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Introduction: Soil type plays a major role in nutrient dynamics and soil water

which impacts crop growth and yield. The influence of soil characteristics on

crop growth is usually evaluated through field experimentation (in the short term)

and through crop-soil modelling (in the long-term). However, there has been

limited research which has looked at the effect of model structural uncertainty of

model outputs in different soil types.

Methods: To analyze the impact of soil inputs on model structural uncertainty,

we developed eight model structures (a combination of two crop models, two

soil water models and two irrigation models) within the Agricultural Production

Systems sIMulator (APSIM) across three soil types (Ferralsols, Alisols and

Chernozems). By decomposing the mean proportion of variance and

simulated values of the model outputs (yield, irrigation, drainage, nitrogen

leaching and partial gross margin) we identified the influence of soil type on

the magnitude of model structural uncertainty.

Results: For all soil types, crop model was the most significant source of

structural uncertainty, contributing >60% to variability for most modelled

variables, except irrigation demand which was dominated by the choice of

irrigation model applied. Relative to first order interactions, there were minimal

(<12%) contributions to uncertainty from the second order interactions (i.e.,

inter-model components). We found that a higher mean proportion of variance

does not necessarily imply a high magnitude of uncertainty in actual values.

Despite the significant impact of the choice of crop model on yield and PGM

variance (contributing over 90%), the small standard deviations in simulated yield

(ranging from 0.2 to 1 t ha-1) and PGM (ranging from 50.6 to 374.4 USD ha-1)

compared to the mean values (yield: 14.6 t ha-1, PGM: 4901 USD ha-1) indicate

relatively low actual uncertainty in the values. Similarly, the choice of irrigation

model had a contribution of over 45% to variance, but the relatively small

standard deviations ranging from 11 to 33.3 mm compared to the overall mean

irrigation of 500 mm suggest low actual uncertainty in the values. In contrast, for

the environmental variables- drainage and nitrogen leaching, the choice of crop

model had contributions of more than 60% and 70% respectively, yet the
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relatively large standard deviations ranging from 7.1 to 30.6 mm and 0.6 to 7.7 kg

ha-1 respectively, compared to the overall mean values of drainage (44.4 mm)

and nitrogen leaching (3.2 kg ha-1), indicate significant actual uncertainty.

Discussion: We identified the need to include not only fractional variance of

model uncertainty, but alsomagnitude of the contribution inmeasured units (e.g.

t ha-1, mm, kg ha-1, USD ha-1) for crop model uncertainty assessments to provide

more useful agronomic or policy decision-making information. The findings of

this study highlight the sensitivity of agricultural models to the impacts of

moisture availability, suggesting that it is important to give more attention to

structural uncertainty when modelling dry/wet conditions depending on the

output analyzed.
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1 Introduction

Crop models are useful tools for simulating and predicting

development and growth of plants to answer different agronomic

questions (Zhao et al., 2019). They are generally classified as

empirical or mechanistic. Empirical models use statistical/

mathematical equation to describe the correlation between

variables (e.g. yield and temperature), whereas mechanistic

models can describe the relationship among variables involved

in processes related to crop development and growth (Reynolds

and Acock, 1985; Whisler et al., 1986; Hammer et al., 2002; Rauff

and Bello, 2015; Chapagain et al., 2022). However, neither model

can be classified as purely empirical or mechanistic as there is lack

of consistency in distinguishing between empirical and

mechanistic models (Hammer et al., 2002). The term “process-

based” is more appropriate and relevant, as there has been a shift

towards using this term instead of mechanistic models e.g

(Confalonieri et al., 2016). Henceforth, wherever the authors

use the term crop models, we intend to refer to process-

based models.

Process-based crop models are computer-based tools that are

used to simulate physiological, biophysical and biogeochemical

processes in different time intervals to interpret the plant-soil-

climate-management relationships (Donatelli and Confalonieri,

2011; Bassu et al., 2014; Kasampalis et al., 2018; Wang et al.,

2019; Wu A. et al., 2019; Farina et al., 2021). They have

undergone considerable development over the past several

decades (Guoqing et al., 2021) and are extensively applied in

agronomic research (Seidel et al., 2018). Their diverse application

includes crop production (Chimonyo et al., 2016), climate change

(Dubey and Sharma, 2018; Boonwichai et al., 2019; Cabezas et al.,

2020; Arunrat et al., 2022; Yasin et al., 2022), management practices

(Jiang et al., 2019; Rugira et al., 2021), environmental affects and

effects (Cichota et al., 2013), resource use efficiency (Mubeen et al.,

2020) and breeding (Ramirez-Villegas et al., 2020) analyses.

Although their used has been widely recognized, they are
02
subjected to different sources of uncertainties (Chapagain et al.,

2022), which have been widely recognized (Porwollik et al., 2017)

and generally not explicitly quantified.

Among others (e.g., observation uncertainty, user-induced

uncertainty), input uncertainty, parameter uncertainty and

structural uncertainty are three main sources of crop model

uncertainty (Wallach et al., 2016; Wallach and Thorburn, 2017;

Tao et al., 2018; Chapagain et al., 2022). Some of the inputs required

for crop models can be hard to measure, unavailable or available

only for short duration of time which may lead to additional

uncertainties in their estimations because of the need for a

statistical approach (Chapagain et al., 2022). Input uncertainty

may be due to uncertainties that originate from climate models

(Liu et al., 2013) and their downscaling techniques (Cammarano

et al., 2017), soil (Wu R. et al., 2019) and crop management

(Teixeira et al., 2017), whereas inadequate understanding of

biophysical processes, along with lack of quality data from

experiments primarily attributes to uncertainties in model

structure and parameter tuning (Tao et al., 2018). Furthermore,

when developing their experimental design and their research focus,

modellers choices contribute to these uncertainties, such as: which

processes to represent; the level of complexity; or the details

parameterized in the modelling process (Tao et al., 2018). Among

these three sources of uncertainty, input uncertainty has been

widely investigated, followed by parameter uncertainty, with

structural uncertainty the least studied and quantified (Chapagain

et al., 2022).

