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It is increasingly important to create a healthier indoor environment for office
buildings. Accurate and reliable prediction of PM2.5 concentration can effectively
alleviate the delay problem of indoor air quality control system. The rapid
development of machine learning has provided a research basis for the indoor
air quality system to control the PM2.5 concentration. One approach is to
introduce the CatBoost algorithm based on rank lifting training into the
classification and prediction of indoor PM2.5 concentration. Using actual
monitoring data from office building, we consider previous indoor PM2.5

concentration, indoor temperature, relative humidity, CO2 concentration, and
illumination as input variables, with the output indicating whether indoor PM2.5

concentration exceeds 25 μg/m3. Based on the CatBoost algorithm, we construct
an intelligent classification prediction model for indoor PM2.5 concentration. The
model is evaluated using actual data and comparedwith themultilayer perceptron
(MLP), gradientboosting decision tree (GBDT), logistic regression (LR), decision
tree (DT), and k-nearest neighbors (KNN) models. The CatBoost algorithm
demonstrates outstanding predictive performance, achieving an impressive
area under the ROC curve (AUC) of 0.949 after hyperparameters optimition.
Furthermore, when considering the five input variables, the feature importance is
ranked as follows: previous indoor PM2.5 concentration, relative humidity, CO2,
indoor temperature, and illuminance. Through verification, the prediction model
based on CatBoost algorithm can accurately predict the indoor PM2.5

concentration level. The model can be used to predict whether the indoor
concentration of PM2.5 exceeds the standard in advance and guide the air
quality control system to regulate.
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1 Introduction

1.1 Motivation

More than 80% of people’s time is spent indoors, and in recent years, with the prevalence
of respiratory infectious diseases and increasingly severe outdoor environmental pollution,
this proportion will continue to rise. Office buildings are the main places where people work,
and existing research shows that indoor air quality (IAQ) directly affects the physical and
mental health of indoor personnel. High-quality indoor environmental quality can promote
work efficiency and health (Fisk, 2000; Newsham et al., 2008; Thayer Julian et al., 2010; Horr
et al., 2016). In the era of the COVID-19 pandemic, compared to outdoor, commercial, and
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hotel buildings, the requirements for wearing masks indoors in
office buildings are relatively low. Therefore, IAQ in office buildings
is extremely important.

PM2.5 is particle size ≤ 2.5 μm fine particles, which are composed
of many chemical components, are easy to absorb harmful
substances, and are the main pollutants affecting the IAQ.
Particulate pollution mainly harms the respiratory system of
human body, can cause tracheitis, pneumonia and fever, and
may also cause eye and nasal allergy, or even death (BellMichelle
and Davis, 2001; Jacobs et al., 2018; Mo, 2019). As the largest
developing country in the world and one of the largest
anthropogenic air pollution emitters in the world, China is
currently facing serious air pollution problems, mainly PM2.5.
The number of PM2.5-related deaths in China in 2017 was
1.8 million, an increase of 30% over 2005 (Ming et al., 2021).
The hazard of indoor PM2.5 has gradually attracted people’s
attention, and it has been included in the Standard for Health
Building Assessment as a control item (GB, 2002). Research has
revealed that indoor PM2.5 concentrations occasionally surpass
75 μg/m3 on a daily basis, exceeding the guidelines set by the
World Health Organization for IAQ (Zhao et al., 2015; Fan et al.,
2018; XueWangLiu and Dong, 2020). To foster a healthy indoor
environment, certain indoor office spaces have adopted the use of
IAQ improvement devices to ensure the provision of clean air. Fresh
air system is the main method for HVAC to control indoor air
pollution, which can significantly reduce the concentration of PM2.5

(ZhaoLiuRen, 2018; Huang et al., 2020). While the fresh air systems
effectively lower indoor PM2.5 concentrations to satisfactory levels, a
notable concern is that the majority of these systems do not adapt
their operation in response to the IAQ conditions, often remaining
fully operational at all times (Lai et al., 2018). This lack of
responsiveness is both unnecessary and energy-inefficient.

The application of artificial intelligence (AI) andmachine learning
(ML) has emerged as a promising solution to tackle the
aforementioned challenges. With the gradual maturity of computer
technology and automatic control theory, intelligent control
technology based on ML has been widely used in the field of
HVAC regulation. By combining intelligent predictive models with
IAQ control devices, it becomes possible to accurately forecast PM2.5

concentrations and translate them into control signals, thereby
guiding the regulation process. This integration not only facilitates
the creation of a healthy indoor environment but also minimizes
unnecessary energy consumption within the systems.

1.2 The application of ML in IAQ prediction

Over the past decade, remarkable advancements have been made
in applying AI/ML and Internet of Things (IoT) technologies to
monitor and predict the physical environment of buildings.
Specifically, ML prediction models for IAQ have been established
based on historical data collected from sensors. Various methods have
been employed to enhance the accuracy of IAQ prediction, including
multivariate linear regression (MLR) (MengSpectorColome and
Turpin, 2009; Martin and Šafránek, 2011; Maher Nor et al., 2015),
artificial neural networks (ANN) (Sofuoglu, 2008; Xie et al., 2009;
Skön et al., 2012), random forests (RF) (Kropat et al., 2015; Yuchi,
2017; Yuchi et al., 2019), partial least squares (PLS)

(KimSankararaoKang et al., 2012; Lim et al., 2012; LeeKimKim
and Yoo, 2015), decision trees (DT) (Kropat et al., 2015; Choi
et al., 2017; Yuchi et al., 2019), among others. Additionally, less
commonly used ML models have been explored for IAQ prediction.
For instance, Justin et al. (2023) developed a Long Short-Term
Memory prediction model using physical data observed by IAQ
sensors, achieving an accuracy of approximately 60%–80% in
determining real-time and near-term concentrations of indoor
bioaerosols and PM, surpassing regression models with an
accuracy of around 90%. YeganehMotlaghRashidi and Kamalan
(2012) combined PLS with support vector machines (SVM) to
predict the daily average value of CO, resulting in satisfactory
outcomes. Carlos et al. (2018) used a kernel regression model to
forecast CO2 concentration, leveraging continuous data obtained
through the Internet, which yielded favorable predictive results.
These findings underscore the potential of ML in IAQ prediction.

