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Abstract: The Coronavirus Disease 2019 (COVID-19) is widespread throughout the world and
poses a serious threat to public health and safety. A COVID-19 infection can be recognized using
computed tomography (CT) scans. To enhance the categorization, some image segmentation
techniques are presented to extract regions of interest from COVID-19 CT images. Multi-level
thresholding (MLT) is one of the simplest and most effective image segmentation approaches,
especially for grayscale images like CT scan images. Traditional image segmentation methods
use histogram approaches; however, these approaches encounter some limitations. Now, swarm
intelligence inspired meta-heuristic algorithms have been applied to resolve MLT, deemed an NP-
hard optimization task. Despite the advantages of using meta-heuristics to solve global optimization
tasks, each approach has its own drawbacks. However, the common flaw for most meta-heuristic
algorithms is that they are unable to maintain the diversity of their population during the search,
which means they might not always converge to the global optimum. This study proposes a
cooperative swarm intelligence-based MLT image segmentation approach that hybridizes the
advantages of parallel meta-heuristics and MLT for developing an efficient image segmentation
method for COVID-19 CT images. An efficient cooperative model-based meta-heuristic called
the CPGH is developed based on three practical algorithms: particle swarm optimization (PSO),
grey wolf optimizer (GWO), and Harris hawks optimization (HHO). In the cooperative model,
the applied algorithms are executed concurrently, and a number of potential solutions are moved
across their populations through a procedure called migration after a set number of generations.
The CPGH model can solve the image segmentation problem using MLT image segmentation. The
proposed CPGH is evaluated using three objective functions, cross-entropy, Otsu’s, and Tsallis,
over the COVID-19 CT images selected from open-sourced datasets. Various evaluation metrics
covering peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and universal
quality image index (UQI) were employed to quantify the segmentation quality. The overall ranking
results of the segmentation quality metrics indicate that the performance of the proposed CPGH is
better than conventional PSO, GWO, and HHO algorithms and other state-of-the-art methods for
MLT image segmentation. On the tested COVID-19 CT images, the CPGH offered an average
PSNR of 24.8062, SSIM of 0.8818, and UQI of 0.9097 using 20 thresholds.
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1 Introduction

The coronavirus disease 2019 (COVID-19) is a severe infectious disease that has ex-
panded worldwide and is growing at an exponential rate [Ferrer, 2020]. COVID-19 has
affected many lives; it contributed to millions of deaths and left many with respiratory
tract complications and fatalities (i.e., COVID-19 pneumonia, Acute Respiratory Distress
Syndrome (ARDS), and acute respiratory failure). On March 11, 2020, World Health
Organization (WHO) declared the novel COVID-19 outbreak a global pandemic. It
emphasized the importance of a global union to provide approaches to reduce morbidity,
mortality, and burden on health care systems [Sohrabi et al., 2020]. Accordingly, there
is a need for technologies to diagnose this lethal disease quickly. Utilizing a variety of
tests to detect COVID-19 is one of the severe issues. The most often utilized test is the
real-time polymerase chain reaction (real-time PCR) is commonly used to measure gene
expression. The diagnosis is false-negative, takes a long time, and is invasive. Another
test that is crucial to the diagnosis of COVID-19 is chest computed tomography (CT).
The pathophysiology described by CT can be used as a guide for the diagnosis and
progression of particular disease stages. It has developed to become a helpful diagnostic
technique for treating COVID-19-related lung disease [Harmon et al., 2020]. Chest
CT shows a high detection sensitivity for a lung disease associated with COVID-19,
according to preliminary studies.

In computer vision applications such as medical imaging, geographical imaging,
autonomous recognition, robotic vision, and many others, image segmentation is con-
sidered the essential process for analyzing and interpreting the captured image [Baby
Resma and Nair, 2021, Houssein et al., 2022d, Houssein et al., 2021d]. Medical imaging
approaches are vital in diagnosing complex diseases and in the patient’s healthcare. They
help doctors diagnose, treat, and detect life-threatening diseases early. Much detailed
information can be extracted from chest CT images; however, manual processing of
these images is inaccurate. For this reason, several algorithms were developed to assist
in identifying and diagnosing COVID-19. Multilevel image segmentation (MIS) is one
of the practical approaches that have been applied to improve COVID-19 detection
[Houssein et al., 2021a, Houssein et al., 2022c, Houssein et al., 2022b].

Image segmentation is one of the critical stages for processing medical images, and
it has been widely employed in several medical applications. Multi-level thresholding
(MLT) is a simple and powerful image segmentation technique. Some conventional
methods use histogram thresholding approaches; however, these approaches encounter
some difficulties. Meta-heuristic algorithms have been leveraged in MLT, which is
considered an NP-hard problem [Abualigah et al., 2021b, Elaziz et al., 2020]. Image
segmentation can be defined as partitioning an image into multiple image segments, also
known as image regions or objects, based on various criteria such as gray level values,
color, shape, or textures [Baby Resma and Nair, 2021, Rodríguez-Esparza et al., 2020].
More precisely, image segmentation is assigning a label to each pixel in an image so that
pixels with the same label share specific properties. Most image segmentation approaches
are based on similarity and discontinuity, two critical features of intensity values. The
similarity technique, which relies on similarity among image objects with pre-determined
criteria for partitioning, is widely employed [Baby Resma and Nair, 2021].

There are commonly four prominent types of image segmentation techniques that are
widely used. These techniques can be classified into the following categories: clustering-
based approaches, merging and region-based split approaches, histogram thresholding-
based approaches, and texture analysis-based approaches [He and Huang, 2017]. Among
the various similarity-based techniques, some notable ones include thresholding, region
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expansion, region splitting, and merging. Among these approaches, the thresholding
technique stands out as the most favorable choice due to its accuracy, simplicity, and
robustness [Merzban and Elbayoumi, 2019]. A threshold-based segmentation technique
subdivides an image into smaller segments by determining their boundaries using at
least one gray-level value. In addition, bi-level and MLT are other types of thresholding
approaches. Bi-level techniques utilize a single threshold value for splitting an image
into two sections (e.g., homogeneous foreground and background). In contrast, MLT
will find multiple gray-level threshold values to differentiate the objects of interest from
the image’s background.

In recent years, several thresholding-based segmentation approaches have been de-
veloped. For instance, M. Sezgin et al. [Sezgin and Sankur, 2004] conducted a survey and
discovered that global histogram-based techniques are frequently employed to estimate
the threshold values in MLT. Two widely regarded image thresholding methods are
Otsu’s approach, which utilizes the concept of between-class variance [Otsu, 1979a],
and Kapur’s approach, which is based on the principle of entropy [Kapur et al., 1985a].
These methods are considered among the top choices for image thresholding techniques.
They are used to identify the best thresholds for dividing the region of gray-level values
in an image, depending on some pre-defined criteria. In Otsu’s technique, maximizing
the between-class variance of gray levels of the histogram is employed to determine the
most appropriate threshold values. In contrast, in Kapur’s method, histogram entropy is
maximized. Otsu’s and Kapur’s techniques have been proposed to deal with the bi-level
thresholding problem. However, both exploit an exhaustive search algorithmic paradigm
to optimize the objective function, and thus the computational time grows exponentially
with the number of threshold values. For this reason, they can not be used to resolve MLT
problems [Baby Resma and Nair, 2021]. Previous studies reveal that several techniques
have been developed to boost efficiency and decrease the time complexity of MLT
approaches. For example, a faster form of Otsu’s method that integrates a recursive
algorithm with a look-up table has been proposed by Liao et al. [sung Liao et al., 2001] to
lessen the long processing time needed for obtaining the ideal threshold values. However,
when the number of thresholds is increased, the approach will again take a long time to
compute [Song et al., 2017].

The presence of a large number of image thresholds makes the selection of threshold
values a crucial step when performing image segmentation. Therefore, MLT is viewed as
a challenging optimization problem that must be resolved. In general, research findings
have demonstrated the ability of meta-heuristic algorithms to solve various challenging
optimization problems in different areas such as bioinformatics, engineering, commu-
nication, drug design, and feature selection [Thaher and Arman, 2020]. In contrast to
deterministic approaches, metaheuristic techniques adopt a different paradigm by em-
ploying search agents to explore the landscape of a problem. Each search agent within
the population represents a candidate solution that is iteratively adjusted using heuristic
operators. These operators enable diverse search behaviors and mechanisms depending
on their combinations. As a result, search strategies in meta-heuristics are influenced
by a wide range of natural and artificial processes. Some of the most successful meta-
heuristic algorithms, such as the Genetic Algorithm (GA) [Mirjalili, 2019], Differential
Evolution (DE) [Lampinen and Storn, 2004], and Particle Swarm Optimization (PSO)
[Poli et al., 2007], exemplify these influences. In addition to these classic algorithms,
many recently introduced meta-heuristic techniques such as gravitational search algo-
rithm (GSA) [Rashedi et al., 2009], gray wolf optimizer (GWO) [Mirjalili et al., 2014a],
arithmetic optimization algorithm (AOA) [Abualigah et al., 2021a], Aquila optimizer
(AO) [Abualigah et al., 2021c], Harris hawks optimization (HHO) [Heidari et al., 2019a],
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Moth-flame optimization (MFO) [Mirjalili, 2015], and bee swarm optimization (BSO)
[Akbari et al., 2010] have also earned special consideration from researchers where they
are extensively investigated in different domains [Houssein et al., 2021b]. However, most
currently available meta-heuristics are considered sequential optimization algorithms.
Despite their success in dealing with various optimization problems, well-performance
is not always ensured, mainly when dealing with large-scale optimization problems. In
this regard, the probability of being stuck into local optima grows, and the computation
time for obtaining a satisfactory solution becomes high [Alba et al., 2013].

In the parallel design of meta-heuristic, three parallel models, namely algorithmic
level, iteration level, and solution level can be employed. At the iteration level, a meta-
heuristic algorithm is parallelized at each iteration, and the algorithm’s behavior does not
change. The main goal of this type is to reduce the search time. However, for real-life
problems, the iteration level model requires a large size of computational resources
[Talbi, 2009]. A single solution from the search space is handled at the solution level.
As in the iteration level, the heuristic’s behavior stays unchanged. In the algorithmic
model, two types of parallelization, including independent or cooperating self-contained
meta-heuristics, can be utilized. In the case of independent meta-heuristics, the different
meta-heuristics are run without any cooperation. In this way, the search is performed
similarly to the sequential run of the meta-heuristics. However, the cooperative model
will change the search behaviors of the meta-heuristics and enhance the quality of solu-
tions. In the cooperative mode of parallel meta-heuristics, various algorithms exchange
information belonging to the search to improve the quality and robustness of the obtained
solutions [Talbi, 2009]. Cooperative meta-heuristics present themselves as a formidable
optimization algorithm that leverages the advantages of parallel computing techniques
and meta-heuristics. This synergistic approach proves particularly effective in addressing
intricate optimization problems while minimizing the associated numerical and compu-
tational expenses [Crainic, 2016]. In this work, the cooperative model is adopted to deal
with the MLT of image segmentation due to its advantages over its peers.

1.1 Motivations and Contributions

Over the years, several meta-heuristic methods have been implemented to address medical
image segmentation issues. However, each algorithm has merits and demerits when
solving a specific problem. Furthermore, the exploration and exploitation capabilities of
the method under consideration significantly impact performance. Therefore, new ideas
are typically integrated to address the shortcomings of the algorithm’s basic version.
For instance, a technique that improves the exploration capability can be added to an
existing algorithmwith a strong exploitation capability to balance both capacities. Besides,
referring to the No Free Lunch (NFL) theorem, [Wolpert, 1996], no universal optimization
algorithm can be considered to solve all types of optimization problems efficiently. In
alternative words, the door is still open to investigate and develop new variants of
meta-heuristics-based approaches. These reasons have motivated researchers to build
upon previous work and integrate new techniques into existing ones. In this paper, we
have introduced an efficient MIS approach by adapting a cooperative swarm intelligence
paradigm. To be specific, the contributions of this research can be summarized as follows:

– A cooperative swarm intelligence model has been proposed by embedding three well-
known metaheuristics called PSO, GWO, and HHO for handling image segmentation
problems.

– The proposed segmentation model is verified over a set of COVID-19 CT images.
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– Various objective functions, including Otsu, cross-entropy, and Tsallis entropy, are
examined.

– Segmentation quality is quantified by utilizing three well-established metrics, namely
Peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and universal
quality index (UQI).

– The stability and effectiveness of the suggested technique are evaluated using various
segmentation levels.

– Comparative results and analysis revealed that the proposed cooperative model
achieved better performance than other considered algorithms.

The remainder of the paper is structured as follows: Section 2 explores a set of recent
state-of-the-art research efforts on metaheuristics-based image segmentation. Section
3 confers an overview of the employed methods to develop the suggested approach.
Section 4 introduces the proposed cooperative optimization model. Section 5 presents
the experimental results and analysis. Lastly, Section 6 presents the conclusion of this
paper and future work.

2 Related Works

2.1 Meta-heuristic based multi-level thresholding of image segmentation

The literature consistently highlights the compelling utility and efficiency of meta-
heuristic algorithms within the realm of multilevel image thresholding segmentation
[Houssein et al., 2021b, Elaziz et al., 2020, Rodríguez-Esparza et al., 2020]. These studies
collectively showcase the significant contributions and effectiveness of meta-heuristics
in this particular domain. There are several successful examples of meta-heuristic ap-
plications in this field. However, a few remarkable state-of-the-art research efforts are
presented here. For instance, to resolve the problem of MLT, Kapur’s entropy-based
Crow Search Algorithm (CSA) was introduced by [Upadhyay and Chhabra, 2020] for
estimating optimal values of multilevel thresholds. Several experiments were conducted
on benchmarked images for various threshold values. The performance of the proposed
approach was compared against several algorithms, including PSO, DE, GWO, MFO,
and cuckoo search (CS). Experimental results reveal that the proposed method achieved
better performance than other algorithms using well-established performance measures
such as PSNR, SSIM, and feature similarity index (FSIM).

