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Accurate load forecasting is crucial to improve the stability and cost-efficiency of
smart grid operations. However, how to integrate multiple significant factors for
enhancing load forecasting performance is insufficiently investigated in previous
studies. To fill the gap, this study proposes a novel hybrid deep learning model
for short-term load forecasting. First, the long short-term memory network is
utilized to capture patterns from historical load data. Second, a time pattern
attention (TPA) mechanism is incorporated to improve feature extraction and
learning capabilities. By discerning valuable features and eliminating irrelevant
ones, the TPAmechanism enhances the learning process. Third, fully-connected
layers are employed to integrate external factors such as climatic conditions,
economic indicators, and temporal aspects. This comprehensive approach
facilitates a deeper understanding of the impact of these factors on load
profiles, leading to the development of a highly accurate load forecasting model.
Rigorous experimental evaluations demonstrate the superior performance of the
proposed approach in comparison to existing state-of-the-art load forecasting
methodologies.

KEYWORDS

load forecasting, deep learning, time pattern attention, smart grid, data driven

1 Introduction

With the increasing complexity of electrical infrastructure, the power industry has
embraced the emergence of smart grids (Wang et al., 2018), which integrate conventional
power system equipment with advanced intelligent digital communication devices, aiming
to enhance system’s performance, safety, and reliability (Yu et al., 2014). The integration
of intelligent electronic devices into smart grids enables inter-device communication
and real-time data sharing with control centers, resulting in the accumulation of
significant amounts of data. Although initially unproductive, this data can be utilized
for system assessments, ultimately improving the operational performance of smart
grids.

As the energy internet emerges (Wang et al., 2019a) and energy demands escalate, there
is a growing emphasis on energy conservation, leading to an amplified need for load
forecasting, particularly in the commercial and industrial sectors. Load forecasting offers
several advantages, including themitigation of supply-demand imbalances and optimization
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of energy utilization benefits. With the increasing availability of big
data, artificial intelligence techniques play a crucial role in load
forecasting (Ruan et al., 2023b).

Short-term load forecasting, which commonly predicts loads
within a range from hours to weeks, enables utilities and power
plants to adjust generation in response tomarket demands. Research
has shown that a mere 1% reduction in load forecasting errors
can lead to an annual operating cost reduction of £10 million
for a British power company (Gilanifar et al., 2019). Additionally,
accurate load forecasts facilitate the implementation of dynamic
pricing structures in the electricity market (Ruan et al., 2023b).
However, due to the intricacies and uncertainties associated with
power demands (Ruan et al., 2022a), load forecasting remains some
significant challenges. To address it, recent advancements in data
analysis techniques and data collection systems, such as smart
meters (Li et al., 2021), have the potential to greatly enhance
load forecasting accuracy. Specifically, machine learning-based load
forecasting methods, including autoregressive integrated moving
average (ARIMA), multiple linear regression (Yu et al., 2014),
Gaussian process regression (Akorede et al., 2010), support vector
regression (SVR) (Hossain et al., 2019), artificial neural networks
(ANN) (Virote and Neves-Silva, 2012; Candanedo et al., 2017), and
deep neural networks (DNN) (Menezes et al., 2014), have gained
substantial attention.

Deep learning techniques have proven to be effective in
developing highly accurate load forecasting models. For example,
the literature (Wang et al., 2019a) proposed a deep belief network
(DBN)-basedmodel for short-term load forecasting, which is able to
learn probability distribution so as to determine future load profiles.
Other studies recommended the use of self-recurrent wavelet
neural networks (SRWNN) for load forecasting in microgrids
by introducing a Levenberg-Marquardt learning algorithm to
improve the forecast accuracy for highly volatile and non-smooth
time series of microgrid electricity load (Chitsaz et al., 2015), the
employment of multi-layer perceptron (MLP) for non-residential
building electric load forecasting with analyses of most relevant
features (Massana et al., 2015), and the application of recurrent
neural networks (RNN) for short-term load forecasting that can
effectively handle time-series data (Wen et al., 2022). These models
utilize historical data in digital formats to predict future electric load
variations.

However, the extensive integration of renewable energy
sources (Yang et al., 2021), the widespread adoption of electric
vehicles (Hartvigsson et al., 2021; Yang et al., 2022), the large-
scale deployment of energy storage systems (Zhang et al., 2021),
and emerging cyber threats (Ruan et al., 2023a) have introduced
greater uncertainty and disturbances in short-term load forecasting
(Wang et al., 2019b). To address the limitations of existing models
in capturing these dynamic changes, this paper proposes a deep
learning-based approach that incorporates a time pattern attention
(TPA) mechanism to construct a highly accurate load forecasting
model. The contributions of this article can be summarized as
follows.

