals, 

albeit, at millivolt level at best, there is a possibility that complex 

motion can be identified with careful signal processing and 

analysis.  

 

In this research, we used Kansei Spectrum Analysis System to 

investigate the waveform of EEG. EEG signal was recorded 

during arm motion, and the raw EEG is passed through Fourier 

transform for feature extraction. The extracted features were then 

fed to the multilayer perceptron (MLP) for classification. This is 

as shown in Fig. 1. 

 

Fig. 2 shows the measurement equipment used and the electrode 

position configurations for data acquisition. Fig. 2(a) is the 

processor box for hardware digital filter processing, it processes 

EEG and provides a link to the PC for data import. Analog/Digital 

(A/D) conversion and amplification were performed on the raw 

signal by the EEG acquisition unit shown in Fig. 2(b). This device 

has 14 input channels and outputs the converted signal to the 

processing unit. For measurement, the electrodes were mounted 

at 14 locations as shown in Fig. 2(c) based on the international 

standard 10-20 method. All measurement methods were based on 

the right earlobe reference electrode lead. For repeatable 

positioning, the head cap is shown in Fig. 2(d) was used. The 

electrodes in use were dry leads, paste-less electrodes in the 

helmet.  Table 1. below list the 14 EEG signals. The position for 

each electrode is represented as a combination of letters and 

numbers. The letter, in this case, represents the particular lobe i.e. 

Fp, Prefrontal lobe; F, Frontal lobe; T, Temporal lobe; C, Central 

lobe, P, Parietal lobe, and O, Occipital lobe. The numbers 

represent the skulls hemispherical location:  Z, denotes the 

cerebral midline, even numbers represent the right hemisphere 

while odd numbers represent the left hemisphere. 

 

 

 
Figure. 1. Schematic Flow of the Proposal 
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Signal Processor Box 

 

 
EEG Acquisition Box 

 

 
Electrode Placement 

 

 
EEG Helmet 

 

Figure 2. Data Acquisition Equipment and Electrode Connection 

 

Table 1.  Part Name and Anatomic Loci of Electrodes 

Electrode 

symbol 
Part name 

Anatomical 

location 

Fp1, Fp2 Pre-Frontal 

cortex/Frontal Polar 

Frontal lobe 

F3, F4 Frontal left/right Frontal lobe (Motor 

area) 

C3, C4 Central Central groove 

P3, P4 Parietal left/right Parietal region 

(Somatosensory 

area) 

O1, O2 Occipital Occipital Lobe 

(Visual cortex) 

F7, F8 Frontal Lower forehead 

T3, T4 Mid-Temporal Middle temporal 

lobe 

T5, T6 Posterior-Temporal Temporal lobe 

A1, A2 Earlobe (Auricular) Ear 

Fz Midline Frontal . 

Cz Midline center 

(Vertex) 

 

Pz Midline Parietal  

 

Experimental setup 

The experiment was conducted with test subjects seated 

comfortably in a chair with minimal movement to avoid motion 

artifacts. A baseline EEG was recorded with a rested arm, denoted 

in this article as the zero degrees (0o-0o), for 5 seconds. After a 

rest period of about 5 seconds to allow for saving the raw EEG 

file, the user proceeded with arm motion. The first motion 

involved performing a front raise, hold for a second before 

bringing it down. This is referred to as 0o-90° in this paper. The 

last motion was raising a hand to the highest possible position, 

holding and finally lowering. This is referred to as 0o-180° in the 

remaining part of the paper. In total, the experiment recorded 

EEG when the user performs three actions of the shoulder joint 

angle of the left arm; zero degrees (0°), zero degrees to ninety 

degrees (0°- 90°), and zero degrees to one hundred and eighty 

degrees (0° - 180°). The operation was repeated 10 times for each 

action, each lasting 5 seconds. Fig. 3 illustrates the experimental 

setup of the EEG based arm motion angle estimation. 