[Khairuzzaman and Chaudhury, 2017] applied GWO to solve the MIS problem.
Otsu’s and Kapur’s functions were used to identify the best set of thresholds. The
proposed approach was tested on a collection of standard evaluation images, and its
performance was compared against enhanced forms of bacterial foraging optimization
(BFO) and PSO algorithms. The mean structural similarity (MSSIM) index was applied
as an evaluation measure. As a result, GWO converged better to optimum solutions than
BFO and PSO. Experimental results revealed that the proposed approach is more stable
and yielded higher quality solutions than PSO and BFO-based approaches. In addition,
the GWO-based method has been shown to be faster than the BFO-based approach and
slower than the PSO-based approach.

An MLT approach based on a modified version of the grasshopper optimization
algorithm (GOA) boosted with Lévy flight was developed by [Liang et al., 2019] for
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color image segmentation. Tsallis cross-entropy was used as an objective (evaluation)
function to optimize threshold values for multilevel image thresholding. The performance
of the proposed approach was examined on six real-life benchmark images and two lant
stomata images. In addition, the performance of Tsallis cross-entropy was compared
with two thresholding techniques, including between-class variance (Otsu) and Renyi’s
entropy. Experiments were conducted using five well-known meta-heuristic algorithms
and the proposed grasshopper-based algorithm. Qualitative experimental results proved
that the proposed image segmentation approach recorded a higher segmentation accuracy
with fewer iterations compared to other considered algorithms.

[Abdel-Basset et al., 2021] proposed an MLT selection method for grayscale images
based on a novel meta-heuristic called Equilibrium Optimizer (EO). Kapur’s entropy was
applied as an objective function to find optimal threshold values. The proposed algorithm
was compared with seven other algorithms, including the whale optimization algorithm
(WOA), salp swarm algorithm (SSA), HHO, bat algorithm (BA), sine–cosine algorithm
(SCA), CSA as well as PSO. Using a set of well-known test images obtained from the
Berkeley segmentation dataset, the proposed algorithm is superior to all tested algorithms
in terms of various solution quality metrics such as PSNR, SSIM, some accuracy mea-
sures including maximum absolute error, and computation time for resource complexity.
However, the proposed EO-based algorithm recorded worse standard deviation values
and computational time than others.

As presented in [Rodríguez-Esparza et al., 2020], an efficient approach for MIS was
proposed using the recently appeared HHO algorithm and the minimum cross-entropy as
an evaluation function. To assess the effectiveness of the HHO-based approach, it was
tested over a benchmark set of images obtained from the Berkeley segmentation database
and medical images of digital mammography. Three matrices, including the PSNR,
SSIM, and FSIM, were applied to verify the quality of segmented images. Comparing the
suggested method to PSO, harmony search (HS), DE, artificial bee colony (ABC), and
SCA, it can be concluded that the proposed approach can deliver efficient results in terms
of quality, consistency, and accuracy. The results of HHO were also compared against
two machine learning techniques, K-means and fuzzy IterAg. Experimental results
revealed that the HHO-based approach improved over other segmentation approaches
currently applied in the literature. Meanwhile, using the dragonfly algorithm (DA)
[Díaz-Cortés et al., 2018] proposed an approach for solving the problem of unclear
regional borders in low-resolution thermography images in health care. DA algorithm
was applied to determine the optimal threshold values of the energy curve for breast
cancer diagnosis in thermal imaging. Using a set of eight images obtained from the
DA-Breast Thermography database and Otsu and Kapur’s as objective functions for
evaluating the quality of the obtained solution by the DA algorithm, it was observed that
the DA algorithm outperformed PSO, GA, and krill herd (KH) algorithm, and runner-root
algorithm (RRA).

Most meta-heuristic-based approaches employed in the literature for solving a wide
range of complex optimization tasks suffer frommain drawbacks, such as trapping in local
optima, early convergence, and a lack of global search ability. These limitations motivate
researchers to introduce modified and hybrid versions of the basic meta-heuristic algo-
rithms to overcome the abovementioned limitations. Opposition-based learning (OBL)
is one of the most successful approaches for improving the search efficiency of many
meta-heuristic algorithms [Rojas-Morales et al., 2017]. OBL has been integrated with
many meta-heuristic techniques in several ways to boost the exploration and searchability
of MLT problems. For instance, OBL and dynamic Cauchy mutation (DCM) was applied
to improve elephant herding optimization (EHO) in [Chakraborty et al., 2019]. OBL
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was utilized to resolve delayed convergence, while DCM was used to handle premature
convergence of EHO. In addition, the proposed algorithm was examined on the MLT
problem. The authors used Otsu and Kapur’s approaches to estimate the thresholding
values for image segmentation. When comparing the performance of the enhanced EHO
algorithm with the results of four other popular meta-heuristic algorithms comprising
PSO, ABC, CS, BA, and a traditional dynamic programming method, the EHO-based
approach outperformed all its competitors.

A recent and innovative approach for enhancing the OBL method was introduced
by [Houssein et al., 2021d]. This study proposed a modified form of the recent meta-
heuristic algorithm called the marine predators algorithm (MPA) for handling the MIS.
The OBL was employed to enhance the searchability and convergence behaviors of the
original MPA. The proposed MPA-OBL. Otsu and Kapur’s methods were applied as
objective functions. The performance of three regularly used evaluation matrices, namely
Structural similarity (SSIM), Peak signal-to-noise ratio (PSNR), and Feature similarity
(FSIM), was used to assess the qualitatively and quantitatively performance of the MPA-
OBL-based approach over a variety of benchmark images at varying levels of thresholds.
In addition, statistical post-hoc analysis showed that the MPA-OBL algorithm provided
highly efficient and accurate outcomes compared to other meta-heuristic algorithms.

Moreover, Houssein and Emam et al. [Houssein et al., 2021c] used the Levy flight
mechanism and the OBL strategy to enhance the performance of the chimp optimization
algorithm (ChOA), the modified version called IChOA. The IChOA algorithm has been
used to solve image segmentation problems and performs better than ChOA and other
algorithms.

Emam et al. [Emam et al., 2022] proposed a modified reptile search algorithm
(mRSA) for global optimization and image segmentation problems. The mRSA algorithm
incorporates the RSA algorithm with the (RUNge Kutta optimizer) RUN algorithm.
mRSA was applied as multilevel image segmentation for MRI brain images based on
Otsu’s method as an activation function. The experimental results have revealed the
superiority of the proposed mRSA.

Recently, to solve the image segmentation problem, [Baby Resma and Nair, 2021]
proposed a novel MLT approach using the Krill herd (KH) meta-heuristic algorithm. The
ideal threshold values can be reached by applying the KH technique to maximize Kapur’s
or Otsu’s objective function. Several benchmark images were utilized to prove the
applicability and computational efficiency of the KH-based MLT approach. In addition,
detailed comparisons with other existing bio-inspired techniques, including GA, PSO,
MFO, and Bacterial Foraging (BF), were done to demonstrate the superior performance of
the proposed approach. The comparative analysis revealed that KH-basedMLT decreases
the computational time needed for computing the optimal thresholds.

Houssein et al.[Houssein et al., 2022a] proposed a novel image segmentation method
based on Otsu’s fitness function, which used an improved golden jackal optimization
algorithm to select the best threshold values for skin cancer imaging.

Chen et al. [Chen et al., 2022] proposed an ensemble multi-strategy-driven shuffled
frog leaping algorithm with horizontal and vertical crossover search for multi-threshold
image segmentation.

Helong et al. [Yu et al., 2022] presented an enhanced multi-stage grey wolf optimizer
for multi-threshold segmentation of Leaf Spot Diseases on Maize.
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2.2 Meta-heuristic based multi-level thresholding for Covid-19 images segmenta-
tion

Recently, many meta-heuristic-based MLT approaches have been applied to segment
CT scans to discover COVID-19 infections. For instance, [Abualigah et al., 2021b]
proposed an MLT technique using an evolutionary AOA algorithm. The DE algorithm
was employed to enhance the local search of the AOA algorithm. Using between class
variance (Kapur’s) measure functions, the performance of the proposed algorithm was
examined on nature and CT scan COVID-19 images. The accuracy of segmented images
was determined based on two standard measures comprising SSIM and PSNR. The pro-
posed DAOA algorithm recorded higher quality solutions compared to other comparative
algorithms.

To enhance the diagnostic level of COVID-19, [Liu et al., 2021] proposed a new
technique called CLACO-MIS based on ant colony optimization (ACO) algorithm in con-
junction with each of the Cauchy mutation and the greedy Levy mutation for multilevel
COVID-19 X-ray image segmentation. In addition, 2D Kapur’s entropy was employed
as an evaluation function. CLACO algorithm was compared with some other variants
as well as other efficient algorithms on 30 benchmark functions gathered from IEEE
CEC2014 to prove its superiority in terms of convergence speed, search power, and
the ability to avoid the local optimum. Moreover, the experimental results show that
CLACO-MIS yielded better segmentation influence at various threshold levels than its
peers in achieving segmentation of COVID-19 CT scan images.

As presented in [Nama, 2022], Sukanta Nama developed an improved version of the
slime mold algorithm (SMA) with the quasi-reflection operator (QRSMA) for Covid-19
chest X-ray image segmentation. Quasi-reflection-based jumping was applied to improve
the convergence, avoid local optimum, and control the balance between exploitation
and exploration. The experimental findings show that the proposed QRSMA has higher
robust searchability than the original SMA and different search approaches regarding
various measures such as convergence and diversity. The author concluded that QRSMA
could be used as an effective MLT approach for image segmentation superior to other
available approaches.

A hybrid approach that exploits the properties of two swarm intelligence algo-
rithms, MPA and MFO, was proposed by [Elaziz et al., 2020]. In the proposed approach
(MPAMFO), the MFO is employed as a local search strategy for MPA to avoid the local
optima trap. The MPAMFO was introduced as an MLT approach for image segmenta-
tion, presenting outstanding performance in all conducted experiments. To examine the
efficiency of MPAMFO, two different tests were performed. In the first one, ten natural
gray-scale images were segmented using the MPAMFO method, while in the second test,
MPAMFO was tested for a real-world application (e.g., CT images of COVID-19) where
thirteen CT images were utilized to examine the performance of MPAMFO. In addition,
extensive comparisons with several swarm intelligence algorithms were performed to
evaluate the quality of the segmentation and the performance of the MPAMFO. Overall
experimental outcomes confirmed that the MPAMFO is a robust MLT approach that
demonstrated its superiority compared to existing methods.

The authors in [Kaya et al., 2022] proposed a new method to detect COVID-19 from
x-ray images using angle transformation with GoogleNet and LSTM. In transformation,
the angle information is created by each pixel on the image with the surrounding pixels.
The images are trained with a hybrid deep learning model combining GoogleNet and
long short-term memory. Mendeley database is used to evaluate the proposed method
achieving an accuracy of 98.97%.
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In [Eken, 2020], the researchers proposed a method to detect COVID-19. COVID-19
is detected using a novel capsule network-based model from chest X-ray images.

Furthermore, in [Yılmaz, 2021], Yilmaz et al. proposed a multichannel Convolu-
tional Neural Network (CNN) method to detect COVID-19 from X-ray images. The
multichannel CNN architecture consists of five convolution channels. The proposed
multi-channel CNN was trained on the three different datasets obtained from the Kaggle
data repository.

In [Nair et al., 2021], the authors presented a fully automatic model that uses chest
CT scans to predict COVID-19. The model is called CORNet, which is based on the
ResNet architecture. The proposed approach has been evaluated by classifying the CT
images of community-acquired pneumonia (CAP) and other non-pneumonia.

In [Panwar et al., 2020b], the authors presented a deep-learning neural network
method named nCOVnet. This alternative fast screening method can detect COVID-19
by using X-rays images. The Proposed method detects COVID-19-positive patients with
an accuracy of 97%, whereas the overall accuracy of the proposed model is 88%.

The authors of [Panwar et al., 2020a] proposed a deep transfer learning method that
revs the detection of COVID-19 using X-ray and CT- images. They used three datasets:
COVID-chest X-ray, SARS-COV-2 CT scan, and Chest X-Ray Images (Pneumonia).
The results show that the proposed deep learning model can detect COVID-19-positive
cases faster than RT-PCR tests in less than 2 seconds.

In [Siddiqui et al., 2020], Siddiqui et al. proposed a k-means clustering-basedmachine
learning method on the data set from different regions of China.

Qi, Ailiang, et al. [Qi et al., 2022] proposed a multilevel image segmentation tech-
nique based on an improved ant colony optimization algorithm to enhance the image
segmentation of COVID-19 X-rays.

In [Houssein et al., 2022c], Houssein et al. proposed an improved version of the EO
that incorporates the standard operators with the dimension learning hunting (DLH) to
prevent the algorithm from being trapped in local optima. The proposed approach, called
I-EO, was employed as an MIS technique. The proposed method was tested over the
CEC’2020 benchmark functions, and quantitative and qualitative results demonstrated
the superiority and robustness of the proposed algorithm compared to other well-known
optimizers. In addition, I-EO was also applied as MLT segmentation for segmenting
a set of CT images of COVID-19 via maximizing the fuzzy entropy. The obtained
segmentation results demonstrated the excellent performance of I-EO in all performed
experiments. They approved that the proposed I-EO approach can be applied as an
accurate tool for image segmentation. Finally, [Cohen et al., 2020a] [Houssein et al.,
2021a] [Su et al., 2022] represent successful examples of applying meta-heuristic-based
MLT for Covid-19 images segmentation.

The above literature review points to the various shortcomings of segmented COVID-
19 CT images, such as: (i) working on only one activation function that is based on image
histogram, they don’t use the entropy-based methods; (ii) most of the meta-heuristic
techniques applied to a diversified range of optimization problems in literature often
come with specific shortcomings, such as trapping in local regions, early conversion and
needing more global search ability. The overall outcome of the reviewed previous studies
related to the MIS problem shows that the MIS method based on the meta-heuristic
optimization algorithm is widely adopted. It is also observed that the ideal threshold
set in the MIS approach highly relies on the applied meta-heuristic algorithm. In other
words, a high-performance meta-heuristic algorithm can notably boost the results of MIS.
This has motivated the authors of this work to enhance the diagnosis of Covid-19 by
exploiting the merits of parallel computing techniques and MHs to develop a cooperative
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meta-heuristic algorithms-based MIS model for segmenting COVID-19 CT scan images.