• To our knowledge, it is the first study to propose an adaptive
short-term load forecasting framework that can accommodate
various critical features, thereby facilitating accurate forecasting
results.

• A specific deep learning-based hybrid model is proposed. It
incorporates the long short-termmemory (LSTM) network and
the TPAmechanism as well as various deep learning techniques
that can effectively utilize historical load data and external
factors (e.g., climate, economy, and date) to discern dynamic
load trends for load forecasting.

• Comprehensive experiments are conducted by using Panama
data to analyze of the proposed model and compare it with
alternative state-of-the-art load forecasting models. The results
demonstrate the superior performance of the proposedmethod.

The remainder of the paper is organized as follows. Section 2
introduces preliminaries of load forecasting, including its
importance, features, and challenges. Section 3 elaborates on deep
learning-based TPA mechanism and the proposed short-term
load forecasting model as well as the overall framework. Section 4
demonstrates and discusses the case studies on the proposed load
forecasting model. At last, section 5 summarizes the article.

2 Preliminaries of load forecasting

2.1 Importance of load forecasting

Load forecasting has consistently been a vital concern for
the power industry (Li et al., 2023b), as forecasting data enables
power generation and load management departments to bolster
their performance and reliability. In addition to economic and
environmental considerations, load forecasting serves the following
essential functions.

1) Comprehending load profiles allows power companies to
devise rational electricity demand plans for customers, make
economically prudent decisions, and mitigate risks for the
organization.

2) Load forecasting aids power generation enterprises in
anticipating potential resource requirements, facilitating the
storage of necessary resources, such as fuel, to guarantee an
uninterrupted power supply.

3) It assists in projecting the evolution of electricity generation
within society and determining the need for future power
plants, thus guiding power companies in preparations for
constructing additional generating units to accommodate
escalating electricity demands.

4) It contributes to the analysis and planning of power system
maintenance;

5) By reducing energy production shortages and surpluses, load
forecasting helps power companies minimize economic and
energy losses.

2.2 Load forecasting features

The outcomes of load forecasting techniques are influenced
by various factors. To obtain accurate predictions, it is crucial
to consider the relevant factors of the dataset and use them
appropriately. Numerous variables may affect the load forecasting
performance. Here are some factors related to load forecasting.
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2.2.1 Time factors
Due to the deductive nature of electric load over time

(Ruan et al., 2022b), the most critical aspect in forecasting is time.
As the available data generated by various devices (such as smart
meters, sensors, data servers, and other equipment) is time-series
data, the importance of time in forecasting is paramount. Time
has different attributes that can be used for prediction, such as
“day of the week,” “week of the month,” “month of the season,”
and so on (Ruzic et al., 2003). The selection of time horizon in
forecasting is also a key factor (Lusis et al., 2017). Employing a more
extended time range allows for the utilization of additional historical
data.

2.2.2 Climate factors
Climate stands as a paramount factor in load forecasting, as it

substantially influences both the agricultural sector and household
consumption behaviours. Specifically, the usage patterns of various
electrical devices, contingent upon weather-related warmth or
coldness, can give rise to distinct load profiles. Consequently,
load forecasting models may incorporate weather data sourced
from the nearest accessible meteorological station, encompassing
variables such as temperature, precipitation, humidity, dew point
temperature, solar radiation intensity, wind speed, wind chill
index (WCI), temperature-humidity index (THI), and other
meteorological parameters.

2.2.3 Other factors
Economic determinants, including market stability, electricity

price fluctuations, load control, and industrial growth rates,
profoundly influence system average load and peak demand
(Li et al., 2023a). Moreover, the physical attributes of structural,
housing, or surrounding areas exhibit distinct load characteristics.
Load forecasting for edifices and other structures can generally
be executed utilizing building attribute parameters, such as the
number of rooms and floors, window-to-wall ratio, orientation,
window-wall thermal efficiency, fresh air volume, and occupant
density.

2.3 Challenges in load forecasting

For a long time, researchers have been dedicated to improving
load forecasting techniques. However, when it comes to the specific
modeling of load forecasting, there are still some obstacles.

First, weather is a key factor when performing load forecasting.
Since the weather cannot be accurately estimated, it is impossible
to accurately determine its impact on the load. Sudden weather
changes can have significant effects on the expected load
characteristics.