1.3 The application of ML in PM2.5 prediction

PM2.5, being a significant pollutant influencing IAQ, has
garnered considerable attention. Initially, mechanical models
were employed for PM2.5 prediction. However, these models
lacked convenience as they necessitated detailed inputs, including
indoor sources and sinks of PM2.5, building envelope structures,
ventilation conditions, and outdoor concentrations (Wei et al.,
2019). When the prerequisites for constructing mechanical
models are unavailable, data-driven ML models have emerged as
a favored approach for prediction. Feng et al. used ANN to predict
PM2.5 (XiaoQiZhu et al., 2015). Cheng et al. (2019) proposed a PM2.5

prediction method based on multiple example genetic neural
networks for hospitals. Kim et al. (2009) used a recurrent neural
network (RNN) to predict the daily indoor PM2.5 concentration in
subway stations, achieving a root mean square error (RMSE) of
17.8 μg/m3. The RNN model exhibited superior performance with
lower RMSE values and higher accuracy compared to other
prediction models. Maher Nor et al. (2015) evaluated indoor
PM2.5 concentrations in naturally ventilated school buildings
using MLR and feed-forward backpropagation (FFBP). The FFBP
model outperformed the MLR model in determining indoor PM2.5.
Yuchi et al. (2019) applied the RF method to model indoor PM2.5

concentrations in Mongolian apartments, demonstrating its
superiority over the MLR model, but showing comparable
performance in cross-validation. Xu et al. (2020) estimated
indoor PM2.5 concentrations in 66 apartments in China using the
RF method, achieving an RMSE of approximately 20 μg/m3 in 10-
fold cross-validation. Li et al. (2020) also employed the RF method
and successfully estimated indoor PM2.5 concentrations with a
normalized RMSE of 15% in 10-fold cross-validation.

Although ML algorithms have been utilized to predict indoor
PM2.5 concentrations to some extent, there is limited research
specifically focused on predicting PM2.5 concentrations in office
buildings (Wei et al., 2019; LagesseWangLarson and Kim, 2020).
Moreover, these studies have primarily targeted continuous variables
representing PM2.5 concentrations. According to the Chinese
standard “Healthy Building Evaluation Standard” (T/ASC 02-
2021), it is desirable to maintain indoor PM2.5 concentrations
below 25 μg/m3 (T/ASC 02-2021, 2021). When the indoor PM2.5
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concentration exceeds this threshold, there is a potential health risk,
requiring intervention to improve IAQ. Therefore, it is crucial to
predict whether the indoor PM2.5 concentration exceeds the standard.
However, there is currently a lack of research on the classification
prediction of PM2.5 concentrations.

Considering the practical problem of classification prediction,
the Boosting algorithm offers an effective solution approach.
Boosting algorithm is an integrated learning idea that converts
weak learners into strong learners by adding iterations, which
can solve the supervised learning classification problem (Susnjak
et al., 2012; Sun and Zhou, 2014). Currently, Boosting algorithm is
widely used in the photovoltaic power generation prediction field
(Imran, 2021; Liu et al., 2021; Yamamoto et al., 2022), business
forecasting (Kiki and Vinasetan, 2020; Xie et al., 2021), and medical
and healthcare (Amy Isabella et al., 2022; Xue, 2022). And it has been
applied in strength prediction of building materials (Lee et al., 2021;
Zakir et al., 2022) and accident early warning (Zhou et al., 2021; Guo
et al., 2022). CatBoost is one of the main algorithms of the Boosting
family of algorithms, with strong robustness and versatility, as well
as strong platform applicability and prediction speed (Dorogush
et al., 2018). The CatBoost algorithm is based on a gradient boosting
decision tree (GBDT) improved efficient ensemble learning idea that
uses sorting lifting and symmetric decision trees as weak classifiers
(Huang et al., 2019). Through sorting enhancement, the CatBoost
algorithm builds an independent integrated model for each sample,
avoiding prediction bias caused by information leakage during the
training process, and improving prediction accuracy; Through the
structural characteristics of symmetric decision trees, the CatBoost
algorithm has smaller degrees of freedom, effectively reducing the
probability of model overfitting, and significantly improving the
prediction speed.

1.4 Contribution

Considering that predicting whether the PM2.5 concentration will
exceed the standard in the next moment is beneficial for regulating
indoor air quality. However, there is currently a scarcity of research on
utilizing ML algorithms to forecast and classify PM2.5 concentration.
This study aims to develop an intelligent prediction model for PM2.5

concentration using the CatBoost algorithm. The accuracy and
effectiveness of the model are established and validated through
the utilization of real monitoring data from office buildings.
Additionally, the study aims to assess the efficiency and superiority
of the CatBoost algorithm by comparing it with other commonly
employed algorithms.

2 Methodology

2.1 Data acquisition and processing

The data used in this paper comes from indoor air quality
monitoring platforms in an office of Beijing, China. The monitoring
content includes indoor temperature, relative humidity, CO2

concentration, illuminance, and PM2.5 concentration. The
environmental data is continuously transmitted to the
monitoring platform via sensors using a wireless network. The

data is sent every 5 min and stored in individual databases for
each measurement. The testing range and measurement accuracy of
the monitoring instruments are shown in Table 1. The monitoring
record interval is 5 min, and each measurement data is stored in a
separate database. We collected measurement data between January
18, 2022, and March 29, 2022.

The relationship between input and output in this study is to
predict the classification of PM2.5 concentration at the current time
using previously sampled monitoring data. Based on existing
research, we found that when using ML to predict PM2.5, indoor
temperature (Kim et al., 2009; Das et al., 2014; Elbayoumi et al.,
2014; Elbayoumi et al., 2015; LiuYoo, 2016; Deepti and Suresh, 2019;
DaiLiuLi, 2021), indoor relative humidity (Kim et al., 2009;
Elbayoumi et al., 2015; LiuYoo, 2016; Deepti and Suresh, 2019;
DaiLiuLi, 2021), CO2 concentration (Kim et al., 2009; Elbayoumi
et al., 2015; LiuYoo, 2016; Deepti and Suresh, 2019; DaiLiuLi, 2021),
previous PM2.5 (Kim et al., 2009; Lim et al., 2012; Jorge et al., 2018;
Hyun et al., 2018; Deepti and Suresh, 2019; DaiLiuLi, 2021), were
frequently used as input variables. Infer that these parameters are
related to indoor PM2.5. In addition, Ahn et al., 2017 included the
influence of light when using deep learning methods to predict IAQ.
The concentration of particulate matter may be related to light.
Therefore, we will use the previous indoor temperature (th-1),
relative humidity (dh-1), CO2 concentration (Ch-1), light intensity
(Lh-1), and PM2.5 concentration (Ph-1) as input variables for the
models.

