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Gastric cancer (GC) is the leading cause of cancer-related death worldwide, 
and reducing its mortality has become an urgent public health issue. Gastric 
microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, 
antibiotics, and surgery) can lead to gastric immune dysfunction or result in a 
decrease in dominant bacteria and an increase in the number and virulence of 
pathogenic microorganisms, which in turn promotes development of GC. This 
review analyzes the relationship between gastric microecological dysbiosis and 
GC, elucidates dynamic alterations of the microbiota in Correa’s cascade, and 
identifies certain specific microorganisms as potential biomarkers of GC to aid 
in early screening and diagnosis. In addition, this paper presents the potential 
of gastric microbiota transplantation as a therapeutic target for gastric cancer, 
providing a new direction for future research in this field.
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1. Introduction

Gastric cancer (GC) is the fifth most common cancer and the third most common cause of 
cancer death globally (Smyth et al., 2020). Although treatment strategies for gastric cancer have 
been continuously updated over centuries, from surgery, chemotherapy, radiotherapy, molecular 
targeted therapy to immunotherapy, the mortality rate remains high. Addressing the issue of 
reducing mortality from GC has become an urgent public health concern (Etemadi et al., 2020; 
Thrift and el-Serag, 2020). GC development involves a multifactorial and dynamic process that 
results from interaction of various genetic and environmental factors in the host. GC is a cancer 
type characterized by high heterogeneity. The Cancer Genome Atlas (TCGA) initiated an 
exhaustive examination that molecularly characterized four subtypes of gastric cancer through 
genomic analysis, including (i) tumors positive for Epstein–Barr virus (EBV), (ii) tumors with 
microsatellite instability (MSI), (iii) genomically stable (GS) tumors, and (iv) tumors with 
chromosomally instability (CIN) (Cancer Genome Atlas Research Network, 2014). GC can 
be classified into two distinct types, intestinal and diffuse, based on Lauren’s classification 
(Lauren, 1965). Intestinal GC is well defined by Correa’s cascade alterations that involve a 
sequence of changes starting from a normal gastric mucosa, erosive gastritis, atrophic gastritis 
(AG), and intestinal metaplasia (IM), leading to heterogeneous hyperplasia and eventually 
progressing to in situ gastric cancer and invasive carcinoma (Correa et al., 1975).
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In recent years, the role of gastric microecological dysbiosis in 
gastric carcinogenesis has received increasing attention. The gastric 
microbiota is the most important subset of the gastric microecology. 
The microbial community in the stomach is predominantly composed 
of the phyla Firmicutes, Actinobacteria, Bacteroidetes, and 
Proteobacteria, as well as the genera Lactobacillus, Streptococcus, and 
Propionibacterium. It has been established that H. pylori is a major 
risk factor for development of GC (Plummer et al., 2016; Alarcón 
et  al., 2017; Yang et  al., 2022). In addition to H. pylori, other 
microorganisms (e.g., fungi and viruses) are present in the stomach. 
The composition of the gastric microbiota can be  influenced by 
various external factors, such as diet, proton pump inhibitors, 
antibiotics, Helicobacter pylori infection, gastric mucosal 
inflammation, and the mode of delivery at birth. A growing body of 
research suggests a strong correlation between the gastric microbiota 
and the occurrence and progression of GC. The gastric microbiota can 
produce carcinogenic substances, trigger inflammatory reactions, and 
affect the functionality of immune cells within the immunosuppressive 
microenvironment, thereby promoting the development of 
GC. However, the specific composition of the microbiota in gastric 
tissues remains unclear, and our understanding of how the gastric 
microbiota changes throughout the different stages of gastric cancer 
development is still limited. This review provides a detailed analysis 
of the relationship between gastric microecological dysbiosis and 
gastric carcinogenesis, along with the potential diagnostic value of the 
gastric microbiota as a biomarker for GC, which may culminate in the 
discovery of new diagnostic modalities for gastric cancer. 
Furthermore, we  discuss the potential of gastric/fecal microbiota 
transplantation as a therapeutic target for gastric cancer, providing a 
new direction for future research in this area.

2. Composition and diversity of gastric 
microecology

The human gastric microbiota constitutes a distinct 
microecosystem that participates in maturation and regulation of host 
metabolism and immunity, as well as inhibition of pathogen 
colonization. The stomach, with its unique physiological structure 
characterized by acidic conditions, digestive enzyme secretion, bile 
reflux, bicarbonate mucus barrier, and gastrointestinal peristalsis, 
forms a natural screening barrier. Owing to these features, the stomach 
was once regarded as a sterile organ, and the microbiota was thought 
to be isolated in the intestine. However, advancements in microbial 
culture and sequencing techniques have led to the discovery of 
Veronococcus, Lactobacillus, Clostridium, Propionibacterium, 
Streptococcus, and Staphylococcus in the human stomach, in addition 
to H. pylori (Marshall et al., 1984; Zilberstein et al., 2007; Delgado 
et al., 2013). The microbial density of the stomach is approximately 
101–103 colony forming units (CFU)/ml, which is substantially lower 
than that of the intestine (1010–1012 CFU/ml). The most abundant 
phyla in the normal gastric microbiota are mainly Bacteroides, 
Actinomycetes, Firmicutes, Proteobacteria, and Fusobacteria (Bik, 
2006; Li et  al., 2009). Nevertheless, current techniques far 
underestimate the diversity of bacteria, as a large proportion of them 
remain undiscovered by culture (Vartoukian et  al., 2010). The 
microbiota present in the gastric fluid consists mainly of 
microorganisms from the respiratory tract, oral cavity, and those that 

retrograde through the intestine into the pylorus (Sanduleanu et al., 
2001; Yu et  al., 2017). There is significant heterogeneity in the 
microbiota composition of the gastric mucosa and gastric fluid. 
Compared to gastric fluid, the gastric mucosa has a greater richness 
of flora but lower flora diversity (Sung et al., 2016). Many studies have 
found that the dominant phyla in the normal gastric mucosa are 
Firmicutes (42%), Bacteroidetes (24%), Proteobacteria (17%), 
Actinobacteria (7%), and Fusobacteria (6%) (Bik et al., 2006; Delgado 
et al., 2013; Liu et al., 2019; Pereira-Marques et al., 2019; Ndegwa et al., 
2020). In contrast, gastric fluid is mainly composed of the phyla 
Proteobacteria and Firmicutes (Nardone and Compare, 2015; Sung 
et al., 2016). These studies revealed a previously unnoticed abundance 
of the gastric flora and found a heterogeneous community abundance 
among individuals. Microorganisms in gastric fluid may only reside 
transiently, without colonizing the gastric mucosa; thus, their diversity 
is spurious and altered by various factors (Alarcón et  al., 2017). 
Bacterial overgrowth in the stomach has been found in a variety of 
precancerous conditions, such as hypoacidity and mucosal atrophy. 
Gastritis caused by chronic H. pylori may lead to glandular atrophy 
and reduced acid production, resulting in a increase in gastric 
pH. Reduced gastric acid promotes colonization of the gastric mucosa 
by other bacteria, viruses, and/or fungi (Schulz et al., 2015). These 
microbes can promote production of nitrite, which in turn leads to 
accumulation of carcinogenic nitroso compounds, promoting 
development of gastric cancer.

3. Gastric microecological dysbiosis 
and gastric cancer

In recent years, a growing number of studies have highlighted the 
role of ecological dysbiosis in cancer development. In a broad sense, 
ecological dysbiosis refers to changes in the composition and function 
of the host’s resident microbiota, which can lead to a microecosystem 
that is conducive to growth and proliferation of cancer cells. The 
microecosystem comprises a host, a microbiota, and an external 
environment that can affect the microbiota. The composition of the 
microbiota is highly dynamic and influenced by several factors, 
including age, sex, dietary habits, lifestyle, geographic location, 
H. pylori infection, gastric mucosal inflammation, mode of delivery 
during birth, and use of medications such as antimicrobial agents and 
proton pump inhibitors (Tsuda et  al., 2015; Bokulich et  al., 2016; 
Lloyd-Price et al., 2016; Figure 1). Ecological dysbiosis can manifest 
in several ways, including loss of beneficial microorganisms, 
expansion of potentially harmful microorganisms, and reduction in 
overall microbial diversity (Petersen et al., 2014). These changes create 
an environment that is favorable for development and progression of 
cancer, including gastric cancer. In this context, understanding the 
role of ecological dysbiosis in the pathogenesis of gastric cancer 
provides important insight into the development of effective 
prevention and treatment strategies.