There has been increasing concern about uncertainty resulting

from model structure over the past decade (Asseng et al., 2013;

Asseng et al., 2015; Martre et al., 2015; Vanuytrecht and Thorburn,

2017; Tao et al., 2018). Through the international collaborative

initiatives such the Agricultural Model Intercomparison and

Improvement Project (AgMIP) (Rosenzweig et al., 2013), the

Joint Programming Initiative on Agriculture, Food Security and

Climate Change (FACCE-JPI) (Gøtke et al., 2015) and the Inter-

Sectoral Impact Model Intercomparison Project (ISI–MIP)
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(Warszawski et al., 2014), efforts are being made to quantify and

reduce model structural uncertainty (Seidel et al., 2018; Cabezas

et al., 2020). It is worth noting that FACCE-JPI has supported

various model intercomparison initiatives such as CN-MIP (https://

www.faccejpi.net/en/show/CN-MIP.pdf.htm), MASCUR (https://

www.macsur.eu/) etc. Details of uncertainty efforts of these

initiatives can be found in their websites; AgMIP (https://

agmip.org/), FACCE-JPI (https://www.faccejpi.net) and ISI–MIP

(www.isi-mip.org). Additionally, there have been increasing efforts

undertaken on crop/grassland biogeochemical modelling that go

beyond production aspects, such as to simulate soil organic carbon

(Farina et al., 2021), carbon–nitrogen responses (Sándor et al.,

2023), soil water content and soil temperature (Sándor et al.,

2017), soil nitrogen, pasture biomass and soil water (Bilotto et al.,

2021) etc. Different crop models have been used to quantify

structural uncertainty in previous research (Ramirez-Villegas

et al., 2017; Tao et al., 2018; Tao et al., 2020; Kamali et al., 2022;

Yin and Leng, 2022), where either each modelling group runs their

own model (Kollas et al., 2015; Maiorano et al., 2017) or by single

group running multiple models (Wallach et al., 2017). There are,

however, few studies that have attempted to quantify structural

uncertainty in the same modelling framework (Ramirez-Villegas

et al., 2017; Kumar et al., 2021; Chapagain et al., 2023).

The Agricultural Production Systems sIMulator (APSIM)

(Keating et al., 2003; Holzworth et al., 2014) is an open-sourced

software, available freely (https://github.com/APSIMInitiative) for

research and commercial purposes (Holzworth et al., 2014). It

comprises of interconnected modules (e.g. plant, soil, irrigation,

fertilizer) which provide explanation of the biophysical functions of

weather, crop management, soil water, organic matter and soil

nutrients (Holzworth et al., 2014; Hao et al., 2021). Over 30 crop

types can be simulated in APSIM using its plant modules

(Holzworth et al., 2014) These include: maize (Zhu et al., 2022);

rice (Sarkar et al., 2022); potato (Ojeda et al., 2021a); pastures (de

Souza et al., 2022); and tree species (Elli et al., 2020). APSIM also

allows flexibility in agricultural operations and management,

allowing users to emulate farmers decision making processes

(Moore et al., 2014; Bosi et al., 2020; Chapagain et al., 2023).

Furthermore, there are more than 80 crop and soil models in

APSIM, which gives rise to different model structures within the

same modelling platform. Hence, assessing and quantifying

uncertainty of APSIM simulations under various inputs and

environmental conditions are important as it allows users to be

aware how much uncertainty is transferred to model outputs (Hao

et al., 2021). However, there has been very limited studies which

looked into structural uncertainty within APSIM (Chapagain

et al., 2023).

Soil type, along with topography, play a major role in nutrient

dynamics and soil water which impact crop growth (Habib-ur-

Rahman et al., 2022). Furthermore, it is environmentally and

economically ineffective to manage agricultural operations

without considering the spatial variability of soils (Basso et al.,

2016). Several studies have considered soil as a source of input

uncertainty and variability that causes uncertainty in model outputs

(Aggarwal, 1995; Waha et al., 2015; Coucheney et al., 2018;
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Wang et al., 2018; Maharjan et al., 2019; Ojeda et al., 2020). Most

of the previous research focused on input data aggregation (Angulo

et al., 2014; Maharjan et al., 2019; Ojeda et al., 2020) and

contribution of soil types in output variance (Folberth et al., 2016;

Wang et al., 2018). Although the open source soil databases and

their use in crop models considerably increased during the last years

[e.g. Soil Survey Geographic Database (SSURGO) in the United

States (https://www.nrcs.usda.gov/resources/data-and-reports/soil-

survey-geographic-database-ssurgo) (Di Luzio et al., 2004) and

International Soil Reference and Information Centre (ISRIC) at

global scale (https://www.isric.org/) (Han et al., 2019)], there has

been limited research investigating impact of soil on structural

model uncertainty (Angulo et al., 2014; Waha et al., 2015). To our

knowledge, there has been no study which accounted for influence

of soils on model structural uncertainty within the same

modelling platform.

The objective of this study was to investigate the uncertainty

that arises from different model structures looking at biological

processes and its interaction with the irrigation module within the

same modelling platform across different soil types, which is the

main novelty of the work (Figure 1). For this, firstly we developed

eight different model structures combining two crop models (we

choose potato (Solanum Tuberosum L.) as case study), two soil

water models and two irrigation management routines in APSIM

for three different soil types. We assessed agronomic (yield and

irrigation), environmental (drainage and nitrogen leaching) and

economic [partial gross margin (PGM)] model outputs. Secondly,

we used analysis of variance (ANOVA) technique to quantify mean

proportion of variance on the model outputs. Lastly, we analyzed

and compared the actual value contribution of simulated outputs to

investigate the impact of soil type on the absolute magnitude of

structural uncertainty.
2 Materials and methods

2.1 Study area

The study was conducted across three study sites in Tasmania,

Australia: Cressy (41°41’9”S, 147°4’49”E); Forthside (41°13′32.16″S,
146°16′26.22″E); and Gunns Plains (41° 17’ 0”S, 146° 3’ 0”E). The

three sites were selected as they represent Tasmania’s climatically

diverse potato growing regions. Cressy, Forthside and Gunns Plains

are classified as low- (~610 mm y-1), moderate- (~980 mm y-1) and

high-rainfall (~1330 mm y-1) environments, respectively, based on

their cumulative long-term annual rainfall. Owing to climatic,

landscape and geological variations, a variety of soil types (Isbell,

2016) exist in Tasmania. Kurosol, Dermosol, Chromosol, Ferrosol

and Sodosol are the main soil types which are found in 74.3% of the

areas suitable for growing potato (Ojeda et al., 2020).