The indoor PM2.5 concentration is chaotic and time-varying,
strongly correlated with human activities, and it is unrealistic to
accurately predict the dynamic concentration of PM2.5. Real-time
and accurate prediction of the PM2.5 concentration range is an
important aspect of creating an indoor environment. Therefore, this
paper chooses the PM2.5 concentration range as the output of the
classification model. The Chinese standard “Assessment Standard
for Healthy Building" (T/ASC 02-2021) has requirements for the
indoor PM2.5 concentration limit, and in the “Air” section of the
control items, it is stipulated that the annual average concentration
of indoor PM2.5 should not be higher than 25 μg/m3. In the scoring
items, it is proposed that the annual average concentration of PM2.5

should not be higher than 15 μg/m3, and the daily average
concentration of PM2.5 should not be higher than 35 μg/m3, and
in the “Improvement and Innovation” section of the bonus points, it
is proposed that the daily average concentration of PM2.5 should not
be higher than 25 μg/m3 (T/ASC 02-2021, 2021). Based on the
above, this paper determines the PM2.5 concentration as follows:
When PM2.5 ≤ 25 μg/m3, it is determined that indoor air PM2.5

pollution is relatively low and the current situation is maintained;

TABLE 1 Test scope and accuracy of indoor environmental testing indicators.

Indicators Range Accuracy

indoor temperature t −40–80°C ±0.3°C

relative humidity d 0–99.9% ±5%

CO2 concentration C 400–5 000ppm ±5%

illuminance L 0–20 000lx ±10%

PM2.5 concentration P 0–1 000 μg/m3 ±10 μg/m3
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When PM2.5 > 25 μg/m3, it is determined that indoor air PM2.5

pollution is significant and requires purification, as shown in
Table 2.

2.2 Data preprocessing

Affected by power supply, signal transmission, network and
other factors, monitoring equipment will have data quality problems
such as missing values and outlier. To avoid interference with the
data model, invalid data needs to be cleaned.

The data quality problems of the dataset used in this paper are
missing values and outlier, and the specific processing methods are
as follows: 1) Variables with a missing rate of more than 30% are
regarded as invalid variables, and those with a missing rate of less
than 5% are filled forward. For data with missing values of 5%–30%,
random forestMultiple InterpolationModel (RFMICE) is used to fill
in; 2) The oversize and undersize outlier are identified with 3Sigma
criterion and filled forward; For 12 consecutive groups of samples,
repeated outlier are regarded as data collection abnormalities and
eliminated directly. In order to minimize the impact of outdoor
environment and abnormal use on the model, the indoor
temperature and CO2 concentration variables are limited to a

reasonable range. Referring to the Chinese standard “Design
Code for Heating Ventilation and Air Conditioning of Civil
Buildings” (GB 50736-2012), the indoor temperature is higher
than or equal to 16°C (GB, 2012). Referring to the Chinese
standard “Hygienic Standard for Carbon Dioxide in Indoor Air”
(GB/T 17094-1997), indoor CO2 ranges from 0 to 2000 mg/m3 (GB,
2021).

3 Prediction model

This article establishes a PM2.5 concentration range
classification prediction model based on the CatBoost model, as
shown in Figure 1. The specific process is as follows:

(1) Data acquisition and preprocessing. Data is obtained from the
platform and preprocessed.

(2) Data Splitting. The preprocessed data is divided into training
set, validation set, and test set in the proportions of 70%, 15%,
and 15% respectively.

(3) Hyperparameter optimization (HPO). The criteria for
hyperparameters selection are determined through an
evaluation of their impact on the model’s performance. In
addition, based on our comprehensive analysis of previous
literature and our own experience (Zhao et al., 2021; Peng
et al., 2022), we have observed satisfactory performance of
CatBoost model after optimizing the model using the
hyperparameters including learning_rate, depth, min_data_
in_leaf, bagging_temperature and reg_lambda. To visualize
the process of HPO, we utilized the Optuna package (version
2.10.0) (Akiba et al., 2019), an open-source optimization

TABLE 2 Determination of indoor PM2.5 concentration.

PM2.5 concentration Action

≤25 μg/m3 Maintain the status quo

>25 μg/m3 Need purification

FIGURE 1
PM2.5 concentration range classification prediction model.
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framework. This framework enables us to easily and efficiently
implement complex machine learning experiments and perform
HPO using Hyperband methods (Li et al., 2016). With Optuna,
we can dynamically test various combinations of
hyperparameters, allowing for an effective and systematic
exploration of the hyperparameter space. This aids in finding
the optimal configuration for our machine learning models,
enhancing their performance and accuracy.

(4) The best hyperparameter combination is used to predict the
PM2.5 concentration range, and the performance of the model is
further demonstrated through time series cross validation.

4 Result

4.1 Data statistics

After processing the dataset, there were 14570 remaining
samples for model analysis, as shown in Table 3. The
distribution of data for each variable is shown in Figure 2. In the
dataset, there are 5985 samples with p > 25 μg/m3, and 8585 samples
with p ≤ 25 μg/m3.

4.2 Hyperparameter optimization

The model underwent HPO to improve the performance of
the prediction model. The CatBoost model with maximum AUC
was obtained using Optuna. The search domain and set values
for the hyperparameters of the CatBoost model are shown in
Table 4. The search domain and set values for the
hyperparameters of the competition models are also shown in

Table 4. As shown in the Figure 3, after HPO, the performance of
the CatBoost model was improved. The AUC value of the model
after HPO is 0.949.

4.3 Cross validation

In order to further validate the robustness and generalizability of
the CatBoost model, we performed a Time Series Split Cross
Validation. We have employed the Rolling Window approach to
partition the time series data into several combinations of training
and validation sets. This method involves sequentially splitting the
data in accordance with the chronological order, where the training
set comprises past data and the validation set contains future data.
By adopting this approach, we can more effectively simulate the
model’s performance on future data. The result of cross validation
was shown in Figure 4.

4.4 Model comparison

Further validate the performance of the model by comparing it
with other commonly used classification algorithms and CatBoost
algorithm. Five other classification algorithms were selected,
including multilayer perceptron (MLP) model, GBDT model,
Logistic Regression (LR) model, DT model, and k-nearest
neighbors (KNN) model. The prediction results are shown in
Figure 5. Among the models evaluated, the CatBoost algorithm
demonstrates the highest predictive performance, achieving an AUC
value of 0.949. The MLP model, GBDT model, DT model, and KNN
model show similar AUC values, with scores of 0.917, 0.938, 0.927,
and 0.926, respectively. In comparison, the LR model exhibits lower

TABLE 3 Data description for the model.

