
Journal of Universal Computer Science, vol. 29, no. 7 (2023), 649-690
submitted: 6/11/2022, accepted: 21/3/2023, appeared: 28/7/2023 CC BY-ND 4.0

VMTools-RA: a Reference Architecture for Software
Variability Tools

Ana P. Allian
(State University of Maringá, Maringá, Paraná, Brazil

https://orcid.org/0000-0001-9399-0944, ana.allian@gmail.com)

Leandro F. Silva
(State University of Maringá, Maringá, Paraná, Brazil

https://orcid.org/0000-0001-8860-5968, leandroflores7@gmail.com)

Edson OliveiraJr
(State University of Maringá, Maringá, Paraná, Brazil

https://orcid.org/0000-0002-4760-1626, edson@din.uem.br)

Elisa Y. Nakagawa
(University of São Paulo, São Carlos, São Paulo, Brazil

https://orcid.org/0000-0002-7754-4298, elisa@icmc.usp.br)

Abstract: Currently, software systems must be appropriately developed to support an amount of
variability for accommodating different requirements. To support such development, a diversity
of tools has already been designed for variability management (i.e., identification, modeling,
evaluation, and realization). However, due to this diversity, there is a lack of consensus on what in
fact software variability tools are and even what functionalities they should provide. Besides that,
the building of new tools is still an effort- and time-consuming task. To support their building,
we present VMTools-RA, a reference architecture that encompasses knowledge and practice
for developing and evolving variability tools. Designed in a systematic way, VMTools-RA was
evaluated throughout: a controlled experiment with software developer practitioners; and an
instantiation of the VMTools-RA architecture to implement a software variability tool, named
SMartyModeling. As a result, VMTools-RA is evidenced to be feasible and it can be considered an
important contribution to the software variability and developers of variability-intensive software
systems community, which require specific tools developed in a faster manner with less risk, what
a reference architecture could provide.

Keywords: software variability, reference architecture, SMartyModeling, VMTools-RA, tool,
variability management
Categories: D.2, D.2.10, D.2.11, D.2.13
DOI: 10.3897/jucs.97113

1 Introduction

Variability is perceived as the ability of a system to be efficiently extended, changed, or
adapted for a specific context in a preplanned manner [Galster et al., 2014]. It involves
all system life cycles throughout the identification of variation points, variants, and
constraints among such variants [Bosch et al., 2015]. Whereas variants represent a

https://orcid.org/0000-0001-9399-0944
https://orcid.org/0000-0001-9399-0944
https://orcid.org/0000-0001-8860-5968
https://orcid.org/0000-0001-8860-5968
https://orcid.org/0000-0002-4760-1626
https://orcid.org/0000-0002-4760-1626
https://orcid.org/0000-0002-7754-4298
https://orcid.org/0000-0002-7754-4298

650 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

design option (i.e., mandatory, optional, alternative), variation points refer to areas
affected by several options where system feature constraints are stated. The management
of variability to the development of such systems is not therefore a trivial activity and,
hence, it demands automated tools for identifying, representing, configuring, and deriving
software products [Capilla et al., 2013]. Several software variability tools have been
developed by both industry and academia [Bashroush et al., 2017] and certain capabilities
are still missing [Allian et al., 2020]. We are able to verify this as outstanding software
engineering conferences have dedicated tracks for demos and tools as, for instance, the
Software and Systems Product Line Conference (SPLC) and the International Working
Conference on Variability Modelling of Software-Intensive Systems (VaMoS), in which
several works discuss on the need for software variability tools.

In another context, reference architectures refer to a special type of software archi-
tecture that captures the essence of architectures of a collection of systems in a given
domain [Martínez-Fernández, 2013]. Their main purpose is to guide the development,
standardization, and evolution of systems [Angelov et al., 2013, Nakagawa et al., 2014].
Reference architectures can embody lessons learned, best practices, architectural prin-
ciples, and design patterns, therefore, they can “operationalize” knowledge and good
practices. The main benefits of these architectures are the shared understanding of the
current architecture across multiple organizations, reuse of software elements combined
with best practices, increased productivity, reduced time-to-market, reduced development
costs, enhanced quality, facilitation in the interoperability, improved communication,
and the elaboration of missions [Martínez-Fernández, 2013]. Examples of successful
reference architectures from the industry are AUTOSAR (AUTomotive Open System
ARchitecture)1 and European Interoperability Reference Architecture (EIRA) for inter-
operability services in Europe [EIRA, 2018].

With regard to software variability tools, there is not still a reference architecture that
can support their development. Besides that, existing tools miss important features/func-
tionalities including interoperability with other development tools, collaborative features,
and derivation facilities to implement variability in code [Bashroush et al., 2017]. There
is also a lack of consensus on the main functionalities these tools should provide. In
addition, the development of new tools is still an expensive, time/effort consuming, and
error-prone task [Allian et al., 2020].

Motivated by this scenario, this paper presents a reference architecture for software
variability tools, named VMTools-RA, which aims at reducing the time and effort spent
on the development of software variability tools. The conception of VMTools-RA was
based on ProSA-RA, a systematic process for the design, representation, and evaluation
of reference architectures [Nakagawa et al., 2014]. The evaluation of VMTools-RA
involved two studies: a controlled experiment with software developer practitioners and
an instantiation of VMTools-RA and its implementation for a new software variability
tool, named SMartyModeling. As the main result, we provide preliminary evidence
VMTools-RA can be considered an important contribution for software developers, who
require specific tools for handling software variability in a more efficient way.

The remainder of the paper is organized as follows: Section 2 addresses the back-
ground of software variability and reference architectures; Section 3 presents our adopted
methodology for this research; Section 4 presents the steps of ProSA-RA for the designing
of VMTools-RA; Section 5 reports the experiment conducted to evaluate VMTools-RA
with practitioners; Section 6 presents the implementation of a variability tool as an
instance of VMtools-RA; Section 7 provides discussion on the results of this paper; and

1 http://www.autosar.org/

http://www.autosar.org/

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 651

Section 8 presents a summary of contributions and main perspectives for future work.

2 Background and Related Work

This section summarizes concepts related to software variability and reference architec-
tures.

2.1 Software Variability

Most software systems must support a large amount of variability, which enables the
customization and reuse of software-intensive systems for specific domains [Capilla
et al., 2013, Bosch et al., 2015]. Over the past decades, the Software Product Line (SPL)
engineering has consolidated variability management as one of its essential activities for
successful non-opportunistic reuse [Capilla et al., 2013]. Several approaches have been
developed for handling variability in software systems [Chen et al., 2009, Bashroush
et al., 2017, Galster et al., 2014, Raatikainen et al., 2019], whereas most studies have
reported experience in SPL with feature model and its extensions.

Software variability represents the product features in terms of variants and variation
points [Capilla et al., 2013]. Features can be selected and configured at different devel-
opment stages and variability management facilitates the realization and configuration
of variants for different products. Figure 1 depicts an example of a feature diagram
for a Mobile Phone with variabilities. AMobilePhone must provide Calls, as it is the
essence of a mobile phone. It also must have a Screen, either a Basic one or HD (High
Definition). Such a mobile phone might have a GPS and might playMedia, in this case,
Camera orMP3. However, in case a mobile phone has a Camera it must have an HD
screen specified by the constraint “Camera ⇒ HD”.

Basic MP3

ScreenCalls MediaGPS

CameraHD

MobilePhone

Camera ⇒ HD

Legend:

Mandatory
Optional
Or Group
Alternative Group
Abstract Feature
Concrete Feature

Figure 1: Mobile Phone feature diagram

Variability management encompasses a number of activities [Pohl et al., 2005], such
as identification and modeling of system variants, implementation (realization), and
selection and configuration (product derivation).

The International Organization for Standardization (ISO) proposed ISO/IEC 26550
[ISO/IEC26550, 2015], which encompasses a set of activities for the development and

652 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

maintenance of variants in all software development phases. It also provides a reference
model containing abstract representations of the main variability management processes
and details the domain engineering that defines and implements domain assets and appli-
cation engineering [Pohl et al., 2005, ISO/IEC26550, 2015]. Although both standards,
ISO 26550 and ISO 26555, address important information about the variability manage-
ment process, they do not provide activities or technical support for the development of
software variability tools. In addition, several capabilities are still missing in the existing
tools [Allian et al., 2020].

2.2 Reference Architectures

Reference architecture is considered a predefined standard designed for a specific business
context [Nakagawa et al., 2014, Angelov et al., 2013, Martínez-Fernández, 2013]. It
facilitates the design of concrete architectures for new systems and new versions or
extensions of similar products. In summary, it covers three concepts, namely Technical
information, which provides technological solutions to instance design patterns, Business
models, which guides decisions based on domain business rules, and Customer context,
which recognizes customer and user considerations.

In general, reference architectures have been built using an ad-hoc approach, i.e.,
without following a systematic process [Nakagawa et al., 2014]. However, systematizing
their building allows one to achieve more effective reference architectures, i.e., archi-
tectures that could better achieve their purpose. In this perspective, it is possible to find
several initiatives [Angelov et al., 2013, Bayer et al., 2004, Cloutier et al., 2010, Dobrica
and Niemela, 2008, Galster et al., 2014, Muller and Laar, 2008, Nakagawa et al., 2014]
to provide guidelines, principles, and recommendations to build reference architectures.

[Nakagawa et al., 2014] proposed ProSA-RA, a process that systematizes reference
architecture design, representation, and evaluation in four steps (Figure 2). In Step 1,
information sources are selected and investigated, whereas requirements are identified
and common functionalities and configurations are described in Step 2. The description
and views are established in Step 3 and an evaluation is conducted in Step 4. In this
work, we adopted ProSA-RA, which supports the organization of domain knowledge,
systematizing the architecture establishment (i.e., requirement identification, creation,
representation, and evaluation of the architecture).

ProSA-RA focuses on how to design, represent, and evaluate such architectures. It
is the result of the experience in the establishment of architectures for several domains,
such as robotics systems [Feitosa, 2013], digital television applications [Duarte, 2013],
software testing [Nakagawa et al., 2007, Oliveira and Nakagawa, 2011], software engi-
neering environments [Nakagawa et al., 2011], and medical systems [Rodriguez et al.,
2015]. In this perspective, and considering the experience acquired with the ProSA-RA
application to develop reference architectures, the ProSA-RA process is detailed in the
remainder section of this work.

2.3 Related Work

To the best of our knowledge, there is no study aiming at specifying a reference architec-
ture for software variability tools.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 653

Fig. 1. Outline Structure of ProSA-RA

In order to get information from these people, techniques for
requirements elicitation [34], such as interviews and question-
naires, can be used. It is also important to identify needs and
limitations that are commonly found in the application domain.
For instance, functionalities that might be available in systems
of that domain or new legislations and standards that will come
into force for that domain and, as a consequence, they will be
a need in new systems;

(ii) Software Systems: the main systems related to the do-
main are selected and investigated through their use (when
available) and related documentation. Their architectures are
also investigated, focusing on the capabilities for evolution and
adaptation. Moreover, the architectural styles and architectural
patterns that are commonly found in the architectures of such
systems are also identified;

(iii) Publications: information related to the
processes/activities/tasks of the application domain are
identified from publications, such as articles, books, and
technical reports. In order to identify the relevant information
required, either an informal or a more systematic approach
can be used. Considering the latter perspective, the Systematic
Literature Review technique [35] can be used. Proposed by
Evidence-Based Software Engineering (EBSE), this technique
intends to identify, evaluate, and interpret all the significant
available works related to a particular domain, using a
trustworthy, rigorous, and auditable review methodology [35].
Systematic Review can be considered a relevant mechanism to
find a set of publications/documents about a specific domain,
aiming at contributing to get knowledge about what can be
considered in the intended reference architecture [36]. For
instance, we successfully applied Systematic Review in order
to establish a service-oriented reference architecture for the
software testing domain [19];

(iv) Reference models and reference architectures: it is
also important to find reference models and/or other reference
architectures in the target domain or neighbour domains. These
models and architectures can provide important knowledge al-
ready accumulated during their conception. Moreover, System-
atic Literature Review can be also applied to find publications
related to these models and architectures;

(v) Domain ontologies: ontologies represent the domain termi-
nology (i.e., concepts/terms of the domain and the relationships

among them, as well as their definitions, properties, and
constraints expressed by means of axioms) in a well-structured
format [37]. During the establishment of reference architec-
tures, the use of a common, well-known terminology for the
elements that compose the architectures is very important,
aiming at facilitating their further understanding [38]. Search
and selection of domain ontologies must also be conducted.
Besides ontologies, controlled vocabularies, taxonomies, the-
sauri, concept maps, among others can be also used.