3 Background

This section covers the techniques involved in developing the suggested segmentation
approach. The fundamentals of image segmentation thresholding techniques are dis-
cussed, and the structure and operation of the basic PSO, GWO, and HHO algorithms
are clarified.

3.1 Thresholding Techniques for Image Segmentation

Thresholding methods are most frequently utilized for segmenting images. Considering
grayscale images, these thresholds determine the intensity values for categorizing the
image into several groups. According to thresholding levels calculated on the gray level
range, thresholding schemes or techniques can be divided into two primary categories:
bi-level thresholding and MLT [Suresh and Lal, 2016].

3.1.1 Bi-level Thresholding

The bi-level thresholding method divides an image into two regions dependent on the
threshold level. For example, given a grayscale image X with intensity values ranging
from 0 toN − 1,N represents the highest possible intensity value. This image’s bi-level
thresholding identifies an intensity value that allows the foreground and background
objects to be distinguished as in Eq.(1).

C0 = {I(x, y) ∈ X | 0 ≤ I(x, y) ≤ k − 1}
C1 = {I(x, y) ∈ X | k ≤ I(x, y) ≤ N − 1} (1)

whereX refers to the image being processed, I(x, y) stands for the pixel’s corresponding
intensity value as indicated by the coordinate values given by x and y, k is the threshold
value, and C denotes the class.

Various approaches are employed to determine the optimal threshold value for image
binarization. These approaches encompass techniques such as computing the variance of
pixel values and evaluating entropy values [Sezgin and Sankur, 2004]. These methods
play a vital role in effectively transforming grayscale images into binary representations.

3.1.2 Multilevel Thresholding (MLT)

The bi-level thresholding technique falls short in situations where distinguishing between
the background and objects of interest becomes challenging in images. Real-world
applications often involve images with more than two classes, demanding the adoption
of multilevel thresholding methods. Consequently, a shift towards multilevel image
thresholding approaches becomes necessary [Arora et al., 2008, Gao et al., 2010]. MLT
will find multiple gray-level threshold values to differentiate the objects of interest from
the image’s background.

MLT divides a grayscale image into several regions by selecting more than one
threshold value. Accordingly, the image is divided into distinct, homogeneous regions
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representing the background and other objects. This is beneficial for objects with col-
ored or intricate backgrounds on which binary thresholding fails to yield good results
[Bandyopadhyay et al., 2021].

The following definition of the MLT problem: The number of classes in a grayscale
image I ism+ 1, andm thresholds are needed to divide the image into segments. This
problem can be mathematically formulated as in Eq. (2).

C0 = {I(x, y) ∈ X | 0 ≤ I(x, y) ≤ k1 − 1}
C1 = {I(x, y) ∈ X | k1 ≤ I(x, y) ≤ k2 − 1}
Ci = {I(x, y) ∈ X | ki ≤ I(x, y) ≤ ki+1 − 1}
Cm = {I(x, y) ∈ X | km ≤ I(x, y) ≤ N − 1}

(2)

where Ci is the i
th class of the image I , ki denotes the threshold value for k ∈ 1, 2, 3,

.... m,m is the total number of distinct threshold values, and N the maximum intensity
value.

Consequently, the primary objective of MLT is to identify the threshold values that
divide the pixels in an image into groups or segments. Several segmentation-based thresh-
olding techniques have been widely used in numerous multilevel threshold segmentation
applications. Examples of these methods are Otsu’s method, cross-entropy thresholding,
and Tsallis entropy [Suresh and Lal, 2016, Bandyopadhyay et al., 2021].

3.1.3 Otsu’s method

This subsection describes the mathematical model of the Otsu method [Otsu, 1979b],
which is a thresholding method based on the maximum variance between classes. The
segmentation process depends on the image histogram [Glasbey, 1993]. The histogram
is passed to otsu’s method, selecting the best thresholding values to divide the image
into various classes. This technique assumes the Lv intensity levels of the image, and the
probability is obtained by Eq. 3. It can be used for RGB images where Otsu is applied to
each layer individually.

hi =
hi

Np
,

Np∑
i=1

Phi = 1 (3)

where i indicates intensity level in (0 ≤ i ≤ Lv − 1) and Np denotes the total
number of pixels. hi is the number of intensity frequencies i in the image denoted by the
histogram. In a probability distribution Phi, the histogram is normalized. The classes
for bilevel segmentation are computed based on the probability distribution as follows:

C1 =
Ph1

ω0(th)
, ...,

Phth

ω0(th)
and C2 =

Phc
th+1

ω1(th)
, ...,

PhLv

ω1(th)
(4)

where ω0(th) and ω1(th) are probabilities distributions for C1 and C2 that is defined
by Eq. 5.

ω0(th) =

th∑
i=1

Phi and ω1(th) =

Lv∑
th+1

Phi (5)

It is essential to calculate the mean levels µ0 and µ1 that describe the classes by Eq.6.
After those operators have been determined, the Otsu between-class σ2

B is computed by
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Eq. 7.

µ0 =

th∑
i=1

iPhi

ω0(th)
and µ1 =

Lv∑
i=th+1

iPhi

ω1(th)
(6)

σ2
B = σ1 + σ2 (7)

Notice that σ1 and σ2 in Eq. 7 are the variances of C1 and C2 that identified as
follows:

σ1 = ω0(µ0 + µy)
2 and σ2 = ω1(µ1 + µy)

2 (8)

where µy = ω0µ0 + ω1µ1. Based on the values σ1 and σ2, Eq. 9 illustrates the
objective function. As a result, the optimization problem can be simplified for determining
the intensity level, which maximizes Eq. 9.

Fotsu(th) = Max(σ2
B(th)) , 0 ≤ th ≤ Lv − 1 (9)

where σ2
B(th) indicates the Otsu of a provided th value. Otsu’s approach is used

for a single layer from an image, which means applying it to the three layers for color
images is required. The initial idea of a bilevel technique can be changed to accommodate
multiple thresholds. The fitness function Fotsu(th) in Eq. 9 can be changed for multiple
thresholds based on the following:

Fotsu(TH) = Max(σ2
B(th)) , 0 ≤ thi ≤ Lv − 1 , i = [1, 2, 3, ...,K] (10)

where TH = [th1, th2, .....thk−1], denotes a vector involving multiple thresholding
and the variances can be calculated by Eq. 11.

σ2
B =

k∑
i=1

σi =
k∑

i=1

ω1(µ1 − µy)
2 (11)

where i denotes the specific class, ωi and µj indicate the occurrence probability and
the class mean, respectively. For multiple thresholds, values are taken as:

ωk−1(th) =

Lv∑
i=thk+1

Phi (12)

for mean values:

µk−1 =

Lv∑
i=thk+1

iPhi

ω1(thk)
(13)

In this paper, we use Otsu’s method as a fitness function that will be maximized.
The reason for using otsu’s method is that it is one of the most widely used methods in
multi-level thresholding image segmentation problems.
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3.1.4 Entropy based thresholding

Entropy creates a statistical variety score based on the intensity levels of an input im-
age. Entropy-based thresholding is a reliable technique since the chosen threshold is
independent of slight variations in the input image and is decided based on an overall
and objective quality of the image histogram [Kapur et al., 1985a]. Furthermore, the
cross-entropy-based objective function has recently provided promising results for the
brain MRI segmentation problem [Bandyopadhyay et al., 2021]. Accordingly, to solve
the COVID-19 CT image segmentation problem, the entropy-based thresholding method
is preferred in the current study. For this purpose, cross-entropy is employed as an objec-
tive function for the fitness assignment of the generated solutions (i.e., threshold values)
in the proposed cooperative optimization model.

3.1.5 Cross-entropy’s method

The Cross-entropy method, named Kapur [Kapur et al., 1985b] technique, is a threshold-
ing technique used to develop the image segmentation process. Kapur’s method chooses
the best thresholding based on maximizing entropy. The mathematical representation
has outlined as follows:

Fkapur(th) = H1 +H2 (14)

where the entropies H1 and H2 are computed as:

H1 =

th∑
i=1

Phi

ω0
ln(

Phi

ω0
) and H2 =

L∑
i=th+1

Phi

ω1
ln(

Phi

ω1
) (15)

where Phi is the probability distribution of the intensity levels achieved by Eq. (3),
ω0(th) and ω1(th) are probabilities distributions for the classes C1 and C2. Like the
Otsu technique, the Kapur method has been modified for multi-threshold values. It is
crucial to divide the image into N classes by N − 1 thresholds. The following formula
represents the new fitness function:

Fkapur(TH) =

N∑
i=1

Hi (16)

TH = [th1, th2, ..., thN−1] is a vector contains different thresholds. The entropy is
calculated independently and given its associated value (th), as seen in Eq. (16). The
entropy is represented by:

Hc
N =

L∑
i=thN+1

Phi

ωN−1
ln(

Phi

ωN−1
) (17)

The probability values occurrence (ωc
0, ω1, ..., ωN−1) of the N classes are obtained

by Eq. (12) and the probability distribution Phi with Eq. (3).

3.1.6 Tsallis entropy

The entropy of a discrete source is frequently determined from the probability distribution,
where Pr = Prj represents the probability of finding the system in each possible state
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j [Agrawal et al., 2013]. 0 6 Pr > 1 and

m∑
j=0

Prj = 1. The Shannon entropy can be

defined as:

Sh = −
k∑

j=1

Prj ln(Prj) (18)

where k is the total number of states. Shannon entropy has the extensive property:

S(A+B) = S(A) + S(B) (19)

Based on multi-fractal theory, Tsallis entropy can be generalized to non-extensive
systems using a familiar entropic formula [Tsai, 1985]:

Sq =

1−
k∑

j=1

(Prj)
q

q − 1
(20)

where q is the measure of the degree of non-extensivity of the system known as
the Tsallis parameter or entropic index. Tsallis entropy can be described by a pseudo-
additivity entropic rule using Eq. 21

Sq = (A+B) = Sq(A) + Sq(B) + (1− q)× Sq(A)× Sq(B) (21)

This kind of technique is exploited for thresholding the image. Assume that Gr
gray levels are presented in the input image having a range of 1, 2, …, Gr, and {Pri =
Pr1, P r2,…, P rGr} is the probability distribution of gray intensity points. Based on
the above two probability distributions, two classes named class A and class B can be
obtained for background and for the object of interest, which is given by Eq. 22

PrA =
Pr1
PrA

,
P r2
PrA

, ...,
P rt
PrA

and PrB =
Prt+1

PrB
,
P rt+2

PrB
, ...,

P rGr

PrB
(22)

where PrA =

t∑
i=1

Pri and PrB =

Gr∑
i=t+1

Pri.

For each class, Tsallis entropy can be classified as:

SA
q (t) =

1−
t∑

i=1

(Pri/PrA)q

q − 1
, SB

q (t) =

1−
G∑

i=t+1

r(Pri/PrB)q

q − 1
(23)

Maximizing the computation of information between classes A and B is possible. An
ideal threshold value is referred to as the corresponding grey level. The ideal threshold
value for bi-level thresholding is the grey level for which the informationmeasure between
two classes (foreground and background) is maximized; this can be accomplished by
utilizing the objective function with little computational effort:
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T = argmax[SA
q (t) + SB

q (t) + (1− q×S
A
q (t)× SB

q (t)] (24)

According to the following constraint: |PrA + PrB |−1 < S < 1− |PrA + PrB |
The above process can be simply extended for multi-level thresholding using Eq.

[T1, T2, .., Tm] = argmax[S1
q (t)+S2

q (t)+...+SM
q (t)+(1−q)×S1

q (t)×S2
q (t)..S

M
q (t)]
(25)

where,

S1
q (t) =

1−

t1∑
i=1

(Pri/Pr1)q

q−1 , S2
q (t) =

1−

t2∑
i=t1+1

(Pri/Pr2)q

q−1

and, SM
q (t) =

1−

Gr∑
i=(tm+1)

(Pri/PrM )q

q−1 ,M = m+ 1

3.2 Swarm intelligence inspired meta-heuristics

Meta-heuristics are general-purposed approximate algorithms designed to tackle a wide
range of optimization problems, particularly combinatorial ones. Meta-heuristics are a
prominent type of stochastic optimization that uses some degree of randomness to obtain
high-quality (i.e., near-optimal) solutions in a reasonable amount of time. According
to [Glover and Kochenberger, 2003], meta-heuristics are search algorithms that orches-
trate the interplay between top-level strategies and local improvement methods. This
harmonious coordination leads to the creation of an effective search process capable of
conducting reliable global searches. Glover’s perspective emphasizes the pivotal role of
meta-heuristics in balancing exploration and exploitation to achieve optimal solutions.
As a result, these methods decrease the size of the search space by efficiently examining
the promising regions [Talbi, 2009]. In Meta-heuristics, exploitation and exploration
are frequently opposing processes. Meta-heuristics use and promote their randomized
operators in the exploration process to try to explore different search space regions.
Contrarily, exploitation focuses on identifying the vicinity of prospective solutions to
acquire higher-quality solutions. Any reliable Meta-heuristic algorithm should be able to
achieve a balance between exploitation and exploration potentials, lowering the risk of
getting stuck in local optima [Boussaïd et al., 2013].