Input variable th-1 dh-1 Ch-1 Lh-1 Ph-1

unit °C % ppm lx μg/m3

Training dataset Scope 16.0–25.3 13.1–65.4 406.0–1999.0 0.0–709.0 1.0–124.0

Average 22.1 ± 1.9 27.1 ± 10.4 607.3 ± 250.0 98.7 ± 161.3 24.2 ± 17.8

Median 22.7 23.7 519.0 2.0 20.0

FIGURE 2
Data distribution of various variables in the training dataset.
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TABLE 4 Search domain and optimal combination of the main hyperparameters.

Model Hyperparameter Search domain Set value

CatBoost Learning_rate [0.01, 0.3] 0.013

Depth {4, 5, 6, 7, 8, 9, 10} 4

reg_lambda [0.01, 10] 9.704

Bagging_temperature [0, 1] 0.299

Min_data_in_leaf {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 1

MLP Hidden_layer_sizes {(32), (64), (128), (64, 32), (128, 64)} (32)

Activation {identity, logistic, tanh, relu} tanh

Solver {lbfgs, sgd, adam} adam

Alpha [1e-5, 1e-1] 0.002

GBDT learning_rate [0.01, 0.1] 0.033

n_estimators {50, 51, 52, . . .,200} 129

max_depth {2, 3, 4, 5, 6, 7, 8, 9, 10} 2

min_samples_split {2, 3, 4, . . ., 20} 7

min_samples_leaf {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 7

LR penalty {l1, l2} l1

C [0.001, 10] 0.001

DT max_depth {2, 3, 4, 5, 6, 7, 8, 9, 10} 3

min_samples_split {2, 3, 4, . . ., 20} 7

min_samples_leaf {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 5

KNN n_neighbors {1, 2, 3, . . ., 20} 20

weights {uniform, distance} distance

p {1, 2} 1

FIGURE 3
Optimization history of HPO.
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AUC value of 0.888. The Precision-Recall (P-R) curve is a graphical
representation that illustrates the trade-off between precision and
recall at various classification thresholds. By plotting the P-R curve,
we can observe how the model’s precision and recall change as the
threshold varies. The PR curves of the models are shown in Figure 6.
The F1 score is a single metric that combines precision and recall
into a balanced measure of a model’s performance. The F1 score is
particularly useful in cases where we want to consider both precision

and recall equally important. The F1 scores of the models are shown
in Table 5.

4.5 Importance analysis

The importance ofmodel included features was analized through the
SHAP (Shapley Additive exPlans) (Shapley, 1953). Figure 7 shows the
SHAP value ranking of each feature and the specific impact of each
feature on the output variable. The top feature value has the greatest
importance for the output feature, and decreases in order from top to
bottom. For identifying whether the indoor PM2.5 concentration exceeds
the standard, the Ph-1 is the most important feature, followed by the dh-1,
the Ch-1 and the th-1. The Lh-1 has the least importance. The blue to red
color represents the feature value (red high, blue low). The x-axis
measures the impacts on the model output (right positive, left
negative). From the figure, it can be seen that the greater the Ph-1, the
higher the risk of exceeding the indoor PM2.5 concentration; the lower the
dh-1, the greater the risk of exceeding the indoor PM2.5 concentration, and
vice versa, the smaller the risk; the higher the Ch-1, the greater the risk of
exceeding the indoor PM2.5 concentration. Conversely, the smaller the
risk; The lower the th-1, the greater the risk of exceeding the indoor PM2.5

concentration. Conversely, the lower the risk.

FIGURE 4
Cross-validation.

FIGURE 5
ROC curves of 6 different models.

FIGURE 6
P-R curves of 6 different models.

TABLE 5 Performance of models.

Models AUC-ROC AUC-PRC F1-score

CatBoost 0.949 0.928 0.883

MLP 0.917 0.918 0.835

GBDT 0.938 0.890 0.880

LR 0.888 0.919 0.844

DT 0.927 0.887 0.880

KNN 0.926 0.924 0.788
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5 Discussion

This paper presents the development of a predictive model based
on ML algorithms that accurately predicts indoor PM2.5

concentration levels. The CatBoost model demonstrates
significantly better predictive performance compared to the MLP,
GBDT, LR, DT, and KNN models. Moreover, this study identified
Ph-1 and dh-1 as the two most important predictive factors.

Emerging technologies such as the IoT, AI, and ML have shown
tremendous potential in monitoring indoor environmental quality
and facilitating timely intervention (Adeleke et al., 2017). The
remarkable predictive capabilities of ML algorithms make them
highly attractive when combined with on-site data monitoring
systems to effectively determine the constantly changing levels of
indoor pollutants (AdityaSharma and Gupta, 2018; Saini et al., 2022).
Previous studies conducted by Elbayoumi and Yuchi have confirmed
the value of ML methods in predicting PM2.5 concentrations
(Elbayoumi et al., 2015; Yuchi et al., 2019). These findings align
with our research, further validating the efficiency and superiority of
ML models. By comparing CatBoost with other commonly used
models, we highlight the superior predictive performance of
CatBoost, providing valuable insights into its application for
indoor air quality prediction.

Given the severity of global air pollution exceeding health
thresholds, the impact of air quality on human health has
garnered significant attention (Massey et al., 2012). As
mentioned in the introduction, PM2.5 poses a serious threat to
human health, particularly due to the potential attachment of
harmful microorganisms to particulate matter. Stressing the
importance of maintaining good indoor air quality in office
buildings cannot be overstated, as it directly affects the health

and wellbeing of occupants. Predictability plays a crucial role in
controlling PM2.5 concentrations since indoor air quality
improvement systems often exhibit inherent delays. Accurately
predicting PM2.5 concentrations poses a considerable challenge.
This study constructs a PM2.5 concentration classification
prediction model using ML algorithms, enabling accurate
predictions of whether PM2.5 concentrations exceed the
standard and serving as a risk warning model. The model’s
predicted results can be utilized as control signals in the
operation and regulation of indoor air quality improvement
equipment, such as fresh air systems. By forecasting in advance
whether indoor PM2.5 concentrations will exceed the standard, the
model helps determine whether the status quo can be maintained
or if purification measures are required. Implementing the
model’s predicted results as control signals guides the control
system, achieving improved indoor environmental conditions
while minimizing unnecessary energy consumption.