Besides those information sources, RAModel (Reference
Architecture Model) [39] can be used. It is a reference
model for reference architectures, providing information on
possibly all elements (and their relationships) that could be
contained in reference architectures, independently from ap-
plication domains or purpose of such architectures. As illus-
trated in Figure 2, RAModel is composed by four groups of
elements: (i) Domain: It contains elements related to self-
contained, specific information of the space of human action
in the real world, such as domain legislations, standards,
and certification processes, which impact systems and related
reference architectures; (ii) Application: It contains elements
that provide a good understanding of the reference architecture,
its capabilities and limitations. It also contains elements related
to the business rules (or functionalities) that can be present
in software systems built from the reference architecture; (iii)
Infrastructure: It refers to elements that can be used to build
the software systems based on the reference architecture. These
elements are responsible for enabling these systems to auto-
mate, for instance, processes, activities, and tasks of a given
domain; and (iv) Crosscutting Elements: It contains elements
that are usually spread across and/or tangled with elements of
other three groups (domain, application, and infrastructure).
We observe that communication (identified as internal and
external) in the software systems built from the reference
architecture, as well as the domain terminology and decisions
are present in a spread and tangled way when describing other
groups and are, therefore, crosscutting elements. A detailed
description of each element can be found in [39]. These groups
of elements can be used in this step of ProSA-RA to also
guide the identification of information sources. For instance,
as RAModel contains the element Domain Data (that refers
to common data found in software systems of the domain),
information sources that provide this element, such as the
database structures of software systems, should be considered.

Figure 2: ProSA-RA steps [Nakagawa et al., 2014]

3 Research Methodology

In this work, we adopted a multi-method research methodology to combine techniques
to complement each other. This may take a number of forms to help to confirm research
findings. Thus, collecting different types of data by means of different methods should
result in wider coverage of the problem space [Wood et al., 1999]. This type of research
methodology combines quantitative and qualitative approaches, thus it balances the
limitations of each method and provides stronger evidence and more granular results
than each individual method.

Therefore, ourmethodology encompasses three phases (Figure 3):Phase 1:VMTools-
RA conception using ProSA-RA; Phase 2: VMTools-RA feasibility controlled experi-
ment with practitioners (Ev.2); and Phase 3: VMTools-RA instantiation and implemen-
tation of SMartyModeling, a UML-based SPL tool (Ev.3).

4 Phase 1: Conception of VMTools-RA

The main focus of VMTools-RA is to provide a general framework to support the devel-
opment of new software variability tools. Among its main objectives are: to support the
development of software variability tools; support and improve the systematic reusability
of software; support the maintenance and evolution of software variability tools based
on VMTools-RA; specify a standardized structure based on the processes and reference
models provided by ISO/IEC 26555; and provide integration mechanisms with domain
analysis and requirements specification tools.

We followed the four steps of ProSA-RA [Nakagawa et al., 2014] during the con-
ception of VMTools-RA, according to Figure 4. We then present the first three steps
(RA-1, RA-2, and RA-3) in Sections 4.1, 4.2, and 4.3, respectively. We performed step
RA-4 with an empirical study (Section 5) and the instantiation and implementation of a
software variability tool (Section 6).

654 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Phase 1:
VMTools‐RA
Conception

•ProSA‐RA process
•ISO standards
•Systematic Mapping Study
•Empirical Studies from Literature

Phase 2:
VMTools‐RA
Controlled
Experiment

•VMTools‐RA feasibility
•Software Development Practitioners
•Open and Close‐Ended Questions
•Descriptive and Inferential Statistics

Phase 3:
VMTools‐RA
Instantiation

•SMartyModeling Tool
•Variability Modeling (feature, UML use
case, class, sequence, component)
•Product Configuration
•Variability Traceability

Figure 3: Adopted research methodology

4.1 RA-1: Information Source Investigation

The following three groups of information sources were analyzed: (G1) existing standards
in the context of variability management, (G2) a Systematic Mapping Study (SMS) on
software variability tools and a survey with experts, and (G3) existing secondary studies
on software variability tools in the literature.

RA-1:
Information Source

Investigation

RA-2:
Architectural

Analysis

RA-3:
Architectural

Synthesis

RA-4:
Architectural
Evaluation

Secondary Studies on
Software Variability

Tools
(G3)

SMS + Survey on
Software Variability

Tools
(G2) ISO/IEC 26550

ISO/IEC 26555
(G1)

Categories and
Functionalities

of Tools

Architectural
Requirements VMTools-RA VMTools-RA

Evaluated

Step

Legend:

Artifact Step Flow Artifact Flow

VMTools-RA
Instance:

SMartyModeling

Controlled
Experiment with

Practitioners

Development of
the SMartyModeling

Tool

Evaluation Steps

Figure 4: ProSA-RA Followed Methodology

Regarding standards (G1), we extracted information from [ISO/IEC26550, 2015] and

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 655

[ISO/IEC26555, 2015]. Such standards deal with processes of variability management
and, although they focus on the SPL context, they were relevant for VMTools-RA,
once they provide important information about variability management processes (e.g.,
variability modeling, binding information, traceability, documentation, and variability
control and evolution). This information was essential for the understanding of key
concepts for the design of VMTools-RA.

An SMS combined with a survey with experts in software variability tools [Allian
et al., 2020] was conducted in relation to (G2). The SMS and the survey revealed no single
software variability tool can offer all capabilities required by practitioners; few tools
support runtime variability, and only two commercial and five research tools are the most
preferred ones, as pointed out by practitioners. Moreover, most of the software variability
tools support the modeling of variability through Feature-Oriented Domain Analysis
(FODA) [Kang et al., 1990]. Several tools were implemented with Java programming
language as plugins and have support for XML/XMI files. Integration mechanisms
based on ports and interfaces under Internet/Intranet protocols such as HTTP and TCP
were also identified. APIs, such as REST and SOAP were used for integrating software
variability tools with requirements management tools i.e., Doors2. Java APIs (i.e., BIRT
for generating reports and Eclipse Modeling Framework (EMF) for modeling variability
with feature models) were also identified in such tools. According to the survey, 75% of
the tools found in the SMS was acknowledged by industrial practitioners and require
more interoperability support for new technologies, collaborative support, and distinct
views for assisting specific stakeholders’ concerns.

Regarding (G3), relevant Systematic Literature Reviews (SLR) on software variability
and SPL tools conducted by [Pereira et al., 2015], [Bashroush et al., 2017], and [Chen
et al., 2009] were taken into account, as well as the survey of [Berger et al., 2013]. Such
studies were considered, as they provide a set of important categories and functionalities
extracted from tools and grouped as follows:

– Realization: It is associated with the configuration and derivation of software prod-
ucts making use of variability models. The functionalities identified in this category
are (1) Product derivation - which consists of selecting assets to derive a product; (2)
Product configuration - which consists of modifying the assets to personalize and
derive software product; (3) Binding time - it allows the realization of variability at
different development life cycle (i.e., runtime, deploy time, design time, compile
time).

– Interoperability: It represents the means used to perform the integration between
software variability tools. Themain functionalities are: (4) Import/Export - it provides
import/export function; (5) XML/XMI files - it allows the use of XML/XMI file
formats; (6) Integration - it allows interoperability between applications.

– Modeling: It represents the mechanisms used to model variability: (7) Feature
attributes - they allow the inclusion of specific information for each feature; (8)
Composition rules - they represent constraints between features; (9) Mandatory
features - they represent features that will always be presented in the products; (10)
Variability - it defines the variability information (i.e., Optional, OR, XOR) from
each feature.

– Planning: It allows collecting, identifying, and representing variability information:
(11) Pre-analysis documentation - it allows storing information about the identifica-

2 https://www.ibm.com/docs/en/ermd/9.7.0?topic=overview-doors

https://www.ibm.com/docs/en/ermd/9.7.0?topic=overview-doors

656 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

tion of features; (12) Scope definition - it identifies features that should be part of
the software infrastructure;

– Technical information: It represents functionalities that support the process of
variability management, such as code generation and documentation: (13) Product
documentation - it provides documentation for each product including the system
version; (14) Online availability - it identifies whether the tool is available for online
access; (15) Open source - it allows access to the source code of the software; (16)
Generation of source code - it is responsible for generating source code based on the
variability model.

– Usability: It provides mechanisms to assist the user in the process of variability
management. It consists of the following functionalities: (17) User guide - it provides
documentation to guide the user to use the software variability tool; (18) User
interface - it provides a more intuitive environment for users;

– Validation: It provides functionalities to perform the validation and analysis of
software products. The features identified are: (19) Reports - it allows the generation
of reports about variability information; (20) Traceability - it links the existing
features of a domain with the requirements; (21) Consistency check -it verifies if the
generated domain follows composition rules and dependencies between features.

Most tools includemodeling, configuration, and validation features, as shown in Table
1. These features give us an overall view of the main variability management activities
covered by software variability tools, which were used as a source of information during
the design of VMTools-RA.

4.2 RA-2: Architectural Analysis

Information identified in Step 1 was used for specifying the architectural requirements
(AR). The following functionalities were selected for the first group of information
sources (G1): domain asset acquisition, variability modeling, composition rules, trace-
ability among the models and domain assets, documentation, consistency check, binding
mechanism, control and evolution of variability management, feedback, and trade-off
analysis. For the second group (G2), technical information including interoperability
among tools and other support solutions (i.e., requirements specification for the col-
lection of domain asset information), functionalities related to usability, persistence,
middleware, and versioning of variability models were identified. Finally, the third group
of information (G3) involved functionalities related to variability modeling, composition
rules, traceability, documentation, consistency check, and binding information.