Meta-heuristics can generally be categorized based on a variety of factors. However,
classifying them into trajectory- and population-based algorithms is one of the most
popular classifications in the literature [Eshtay et al., 2019]. When compared to trajectory
algorithms, population-based algorithms offer more significant exploratory potential.
Specifically, a population of possible solutions is created and iteratively evolved during
the search process until satisfactory results are obtained. Swarm intelligence meta-
heuristics are population-based algorithms that draw inspiration from the cooperative
behavior observed in various swarming animals such as wasps, fish, bees, ants, whales,
birds, termites, and more. These natural-inspired algorithms emulate the self-organized
and decentralized systems exhibited by these swarming creatures [Ab Wahab et al., 2015].
By replicating the collective intelligence and cooperation observed in nature, swarm
intelligence meta-heuristics offer a powerful approach for solving complex optimization
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problems. The essential features of the Swarm intelligence algorithms, according to
[Talbi, 2009], are that the particles are simple agents that cooperate by moving in the
decision space via an indirect operation. The most used algorithm in this group is PSO,
which was first introduced by [Eberhart and Kennedy, 1995]. GWO [Gao et al., 2017],
and HHO [Heidari et al., 2019b] are other examples of swarm intelligence techniques.
This study introduces a cooperative swarm intelligence paradigm by embedding the
three well-regarded algorithms (PSO, GWO, and HHO). These algorithms were chosen
because they have been successfully exploited to tackle various challenging real-world
problems in different domains. The following subsections are concerned with providing
an overview of these algorithms.

3.2.1 Particle Swarm Optimization (PSO)

One of the most effective swarm optimization algorithms was presented by Kennedy and
Eberhart and is known as PSO [Eberhart and Kennedy, 1995]. The fundamental idea is to
imitate the behavior of flocking birds using a collection of randomly initialized particles
that search across the search space to find the best solution. PSO is a general iterative
method that directs each particle toward the optimal location. For its optimal placement
and the best location for all particles, each particle evolves in two processes: exploration
and exploitation. To accomplish these two operations, each particle modifies its position
in the search space depending on two variables: velocity and position updating rules.
Figure 1 shows the schematic operation of basic PSO. The updating criteria used by the
PSO algorithm are shown in equations (26) and (27).

Figure 1: Schematic of basic particle swarm optimization [Chen et al., 2020]

vji (t+ 1) = ω1v
j
i (t) + c1r1(pbest

j
i − xj

i (t)) + c2r2(gbest
j
i − xj

i (t)) (26)

xj
i (t+ 1) = xj

i (t) + vji (t+ 1) (27)

where t refers to iteration number, the initial weight ω1 is used to control the searching

tendencies either for global or local solutions. vji (t) presents the current velocity at
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iteration t for j-th dimension in i-th agent, xj
i (t) is j-th dimension in i-th particle. Two

random numbers between (0,1) are expressed in terms r1 and r2, and c1 and c2 present
the individual and social factors, respectively. The pbest and gbest refer to the personal
and global best solutions (i.e., agent), respectively. Since each solution will follow pbest
and gbest solutions, PSO shows a fast convergence behavior while performing the
exploration and exploitation processes. However, PSO, in some cases, may be trapped in
local optima problems when handling complex and multi-modal optimization problems
[Thaher et al., 2022b].

3.2.2 Grey Wolf Optimizer (GWO)

The GWO is a well-regarded optimization algorithm proposed by [Mirjalili et al., 2014b].
The basic idea of this algorithm is inspired by the social structure and hunting strategy of
grey wolves in the wild. The leadership hierarchy is simulated using four different breeds
of grey wolves, including alpha, beta, delta, and omega. Additionally, three fundamental
hunting techniques, looking for prey, surrounding prey, and attacking prey, are used to
carry out optimization.

In the wild, grey wolves begin their hunt by tracking and pursuing target prey. They
then pursue and surround the prey until it stops. Attacking and killing the target is the final
step. The following mathematical model could be used to describe encircling behavior:

~D = |
(
~C. ~Xp(t)− ~X(t)

)
| (28)

~X(t+ 1) = ~Xp(t) + ~A. ~D (29)

~A = 2 ~a · ~r1 − ~a (30)

~C = 2 ~r2 (31)

where t is the number of iterations, | | is the absolute value, and (.) is a component-

by-component multiplication, and D is the distance vector specified in Eq. (28). ~A and
~C are random coefficient vectors (are calculated as in Eq.s (30), and (31)), ~Xp(t) is the

prey position vector, ~X(t) is the gray wolf position vector. The detailed mathematical
model of GWO updating rules is presented in the original paper [Mirjalili et al., 2014b].
Figure 2 exhibits the potential next position of a search agent in a 2D search space.

3.2.3 Harris hawks optimization (HHO)

HHO is a popular, well-regarded swarm-based, gradient-free optimization algorithm
introduced by [Heidari et al., 2019b] in 2019. The main logic of the HHO method is
designed based on the chain of action and reactions of hawks and rabbits during their
hunting process. The core mathematical foundation of this optimizer, as revealed in
the original paper of HHO, makes it an effective optimizer in dealing with various
constrained and unconstrained problems. The search agents in this optimizer are updated
through two phases of exploration and four phases of exploitation. In addition, it employs
several time-varying mechanisms and a greedy scheme to improve the quality of results.
The stages of HHO are demonstrated in Figure 3. The detailed phases and the complete
mathematical model of HHO are revealed in the original paper [Heidari et al., 2019b].
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Figure 2: Updating strategy for each search agent in GWO [Thaher et al., 2022a]

Figure 3: The stages of HHO [Thaher et al., 2020]

4 Proposed cooperative algorithmic-level model

The heterogeneous cooperative model in this work involves three swarm intelligence
algorithms (PSO, GWO, and HHO). In the cooperative model, the applied algorithms
cooperate with each other by exchanging search-based information. In general, the
cooperative model of meta-heuristic algorithms depends on some factors, comprising
the communication mechanism (topology), the type of exchanged information, and
the criteria of exchange decision (when) [Talbi, 2009]. Furthermore, the exchanged
information help in adapting the search behaviors of algorithms and provides a better
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exploration of the search space, hence determining optimal or near to the optimal solution.
Considering these factors, the proposed model in this work begins the search process
for the optimal solution by running three algorithms, including PSO, GWO, and HHO,
concurrently, where each algorithm has its own configuration and search mechanism. All
algorithms run for a specific number of iterations. At a pre-specified number of iterations
(e.g., 100,200,300,400, and 500), the algorithms exchange search-based information,
including a set of N best solutions where each algorithm replaces the worst N solutions
in its population with N best solutions obtained from one of the cooperated algorithms.
Figure 4 depicts an example of the migration process using ring topology.

Figure 4: Migration process among algorithms using random ring topology

Simply, selected solutions will migrate between some algorithms after a pre-specified
number of generations. The migration operation is a unique procedure that algorithms
perform to enhance the diversity of their searches [Al-Betar and Awadallah, 2018]. In
addition, a number of parameters such as the number of algorithms, topology, migration
rate, replacement mechanism, and migration frequency usually control the migration
process. The following subsections present the parameters of the migration process and
their importance [Abed-alguni et al., 2019].

4.1 Interconnection topology

Cooperated algorithms are logically interconnected to establish a communication network
where each node represents an algorithm, and the network’s edges represent the pairs of
algorithms that could exchange their search information [Talbi, 2009]. The connection
topology of the algorithms significantly impacts the quality of the final solution. Various
forms of connection topology have been introduced (e.g., ring topology, star topology,
grid topology, and complete graph topology). For parallel meta-heuristics, based on the
overall performance, ring topology is considered the most effective and practical one
[Al-Betar and Awadallah, 2018] [Abed-alguni et al., 2019].

4.2 The migration frequency

The migration process means the exchange of solutions between algorithms. Determine
when to exchange the search-based information must be accurately decided. Hence, the
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migration operation is often controlled by a pre-determined number of iterations which
is named migration frequency (Mf ). This number is employed to control the number of
iterations between each successful swap of information between neighbor algorithms.
The value of the migration frequency has a significant impact on the overall performance
of the cooperative model [Crainic, 2016][Alba et al., 2013].

4.3 The migration rate

The migration rate (Mr) constitutes a crucial factor within the algorithmic-level model.
This rate determines the number of solutions that migrate between neighboring algorithms
and can be either a fixed value or a percentage of the population. Selecting an appropriate
value for Mr is of utmost importance. A small value might impede the cooperation
efficiency between algorithms, while a large value could diminish the diversity of the
search process. Consequently, an excessively high migration rate increases the risk of
premature convergence [Crainic, 2016][Alba et al., 2013]. Careful consideration must be
given to strike a balance and optimize the migration rate to maintain a healthy exploration
and exploitation trade-off in the algorithm.

4.4 The selection and replacement mechanisms

Generally, high-quality solutions are the most proper type of information exchanged
[Crainic, 2016]. Therefore, a selection mechanism must be applied to decide which
solutions will be migrated between neighbor algorithms. The selection mechanisms
can be divided into two categories: deterministic or stochastic [Talbi, 2009]. The fittest
solutions are chosen using different selection approaches such as tournament and roulette
wheel. In addition, a deterministic mechanism can also be applied to replace the received
solutions. The stochastic mechanism involves selecting solutions in a random manner,
irrespective of their fitness values. Among the various selection methods in the literature,
the best-worst migration approach emerges as the most commonly applied technique
[Al-Betar and Awadallah, 2018] [Abed-alguni et al., 2019].

4.5 CPGH-based image segmentation

This section provides further information on the proposed CPGH-based MIS model for
segmenting the COVID-19 CT chest images. Figure 5 displays the flowchart for the seg-
mentation framework. To sum up the development of the proposed CPGH algorithm for
choosing the optimal thresholds in COVID-19 CT images using the Otsu, cross-entropy,
and Tsallis entropy fitness functions, the following steps can be used to implement the
suggested CPGH-based image segmentation:

– Step 1: Initialize the Problem and Adjustable Parameters

At this step, it is necessary to initialize the problem, the CPGH parameters, and the
migration parameters that were stated before.

• Step 1a: Read the original CT image IR and store it as a grayscale image IGRY .

• Step 1b: Obtain the histogram for the input image and compute the probability
distribution.
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• Step 1c: Initialize the problem parameters, including the number of thresholds
(i.e., problem dimension), the possible range of threshold values (1–256), and
the objective function (Otsu’s method, cross-entropy, and Tsallis entropy).

• Step 1d: Setup the common and internal parameters of each integrated algorithm
in the CPGHmodel. The parameters that are shared are the population sizeN and
the maximum number of iterations (tmax). In this stage, the internal parameters
of PSO, GWO, and HHO, as described in Table 1, must also be configured.

• Step 1e: Setup the parameters of the migration process, including migration
frequency (Mf ), migration rate (Mr), communication topology, and selection-
replacement strategy (see Table 1).

– Step 2: Generate the initial population for each algorithm

In this step, a population of candidate solutions X = (x1, x2, x3, .... xn) are usually
generated randomly, where each candidate solution (xj , where j ∈ (1, 2, 3, 4, .....
N)) represents a vector of threshold values computed using Eq. (32).

~Xj = ~XL + r( ~XU − ~XL) (32)

where r is a random number within [0 1], ~XL and ~XU are the lower and upper bound
of the threshold values.

– Step 3: Optimization process

This process includes three steps (Step 3a-Step 3c) as follows:

• Step 3a: Evaluate the quality of each candidate solution X using the cross-
entropy fitness function as in Eq. 16.

• Step 3b: Improvement process

In this phase, the search process for the optimal solution begins by running
cooperative algorithms, including PSO, WOA, and HHO, concurrently, where
each algorithm has its own configuration, population, and search mechanism.
In this step, each algorithm evolves its population independently using the
mathematical operators of the original algorithm as discussed in Sections 3.2.1,
3.2.2, and 3.2.3.

• Step 3c: Migration process

This process is regularly started after a predetermined number of iterations
according to the (Mf ) value: i) A commutation topology (e.g., ring topology) is
constructed randomly to connect the cooperative algorithms. ii) A portion of
each population is exchanged among the connected algorithms according to the
(Mr) parameter. iii) Based on the selection-replacement approach, the swapping
process is carried out between every pair of neighboring algorithms (e.g., the
best-worst strategy). The best–worst migration policy selects the bestMr ×N
individuals from the source population to replace the worstMr ×N individuals
in the target population.

– Step 4: Memorize the best solution obtained by each algorithm.

In this step, the best solution X∗ obtained so far in each evolved population is
memorized.
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– Step 5: Check stop criterion

The iteration counter is increased by 1, and if the stop condition (i.e., the maximum
number of iterations) is satisfied, go to step 14. Otherwise, jump to Step 3.

– Step 6: Find the best threshold values

The best solution that contains the best thresholds among the memorized solutions
in step 4 is returned and applied to the input COVID-19 CT image to provide the
segmented image.

Figure 5: Flowchart of the proposed CPGH-based multi-thresholding image

segmentation

5 Experimental Results and Discussion

This section presents and discusses the experimental results of segmenting COVID-19
CT images. The experiments have been conducted to validate The performance of the
suggested CPGH method, and its results have been compared with those of some state-
of-the-art algorithms. Mainly, the experimental work was conducted in two phases as
follows:

– Firstly, various objective functions were adopted to guarantee better segmentation
quality of COVID-19 CT images.

– Secondly, a novel CPGH model was introduced as an MLT technique to handle the
segmentation problem. Besides, the proposed approach was compared with other
state-of-the-art methods. These methods include the original PSO, GWO, and HHO
in addition to the other three metaheuristic algorithms: self-adaptive DE (SADE,
GA, and improved harmony search (IHS).
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The following is how the rest of this section is structured: The experimental setup is
described in Section 5.1. Section 5.2 describes the COVID-19 images dataset utilized
in the experiments. The image quality metrics used in this study are detailed in Section
5.3. The experimental setting is described in Section 5.4. Results of various objective
functions are displayed in Section 5.5. The performance analysis of the proposed CPGH
and other algorithms is presented in Section 5.6.