Through variable importance ranking analysis, we have
determined that previous PM2.5 concentration is the most
significant influencing factor in predicting whether the PM2.5

concentration exceeds the standard, as our expected.
Furthermore, we observed a negative correlation between indoor
humidity and the risk of PM2.5 concentration exceeding the
standard. Humidity plays a vital role in the nucleation,
condensation, and volatilization of particles, thereby influencing
their diffusion process and altering the concentration of PM2.5

(Chithra and Nagendra, 2014). A study conducted by Yang et al.
monitored indoor PM concentrations in a primary school classroom
in North China and assessed the contributions of various
influencing factors, the findings highlighted the critical role of
indoor humidity in managing indoor PM2.5 concentration
(Guangfei and YuheBing, 2023). The research results of this
article align with the aforementioned studies, providing further
evidence of the close relationship between indoor humidity and
the likelihood of PM2.5 concentration exceeding the standard. In
practical applications, this research provides valuable references for
real-time assessment and management of indoor air quality. This
study reveals that lower humidity increases the risk of indoor PM2.5

concentrations surpassing the standard in the next time interval,
emphasizing the significance of humidity control in improving air
quality.

6 Conclusion

In comparison to the MLP, GBDT, LR, DT, and KNN models,
the CatBoost model demonstrates notable advantages in predicting
whether the indoor PM2.5 concentration exceeds the standard.
Through HPO, the model’s predictive performance can be
further enhanced. Additionally, this study identifies the previous
PM2.5 concentration and relative humidity as the two most
influential factors for prediction.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

FIGURE 7
Summary of model SHAP features.

Frontiers in Built Environment frontiersin.org08

Guo et al. 10.3389/fbuil.2023.1207193

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1207193


Author contributions

XYW is mainly responsible for the initial writing of articles, data
analysis, and so on. ZWG is mainly responsible for reviewing
articles, project management, and so on. LG is mainly
responsible for data collection, article polishing, and so on. All
authors contributed to the article and approved the submitted
version.

Funding

This study was supported by the Opening Funds of State Key
Laboratory of Building Safety and Built Environment and National
Engineering Research Center of Building Technology and the key
special project of the National Key R&D Plan “Intergovernmental
International Science and Technology Innovation Cooperation”
titled “Research on Improving Energy Efficiency and Health

Performance of Building Operation Based on Full Life Cycle
Carbon Reduction” (2018YFE0106100).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Adeleke, J. A., Moodley, D., Rens, G., and Adewumi, A. (2017). Integrating statistical
machine learning in a semantic sensor web for proactive monitoring and control.
Sensors 17 (4), 807. doi:10.3390/s17040807

AdityaSharma, M., and Gupta, S. C. (2018). “An Internet of Things based smart
surveillance and monitoring system using arduino[C],” in 2018 International
Conference on Advances in Computing and Communication Engineering
(ICACCE) (IEEE).

Ahn, J., Shin, D., Kim, K., and Yang, J. (2017). Indoor air quality analysis using deep
learning with sensor data. Sensors 17 (11), 2476. doi:10.3390/s17112476

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., and Optuna (2019). “A next-
generation hyperparameter optimization framework,” in Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, 2623–2631.

Amy Isabella, S., Javier, R., and Peter, J. G. (2022). Integrating multiple brain imaging
modalities does not boost prediction of subclinical atherosclerosis in midlife adults[J].
NeuroImage Clin. 35, 103134. doi:10.1016/j.nicl.2022.103134

BellMichelle, L., and Davis, D. L. (2001). Reassessment of the lethal london fog of
1952: Novel Indicators of acute and chronic consequences of acute exposure to air
pollution. J. Environ. Health Perspect. Suppl. 109, 389. doi:10.2307/3434786

Carlos, G., Valeria, F., and Guillermo, V. (2018). Use of non-industrial environmental
sensors and machine learning techniques in telemetry for indoor air pollution. ARPN
J. Eng. Appl. Sci. 13, 2702-2712.

Cheng, C., Wu, H., and Liu, W. (2019). Indoor PM2.5 prediction based on multi-
instance genetic neural network[J]. Comput. Appl. Softw. 36 (5), 7. (in Chinese). doi:10.
3969/j.issn.1000-386x.2019.05.041

Chithra, V. S., and Nagendra, S. S. (2014). Impact of outdoor meteorology on indoor
PM10, PM2.5 and PM1 concentrations in a naturally ventilated classroom. Urban Clim.
10, 77e91. doi:10.1016/j.uclim.2014.10.001

Choi, M. L., Lim, M. J., Kwon, Y. M., Kwon, Y. M., and Chung, D. K. (2017). A study
on the prediction method of Emergency Room (ER) pollution level based on deep
learning using scattering sensor[J]. J. Eng. Appl. Sci. 12 (10), 2560–2564. doi:10.3923/
jeasci.2017.2560.2564

DaiLiuLi, X. J. Y. (2021). A recurrent neural network using historical data to predict
time series indoor PM2.5 concentrations for residential buildings. Indoor Air 31,
1228–1237. doi:10.1111/ina.12794

Das, P., Shrubsole, C., Jones, B., Hamilton, I., Chalabi, Z., Davies, M., et al. (2014).
Using probabilistic sampling-based sensitivity analyses for indoor air quality modelling.
Build. Environ. 78 (AUG), 171–182. doi:10.1016/j.buildenv.2014.04.017

Deepti, S., and Suresh, J. (2019). Impact of intervention of biomass cookstove
technologies and kitchen characteristics on indoor air quality and human exposure
in rural settings of India. Environ. Int. 123, 240–255. doi:10.1016/j.envint.2018.11.059

Dorogush, A. V., Ershov, V., and Gulin, A. (2018). CatBoost: Gradient boosting with
categorical features support[J].

Elbayoumi, M., Ramli, N. A., Md Yusof, N., Yahaya, A. S. B., Al Madhoun, W., and
Ul-Saufie, A. Z. (2014). Multivariate methods for indoor PM10 and PM2.5 modelling in
naturally ventilated schools buildings. Atmos. Environ. 94, 11–21. doi:10.1016/j.
atmosenv.2014.05.007

Elbayoumi, M., Ramli, N. A., and Yusof, N. F. F. M. (2015). Development and
comparison of regression models and feedforward backpropagation neural network
models to predict seasonal indoor PM2 5e10 and PM2.5 concentrations in naturally
ventilated schools. Atmos. Pollut. Res. 6 (6), 1013e1023. doi:10.1016/j.apr.2015.09.001

Fan, G., Xie, J., Yoshino, H., Yanagi, U., Hasegawa, K., Kagi, N., et al. (2018). Indoor
environmental conditions in urban and rural homes with older people during heating
season: A case in cold region, China[J]. Energy & Build.