The three groups of information (G1, G2, and G3) served as the basis for establishing
21 architectural requirements for VMTools-RA. These requirements were divided into
two groups: (i) nine architectural requirements related to variability management imple-
mentation and (ii) 12 architectural requirements addressed to organizational support and
market analysis for the maintenance of quality and evolution of variability management,
as shown in Table 2. Each requirement refers to a source of information and most re-
quirements are based on the first group of information corresponding to international
standards.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 657

Features

Realization Interop. Modeling Planning Technical Info Usability Validation

Tools (1)(2)(3) (4)(5)(6) (7)(8)(9)(10) (11)(12) (13)(14)(15)(16) (17)(18) (19)(20)(21)

CaptainFeature X X X X X X X X X X X X X X
Clafer X X X X X X X X X X X X X X
Covamof-VS X X X X X X X X X X X X
CVL Tool X X X X X X X X X X X X X
CVM X X X X X X X X X X X X X X
DecisionKing X X X X X X X X X X X X X X
DOPLER X X X X X X X X X X X X
FAMA X X X X X X X X X X X X X X X X
FeatureIDE X X X X X X X X X X X X X X
FMP X X X X X X X X X X X X X X
FMT X X X X X X X X X X X
GEARS X X X X X X X X X X X X X X X X
GENARCH X X X X X X X X X X X X
Hephaestus X X X X X X X X X
Hydra X X X X X X X X X X
Kumbang X X X X X X X X X X X X X X X X
LISA toolkit X X X X X X X X X X
Metadoc X X X X X X X X X X X X X X
PLUM X X X X X X X X X X X
pure variants X X X X X X X X X X X X X X X
s2t2 X X X X X X X X X X
SOASPL X X X X X X X X
SPLOT X X X X X X X X X X X
Variamos X X X X X X X X X X X X X X
Visit-FC X X X X X X
V-Menage X X X X X
VMWT X X X X X X X
WeCoTin X X X X X X X X X X
XFEATURE X X X X X X X X X X X X X

Table 1: Features of variability tools based on functionalities from [Pereira et al.,

2015, Lisboa et al., 2010, Bashroush et al., 2017, Berger et al., 2013]

4.3 RA-3: Architectural Synthesis

In the third step of ProSA-RA, requirements previously identified were used for the
design of VMTools-RA. Goals, risks, stakeholders, and concerns were also defined for
better documentation of the reference architecture and are described as follows: Goals:
(i) support to the development of software variability tools; (ii) support to software reuse;
(iii) support to maintenance and evolution; and (iv) support to integration mechanisms
for the collection of domain assets. Stakeholders: (i) executives responsible for the
organization’s business goals; (ii) marketing executives responsible for market de-
mands; (iii) technical managers responsible for available personnel; (iv) software
architects responsible for identifying the needs of systems and further reference
architecture instantiation; (v) domain experts responsible for providing specific do-
main information and verifying whether related requirements have been met; (vi) QA

658 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

First group of architectural requirements

[AR.1.1]Manage domain assets (e.g., features, models, requirements, and test cases).
[AR.1.2] Build variability models independent from the approach or notation.
[AR.1.3] Consider composition rules (e.g., cardinalities and dependencies).
[AR.1.4]Manage trace links of variability models with domain assets.
[AR.1.5] Document variability models in detail.
[AR.1.6] Validate conformance among variability models by using an automatic consis-
tency check.
[AR.1.7]Generate reports for checking conflicts and inconsistencies within the variability
model.
[AR.1.8] Resolve variability appropriately related to binding time.
[AR.1.9] Select a variability mechanism for implementing binding time.

Second group of architectural requirements

[AR.2.1] Support change feedback for variability models.
[AR.2.2] Implement impact analysis to determine what changes are required.
[AR.2.3] Deal with organizations’ capabilities for improvement of variability manage-
ment.
[AR.2.4] Support communication and sharing environment.
[AR.2.5] Provide guidance to support variability management.
[AR.2.6] Get feedback and notify users about variability changes.
[AR.2.7] Support trade-off analysis among alternatives of binding time.
[AR.2.8]Manage and store multiple versions of variability information.
[AR.2.9] Support import/export of variability assets and relevant information.
[AR.2.10]Manage the repository of variability information.
[AR.2.11] Offer efficiency scalability of feature models.
[AR.2.12] Integrate software variability tools through middleware.

Table 2: VMTools-RA Architectural Requirements

Manager responsible for ensuring quality requirements; (vii) developers responsible
for developing the systems; and (viii) client that uses the system developed. Table 3
shows the concerns raised by each stakeholder.

Concern

CN1 VMTools-RA must enable efficient reuse of components, documentation, requirements,
and knowledge

CN2 Traceability among VMTools-RA and software architecture instances
CN3 VMTools-RA must facilitate the evolution of software variability tools
CN4 VMTools-RA must deal with risk identification and mitigation towards avoiding failures

that inhibit business

Table 3: Concerns identified by each stakeholder

[ISO/ISO42010, 2011] represents an important effort toward describing software
architectures. As proposed by this standard, the usage of multiple architectural view-
points is a common practice to document the architectures of software systems. Views
are abstractions of particular concerns in the whole reference architecture framework
[ISO/ISO42010, 2011]. They are useful to stakeholders who are interested in different
cross-sections of a reference architecture.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 659

For this reason, this article introduces three architectural views, namely3: (i) Cross-
cutting Viewpoint, (ii) Source Code Viewpoint, and (iii) Deployment Viewpoint.

The following sections present the updated version of VMTools-RA from different
viewpoints after its evaluations (see Sections 5 and 6).

4.3.1 General View

The VMTools-RA overview, represented in Figure 5, depicts the main components, their
relationship, and their hardware dependencies. We chose not to define the architectural
style of VMTools-RA, since most of the software variability tools from our SMS were
developed as a plugin for the Eclipse IDE. However, as a suggestion, it is possible
to adopt a layered architectural style, a client-server style, and a Model View Control
(MVC) architectural pattern, as these architectural styles were used to develop some of
the software variability tools identified in MS.

In the VMTools-RA overview, four sets of elements can be seen: (i) Variability
Management; (ii) Domain Analysis; (iii) Support; and (iv) Organizational. In
addition, there is a layer of Middleware and possible types of tools available in the
industry/academia to be integrated. Another important element is the Repositorywhich
provides mechanisms to persist application information. To identify such elements, we
used the architectural requirements from RA-2.

Table 4 presents a mapping among the architectural requirements from Section 4.2
and the elements of the VMTools-RA general view.

4.3.2 Crosscutting Viewpoint

This viewpoint provides general information about reference architectures, including
terms and concepts, which are transversal for other views. Variability View, which is
based on the Cardinality-Based Feature Model (CBFM) notation (Figure 6), describes
elements of a reference architecture and the way they can be exercised for building
instances of the reference architecture. Such a feature model notation supports the
identification of reusable components as optional, mandatory, and OR (select zero or
more elements). Some elements were defined as mandatory, e.g. Domain Analysis,
responsible for the identification of assets used across all applications, and Variability
Modeling, responsible for modeling variability through different modeling techniques.
Alternative elements (OR) were also represented, e.g., Consistency Check, which
provides different reasoners mechanisms that check the consistency of variability models,
and Approach, which supports multiple approaches, (i.e., both Feature Modeling and
Ontologies).

Such a variability view is a representation of VMTools-RA through feature models
and does not represent a product-line architecture (PLA). Its consistency was verified by
SPLOT4 a web tool that models, evaluates, verifies consistency, debugs, and shares vari-
ability models. According to SPLOT, the variability view of VMTools-RA is consistent
and has up to 983,040 valid configurations. This view is concerned with the efficient
reuse of components and architectural knowledge (CN1), traceability (CN2), evolution
(CN3), and risk identification (CN4).

3 The complete VMTools-RA documentation is available at http://doi.org/10.5281/zenodo.
2210358

4 http://www.splot-research.org/

http://doi.org/10.5281/zenodo.2210358
http://doi.org/10.5281/zenodo.2210358
http://www.splot-research.org/

660 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Variability Management

Variability Modeling Variability Decision

Variability Evolution

Variability
Mechanism

Variability Model
Management

Composition Rules

Traceability

Documentation

Variability Binding
Management

Organizational

Notifying &
Feedback

Planning &
Management

Impact Analysis

Communication
& Sharing

 Guidance

Trade-off Analysis

Control & Evolution
Management

Domain Assets

Domain Analysis

Requirements Specification

Domain Requirements

Support

Middleware

Domain Analysis
Tools Available

Requirements
Tools Available

Versioning

Persistence

Import/Export

Legend

Optional
Middleware

Optional
Integration VM Elements

Variability Validation

Consistency Check

Verification Report

InteractionGroup of
Elements

Repository

Figure 5: VMTools-RA General View

4.3.3 Source Code Viewpoint

This viewpoint provides specific details, including software structures and modules,
regarding the implementation of systems that result from the reference architecture.
Module View, represented in a UML Class Diagram, can describe specific functionalities
through modules (packages), data flow, and interfaces. Technologies presented in this
view were extracted from our SMS on software variability tools (Section 4.1), shown in
Figure 7. Four modules encapsulate the functionalities of VMTools-RA.

Support module provides technologies for the storage of system data (e.g., in-
formation, models, and domain assets) and importing and exporting information. The
Organizational Management is responsible for the organizational process of maintain-
ing the quality of software products. It supports an environment of communication and
sharing of variability management information through different stakeholders. Domain
Analysis is responsible for domain asset acquisition and management and is designed

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 661

Requirements VMTools-RA Elements

AR.1.1 Domain Analysis and Domain Asset Management

AR.1.2 Variability Model Management

AR.1.3 Composition Rules

AR.1.4 Traceability

AR.1.5 Documentation

AR.1.6 Consistency Check

AR.1.7 Verification Report

AR.1.8 Variability Binding Management

AR.1.9 Variability Mechanism

AR.2.1 Control & Evolution Management

AR.2.2 Impact Analysis

AR.2.3 Planning & Management

AR.2.4 Communication & Sharing

AR.2.5 Guidance

AR.2.6 Notifying & Feedback

AR.2.7 Trade-off Analysis

AR.2.8 Versioning

AR.2.9 Import/Export

AR.2.10 Persistence

AR.2.11 Depends on the adopted technologies by the stakeholder

AR.2.12 Middleware

Table 4: Mapping between Architectural Requirements (RA-2) and VMTools-RA

Elements

with middleware for integration to different domain analyses and requirement tools.
Table 5 shows more details about the domain analysis module and Table 6 provides key
activities and technologies required for the acquisition of domain assets.

Variability Management involves four sub-modules: Variability Modeling,
which identifies and models variations, traceability, documentation, and composition
rules related to constraints dependencies, Variability Validation, which validates
variability models by consistency check using arithmetical checkers or logic solvers (Ta-
ble 7 shows the technologies that can be used in those submodules), Variability
Decision, which realizes variability in different binding times (see Table 9), and
Variability Evolution, which manages variability evolution. More details are pro-
vided in Table 8. Concerns CN1, CN2, CN3, and CN4 from Table 3 were captured for
this view.

4.3.4 Deployment Viewpoint

This viewpoint describes hardware elements i.e., server machines, database servers, and
client machines.

Deployment View (Figure 8) presents six elements to be connected through inter-
faces over Internet/Intranet protocols i.e., Application Server supports deploying
and system logic. Database Server provides technologies for the storage of domain

662 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Figure 6: Variability View of VMTools-RA.

1 - ASSET BASE

Main
Activities:

a) Identification of domain assets (i.e., features, models, requirements, architec-
tural elements, and process description);

b) Creation/management of different repositories for assets (i.e., a repository of
features, models, architectural elements);

c) Availability of information for stakeholders involved in the project, regardless
of the geographic region;

d) The asset base must contain security policies (i.e., access control, encryption)
for maintaining the integrity and availability;

Important:
Our focus is not on the creation and management of assets. ISO/IEC 26555
provides more information about the asset base.

Table 5: Activities for the creation of an asset base

assets, information, and general information. Middleware is an optional element im-
plemented to facilitate the exchange of data among Application Server, Domain
Server, and Requirements Server. This view concerns the efficient reuse of compo-
nents (CN1) and traceability among VMTools-RA and software architecture instances
(CN2) (from Table 3).

5 Phase 2: VMTools-RA Evaluation with Practitioners

This section reports on a controlled experiment for investigating the feasibility of
VMTools-RA and whether it could benefit the architecture design of software vari-
ability tools in terms of time, accuracy, effectiveness, and efficiency. We followed
experimental guidelines for controlled experiments from [Wohlin et al., 2012].

5.1 Planning

We provide the planning of our experiment in the next subsections, discussing goals,
hypotheses formulation, variables selection, experimental design, instrumentation, and
threats to validity.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 663

Figure 7: Module View of VMTools-RA.

2 - INTEGRATION

Main
Activities:

a) Integration with requirements specification tools (i.e., IBM Rational DOORS,
CaliberRM, PTC Integrity, Microsoft Office);

b) Definition of contracts and integration policies with requirements tools for
ensuring availability of information;

c) Definition of intranet/internet ports and technologies for integration (i.e., Rest,
Soap, and Webservices) and data security technologies (i.e., encryption and user
authentication);

Examples:
Tools pure::variants and Gears tools provide more information about this inte-
gration.