3.1. Gastric microbiota dysbiosis

3.1.1. Helicobacter pylori
Helicobacter pylori has been widely recognized as a crucial risk 

factor for developing gastric cancer (Touati et  al., 2003; Graham, 
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2015;Hartung et al., 2015; Mégraud et al., 2015), as highlighted by the 
World Health Organization (WHO), which classifies it as a Group 
I carcinogen (IARC, 2003; Bouvard et al., 2009). The prevalence of 
H. pylori infection is over 50% worldwide. In China, over 80% of 
non-cardia gastric cancer cases and over 60% of cardia gastric cancer 
cases each year can be attributed to H. pylori infection (Yang et al., 
2021). The bacterium achieves successful colonization in the human 
gastric mucosal layer through various mechanisms, as follows: (1) 
using urease and α-carbonic anhydrase to produce ammonia and 
HCO3

2− to neutralize gastric acid and raise the pH of local tissues, 
creating a favorable environment for overproliferation of itself and 
other bacteria in the stomach (Scott et al., 1998; Celli et al., 2009); (2) 
enhancing its penetration into the gastric mucosal layer through 
flagella (Suerbaum, 1995; Martínez et  al., 2016); and (3) through 
bacterial virulence proteins, such as vacuolar cytotoxin (VacA) protein 
and cytotoxin-associated gene A (CagA) protein. The structure and 
function of immune cells are regulated in various ways to suppress the 
body’s immune response to H. pylori (Bakhti et al., 2020; Xi et al., 
2023). Moreover, Helicobacter pylori has the ability to manipulate the 
physiological functions of gastric epithelial cells by expressing mucins 
such as Muc1, Muc4, and Muc5b, resulting in loss of cell polarity and 
release of nutrients and chemokines, including interleukin-8 (IL-8) 
(Navabi et al., 2013).

The virulence factors CagA and VacA of H. pylori are closely 
associated with GC occurrence, and the carcinogenesis mechanisms 

among them have been extensively explored. It has been demonstrated 
that individuals infected with CagA-positive strains are at a higher risk 
of developing gastric cancer (Blaser et al., 1995; Parsonnet et al., 1997; 
Huang et al., 2003; Nell et al., 2018). CagA is an oncoprotein that 
activates multiple signaling pathways, including RAS/ERK, WNT/β-
linked protein, JAK/STAT, and PI3K/AKT, and inhibits tumor 
suppressors, promoting GC (Palrasu et al., 2021). CagA can act as an 
anti-apoptotic protein that inhibits pro-apoptotic factors such as 
SIVA1, BIM, and BAD; it also regulates autophagy and induces 
inflammation (Vallejo-Flores et al., 2015; Palrasu et al., 2020). Humans 
infected with CagA-positive H. pylori strains are known to exhibit an 
intense inflammatory response and severe damage to gastric tissues 
(Yamaoka et al., 1997; Figura et al., 1998). The interaction of CagA 
with Lactobacillus enhances maturation of human monocyte-derived 
dendritic cells (DCs) and induction of inflammatory mediators other 
than H. pylori (Castaño-Rodríguez et al., 2017). This suggests that 
bacteria capable of producing lactic acid may increase the 
inflammatory response induced by H. pylori, thus promoting gastric 
carcinogenesis. CagA was also found to promote the Ye s-Associated-
Protein (YAP) signaling pathway, thereby promoting the epithelial-
mesenchymal transition (EMT) and gastric carcinogenesis (Li et al., 
2018). The EMT causes epithelial cells to lose their characteristic cell–
cell contact and become more migratory and invasive by a process that 
may contribute to the ability of H. pylori to penetrate deeper into the 
gastric mucosa. VacA, another virulence factor of H. pylori, is 

FIGURE 1

Factors altering the composition of the human gastric microbiota. To date, many factors have been identified that can alter the composition of the 
human gastric microbiota, including age, surgery, probiotics, gut microbiota, diet, H. pylori infection, inflammation of the gastric mucosa, mode of 
delivery at birth, and use of drugs such as antibiotics and proton pump inhibitors (PPIs). The figure was drawn by BioRender.
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associated with a variety of functions including disruption of the 
gastric mucosal barrier, interference with antigen presentation 
pathways, and downregulation of autophagy and phagocytosis, which 
contribute to bacterial inhibition of immune cells and establishment 
of persistent infection (Atherton et al., 1995; Boncristiano et al., 2003; 
Sundrud et al., 2004). The ability of VacA to downregulate autophagy 
and lysosomal degradation contributes to accumulation of CagA in 
gastric epithelial cells (Abdullah et al., 2019).

Moreover, H. pylori significantly inhibits colonization of the stomach 
by other bacteria, resulting in lower gastric microbiota diversity (Gao 
et  al., 2018). In female BALB/c mice without specific pathogens, 
colonization by H. pylori leads to an increase in the gastric microbiota of 
Clostridia, Bacteroides/Prevotella spp., Eubacterium spp., Ruminococcus 
spp., Streptococci, and Escherichia coli, with decreases in lactobacilli 
(Aebischer et al., 2006). An early study used 16S rRNA microarrays to 
analyze gastric biopsies from subjects infected or not with H. pylori 
(Maldonado-Contreras et al., 2011). This study found that H. pylori-
positive patients had a higher abundance of Proteobacteria, Firmicutes, 
Bacteroides and Actinobacteria in the stomach and a lower abundance 
of Actinobacteria, Bacteroidetes, and Firmicutes. All the above studies 
reveal a significant effect of H. pylori colonization on the gastric microbial 
community. However, other studies have clearly shown that the gastric 
microbiota is not altered by chronic H. pylori infection (Tan et al., 2007; 
Khosravi et al., 2014; Coker et al., 2018). Thus, the relationship between 
H. pylori and other flora remains controversial (Table 1).

3.1.2. The bacteria beyond Helicobacter pylori
Recent research has suggested that the presence of microbes other 

than Hp may also contribute to the occurrence of GC. Insulin-gastrin-
secreting (INS-GAS) mice are genetically susceptible to GC and are 
therefore commonly used in developing mouse gastric cancer models. 
Tumorigenesis is relatively delayed in mice infected with H. pylori alone 
compared to INS-GAS mice infected with H. pylori and other gastric 
microbiota (Lee et al., 2008). Furthermore, H. pylori-infected germ-free 
(GF) INS-GAS mice exhibit less severe gastric mucosal lesions and 
slower tumor progression than H. pylori-infected specific pathogen-free 
(SPF) INS-GAS mice (Lofgren et al., 2011). These findings suggest that 
GC may be promoted by microorganisms in addition to H. pylori, with 
other gastric microbial communities also playing a potential role in the 
carcinogenesis and progression of GC in mice.

In another study, the stomachs of H. pylori-infected INS-GAS mice 
were colonized with different types of intestinal microorganisms, 
including restricted altered Schaedler flora (rASF; consisting of 
Clostridum species ASF356, Bacteroides species ASF519 and 
Lactobacillus murinus ASF361) and pathogen-free (complex IF) mice 
(Lertpiriyapong et  al., 2014). The results showed that the mice 
colonized by either rASF Hp or IF Hp exhibited severe pathology. The 
IF Hp-colonized mice showed the strongest inflammatory response, 
with 40% developing invasive gastrointestinal intraepithelial neoplasia 
(GIN). The same phenomenon was observed in 23% of the rASF Hp 
mice. Moreover, it was found that ASF and H. pylori coinfection leads 
to gastric mucosal changes in mice; gastritis in mice was accompanied 
by reduced colonization of Clostridium perfringens ASF356 and Bacillus 
mimicus ASF519 and overgrowth of Lactobacillus murinus ASF361.

A recent study conducted by Kwon et al. (2022) inoculated gastric 
tissue and gastric fluid from patients with chronic superficial gastritis 
(CSG), intestinal metaplasia (IM) or gastric cancer (GC) into GF 
C57BL/6 mice. The gastric microbiota of the mice was analyzed by 

amplicon sequencing and immunohistochemical analysis of the 
histopathological features of the stomach of the mice. The results 
revealed that when microbiomes from IM or GC patients were 
transplanted into the stomachs of GF mice, precancerous features were 
induced, including increased inflammation, decreased mural cells, and 
increased cell proliferation. In addition, long-term observations of 
mice inoculated with the microbiota from IM or GC patients led to a 
relatively high incidence of features of gastric dysplasia in mice. From 
the above evidence, it appears that commensal microorganisms in the 
stomach other than H. pylori are associated with development of GC.

3.1.3. Fungi
Fungal species can be  detected in the gastrointestinal tract of 

approximately 70% of healthy adults. The number of fungi in the 
human stomach is 0–102 cfu/ml, and Candida is the most common 
species (Schulze and Sonnenborn, 2009; Zwolinska-Wcisło et  al., 
2009). A study examined gastric fluid from 25 patients undergoing 
clinical indications using PCR amplification of the internal transcribed 
spacer region, with Candida and Phaalemonium found to be the only 
two genera present in all gastric fluid samples (von Rosenvinge et al., 
2013). Candida albicans can survive under acidic conditions of pH 1.4 
and above, and specific genotypes such as DST1593 may exacerbate 
the severity of gastric mucosal lesions (Gong et al., 2012). Candida 
albicans was detected in 54.2% of gastric ulcer cases and in 10.3% of 
chronic gastritis cases in a fungal analysis of biopsies from 293 patients 
with clinical manifestations of dyspepsia or ulcer disease (Karczewska 
et al., 2009). Gastric fungal infections and colonization are common 
in patients with GC, and chronic ingestion of exogenous mycotoxins 
from spoiled foods is a common cause of GC due to fungi. Candida 
infection is present in 20% of patients with gastric cancer (Scott and 
Jenkins, 1982). A study performed ITS rDNA genetic analysis of 
GC-associated fungal composition in cancerous lesions and 
paracancerous and noncancerous tissues from GC patients, reporting 
identification of 17 fungal species with significant differences between 
the two groups at the family level. In the GC group, Pseudeurotiaceae, 
Trimorphomycetaceae, Chaetomiaceae, and Aspergillaceae were 
significantly decreased and Saccharomycetales_fam_Incertae_sedis 
and Pleosporaceae increased compared to the control group. In 
addition, at the genus level, there were 15 different fungi between the 
two groups, and two fungal genera were enriched in the GC group, 
including Candida and Alternaria, whereas Saitozyma and 
Thermomyces were depleted (Zhong et al., 2021).