Fisk, W. J. (2000). Health and productivity gains from better indoor environments
and their relationship with building energy efficiency[j]. Annu. Rev. Energy Environ. 25.
doi:10.1146/annurev.energy.25.1.537

GB (2012). “Design Code for heating ventilation and air conditioning of Civil
buildings (in Chinese),” in Ministry of housing and urban-rural development of the
people’s Republic of China, general administration of quality supervision, inspection and
quarantine of the people’s Republic of China (Beijing: China Architecture & Building
Press).

GB (2021). Hygienic standard for carbon dioxide in indoor air (in Chinese). National
Health Commission of the People’s Republic of China.

GB (2002). “Indoor air quality standard (in Chinese),” in The general administration
of quality supervision, inspection and quarantine of the People’s Republic of China
(Beijing: General Administration of Quality Supervision).

Guangfei, Y., and YuheBing, Z. Y. (2023). Contribution of influential factors on
PM2.5 concentrations in classrooms of a primary school in North China: A machine
discovery approach. Energy Build. 283, 112787. doi:10.1016/j.enbuild.2023.112787

Guo, Y., Quan, L., Song, L., and Liang, H. (2022). Construction of rapid early warning
and comprehensive analysis models for urban waterlogging based on AutoML and
comparison of the other three machine learning algorithms[J]. J. Hydrology, 605.

Horr, Yousef Al, Arif, M., Kaushik, A., Mazroei, A., Katafygiotou, M., and Elsarrag, E.
(2016). Occupant productivity and office indoor environment quality: A review of the
literature. [J]. Build. Environ. 105, 369–389. doi:10.1016/j.buildenv.2016.06.001

Huang, K., Sun, W., Feng, G., Wang, J., and Song, J. (2020). Indoor air quality analysis
of 8 mechanically ventilated residential buildings in northeast China based on long-
term monitoring. Sustain. Cities Soc. 54 (C), 101947. doi:10.1016/j.scs.2019.101947

Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., et al. (2019). Evaluation of
CatBoost method for prediction of reference evapotranspiration in humid regions.
J. Hydrology 574, 1029–1041. doi:10.1016/j.jhydrol.2019.04.085

Hyun, P. S., Soo, S. H., and Nam, P. S. (2018). A novel pH-responsive hydrogel based
on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of
naringenin. J. Hazard. Mater. 200 (Jan.5), 341–352. doi:10.1016/j.carbpol.2018.08.011

Imran, H. (2021). Solar power system assessments using ANN and hybrid boost
converter based MPPT algorithm[J]. Appl. Sci. 11 (23), 11332. doi:10.3390/
app112311332

Jacobs, E. T., Burgess, J. L., and Abbott, M. B. (2018). The donora smog revisited:
70 Years after the event that inspired the clean air act. Am. J. Public Health 108 (S2),
S85–S88. doi:10.2105/ajph.2017.304219

Jorge, L-B., Paulina, V., Qian, L., and ChangKyoo, Y. (2018). Sequential prediction of
quantitative health risk assessment for the fine particulate matter in an underground

Frontiers in Built Environment frontiersin.org09

Guo et al. 10.3389/fbuil.2023.1207193

https://doi.org/10.3390/s17040807
https://doi.org/10.3390/s17112476
https://doi.org/10.1016/j.nicl.2022.103134
https://doi.org/10.2307/3434786
https://doi.org/10.3969/j.issn.1000-386x.2019.05.041
https://doi.org/10.3969/j.issn.1000-386x.2019.05.041
https://doi.org/10.1016/j.uclim.2014.10.001
https://doi.org/10.3923/jeasci.2017.2560.2564
https://doi.org/10.3923/jeasci.2017.2560.2564
https://doi.org/10.1111/ina.12794
https://doi.org/10.1016/j.buildenv.2014.04.017
https://doi.org/10.1016/j.envint.2018.11.059
https://doi.org/10.1016/j.atmosenv.2014.05.007
https://doi.org/10.1016/j.atmosenv.2014.05.007
https://doi.org/10.1016/j.apr.2015.09.001
https://doi.org/10.1146/annurev.energy.25.1.537
https://doi.org/10.1016/j.enbuild.2023.112787
https://doi.org/10.1016/j.buildenv.2016.06.001
https://doi.org/10.1016/j.scs.2019.101947
https://doi.org/10.1016/j.jhydrol.2019.04.085
https://doi.org/10.1016/j.carbpol.2018.08.011
https://doi.org/10.3390/app112311332
https://doi.org/10.3390/app112311332
https://doi.org/10.2105/ajph.2017.304219
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1207193


facility using deep recurrent neural networks. [J].Ecotoxicology Environ. Saf. 169,
316–324. doi:10.1016/j.ecoenv.2018.11.024

Justin, Y. Y. L., Yanhao, M., Ricky, L. T. C., Mark, H., and Patrick, K. H. L. (2023).
Artificial intelligence-based prediction of indoor bioaerosol concentrations from indoor
air quality sensor data[J]. Environ. Int.

Kiki, Y., and Vinasetan, R. H. (2020). Prediction of the purchase intention of users on
ECommerce platforms using gradient boosting. Int. J. Eng. Adv. Technol. (IJEAT) 10 (1),
446–450. doi:10.35940/ijeat.a1929.1010120

Kim, M. H., Kim, Y. S., Sung, S. W., and Yoo, C. K. (2009). Data-driven prediction
model of indoor air quality by the preprocessed recurrent neural networks[C]. In
Proceeding of the Iccas-sice. IEEE.

KimSankararaoKang, M. J. B. O. Y., Kim, J., and Yoo, C. (2012). Monitoring and
prediction of indoor air quality (IAQ) in subway or metro systems using season
dependent models. Energy Build. 46 (Mar), 48–55. doi:10.1016/j.enbuild.2011.10.047

Kropat, G., Bochud, F., Jaboyedoff, M., Laedermann, J. P., Murith, C., Palacios, M.,
et al. (2015). Improved predictive mapping of indoor radon concentrations using
ensemble regression trees based on automatic clustering of geological units. J. Environ.
Radioact. 147, 51–62. doi:10.1016/j.jenvrad.2015.05.006

LagesseWangLarson, B. S. T. V., and Kim, A. A. (2020). Predicting PM2.5 in well-
mixed indoor air for a large office building using regression and artificial neural network
models. Environ. Sci. Technol. 54 (23), 15320–15328. doi:10.1021/acs.est.0c02549