Table 6: Activities for the integration of domain analysis tools

5.1.1 Goals

The objective of this experiment is to analyze the VMTools-RA feasibility with the
purpose of characterize it, with respect to its use for the design of software architectures
in terms of time, accuracy, effectiveness, and efficiency, from the point of view of
software variability researchers in the context of graduate and undergraduate students
from the State University of Maringá (UEM) and the University of São Paulo (USP) and
practitioners, taking into consideration the Architectural Documentation set (ArcDoc).

664 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

3 - VARIABILITY MODELING AND VALIDATION

Main
Activities:

a) Identification of variability elements (i.e., variation points and variants);

b) Definition of the approach (i.e., feature model, decision model and ontologies)
for modeling variabilities;

c) Model representation through graphical user interfaces (i.e., UML diagrams)
or modeling tools (i.e., EMF or Simulink);

d) Management of traceability link between variability models and domain assets
(i.e., navigation links and notation);

e) Storage of variability models in repositories (i.e. online repository and cloud);

f) Management of information on dependency and constraint (i.e., requires and
excludes), cardinalities (i.e., min ... max) and variability dependencies (i.e.,
optional, mandatory, alternative ‘OR ’,‘ ‘XOR’ or exclusive);

g) Development or use of consistency checking mechanisms with logical solvers
or arithmetic verifiers (i.e., propositional logics with SAT solvers, BDD, CSP,
and Descriptive Logic) for validating variability models;

h) Supply of variability models in different formats (i.e., XML, HTML, and JPG)
for modeling variability;

Examples:
Software variability tools with consistency check (i.e., S.P.L.O.T, FAMA, FMP,
Hydra, S2T2 and Variamos);

Table 7: Activities for variability modeling and validation.

5 - VARIABILITY EVOLUTION

Main
Activities:

a) Identification and analysis of requests (i.e., feedback notification) on the
impact of information changes;

b) Changes in variability information (i.e., remove/add variants, variation points)
in accordance with business rules;

c) Storage of versions of variabilities for enabling restoration (i.e., Rollback) in
case of conflicts;

d) Supply of feedback analysis on the evolution of information and variability
model for interested stakeholders;

Important:
The evolution of variability is related to the organizational decision and market
analysis of the product to be generated;

Table 8: Activities for the variability evolution

An important issue was the choice of the baseline for the comparison of VMTools-RA.
Among the possibilities for the design of architectures, we decided to adopt some steps
from the software architecture design process, which we named as ArcDoc. ArcDoc
is defined by the following actives to design software architectures: 1) Analyze scope;
2) Analyze requirements; 3) Identify patterns and modules that could be requiring the
design of the software architecture; 4) Identify the relationship of each module; and 5)
Design the software architecture in a high-level representation.

We formulated the following research questions (RQs):

RQ1: Does VMTools-RA reduce the time required for the completion of an architecture
design of variability tools?

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 665

4 - VARIABILITY DECISION

Main
Activities:

a) Establishment of policies (i.e., process, documentation) for binding time
execution (i.e., compile time, build time and execution time) at different stages
of the development lifecycle;

b) Establishment of an environment with trade-off analysis for evaluation of the
alternatives that best fit the business;

c) Sharing of binding time information with stakeholders;

d) Definition of mechanisms for implementation of variabilities. Depends on
the development lifecycle (Requirements Phase: models diagrams; Architectural
Design Phase: composition diagrams and deployment diagrams; Implementation
Phase: entity model stereotypes, model-driven approaches, and polymorphism;
Test Phase: macros,]ifdef, directives);

e) Storage of information on binding time, variability mechanisms, and trade-off
analysis;

Examples:
Use of binding time: Compilation time (i.e., preprocessed directives); Execution
time (i.e., it depends on the condition implemented in the code where features are
activated or deactivated); Update Time (i.e., update utilities add functionalities);

Important:

The choice of binding time is independent of the variability model, but a con-
sequence of decisions made from the requirements phase to the execution time.
The requirements for flexibility and supporting tools enable the postponement of
binding time.

Table 9: Activities for variability decision

RQ2: Does VMTools-RA increase the accuracy of the architectural design of software
variability tools?

RQ3: Does VMTools-RA increase the effectiveness of the architectural design of soft-
ware variability tools?

RQ4: Does VMTools-RA increase the efficiency of the architectural design of software
variability tools?

5.1.2 Hypotheses Formulation

The experiment encompasses the following hypotheses related to each RQ (replace “Crit”
with “Time”, “Accuracy”, “Effectiveness”, or “Efficiency”):

– Null Hypothesis (H0Crit): there is no significant difference in the use of ArcDoc or
VMTools-RA for the design of a software architecture for variability tools (H0Crit:
µArcDoc = µVMTools-RA);

– Alternative Hypothesis (H1Crit): there is a significant difference in the use of
ArcDoc or VMTools-RA for the design of a software architecture for variability tools
(H1Crit: µArcDoc 6= µVMTools-RA).

5.1.3 Correction Criteria

We established the following criteria to evaluate accuracy of architecture design:

666 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Figure 8: Deployment View of VMTools-RA

1. Do the results of the architectural design satisfy the requirements and architectural
description? (Maximum grade of this question is 1.5, where each sub-question has a
value of 0.25).

(a) Does the architectural design handle variability modeling?

(b) Does the architectural design address variability validation?

(c) Does the architectural design handle variability decision?

(d) Does the architectural design manage domain information?

(e) Does the architectural design integrate with an external tool?

(f) Does the architectural design make use of middleware?

2. Do the results of architectural design have any conflict compared to requirements
and architectural description?

A design conflict refers to situations where the architectural design, description, and
requirements are incompatible with each other. When design conflicts are found, we
remove 0.25 points for each conflict. Thus, this can lead to negative values when
there are more conflicts compared to the total points.

5.1.4 Variables Selection

The Independent variable is the architecture documentation used by each participant
for the design of a software variability tool architecture. Therefore, it is a factor with two
treatments, namely (i) Document A (VMTools-RA); and (ii) Document B (ArcDoc),
which is the control.

The experiment also consisted of the following dependent variables: time spent by
participants for designing a software architecture for a software variability tool, accuracy,
efficiency, and effectiveness of design results.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 667

Time spent was measured according to the difference between the final and initial
times (converted into minutes) of each participant in resolving tasks of the experiment.
The whole time spent on the experiment, including the reading of documentation and
designing of architecture was then quantified. We did not allow participants to think-
aloud protocols as they were located in the same room at the same time, in their respective
universities.

Accuracy is the total number of correct answers (calculated by the sum of all answers
given by each participant). ACCU =

∑
correctAnswers

Effectiveness reflects the correctness of answers (calculated by dividing accuracy

by the number of criteria (6 criteria) defined in subsection 5.1.3. EFFE =
ACCU

6
Efficiency reflects the effectiveness of design results score divided by time in minutes.

EFFI =
ACCU

TIME

5.1.5 Pilot Evaluation

Although our experiment was related to specific research areas including reference
architecture and software variability tools, we did not require that participants should
have this knowledge. We assume students from software engineering classes have the
ability to design software systems by following requirements and scope information.
Furthermore, we verified this belief by running two pilot evaluations at USP university
with: i) an undergraduate student from the last year of Computer Science. This student
declared basic knowledge of UML and architecture design. He also claimed no experience
with software variability tools; and ii) a master’s degree student in Software Engineering
who had advanced knowledge in UML andmoderate knowledge about architecture design
and software variability. None of the subjects had knowledge of reference architecture.
Students had to design an architecture for software variability tool according to the
6 criteria (subsection 5.1.3). Both of them concluded the design activity in almost 30
minutes.

5.1.6 Selection of Participants

The experiment was designed for participants who were taught software architecture
design concepts during attendance to advanced Software Engineering disciplines (one
year of basics in software architecture, plus additional classes in the next years). By con-
venience (not randomly), we chose 36 students, 18 from the State University of Maringá
(UEM)5 (15 undergraduate students attending the last year of Bachelor in Computer
Science and three Master’s degree students), and 18 students from the University of São
Paulo (ICMC-USP)6 (four Master’s degree students, nine Ph.D. candidates, and five
undergraduate students attending the last year of Bachelor in Computer Science).

5.1.7 Choice of Experimental Design

According to the variables selection (Section 5.1.4), the type of design of this experiment
is one factor with two treatments. As independent variables have no relation to each

5 http://www.uem.br
6 http://www.icmc.usp.br

http://www.uem.br
http://www.icmc.usp.br

668 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

other, T-test or Wilcoxon hypothesis tests might be used, according to the normality of
samples.

We divided the experiment into two parts: the first one was performed at UEM by Ana
P. Allian under the supervision of Prof. Edson OliveiraJr, during a software engineering
course in the classroom, whereas the second one was performed at ICMC-USP by Bruno
B. Sena and Ana P. Allian under supervision of Prof. Elisa Y. Nakagawa in the Software
Engineering Laboratory (LABES).

The use of VMTools-RA is quantified by the time spent to design an architecture of
software variability tool, and the accuracy of results. The detailed steps to conduct this
experiment are specified below (see Figure 9): Divide the experiment into two parts: Part
1 performed at UEM University, and Part 2 performed at USP University; Conduct a
pilot evaluation with two students at USP University; Give training course for at least 50
minutes to level students; Give interval of 10 minutes for students; Distribute two types
of documents to provide objects randomization; Evaluate accuracy of design results
submitted by participants quantitatively to accept or reject the hypothesis.

(UEM) (USP)
Part 1 Part 2

Training CourseTraining Course Training CourseTraining Course 50 min.

30 min.

10 min.

Document AVMTools

Document ADocument A

Document BDocument B

Document BDocument B... ...

60 min.

Experiment Conduction

R
a

n
d

o
m

D

is
tr

ib
u

tio
n

R
a

n
d

o
m

D

is
tr

ib
u

tio
n

Evaluation Results

Pilot Evaluation

Interval Interval

Experiment Conduction Experiment ConductionExperiment Conduction

Evaluation Results

Pilot Evaluation

Interval Interval

Figure 9: Experiment Design Steps

We could not apply randomization for selecting participants due to their availability
for this experiment. However, we applied randomization during the interleaved distribu-
tion of “Document A” and “Document B” (see Section 5.1.8) for participants. Thus, we
had a balanced sample: 18 participants for treatment “Document A” and 18 for treatment
“Document B”.

5.1.8 Instrumentation

We created the following instruments for this experiment: a participant’s Characterization
Questionnaire with regard to experience in software architecture, software variability,
and UML; a Free Consent Term of Participation in the experiment for each participant;
training session materials on software variability, architecture design, software variabil-
ity tools, and UML package diagrams; “Document A” with VMTools-RA guidelines,

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 669

including a software variability tool to design, scope definition, glossary of terms, require-
ments, and VMTools-RA documentation; “Document B” with ArcDoc guidelines with a
software variability tool to design, scope definition, glossary of terms, and requirements
without VMTools-RA documentation; a questionnaire with multiple-choice and open
questions to gather participants qualitative perspective during architectural designing.

5.1.9 Validity Evaluation

This section discusses threats to the validity of the controlled experiment, including
mitigation plans for handling each of them.

An important threat to internal validity might be the experiment duration, which
might cause fatigue effects on the participants. The whole experiment was designed to
be performed in at least 110 minutes: 50 minutes for training session plus 60 minutes
for experiment tasks. We believed 60 minutes is enough due to the characteristics of the
single software architecture to be designed. To mitigate such threat, we allow participants
to have a brake of 30 minutes to have a meal, go to the bathroom, or just “take a breath”.
In addition, the very same training course offered with the same material and time at both
universities help to mitigate this internal threat, as well as perform the experiment in
only one day. We ask participants to not communicate with each other during break and
experiment tasks to avoid influencing the outcome of the study. Thus, we introduced a
human being observer, which might be a threat to construct validity. To control subjects’
different behavior when observed, we performed pre-tests during the training session
to adapt them to the experiment tasks. Another threat to internal validity is related
to measurements of time and accuracy for the design of software architectures. With
regard to the time measurement, we set the same start time for all participants in the first
part of the experiment performed at UEM. At USP, once the participants could start at
different times, they were asked to register their starting times. Once the experiment had
started, we monitored the participants for avoiding any communication among them.
The accuracy of results was measured by two criteria and six subcriteria, which reflects
a common understanding of the researchers about the software architecture design, as
defined in Section 5.1.4.