 

 
 

Figure 3. The Proposed System with Robot Control for Visual 

Feedback 
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MOTION ESTIMATION 

The target of the research is motion estimation of the shoulder 

joint from the EEG signal. To this end, the raw EEG signal was 

passed through a preprocessing step for feature extraction. 

Several feature selection methods have been proposed in the 

literature; wavelet transforms, eigenvectors, time-frequency 

distributions, autoregressive models to name a few[12]–[14]. In 

this research, the two methods of feature extraction are 

investigated, one involving the raw EEG data and the other 

involving Fourier transformed EEG data. In Fourier transform 

feature extraction, the characteristics of the raw EEG signal to be 

analyzed is derived from power spectral density (PSD) estimation. 

This conversion was necessary to selectively represent the EEG 

sampled signal as well as reduce data dimensions [15], [16].  

Power spectral density 

When analyzing signal waveforms such as brain waves observed 

from the scalp due to the activity of many cells, it is often 

effective to evaluate the signal waveforms separately for each 

frequency component. This way, the signal was discretized at 

fixed time intervals (∆t). This is the so-called time discretization 

with sampling time, ∆t. Which is also expressed as 1/∆t, the 

sampling frequency. 

 

After the discrete Fourier transform of the time series signal 

x(n∆t) captured as a digital signal through the A/D converter to 

obtain X(n∆f), the power spectrum S(n∆f ) is calculated from the 

expected value of the square of the amplitude for each frequency. 

When 1/T ≡ ∆f, the frequencies are discrete, i.e. ∆f, 2∆f, … The 

discrete Fourier transform of x(m∆t) is given by eq (1).  

 

( ) ( ) 2

0

T
t

n fm t

m

X n f t x m t e 


 

=

 =    (1) 

 

X(n∆f) is a complex quantity, but the absolute value of the 

complex number is the sum of the squared value of the real part 

and the squared value of the imaginary part and is expressed as 

eq (2).  

 

( ) ( )( )( ) ( )( )( )
2 22

X n f Re X n f Im X n f =  +    (2) 

 

Therefore, the power spectral density S(n∆f) is defined by eq (3) 

as shown. 

 

( ) ( )
21

S n f X n f
T

 =   (3) 

 

Here  ⟨|𝑋(𝑛𝛥𝑓)|2⟩ represents the average over several time series 

of length T. S(n∆f ) is the density of the power spectrum. The 

reason for the density is that when the sum is added from f=n∆f 

to m∆f, it becomes the root mean square of the signals in that 

frequency range. The calculated power spectral density is fed to 

the neural network for training.  

Multilayer perceptron 

In analyzing EEG signals, artificial neural network models with 

different architectures have been employed in the literature. 

Support vector machines, radial basis function, adaptive neural-

fuzzy, recurrent neural network, among others have been 

proposed with different amounts of processing time as well as 

accuracy [17]–[19]. In the paper, multilayer perceptron (MLP) 

architecture was applied as the neural network of choice. 

 

A perceptron is a linear binary classifier used in supervised 

learning used to classify a given input data. It comprises of an 

input, weight, threshold, summer, and an activation function. A 

perceptron is a machine that outputs 1 when the input is a pattern 

P+ which exceeds the threshold and 0 when the input is a pattern 

P- which is less than the threshold. Alternatively, considering that 

there is only one output unit, the perceptron can be said to be a 

machine that divides the pattern appearing in the input layer into 

1 and 0. Considering Fig. 4(a), the summed input to the unit uj  is 

expressed as 

 

i j j j

j

u w x h= −  (4) 

 

Where wj correspond to the interconnection weight between j-th 

input and the neuron, xi is the input pattern and hj is the threshold. 

This way, feedforward pass is achieved.  The output yi is derived 

as shown in eq (5) by squashing the net input uj using the 

Heaviside step function. The output value is converted into an 

output of 1 if the activation value is greater than or equal to the 

threshold, otherwise it is 0 as shown parametrically in equation 5.  