5.1 Experimental setup

The efficiency of the proposed cooperative approach is compared against PSO, GWO
[Mirjalili et al., 2014b], and HHO [Heidari et al., 2019b] algorithms. The segmentation of
COVID-19 CT scan images involved the utilization of multiple thresholds, specifically 2,
4, 6, 10, 15, 20, and 25. These threshold values were chosen based on previous studies to
ensure the assessment of image quality and algorithm performance in complex real-world
scenarios [Houssein et al., 2022c, Su et al., 2022, Elsayed Abd Elaziz et al., 2021]. By
employing a range of thresholds, the evaluation process incorporates multidimensional
analysis, taking into account the diverse characteristics and variations present in the
COVID-19 CT scan images. Three objective functions were employed: Otsu, cross-
entropy, and Tsallis entropy. In addition, PSNR, SSIM, and UQI measures are adopted to
assess the proposed model. All algorithms have been implemented and run using Python
on a computer running Ubuntu 20.04 LTS with Intel(R) Core(TM) i7-1165G7 CPU @
2.80GHz (8 CPUs) and 16 GB RAM.

Because of the non-deterministic nature of meta-heuristic algorithms, each algorithm
is run 10 times for each test image at each threshold level. Accordingly, we provided the
average results from all method runs to lessen the impact of random components. The
top values are highlighted in boldface in the reported results. Furthermore, the Wilcoxon
rank-sum and Friedman mean rank tests are also utilized to demonstrate the performance
difference between the proposed methods and statistically assess the suggested method’s
importance. We used Wilcoxon rank-sum test with a degree of 5% significant level.
Wilcoxon rank-sum test is a non-parametric test employed to compare the outcomes
of each pair of algorithms [Liao et al., 2007]. The Friedman mean rank test is another
non-parametric test used to compare three or more matched groups and to evaluate how
well competitive algorithms perform. The total ranking of the competing algorithms is
specified using Friedman’s mean rank [Richardson, 2015].

5.2 COVID-19 CT images dataset

Computed tomography (CT) has emerged as a valuable tool for diagnosing COVID-
19 patients, particularly during the COVID-19 outbreak. To evaluate the proposed
methodology in this study, open-sourced datasets were employed from these references
[Zhao et al., 2020a, Cohen et al., 2020b]. The CT COVID-19 dataset consists of 349 CT
scans with clinical COVID-19 findings from 216 patients. An experienced radiologist
who has been identifying and treating COVID-19 patients ever since the pandemic’s
emergence attests to the usefulness of this dataset. The COVID-19 images were collected
from individuals of both sexes aged 40 to 84. In this paper, ten images for ten distinct
patients are selected from this dataset to assess the performance of the proposed methods.
The chosen test images are named COVID-CT1, COVID-CT2,..., and COVID-CT10.
Figure 6 demonstrates these images and the corresponding histograms.
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(a) COVID-CT1 (b) COVID-CT2 (c) COVID-CT3 (d) COVID-CT4

(e) Histogram of (a) (f) Histogram of (b) (g) Histogram of (c) (h) Histogram of (d)

(i) COVID-CT5 (j) COVID-CT6 (k) COVID-CT7 (l) COVID-CT8

(m) Histogram of (i) (n) Histogram of (j) (o) Histogram of (k) (p) Histogram of (l)

(q) COVID-CT9 (r) COVID-CT10 (s) Histogram of (9) (t) Histogram of (r)

Figure 6: Set of tested COVID-19 CT images and their histograms
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5.3 Image quality metrics

For multilevel segmentation, it is critical to examine the pixel classification’s accuracy
by using a quantitative measure of the quality of a segmented image. In this study, three
popularly used metrics, namely PSNR, SSIM, and UQI, are employed to evaluate the
quality of the segmented images. The following subsections will briefly define these
measures.

5.3.1 Peak Signal to Noise Ration (PSNR)

PSNR [Avcibas et al., 2002] is used to verify the similarity between the original and
segmented images using the Root Mean Square Error (RMSE) of each pixel. The mathe-
matical formulas for PSNR and RMSE are given in Eqs (33) and (34), respectively.

RMSE =

√√√√ 1

mn

n∑
i=1

m∑
j=1

(I(i, j)− Is(i, j))2 (33)

where I and Is represent the original image and the thresholded image, respectively,
whilem.n denotes the image size.

PSNR = 20log10

( 2552

RMSE

)
(34)

5.3.2 Structural Similarity Index (SSIM)

The SSIM [Wang et al., 2004] is a perceptual metric that quantifies image quality
degradation caused by processing the reference image. This measure determines the
similarity between the original and the segmented image. SSIM is calculated using Eq.
(35)

SSIM =
(2µIµIs + c1)(2σI,Is) + c2

(µ2
I + µ2

Is
+ c1)(σ2

I + σ2
Is

+ c2)
(35)

where µI , µIs denote the mean of intensity values of the original and the segmented
images, respectively, σI , σIs represent the standard deviations of I and Is, σI,Is is the
covariance of I and Is, c1 and c2 are constants for the weak denominator stabilization.

5.3.3 Universal Quality Image Index (UQI)

The correlation loss, contrast distortion, and luminance distortion that make up an image’s
distortion are combined to form the UQI metric [Wang and Bovik, 2002]. The UQI can
be calculated using Eq.(36)

UQI =
4σI,IsµIµIs

(σ2
I + σ2

Is
)(µ2

I + µ2
Is
)

(36)

where, µ and σ denote the mean and standard deviations of the reference and processed
images, and σI,Is denotes the covariance of the images.
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5.4 Parameter settings

To guarantee that the investigations are as objective as feasible, all algorithm comparison
tests in this study are carried out under the same conditions, using the parameters in
Table 1. The same common parameters (population size = 30, maximum iterations = 500,
and the number of runs = 10) were used to examine all the optimizers for each test image.
The lower and upper bounds are set at 1 and 256, respectively. The internal parameters
of the implemented algorithms were chosen based on the suggested default values from
the literature [Heidari et al., 2019b, Mirjalili et al., 2014b, Thaher et al., 2022b]. As
stated in [Arcuri and Fraser, 2013], a fair parametrization is to use default parameter
values. Furthermore, using default settings lessens the possibility of comparison bias
since no algorithm would benefit from better parametrization. The migration parameters
of the proposed CPGH algorithm were carefully selected based on the experimental work
conducted in [Thaher and Sartawi, 2020].

Common parameters

population size 30

Maximum number of iterations 500

Number of runs 10

Dimension No. thresholds

Lower and upper bounds 1 , 256

significance level (α) 0.05

Specific parameters

Algorithm parameter value

HHO [Heidari et al., 2019b] convergence constant (E) [2 0]

GWO [Mirjalili et al., 2014b] convergence constant (a) [2 0]

PSO [Thaher et al., 2022b] inertai weight (w) [0.9 0.2]

cognitive constant (c1) 2

social constant (c2) 2

CPGH [Thaher and Sartawi, 2020] communication topology Ring

selection replacement policy best-worst

migration frequency (mf ) 5

migration rate (mr) 0.3

Table 1: Predefined parameter settings for the tested algorithms

5.5 Assessment of various objective functions

In the first round of experiments, three objective functions, including Otsu, cross-entropy,
and Tsallis entropy, were employed for fitness assignment to the PSO population. These
experiments aim to identify the most effective objective function for the segmentation
of COVID-19 CT images tested in this study. The PSO algorithm has been used in this
phase to handle the image segmentation problem over ten CT COVID-19 images. Each
experiment is executed with 10 independent runs per tested image, each run with 300
iterations, and the swarm size is set to 30. The experiments were performed using 10
threshold values.

The quantitative outcomes of the various objective functions utilized for fitness
assignment in the PSO algorithm are presented in Table 2.When inspecting the results, we
noticed that PSNR, SSIM, and UQI performances perceived by entropy-based functions
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Image PSNR SSIM UQI

Cross_Entropy Otsu Tsallis Cross_Entropy Otsu Tsallis Cross_Entropy Otsu Tsallis

COVID-CT1 22.788 22.599 23.211 0.8128 0.7784 0.7480 0.8766 0.8095 0.7544

COVID-CT2 25.288 23.541 25.783 0.8619 0.8371 0.8213 0.9153 0.8717 0.8267

COVID-CT3 24.911 22.662 26.047 0.8740 0.8491 0.8453 0.9314 0.8821 0.8569

COVID-CT4 24.996 21.670 26.427 0.8634 0.8343 0.8445 0.9357 0.8781 0.8729

COVID-CT5 18.096 17.361 18.521 0.6072 0.5911 0.7109 0.7089 0.6695 0.7548

COVID-CT6 24.514 20.026 25.909 0.7931 0.7356 0.8474 0.9078 0.8110 0.9596

COVID-CT7 20.000 17.834 17.906 0.7515 0.7168 0.7407 0.8818 0.8193 0.7676

COVID-CT8 18.355 24.906 28.047 0.8884 0.9093 0.9294 0.8353 0.8397 0.8489

COVID-CT9 23.877 21.012 28.922 0.7855 0.7347 0.8369 0.9357 0.8251 0.9804

COVID-CT10 23.229 21.641 22.094 0.7798 0.7614 0.7691 0.8714 0.8330 0.8382

Rank (F-Test) 2.00 2.80 1.20 1.50 2.60 1.90 1.50 2.40 2.10

Table 2: Comparison of mean PSNR, SSIM, and UQI values obtained by PSO using

different objective functions for fitness assignment.

(i.e., cross-entropy and Tsallis) are better than those perceived by Otsu’s function in
most of the cases. The cross-entropy objective function outperforms the others in terms
of SSIM and UQI in 60% of test cases. The values provided by this function differ
from those of the other objective functions. As per F-test, the first rank is obtained by
cross-entropy, followed by Tsallis entropy and Otsu’s method, respectively.

A boxplot analysis can be used to help in understanding the characteristics of the data
distribution. Boxplots are the ideal graphs to display data distributions in quartiles. The
algorithm’s lowest and highest data points, which form the edges of the whiskers, are
the minimum and maximum. The rectangles’ ends serve as the boundaries between the
lower and upper quartiles. High data agreement is indicated by a boxplot that is narrow.
Examining the boxplot outcomes of the SSIMmetric in Figure 7, the cross-entropy-based
objective function typically had the greatest median value on most test images. Besides,
for most images, the boxplots of the cross-entropy function are quite narrow compared
to other distributions. Indeed, results clearly demonstrate the superior performance of
the cross-entropy-based thresholding method.

Moreover, we illustrate a convergence analysis of the proposed CPGH algorithm
compared with counterpart algorithms. Figure. 8 show the convergence curves for CPGH,
PSO, GWO, and HHO algorithms when dealing with tested images regarding 25 thresh-
olds. Figure. 8 (a, b, c, d, e, f) illustrates the convergence curves for the COVID-CT1,
COVID-CT2, COVID-CT3, COVID-CT4, COVID-CT9, and COVID-CT10 test images,
respectively. Accordingly, the CPGH algorithm demonstrates an early exploration com-
pared to all other counterparts. Over the test images COVID-CT1 COVID-CT3, and
COVID-CT10 as illustrated in Figure. 8(a, c, f) the PSO explicit a significant performance
than other algorithms. It is noticed that the CPGH algorithm gets a stable point in most
test images. This explains that the proposed CPGH converges correctly towards and
nearer the optimal solution.

Our findings prove that the proper selection of objective function often guarantees a
better segmentation quality. Entropy creates an index of statistical variability based on
the intensity levels in an input image. Entropy-based thresholding is a reliable technique
since the chosen threshold is independent of slight variations in the input image and is
decided based on an overall and objective characteristic of the image histogram. Thus
the cross-entropy function is preferred in the present research for the COVID-19 CT
segmentation problem. It is adopted in the subsequent experiments for fitness assignment
in all tested algorithms.
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(a) COVID-CT1 (b) COVID-CT2

(c) COVID-CT3 (d) COVID-CT4

(e) COVID-CT5 (f) COVID-CT6

(g) COVID-CT7 (h) COVID-CT8

Figure 7: Box-Plots of the SSIM results obtained by PSO using cross entropy, Otsu, and

Tsallis based objective functions
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(c) COVID-CT3
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Figure 8: Convergence curves of CPGH, PSO, GWO, and HHO when dealing with

tested images using 25 thresholds

5.6 Segmentation results of CPGH, PSO, GWO, and HHO

In this phase, we intensely performed a set of experiments to investigate the performance
of the proposed CPGH model by comparing it with the basic PSO, GWO, and HHO
algorithms. It is worth noting that cross-entropy is used as the objective function because
it has delivered the best performance from the previous analysis. Besides, fitness values,
PSNR, SSIM, and UQI are used to assess the performance of the proposed methods.
Tables 3, 5, 6 and 7 outline the mean results of fitness, PSNR, SSIM, and UQI evaluation
matrices, respectively. A higher value, which is highlighted with boldface, indicates a
more trustworthy and efficient algorithm.