Lai, D., Qi, Y., Liu, J., Dai, X., Zhao, L., and Wei, S. (2018). Ventilation behavior in
residential buildings with mechanical ventilation systems across different climate zones
in China. Build. Environ. 143, 679–690. doi:10.1016/j.buildenv.2018.08.006

Lee, S., Vo, T., and Thai, T. H. (2021). Strength prediction of concrete-filled steel
tubular columns using Categorical Gradient Boosting algorithm[J]. Eng. Struct., 238.
doi:10.1016/j.engstruct.2021.112109

LeeKimKim, S. M. J. J. T., and Yoo, C. K. (2015). In search for modeling predictive
control of indoor air quality and ventilation energy demand in subway station. Energy &
Build. 98 (jul), 56–65. doi:10.1016/j.enbuild.2014.10.082

Li, L., Jamieson, K., Desalvo, G., Rostamizadeh, A., and Talwalkar, A. (2016).
Hyperband: A novel bandit-based approach to hyperparameter optimization.
J. Mach. Learn. Res. 18 (1-52). doi:10.48550/arXiv.1603.06560

Lim, J. J., Kim, Y. S., Oh, T. S., Kim, M. J., Kang, O. Y., Kim, J. T., et al. (2012). Analysis
and prediction of indoor air pollutants in a subway station using a new key variable
selection method. Korean J. Chem. Eng. 29, 994–1003. doi:10.1007/s11814-011-0278-z

Li, Z., Tong, X., Man, J., Ho, W., and Yim, S. H. L. (2020). A practical framework for
predicting residential indoor PM2.5 concentration using land-use regression and
machine learning methods. Chemosphere 265 (2), 129140. doi:10.1016/j.
chemosphere.2020.129140

Liu, Yun, Heidari, A. A., Ye, X., Liang, G., Chen, H., and He, C. (2021). Boosting slime
mould algorithm for parameter identification of photovoltaic models. J. Energy 234,
121164. doi:10.1016/j.energy.2021.121164

LiuYoo, H. C. K. (2016). A robust localized soft sensor for particulate matter modeling in
Seoul metro systems. J. Hazard. Mater. 305 (15), 209–218. doi:10.1016/j.jhazmat.2015.11.051

Maher, Elbayoumi, Nor, Azam, Ramli, Noor, et al. (2015). Development and
comparison of regression models and feedforward backpropagation neural network
models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally
ventilated schools[J]. Atmos. Pollut. Res.

Martin, B., and Šafránek, J. (2011). Characterization of coarse particulate matter in
school gyms[J]. Environ. Res.

Massey, D., Kulshrestha, A., Masih, J., and Taneja, A. (2012). Seasonal trends of PM10,
PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in
North-Central India. indoor outdoor Environ. Resid. homes located north-central India, Build.
Environ. 47 (none), 223–231. doi:10.1016/j.buildenv.2011.07.018

MengSpectorColome, Q. Y. D. S., and Turpin, B. (2009). Determinants of indoor and
personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study.
Atmos. Environ. 43 (36), 5750–5758. doi:10.1016/j.atmosenv.2009.07.066

Ming, L., Rksa, B., and Gza, C. (2021). Recent trends in premature mortality and
health disparities attributable to ambient PM 2.5 exposure in China: 2005–2017[J].
Environ. Pollut. 279. doi:10.1016/j.envpol.2021.116882

Mo, J-H. (2019). Association of particulate matter with ENT diseases. Clin.
Exp. Otorhinolaryngology 12 (3), 237–238. doi:10.21053/ceo.2019.00752

Newsham, G. R., Veitch, J. A., and Charles, K. E. (2008). Risk factors for
dissatisfaction with the indoor environment in open-plan offices: An analysis of
COPE field study data. J. Indoor air 18 (4), 271–282. doi:10.1111/j.1600-0668.2008.
00525.x

Peng, X., Li, L., Wang, X., and Zhang, H. (2022). Amachine learning-based prediction
model for acute kidney injury in patients with congestive heart failure. Front. Cardiovasc
Med. 9, 842873. doi:10.3389/fcvm.2022.842873

Saini, J., Dutta, M., and Marques, G. (2022). Modeling indoor PM2.5 using adaptive
dynamic fuzzy inference system tree (ADFIST) on Internet of things-based sensor
network data. Internet Things 20, 100628. doi:10.1016/j.iot.2022.100628

Shapley, L. S. (1953). A value for n-persons games[J]. Ann. Math. Stud. 28 (7),
307–318.

Skön, J., Johansson, M., Raatikainen, M., Leivisk, K., and Kolehmainen, M. (2012).
“Modelling indoor air carbon dioxide (CO2) concentration using neural network,” in
World Acad Sci Eng Technol Int Sci Index 6 737–741.

Sofuoglu, S. C . (2008). Application of artificial neural networks to predict prevalence
of building-related symptoms in office buildings. Build. Environ. 43 (6), 1121–1126.
doi:10.1016/j.buildenv.2007.03.003

Sun, X. W., and Zhou, H. B. (2014). Research on applied technology in experiments
with three boosting algorithms. Adv. Mater. Res. 3103 (908-908), 513–516. doi:10.4028/
www.scientific.net/amr.908.513

Susnjak, T., Barczak, A., Reyes, N., and Hawick, K. (2012). Multiclass cascades for
ensemble-based boosting algorithms[J]. Front. Artif. Intell. Appl. 241, 330–335. doi:10.
3233/978-1-61499-096-3-330

T/Asc 02-2021 (2021). “Assessment standard for healthy building (in Chinese),” in
The architectural society of China (Beijing: China Architecture & Building Press).

Thayer Julian, F., Verkuil, B., Brosschotj, J. F., Kevin, K., West, A., Sterling, C., et al.
(2010). Effects of the physical work environment on physiological measures of stress.
J. Eur. J. Cardiovasc Prev. Rehabil. 17, 431–439. doi:10.1097/hjr.0b013e328336923a

Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J. C., and Mandin, C.
(2019). Machine learning and statistical models for predicting indoor air quality. Indoor
Air 29 (5), 704–726. doi:10.1111/ina.12580

XiaoQiZhu, F. L. Y., Hou, J., Jin, L., and Wang, J. (2015). Artificial neural networks
forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet
transformation. Atmos. Environ. 107, 118–128. doi:10.1016/j.atmosenv.2015.02.030

Xie, H., Ma, F., and Bai, Q. (2009). “Prediction of indoor air quality using artificial
neural networks[C],” in International Conference on Natural Computation (IEEE
Computer Society).