Second, the variety ofmeters utilized by consumers considerably
influences load forecasting performance. Consumers employ
an array of meters, encompassing smart and conventional
meters, each with distinct measurement frequencies. As meter
measurement frequencies and customer consumption behavior
diverge, employing combined data for load forecasting may result
in significant prediction errors.

Third, to further refine load forecasting, a series of other
complex factors can be considered, but this adds to the difficulty

of accommodating multiple variables, rendering the selection of an
appropriate load forecasting model extremely challenging.

Fourth, since power systems may experience faults, power
outages, and other intermittent events during dynamic operation,
load forecasting models cannot account for such sudden
occurrences, which also affect the load forecasting performance.

Fifth, consumer electricity demand is influenced by changes
in economic market conditions or tariff changes. Although
these economic factors significantly impact load forecasting
outcomes, they are often overlooked by existing load forecasting
methodologies.

3 Proposed short-term load
forecasting model based on the time
pattern attention mechanism

3.1 Long short-term memory network

In constructing a load forecasting model, the time dimension
emerges as a critical factor influencing forecasting performance.
Dynamic patterns can be discerned from historical load time series
data. Consequently, employing neural networks adept at handling
time series data can effectively extract inherent feature information
and augment model accuracy. Long short-term memory (LSTM)
networks, a unique variant of recurrent neural networks (RNNs),
exhibit a natural advantage in processing sequential data (Hochreiter
and Schmidhuber, 1997), as shown in Figure 1. The LSTM network
manipulates the cell state through internal input gates, output
gates, and forget gates, ultimately yielding their hidden state, as
demonstrated in the ensuing equations:

it = sigmoid(Wxixt +Whiht−1) (1)

ot = sigmoid(Wxoxt +Whoht−1) (2)

f t = sigmoid(Wxf xt +Whf ht−1) (3)

ct = f t ⊙ ct−1 + it ⊙ tanh(Wxcxt +Whcht−1) (4)

ht = ot ⊙ tanh(ct) (5)

where xt ∈ ℝn represents the input of the LSTM layer at time
t; it, ot, ft, ct, and ht ∈ Rm denote the input gate state, output
gate state, forget gate state, cell state, and hidden layer state
at time t, respectively; Wxi , Wxo , Wxf , and Wxc ∈ R

m×n are all
learnable parameter matrices. The symbol ⊙ denotes element-wise
multiplication.

3.2 Time pattern attention mechanism

While the LSTM network has exhibited remarkable proficiency
inmanaging time series data, the advent of the attentionmechanism
facilitates the extraction of pertinent information among features
(Ruan et al., 2023c), thereby augmenting the model’s learning
capacity and accuracy. Consequently, this article incorporates a TPA
mechanism, grounded in the LSTM network, to bolster the load
forecasting model’s ability to learn from historical load time series
data.
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FIGURE 1
Diagram of the long short-term memory network.

First, a one-dimensional convolutional neural network (1-D
CNN) layer is used to extract the feature learning capability of the
LSTM network’s hidden state. Let {h1,…,ht} ∈ ℝm×t represent the
hidden states of the LSTM layer, where dimensionm represents the
number of features and dimension t represents the time steps. The
hidden states in the past t− 1 steps, i.e.,H = {h1,…,ht−1 ∈ ℝm×(t−1)},
are processed by the one-dimensional convolution operation, as
follows:

HC
i,j =

T

∑
l=1

H i,(t−T−1+l) ×Cj,l (6)

where the convolution operation HC ∈ Rn×k is configured with k
convolution kernels Cj ∈ ℝ

1×T. The convolution kernels are applied
along the row vectors of the hidden state matrix H to compute the
convolution, extracting the temporal pattern matrix HC within the
visual field of the convolution kernels.HC

i,j represents the result value
of processing the i th row vector of H with the j th convolution
kernel.

Subsequently, a scoring mechanism is employed to evaluate the
relevance between the hidden state ht and the row vectors of the
convolutional temporal pattern matrix HC, as follows,

s(Hc
i ,ht) =H

c
iWaht (7)

where HC
i ∈ R

1×k represents the i th row vector of HC; Wa ∈ Rk×m is
the attention mapping matrix in the scoring mechanism.