For this study, we created a complete factorial between soil type

and site to explore the impact of soil type on model structural

uncertainty. By testing all possible combinations, we can assess how

each factor and their interactions contribute to the model

structural uncertainty.
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2.2 Design of model structures in APSIM

Different models of crop (PMF and nPMF), soil water (SoilWat

and SWIM3) and irrigation (IM1 and IM2) were used to create

eight independent model structures (Table S1) within APSIM

Classic (v7.10) (Chapagain et al., 2023). Simulation of each model

structure were carried out for the three soil types in the selected sites

from 1900 to 2020 (i.e. 3 soils × 3 locations × 8 model structures ×

121 years = 8,712 simulated growing seasons).

Two potato models in APSIM were used for this study. In the

first potato model, Plant Modelling Framework (PMF) was used for

model development (Brown et al., 2011), whereas a legume-based

modelling framework (Robertson et al., 2002) was used for model

development in the second potato model (nPMF) (Ridwan Saleh,

2009). These models not only differ in their programming

languages, but also they differ in internal processes such as:

evapotranspiration; dry matter production; phenological stage

determination; nitrogen uptake and partitioning (Chapagain

et al., 2023). More details about the characteristics and structure

of these two potato models can be found in Brown, Huth (Brown

et al., 2011) and Ridwan Saleh (2009), respectively.

SoilWat (Probert et al., 1996) and Soil Water Infiltration and

Movement v3.0 (SWIM3) (Huth et al., 2012) are two soil models

available in APSIM that have different levels of complexity and used

different modelling approaches (Vogeler et al., 2022; Chapagain

et al., 2023). SoilWat calculates soil water dynamics using a

cascading water balance model, whereas SWIM3 uses the

Richards equation approach. SWIM3 has been developed in such

a way that it uses the same inputs as SoilWat for processes such as

soil water retention and runoff which allows SWIM3 to use the

existing soil databases for SoilWat. Further, it also helps users of

SoilWat to use SWIM3 (Huth et al., 2012; Chapagain et al., 2023).
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More details about these soil water models can be found in Probert,

Dimes (Probert et al., 1996) and Huth, Bristow (Huth et al.,

2012), respectively.

This study used two irrigation models (IM1 and IM2)

previously described by Chapagain, Huth (Chapagain et al.,

2023) which employed manager scripts in APSIM. Following

farming practices described by Ojeda, Rezaei (Ojeda et al.,

2021b), two models were developed to provide 15 mm of

irrigated water during each irrigation schedule between 3rd

November and 7th February. 15 mm is the required deficit in

available soil water to apply irrigation and the amount to irrigate

(i.e. 15 mm is added if the deficit is above 15 mm when there is an

irrigation opportunity). In the case of IM1, a fixed irrigation

schedule was established, occurring every 3 days, but irrigation

was only implemented when the soil water deficit (SWD) exceeded

15 mm. IM2, on the other hand, computed SWD daily and

initiated irrigation when SWD surpassed 15 mm. The

management parameters used for SWD computation, the

quantity of irrigation water, and irrigation efficiency were the

same for both models, with the variations lying in their respective

decision-making logic (Chapagain et al., 2023).

The details of the models are presented in Table 1. Model

complexity is assessed based on the comparison of the variance

between different model structures. The crop model, soil water

balance model and irrigation model used to create different model

structures in this study have different complexities. The soil and

crop models have many more state variables, processes affecting

these state variables, and parameters and lines of code used to

describe the processes. Thus, they have greater complexity as

described by Snowling and Kramer (2001). The irrigation model

is smaller. As a model, it is similar in size/complexity to some

components used as building blocks for the larger crop model.
FIGURE 1

Schematic diagram of research methodology adopted in this study. The simulation study investigated the impact of two environmental factors
[climate (3 locations for 121 years) and soil (3 types)] on model structural uncertainty by using different uncertainty decomposition techniques. For
this study, agronomic (yield and irrigation), environmental (drainage and nitrogen leaching) and economic (partial gross margin (PGM)) model
outputs were assessed. The numbers displayed alongside the locations represent the average annual rainfall. The meaning of each factor and
sources of structural uncertainty is described in Sections 2.2–2.4 as design of model structures in APSIM, soil and weather, respectively. The study
area map used in this figure has been modified from Chapagain et al. (2023).
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2.3 Soil data

Out of the five main soils found in more than 70% of potato

growing areas (Ojeda et al., 2020), we used the three most dominant

soils of Tasmania’s potato regions: Red Ferrosol (RFr), Grey Kurosol

(GKr) and Red Dermosol (RDm). Approximate FAO equivalent of

these soils are Ferralsols, Alisols and Chernozems respectively (Schad,

2016), whereas USDA equivalent are Oxisols, Vertisols and Borolls

respectively. Observed data from Hinton, Harrison (Hinton et al.,

2018) were used to create soil profiles in APSIM (see Table S2 for

more details) which consists of: bulk density; drained upper limit

(DUL); drained lower limit (LL15); saturated volumetric water

content (SAT); soil pH; organic carbon; and electric conductivity.