3.1.4. Viruses
In addition to the microorganisms mentioned above, EBV can 

also cause an imbalance in gastric microecology and promote gastric 
cancer (Martínez-López et al., 2014). More than 90% of adults are 
infected with EBV, and EBV-associated gastric cancer (EBVaGC) 
accounts for 5–20% of all gastric cancer cases worldwide (Takada, 
2000; Iizasa et al., 2012). Recent studies have described a synergistic 
role between Helicobacter pylori and EBV in gastric carcinogenesis. 
Individuals coinfected with H. pylori and EBV exhibit more severe 
inflammatory lesions than those infected with H. pylori alone 
(Cárdenas-Mondragón et al., 2013). In addition, some studies have 
shown that colonization by H. pylori induces reactivation of latent 
EBV in gastric epithelial cells (Minoura-Etoh et al., 2006; Shukla et al., 
2012). Proliferation of lymphocytes after EBV infection and their 
ability to interact with immune effects may be directly influenced by 
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TABLE 1 Possible roles of Helicobacter pylori and non-Helicobacter pylori bacteria in the development of gastric cancer.

Microbiota Effects on the 
development of GC

Mechanisms Reference

H. pylori Interfering with repair gene 

expression

The mechanism of mismatch repair (MMR) is responsible for preserving 

genomic stability by rectifying mistakes that occur during the replication 

of DNA. In patients with gastric cancer who are microsatellite instability 

(MSI)-positive, it has been observed that the activity of H. pylori infection 

is more pronounced compared to those who are MSI-negative. This 

suggests that H. pylori may play a role in influencing the DNA MMR 

system during gastric carcinogenesis.

Leung et al. (2000)

Promoting inflammatory 

response

The virulence factor CagA, which is produced by H. pylori, activates an 

inflammatory, NF-κB-dependent signaling pathway. This leads to the 

recruitment of inflammatory cells, as well as reactive oxygen species-

induced injuries and wound healing responses. These mechanisms play a 

role in promoting gastric carcinogenesis.

Brandt et al. (2005) and Amieva and 

Peek (2016)

Regulating the function of 

immune cells in TME

The infection caused by H. pylori triggers the upregulation of fibroblast 

activating protein (FAP) and fibroblast surface protein (FSP) mRNA, as 

well as elevated levels of pro-inflammatory factors such as IL-6, IL-8, 

COX-2, and SDF-1. Overexpression of FAP hinders the regulation of 

fibroblast growth, obstructs tissue repair, and promotes the progression of 

epithelial-mesenchymal transition (EMT) and the development of gastric 

cancer.

Krzysiek-Maczka et al. (2018) and 

Baj et al. (2020)

Regulating production of 

metabolites for GC 

development

Helicobacter pylori-derived CagA has been shown to induce the expression 

of spermine oxidase (SMOX), which leads to the production of hydrogen 

peroxide (H2O2). The increased H2O2 levels may in turn lead to ROS 

accumulation via mitochondrial membrane depolarization and activation 

of cysteine-mediated apoptosis. This pathway may contribute to the 

development of gastric cancer.

Chaturvedi et al. (2004)

Non-H. pylori

Propionibacterium 

acnes

Promoting inflammatory 

response

Propionibacterium acnes is potentially implicated as the pathogenic agent 

responsible for lymphocytic gastritis. It is surmised that the condition is 

dependent upon the natural killer factor group 2 member D (NKG2D) 

system, along with the pro-inflammatory cytokine IL-15. The activation of 

these signaling pathways is postulated to potentially promote the 

progression of gastric cancer.

Montalban-Arques et al. (2016) and 

Gunathilake et al. (2019)

Lactobacillus murinus Promoting inflammatory 

response

In a transgenic INS-GAS mouse model, the gastric lesions instigated by the 

overgrowth of Lactobacillus murinus ASF361 were found to be correlated 

with the robust expression of molecules associated with gastric 

inflammation and cancer, including TNF-α, Ptger4, and TGF-β.

Lertpiriyapong et al. (2014)

Stenotrophomonas, 

Acinetobacter, 

Haemophilus

Regulating the function of 

immune cells in TME

The presence of Stenotrophomonas, Acinetobacter, and Haemophilus in 

GC tissues showed a positive correlation with BDCA2+ pDC. The pDCs 

were responsible for the generation of CD4+ CD25+ Foxp3+ Treg cells, 

leading to functional incompetence and immunosuppression, thereby 

facilitating immune evasion by tumor cells.

Ling et al. (2019)

F. nucleatum Regulating the function of 

immune cells in TME

Cancerous tissue is targeted by F. nucleatum via an interaction between the 

Fusobacterium lectin Fap2 and the tumor-specific surface Gal-Gal NAc. This 

attachment elicits the expression of MUC2 and TNF-α in colon cancer cells. 

F. nucleatum is one of the strains that is enriched in the gastric cancer 

microbiota, and considering its significance in colorectal cancer, F. nucleatum 

could also play a pivotal role in the development of gastric cancer.

Coppenhagen-Glazer et al. (2015) 

and Hsieh et al. (2018)

Clostridium Regulating production of 

metabolites for GC 

development

Clostridium perfringens can impact bile acid metabolism, which has been 

implicated in the pathogenesis of gastric cancer. Additionally, it has been 

discovered that this pathogen plays a role in gastric carcinogenesis through 

the upregulation of histidine decarboxylase (HDC).

Ridlon and Bajaj (2015) and Lee et al. 

(2020)

(Continued)
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the presence of bacterial or other microbial components at the site of 
infection (Iskra et al., 2010). These reports suggest that infections 
caused by dysbiosis may activate latent EBV, thereby increasing risk of 
developing cancers associated with EBV infection (Matsusaka et al., 
2014; Nishikawa et al., 2014; Rickinson, 2014). Although EBV has 
been suspected of causing several upper gastrointestinal diseases, most 
studies to date have been case reports, and large-scale studies to 
support a causal relationship between EBV and these diseases are 
lacking (Hisamatsu et al., 2010; Owens et al., 2011). In addition to 
EBV, various other viruses have been found to contribute to 
tumorigenic changes in the stomach. These viruses include John 
Cunningham virus (JCV) (Murai et al., 2007), human cytomegalovirus 
(HCMV) (Jin et al., 2014; Fattahi et al., 2018; Kosari-Monfared et al., 
2019), hepatitis B (HBV) or C (HCV) viruses (Song et al., 2019; Cui 
et  al., 2020; Huang et  al., 2020), human immunodeficiency virus 
(HIV) or human T-cell lymphophilic virus (HTLV) (Matsumoto et al., 
2018; Kang et al., 2019; Schierhout et al., 2020), and papillomavirus 
(HPV) (Zeng et al., 2016; Bozdayi et al., 2019).

3.2. Other clinical conditions

3.2.1. Acid inhibitors
The presence of hydrochloric acid within the gastric fluid serves 

as a barrier to many microorganisms, protecting the stomach against 
potential infections (Yoshiyama and Nakazawa, 2000; Beasley et al., 
2015). Over the past decade, acid-suppressing drugs such as proton 
pump inhibitors (PPIs) and H2 receptor antagonists (H2RAs) have 
been frequently used to treat gastrointestinal disorders, which have 
led to significant changes in the microbial diversity of the stomach 
(Fisher and Fisher, 2017). This shift can trigger hypochlorhydria, a 
condition that reduces microbial diversity, fosters proliferation of 
genotoxic microorganisms, and heightens activity of bacterial nitrate/
nitrite reductases, ultimately leading to conversion of nitrite and other 
nitrogenous compounds in gastric fluid to cancer-associated N-nitroso 
compounds (Correa, 1992; Ahn et al., 2013; Ferreira et al., 2018). 
Some bacteria have been isolated from the stomachs of patients with 
hypochlorhydria, including Lactobacillus, Streptococcus, Pseudomonas, 
Xanthomonas, Proteus, Klebsiella, Neisseria, E. coli, and Campylobacter 
jejuni (Williams and McColl, 2006).