A threat to external validity is related to the total number of participants that may
have affected the representativeness of participants. We tried to invite as many students
and practitioners as available with minimum knowledge. Furthermore, there are no
participants exclusively from the industry. Students from two different universities are
invited towards mitigating this threat as they form a heterogeneous sample. Master’s
students, Ph.D. candidates, and undergraduates in the last year of the Computer Science
course are invited. As stated by [Falessi et al., 2017], the participation of students in
experiments is a valid resolution of the real-world need in a lab context. Furthermore,
[Salman et al., 2015] claimed in their controlled experiment that when a new approach
or technique is applied for both participants (students and professional from industry)
no significant difference in their performances are usually observed. Heterogeneity of
sample might be a threat to conclusion validity. According to [Höst et al., 2000], in the
context of project impact assessment, only minor differences are observed between the
conception of students and practitioners and there is no significant difference between
the correctness of experimental tasks of students and professionals.

A threat to conclusion validity is concerned about the experiment involving a re-
duced number of participants from academia, the result may not be conclusive, but
indicative. Empirical evaluations with practitioners from the industry who deal with
software variability tools would be more conclusive, however, we believe our results are

670 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

important for the software engineering community and for industrial sets because they
provide insights from undergraduate, Master’s, and Ph.D. candidates who are going to
be the next generation of industrial practitioners.

5.2 Operation

Operation is discussed in the next subsections in terms of preparation, execution of the
experiment itself, and data validation.

5.2.1 Preparation

We performed the following activities as preparation for the experiment execution:Train-
ing Session: we conducted a training session on basic concepts of software variability,
architecture design, software variability tools, and UML package diagrams. All concepts
were summarized in a paper sheet and distributed to all participants. The session took at
least 50 minutes and was conducted by the same instructor and with the same contents in
both universities. After the training session, another 10 minutes were spent on a pre-test
of five simple questions about the concepts taught to the students for verifying whether
they had understood them.Note, we did not introduce reference architecture concepts
during our training course. The aim of this experiment was for participants to
design a concrete architecture based on documentation they have available, which
could or not include a reference architecture.; and Distribution of Instrumentation:
we distributed instrumentation from Section 5.1.8 to each participant in a random and
interleaved way, thus reducing potential threats and providing a balanced sample. All
participants started at the same time.

5.2.2 Participation Procedures

Participants followed several steps during the execution of this experiment: participants
were oriented to design a concrete architecture according to the documentation they have
available (ArcDoc or VMTools-RA); the experimenter annotated the initial experiment
time at UEM and asked participants to annotate their initial time at USP; participants
read and signed the Consent Term; participants read and filled in the Characterization
Questionnaire; experimenter distributed “Document A” and “Document B” randomly
to each participant; participants read respective “Document A” or “Document B”; par-
ticipants design an architecture for a specific software variability tool according to the
documentation they have available, which included an example scenario, a list of re-
quirements, and specific information related to the software variability tool. Participants
were oriented to finish this activity when they felt all requirements defined in the docu-
mentation were attended; participants answered a questionnaire with multiple-choice
and open questions to gather participants’ qualitative perspective during architectural
designing; the experimenter annotated the experiment end time of each participant; the
experimenter validated data produced by each participant.

5.2.3 Data Validation

Validation of data was performed by following criteria defined in Section 5.1.4 for time,
accuracy, efficiency, and effectiveness.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 671

5.3 Analysis and Interpretation

Table 10 shows Time (TIME) spent, accuracy (ACCU), efficiency (EFFI), and effective-
ness (EFFE) observed values for each participant. Particip. means participant ID and
Type is the Documentation set used: VMTools-RA is “Document A” and ArcDoc is
“Document B”.

Particip. ID Venue Doc. Type TIME ACCU EFFI EFFE
S1 UEM VMTools-RA 30 0.50 0.01667 0.08333
S2 UEM ArcDoc 25 0.50 0.02000 0.08333
S3 UEM VMTools-RA 30 0.75 0.02500 0.12500
S4 UEM ArcDoc 17 0.50 0.02941 0.08333
S5 UEM VMTools-RA 30 1.25 0.04167 0.20833
S6 UEM ArcDoc 09 -1.25 -0.13889 -0.20833
S7 UEM VMTools-RA 18 1.25 0.06944 0.20833
S8 UEM ArcDoc 06 0.50 0.08333 0.08333
S9 UEM VMTools-RA 18 0.50 0.02778 0.08333
S10 UEM ArcDoc 15 0.50 0.03333 0.08333
S11 UEM VMTools-RA 16 1.25 0.07813 0.20833
S12 UEM ArcDoc 15 0.25 0.01667 0.04167
S13 UEM VMTools-RA 19 0.75 0.03947 0.12500
S14 UEM ArcDoc 10 -0.50 -0.05000 -0.08333
S15 UEM VMTools-RA 19 1.25 0.06579 0.20833
S16 UEM ArcDoc 15 -1.00 -0.06667 -0.16667
S17 UEM VMTools-RA 16 1.00 0.06250 0.16667
S18 UEM ArcDoc 15 -0.75 -0.05000 -0.12500
S19 USP VMTools-RA 28 1.00 0.03571 0.16667
S20 USP ArcDoc 63 0.25 0.00397 0.04167
S21 USP VMTools-RA 50 0.50 0.01000 0.08333
S22 USP ArcDoc 53 -1.25 -0.02358 -0.20833
S23 USP VMTools-RA 44 0.50 0.01136 0.08333
S24 USP ArcDoc 14 0.50 0.03571 0.08333
S25 USP VMTools-RA 30 1.25 0.04167 0.20833
S26 USP ArcDoc 33 1.00 0.03030 0.16667
S27 USP VMTools-RA 48 0.75 0.01563 0.12500
S28 USP ArcDoc 38 0.50 0.01316 0.08333
S29 USP VMTools-RA 45 1.00 0.02222 0.16667
S30 USP ArcDoc 35 0.25 0.00714 0.04167
S31 USP VMTools-RA 40 1.25 0.03125 0.20833
S32 USP ArcDoc 41 0.50 0.01220 0.08333
S33 USP VMTools-RA 47 0.75 0.01596 0.12500
S34 USP ArcDoc 45 -1.00 -0.02222 -0.16667
S35 USP VMTools-RA 48 1.00 0.02083 0.16667
S36 USP ArcDoc 29 0.50 0.01724 0.08333

Table 10: Descriptive Statistics of Results from UEM and USP.

5.3.1 Descriptive Statistics

Table 11 shows the descriptive statistics for the experiment. Mean, median, standard
deviation, maximum, and range values were calculated from each dependent variable.
Descriptive statistics enable measurements of the difference between two treatments for
each variable. For instance, mean values of variable TIME fromVMTools-RA (32.00000)

672 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

and ArcDoc (26.55556) were used to find the percentage7 of difference between the two
treatments. For variable TIME, the VMTools-RA group spent 9.3% more time designing
architecture in comparison to ArcDoc. However, in terms of accuracy ACCU, efficiency
EFFI, and effectiveness EFFE, the participants who used VMTools-RA achieved better
results, as shown in Table 11. Some values for ACCU, EFFE, and EFFI are negatives,
and they refer to situations where the architectural design, description, and requirements
were incompatible with each other. When design conflicts were found, we removed 0.25
points for each conflict.

VMTools-RA Mean Median Min Max Range
Lower

Quartile

Upper

Quartile

Quartile

Range
Std.Dev.

Standard

Error

TIME 32.00000 30.00000 16.00000 50.00000 34.00000 19.00000 45.00000 26.00000 12.63050 2.977036

ACCU 0.91667 1.00000 0.50000 1.25000 0.75000 0.75000 1.25000 0.50000 0.29704 0.070014

EFFI 0.03506 0.02951 0.01000 0.07813 0.06813 0.01667 0.04167 0.02500 0.02121 0.004999

EFFE 0.15278 0.16667 0.08333 0.20833 0.12500 0.12500 0.20833 0.08333 0.04951 0.011669

ArcDoc Mean Median Min Max Range
Lower

Quartile

Upper

Quartile

Quartile

Range
Std.Dev.

Standard

Error

TIME 26.55556 21.00000 6.00000 63.00000 57.00000 15.00000 38.00000 23.00000 16.47894 3.884124

ACCU 0.00000 0.37500 -1.25000 1.00000 2.5000 -0.75000 0.50000 1.25000 0.73264 0.172685

EFFI -0.00272 0.01268 -0.13889 0.08333 0.22222 -0.02358 0.02941 0.05300 0.04978 0.011734

EFFE 0.00000 0.06250 -0.20833 0.16667 0.37500 -0.12500 0.08333 0.20833 0.12211 0.028781

Table 11: Descriptive Statistics for the two Treatments (VMTools-RA and ArcDoc)

The boxplots summarize the architecture design results for each treatment showing the
median and the bottom and top quartiles (25 percentiles and 75 percentiles), respectively
[Wohlin et al., 2012]. Values outside this range are known as outliers and indicate a strong
deviation from other observations in the sample. The VMTools-RA group, showed no
outliers, as illustrated in Figures 10a), 10b), 10c), and 10d); however, the ArcDoc group
found a negative outlier from a participant (S6) (see Figure 10c) for variable EFFI. This
participant had superficial knowledge about software variability, which might explain an
unsatisfactory result. Despite this deviation value, the outlier was not removed because
it exerted no adverse effect on the amount of data available.

We plot a radar graph represented in Figure 11 to display an overview of variables
TIME, ACCU, EFFI, and EFFE from the two treatments used in this experiment. Values
were converted to a scale from -10 to 100 (i.e. ACCU multiplied by 10, EFFI multiplied
by 100, and EFFE multiplied by 100) aiming to fit all variables and treatments in the
same graph.

The dotted line indicates that VMTools-RA clearly achieves more effectiveness,
accuracy, efficiency, and more time during the controlled experiment compared to
ArcDoc, represented with a darker line.

5.3.2 Normality and Hypothesis Tests

This section details our statistical hypothesis test that compared two independent sam-
ples (VMTools-RA and ArcDoc). Shapiro-Wilk test [Wohlin et al., 2012] was applied
for identifying the most adequate statistical hypothesis test sample. Data are normally

7 The percentage calculus for variable TIME:
((32.0000−26.55556)∗100)

(32.0000+26.55556)
= 9.3%

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 673

VMTools-RA ArcDoc
-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

E
F

F
I

VMTools-RA ArcDoc
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
F

F
E

 Median 25%-75% Non-Outlier Range Outliers Extremes

c) d)

VMTools-RA ArcDoc
0

10

20

30

40

50

60

70

T
IM

E

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

VMTools-RA ArcDoc

A
C

C
U

a) b)

Figure 10: Boxplots: a) Time; b) Accuracy; c) Efficiency; d) Effectiveness

distributed when p-value is higher than 0.05 (α > 0.05); therefore, parametric tests, for
instance, t-test can be applied. The data distribution is not normal when p-value is lower
or equal to 0.05. In this case, nonparametric tests, including Mann-Whitney [Wohlin
et al., 2012], are used. Table 12 shows Shapiro-Wilk normality test. Once different
types of distribution were provided for our variables, we applied t-test for EFFE and
Mann-Whitney test for TIME, ACCU, and EFFI. According to [Wohlin et al., 2012],
when there is the need to compare two types of distribution (normal and non-normal)
as we have in this study for variable TIME, a nonparametric technique is applied. We
performed the statistics tests with IBM Statistics SPSS tool8.