Maximum plant available water capacity (PAWC) is computed as the

difference between DUL and LL15. Among soil types, PAWC ranged

from 122 mm in Red Ferrosol (from 0 to 110 cm soil depth) to

201 mm in Red Dermosol (from 0 to 90 cm soil depth).
2.4 Weather data

The daily weather inputs used in APSIM simulations were:

precipitation (mm); potential evapotranspiration (mm); maximum
Frontiers in Agronomy 05
and minimum temperature (°C); solar radiation (MJ m− 2); and

vapor pressure (hPa). There were separate timeseries for each of the

three sites, retrieved for 1900-2020 from the Scientific Information

for Land Owners (SILO) database (longpaddock.qld.gov.au/silo/

gridded-data) (Jeffrey et al., 2001). In the SILO dataset, the gaps in

observational data are filled using interpolation methods,

generating continuous data needed for crop modelling.
2.5 Crop management

The crop management inputs used in this study represents the

practices of the potato growing areas in Tasmania based on the

mean across 112 commercial farm districts during growing

seasons between 2003 to 2007 (Ojeda et al., 2021b). Potatoes

were harvested upon reaching full senescence. Detailed

description of crop management inputs used for the study is

given in Table 2.
2.6 Model outputs

The uncertainty analysis was carried out on the following five

outputs: (i) dry tuber yield; (ii) irrigation; (iii) water drainage; (iv)
TABLE 1 Description of the different models.

Model Description Model 1 Model 2 Reference

Crop

model name nPMF PMF

Model
development

legume-based model Plant Modelling Framework
Robertson et al. (2002);
Brown et al. (2011)

Programming
language

C++ C#
Holzworth and Huth
(2009); Brown et al.
(2011)

Evaporation transpiration efficiency (TE) approach
using micromet and is external to the crop
model

Wang et al. (2004);
Snow and Huth (2004)

phenological
stages

eight six
Ridwan Saleh (2009);
Brown et al. (2011)

dataset developed using Tasmanian (Australian) dataset
developed using Lincoln (New Zealand)
dataset

Ridwan Saleh (2009);
Brown et al. (2011)

Approaches
The approach for calculation of total dry matter production, nitrogen uptake and biomass partitioning vary
between these two models.

Ridwan Saleh (2009);
Brown et al. (2011)

Soil water
balance

model name SoilWAT SWIM3

approach to
calculate water
balance

cascading water balance model numerical solution to the Richards equation
Jones and Kiniry (1986);
Littleboy et al. (1992);
Huth et al. (2012)

complexity simple more complex than Model 1 (SoilWAT)

parameters
more soil parameters required for some processes (e.g. 2
parameters needed for evaporation, 1 for near-saturated
water flow, 2 for unsaturated flow)

these parameters are not needed in SWIM3
because the solution of Richards’ equation now
encompasses and represents these processes

Huth et al. (2012)

Irrigation
model

model name IM1 IM2

decision logic

operated on a predetermined schedule, irrigating at
regular intervals of every 3 days but irrigation was only
implemented when the soil water deficit (SWD) exceeded
a threshold of 15 mm

the soil water deficit (SWD) was calculated on
a daily basis and irrigation water was
administered whenever the SWD exceeded the
threshold of 15 mm

Chapagain et al. (2023)
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nitrogen leaching; and (v) PGM. Except PGM, all other variables are

direct outputs in APSIM. Thus, PGM was computed as follows:

PGM = (yield X price)

− (irrgation demand X irrigation cost) (1)

where yield is the dry potato tuber yield (t ha-1); price is the

income generated per ton of tubers (342 USD t-1, a constant in this

study); irrigation is the cumulative irrigation demand from planting

to full crop senescence and irrigation cost is the cost associated with

irrigation water (35 USD (ML)-1, a constant in this study). Yield and

irrigation values were obtained from APSIM output files, whereas

price and irrigation cost were retrieved from AgriGrowth Tasmania

(2021). The values were originally reported in AUD and a

conversion rate of 1 AUD= 0.7 USD (exchange rate of August

2022) was used to convert it to USD.
2.7 Uncertainty quantification

Analysis of variance (ANOVA) approach (Iversen et al., 1987;

Sawyer, 2009) was applied to quantify the sources of structural

uncertainty in different soils. A 3-way ANOVA was carried out

with three factors: crop model; soil water model; and irrigation

model. The analysis also included the interactions between these

elements, to partition the total variance in the selected model

outputs resulting from various model structures (Equation 2).

The actual uncertainty was expressed in terms of standard

deviation.

s 2
mo =  s 2

cm +  s 2
swm +  s 2

im +  s 2
int (2)

where, s2mo = total variance in model output (yield, irrigation,

drainage, nitrogen leaching and PGM for this study) due to cm

(crop model), swm (soil water model), im (irrigation model) and int

(interactions between them);

s 2
cm   =

1
no

n
i=0

SScm(i)

TSSi
(3)

s 2
swm =

1
no

n
i=0

SSswm(i)

TSSi
(4)
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s 2
im =

1
no

n
i=0

SSim(i)

TSSi
(5)

s 2
int =

1
no

n
i=0

SSint (i)
TSSi

(6)

where: TSS = total sum of squares; and SS= sum of squares.

The absolute difference in simulated output due to the

difference in choice of model is calculated using Equation 7.

MOdif f = abs ⌊OA − OB ⌋ (7)

where: MOdiff = Absolute difference in simulated model output

due to the difference in choice of model; OA= simulated output due

to model A; OB= simulated output due to model B.
3 Results

3.1 Mean proportion of variance

Irrespective of soil types, crop model contributed the most to the

mean proportion of variance in most model outputs as compared to

other models (see Figure 2 and Table 3). Structural uncertainty

resulting from choice of crop model was above 60% for yield,

drainage, nitrogen leaching and PGM in all soil types (from 78.3% to

92.2% for Red Ferrosol, from 60.2% to 92.2% for Grey Kurosol and

from 63.3% to 93.9% for Red Dermosol). A notable exception was

irrigation, where the choice of irrigation model contributed the largest

percentage of the structural uncertainty (65.6% for Red Ferrosol, 64.9%

for Grey Kurosol and 47.0% for Red Dermosol). The contributions of

soil water model and irrigationmodel varied depending on the soil type

and model output (see Figure 2 and Table 3). For example, soil water

model contributed 15.4% and 12.7% for drainage and nitrogen leaching

in Red Ferrosol, whereas 3.5% and 6.6% in Grey Kurosol and 30.7%

and 23.5% in Red Dermosol for the same model outputs.