 

( )
1 if 0

0   otherwise

i

i i

u
y H u


= = 



 (5) 

 

The pictorial representation of the perceptron is as shown in Fig 

4(a). 

 
(a) Perceptron 

 
(b) Multilayer perceptron 

Figure 4. Schematic View of the Perceptron 

Multilayer perceptron derives its name from having a layered 

hierarchical network model comprising of a fully connected 

perceptron. Proposed by Rosenblatt in 1958, the perceptron is a 

model that uses the Hebbian learning rule using MacCullock-Pitts 

formal neurons and can acquire simple cognitive ability. In this 
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paper, a 3-layer NN was applied as shown in Fig. 4(b) having 

sensory layer(S), associative layer(A), and response layer(R). In 

other notation, the layers are described as the input layer, hidden 

layer, and output layer.  

 

In this work, fixed connections were employed between the input 

nodes and the hidden units whereas interconnection weights were 

used between the hidden units and the output neurons.  

Perceptron learning 

Training multilayer perceptron is different from other multilayer 

architectures where techniques such as backpropagation are 

employed. Primarily, perceptron learning is expressed as a 

change in the weights from the hidden layer (association layer) to 

the output layer, whereas the weights from the input layer to the 

hidden layer are not considered.  

 

The Hebbian learning algorithm is used where learning of the 

perceptron is expressed as a change in the coupling 

coefficient(weights) from the association layer to the reaction 

layer. During training, various input patterns are supplied as a 

teaching pattern in a supervised learning model. As these patterns 

are being propagated forward, the error arising from the 

difference between the output of any node i and the target value 

multiplied by the input to the neuron is proportional to the change 

required to make the pre-synapse and the post-synapse signals 

equal. Equation (6) shows the general learning rule (delta rule) of 

the MLP. In the expression, 𝜂 is the learning rate, 𝛿𝑖 difference 

between the output of node 𝑖 and the actual training value (i.e. 

error) while 𝑥𝑗 is the input signal for the corresponding weight. It 

has enhanced the speed of convergence in that updating of the 

Hebbian synapse occurs at the same time as the occurrence of the 

difference between the presynaptic signal and the target value.  

 

ij i jw x =  (6) 

 

Considering a training pattern 𝑐 , with a corresponding input 

training signal 𝑡𝑐, the update formula of the weights for training 

can be expressed as in equation 7. 
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In vector form, the expression can be converted to a recurrence 

formula as in (8).  
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Where w(n) is (w1, w2, ..., wN) are the weight at the end of the n_th 

learning. 

CLASSIFICATION OF PATTERNS USING MLP 

Consider, an MLP network having two inputs and one output. The 

input to the networks is two sets of patterns P+ and P-. Such a 

network can be represented by a two-dimensional plane which is 

sometimes called the input space. Learning in a two-dimensional 

space involves finding the discriminant line that divides the space 

into subspaces occupied by the different patterns as shown in Fig. 

5 below. 

 

 
Figure 5. Input and the Distinction Straight Line of the 

Perceptron 

 

Further, with the threshold assumed to be equal to zero, i.e. that 

the straight line that divides the two patterns into groups passes 

through the origin. The forward pass of the network will yield  

 

0 1 1 2 2

0 1 1 2 2

1 if      0

0 if      0

w w x w x

w w x w x

+ + 

+ + 
 

 

With x = [𝑥1,  𝑥2] is the input vector and the vector w = [𝑤1,  𝑤2] 

is the interconnection weight vector, the decision equations above 

are synonymous to determining whether the dot product of vector 

w and x, i.e. 𝒘 ∙ 𝒙  is positive or negative. The dot product of the 

two vectors can also be expressed as 

 

1 1 2 2 cosw x w x w x w x  = + =  (9) 

 

Where the angle 𝜃 is the angle between the two vectors and can 

be expressed as. 

 

cos
w x

w x



=  (10) 

 

The sign of the left-hand side of equation 7 depends on angle 𝜃. 