Results from t-test for variable EFFE (Table 13) indicated p-value was lower than

8 https://www.ibm.com/products/spss-statistics/support

674 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Time (TIME)

A
cc

u
ra

cy
 (

A
C

C
U

)

Ef
fe

ct
iv

en
es

s
(E

FF
E)

 VMTools-RA ArcDoc

21.8

9.4

4.7

15.7

14.1

-1.4

-1.4

-2.3 -5.0

0.0

5.0

10.0

15.0

20.0

25.0

Efficiency (EFFI)

Figure 11: Radar chart for architectural design analysis (Values converted to a scale

ranging from -5 to 25)

VMTools-RA ArcDoc

Variables p-value Distribution p-value Distribution

TIME 0.02054 non-normal 0.10003 normal

ACCU 0.00726 non-normal 0.00181 non-normal

EFFE 0.05459 normal 0.05247 normal

EFFI 0.00726 non-normal 0.00181 non-normal

Table 12: Shapiro-Wilk normality test

0.05, therefore, null hypothesisH0Effe could be rejected for EFFE, once VMTools-RA
and ArcDoc showed a statistically significant difference between them.

Results fromMann-Whitney test for variable TIME produced a p-value higher than
0.05 (p = 0.09), which indicates null hypothesis H0Time for variable TIME could not
be rejected. It means there is no statistical difference at using VMTools-RA and ArcDoc
in terms of time to design a software architecture. However, when variables ACCU,
EFFE, and EFFI are considered, p-value is significantly smaller than 0.05. The results
in Table 13 and those from descriptive statistics (Table 11) revealed null hypotheses
H0Accu,H0Effe,H0Effi can be rejected due to a statistically significant difference
between the two treatments. Moreover, the mean and median of each variable are much
higher for VMTools-RA treatment.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 675

Variables p-value Hypothesis test
Reject Null

Hypothesis?

TIME 0.099928 Mann-Whitney test No

ACCU 0.000018 Mann-Whitney test
Yes, accept H1Accu

ArcDoc<VMTools

EFFE 0.006205 t-test
Yes, accept H1Effe

ArcDoc<VMTools

EFFI 0.000022 Mann-Whitney test
Yes, accept H1Effi

ArcDoc<VMTools

Table 13: Results from Hypothesis Tests

5.3.3 Qualitative Analysis

Our experimental study also included means of collecting qualitative insights from
participants. We designed a short questionnaire with multiple-choice questions and open
questions to gather participants’ perspectives during architecture design. As the data is
qualitative, the results are indicative.

With respect to the multiple-choice question, we asked participants about the level
of difficulties faced by them during the design of the software architecture with and
without VMTools-RA. Most participants (77.8%) declared they found the design of
software architecture a moderate to difficult task and only 22.2% of participants found it
easy. Some answers given by participants related to their difficulty to design a concrete
architecture are summarized as follows: S11, S35, and S13 - I missed more information
to design a concrete architecture with VMTools-RA; S23 - Deeper knowledge about
software architecture area and UML package diagrams; S1, S25, and S33 - Description
of what each component is and what each component does, what are the dependency
relationships between them. S7 - A Tool to model instead of drawing on paper.

Table 14 summarizes our results.

Level of difficulty VMTools-RA ArcDoc Total

Hard 9 12 21

Moderate 7 0 7

Easy 2 6 8

Table 14: Level of difficulty to design the software architecture

We also elaborated on specific questions to understand participants’ perceptions of
each treatment. With respect to ArcDoc, we asked 18 participants whether they missed
a support structure to guide them during architecture design. As result, 55.5% of the
participants declared that an infrastructure was not necessary, and 44.4% of participants
said they missed a supporting infrastructure during architecture design.

With respect to participants who used VMTools-RA, we asked them whether the
reference architecture was useful during the design activity. 95.0% of participants (out
of 18 participants) stated it helped them during design tasks and only one participant
(5.5%) declared VMTools-RA was not useful, which is detailed as follows: S21 - “I

676 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

have no knowledge to present the elements that are part of the application layer of the
architecture, as I have no knowledge about sw architecture”.

For the open questions, we gathered qualitative data from all answers discussed by
students for each treatment. We employed Grounded Theory procedures by using Open
Coding and Axial Coding. Open Coding is an analytical process in which concepts are
identified and separated into discrete parts for analysis, comparison, and categorization
of data. It can be performed manually through the reading of recovered data and grouping
similar information into codes. Axial Coding handles connections among codes identified
in the previous process (Open Coding) and groups them according to their properties
for representing categories [Strauss and Corbin, 1998]. We performed the identification
of categories and codes using a tool for qualitative analysis9 for each treatment. We
reported in this section some quotes of statements declared by participants.

With respect to VMTools-RA, we identified two categories and 15 codes as presented
in Figure 12. In the such figure, VMTools-RA is connected to categories “provide
support to” and “missing information”. These categories were identified according to
the questions: 1) How did VMTools-RA help you? and 2) Did you miss any support
infrastructure?, respectively.

Following are the main categories and codes reported through participants’ discus-
sions. We identified the following codes for category Provide support to: Everything:
“S35: It helped in everything, it was the basis for the design.”; Organization: “S11: It
supports the organization of modules that the software needs to perform in the applica-
tion”; Dependencies: “S31: It helped me understand what elements are needed, how
they are connected, and the dependency between them.”; Representation: “S7: It helped
to get an idea of how to organize and how to represent the module.”; Relationship: “S3:
It helped to understand the cycle of interactions between the elements; Identification:
“S1: It helped me to identify the key elements to be considered at the application layer.”.

For categoryMissing information, we have the following codes: Knowledge about
software architecture: “S11: I missed further software architecture knowledge for better
design a tool.” Training course: “S29: I missed a training course step-by-step about
how to design the elements in a package diagram.”; Dependencies: “S15: I missed
definition about integration an dependencies.”; Reference Architecture Concepts: “S13:
I missed an explanation about how to use the VMTools-RA.”; Integration: “S15: It misses
definition about integration and dependencies.”; Tool for modeling: S7: “I missed a
tool for modeling.”; Granularity level: “S3: I found it difficult to understand the level of
abstraction for the modeling.”; Relationship: “S1: A set of possible relationships could
be presented for package diagrams. In my evaluation, I would only consider a persistent
relationship.”

Overall, we have observed that VMTools-RA supports many steps related to the
design of a software architecture for VMTools-RA; however, some participants still
missed more information about the reference architecture concept. This is explained
due to the fact that we did not treat concepts about reference architecture in our training
course. In addition, we believe an instantiation guide to using VMTools-RA is necessary.

Regarding ArcDoc, most of the participants did not answer the open question; thus,
we only identified one category and five codes as shown in Figure 13. In such figure,
ArcDoc is connected to the category “software artifact” that was identified according
to the question: 1) What kind of software artifact would support you during the design
task?.

Considering ArcDoc, we identified the category Software artifact and the following

9 http://www.maxqda.com

http://www.maxqda.com

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 677

VMTools-RA

missing information

knowledge about software architecture

trainning course

dependencies

reference architecture concepts integration tool for modeling

granularity level

relationship

provide support to

everything

organization

dependencies

representation

relationship

identification
guideline

Figure 12: Graph representation from the two categories and codes identified for

VMTools-RA

ArcDoc

software artifact

reference model

reference diagram data model

concepts about software architecture

basic infrastructure

Figure 13: Graph representation from the category and codes identified for ArcDoc

codes: Reference model: “S30: A reference model would be very useful for designing the
software variability tool.”; Reference diagram: “S18: I missed a reference diagram or a

678 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

use case diagram describing the steps to design an architecture.”; Data model: “S32:
A data model presenting the information flow in the main modules.”; Concepts about
software architecture:“S22: I missed a greater knowledge about software architecture
and motivation for each element”; Basic infrastructure: “S20: A basic structure to
support the design.”

In summary, the qualitative evaluation from ArcDoc provides evidence about the
need for an infrastructure to better complete the design task.

5.4 Presentation and Package

We organized the package of this experiment by building a static HTML page with all
instrumentation and experimental datasets, which is publicly and permanently available
at https://doi.org/10.5281/zenodo.2352150. We followed the main principles of Open
Science, such as open data and open methodology, for allowing the reproducibility and
auditability of experimental studies.

5.5 Discussion of Results

We conducted a controlled experiment for analyzing the feasibility of VMTools-RA for
the design of architecture for software variability tools in terms of time, accuracy, effec-
tiveness, and efficiency. Experimental results indicate participants who used VMTools-
RA achieved better accuracy in the design of the software architecture in comparison to
participants who did not use it. Those who used VMTools-RA outperformed all evalu-
ation criteria presented in Section 5.1.4. However, results confirmed participants who
used VMTools-RA spent more time completing the architecture design activity. We
believe the lack of training about reference architectures may have affected the time
required for such an activity.

As described in Section 5.1.6, participants had different experiences in software
architecture and software variability. According to the results, they benefited from using
VMTools-RA for designing software variability tools architecture compared to the usage
of ArcDoc. A comparison of results from those participants revealed graduate participants
achieved significantly better design results than undergraduate ones, which implies the
necessity of training on the design of architectures for inexperienced undergraduate
students when no source of design support is available.

VMTools-RA provides the main functionalities and elements for the development
of different software variability tools; however, we are aware some functionalities and
capabilities are still missing in our reference architecture, as we need more evaluations
with experts to provide more accurate results of VMTools-RA use. In addition, our
research group intends to develop a software variability tool based on the VMTools-RA
for providing more evidence about the effectiveness of the proposed approach in the
design of a new software variability tool.

The main lessons learned from this experiment are discussed as follows.
The Controlled Experiment: the experiment conducted investigated the benefits

associated with the use of VMTools-RA for the design of an architecture for software
variability tools. It was performed on an academic background with students from two
different universities and with different academic levels. This experiment supports our
hypothesis on the advantages of usingVMTools-RAwith respect to the accuracy of design
results. The quantitative results show VMTools-RA did not impact favorably on the time
spent on the architectural design of variability management tools. However, regarding

https://doi.org/10.5281/zenodo.2352150

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 679

accuracy, effectiveness, and efficiency, VMTools-RA impacted positively, although
the participants were not experts in reference architecture and software variability tools.
Experiments are necessary for industrial contexts, however, we believe this controlled
experiment provides evidence the reference architecture can support some stakeholders
during their daily work activities.

Impact of Students Skills: the experiment was conducted with undergraduate and
graduate students. The graduate ones achieved better results with respect to accuracy,
effectiveness, and efficiency in the design of software architecture. However, they took
more time in each activity, which might indicate more commitment to the experiment in
comparison to the undergraduates. We believe results from undergraduate students are
also significant as stated by [Daun et al., 2015, Falessi et al., 2017].

Recommendations for Researchers and Practitioners: the design of software
architecture can be very hard for students of software engineering courses. For this reason,
we recommend conducting a more detailed training course with practical exercises about
concepts related to software architecture design and UML concepts.

6 Phase 3: VMTools-RA Instantiation for Developing the SMarty-
Modeling Tool

SMartyModeling [Silva et al., 2022, Silva and OliveiraJr, 2021] is an environment for
engineering UML-based SPLs in which variabilities are modeled as stereotypes using
any UML-compliant profile. We are currently adopting the SMarty approach [OliveiraJr
et al., 2010] for variability management.

The environment supports feature, use case, class, component, sequence, and activity
diagrams. It has as main features in its current version10: variability modeling and
constraining, matrix-based support to traceability among SPL elements, and specific
product configuration, SPL evaluation, and information export/import.