Tables 3 reports the mean fitness values obtained from the CPGH, PSO, GWO, and
HHO with different numbers of thresholds Thr = 2, 4, 6, 10, 15, 20, 25. Successively,
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image Thr PSO GWO HHO CPGH Thr PSO GWO HHO CPGH

COVID-CT1 2 146617703.2 146617703.2 146617703.2 146617703.2 COVID-CT6 2 490828113.2 490828113.2 490828113.2 490828113.2

4 146884970.3 146889387.1 146883543 146889484.8 4 491257620.1 491257343.6 491250845.4 491257620.1

6 146974234.6 146974227.6 146961336.9 146974234.6 6 491395952.7 491406148.8 491364208.3 491406672.8

10 147028065.2 147027643.1 147016447 147028101.3 10 491507645.8 491503376.5 491472262.1 491508566.7

15 147048028.3 147046576.9 147037756.2 147048288.3 15 491553351.2 491549721.3 491531031.9 491555482.3

20 147055395.2 147055580.4 147046212.2 147055809 20 491570806.8 491570301.7 491550513 491571788.2

25 147058677.3 147058426 147050517.4 147059250.6 25 491578732.1 491577795.4 491563834.4 491579004.9

COVID-CT2 2 171455440.9 171455440.9 171455440.9 171455440.9 COVID-CT7 2 121720500.8 121720500.8 121720500.4 121720500.8

4 171794560.4 171794271.3 171775830.5 171794560.4 4 121777915.3 121777915.3 121775242.3 121777915.3

6 171886943.8 171886932 171876748.3 171886945.2 6 121793617.9 121794364.1 121789561.7 121794526.6

10 171949985.2 171949935.7 171936455.4 171950071.4 10 121807890.3 121807056.9 121801315.8 121807905.5

15 171973273.7 171971438.2 171959610.4 171973404.2 15 121813025 121812315.3 121807270.5 121812981.7

20 171981956 171981634.7 171972951.4 171982387.5 20 121814845.7 121788745.5 121811089 121814972.5

25 171985257.8 171984685.1 171979344.6 171986260.5 25 121813312.4 121796610.2 121812069.4 121815141

COVID-CT3 2 177519053.7 177519053.7 177519053.7 177519053.7 COVID-CT8 2 18963872.77 18963872.77 18963872.77 18963872.77

4 177855531.9 177855531.9 177840635 177855531.9 4 19055652.9 19055645.02 19054024.18 19055652.9

6 177949250.5 177949245.5 177934534.1 177949250.5 6 19075389.37 19075364.82 19073612.28 19075389.37

10 178015083.5 178014038.1 178001783.7 178015154.5 10 19085885.1 19085861.86 19083206.08 19085893.43

15 178038939.8 178037822.3 178027228.9 178039111.5 15 19089993.99 19090335.56 19087881.01 19090264.09

20 178046808.8 178047643.1 178037845.6 178048318.5 20 19091590.31 19091871.57 19090289.6 19091908.98

25 178051616.6 178051388.5 178045023.3 178052201.9 25 19092274.84 19092607.24 19091340.43 19092674.59

COVID-CT4 2 173768421.9 173768421.9 173768421.9 173768421.9 COVID-CT9 2 312673280.2 312673280.2 312673280.2 312673280.2

4 174076778 174076778 174071046.5 174076778 4 313030502 313034381.1 313027987 313034381.1

6 174160555.6 174159859.7 174150478.4 174160554.7 6 313151309.5 313152612 313133242.9 313152614.7

10 174222041.7 174220482.2 174211650.7 174222050.8 10 313235712.6 313235839.8 313217940.1 313236302.1

15 174245235.4 174244584.7 174234039.1 174245602.3 15 313271968.8 313271747.4 313255743.8 313272889.7

20 174253382.4 174253506.8 174245383.5 174254709.5 20 313286812.7 313287058.9 313272765.2 313287797

25 174258161.4 174257483.5 174251127.1 174258711.2 25 313293051.1 313293660.2 313283977.7 313294945.6

COVID-CT5 2 487542519.8 487542519.8 487542519.8 487542519.8 COVID-CT10 2 499033021.5 499033021.5 499033021.5 499033021.5

4 487831329.3 487839000.2 487826982.5 487839222.2 4 499493685.8 499493426 499474477.5 499493685.8

6 487905742.1 487906519.2 487882528.9 487908488.7 6 499644239 499644362.8 499607341.4 499646670.9

10 487961074.9 487961767.5 487935612.9 487963312 10 499752321.4 499752065.4 499718151.5 499752446.7

15 487982447.4 487982138.5 487959476.9 487982753.4 15 499790798.8 499790973.4 499763841.1 499791777.5

20 487990166.4 487990376.5 487971672.4 487990766.2 20 499804586.3 499806166.4 499782453.4 499805902

25 487994500 487964800.1 487980163.9 487994823.3 25 499812781 499812074.9 499798221.8 499813424

Overall Mean rank PSO 2.71 GWO 2.41 HHO 1.24 CPGH 3.64 Sig. 8.77E-32

Table 3: Mean values of the objective function over 10 runs obtained by cross

entropy-based CPGH, PSO, GWO, and HHO algorithms.

the CPGH has perceived the best ranking of 3.64. This is because it provided the highest
fitness value in most test images at most threshold levels. More precisely, it is clear
that the comparative algorithms achieved similar results at the threshold level of 2. In
comparison, the superiority of the proposed CPGH became evident with the increase in
the number of threshold values.

Table 4 presents the P-values obtained by the Wilcoxon Rank-Sum test comparing
the proposed CPGH versus other algorithms based on the fitness results reported in
Table 3. According to the P-values, and based on a 5% significant level, when (P-value
≤ 0.05) the difference between the results’ ranks produced by a pair of algorithms
is significant. While NaN means that CPGH performance is similar to the compared
algorithm. According to Table 4, the numbers of (P-value ≤ 0.05) are 17 (CPGH vs.
PSO), 20 (CPGH vs. GWO), and 60 (CPGH vs HHO), respectively. The findings indicate
the superiority of the CPGH; The proposed CPGH and the competing algorithms differ
significantly from one another in terms of fitness results in most cases.

Considering the segmentation quality metrics. Tables 5 presents the average PSNR
scored by the CPGH and other approaches. As previously indicated, it provides an
estimate of how similar the segmented image and the original are, with a more significant
value indicating better segmentation quality. Inspecting the results, the PSO algorithm
achieved higher PSNR scores in most images and threshold levels (overall rank of 2.82),
followed by CPGH (overall rank of 2.71). On the other side, the worst method is found
to be HHO, with the lowest overall rank of 2.35.

According to the SSIM values presented in 6, Both the CPGH and PSO algorithms
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image Thr CPGH vs PSO CPGH vsGWO CPGH vs HHO image Thr CPGH vs PSO CPGH vsGWO CPGH vs HHO

COVID-CT1 2 NaN NaN NaN COVID-CT6 2 NaN NaN NaN

4 4.04E-05 3.32E-05 6.39E-05 4 NaN 3.68E-01 2.31E-04

6 NaN 1.68E-01 6.39E-05 6 4.42E-04 7.20E-04 8.74E-05

10 2.54E-01 1.03E-01 1.72E-04 10 8.83E-02 5.78E-03 1.82E-04

15 2.12E-01 8.50E-01 1.83E-04 15 6.23E-01 2.57E-02 1.83E-04

20 6.40E-02 6.23E-01 1.83E-04 20 2.11E-02 1.40E-01 1.83E-04

25 4.39E-02 7.91E-01 1.83E-04 25 7.91E-01 3.76E-02 1.83E-04

COVID-CT2 2 NaN NaN NaN COVID-CT7 2 NaN NaN 3.68E-01

4 NaN 1.68E-01 6.39E-05 4 NaN NaN 6.39E-05

6 1.34E-03 1.20E-03 8.74E-05 6 4.97E-04 1.08E-02 1.11E-04

10 1.19E-01 1.35E-02 1.68E-04 10 3.05E-01 4.35E-04 1.81E-04

15 2.41E-01 7.57E-02 1.83E-04 15 3.85E-01 1.21E-01 1.83E-04

20 4.60E-02 1.73E-02 1.83E-04 20 4.27E-01 2.83E-03 1.83E-04

25 4.27E-01 2.11E-02 1.83E-04 25 9.10E-01 1.04E-01 5.83E-04

COVID-CT3 2 NaN NaN NaN COVID-CT8 2 NaN NaN NaN

4 NaN NaN 7.51E-04 4 NaN 3.68E-01 7.51E-04

6 NaN 1.67E-01 6.39E-05 6 NaN 1.68E-01 6.39E-05

10 3.05E-01 1.03E-01 1.73E-04 10 1.59E-01 3.59E-02 1.59E-04

15 9.10E-01 1.21E-01 1.83E-04 15 1.73E-02 3.07E-01 1.83E-04

20 1.40E-02 3.76E-02 1.83E-04 20 9.11E-03 5.21E-01 1.83E-04

25 1.62E-01 7.57E-02 1.83E-04 25 4.40E-04 7.91E-01 1.83E-04

COVID-CT4 2 NaN NaN NaN COVID-CT9 2 NaN NaN NaN

4 NaN NaN 6.34E-05 4 7.67E-02 NaN 6.39E-05

6 4.34E-01 1.74E-01 1.41E-04 6 1.83E-02 7.26E-01 1.31E-04

10 6.23E-01 1.13E-02 1.81E-04 10 1.19E-01 2.51E-02 1.73E-04

15 9.10E-01 7.34E-01 1.83E-04 15 5.90E-02 4.27E-01 1.83E-04

20 2.83E-03 1.13E-02 1.83E-04 20 3.07E-01 2.73E-01 1.83E-04

25 5.21E-01 2.73E-01 1.83E-04 25 1.40E-01 2.12E-01 1.83E-04

COVID-CT5 2 NaN NaN 3.68E-01 COVID-CT10 2 NaN NaN NaN

4 7.56E-04 7.56E-04 6.39E-05 4 NaN 3.68E-01 6.39E-05

6 1.26E-03 1.02E-01 1.72E-04 6 2.43E-05 4.88E-05 6.39E-05

10 1.00E+00 3.82E-01 1.69E-04 10 3.42E-01 4.43E-02 1.72E-04

15 1.86E-01 9.70E-01 1.83E-04 15 9.61E-02 1.40E-01 1.83E-04

20 4.27E-01 5.71E-01 1.83E-04 20 2.12E-01 3.07E-01 1.83E-04

25 2.12E-01 8.90E-02 1.83E-04 25 7.91E-01 1.04E-01 1.83E-04

Table 4: P-values produced by the Wilcoxon Rank-Sum test comparing CPGH versus

other algorithms as reported in Table 3 (P-values≤0.05 are significant and shown in

boldface, NaN: Not Applicable)

usually produced higher SSIM values. However, one performed better than the other
for a particular set of test images. For example, CPGH provides better SSIM in the
COVID-CT2, COVID-CT3, COVID-CT6, and COVID-CT10 images. As per F-test,
CPGH achieves the first rank (2.90), followed by PSO (2.74), GWO (2.52), and HHO
(1.84), respectively.

Table 7 tabulates the average UQI values obtained by comparative algorithms. As
can be observed, the best algorithm is found to be CPGH (rank of 2.81), followed by
PSO (rank of 2.69).

The Overall ranking results of the proposed approaches in dealing with all images
based on segmentation quality metrics are summarized in Table 8. As illustrated in the
results, we can see that the performance of the proposed CPGH is better than conventional
PSO, GWO, and HHO algorithms. In specific, CPGH offered the best average rank of
3.02. Furthermore, it perceived the optimal F-test score regarding fitness, SSIM, and
UQI. Hence, it can be inferred that the CPGH was the best variant in the current work. In
summary, the performance of the algorithms can be ranked from best to worst as follows:
CPGH, PSO, GWO, and HHO.

Taken together, the experiments and comparison findings showed the benefits of
the suggested CPGH-based model when dealing with the multi-thresholding image
segmentation problem. The excellent behavior of CPGH can be attributed to two reasons.
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image Thr PSO GWO HHO CPGH Thr PSO GWO HHO CPGH

COVID-CT1 2 10.5992 10.5992 10.5992 10.5992 COVID-CT6 2 13.7276 13.7276 13.7276 13.7276

4 16.9341 15.3254 16.3993 15.3019 4 18.6942 18.6708 18.6088 18.6942

6 19.4290 19.4418 19.4882 19.4290 6 20.9475 22.0148 20.2480 21.9989

10 22.4868 22.3442 21.6659 22.3520 10 24.3580 24.7469 23.6510 26.1199

15 23.3937 21.7203 21.7794 22.5193 15 26.1323 25.4225 23.9804 26.3324

20 25.1163 24.0136 24.9006 24.6191 20 25.5364 26.8652 26.4685 26.2794

25 24.9831 21.6106 23.5981 24.5407 25 26.6263 24.2376 27.0337 26.0861

COVID-CT2 2 12.0974 12.0974 12.0974 12.0974 COVID-CT7 2 13.1547 13.1547 13.1550 13.1547

4 17.6907 17.6910 17.3987 17.6907 4 17.1775 17.1775 16.8688 17.1775

6 21.8371 21.9303 21.9504 21.8092 6 18.5492 17.9882 17.2754 18.0755

10 24.6374 24.7412 23.1868 24.9822 10 19.8461 20.5609 18.5002 19.9749

15 25.2949 23.7693 22.3488 25.3906 15 20.9437 22.5667 19.3145 20.3285

20 27.6297 24.9886 25.8564 28.5991 20 21.2299 16.8664 20.2226 20.2471

25 27.6962 20.8100 25.6887 25.2344 25 20.6540 21.3924 19.2999 20.9915

COVID-CT3 2 11.9983 11.9983 11.9983 11.9983 COVID-CT8 2 10.3183 10.3183 10.3183 10.3183

4 17.5386 17.5386 17.5341 17.5386 4 17.2914 17.3060 16.3700 17.2914

6 22.1277 22.1338 22.2218 22.1277 6 17.1337 17.1059 16.5823 17.1337

10 25.2650 24.4780 23.2585 24.9848 10 18.1071 17.8210 18.8789 17.9556

15 25.5747 21.6613 22.8554 25.9693 15 21.4431 17.1459 16.5964 18.2818

20 26.9708 24.6994 27.9155 28.8043 20 25.8294 19.4855 20.2345 21.3894

25 26.6418 22.2719 24.5160 26.0664 25 28.7620 17.2467 20.3597 19.5646

COVID-CT4 2 11.9437 11.9437 11.9437 11.9437 COVID-CT9 2 14.8041 14.8041 14.8041 14.8041

4 17.3229 17.3229 17.4434 17.3229 4 18.7576 19.5153 18.9474 19.5153

6 22.0019 21.9104 22.2845 22.0466 6 19.9009 19.6719 19.4966 19.6549

10 24.6259 23.9118 24.1622 24.5898 10 24.4571 24.2294 23.8030 23.5421

15 24.8654 22.0091 23.8136 24.3899 15 25.5787 22.1686 23.2462 23.2523

20 27.8941 22.3847 26.8718 28.4383 20 26.4452 22.8418 24.6148 25.6936

25 27.7839 22.7131 24.6049 24.9256 25 26.4195 21.1100 24.6618 24.5275

COVID-CT5 2 13.3262 13.3262 13.3267 13.3262 COVID-CT10 2 13.8247 13.8247 13.8247 13.8247

4 16.7286 16.8779 16.8048 16.8845 4 18.4180 18.4428 18.1964 18.4180

6 16.9323 16.8618 17.2323 16.7530 6 21.8243 21.9804 19.8968 22.0811

10 17.9349 18.6262 18.3177 18.0232 10 23.2876 22.9771 22.2985 23.2488

15 18.8720 19.6680 19.2413 19.1863 15 23.5914 24.7258 23.0163 23.9560

20 19.5308 20.3787 19.8898 18.9936 20 24.4338 25.6506 22.6981 24.9979

25 19.0411 21.2905 18.9560 20.2165 25 25.3144 26.2168 24.0219 26.6761

Overall Mean rank PSO 2.82 GWO 2.35 HHO 2.11 CPGH 2.71 Sig. 1.18E-03

Table 5: Comparison results of the proposed CPGH and other competitors in terms of

mean PSNR values.