The range in which 𝜃  is positive is between −π/2< 𝜃  <π/2 in 

radians.  All the vectors in the shaded area in Fig 6 are normal to 

the weight vector and this line distinguishes between the groups, 

each having a different sense(sign) of the coupling elements of 

the elements. Within this range, for example, the dot product is 

positive, otherwise, the product will be negative.  

 

 
Figure 6. Learning Space and the Weight Vector 
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Graphically, consider three inputs x1, x2, and x3 in P+ and a 

randomly initialized weight vector w0 as shown in Fig. 7(a).  The 

boundary is the line perpendicular to the weight vector (shown in 

blue). From the figure, vector x1 is incorrectly classified. In the 

next learning iteration, the new weighting vector is w1 = w0+x1. 

This is accompanied by a new boundary that classifies x3 

incorrectly as shown in Fig. 7(b). The next learning cycle aims to 

adjust the weight vector and thereby the boundary to have w3 in 

the correct subset. This is shown in Fig. 7(c) and is followed by 

vector x1 on the wrong side. In the final cycle shown in Fig. 7(d), 

w3 = w2+x1 changes the boundary such all the vectors are on the 

same side of the boundary which marks the end of the training. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 7. Graphical Representation of Perceptron Learning; (a) 

Initial Configuration, (b) Learning with x1, (c) Learning with x3, 

and (d) Learning with x1 

EXPERIMENTAL RESULTS AND DISCUSSION 

Recorded raw EEG 

Fig. 8(a) shows raw EEG data measured on a subject with the arm 

at rest or 0°- 0° movement for 14 channels labelled as Fp1, Fp2, 

F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, and T4 (see Fig 2c 

and Table 1) for 5 seconds. From the figure, there are weak 

signals in all the channels corresponding to other brain activities. 

The signals are uniform owing to the inactive state of the subject. 

 

 
(a) 

 

 
(b) 

 

Figure 8. Results of EEG with the Left arm motion; (a) Zero 

degree (rested) arm motion, and (b) 0°- 90° arm motion 

 

Fig. 8(b) shows EEG of arm motion for a 0°- 90° state. Unlike in 

Fig 5a which had a uniform signal throughout the experiment 

period, the signal amplitude increased and a change in the 

frequency distribution after 2 seconds into the experiment can be 

observed which are attributed to the brain activity resulting from 

the motion.   

 

Fig. 9 shows the results of the 0°-180° arm movement. The 

resulting signals can be observed to be stronger than those 

generated by the 0o-90o arm motion. Similar to signals generated 

by the 0o-90o, these signals appear to have a random distribution 

relative to those obtained by the 0o-0o. 
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Figure 9. EEG of Left Arm Motion with 180-Degree (0°-180°-

0°) Arm Motion. 

 

From the results, the waveforms hardly changed for the 0°-0°. 

When arm motion was initiated, there is a significant increase in 

power for all the channels. Further, it was confirmed that the total 

potential for 0°-180° was larger than 0°-90°). From literature, the 

area in the brain occupied by shoulder movements is narrow, with 

motor effects appearing in a narrow range at the parietal region 

centering on the electrode positions of C3, C4, F3, F4, P3, and 

P4[20]–[22]. However, during the experiment, electrodes other 

than the frontal and parietal regions often showed significant 

changes as well. This is attributed to other brain functions 

associated with motion like motion coordination and visual 

feedback. As mentioned in section 2 above, the occipital region 

of the brain is critical in visual information processing. As the 

experiment is conducted, visual feedback as well as hand-eye 

coordination is required, soliciting EEG from at least all other 

brain regions.  

 

The location of the action potential at 0°-90° and 0°-180° may 

change each time since EEG is stochastic in nature. The next 

subsection addresses this challenge by utilizing a machine 

learning model to predict motion.  

Motion estimation 

In motion estimation, the focus is on pattern recognition to 

discriminate active arm motion to overcome the problem of the 

stochastic nature of EEG in determining action potential locations. 