Acid-suppressing drugs have also been shown to impact 
progression of H. pylori, thereby promoting gastric carcinogenesis. In 
the case of reduced gastric acid secretion (caused by acid-suppressive 

drugs or chronic atrophy), H. pylori leads to a shift from sinusoidal to 
gastric body-dominated gastritis (Malfertheiner et al., 2017), reducing 
the lining cells and potentially enhancing RONS-mediated gastric 
mucosal damage (Suzuki et al., 1992), all of which are associated with 
increased risk of gastric cancer (Moayyedi et al., 2000; Sanduleanu 
et al., 2001). Acid-suppressing drugs have been shown to have negative 
effects on gastric function and host defense mechanisms, ultimately 
leading to delayed gastric emptying, decreased gastric mucus viscosity, 
increased gastric pH, increased bacterial load, and increased bacterial 
translocation (Wandall, 1992; Scarpignato et al., 2016). Several studies 
have documented changes in the gastric microbiota of patients treated 
with PPIs versus those not treated, with reduced bacterial clearance 
noted in the former (Tsuda et al., 2015; Paroni Sterbini et al., 2016). 
As the duration of PPI treatment increases, there is a gradual rise in 
the number of culturable bacteria in the gastric lumen and mucosa 
(Sanduleanu et al., 2001; del Piano et al., 2012), with maintenance 
treatment for more than 1 year resulting in a 106-fold increase in CFU 
counts (del Piano et  al., 2012). Other studies have reported an 
increased risk of gastric cancer in long-term PPI users, with or without 
H. pylori eradication, up to 2.4 times higher than in nonusers (Ahn 
et al., 2013; Brusselaers et al., 2017; Cheung et al., 2018).

Interestingly, two recent meta-analyses suggest that current 
evidence does not support that maintenance PPI can cause or 
accelerate development or progression of gastric precancerous lesions 
such as gastric atrophic changes, intestinal chemosis, intestinal 
chromophobic (ECL) cell hyperplasia and heterogeneous hyperplasia 
(Eslami and Nasseri-Moghaddam, 2013; Song et al., 2018). Therefore, 
further prospective studies are needed to elucidate how maintenance 
antacids lead to alterations in the microbiota and whether such 
alterations ultimately increase risk of GC.

3.2.2. Antibiotics
In general, application of antibiotics fundamentally alters the 

normal microbial community of the body, and gastric microecology is 
no exception. For example, treatment with cefoperazone sodium/
sulbactam sodium disrupts gastric microecology, resulting in 
overproliferation of enterococci and a marked decrease in lactobacilli. 
A meticulous investigation of bacterial and fungal microbiota 
conducted in 25 dyspeptic patients demonstrated that antibiotics lead 
to reduced bacterial colonization while having a negligible effect on 
fungal diversity (Eslami and Nasseri-Moghaddam, 2013). Nevertheless, 
exposure to penicillin causes yeast overgrowth in gastric epithelial cells 
in mice (Nardone and Compare, 2015), whereas germ-free mice 

TABLE 1 (Continued)

Microbiota Effects on the 
development of GC

Mechanisms Reference

Lactic acid bacteria 

(LAB)

Regulating production of 

metabolites for GC 

development

LAB has been demonstrated to elicit the secretion of extrinsic lactic acid, 

ROS, and N-nitroso compounds, which can lead to DNA damage and 

hasten the onset of carcinogenesis. Furthermore, LAB has been observed 

to augment the expression of proto-oncogenes, stimulate angiogenesis, 

impede the apoptotic process, and intensify EMT, immune tolerance, and 

the colonization of other carcinogenic pathogens. Taken together, these 

events have the potential to propel the progression of gastric cancer.

Vinasco et al. (2019) and Whiteside 

et al. (2021)

GC, gastric cancer; MMR, mismatch repair; MSI, microsatellite instability; CagA, cytotoxin-associated gene A;TME, tumor microenvironment; FAP, fibroblast activating protein; FSP, 
fibroblast surface protein; COX-2, cyclooxygenase-2; SDF-1, stromal cell-derived factor-1; EMT, epithelial-mesenchymal transition; SMOX, spermine oxidase; ROS, reactive oxygen species; 
NKG2D, natural killer factor group 2 member D; INS-GAS, insulin-gastrin; Gal-Gal NAc, N-acetylgalactosamine; TNF-α, tumor necrosis factor-α; Ptger4, prostaglandin E receptor 4; TGF-β, 
transforming growth factor-β; BDCA2, blood dendritic cell antigen 2; pDC, plasmacytoid dendritic cell; Foxp3, forkhead box P3; MUC2, Mucin-2; HDC, histidine decarboxylase.
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exposed to cefoperazone develop gastritis due to an increase in 
Candida albicans (Mason et  al., 2012). A 15-year long-term study 
comprising 3,365 individuals diagnosed with H. pylori infection 
revealed that short-term treatment with amoxicillin and omeprazole 
reduces the incidence of gastric cancer by 39% overall (OR = 0.61, 95% 
CI = 0.38–0.96, p = 0.032) (Ma et al., 2012). Interestingly, eradication of 
H. pylori failed in more than half of the individuals treated with 
antibiotics at the 15-year follow-up, suggesting that antibiotic therapy 
may curb development of gastric cancer by instigating alterations in the 
non-H. pylori microbiota. It is worth noting that the eradication rate of 
H. pylori during the follow-up period was only 47%, highlighting that 
antibiotic intervention can possibly mitigate progression of gastric 
cancer by inducing modifications in the non-H. pylori microbiota.

3.2.3. Gastric surgery
Alterations in the anatomy of the gastric environment can also 

affect its microbiota composition. Roux-en-Y gastric bypass surgery, a 
common treatment for morbid obesity, involves division of the stomach 
into two parts, a small proximal pouch and a larger bypass chamber. 
Postoperative comparison of pH, microbial counts, and mucosal 
cytokine levels between these two gastric pouches revealed a neutral 
pH in the proximal gastric capsule (pH 7.0 ± 0.2), with a significant 
increase in the number of aerobic and anaerobic bacteria, whereas the 
pH of the anastomotic capsule decreased to 3.3 ± 2.2, with a clear 
decrease in the total number of bacteria (Faintuch et al., 2007; Ishida 
et al., 2007). Although no differences in microbiota composition were 
detected between the two pouches, this is likely due to the limited 
number of isolates obtained. Residual gastric cancer frequently occurs 
after distal gastrectomy of benign lesions, with an incidence rate of 
1–7% among all gastric cancers (Lagergren et al., 2012). EBV infection 
has been associated with residual gastric cancer, and atrophic changes 
in residual gastritis often accompany EBV-positive residual gastric 
cancer. Moreover, Billroth-II anastomosis (Nishikawa et  al., 2002; 
Kaneda et al., 2012) can significantly alter the gastric microbiota by 
reducing levels of nitrate and nitrite reductase and expression of 
nitrosation-related genes, which greatly increases risk of gastric cancer. 
The diversity of the microbiota in the stomach also becomes richer 
after subtotal gastrectomy (Clyne and May, 2019). Preoperatively, 
Ralstonia and Helicobacter were the two dominant genera identified in 
gastric cancer, and Streptococcus and Prevotella were the two most 
abundant genera in the gastric mucosal microbiome after gastric lesion 
resection. Overall, these findings suggest that gastric surgery is a key 
factor in determining the composition of the gastric microbiota.

4. Gastric microbial dysbiosis in 
Correa’s cascade

Correa’s cascade refers to a sequence of pathological changes that 
occur in the gastric mucosa over time, including chronic atrophic 
gastritis (CAG), intestinal metaplasia (IM), and dysplasia, eventually 
progressing to invasive carcinoma (Figure  2). The network of 
characteristics, functions and interactions of the gastric microbiota 
varies according to the stage of Correa’s cascade (Ferreira et al., 2018; 
Zhang et al., 2021; Table 2). The current challenge in studying the 
gastric microbiota is the lack of standardized methods for sample 
collection, processing and analysis. Different sequencing platforms, 
sample types (e.g., biopsy vs. aspirate), and analytical methods (e.g., 

OTU clustering vs. exact sequence variants) can all impact the results 
obtained. Additionally, differences in the regions of the 16S rRNA 
gene sequenced also affect the accuracy of the results. This lack of 
standardization makes it difficult to compare results across different 
studies, which can lead to conflicting conclusions.

4.1. Precancerous state

The precancerous state of chronic atrophic gastritis (CAG) and 
intestinal metaplasia (IM) is a recognized high-risk factor for gastric 
cancer (Watabe et al., 2005; Naylor et al., 2006; Rugge et al., 2010; 
Sugano et al., 2015). In Correa’s cascade reaction phase, H. pylori 
dominance was the main finding for the microbiota, with a decreasing 
trend in alpha diversity and gastric microbiota interactions that 
remained relatively stable after onset of GC (Wang et al., 2020; Yu 
et al., 2020). Furthermore, the relative abundance of H. pylori during 
chronic gastritis correlated negatively with other phyla, such as 
Proteobacteria, Firmicutes and Bacteroidetes.