Firstly, the embedded algorithms (i.e., PSO, GWO, and HHO) are practical optimizers
in dealing with various optimization problems. As a result, the population evolved using
diverse exploration and exploitation operators. Secondly, the diversity in exploring
and exploiting the search space during the optimization process was improved using
the migration process. This is due to exchanging selected solutions between the three
algorithms, which allows the proposed method to show diverse exploratory behaviors.

Table 9 reports the average running time of the proposed CPGH and other compared
algorithms for all test images. It is observed that the PSO algorithm has a better running
time among all test algorithms for most test images at all levels. The GWO algorithm
performs better for the low thresholding levels only. The proposed algorithm takes
more time to reach the best solution than the other counterparts. The increase in time is
attributable to the excessive communication overhead due to the migration process in
the cooperative model. Even though the suggested CPGH was a bit slower than other
methods, it could still locate better solution quality most of the time, which helped it get
an exceptional score in the overall ranking.
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image Thr PSO GWO HHO CPGH Thr PSO GWO HHO CPGH

COVID-CT1 2 0.33222 0.33222 0.33222 0.33222 COVID-CT6 2 0.36703 0.36703 0.36703 0.36703

4 0.61554 0.60999 0.61476 0.61032 4 0.55075 0.55046 0.54659 0.55075

6 0.72449 0.72485 0.71888 0.72449 6 0.66533 0.67489 0.65184 0.67482

10 0.81202 0.81269 0.78733 0.81292 10 0.78904 0.80315 0.79345 0.82137

15 0.84920 0.85088 0.82698 0.84839 15 0.86444 0.86687 0.85433 0.87115

20 0.87463 0.88613 0.88641 0.87693 20 0.88977 0.91193 0.89510 0.90181

25 0.87875 0.88388 0.87221 0.88179 25 0.90478 0.90661 0.90533 0.90025

COVID-CT2 2 0.33527 0.33527 0.33527 0.33527 COVID-CT7 2 0.39856 0.39856 0.39857 0.39856

4 0.66611 0.66555 0.65646 0.66611 4 0.55594 0.55594 0.54760 0.55594

6 0.77757 0.77773 0.76966 0.77757 6 0.65405 0.63652 0.62368 0.64078

10 0.85959 0.85978 0.84254 0.86081 10 0.75098 0.75701 0.71360 0.75367

15 0.89351 0.89116 0.86870 0.89439 15 0.79608 0.81750 0.77418 0.78895

20 0.91551 0.90725 0.89658 0.92124 20 0.83966 0.69495 0.80722 0.83212

25 0.92122 0.88923 0.90501 0.91662 25 0.83092 0.79478 0.79894 0.84739

COVID-CT3 2 0.34609 0.34609 0.34609 0.34609 COVID-CT8 2 0.58498 0.58498 0.58498 0.58498

4 0.67877 0.67877 0.67795 0.67877 4 0.81631 0.81646 0.79308 0.81631

6 0.79315 0.79323 0.79365 0.79315 6 0.83813 0.83744 0.82561 0.83813

10 0.87502 0.87244 0.85588 0.87505 10 0.88450 0.88163 0.88612 0.88209

15 0.90805 0.89335 0.89492 0.91006 15 0.92690 0.87815 0.87093 0.89510

20 0.92622 0.91791 0.91783 0.93180 20 0.95574 0.89928 0.91483 0.93090

25 0.93406 0.90957 0.90776 0.93135 25 0.96335 0.88142 0.91376 0.91894

COVID-CT4 2 0.35886 0.35886 0.35886 0.35886 COVID-CT9 2 0.40579 0.40579 0.40579 0.40579

4 0.65665 0.65665 0.65988 0.65665 4 0.55087 0.56507 0.55339 0.56507

6 0.77175 0.76999 0.77313 0.77150 6 0.64550 0.64537 0.63365 0.64516

10 0.86217 0.85676 0.85620 0.86165 10 0.78750 0.78733 0.77492 0.78779

15 0.90041 0.88531 0.87804 0.89850 15 0.86859 0.85013 0.84172 0.85795

20 0.92739 0.89573 0.91208 0.93168 20 0.91152 0.88616 0.87141 0.90520

25 0.93653 0.90758 0.91264 0.92445 25 0.91580 0.88166 0.88971 0.90515

COVID-CT5 2 0.39078 0.39078 0.39080 0.39078 COVID-CT10 2 0.36424 0.36424 0.36424 0.36424

4 0.50353 0.50453 0.50111 0.50443 4 0.53770 0.53767 0.53433 0.53770

6 0.53954 0.55027 0.55710 0.55478 6 0.67651 0.67621 0.64454 0.67858

10 0.60113 0.62701 0.63915 0.60175 10 0.77925 0.77524 0.77046 0.77982

15 0.65685 0.67234 0.68006 0.66280 15 0.83320 0.84390 0.80184 0.82918

20 0.71422 0.74151 0.75262 0.70640 20 0.87039 0.89203 0.84377 0.87978

25 0.71520 0.77619 0.72380 0.74177 25 0.88686 0.90324 0.87866 0.89965

Overall Mean rank PSO 2.74 GWO 2.52 HHO 1.84 CPGH 2.90 Sig. 2.79E-07

Table 6: Comparison results of the proposed CPGH and other competitors in terms of

mean SSIM values.

The qualitative analysis of the segmentation results is given in figures inside Table
10 and 11. The figures provide the segmented images and the corresponding histograms
for four levels of thresholds 6, 15, and 25. The original image is positioned beside the
thresholded images to view how the thresholded images and original images differ from
one another. The segmented images by the CPGH-based model are better using higher
thresholds.

5.7 Comparison of CPGH with Well-known Algorithms

In this part, the effectiveness of the CPGH is further compared with the other three
state-of-the-art methods. The comparison algorithms are Self-adaptive DE (SADE)
[Brest et al., 2006], simple GA [Biscani and Izzo, 2020], and improved harmony search
(iHS) [Mahdavi et al., 2007]. These algorithms were chosen because they fall under
different categories of meta-heuristic algorithms and have a variety of exploration and
exploitation capabilities. Comparative analysis in terms of cross-entropy, PSNR, and
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image Thr PSO GWO HHO CPGH Thr PSO GWO HHO CPGH

COVID-CT1 2 0.66474 0.66474 0.66474 0.66474 COVID-CT6 2 0.74539 0.74539 0.74539 0.74539

4 0.79386 0.79508 0.79308 0.79529 4 0.83331 0.83235 0.82768 0.83331

6 0.84542 0.84562 0.84218 0.84542 6 0.86314 0.85994 0.84244 0.85876

10 0.87656 0.87832 0.85739 0.87899 10 0.90234 0.92860 0.92357 0.95305

15 0.88978 0.89380 0.87516 0.89067 15 0.95527 0.96979 0.95161 0.96724

20 0.89299 0.92699 0.92317 0.90113 20 0.95063 0.97240 0.96190 0.95005

25 0.88489 0.91109 0.89673 0.89756 25 0.95767 0.96420 0.96845 0.94934

COVID-CT2 2 0.74419 0.74419 0.74419 0.74419 COVID-CT7 2 0.62363 0.62363 0.62362 0.62363

4 0.85556 0.85534 0.84519 0.85556 4 0.81591 0.81591 0.79545 0.81591

6 0.89059 0.89104 0.88975 0.89046 6 0.86802 0.82999 0.79613 0.83441

10 0.91334 0.91350 0.90386 0.91447 10 0.87789 0.89178 0.80710 0.88047

15 0.92528 0.92466 0.91969 0.92600 15 0.89904 0.93787 0.84147 0.88432

20 0.93447 0.93443 0.92662 0.94143 20 0.89348 0.85262 0.85834 0.89009

25 0.93511 0.90440 0.93444 0.93747 25 0.90024 0.91644 0.82411 0.88829

COVID-CT3 2 0.75514 0.75514 0.75514 0.75514 COVID-CT8 2 0.65097 0.65097 0.65097 0.65097

4 0.87216 0.87216 0.86902 0.87216 4 0.82580 0.82606 0.79986 0.82580

6 0.91100 0.91106 0.91040 0.91100 6 0.81633 0.81596 0.80908 0.81633

10 0.93212 0.92831 0.92103 0.93249 10 0.83155 0.82850 0.84000 0.82881

15 0.94287 0.92263 0.93739 0.94531 15 0.86030 0.80429 0.80712 0.82441

20 0.94721 0.94113 0.95095 0.95318 20 0.89144 0.82710 0.85290 0.86175

25 0.94875 0.91735 0.94614 0.95065 25 0.90217 0.79987 0.84837 0.84384

COVID-CT4 2 0.76142 0.76142 0.76142 0.76142 COVID-CT9 2 0.71213 0.71213 0.71213 0.71213

4 0.86843 0.86843 0.87193 0.86843 4 0.82527 0.82800 0.82372 0.82800

6 0.91306 0.91114 0.91396 0.91243 6 0.86395 0.86663 0.84806 0.86640

10 0.93454 0.92800 0.93525 0.93395 10 0.93458 0.93642 0.93249 0.94251

15 0.94529 0.92612 0.93874 0.94374 15 0.97022 0.95104 0.95600 0.96054

20 0.95542 0.91628 0.95196 0.96162 20 0.97672 0.95027 0.95517 0.97513

25 0.96098 0.92002 0.94405 0.94563 25 0.96618 0.93071 0.96271 0.96152

COVID-CT5 2 0.49195 0.49195 0.49195 0.49195 COVID-CT10 2 0.73040 0.73040 0.73040 0.73040

4 0.68821 0.68922 0.68556 0.68922 4 0.80086 0.80092 0.79541 0.80086

6 0.68566 0.67432 0.70131 0.66133 6 0.86221 0.86151 0.83955 0.86116

10 0.70841 0.73207 0.70748 0.70776 10 0.87124 0.86303 0.88419 0.87160

15 0.73865 0.76384 0.74034 0.75283 15 0.89516 0.91725 0.87794 0.88626

20 0.75908 0.80062 0.77298 0.74499 20 0.90089 0.94891 0.89645 0.91716

25 0.73086 0.85375 0.73155 0.78063 25 0.91861 0.96477 0.91976 0.94072

Overall Mean rank PSO 2.69 GWO 2.59 HHO 1.91 CPGH 2.81 Sig. 1.79E-05

Table 7: Comparison results of the proposed CPGH and other competitors in terms of

mean UQI values.

SSIM are presented in Tables 12, 13, 14, respectively. Each experiment is executed 10
independent runs per tested image, each run with 500 iterations, and the swarm size is
set to 30. The experiments were performed using 25 threshold values.

As per cross_entropy results in Table 12, it can be seen that the proposed CPGH has
outperformed other peers on 90% of test images. F-test shows that the CPGH is ranked
first (rank of 3.9), followed by SADE (rank of 2.9), GA (rank of 2.10), and iHS (rank of
1.10).

Based on the average PSNR in Table 13, the CPGH has attained the best rates on
40% of cases. Both CPGH and GA ranked first and showed competitive results based on
F-test results. Inspecting the SSIM results in Table 14, CPGH yielded the highest SSIM
rates in 50% of cases (optimal rank of 3.10).