All 14 electrodes were used for learning and the performance was 

compared with and without feature extraction. At this time, a 

neural network was used as a pattern recognition method for 

discrimination. Additionally, optimal channels with clear 

discrimination were evaluated to reduce the number of channels 

needed.  

Angle estimation with raw EEG signal 

In this experiment, the raw EEG signal from the 14 electrodes was 

used for discrimination. For comparison and performance 

analysis, different neural network configurations were evaluated 

for optimal architecture. The number of input neurons was varied 

from 10 to 600 and the hidden neurons varied from 5 to 50 with 

each trial being repeated 10 times.  

 

Fig. 10 below shows the response with 5 hidden neurons for a 

varying number of input neurons. 

 

 
Figure 10. Performance with 5 Five Hidden Neurons 

 
Figure 11. Performance with 10 Hidden Neurons 

 
Figure 12. Performance with 50 Hidden Neurons 

 

From Figures 10, 11, and 12, the use of 42 input neurons was 

found to have the best discrimination for the three motions. With 

42 neurons in the input layer, the number of neurons in the hidden 

layer was varied to explore the optimal number of hidden neurons 

for the discrimination of the three motions. 
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Figure 13. Performance of Discrimination with a Variable 

Number of Hidden Layers 

 

Fig. 13 shows the performance of the network with 42 input 

neurons and a varying number of hidden neurons. From the 

results, it can be observed that the best performance, with better 

consistency, resulted with 3 hidden neurons with 70%, 60% and 

50% for 0°-0°, 0°-90° and 0°-180° motion which average to 60% 

accuracy for the entire motion range.  

Angle estimation with Fast Fourier Transform feature 

extraction 

To obtain more prominent features for each motion, FFT of the 

raw EEG signal was performed before training. Fig. 14 below 

shows an example of the FFT of the Fp1 EEG signal for 0o-90o 

and 0o-180o motions. From the figure, it can be seen that the 

spectrum envelope of the two movements is the same, however, 

differences are present which will make it possible to discriminate 

between the two movements. 

 

 
(a) 

 
(b) 

 

Figure 14. FFT Power Spectrum of Fp1 Signal; (a) 0o-90o 

Motion, and (b) 0o-180o Motion 

 

Fig. 15 shows the quality of discrimination of the three joint 

angles with 1400 input neurons and a varying number of hidden 

neurons. The best performance in terms of accuracy was achieved 

with 5 hidden neurons. 

 
Figure 15. Performance of Classification Using FFT Feature 

Extraction 

Selection of electrodes 

Considering that different channels had different responses each 

time depending on the physical condition of the subject and other 

external factors, a preprocessing phase for motion estimation 

using a neural network was introduced. Preprocessing involved 

selecting a few channels with the largest instantaneous electrical 

potential for training the network.  

 

Taking Fig. 16 as an example, the electrode that reacts most 

during the experiment is O1, followed by O2 and F7 in that order. 

Choosing these three signals for discrimination, training was 

carried considering signal strengths before and after the reaction 

as the characteristic quantities for discrimination. 
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Figure 16. Selection of Electrodes 

 

The performance of the angle classifier without and with channel 

selection and feature extraction using FFT power spectrum is as 

shown in Fig. 17 and Fig. 18, respectively.  

 

 
Figure 17. Angle Estimation from Raw EEG Data with Channel 

Selection 

 
Figure 18. Angle estimation with channel selection and feature 

extraction using FFT 

 

An improvement in motion classification for the three angles can 

be observed, with and without feature extraction when Figures 17 

and 18 are compared with figures 13 and 15, respectively. From 

the results, 7 input neurons had the best performance of 90% for 

0o-90o and 0o-180o and 100% for 0o-0o as shown in Fig. 17 & 18. 

This corresponds to an overall classification accuracy of 93% for 

the overall system. The improvement is attributed to the exclusion 

of signals with minimal or no variations as part of the training 

data. 