First order effects (>88%) due to the choice of model

components were found to be dominant over second order

interactions (<12%) between model components. Further,

interaction between them in Grey Kurosol was always greater

than Red Ferrosol and Red Dermosol (Table 3). Additionally,

model complexity did not affect uncertainty arising from the
TABLE 2 Description of locations, climatic pattern and crop management inputs used in this study.

Cressy Forthside Gunns Plains

Latitude 41°41’9”S 41°13′32.16″S 41°17’0”S

Longitude 147°4’49”E 146°16′26.22″E 146°3’0”E

Mean Temperature (growing season, ˚C) 14.9 14.6 14.1

Mean Precipitation (growing season, mm) 257 355 468

Cultivar Russet Burbank Russet Burbank Russet Burbank

Planting date 3rd November 3rd November 3rd November

Row spacing (mm) 813 813 813

Harvest full senescence full senescence full senescence
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choice of model. For example, uncertainty resulting from choice of

irrigation model (quite simple models) contributed the largest for

irrigation (47-65.6%) as compared to crop model (20.5-49.4%) and

soil water model (0.1-2.7%) (Figure 2).
3.2 Magnitude of structural uncertainty

The magnitude of model uncertainty, expressed in terms of

standard deviation (SD), differed depending on the output assessed
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(Table 4). For instance, SD for simulated yield was 0.4-1 t ha-1 for

crop model, 0.3-0.9 t ha-1 for soil water model and 0.2-0.9 t ha-1 for

irrigation model, whereas the contribution of these three

contributors for simulated drainage was 9.9-30.6 mm, 7.5-

15.5 mm and 7.1-16.6 mm, respectively. In addition, a significant

influence of environmental conditions was observed on the SD of

simulated outputs (Table 4).

In absolute terms, crop model was the dominant source of

variance in most model outputs (Figure 3, Figure S1, Figure S2,

Figure S3), except for irrigation demand where the irrigation model
B

C D

E

A

FIGURE 2

Decomposition of model structural uncertainty (crop model, soil water model, irrigation model and interaction) using the mean proportion of
variance for simulated (A) yield; (B) irrigation demand; (C) partial gross margin (PGM); (D) drainage; and (E) nitrogen leaching by soil type (Red
Ferrosol (RFr): 122 mm; Grey Kurosol (GKr): 166 mm; and Red Dermosol (RDm): 201 mm).
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was the largest contributor of uncertainty (Figure 4). Overall, the

absolute difference in model outputs was markedly influenced by

soil type and site (Figures 3, 4; Figures S1–S3). For example, for soil

types, the variation in simulated nitrogen leaching due to difference

in crop models ranged between 0 kg ha−1 and 37.1 kg ha−1 for Red

Ferrosol, 0 kg ha−1 and 35.9 kg ha−1 for Grey Kurosol 0 kg ha−1 and

51.5 kg ha−1 for Red Dermosol, followed by soil model and

irrigation model. Conversely, the range was from 0 kg ha−1 to

18.5 kg ha−1 for Cressy, from 0 kg ha−1 to 33.7 kg ha−1 for Forthside

and from 0 kg ha−1 to 51.5 kg ha−1 for Gunns Plains, followed by

soil model and irrigation model in case of sites.
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3.3 Simulated model outputs across
soil types

The mean and standard deviation (SD) of simulated model

outputs varied for each model structure (Table S3). In general, the

model developed using combination of the PMF model with

SoilWat and IM2 (P2_SW_M2) resulted the highest absolute

values for yield (16.7 t ha-1), irrigation (346.6 mm) and PGM

(5586.9 USD ha-1) across different types of soil. Conversely, the

nPMF model combined with SWIM3 and IM1 (P1_SM_M1)

produced the lowest absolute values for yield (9.9 t ha-1),

irrigation (128.1 mm), and PGM (3285.9 USD ha-1). Similarly,

the model developed using combination of the nPMF model with

SoilWat and IM2 (P1_SW_M2) yielded the highest absolute values

for drainage (110.1 mm) and nitrogen leaching (9.9 kg ha-1),

whereas the PMF model combined with SWIM3 and IM1

(P2_SM_M1) produced the lowest absolute values for drainage

(2.9 mm) and nitrogen leaching (0.1 kg ha-1).

Density distributions, presented in Figure 5 (and also in Figures

S4–S7), consistently showed differences in model outputs between

soil types and site conditions. The density distributions were

positively skewed for all outputs. For yield and PGM, variability

was inversely proportional to amount of rainfall and PAWC

(Figures 5, S5). Compared to other sites and soil types, Cressy

and Red Ferrosol showed a greater degree of variation. This might

be as Cressy receives low rainfall compared to the other two sites

and Red Ferrosol has the lowest PAWC among the soil types. Under

wetter conditions (the lower right quadrant of the four panels in

Figure 5), variability in yield and PGM was dependent mainly on

choice of crop model. However, in case of drainage and nitrogen

leaching, the distributions concentrated more towards zero, with

higher values occurring during wetter seasons (Figures S6, S7).
4 Discussion

4.1 The effects of different modelling
configurations on model outcomes

Our research highlights that environment (soil type × site) has a

significant impact on the magnitude of structural uncertainty for the

different model outputs. This is reflected from the analysis of relative

and actual variance. Our findings align with previous research that

indicate soil and weather conditions have marked influence on

uncertainty of model outputs (Waha et al., 2015; Coucheney et al.,

2018; Ojeda et al., 2020; Rettie et al., 2022; Chapagain et al., 2023).