By applying the Sigmoid activation function to the scoring
mechanism, the attention coefficient αi is obtained, which represents
the relevance between ht and HC

i , making it easier to compare
multivariate associations:

αi = sigmoid(s(Hc
i ,ht)) (8)

Based on the obtained attention coefficients, performing
attention-weighted summation and addition operations yields the
output under the TPA mechanism:

h′t =Whht +Wv(
n

∑
i=1

αiH
C
i )

T

(9)

where both Wh ∈ ℝm×m and Wv ∈ Rm×k are learnable parameter
matrices for the TPA layer, and h′t ∈ ℝ

m represents the hidden state
after being processed by the LSTM layer and the TPA layer.

3.3 Time pattern attention
mechanism-based short-term load
forecasting

An overall model for the TPA-LSTM-based short-term load
forecasting considering multi-regional factors is described in
Figure 2, encompassing three modules. Module 1 employs TPA-
LSTM to learn from historical load data, initially establishing a load
baseline. Module 2 assimilates various factors from distinct regions,
such as climate and economy, utilizing fully connected layers
(FCLs) to learn diverse climate conditions, including temperature,
humidity, wind speed, precipitation, and economic factors like
market stability, electricity price adjustments, load control, and
industrial growth. Module 3 constitutes the date information
learning module, which examines the influence of varying seasons
and typical days on electric load and integrates the output
of Module 2 through a concatenation operation to learn the
impact of date information on the electric load across various
regions. Ultimately, the three modules enter the fusion layer and
yield the final load profile in the form of a fully connected
layer.

The determination of hyperparameters can be accomplished
through a combined implementation of random search and k-
fold cross-validation methodologies. Initially, a predefined search
space is established to encompass the range of potential values
for each hyperparameter. From this search space, a series of
random samples is generated to explore and discover the possibly
optimal combination of hyperparameters. Subsequently, in order
to enhance the robustness of the load forecasting model, the
entire dataset is divided into k subsets. During each iteration of
training, the model is trained k times using different subsets as
the training set and one subset as the validation set. This process
ensures that each subset serves as the validation set exactly once
throughout the iterations. Following the completion of k iterations,
the model’s performance metrics are averaged over the training
process. Finally, the set of hyperparameters that yields the best
performance is selected for implementation in the load forecasting
model.

The employment of the proposed load forecasting model
is illustrated in Figure 3. The process begins with the careful
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FIGURE 2
Framework of the short-term load forecasting model based on TPA-LSTM.

FIGURE 3
Illustration of employment of the proposed load forecasting model.

preparation of the dataset, followed by the construction of the
load forecasting model as demonstrated in Figure 2. Subsequently,
the hyperparameters of the load forecasting model are selected
by employing a combination of random search and k-fold cross-
validation techniques. The finalized hyperparameters are then
implemented in the load forecasting model, which undergoes
training for practical application.

4 Results and discussions

4.1 Set up

To evaluate the performance of the proposed load forecasting
model, a historical load dataset encompassing all regions in Panama
from 2015 to 2020 is employed for simulation. The data has a time
granularity of 1 h and includes total load (MWh), temperature (°C),
relative humidity (%), liquid precipitation (L/m2), wind speed (m/s),
school day indicator (0/1), holiday indicator (0/1), and holiday index
(integer) for three cities in Panama. The dataset is divided into
training, validation, and test sets with a non-overlapping partition
ratio of 8:1:1. The whole dataset starts from 3 January 2015, and
ends by 27 June 2020. Accordingly, the sample sizes of the training,
validation, and test sets are 1596, 199, 200, respectively.

In addition, three prevalent deep learning models serve as
comparative models, as shown in Table 1. The MLP model learns
climate information, economic factors, and date information to
predict the load profile for the next 24 h. Based on the learning of
external factors such as climate information and date information,
the LSTM and GRU models learn from the historical load profile
for the past week to predict the load profile for the next 24 h. Their
model structure is similar to that shown in Figure 2, with the only
difference being that they use LSTM and GRU instead of TPA-
LSTM to process time-series data. The TPA-LSTM model predicts
the load profile for the next 24 h by learning the impact of external
factors on future loads while simultaneously extracting the features
of historical load curves based on the temporal pattern attention
mechanism.

4.2 Numerical results and discussions

During the model training process, standard deviation
normalization transformation is applied to all data features to
mitigate the influence of feature units on prediction outcomes. The
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TABLE 1 Description of model scenarios.