CONCLUSIONS 

This paper presented joint angle estimation by classifying EEG 

signals corresponding to three joint angles of the shoulder joint: 

0o-0o, 0o-90o and 0o-180o. Multilayer perceptron neural network 

was trained using Hebbian learning to classify the electrode 

signals. Experiments involved the development of the algorithm 

and the determination of the optimal network architecture in 

terms of the neuron in the input and the hidden layer. Further, the 

performance of the classification system operating on raw EEG 

data was compared to the performance with feature extraction 

using FFT power spectrum with and without preprocessing. From 

the results, the optimal number of input neurons for a system 

trained with raw EEG signals was 42 neurons and 3 neurons in 

the hidden layer. Training with feature extraction yielded better 

results with the same number of hidden neurons albeit having 30-

fold the number of input neurons. The performance of the 

classifier with channel selection outweighed the others that 

involved all the channels.   
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NOMENCLATURE 

∆t   Sampling time 

∆f  Sampling frequency 

X(n∆f)  Power spectrum 

S(n∆f)  Power spectral density 

wj   Interconnection weight 

xi   Input pattern 

hj   Threshold 

uj  Summed input 

ti   Target pattern 

H(ui)   Heaviside step function 

∆wij Difference between the presynaptic signal 

and the target value 

η  Learning rate 

δi   Error function of node i 

AUTHOR(S) BIOGRAPHY 

Minoru Sasaki 

Minoru Sasaki is a Senior Professor at Gifu University, Faculty 

of Engineering, Intelligent Mechanical Engineering Course. He 
holds a Bachelor’s degree from Yamagata University, Master and 

Doctorate degrees from Tohoku University, in Mechanical 

Engineering. He has collaborated with research institutions 

including KHI, University of California, Los Angeles, the Dedan 
Kimathi University of Technology among others. His current 

research interests include Intelligent Control, Mechatronics, and 

Robotics. 

 

Iida Takaaki 

Iida graduated with a Bachelor’s and Master’s degrees from Gifu 

University, Faculty of Engineering, Human Information Systems 
Engineering Department. He is currently working for Toyota 

Technical Development Company Co. Ltd. His current research 

interests include Intelligent Control and Mechatronics. 



MINORU SASAKI / ANDALAS JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY - VOL. 01 NO. 01 (2021) 1-11 

https://doi.org/10.25077/ajeeet.v1i1.5   11 

Joseph Muguro  

Joseph Muguro is a PhD Fellow in the Faculty of Engineering, 
Gifu University, and a Lecturer at Dedan Kimathi University of 

Technology, Kenya. His research interest includes Machine 

Learning, Driver Behavior and Accident Analysis, among others. 

 

Waweru Njeri 

Waweru Njeri was a Post-Doctoral Fellow at Gifu University, 

and currently a Lecturer at the Dedan Kimathi University of 
Technology. Current research interests include Intelligent 

Control of Electro-Mechanical System, Robotics, and others. 

 

Pringgo Widyo Laksono  
Pringgo Widyo Laksono is a PhD Fellow in the Faculty of 

Engineering, Gifu University, and a Lecturer at the Department 

of Industrial Engineering, Universitas Sebelas Maret, Indonesia. 

His research interest includes Machine Learning, Bio-signals 
among others. 

 

Muhammad Syaiful Amri bin Suhaimi  

Amri bin Suhaimi graduated with a PhD from the Faculty of 

Engineering, Gifu University. He is now an Associate Professor 

at the National Institute of Technology, Gifu College, Gifu, 

Japan. His research interest includes Machine Learning, Robot 

control using Bio-signals among others. 

 

Muhammad Ilhamdi Rusydi 

Muhammad Ilhamdi Rusydi graduated with a PhD from the 

Faculty of Engineering, Gifu University. He is now an Associate 

Professor at the Department of Electrical Engineering, 

Engineering Faculty of Universitas Andalas, Padang, Indonesia. 

His research interest includes Machine Learning, Robot control 

using Bio-signals among others. 

 

 

 