Uncertainty due to the choice of crop model was overall the

largest source of uncertainty in simulated outputs. This may be

because several differences exist between these crop models

(Table 1), including dry matter production, phenological stages,

calculation of evapotranspiration and nitrogen uptake (Chapagain

et al., 2023). When uncertainty due to crop models is the largest

source of uncertainty, it is concerning because it implies that the

predictions made using these models can differ substantially, which
TABLE 3 Uncertainty decomposition in simulated model outputs
resulting from different sources of uncertainty.

Contributors of
variance

Mean proportion of variance (%)

Red
Ferrosol
(122 mm
PAWC)

Grey
Kurosol
(166 mm
PAWC)

Red
Dermosol
(201 mm
PAWC)

Yield

s2cm 91.7 91.5 93.6

s2swm 1.5 1.4 3.3

s2im 6.7 5.4 1.8

s2int 0.1 1.7 1.3

Irrigation

s2cm 27.6 20.5 49.4

s2swm 0.1 2.7 2.2

s2im 65.6 64.9 47.0

s2int 6.7 11.9 1.3

PGM

s2cm 92.2 92.2 93.9

s2swm 1.6 1.6 3.3

s2im 6.1 4.4 1.4

s2int 0.1 1.8 1.3

Drainage

s2cm 78.3 60.2 63.9

s2swm 15.4 3.5 30.7

s2im 5.1 26.4 4.7

s2int 1.2 10.0 0.7

Nitrogen leaching

s2cm 84.6 80.6 71.4

s2swm 12.7 6.6 23.5

s2im 0.5 7.0 0.8

s2int 2.1 5.8 4.3
Mean proportion of variance for crop model (s2
cm), soil water model (s2swm), irrigation

model (s2
im) and interaction between the model components (s2int).
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can have significant implications in choosing appropriate models for

decision-making in agriculture, such as determining crop

management practices or policy decisions. If the models are

predicting differently, the decisions based on them may not be

optimal, leading to potential negative impacts on food security,

economic outcomes and environmental sustainability. Therefore, it

is essential to identify and address the sources of uncertainty in

cropping systems. Our results are consistent with previous

uncertainty assessment studies (Araya et al., 2015; Li et al., 2015;

Yin et al., 2015; Wang et al., 2017; Tao et al., 2018; Rettie et al., 2022).

Yin, Tang (Yin et al., 2015) used four crop models with five global

climate models (GCMs) to quantify how climate change will affect

China’s major crops in the future and found that crop models provide

a greater degree of uncertainty in yield than differences between

GCMs in most parts of China. Similarly, Araya, Hoogenboom (Araya

et al., 2015) found most variations in maize yields were attributed to

the choice of crop models while investigating the effect of climate

change on maize yield using two crop models and 20 GCMs in

Ethiopia. However, the results reported in this paper are probably one

of the first analyses which looked at uncertainty of model structure

using the same modelling platform in a vegetable crop such as potato

across different environments.
4.2 Effect of model complexity
on uncertainty

The uncertainty due to choice of model was not necessarily

affected by model complexity, which was assessed by comparing the
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variances across different model structures. It is notable that

uncertainty from changes to selection of the simple model can

have similar impacts to choice regarding the larger models. For

example, irrigation model was the most significant source of

uncertainty for irrigation results, despite these being simple

models (see Figures 2, 4) as compared to soil water models and

crop models (Table 1). This result aligns with Ramirez-Villegas,

Koehler (Ramirez-Villegas et al., 2017) where the authors assessed

model complexity and uncertainty using two versions of GLAM

model for Indian groundnut and reported that skill improved only

marginally and in small areas as a result of added complexity.
4.3 Uncertainty quantification: the need for
multiple indicators and assessment tools

We highlighted the fact that higher mean proportion of

variance does not necessarily equate with higher magnitude of

uncertainty in actual terms (Figures 2–4, S1–S3 and Table 3) and

should not be the only factor considered in uncertainty assessments.

Although the choice of crop model significantly affects both yield

and PGM variance (accounting for over 90% of the impact), the

narrow ranges of simulated yield (0.2 to 1 t ha-1) and PGM (50.6 to

374.4 USD ha-1) standard deviations in relation to the mean values

(yield: 14.6 t ha-1, PGM: 4901 USD ha-1) indicate relatively low

uncertainty in these values. Similarly, while the choice of irrigation

model contributes more than 45% to the variance, the relatively

small standard deviations (ranging from 11 to 33.3 mm) compared

to the overall mean irrigation of 500 mm suggest a low level of
TABLE 4 Standard deviation of simulated model outputs for the three soil types (Red Ferrosol, Grey Kurosol and Red Dermosol) across the three sites
evaluated (Cressy, Forthside and Gunns Plains).

Output
variables Site

Red Ferrosol
(122 mm PAWC)

Grey Kurosol
(166 mm PAWC)

Red Dermosol
(201 mm PAWC)

Crop Soil water Irrigation Crop Soil water Irrigation Crop Soil water Irrigation

Yield
(t ha-1)

Cressy 0.8 0.5 0.7 1.0 0.6 0.9 1.0 0.9 0.9

Forthside 0.7 0.7 0.6 0.5 0.3 0.3 0.4 0.3 0.2

Gunns Plains 0.7 0.6 0.5 0.5 0.4 0.3 0.5 0.3 0.2

Irrigation
(mm)

Cressy 31.7 19.8 26.6 33.2 21.8 33.2 33.0 13.7 32.5

Forthside 19.9 16.3 20.4 18.9 19.5 28.5 19.6 11.0 14.8

Gunns Plains 16.8 15.3 17.8 15.4 16.8 26.6 15.7 12.0 14.0

PGM
(USD ha-1)

Cressy 281.2 184.0 244.7 330.6 216.5 301.5 347.4 317.2 299.8

Forthside 227.6 219.8 188.7 156.3 114.0 82.6 131.7 89.9 50.6

Gunns Plains 233.9 213.6 180.2 182.9 135.2 84.5 168.2 103.1 56.5

Drainage
(mm)