Xie, H, Xiang, Y., Yang, E., and Zhang, H. (2021). Factors influencing hypertrophic
scarring after thyroidectomy. Electr. Eng. 34, 1–6. doi:10.1097/01.ASW.0000775924.
92065.78

Xue, L. (2022). Marppi: Boosting prediction of protein-protein interactions with
multi-scale architecture residual network[J]. Briefings Bioinforma.

XueWangLiu, Q. Z. J., and Dong, J. (2020). Indoor PM2.5 concentrations during
winter in a severe cold region of China: A comparison of passive and conventional
residential buildings. Build. Environ. 180, 106857. doi:10.1016/j.buildenv.2020.106857

Xu, C., Xu, D., Liu, Z., Li, Y., and Li, N. (2020). Estimating hourly average indoor
PM2.5 using the random forest approach in two megacities, China. Build. Environ. 180,
107025. doi:10.1016/j.buildenv.2020.107025

Yamamoto, H., Kure, T., Kondoh, J., and Kodaira, D. (2022). Multi-point forecasting
of photovoltaic power generation by light gradient boosting machine[J]. Grand. Renew.
Energy Proc. 2, 9. doi:10.24752/gre.2.0_9

YeganehMotlaghRashidi, B. M. Y., and Kamalan, H. (2012). Prediction of CO
concentrations based on a hybrid partial least square and support vector machine
model. Atmos. Environ. 55 (none), 357–365. doi:10.1016/j.atmosenv.2012.02.092

Yuchi, W. (2017).Modelling fine particulate matter concentrations inside the homes of
pregnant women in ulaanbaatar, Mongolia[J].

Yuchi, W., Gombojav, E., Boldbaatar, B., Galsuren, J., and Allen, R. W. (2019).
Evaluation of random forest regression and multiple linear regression for predicting
indoor fine particulate matter concentrations in a highly polluted city. ] Environ. Pollut.
245, 746–753. doi:10.1016/j.envpol.2018.11.034

Zakir, S. S., Khondaker, S., and Nafiz, I. K. (2022). Machine learning-based failure
mode identification of double shear bolted connections in structural steel[J]. Eng. Fail.
Anal., 139. doi:10.1016/j.engfailanal.2022.106471

Zhao, Q. Y., Wang, H., Luo, J. C., Luo, M. H., Liu, L. P., Yu, S. J., et al. (2021).
Development and validation of a machine-learning model for prediction of extubation
failure in intensive care units. Front. Med. (Lausanne). 8, 676343. doi:10.3389/fmed.
2021.676343

Zhao, L., Chen, C., Wang, P., Chen, Z., Cao, S., Wang, Q., et al. (2015). Influence of
atmospheric fine particulate matter (PM 2.5) pollution on indoor environment during
winter in Beijing. Build. Environ. 87 (5), 283–291. doi:10.1016/j.buildenv.2015.02.008

ZhaoLiuRen, L. J. J. (2018). Impact of various ventilation modes on IAQ and energy
consumption in Chinese dwellings: First long-term monitoring study in Tianjin, China.
Build. Environ. 143 (OCT), 99–106. doi:10.1016/j.buildenv.2018.06.057

Zhou, F., Pan, H., Gao, Z., Huang, X., and Xiao, F. (2021). Fire prediction based on
CatBoost algorithm[J]. Math. Problems Eng., 2021.

Frontiers in Built Environment frontiersin.org10

Guo et al. 10.3389/fbuil.2023.1207193

https://doi.org/10.1016/j.ecoenv.2018.11.024
https://doi.org/10.35940/ijeat.a1929.1010120
https://doi.org/10.1016/j.enbuild.2011.10.047
https://doi.org/10.1016/j.jenvrad.2015.05.006
https://doi.org/10.1021/acs.est.0c02549
https://doi.org/10.1016/j.buildenv.2018.08.006
https://doi.org/10.1016/j.engstruct.2021.112109
https://doi.org/10.1016/j.enbuild.2014.10.082
https://doi.org/10.48550/arXiv.1603.06560
https://doi.org/10.1007/s11814-011-0278-z
https://doi.org/10.1016/j.chemosphere.2020.129140
https://doi.org/10.1016/j.chemosphere.2020.129140
https://doi.org/10.1016/j.energy.2021.121164
https://doi.org/10.1016/j.jhazmat.2015.11.051
https://doi.org/10.1016/j.buildenv.2011.07.018
https://doi.org/10.1016/j.atmosenv.2009.07.066
https://doi.org/10.1016/j.envpol.2021.116882
https://doi.org/10.21053/ceo.2019.00752
https://doi.org/10.1111/j.1600-0668.2008.00525.x
https://doi.org/10.1111/j.1600-0668.2008.00525.x
https://doi.org/10.3389/fcvm.2022.842873
https://doi.org/10.1016/j.iot.2022.100628
https://doi.org/10.1016/j.buildenv.2007.03.003
https://doi.org/10.4028/www.scientific.net/amr.908.513
https://doi.org/10.4028/www.scientific.net/amr.908.513
https://doi.org/10.3233/978-1-61499-096-3-330
https://doi.org/10.3233/978-1-61499-096-3-330
https://doi.org/10.1097/hjr.0b013e328336923a
https://doi.org/10.1111/ina.12580
https://doi.org/10.1016/j.atmosenv.2015.02.030
https://doi.org/10.1097/01.ASW.0000775924.92065.78
https://doi.org/10.1097/01.ASW.0000775924.92065.78
https://doi.org/10.1016/j.buildenv.2020.106857
https://doi.org/10.1016/j.buildenv.2020.107025
https://doi.org/10.24752/gre.2.0_9
https://doi.org/10.1016/j.atmosenv.2012.02.092
https://doi.org/10.1016/j.envpol.2018.11.034
https://doi.org/10.1016/j.engfailanal.2022.106471
https://doi.org/10.3389/fmed.2021.676343
https://doi.org/10.3389/fmed.2021.676343
https://doi.org/10.1016/j.buildenv.2015.02.008
https://doi.org/10.1016/j.buildenv.2018.06.057
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1207193

	Classification prediction model of indoor PM2.5 concentration using CatBoost algorithm
	1 Introduction
	1.1 Motivation
	1.2 The application of ML in IAQ prediction
	1.3 The application of ML in PM2.5 prediction
	1.4 Contribution

	2 Methodology
	2.1 Data acquisition and processing
	2.2 Data preprocessing

	3 Prediction model
	4 Result
	4.1 Data statistics
	4.2 Hyperparameter optimization
	4.3 Cross validation
	4.4 Model comparison
	4.5 Importance analysis

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