Model Brief description

MLP The model inputs include climate information and date information, without considerations of previous load information, while the model output is a 24-h
load profile. It removes Module 1 in Figure 2

LSTM The model inputs include climate information, date information, and the load information from the previous week. The model output is a 24-h load profile.
Module 1 in Figure 2 is replaced with the LSTM network to process the historical load information

GRU The model inputs include climate information, date information, and the load information from the previous week. The model output is a 24-h load profile.
Module 1 in Figure 2 is replaced with the GRU network to process the historical load information

TPA-LSTM The proposed short-term load forecasting model based on the temporal pattern attention mechanism, with its network structure shown in Figure 2

FIGURE 4
Comparison of model training processes.

mathematical expression for this transformation is as follows,

̃xki =
xki − xi
σ(xi)

(10)

where xki and ̃xki represent the original and transformed values of
the k th sample in the i th feature of data, respectively; xi and σ(xi)
represent themean and standard deviation of the i th feature of data,
respectively.

After all data is transformed, the models can be trained, with
the mean squared error (MSE) as the training loss function, as
follows,

Loss = 1
N

N

∑
i=1
(yi − ŷi)

2 (11)

whereN is the total number of samples for training; yi and ŷi are true
value and prediction of the i th sample.
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FIGURE 5
Comparison of model forecasting results.

The training process of the four models is shown in Figure 4. It
is clear that all models converge at the end of the training.

For visualization, the last week of data in the test set is selected
to compare the predictive performance over the four models. These

predicted results are denormalized to the normal scale, as shown
in Figure 5. It is evident that the MLP model, which only focuses
on climate information, economic factors, and date information,
cannot accurately predict the load profile. The LSTM and GRU, two

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1227979
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liao et al. 10.3389/fenrg.2023.1227979

TABLE 2 Statistics of model performance.

Model MAPE (%) MAE (MW) RMSE (MW)

MLP 10.54 124.24 156.64

LSTM 8.56 96.41 148.85

GRU 8.10 91.30 144.18

TPA-LSTM 4.41 51.43 73.73

The bold values indicates the best performance.

special types of RNNs, can fit the load profile to a certain extent
based on the extraction of external factors, but still have significant
errors. However, the TPA-LSTM model can not only capture the
changes in the load itself but also pay attention to the impact of
external factors on the load. The attention mechanism can focus on
high-value features, thereby accurately predicting the electric load.

To comprehensively evaluate the performance of the four
models, themean absolute percentage error (MAPE),mean absolute
error (MAE), and root mean squared error (RMSE) are used as
indicators to statistically analyze the predictions of the four models
on the test set, as follows,

MAPE = 1
N

N

∑
i=1
|
yi − ŷi
yi
| (12)

MAE = 1
N

N

∑
i=1
|yi − ŷi| (13)

RMSE = √ 1
N

N

∑
i=1
(yi − ŷi)

2 (14)

The statistical results are shown in Table 2. It can be seen that
the proposed TPA-LSTM model demonstrates superior predictive
performance in all indicators. The reason is that this model not
only takes into account the external factors for load variations,
but also considers the influence from the historical load profile.
More importantly, it employs the TPA mechanism that can identify
valuable features and eliminate irrelevant ones to improve themodel
performance.

In summary, the model proposed in this article processes
historical load data based on the TPA mechanism to establish a
baseline for load forecasting. It also uses fully-connected layers
to extract the impact of external factors (such as regional climate
information, economic factors, and date information on the load),
thereby accurately predicting the load curve. According to the
MAPE statistics, the model has an error of only 4.41%, making it
suitable for use in actual load forecasting models.

5 Conclusion

Accurate load forecasting is crucial for ensuring the stable
operation of smart grids. This study introduces a short-term load
forecasting approach utilizing the TPA mechanism to fulfill the
goal. First, the LSTM network is applied to process historical load
time-series data, while the TPA mechanism is incorporated to
extract temporal feature correlations, thereby enhancing themodel’s
learning capability. Second, FCLs are employed to analyze external
factors such as climate, economy, and dates, investigating their

influence on future load patterns and establishing a high-precision
forecasting model. Last, the proposed method is simulated and
compared through a realistic dataset from Panama. The simulation
results demonstrate that the proposed load forecasting approach
achieves the lowest errors in terms of MAPE, MAE, and RMSE
indicators, displaying the closest alignment with the actual load
values. Thus, this method holds significant potential for practical
load forecasting applications.

It is worth noting that the proposed load forecastingmethod still
has two unresolved challenges. As a result, future work will focus
on the integration of various sampling frequency meters into load
forecasting methods, as well as the development of highly robust
load forecasting techniques that are able to handle unconventional
emergencies.
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