Cressy 12.4 7.5 9.4 9.9 7.7 15.2 10.8 8.2 11.1

Forthside 22.4 9.9 8.0 21.1 10.0 15.5 20.1 13.4 7.1

Gunns Plains 30.4 12.2 8.8 30.6 12.2 16.6 29.2 15.5 8.0

Nitrogen
leaching
(kg ha-1)

Cressy 1.8 1.0 0.7 0.9 0.6 0.9 2.2 2.0 1.6

Forthside 2.9 1.5 0.6 2.1 1.0 1.0 4.5 2.8 1.0

Gunns Plains 5.3 2.0 0.8 4.4 1.4 1.1 7.7 3.6 1.3
fr
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actual uncertainty in these values. In contrast, when considering

environmental variables such as drainage and nitrogen leaching, the

crop model choice accounts for over 60% and 70% of the variance,

respectively. However, the comparatively large standard deviations

(ranging from 7.1 to 30.6 mm for drainage and 0.6 to 7.7 kg ha-1 for

nitrogen leaching) compared to the overall mean values of drainage

(44.4 mm) and nitrogen leaching (3.2 kg ha-1) indicate a significant

level of actual uncertainty in these variables. Thus, it is important to

consider the proportion of variance as well as the actual variance

(i.e., in the unit of the variable) to provide more accurate and

reliable estimates of uncertainty surrounding model outputs.

Examining the output variance in relation to the different model

structures and variance of inputs can contribute to understanding

the model’s sensitivity to changes in those different structures and

inputs. However, comparing output variance to the variance of
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specific inputs is not sufficient for making judgments and should be

complemented with a comprehensive evaluation that encompasses

multiple validation measures to ensure a robust assessment of the

accuracy and reliability of crop models.

Different methods and indicators may be appropriate in

different contexts depending on the type of data and the specific

uncertainties involved. For example, in some cases, sensitivity

analysis, scenario analysis or probabilistic modelling may be

useful in assessing uncertainty. In other cases, expert judgment,

historical data analysis or qualitative assessments may be more

appropriate. By considering a range of methods and indicators,

decision-makers can develop a more nuanced understanding of the

uncertainties they are facing and take appropriate steps to manage

or mitigate those uncertainties. This can ultimately lead to better

outcomes and more effective decision-making.
FIGURE 3

Absolute difference in simulated drainage for three soil types (Red Ferrosol, Grey Kurosol and Red Dermosol) across three sites (Cressy, Forthside
and Gunns Plains). Numbers after the site names indicate average annual precipitation.
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4.4 Modelling simulations under
different conditions

Compared to other sites and soils, Cressy, which is a low rainfall

site and Red Ferrosol, which has lowest PAWC, exhibited

significantly higher variability in our study which emphasizes the

inverse relationship of variability in yield and PGM to the amount

of rainfall and PAWC (Figures 5, S5). However, for drainage and

nitrogen leaching metrics, wetter conditions provided the larger

uncertainty range. Understanding how the range in variability from

model outputs is related to rainfall and PAWC for a target site is

important for farmers and land managers because it can help

inform model selection, which then will inform crop selection

and management decisions. Our results highlight how drier
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(wetter) conditions expose differences within crop models at

various stages of modelling whereas, wetter (drier) conditions

mask them. If models cannot perform well under drier (wetter)

conditions, decision makers may not be able to accurately predict

the impacts of dry (wet) conditions on crop yields, food production

or environmental impacts. This can lead to suboptimal decision

making. For example, if a region has high rainfall and high PAWC,

farmers will need different modelling tools to optimize the selection

of crop varieties that are more tolerant to wet conditions or

implementing drainage systems to mitigate the effects of excess

water. Similarly, in regions with low PAWC, farmers need to target

modelling tools that optimize handling for practices such as

conservation tillage or crop rotations to improve soil water

retention and reduce the risk of yield losses during dry periods.
FIGURE 4

Absolute difference in simulated irrigation demand for three soil types (Red Ferrosol, Grey Kurosol and Red Dermosol) across three sites (Cressy,
Forthside and Gunns Plains). Numbers after the site names indicate average annual precipitation.
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Getting these decisions wrong can lead to inefficient use of

resources, such as irrigation water or fertilizers, which can further

exacerbate the impacts of dry (wet) conditions. Thus, it is necessary

to consider the conditions and factors most important to a user, and

test and optimize a modelling system for this use case.

PAWC is a constant value in the model, it is calculated as the

difference between DUL and LL15 for each soil layer. What is

variable is the soil moisture each day depending on the rainfall,

evapotranspiration, runoff, drainage, irrigation, etc. Hence,

PAWC is static and rainfall and actual soil moisture are

dynamic but highly affected by irrigation time and amount.
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When actual soil moisture is close to DUL, the maximum

PAWC is achieved and there is no water stress. Irrigation’s

purpose is to limit damaging water stress to a plant. This

inherently reduces the differences between soil types, as if soil

moisture is constantly kept at an ideal level using optimal

irrigation scheduling. Irrigation will reduce the impact of

irrigation on yield through variation in soil PAWC. However,

varying PAWC will change hydraulic behavior and therefore

directly impact leaching losses etc. Varying PAWC will also

affect irrigation timing because soils that retain water will

require less irrigation (i.e. affect the irrigation trigger, thus
FIGURE 5

Probability density function of simulated yield (t ha-1) obtained from the eight model structures for the three soils (Red Ferrosol, Grey Kurosol and
Red Dermosol) across the three sites (Cressy, Forthside and Gunns Plains). The distinction between use of the PMF or the nPMF crop models is
illustrated by the two primary clusters present in the lower right quadrant of the four panels. Conditions with lower moisture (lower rainfall, or lower
PAWC) result in increased levels of structural uncertainty.
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affecting the timing of irrigation, affecting the volume of

irrigation, thus affecting leaching losses or possible yield impact).