Microarray G3PhyloChip™ analysis of changes in the gastric 
mucosal microbiota from NAG to IM to GC patients revealed 
significant microbiota segregation between NAG and GC, with 44 
taxa showing changes in abundance (Aviles-Jimenez et  al., 2014). 
Decreases in Porphyromonas, Neisseria, TM7 group, and S. sinensis, 
as well as increases in L. coleohominis and Lachnospiraceae, were 
observed and may have contributed to the development of gastric 
cancer. A study revealed changes in gastrointestinal microbial 
diversity and interactions at various stages of gastric precancerous 
lesions, particularly at the GIN stage (Liu et al., 2021), and network 
analysis showed that the intensity of intergeneric symbiotic 
interactions increased in IM and decreased in GIN with gastritis 
progression. It was also found that the interaction is stronger in IM 
than in SG (Coker et al., 2018). Moreover, a higher degree of centrality 
and strong cooccurrence interactions among the genera Gemella, 
Veillonella, Streptococcus, Actinobacillus, and Haemophilus were 
observed in gastric biopsies of gastric precancerous lesions. These 
results suggest that bacteria tend to interact with each other 
simultaneously to form specific microecological networks prior to 
gastric carcinogenesis.

In a recent study, the changes in the microbiota of GM and GF at 
different disease stages were evaluated in 180 patients with superficial 
gastritis, intestinal chemosis (IM), and GC (He et  al., 2022). The 
Shannon index and observed species were lower in GC patients than 
in SG patients in the GF sample. In contrast, the Shannon index of GC 
was higher than that of SG in the GM samples, with no significant 
differences observed between the different stages. Further 
examination of gastric acid at different disease stages revealed elevated 
pH in GC compared to SG, suggesting that neutralization of the 
gastric microenvironment promotes diversity in the mucosal 
microbiota. Microscopic interactions between GM and GF in GC 
were significant compared to SG, with some genera in GF showing 
significant positive correlations with their counterparts in GM, 
including Helicobacter, Streptococcus, and Haemophilus. These results 
suggest that H. pylori plays a crucial role in development of Correa’s 
cascade and hypogastric acidity, which creates a favorable 
environment for growth of other microbiota, promoting progression 
of gastric cancer. Correa’s cascade responds to different stages of 
gastric microbiota composition, and targeting specific gastric 
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microbiota and manipulating their composition may be  a new 
strategy for GC prevention and treatment.

In addition, the research on the gastric microbiome faces 
challenges due to a lack of standardized methods for sample collection, 
processing, and analysis. Different sequencing platforms, sample types, 
and analysis methods can all affect the comparability of results. 
Additionally, the choice of 16S rRNA gene sequencing region can 
impact result accuracy. To mitigate these differences, several measures 
can be taken. Firstly, standardized sample processing methods should 
be established to ensure consistent procedures are followed during 
sample collection and handling. Secondly, a uniform selection of 
reliable sequencing platforms and analysis methods should 
be  implemented, allowing for similar technical approaches across 
different studies. Simultaneously, it is important to choose the same 
region of the 16S rRNA gene for analysis during the sequencing process 
to ensure result consistency. Moreover, conducting large-scale and 
multicenter studies that encompass diverse geographical regions and 
population samples can reduce the impact of geographic and 
population factors. Encouraging data sharing and promoting 
collaborative research efforts can facilitate result validation and 
reproducibility. Finally, the development of consistent standards and 
guidelines to regulate the methods and reporting in gastric microbiome 
research will enhance the comparability of research findings.

4.2. Gastric cancer

Helicobacter pylori is the strongest known risk factor for intestinal 
and diffuse GC. However, little is known about the sequence of events 

in diffuse gastric cancer (DGC). Only a few studies have reported that 
H. pylori and/or EBV infection play an important role in development 
of sporadic diffuse gastric cancer (Uemura et al., 2001; Kwak et al., 
2014). In one study, patients with current H. pylori infection were 
more likely to develop DGC than those with previous infection (Misra 
et al., 2007). Serological studies have shown that patients with high 
H. pylori IgG titers are at greater risk of developing DGC than 
intestinal gastric adenocarcinoma (Tatemichi et al., 2009; Lee et al., 
2017). Several studies have indicated that as H. pylori decreases during 
the gastric cancer stage, there is a corresponding increase in 
non-H. pylori microbiota that promote cancer (Ferreira et al., 2018; 
Hsieh et al., 2018). This indicates that the effect of H. pylori should 
be fully considered when studying these GC-associated microbiota. 
The greatest benefit was obtained by eradicating H. pylori in patients 
before development of gastric mucosal atrophy and IM (Ford et al., 
2014; Chen et  al., 2018). In contrast, no significant benefit was 
obtained by eradicating H. pylori in patients with malignant 
progression of gastric cancer after IM (Wong et al., 2004; Chen et al., 
2016; Malfertheiner et al., 2017; Mera et al., 2018). Hence, cancer may 
occur even after H. pylori eradication therapy (de Vries et al., 2009).

Loss of GC tissue-specific glands and reduced acid secretion lead 
to depletion of H. pylori and significant enrichment of intestinal 
commensal bacteria, including Lactobacillus, Enterococci, 
Carnobacterium, Parvimonas, Citrobacter, Clostridium, 
Achromobacter, and Rhodococcus (Amieva and Peek, 2016; Hsieh 
et al., 2018; Gantuya et al., 2020). Interestingly, certain strains of lactic 
acid bacteria used as probiotics have a complicated interplay with 
H. pylori, inhibiting its adherence to epithelial cells, bacteriocin or 
organic acid production, and releasing associated inflammatory 

FIGURE 2

Schematic representation of gastric microbial dysbiosis in Correa’s cascade. Helicobacter pylori infection triggers an inflammatory cascade, altering the 
gastric microbiota and promoting gastric cancer through dysbiosis and inflammation. The figure was drawn by BioRender.
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factors (Kabir et al., 1997; Yang and Sheu, 2012; Sakarya and Gunay, 
2014). Nevertheless, some lactobacilli can contribute to the 

development of gastric cancer. LAB have been shown to stimulate 
production of exogenous lactic acid, reactive oxygen species (ROS), 

TABLE 2 Dysbiosis of the gastric microbiota in gastric carcinogenesis.

Year Method Country Sample size Key results Reference

2009 16S rRNA gene seq Sweden Controls (n = 5); GC 

(n = 10).

Streptococcus, Lactobacillus, Veillonella, and 

Prevotella dominated GC microbiota, while the 

abundance of H. pylori was relatively low.

Dicksved et al. (2009)

2014 16S rRNA gene 

microarray

Mexico NAG (n = 5); IM (n = 5); 

GC (n = 5).

Bacterial diversity steadily reduced from NAG to 

IM to GC. A significant difference in microbiota 

was observed between NAG and GC.

Aviles-Jimenez et al. (2014)

2014 16S rRNA gene seq South Korea CG (n = 10); IM 

(n = 10); GC (n = 10).

The relative abundance of Helicobacteraceae in GC 

was significantly lower compared to CG and IM, 

while the relative abundance of Streptococcaceae 

was obviously increased.

Eun et al. (2014)

2016 16S rRNA gene China CG (n = 212); GC 

(n = 103).

Five genera of bacteria with potential cancer-

promoting activities were enriched in gastric 

cancer, including Lactobacillus, Escherichia, 

Shigella, Nitrospirae, Burkholderia fungorum, and 

Lachnospiraceae.

Wang et al. (2016)

2017 16S rRNA gene profiling Portugal CG (n = 81); GC 

(n = 54).

Streptococcus, Prevotella, and Neisseria enrichment 

in chronic gastritis was demonstrated. 

Achromobacter, Citrobacter, Phyllobacterium, 

Clostridium, Rhodococcus, and Lactobacillus 

showed a significant increase in abundance in GC.

Ferreira et al. (2018)

2018 16S rRNA gene China SG (n = 21); AG 

(n = 23); IM (n = 17); 

GC (n = 20).

Peptostreptococcus stomatis, Streptococcus 

anginosus, Parvimonas micra, Slackia exigua, and 

Dialister pneumosintes were significantly increased 

in GC. Vogesella, Candidatus Portiera, 

Comamonadaceae, and Acinetobacter were 

depleted.

Coker et al. (2018)

2019 16S rRNA gene China Normal (n = 230); 

peritumoral tissues 

(n = 247); tumoral 

tissues (n = 229).

Helicobacter, Halomonas, and Shewanella, were 

enriched in the peritumoral microhabitat, while 

Streptococcus, Selenomonas, Fusobacterium, 

Propionibacterium, and Corynebacterium were 

enriched in the tumoral microhabitat.

Liu et al. (2019)

2019 16S rRNA gene South Korea Controls (n = 288); GC 

(n = 268).

The relative abundance of Helicobacter, 

Propionibacterium, and Prevotella in the GC group 

was higher than that in the control group, while 

the relative abundance of Lactococcus in the 

control group was higher than that in the GC 

group.

Gunathilake et al. (2019)

2019 16S rRNA gene China Paired tumor and 

nontumor samples from 

GCA patients (n = 36).