6.1 VMTools-RA Instantiation and Decisions

We selected the following VMTools-RA architectural requirements from Table 2 for
developing SMartyModeling according to its planned features, as follows: (AR.1.1)
Manage domain assets (e.g., features, models, requirements, and test cases); (AR.1.2)
Build variability models independent from the approach or notation; (AR.1.3) Consider
composition rules (e.g., cardinalities and dependencies); (AR.1.5) Document variability
models in detail; (AR.1.6)Validate conformance among variability models by using auto-
matic consistency check; (AR.2.2) Implement impact analysis to determine what changes
are required; (AR.2.5) Provide guidance to support variability management; (AR.2.9)
Support import/export of variability assets and relevant information; and (AR.2.11)Offer
efficiency scalability of feature models.

We designed the SMartyModeling architecture according to the VMTools-RA de-
scription of elements and views. As VMTools-RA is widely designed for software
variability, we decided to develop an environment for SPL variability. VMTools-RA
does not specify a specific architectural pattern or style. Therefore, we built SMartyMod-
eling under the Model-View-Controller (MVC) pattern.

10 Demo video at https://youtu.be/Rt2wlrPSOI4

https://youtu.be/Rt2wlrPSOI4

680 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

The SMartyModeling architecture is composed of classes and interfaces organized
in four main packages: Model, Controller, View, and File. The latter has two sub-
packages: Export and Import. Figure 14 depicts the SMartyModeling high-level pack-
age diagram.

Figure 14: Logical Architecture of SMartyModeling

To build such an architecture, we adapted certain VMTools-RA views and elements
for the context of SPL specifically aiming at: identifying, constraining, representing, and
tracing variabilities. Figure 15 depicts VMTools-RA elements and views instantiated
for SMartyModeling and a brief description of the decisions made for the SMartyMod-
eling architecture. Such a figure is a representation of a VMTools-RA instance in the
perspective of the Module View of Figure 7.

The activities described by VMTools-RA (Tables 4, 5, 6, 7, and 8) were essential to
gather up information and determine the organization of concerns in the structure of the
environment during the requirements phase.

Regarding the assets base (described in Table 4), the identification of domain assets
is constrained to the scope of the architectural elements, in particular, the use case, class,
component, activity, and sequence diagrams following the UML metamodel and offering
support to SPL concepts. SMartyModeing allows asset control over traceability among
elements, products, and instances, as well as SPL metrics. Despite allowing assets import
and export, the environment does not provide direct integration with repositories or asset
access policies.

Activities related to the integration of SMartyModeling with other tools (Table 5)
are more complex due to the fact that there are multiple SPL tools, aimed at different
purposes, with particular file format management. Therefore, we keep SMartyModeling
project information in a file with the .smty extension, in which all the information is
hierarchically organized throughout an XML file. The model with the export format is
available to support the processing of such data. We already developed an integration of
SMartyModeling to FeatureIDE11 for both importing and exporting feature models. We
are also integrating SMartyModeling to DyMMer [Bezerra et al., 2021] to evaluate the
quality of feature models and their maintainability decisions throughout metrics.

Variability modeling and validation (Table 6) are significant features for SMarty-
Modeling and have been adapted for the SPL context. The structure of the Variability
class includes attributes such as name, variation point, variants, constraint, minimum,
and maximum values. The framework for variability and dependency and uniqueness
associations was built based on the SMarty approach, including the stereotypes described

11 https://www.featureide.de

https://www.featureide.de

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 681

Figure 15: VMTools-RA Module View Instance for SMartyModeling

by the SMartyProfile. The variabilities are represented in the modeling panels of the
UML diagrams. Consistency checking is performed at runtime as variability is created
or updated. The variabilities are included in the export file as part of a diagram. SMarty-
Modeling also allows the export of images containing the visual representation of the
variability in a given diagram.

Regarding variability evolution (Table 7), the environment supports eventual changes
regarding information about variability, in particular, changes in variants and variation
points. The impact analysis on possible changes can be performed by defining traceability,
however, this process requires the user to manually indicate which elements are related
to a particular functionality or interest.

For variability decisions (Table 8), the environment supports diagram instantiation
and product generation by means of a variability resolution process, thus allowing the
user to complete the instantiation process respecting the constraints and the selected
variants. The variability class has the binding time attribute, which holds information on
the moment of the SPL life cycle that a given variability must be resolved.

6.2 SMartyModeling Design and Implementation

Figure 16 depicts the internal organization of the model package aiming at the separation
of concerns, increasing cohesion, and decreasing coupling according to VMTools-RA
modules instances.

682 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Figure 16: Classes and Interfaces of the Package model from Figure 14

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 683

The package model has asmain class Project, which is related to several other essen-
tial classes and interfaces, such as: Profile, Traceability, Diagram, Stereotype,
and Product.

The class Project contains a reference to a set of Diagram, which allows variability
modeling in use case, class, component, sequence, and activity diagrams. Each Diagram
is a composition of Element, Association, and Variability.

We defined the structure of a Variability taking into consideration tagged-values
of a variability definition in the SMarty approach. Therefore, a Variability is related
to a variation point and a set of variants to resolve such variation point.

The class Project is related to a Profile, which defines the role of each Stereotype
for modeling variabilities. For instance, the user might adopt Gomaa’s profile [Gomaa,
2006], Ziadi et al.’s [Ziadi et al., 2003], or the SMartyProfile [OliveiraJr et al., 2010].
We set the latter as default.

One or more SPL-specific Product might be configured for a Project. Each
Product is composed of Instance, which is a composition of Relationship and
Artifact. An Instance class refers to a Diagram, thus a Product is composed of a
set of Diagram.

From the VMTools-RA instantiated elements (Figure 14) and the high-level architec-
ture of the environment (Figure 15), we established a relationship among the elements
of the VMTools-RA and the architecture of the environment. Thus, we present how a
described element of VMTools-RA is transformed into a solution from an architectural
point of view for SMartyModeling.

The architectural elements of SMartyModeling responsible for carrying out variabil-
ity management activities are present in the model package, especially the Variability
and Traceability classes. The modeling panel includes the PanelBaseVariability
and PanelBaseVariants view classes, responsible for defining the interface with in-
formation about the variability and its variants, and PanelBaseTraceability and
PanelBaseElements, with information on traceability and its elements. In the environ-
ment, every view class has a controller class, responsible for validating and updating the
attributes of the model class. Figure 16 presents the main packages and classes related to
Variability Management.

For Support, versioning is restricted at the project and product level via the version
attribute. The import and export functions are arranged in the file package, and the
Project information is hierarchically organized in a standard format throughout the
export method of the Exportable interface. The ImportProject class is responsible
for importing the project, including reading all members, and for every diagram, the
import is performed by the ImportDiagram class.

6.3 Running Example for Modeling Use Cases

We used the Arcade GameMaker12 (AGM) SPL to this example. We, then, started model-
ing the AGM use case diagram with two actors (Game Player and Game Installer);
eight use cases (Save Score, Install Game, Exit Game, Uninstall Game, Play
Selected Game, Play Brickles, Play Pong, and Play Bowling) (Figure 17).

Then, we can start modeling variabilities. Optional use cases are modeled simply
by selecting one of them, then unchecking the mandatory check box in the bottom left
panel. The selected use case automatically changes to the annotation�optional�. For
instance, use case Save Score is now optional (see Figure 18).

12 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=485941

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=485941

684 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

Figure 17: Modeling Variability in Use Cases with SMartyModeling

Tomodel a variation point, we select a use case, for instance, Play Selected Game,
then, select the�variationPoint� in the Stereotype window at the bottom left panel.
The same is done for inclusive (�alternative_OR�) or exclusive (alternative_XOR)
variants.

Figure 18: Creating Variation Points in Use Cases with SMartyModeling

We can use SMartyModeling to configure a product by resolving variabilities, as in
Figure 19.

When saving the SMartyModeling project, one creates a “smty” file, which is an
XML-format file. Tags are hierarchically organized according to the structure presented

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 685

Figure 19: Configuring Products with SMartyModeling

in Figure 15. It starts with data on the project, then stereotypes, profiles, diagrams, and
respective elements, relationships, variability, and products. Figure 20 depicts an excerpt
of the such file created for Figure 18.

Figure 20: SMartyModeling project data file

686 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

7 Discussion of Results and Lessons Learned

One of the challenges in this research was the lack of reference architectures for variability
management tools. Two important SPL international standards, namely ISO/IEC 26550
and ISO/IEC 26555 were used. They are more abstract in comparison to reference
architectures. Moreover, the functionalities and technologies used in the development of
software variability tools were identified for the obtaining of variability management
information. Although an SMS was performed towards gathering more data about such
solutions, not enough information on the technologies used for their construction was
found. Online reports from the most known proprietary solutions, namely Gears, and
pure::variants, were therefore searched. They provided knowledge about APIs used for
integration among tools used for specifying our VMTools-RA deployment view and
information on software architecture representation, which influenced the specification
of VMTools-RA as a layered architectural style. More technical details are necessary
for the design of software architectures based on our reference architecture and a survey
with practitioners from the industry may be a solution. However, it is outside of the scope
of this research.

The identification of views that might be necessary for different stakeholders’ con-
cerns was a difficult task to be performed. The description used in FERA (Framework for
Evaluation of Reference Architectures) [Santos et al., 2013] was followed and it guided
the specification of VMTools-RA and supported us to decide which view should be
presented in our reference architecture documentation. A survey with practitioners from
the industry may contribute to the identification of other views that were not described
in this research.

The development of SMartyModeling involved a series of decisions, starting from
the understanding of the views and elements described by VMTools-RA to the planning,
definition, and implementation of the environment’s architecture. The complete process
allows for more elaborate analysis.

Instantiating an architecture from a reference architecture is based on the principle
of reusing knowledge learned from previous architectures and projects. Especially in the
context of SMartyModeling, its architecture instantiation from VMTools-RA allowed us
to previously understand the concepts and views on variability. Even before designing
any solution, we could have a broad view of the concepts about the domain and the main
activities involved, which is essential for defining the architecture of the environment.

It is also important to emphasize that the scope contemplated by VMTools-RA
encompasses software variability tools in a broader context. Given this, the first decision
we had was to restrict the domain of the environment architecture, to focus on the
representation of variability for the SPL context. However, regardless of this restriction,
the concepts and elements described mainly in terms of Variability Management were
taken into account for the representation of variability in the environment, naturally
adapted to the SPL domain.

The instantiation and implementation of an architecture from VMTools-RA mainly
collaborate with a practical application and are part of a maturity process for the RA
itself. Among the points to improve in the environment, even though it is focused on
SPL, it could include more elements described by VMTools-RA. In particular, regarding
the evolution of variability, we foresee a solution that encompassed a control with the
information and management of the evolution of the variability during the project. Such
functionality would even allow a broader view of the impact caused by changing a given
variability.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 687

The environment export module was built considering the elements described, as
VMTools-RA supports such activities. It would be more complete if it allowed the
persistence of packages, source code, test plans, and other artifacts, with the possibility
of including integration with repositories that control changes and versioning.

8 Final Remarks

Software variability tools and reference architecture are two important research topics in
the software engineering area. Reference architectures have played an important role
in the development, evolution, and standardization of software systems. Variability
management has been consolidated as one of the essential activities for a successful
non-opportunistic reuse of software artifacts. Aiming at promoting the development of
variability-intensive software systems through the support of the design of variability
tool, this paper presents the reference architecture VMTools-RA. A set of architectural
requirements, stakeholders, concerns, and risks identified can also be considered con-
tributions, as they can provide knowledge for the development of other tools or the
establishment of other reference architectures in the variability management context.

Results of a qualitative empirical evaluation based on checklist inspection and experts’
comments enabled the improvement and design of a second version of VMTools-RA. A
preliminary analysis revealed VMTools-RA supports the design of software variability
tools.