Soil properties affect the movement of water, the availability of

water to plant roots and the overall water-holding capacity of the

soil. They influence plant growth, nutrient availability and overall

performance of crop models and can still impact simulations even if

soil moisture is set close to field capacity. There could still be some

water stress if the cumulative water demand exceeds the maximum

irrigation amount. In dry environments, there could potentially be

brief periods of stress. More importantly, the amount of drainage

and therefore, nitrogen leaching can be affected. There is potential

for nitrogen loss through leaching from the crop. Similarly,

denitrification can change in supply, though the amounts could

be smaller. Nitrogen losses impact environmental and economic

outcomes through loss of fertilizer. Additionally, drainage losses

have potential environmental impacts and economic losses as a

result of irrigation water losses, which is directly related to increase

in water and electricity costs.

This research investigates how models perform in conditions

with varying moisture availability, specifically drier (characterized

by low rainfall and low PAWC) or wetter (characterized by high

rainfall and high PAWC) conditions, through the use of modelling

simulations. However, our study does not include a comparison

between the simulated results and observations because our primary

focus was solely on understanding structural uncertainty and hence,

observation was not included to avoid the introduction of

observation uncertainty. This absence of a comparison may

hinder a comprehensive evaluation of the models’ performance

and reliability, and therefore, it should be incorporated into

future assessments.
4.5 Balancing decision-making: unravelling
model structures and trade-offs for
sustainable agricultural production

Making agronomic decisions can be challenging when there are

differences in outputs arising from differences in model structures.

Crop models can help decision-makers to identify the most

appropriate agricultural management practices and technologies

that balance the trade-offs between different objectives over the

short and long term. Ultimately, this can help to ensure sustainable

agricultural production that meets the needs of society while

minimizing negative impacts on the environment. For example,

compared to the nPMF model, the PMF model overpredicted

potato tuber yield, irrigation, and PGM, but underpredicted

nitrogen leaching and drainage suggesting the two models have

different strengths and weaknesses in our study. PMF model may be

better at predicting certain aspects of potato production, such as

tuber yield, irrigation demand and PGM, but may not perform as

well when it comes to predicting environmental impacts such as

nitrogen leaching and drainage. On the other hand, nPMF model

may be more accurate in predicting environmental outcomes but

may not perform as well in predicting yield, irrigation demand and

PGM. Thus, our study highlights the need to carefully weigh the
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pros and cons of using each model and decide which model to use

based on the specific needs and goals of the agricultural

production system.
4.6 Relevance of the study

The findings of this study contribute to the understanding of

prevalent challenge in uncertainty research - the quantification of

structural uncertainty in crop model predictions caused by different

modelling structures or configurations within the same platform.

Although, there are large-scale research efforts such as AgMIP

(Rosenzweig et al., 2013), FACCE-JPI (Gøtke et al., 2015) and

ISI-MIP (Warszawski et al., 2014) which aim to improve the

accuracy and reliability of crop modelling by comparing and

evaluating the results from different models applied to the same

experimental data or field conditions, our approach of uncertainty

quantification is quiet distinct when compared to the approach by

these initiatives. Our method involves quantifying uncertainty in

both processes and structure using a single modelling platform to

account for uncertainty that stems from model algorithms and

equations while preventing the inclusion of other uncertainties that

result from variations in modelling platforms or the different ways

in which different models take input data and provide outputs

(Chapagain et al., 2023). Additionally, we have considered multiple

agronomic, environmental, and economic outputs to demonstrate

how model performance can differ depending on the output

analyzed and a careful analysis is required considering the trade-

offs between them for informed decision-making. For example, by

considering environmental results like nitrogen leaching and

drainage, along with yield and partial gross margin, we can

perform a balanced analysis and opt for a model that provides

the most suitable outcomes for a particular objective. The

techniques described in this article have the potential to be used

on multiple modelling systems, settings, and crops to anticipate a

single or multiple outcomes.
4.7 Limitations of the study

The results of our study should, however, be interpreted

considering some limitations. We acknowledge that this study

only considered and analyzed the influence of soil type on

structural uncertainty of simulated outputs and there may be

other factors such as irrigation strategy, sowing date and

genotype which may have more significant impact. Secondly, we

have developed the different model structures within the same

modelling platform (APSIM) and results may differ depending on

the crop model used. Additionally, our investigation was restricted

to three soil types and three sites, although these three soils are the

most prevalent in Tasmania, and we included the three sites to

account for a broad range of rainfall conditions. Furthermore, the

scope of this study is focused on investigating the structural

uncertainty that arises from different model structures within the

same modelling platform across different environments. The aim is
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to analyze how different model structures can lead to variance in

simulated model outputs. In this regard, the study does not involve

comparing the simulation results with observations. This decision

was made because observations themselves inherently possess a

certain level of uncertainty, and examining this uncertainty was

beyond the intended scope of the study. Instead, the primary

objective is to explore the impact of different model structures on

the simulation outcomes across different soils and sites, thus

providing insights into the structural uncertainties within the

same modelling platform. In the future, the analysis framework

could be expanded to various spatial scales and environments and

upscaled to regional and national levels by employing gridded data.
5 Conclusion

This paper provides insight into the influence of environment

(soil and site) on model structural uncertainty through a

component-based modelling framework. This uncertainty

assessment approach is capable of not only assessing and

decomposing uncertainty but also better understanding

uncertainty and its main drivers. Our results reveal the strong

influence of environmental conditions on structural uncertainty.

The finding indicates that there is an inverse relationship between

variability in yield and PGM and the amount of rainfall and PAWC,

suggesting that it is important to consider multiple model-

structures to best capture the potential range in structural

uncertainty. Such knowledge helps to better understand how a

cropping system will respond to different environmental conditions

and allows for more informed decisions about agricultural practices

and policies. Additionally, the findings indicate that the choice of

crop model is crucial for reducing the uncertainty in simulated

model outputs for all environments assessed in this paper.

Furthermore, we highlight the necessity to include both mean

proportions of variance and actual variance in uncertainty

assessments to provide more accurate information for agronomic

or policy decision-making. Future modelling studies should

consider decomposing the contribution of uncertainty sources

and variability factors as this would help better identify the main

drivers of variance in model outputs which increases the confidence

in modelling simulations, and therefore, produces more useful

advice based on farm-model predictions.
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