GCA tumor tissues had increased relative 

abundances of Firmicutes, Bacteroidetes, 

Fusobacteria, and Actinobacteria but decreased 

relative abundances of Proteobacteria compared to 

nontumor tissues.

Shao et al. (2019)

2020 16S rRNA gene seq China Normal (n = 20); NAG 

(n = 20); AG (n = 40); 

IM (n = 40); GC 

(n = 48).

Parvimonas, Streptococcus, Peptostreptococcus, 

Fusobacterium, Glutamicibacter, and Escherichia 

were enriched in the GC group.

Gantuya et al. (2020)

2020 16S rRNA gene seq Italy Paired tumor and 

nontumor samples from 

SRCC (n = 10) and ADC 

(n = 10) patients.

SRCCs were significantly enriched in the phyla 

Fusobacteria, Bacteroidetes, and Patescibacteria, 

whereas in the ADC type, Proteobacteria and 

Acidobacteria phyla were found.

Ravegnini et al. (2020)

(Continued)
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and N-nitroso compounds, which cause DNA damage and accelerate 
carcinogenesis, and to increase expression of proto-oncogenes, induce 
angiogenesis, inhibit the apoptotic process, and enhance the epithelial-
mesenchymal transition (EMT), immune tolerance, and colonization 
by other carcinogenic pathogens (Vinasco et al., 2019; Whiteside et al., 
2021). Regardless, there is still a dearth of research that explains the 
specific mechanisms by which these symbiotic microorganisms 
promote gastric carcinogenesis.

Several studies have shown an association between specific 
microorganisms and gastric cancer. Enrichment of the microbial 
flora from oral or intestinal origin has frequently been observed in 
the gastric microbiota of GC patients (Hsieh et al., 2018; Hu et al., 
2018; Castaño-Rodríguez et  al., 2017; Yu et  al., 2017). Oral 
microbiota such as Fusobacterium, Veillonella, Peptostreptococcus, 
Streptococcus, Slackia, Parvimonas, and Haemophilus have been 
identified in patients diagnosed with gastric cancer (Hu et  al., 
2018; Chen et al., 2019; Wang et al., 2020). Different combinations 
of oral microorganisms can be used to differentiate the stages of 
Correa’s cascade (Coker et al., 2018; Zhang et al., 2021). Liu et al. 
(2019) investigated the diversity, composition, and bacterial 
symbiotic correlates and predicted functional profiles of the gastric 
microbiota in three microenvironments, including 230 normal, 
247 perineural, and 229 tumor tissues. They reported that 
P. melaninogenica, S. anginosus, and P. acnes are enriched in tumor 
microhabitats but that P. copri and B. uniformis are significantly 
reduced, with B. fragilis and A. muciniphila showing similar 

patterns of variation between peritumor and tumor tissues. Most 
notably, bacterial abundance was found to be reduced in peritumor 
and tumor microhabitats, and the network associated with 
enrichment of gastric bacteria in tumor microhabitats was 
simplified. Moreover, we  compared differences in the gastric 
microbiota between three microhabitats in patients with intestinal, 
diffuse and mixed gastric cancer. Within the same gastric 
microhabitat, several nondominant bacterial phylotypes differed 
between intestinal and diffuse GC types, though the composition 
of the overall gastric microbiota did not differ significantly. This 
suggests that the gastric microhabitat of GC, rather than its stage, 
type or cellular differentiation, determines the overall structure of 
the gastric microbiota.

Recent clinical studies have also revealed dysregulation of the 
fungal flora between a tumorigenic gastric mucosa group and normal 
gastric mucosa in GC (Zhang et al., 2022), with a lower abundance of 
Pezizomycetes, Sordariales, Chaetomiaceae, and Rozellomycota in the 
GC group than in the normal group in terms of taxonomic 
classification. Solicoccozyma was found to be more abundant and 
differentially enriched. Additionally, a significant increase in Candida 
albicans, which promotes gastric cancer development by decreasing 
the diversity and abundance of microorganisms in the stomach, in GC 
was reported (Zhong et al., 2021). These two studies reveal altered 
GC-associated fungal composition and ecology and demonstrated 
that Candida albicans and Solicoccozyma may be  used as fungal 
biomarkers for GC.

TABLE 2 (Continued)

Year Method Country Sample size Key results Reference

2021 ITS rDNA seq China Paired tumor and 

nontumor samples from 

GC patients (n = 45).

With the significant increase of C. albicans in GC, 

the abundance of Fusicolla acetilerea, Arcopilus 

aureus, and Fusicolla aquaeductuum were 

increased, while Candida glabrata, Aspergillus 

montevidensis, Saitozyma podzolica, and 

Penicillium arenicola were obviously decreased.

Zhong et al. (2021)

2021 16S rRNA gene China CG (n = 25); GC (n = 34) A significant abundance of Gammaproteobacteria 

with the specific order Peudomonodales were found 

only in H. pylori-negative gastric cancer patients, 

while an abundance of the phylum Bacteroidetes 

and its specific order of Bacteroidales were 

observed in H. pylori-positive gastric cancer 

patients in addition to Proteobacteria taxa and its 

specific order Campylobacterales.

Deng et al. (2021)

2022 ITS rDNA seq China Paired tumor and 

nontumor samples from 

GC (n = 61) patients.

Solicoccozyma was significantly enriched in the 

tumor group, while the abundance of 

Pezizomycetes, Sordariales, Chaetomiaceae, and 

Rozellomycota was lower than in the normal 

group.

Zhang et al. (2022)

2022 16S rRNA gene 

sequencing

China Paired GM and GF 

samples from SG 

(n = 61), IM (n = 55), 

and GC (n = 64) 

patients.

The abundances of some NOC-producing genera, 

such as Veillonella, Haemophilus, and 

Peptostreptococcus, in GM approached that of GF, 

with no significant difference in patients with GC, 

while their abundances were strikingly higher in 

GF than GM in patients with SG.

He et al. (2022)

AG, atrophic gastritis; ADC, adenocarcinoma; CG, chronic gastritis; GC, gastric cancer; GCA, gastric cardia adenocarcinoma; GM, gastric mucosa; GF, gastric fluid; IM, intestinal metaplasia; 
ITS, internal transcribed spacer; NAG, nonatrophic gastritis; SG, superficial gastritis; SRCC, signet-ring cell carcinoma.
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4.3. Mechanisms of gastric microbiota in 
gastric carcinogenesis

Microorganisms in the precancerous state interact with each 
other through complex mechanisms. The microbial community 
within the affected tissue undergoes dynamic changes, with certain 
microorganisms promoting the growth and survival of others. For 
example, pathogenic bacteria can create an environment conducive 
to the growth of other harmful microorganisms by producing 
virulence factors and altering the local pH levels. This alteration in 
the microbial composition and diversity can lead to dysbiosis, 
where the balance between beneficial and harmful microorganisms 
is disrupted. Dysbiosis, in turn, triggers inflammatory responses 
and compromises the integrity of the host tissue. Additionally, the 
interplay between microorganisms can result in the production of 
harmful metabolites, such as genotoxic compounds or reactive 
oxygen species, which further contribute to tissue damage and 
genomic instability. The cumulative effect of these adverse 
mechanisms can drive the progression of the precancerous state 
toward malignancy.

From current preclinical studies, gastric microbiota has been 
shown to induce mechanisms such as DNA damage, inflammation, 
and immune suppression, thereby promoting the development of 
gastric cancer. In some studies, Propionibacterium acnes, associated 
with acne, has been found to induce DNA damage and inflammatory 
reactions to promote the development of GC. Propionibacterium 
acnes and microbial metabolites such as short-chain fatty acids can 
induce the expression of the NKG2D ligand. These bacteria activate 
the NKG2D system, leading to a significant upregulation of the 
pro-inflammatory IL-15, and resulting in autoimmune lymphocytic 
gastritis (LyG) (Montalban-Arques et  al., 2016). Prevotella can 
promote various inflammatory reactions, including GC, by enhancing 
resistance to host-derived reactive oxygen species and producing 
redox proteins (Hofer, 2014; Irfan et al., 2020). Additionally, some 
studies suggest that nitrate-reducing bacteria may contribute to the 
development of gastric cancer by increasing the concentration of 
carcinogenic N-nitroso compounds in the stomach. Several bacteria, 
including Clostridium, Haemophilus, Staphylococcus, Neisseria, 
Lactobacillus, and Nitrospirae, have been implicated in promoting 
gastric cancer through the stimulation of N-nitroso compounds 
(NOC) production (Kaźmierczak-Siedlecka et al., 2022). Moreover, 
the dysbiosis of the microbiota can modulate the components of the 
tumor microenvironment. In the GC microenvironment, relevant 
analyses have indicated that an abundance of Stenotrophomonas and 
Selenomonas are positively correlated with plasmacytoid dendritic 
cells (pDC) and regulatory T cells (Tregs), respectively. On the other 
hand, the abundance of Comamonas and Gaiella is negatively 
correlated with pDC and Tregs, respectively (Ling et al., 2019).