Future works include: further incorporating evaluation-based changes to VMTools-
RA proposed by participants; evaluation of VMTools-RA from both specification and
instantiation perspectives; including new features to SMartyModeling as a way to eval-
uate VMTools-RA adequacy; and empirically evaluating SMartyModeling with SPL
practitioners.

Acknowledgements

The authors would like to enormously thank all the participants from the State University
of Maringá (UEM) and the University of São Paulo (USP) for attending the evaluation.
They are also indebted to Amazon.CA and the Federal University of Bahia. Edson
OliveiraJr thanks National Council for Scientific and Technological Development CNPq
(Grant # 311503/2022-5). Elisa Y. Nakagawa thanks the São Paulo Research Foundation
FAPESP (Grants #2015/24144-7, #2016/05919-0, #2018/20882-1) and CNPq (Grant #
313245/2021-5).

References

[Allian et al., 2020] Allian, A. P., OliveiraJr, E., Capilla, R., and Nakagawa, E. Y. (2020). Have
variability tools fulfilled the needs of the software industry? J. Univ. Comp. Sci., 26(10):1282–1311.

[Angelov et al., 2013] Angelov, S., Trienekens, J. J. M., and Kusters, R. J. (2013). Software
reference architectures - exploring their usage and design in practice. In 7th European Conference
on Software Architecture (ECSA 2013), pages 17–24, Montpellier, France. Springer.

[Bashroush et al., 2017] Bashroush, R., Garba, M., Rabiser, R., Groher, I., and Botterweck, G.
(2017). CASE tool support for variability management in software product lines. ACM Computer
Survey, 50(1):14:1–14:45.

688 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

[Bayer et al., 2004] Bayer, J., Forster, T., Ganesan, D., John, I., Knodel, J., Kolb, R., and Muthig,
D. (2004). Definition of Reference Architectures based on Existing Systems. Technical Report 34,
Fraunhofer Institute for Experimental Software Engineering (IESE 2004), Kaiserslautern, Germany.

[Berger et al., 2013] Berger, T., Rublack, R., Nair, D., Atlee, J. M., Becker, M., Czarnecki, K.,
and Wsowski, A. (2013). A survey of variability modeling in industrial practice. In 7th VaMoS,
pages 7:1–7:8, Pisa, Italy.

[Bezerra et al., 2021] Bezerra, C., Lima, R., and Silva, P. (2021). Dymmer 2.0: A tool for dynamic
modeling and evaluation of feature model. In Brazilian Symposium on Software Engineering, page
121–126, New York, NY, USA. Association for Computing Machinery.

[Bosch et al., 2015] Bosch, J., Capilla, R., and Hilliard, R. (2015). Trends in systems and software
variability. IEEE Software, 32(3):44–51.

[Capilla et al., 2013] Capilla, R., Bosch, J., and Kang, K. C. (2013). Systems and Software
Variability Management: Concepts, Tools and Experiences. Springer.

[Chen et al., 2009] Chen, L., Babar, M. A., and Ali, N. (2009). Variability management in
software product lines: A systematic review. In 13th SPLC, pages 81–90, San Francisco, California.

[Cloutier et al., 2010] Cloutier, R. J., Muller, G., Verma, D., Nilchiani, R., Hole, E., and Bone,
M. A. (2010). The concept of reference architectures. System Engineering, 13(1):14–27.

[Daun et al., 2015] Daun, M., Salmon, A., Weyer, T., and Pohl, K. (2015). The impact of students’
skills and experiences on empirical results: a controlled experiment with undergraduate and
graduate students. In 19th International Conference on Evaluation and Assessment in Software
Engineering, EASE 2015, pages 29:1–29:6, Nanjing, China.

[Dobrica and Niemela, 2008] Dobrica, L. and Niemela, E. (2008). An approach to reference
architecture design for different domains of embedded systems. In SERP, pages 287–293, Las
Vegas, NV, United States.

[Duarte, 2013] Duarte, L. S. (2013). Establishment of a reference architecture for digital television
applications. Master’s thesis, University of São Paulo, São Carlos, Brazil. Master Thesis.

[EIRA, 2018] EIRA (2018). European interoperability reference architecture (eira). URL:
https://ec.europa.eu/isa2. Accessed in 2018.

[Falessi et al., 2017] Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka,
A., and Oivo, M. (2017). Empirical software engineering experts on the use of students and
professionals in experiments. Empirical Software Engineering.

[Feitosa, 2013] Feitosa, D. (2013). Simus - reference architecture for service multirobotics
systems. Master’s thesis, University of São Paulo, São Carlos, Brazil. Master Thesis.

[Galster et al., 2014] Galster, M., Weyns, D., Tofan, D., Michalik, B., and Avgeriou, P. (2014).
Variability in software systems - A systematic literature review. IEEE Transactional Software
Engineering, 40(3):282–306.

[Gomaa, 2006] Gomaa, H. (2006). Designing software product lines with uml 2.0: From use
cases to pattern-based software architectures. Springer-Verlag.

[Höst et al., 2000] Höst, M., Regnell, B., and Wohlin, C. (2000). Using Students as Subjects—A
Comparative Study of Students and Professionals in Lead-Time Impact Assessment. Empirical
Software Engineering, 5(3):201–214.

[ISO/IEC26550, 2015] ISO/IEC26550 (2015). Software and systems engineering - Reference
model for product line engineering and management (ISO/IEC 26550).

[ISO/IEC26555, 2015] ISO/IEC26555 (2015). Software and systems engineering - Tools and
methods for product line technical management (ISO/IEC 26555).

[ISO/ISO42010, 2011] ISO/ISO42010 (2011). Iso/iec/ieee 42010:2011. systems and software
engineering — architecture description.

Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ... 689

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.
(1990). Feature-oriented domain analysis (foda): Feasibility study ;. Technical Report Technical
Report CMU/SEI-90-TR-21 - ESD-90-TR-222, CMU/SEI.

[Lisboa et al., 2010] Lisboa, L. B., Garcia, V. C., Lucrédio, D., de Almeida, E. S.,
de Lemos Meira, S. R., and de Mattos Fortes, R. P. (2010). A systematic review of do-
main analysis tools. Information and Software Technology, 52(1):1–13.

[Martínez-Fernández, 2013] Martínez-Fernández, S. (2013). Towards supporting the adoption of
software reference architectures: An empirically-grounded framework. In 11th IDoESE, pages
1–8, Baltimore, Maryland USA.

[Muller and Laar, 2008] Muller, G. and Laar, P. (2008). Right sizing reference architectures -
how to provide specific guidance with limited information. In 18th INCOSE, pages 1–8, Utrecht,
Netherlands.

[Nakagawa et al., 2007] Nakagawa, E. Y., da Silva Simão, A., Ferrari, F. C., and Maldonado,
J. C. (2007). Towards a reference architecture for software testing tools. In 9th SEKE, pages
157–162, Boston, Massachusetts.

[Nakagawa et al., 2011] Nakagawa, E. Y., Ferrari, F. C., Sasaki, M. M. F., and Maldonado, J. C.
(2011). An aspect-oriented reference architecture for software engineering environments. Journal
of Systems and Software, 84(10):1670–1684.

[Nakagawa et al., 2014] Nakagawa, E. Y., Guessi, M., Maldonado, J. C., Feitosa, D., and
Oquendo, F. (2014). Consolidating a process for the design, representation, and evaluation of
reference architectures. In 2014 IEEE/IFIP Conference on Software Architecture, pages 143–152,
Washington, DC, USA. IEEE Computer Society.

[Oliveira and Nakagawa, 2011] Oliveira, L. B. R. and Nakagawa, E. Y. (2011). A service-
oriented reference architecture for software testing tools. In 5th ECSA, pages 405–421, Essen,
Germany.

[OliveiraJr et al., 2010] OliveiraJr, E., Gimenes, I. M. S., and Maldonado, J. C. (2010). Sys-
tematic management of variability in uml-based software product lines. Journal of Universal
Computer Science (JUCS), 16(17):2374–2393.

[Pereira et al., 2015] Pereira, J. A., Constantino, K., and Figueiredo, E. (2015). A systematic
literature review of software product line management tools. In 14th ICSR, pages 73–89, Miami,
FL, USA.

[Pohl et al., 2005] Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software Product Line
Engineering: Foundations Principles and Techniques, volume 26. Springer-Verlag New York
Inc., Secaucus, NJ, USA.

[Raatikainen et al., 2019] Raatikainen, M., Tiihonen, J., and Männistö, T. (2019). Software prod-
uct lines and variability modeling: A tertiary study. Journal of Systems and Software, 149:485–510.

[Rodriguez et al., 2015] Rodriguez, L. M. G., Ampatzoglou, A., Avgeriou, P., and Nakagawa,
E. Y. (2015). A reference architecture for healthcare supportive home systems. In 28th CBMS,
pages 358–359, São Carlos, Brazil. IEEE Computer Society.

[Salman et al., 2015] Salman, I., Misirli, A. T., and Juzgado, N. J. (2015). Are students represen-
tatives of professionals in software engineering experiments? In 37th IEEE/ACM International
Conference on Software Engineering, ICSE, pages 666–676, Florence, Italy.

[Santos et al., 2013] Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., and Nakagawa, E. Y.
(2013). A checklist for evaluation of reference architectures of embedded systems (S). In 25th
SEKE, pages 451–454, Boston, MA, USA.

[Silva and OliveiraJr, 2021] Silva, L. F. and OliveiraJr, E. (2021). SMartyModeling: An environ-
ment for engineering uml-based software product lines. In 15th International Working Conference
on Variability Modelling of Software-Intensive Systems, New York, NY, USA. Association for
Computing Machinery.

690 Allian A.P., Silva L.F., OliveiraJr E., Nakagawa E.Y.: VMTools-RA: a Reference ...

[Silva et al., 2022] Silva, L. F., OliveiraJr, E., and Santos, R. P. d. (2022). A field study on
reference architectural decisions for developing a uml-based software product line tool. InBrazilian
Symposium on Software Components, Architectures, and Reuse, page 20–29, New York, NY, USA.
Association for Computing Machinery.

[Strauss and Corbin, 1998] Strauss, A. L. and Corbin, J. M. (1998). Basics of Qualitative Re-
search: Techniques and Procedures for Developing Grounded Theory. SAGE Publications, second
edition.

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., and Regnell, B. (2012).
Experimentation in Software Engineering.

[Wood et al., 1999] Wood, M., Daly, J., Miller, J., and Roper, M. (1999). Multi-method research:
An empirical investigation of object-oriented technology. Journal of Systems and Software,
48(1):13–26.

[Ziadi et al., 2003] Ziadi, T., Hélouët, L., and Jézéquel, J.-M. (2003). Towards a uml profile
for software product lines. In International Workshop on Software Product-Family Engineering,
pages 129–139. Springer.

	Introduction
	Background and Related Work
	Software Variability
	Reference Architectures
	Related Work

	Research Methodology
	Phase 1: Conception of VMTools-RA
	RA-1: Information Source Investigation
	RA-2: Architectural Analysis
	RA-3: Architectural Synthesis
	General View
	Crosscutting Viewpoint
	Source Code Viewpoint
	Deployment Viewpoint

	Phase 2: VMTools-RA Evaluation with Practitioners
	Planning
	Goals
	Hypotheses Formulation
	Correction Criteria
	Variables Selection
	Pilot Evaluation
	Selection of Participants
	Choice of Experimental Design
	Instrumentation
	Validity Evaluation

	Operation
	Preparation
	Participation Procedures
	Data Validation

	Analysis and Interpretation
	Descriptive Statistics
	Normality and Hypothesis Tests
	Qualitative Analysis

	Presentation and Package
	Discussion of Results

	Phase 3: VMTools-RA Instantiation for Developing the SMartyModeling Tool
	VMTools-RA Instantiation and Decisions
	SMartyModeling Design and Implementation
	Running Example for Modeling Use Cases

	Discussion of Results and Lessons Learned
	Final Remarks