To be more precise, it can be concluded that the proposed CPGH was a valuable and
potential MLT tool based on the results obtained. In most test images, it performs better
than all competing techniques regarding fitness values and other segmentation quality
metrics. The cooperative model of meta-heuristic algorithms helps adapt algorithms’
search behaviors and provides a better exploration of the search space. Although the
proposed CPGH has shown well competitive performance with other well-known algo-
rithms, we believe that the CPGH, like the other meta-heuristics methods, follows the
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Measure PSO GWO HHO CPGH

Fitness 2.71 2.41 1.24 3.64

PSNR 2.82 2.35 2.11 2.71

SSIM 2.74 2.52 1.84 2.90

UQI 2.69 2.59 1.91 2.81

Mean rank 2.74 2.47 1.78 3.02

Final rank 2 3 4 1

Table 8: Overall rank by the Friedman test for all algorithms based on fitness, PSNR,

SSIM, and UQI results reported in Tables 3, 5, 6, and 7.

image Thr PSO GWO HHO CPGH Thr PSO GWO HHO CPGH

COVID-CT1 2 3.07 3.03 5.05 8.99 COVID-CT6 2 3.09 3.09 5.07 9.73

4 4.36 6.00 9.88 10.08 4 5.95 5.95 9.89 11.72

6 8.37 8.11 13.09 16.44 6 7.95 7.90 11.26 16.98

10 12.68 11.47 16.48 17.05 10 11.42 11.45 13.25 24.28

15 17.62 16.68 26.60 28.60 15 16.03 16.49 19.12 23.81

20 17.28 17.98 29.78 41.78 20 18.77 19.33 29.28 28.85

25 21.89 23.17 35.01 35.44 25 21.65 22.56 41.78 49.32

COVID-CT2 2 3.14 3.04 5.05 8.77 COVID-CT7 2 3.08 3.12 5.21 10.07

4 6.06 5.96 9.88 12.59 4 5.96 6.00 9.91 11.71

6 8.90 8.00 12.99 17.84 6 7.95 7.85 11.37 20.19

10 12.41 11.42 16.07 17.08 10 11.61 11.34 13.41 23.80

15 16.30 16.74 26.22 32.75 15 13.07 16.50 19.45 23.34

20 18.54 18.11 29.24 41.97 20 18.00 18.33 29.61 28.68

25 21.89 23.28 34.97 36.45 25 21.26 20.67 34.48 48.69

COVID-CT3 2 3.18 3.03 5.11 9.62 COVID-CT8 2 3.06 3.11 5.18 9.12

4 6.72 6.05 9.91 13.83 4 5.97 6.11 9.85 11.70

6 8.40 8.02 13.02 15.89 6 7.98 7.89 11.18 15.66

10 11.37 11.39 16.13 17.78 10 12.02 11.44 13.37 23.77

15 16.93 17.23 26.34 33.53 15 11.67 16.01 19.42 23.93

20 18.08 18.99 28.91 42.23 20 17.88 19.97 29.58 28.85

25 21.48 23.56 35.07 51.55 25 21.42 21.57 31.91 34.41

COVID-CT4 2 3.20 3.06 5.08 9.16 COVID-CT9 2 3.13 3.10 5.22 9.66

4 6.79 6.51 9.98 14.05 4 6.00 5.96 9.98 15.13

6 7.92 7.95 13.11 13.69 6 7.91 7.87 11.38 11.83

10 11.44 11.44 15.92 21.84 10 11.45 11.44 13.77 23.56

15 16.04 16.37 26.16 32.98 15 11.97 14.64 20.31 23.68

20 18.03 19.32 29.03 40.92 20 18.08 18.90 33.35 28.91

25 21.71 23.86 35.99 49.11 25 21.43 21.58 32.22 33.94

COVID-CT5 2 3.15 3.04 5.09 9.40 COVID-CT10 2 3.13 3.08 5.23 10.37

4 6.08 6.02 9.92 10.84 4 6.02 5.94 9.94 16.36

6 7.91 7.92 13.23 15.44 6 8.33 7.87 11.21 11.65

10 11.44 11.37 13.35 24.90 10 11.42 11.39 13.56 24.87

15 16.88 16.06 21.55 24.33 15 13.13 15.03 19.06 22.95

20 17.97 19.23 28.83 29.95 20 17.75 18.33 33.33 28.80

25 22.66 23.11 35.15 48.07 25 21.38 21.54 32.05 33.87

Overall Mean rank PSO 1.48 GWO 1.52 HHO 3.07 CPGH 3.93 Sig. 0.00

Table 9: Average running time of the proposed CPGH and other individual algorithms

same No Free Lunch (NFL) theory, which asserts that no single optimization algorithm
is capable of solving all optimization problems. Therefore, we still need to develop a
more efficient variant of the CPGH-based MTL model.

5.8 Comparison the proposed CPGH with other state-of-the-art methods

This subsection provides a comparison between the proposed CPGH-based image seg-
mentation and other methods. The compared methods are applied based on the same
objective function as the proposed method and also used the same COVID-19 CT images
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image original Thr=6 Thr=15 Thr=25

COVID-CT1

COVID-CT2

COVID-CT3

COVID-CT4

COVID-CT5

Table 10: Comparison of the original and segmented images at different threshold levels

attained by the proposed CPGH model [Part 1]
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image original Thr=6 Thr=15 Thr=25

COVID-CT6

COVID-CT7

COVID-CT8

COVID-CT9

COVID-CT10

Table 11: Comparison of the original and segmented images at different threshold levels

attained by the proposed CPGH model [Part 2]
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image CPGH GA SADE iHS

COVID-CT1 147059250.64 147058015.72 147059045.15 147051989.90

COVID-CT2 171986260.50 171984835.44 171986065.85 171979118.83

COVID-CT3 178052201.90 178051037.10 178052141.51 178044688.30

COVID-CT4 174258711.18 174257659.41 174258849.84 174251169.15

COVID-CT5 487994823.26 487994520.61 487994640.61 487984936.35

COVID-CT6 491579004.92 491576863.55 491578736.40 491564741.60

COVID-CT7 121815141.02 121812431.15 121812223.15 121812320.15

COVID-CT8 19092674.59 19092451.03 19092657.27 19091321.54

COVID-CT9 313294945.65 313292705.13 313294412.69 313282980.43

COVID-CT10 499813424.02 499811205.96 499813200.75 499798592.98

Mesan Rank 3.90 2.10 2.90 1.10

P-value (F-test) 0.000012

Table 12: The cross-entropy comparison results of CPGH and other methods

image CPGH GA SADE iHS

COVID-CT1 24.540738 22.892101 23.515427 24.409441

COVID-CT2 25.234364 26.203852 25.755971 23.736575

COVID-CT3 26.066412 24.775471 25.348622 24.992676

COVID-CT4 24.925591 24.172807 23.951069 25.025762

COVID-CT5 20.216525 21.10168 19.980076 20.494638

COVID-CT6 26.086126 27.013936 27.702032 26.55932

COVID-CT7 20.991495 22.718546 22.366848 20.12687

COVID-CT8 19.564581 19.142716 18.869984 18.822153

COVID-CT9 24.527463 24.248867 23.107309 24.020063

COVID-CT10 26.676126 26.745418 27.421983 24.896069

Mesan Rank 2.80 2.80 2.40 2.00

P-value (F-test) 0.45052

Table 13: The PSNR comparison results of CPGH and other methods

image CPGH GA SADE iHS

COVIDCT1 0.881786 0.884758 0.883523 0.869272

COVIDCT2 0.916622 0.9203 0.918981 0.894355

COVIDCT3 0.93135 0.924004 0.925818 0.90764

COVIDCT4 0.924448 0.919439 0.922418 0.905329

COVIDCT5 0.741772 0.770027 0.730966 0.748153

COVIDCT6 0.900253 0.896457 0.901581 0.895992

COVIDCT7 0.847385 0.853812 0.847865 0.829616

COVIDCT8 0.918943 0.915127 0.914956 0.896714

COVIDCT9 0.905147 0.900615 0.898046 0.883364

COVIDCT10 0.899654 0.895912 0.898901 0.87037

Mesan Rank 3.10 3.00 2.70 1.20

P-value (F-test) 0.002851

Table 14: The SSIM comparison results of CPGH and other methods

dataset. Table 15 provides a comprehensive comparison of the proposed Cooperative
Particle Swarm and CPGH algorithm with several state-of-the-art methods, including
MRFO-OBL [Houssein et al., 2021a], MRFO [Zhao et al., 2020b], MFO [Mirjalili,
2015], SCA [Mirjalili, 2016], WOA [Mirjalili and Lewis, 2016], SSA [Mirjalili et al.,
2017], and EO [Faramarzi et al., 2020]. The comparison is based on the PSNR values
obtained for COVID-19 CT images. This analysis allows for a comprehensive evaluation
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of the performance of the CPGH algorithm in comparison to other prominent methods in
the field. A higher value means a more reliable and more effective algorithm. As reported
in Table 15, higher PSNR values were generally achieved using the proposed CPGH
algorithm in most test images, especially COVID-CT2, COVID-CT3, COVID-CT4,
COVID-CT6, COVID-CT9, and COVID-CT10 images.

Test Image Th MFO WOA SCA SSA EO MRFO MRFO-OBL CPGH

COVID-CT1 10 22.785 22.7217 20.4506 22.7112 22.8869 22.7883 22.8366 22.3520

15 23.605 23.6016 21.4088 23.5316 23.6355 23.5724 23.6096 22.5193

20 24.383 24.3157 22.0108 24.3711 24.5068 24.4058 24.4777 24.6191

25 24.956 24.9986 22.7393 24.9413 25.2453 25.0747 25.0750 24.5407

COVID-CT2 10 23.340 23.2898 21.0569 23.3548 23.3451 23.3543 23.3691 24.9822

15 24.252 24.2280 22.2538 24.2437 24.2915 24.2500 24.2945 25.3906

20 25.1918 25.1816 22.4196 25.1842 25.1998 25.2425 25.2675 28.5991

25 25.9299 25.9645 22.6362 25.9269 26.0340 25.9906 26.0447 28.5991

COVID-CT3 10 23.3127 23.3402 20.7045 23.3244 23.3664 23.3779 23.3835 24.9848

15 24.2557 24.2363 21.5903 24.2289 24.2585 24.2597 24.2920 25.9693

20 25.2191 25.0960 22.4194 25.1901 25.1978 25.2401 25.2815 28.8043

25 25.9385 25.9699 23.0266 25.9578 26.0504 26.0143 26.0406 26.0664

COVID-CT4 10 23.1153 22.9441 21.0348 23.0054 23.0594 23.0455 23.1315 24.5898

15 24.1451 24.1102 21.4647 24.1141 24.1073 24.1247 24.1701 24.3899

20 25.2197 25.1061 22.2991 25.2064 25.1943 25.2826 25.3379 28.4383

25 26.0147 25.9803 22.7990 25.9808 26.1555 26.0265 26.0860 26.9256

COVID-CT5 10 17.7297 18.0911 17.3997 17.8317 17.7346 17.6816 17.6923 18.0232

15 18.0694 18.6874 17.1534 18.3007 18.1689 18.0973 18.1808 19.1863

20 18.4704 19.4253 18.0159 19.0553 18.6530 18.4984 18.6158 18.9936

25 18.8423 20.3143 18.2669 19.1845 19.3208 18.9574 19.0474 20.2165

COVID-CT6 10 21.1169 21.0827 19.8469 21.0500 21.1999 21.0786 21.1912 26.1199

15 22.0606 22.1863 20.3460 22.1110 22.2209 22.2276 22.2106 26.3324

20 22.9744 22.7802 20.8418 23.0122 23.0780 22.9386 23.0090 26.2794

25 23.4674 23.4204 22.0136 23.7771 23.8257 23.5627 23.6860 26.0861

COVID-CT7 10 19.6031 19.3921 18.3899 19.4554 19.7201 19.4133 19.6895 19.9749

15 20.6718 20.3370 18.5243 20.6694 20.8207 20.7551 20.7020 20.3285

20 21.5069 21.4917 19.9200 21.5961 21.8813 21.4188 21.8512 20.2471

25 22.4764 22.9517 20.4139 22.1888 22.8390 22.6882 22.9905 20.9915

COVID-CT8 10 24.1907 24.1384 22.3768 24.1360 24.3791 24.0661 24.1512 17.9556

15 25.6295 25.5060 23.0455 25.3830 25.8864 25.4969 25.6688 18.2818

20 27.0029 27.0489 23.5396 27.1684 26.9507 27.0617 27.0500 21.3894

25 27.8852 27.8808 24.2742 27.9904 27.9053 27.9826 27.9897 28.5646

COVID-CT9 10 21.7801 21.6394 20.3303 21.7302 21.8315 21.7791 21.7893 23.5421

15 22.6114 22.4253 21.0667 22.4741 22.7819 22.5405 22.6872 23.2523

20 23.6409 23.5144 21.5845 23.4062 24.0351 23.6402 23.7957 25.6936

25 24.6765 24.1344 21.9324 24.5486 25.0857 24.7814 25.0439 24.5275

COVID-CT10 10 20.5813 20.3124 19.4163 20.4473 20.6924 20.4594 20.6069 23.2488

15 21.9369 21.6074 20.4364 21.9044 22.1685 22.0541 22.1712 23.9560

20 22.9325 22.9381 20.8123 23.0184 23.0016 23.0701 23.0850 24.9979

25 23.4817 23.8029 22.0695 23.6455 23.7193 23.5813 23.6204 26.6761

Table 15: Comparison between CPGH and all other methods according to the PSNR

mean values.
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6 Conclusion and future work

COVID-19 has been spreading over the world since December 2019, everyone has
been working to develop methods for telling infected people from healthy ones. CT
scans might effectively determine whether the suspected patients have been infected
after extensive testing and verification by medical experts. In order to improve the
classification methods, a variety of segmentation techniques are used to extract regions
of interest from CT scans. Medical image segmentation is regarded as an essential
stage for many medical applications that must be carried out properly for useful picture
analysis. Thresholding is one of the most fundamental and important techniques for image
segmentation. Finding the best thresholding values for multilevel thresholding image
segmentation was treated as an optimization issue in this study, we use three methods:
Otsu’s, cross-entropy, and Tsaliis’s approach as the objective function. So, a cooperative
swarm intelligence-based MLT for developing an efficient image segmentation approach
for COVID-19 CT images has been proposed. Three algorithms comprising PSO, GWO,
and HHO were used to develop an algorithmic level-based cooperative optimization
model called CPGH for finding the optimum thresholding values. Moreover, the proposed
approach tested cross-entropy, Otsu, and Tsallis as objective functions. Real-life CT scan
images of the COVID-19 dataset were employed to evaluate the proposed meta-heuristic
cooperative model. Several metrics covering PSNR, SSIM, and UQI were utilized for
evaluation purposes. The experimental results proved that the proper objective function
selection often guarantees a better segmentation quality. It was noticed that entropy-
based thresholding has a more significant impact on the performance of the MLT-based
image segmentation than other methods used in the comparisons. Furthermore, the
proposed CPGH performed better than conventional PSO, GWO, and HHO and the other
algorithms: SADE, GA, and iHS, in dealing with the MLT image segmentation problem.

According to the proposed algorithm’s efficiency results, we can use it in the future
for various real-world applications, such as calculating solar cell parameters, object
tracking, electrical applications, hyperparameter optimization, and color image segmen-
tation. Also, one possible work is to use other meta-heuristic algorithms such as WOA,
SCA, and MFO as alternatives to PSO, GWO, and HHO algorithms in the cooperative
model since these algorithms have shown promising results in MLT image segmentation
problems. Moreover, we will extend the proposed method to test in other datasets, such
as COVID-19 X-ray images and other medical imaging applications. We will also exam-
ine the proposed method with different migration settings to improve the segmentation
results. Other challenging real-world problems like parameter identification, traffic lights
schedule, and feature selection can be addressed in the future using the suggested CPGH
model. Another approach is to create a binary version of CPGH and apply it to binary
problems, including feature selection problems.
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