Research on the role of fungal and viral microbiota in tumors is 
relatively limited compared to bacteria (Papon et al., 2021). However, 
studies have identified a significant elevation of Candida albicans in 
GC patients (Zhong et al., 2021). Candida albicans may contribute to 
carcinogenesis through multiple mechanisms, particularly by 
triggering inflammation and inducing Th17 response. The activation 
of NF-κB and Wnt pathways, facilitated by IL-17, can create a 
pro-inflammatory environment that promotes tumor development 
(Ramirez-Garcia et al., 2016; Dai et al., 2019). EBV can inhibit the 
proliferation of CD8+ T cells and reduce the cytotoxicity of NK cells, 

thereby contributing to the development of both acute and chronic 
gastritis and increasing the risk of tumor formation (Polakovicova 
et al., 2018; Nie and Yuan, 2020). Additionally, specific EBV miRNAs 
have been identified that can impact the proliferation of infected cells, 
raising the risk of malignant tumor formation. For instance, one study 
discovered that Epstein–Barr virus miR-BART17-5p directly 
downregulates KLF2, thereby promoting migration and growth of 
gastric cancer cells (Kim et al., 2015).

These findings highlight the potential involvement of alterations 
in the gastric microbiota in regulating multiple mechanisms that drive 
the occurrence of gastric cancer. Nevertheless, further research is 
necessary to fully understand the intricate mechanisms through which 
these microbial changes influence tumor development.

5. Potential clinical value of the gastric 
microbiota for gastric cancer 
diagnosis

Microbiota-based biomarkers for gastric cancer screening, diagnosis, 
and therapy can be developed through identification of specific gastric 
microorganisms that are enriched or depleted in GC patients. Currently, 
studies focusing on gastric microbial models to predict the performance 
of PLGC or GC have largely centered on H. pylori-positive patients. 
However, few studies have reported significantly altered non-H. pylori 
species for use as potential microbial biomarkers for GC (Coker et al., 
2018; Wang et al., 2020; Kadeerhan et al., 2021). Analysis of the microbial 
characteristics associated with gastric cancer have revealed enrichment 
of Proteobacteria, Citrobacter, Lactobacillus, Clostridium, and 
Rhodococcus in gastric cancer (Ferreira et al., 2018).

Ferreira et al. integrated enriched and deficient taxa in GC as the 
Microbial Dysbiosis Index (MDI), a gastric microbiota-based 
diagnostic measure, to differentiate patients with GC from those with 
chronic gastritis. The superior sensitivity and specificity of MDI for 
detecting gastric cancer compared to using a single taxonomic unit 
suggests that changes in the microbial community rather than 
individual taxa contribute to gastric cancer development. In receiver 
operating characteristic (ROC) analysis, MDI performed well in 
identifying gastric cancer, with the highest area under the curve 
(AUC) of 0.91 for the gastric cancer cohort. Another study constructed 
a random forest classifier model between GC and SG to assess the 
diagnostic value of gastric mucosa (GM) and gastric fluid (GF) 
microbial markers for GC (He et al., 2022). The model was validated 
using seven GMs (Lactobacillus, Gemella, Enterococcus, Helicobacter, 
etc.) genera and 13 GF genera (Lactobacillus, Filifactor, Staphylococcus, 
Dialister, etc.) as the best marker set. The probability of disease (POD) 
index was found to be significantly higher for GC than for SG. In ROC 
analysis, the gastric microbial markers had AUCs of 83–94%. In the 
validation cohort (including 60 SG and 60 GC patients), the AUCs of 
the GM markers and GF markers were 84 and 89%, respectively, 
revealing that the gastric microbial-based classifier was able to 
accurately differentiate between GC and SG.

To determine whether specific bacterial signatures may 
be used as a diagnostic tool for gastric cancer, one study analyzed 
gastric epithelium-associated bacterial species in patients with 
gastritis, IM and GC and found a sensitivity of 73% and specificity 
of 100% when using a combination of five species. In contrast, the 
combination of C. colicanis, F. canifelinum, and F. nucleatum 
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showed 100% sensitivity and approximately 70% specificity. These 
data indicate that C. colicanis and F. nucleatum are enriched in 
cancer specimens and might identify gastric cancer with 100% 
sensitivity. This study validated that C. colicanis and F. nucleatum 
represent diagnostic markers for detection of gastric cancer (Hsieh 
et al., 2018).

Although gastric microbes can be used as potential diagnostic 
markers for GC, use of gastric microbe prediction as an alternative to 
traditional screening or diagnostic methods for gastric cancer seems 
remote. Indeed, gastric microbes are influenced by multiple factors, 
and the accuracy of predictive models as potential microbial 
biomarkers for GC requires further evaluation and validation in 
subsequent experimental studies in a broader population to examine 
whether these specific bacteria contribute to progression of GC.

6. Microbiome-based therapeutic 
approaches for gastric cancer

6.1. Probiotics

In the contemporary medical landscape, probiotics and their 
metabolites have become widely employed for treating human 
conditions linked to dysbiosis of the gastrointestinal microbiota. 
Probiotics are defined as live microbial agents that coexist 
symbiotically within the human host, and when ingested in 
sufficient amounts, they can have beneficial effects on the host (Hill 
et al., 2014; Cunningham et al., 2021). Probiotic supplementation 
is an emerging therapy for H. pylori eradication (Francavilla et al., 
2014; Goderska et  al., 2018; Ji and Yang, 2020). Probiotics 
comprising the genera Lactobacillus and Bifidobacterium have 
been shown to reduce adverse effects (e.g., nausea, vomiting, 
diarrhea, abdominal pain) caused by antibiotic therapy and may 
improve eradication efficiency while supporting balance in the 
intestinal microbiota (Javanmard et  al., 2018). Over the past 
decade, immune checkpoint inhibitors such as PD-1/PD-L1, 
CTLA-4, and LAG-3 have radically transformed management of 
advanced cancer. The microbiota is intricately involved in 
regulating the host immune system via diverse signaling pathways, 
thereby influencing the body’s response to cancer immunotherapy 
(Ma et al., 2019). In preclinical studies, specific microorganisms 
have been found to contribute to immunotherapy in conjunction 
with immune checkpoint inhibitors. In animal models, controlling 
tumor growth with Bacteroidales alone is comparable to treatment 
with PD-L1 monoclonal antibody therapy (Weng et  al., 2019). 
Bacteroidales can also boost CTLA-4 blockers to enhance the 
efficacy of cancer immunotherapy (Vétizou et al., 2015). Several 
probiotic strains, including Lactobacillus acidophilus, Lactobacillus 
bulgaricus, and Lactobacillus salivarius, have been shown to 
downregulate IL-8 levels, which correspondingly reduces 
expression of the bacterial tumor protein CagA (Zhou et al., 2008; 
Yang et  al., 2012). Furthermore, probiotics can be  utilized to 
mitigate the side effects of perioperative enteral nutrition in 
patients with gastric cancer. Clinical trials have established that 
enteral nutrition supplemented with probiotics not only decreases 
the incidence of postoperative diarrhea in gastric cancer patients 
but also augments the immune response (Zhao et al., 2017; Xie 
et al., 2018). Probiotics can interact with dendritic cells (DCs), 

activating them and promoting favorable immune responses while 
suppressing Th1, Th2, and Th17-mediated inflammatory responses. 
In enterocytes, secretion of TNF-α inhibitory metabolites and 
blocking NF-κB signaling can reduce production of TLR, leading 
to a further reduction in the inflammatory response (Raheem 
et al., 2021). Research has found that Lactobacillus acidophilus and 
Bifidobacterium longum can exhibit anti-gastric cancer 
proliferation and anti-angiogenesis effects by downregulating the 
expression of COX2 (Nada et al., 2020). In a clinical trial, probiotics 
can be  used as a probiotic supplement in combination with 
antibiotics and proton pump inhibitors to assist in eradicating 
Helicobacter pylori infection. The results show that the eradication 
rate of Helicobacter pylori in the combination therapy group 
(88.5%) is significantly higher than that in the monotherapy group 
(63.3%) (Rafiei et al., 2021).

6.2. Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is transplantation of 
beneficial flora from the feces of healthy individuals into patients 
via enema, oral, gastric tube or capsule to restore or improve the 
patient’s gastrointestinal microecology. FMT has been shown to 
be  effective in treatment of refractory C. difficile infections, 
inflammatory bowel disease and antibiotic-associated diarrhea, as 
well as other intestinal disorders (Ademe, 2020). To date, numerous 
studies have identified that FMT modulates the gut microbiome and 
immune system associated with tumors and may represent a major 
therapy for advanced cancers (Frankel et al., 2017; Chandra and 
McAllister, 2021). FMT has yielded encouraging results in animal 
models and clinical trials. A comprehensive analysis was conducted 
on the gut microbiota of gastrointestinal (GI) cancer patients (19 
colorectal cancer, 23 gastric cancer, 14 esophageal cancer, and 18 
other GI cancer types) undergoing PD-1/PD-L1 therapy (Peng 
et  al., 2020). The cohort included 45 responders and 29 
non-responders. Regardless of their clinical response, the gut 
microbiota in the cohort was primarily composed of the phyla 
Bacteroidetes and Firmicutes. In patients with favorable outcomes, 
there was a higher proportion of Prevotella/Bacteroides, and the 
responder subgroup exhibited a higher abundance of Prevotella. 
Research by Routy et al. (2018) established that an abnormal gut 
microbiota composition is a primary cause of resistance to ICIs. In 
patients with advanced cancer, administration of oral antibiotics 
during immunotherapy inhibited the clinical benefit of ICIs. 
Transplanting fecal microbiota from ICI-responsive cancer patients 
into germ-free or antibiotic-treated mice improved the antitumor 
effects of PD-1 blockade (Routy et al., 2018). Currently, a clinical 
trial (NCT04130763) is underway to investigate the use of FMT to 
enhance the efficacy of PD-1 therapy in gastrointestinal 
cancer patients.

6.3. Gastric microbiota transplantation

Similar to FMT, it is postulated that gastric microbiota 
transplantation (GMT) has potential benefits in treatment of cancer. 
Nevertheless, research on GMT is still in its infancy and presents 
multiple challenges, as described below.
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6.3.1. Microbiota complexity
The gastric environment is characterized by an acidic and 

hypoxic setting, accompanied by robust gastric acid secretion and 
peristaltic motility. The composition and abundance of the gastric 
microbiota are influenced by various factors, including dietary 
patterns, lifestyle habits, and medication usage. These factors may 
impede the survival and colonization of transplanted microbial 
communities, thereby increasing the challenges associated with 
establishing a stable microbial population within the stomach. 
Moreover, unlike the intestinal microbiota, the gastric microbiota 
exhibits lower diversity and abundance, making it challenging to 
precisely regulate and restructure the microbial community. 
Introducing the donor microbiota into the recipient’s gastric 
environment necessitates ensuring the survival of microorganisms 
under adverse conditions such as gastric acid, while adapting to 
the ecological milieu within the stomach. The viability and 
colonization capacity of the gastric microbiota pose 
significant challenges.

6.3.2. High technical difficulty
The transplantation techniques associated with the gastric 

microbial community are comparatively intricate, requiring a high 
level of technical expertise and precise execution. In contrast, 
fecal transplantation can be prepared through simple procedures 
such as centrifugation and filtration, with relatively accessible 
sample sources. However, the acquisition of gastric microbiota 
necessitates invasive procedures such as endoscopic biopsy or 
other specialized collection methods, which are intrusive 
operations involving patient fasting and sedation or anesthesia. 
During the process of preparing gastric samples, stringent quality 
control is imperative to ensure the purity, activity, and stability of 
the microbiota, thereby rendering the attainment of microbiota 
that meets the required standards a challenging endeavor. The 
transplantation modality may encompass the introduction of the 
donor microbiota into the recipient’s stomach through means like 
oral capsules, nasogastric tubes, or gastroscopy. Different 
transplantation methods may influence the survival rate and 
colonization efficacy of microorganisms. Additionally, 
determining the appropriate dosage of microbiota for 
transplantation presents a complex issue that necessitates 
consideration of the gastric capacity for accommodation and the 
survival rate of the microbiota.

6.3.3. Lack of standardized operating procedures
The research on GMT remains in its nascent stages, lacking 

standardized operational procedures and therapeutic protocols. 
Optimal practices concerning the sourcing and quality control of 
transplant material, transplantation dosage, frequency, and routes 
are yet to be definitively established. Currently, there is a dearth 
of standardized methods for preserving microbial samples to 
ensure their viability and efficacy during transplantation. The 
preservation and freezing processes of microorganisms require 
precise control of temperature, oxygen levels, and other 
environmental factors to prevent microbial inactivation or 
damage. Furthermore, the lack of standardization has led to 
variations in transplantation methods among different medical 
institutions and practitioners, compromising the comparability 
and reproducibility of outcomes.

6.3.4. Safety
Due to the transplantation of diverse microorganisms involved 

in GMT, potential safety concerns such as infection, allergic reactions, 
and rejection responses may arise. Additionally, GMT may give rise 
to adverse reactions and side effects. These reactions can include 
allergic responses, gastrointestinal discomfort, and digestive 
disturbances. Further research is needed to evaluate and understand 
the specific occurrence rates and severity of adverse reactions and 
side effects. Currently, limited knowledge exists regarding the long-
term safety of GMT. Long-term follow-up and monitoring studies are 
crucial for assessing the long-term safety of GMT, enabling the 
identification and resolution of any potential long-term safety issues.

6.3.5. Ethical
GMT is still in its preliminary research stage, and ensuring that 

the experimental process aligns with ethical principles and safeguards 
the rights and safety of participants is a crucial challenge. Additionally, 
acquiring transplant material involves obtaining gastric microbiota 
samples from donors. When selecting donors, careful consideration 
must be given to their health status, screening for infectious diseases, 
and ethical considerations. GMT may potentially benefit the health of 
recipients, but it also entails inherent risks and uncertainties. Ethical 
considerations require a balance between the benefits and risks of 
transplantation, ensuring that the process is based on scientific data 
and clinical practice.

6.3.6. Cost
Gastric microbiota transplantation technology is still in the 

research stage, and the cost of treatment is high. More economic 
investment and research are needed to reduce the cost of treatment 
and increase the penetration rate.

6.3.7. Evaluation of treatment outcomes
Currently, there is a lack of standardized evaluation criteria and 

methods to assess the therapeutic efficacy of GMT. Microbiome analysis 
can provide information about the composition of microbial 
communities, but further research is needed to determine how to 
interpret this data and relate it to treatment outcomes. Additionally, 
quantifying improvements in patient symptoms, gastric mucosal 
histopathological changes, and other relevant indicators poses a 
challenge. There are significant variations in the composition and 
functionality of microbiota among individuals. Individual factors, 
including genotype, lifestyle, and dietary habits, contribute to potential 
variations in the therapeutic effects of GMT among different patients. 
Therefore, predicting the long-term effects of GMT and the duration of 
microbial community stability post-transplantation remain challenging.

Recently, only one study on GMT has been reported by a Korean 
researcher. This study entailed transplantation of the gastric 
microbiota from individuals with diverse gastric states into germ-free 
(GF) mice, whereby it was discovered that the gastric microbiota from 
individuals with intestinal chemosis or gastric cancer (GC) selectively 
colonized the mouse stomach and induced precancerous lesions 
(Kwon et al., 2022). Conversely, if healthy human gastric microbiota 
is transplanted into the stomachs of mice with distinct gastric diseases, 
what alterations would be made to the disease status of the mice? This 
is an issue that requires investigation. To understand this issue, we are 
conducting a clinical study (ChiCTR2200066339) on the effect of 
GMT for eradicating H. pylori infection. Probiotics and FMT/GMT 
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represent current areas of focus in the field of microecological therapy, 
with these microbial transplantation techniques projected to serve as 
effective therapies for gastric cancer and other diseases in the future. 
To enhance the success of probiotic or FMT/GMT therapy, it is vital 
for researchers to gain a comprehensive understanding of the systemic 
impact of the microbiota on the immune system, as well as the 
relationship of the microbiota with cancer treatment.

7. Conclusion

Gastric cancer is one of the most common cancers in the world, and 
the mortality rate remains high. The discovery of gastric microbiota 
characteristics in various clinical conditions, from normal stomach to 
precancerous lesions and GC development, may significantly impact 
our understanding of the carcinogenic process of GC. The presence or 
absence of specific microbial communities is closely associated with the 
occurrence and progression of GC. The existence of these 
microorganisms may impact gastric cancer development through 
various mechanisms, including chronic inflammation, immune 
modulation, and metabolic changes. Therefore, by targeting the 
dysbiosis of the gastric microbiota, we may be able to develop novel 
treatment approaches, such as microbiota transplantation, probiotics, 
and antibiotics, to reduce the risk of GC or slow down disease 
progression. Although some progress has been made in studying the 
human gastric microbiota in recent years, the causal relationship 
between the gastric microbiota and gastric cancer has not been fully 
established, and the research in this field is still limited. Future 
investigations should focus on delving deeper into the mechanisms 
underlying the dysbiosis of the gastric microecology and its role in 
gastric cancer development. Thus, there is an urgent need for large-
scale, multicenter, prospective studies to elucidate the dynamic changes 
of the microbiota within the Correa’s cascade and identify specific 
microorganisms that could serve as potential biomarkers for GC and 
alternative indicators for monitoring disease progression. This provides 
new avenues for early screening and diagnosis of GC, while also offering 
guidance for determining optimal treatment strategies and timing.

In conclusion, the gastric microbiota holds significant potential in 
the diagnosis and treatment of GC. Through in-depth research on the 
changes in the gastric microbiota and its association with GC, we can 
provide new insights and approaches for early screening, diagnosis, 
and treatment of GC. This will contribute to improving patient 

outcomes and providing personalized and precise management 
strategies for GC.
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