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Climate change and plastic pollution are two of the most pressing environmental

challenges caused by human activity, and they are directly and indirectly linked.

We focus on the relationship between marine plastic litter and the air-sea flux of

greenhouse gases (GHGs). Marine plastic litter has the potential to both enhance

and reduce oceanic GHG fluxes, but this depends on many factors that are not

well understood. Different kinds of plastic behave quite differently in the sea,

affecting air-sea gas exchange in different, largely unknown, ways. The

mechanisms of air-sea exchange of GHGs have been extensively studied and if

air-sea gas transfer coefficients and concentrations of the gas in water and air are

known, calculating the resulting GHG fluxes is reasonably straightforward.

However, relatively little is known about the consequences of marine plastic

litter for gas transfer coefficients, concentrations, and fluxes. Here we evaluate

the most important aspects controlling the exchange of GHGs between the sea

and the atmosphere and howmarine plastic litter could change these. The aim is

to move towards improving air-sea GHG flux calculations in the presence of

plastic litter and we have largely limited ourselves to identifying processes, rather

than estimating relative importance.
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cycling, climate change
1 Introduction

Climate change and plastic pollution are among the most pressing environmental

challenges caused by human activity (Ocean Decade, 2022; United Nations, 2022) and the

evidence that in certain oceanic regions and marine environments these problems are

related is growing (Cornejo-D’Ottone et al., 2020; Bergmann et al., 2022; Ford et al., 2022;
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Kvale, 2022; Lincoln et al., 2022). Over 17 million metric tons of

plastic entered the ocean in 2021 and this is projected to double or

triple by 2040 (United Nations, 2022). Royer et al. (2018) have

shown how degradation of plastics in the marine environment can

be a minor source of climate-relevant trace gases, but this is not the

only way plastic can affect climate gases. Here we focus on the

relationship between marine plastic litter (MPL) and the flux

between the atmosphere and the ocean (air-sea) of greenhouse

gases (GHGs). Carbon dioxide (CO2) is the most well-known GHG,

and the ocean absorbs about 25% of the CO2 emitted by human

activities (Watson et al., 2020), but there are other relevant and very

potent GHGs such as methane (CH4), and nitrous oxide (N2O) that

should also be considered.

The mechanisms of air-sea exchange of GHGs have been

extensively studied (Garbe et al., 2014). Calculations of air-sea

fluxes of a gas using a bulk formula that expresses the flux as the

product of a transfer velocity and an effective concentration

difference are now enabled by standard and accessible tools

(Shutler et al., 2016; Holding et al., 2019). Johnson (2010) provides

a method to calculate the transfer velocity of any gas. Formulae for

transfer velocity are not exact and are an important source of

uncertainty in fluxes (Wrobel and Piskozub, 2016; Woolf et al.,

2019), but they are quite robust when derived from an empirical or

mechanistic method (Goddijn-Murphy et al., 2016). However, the

effect of MPL on these mechanisms may be substantial and the

resulting anomaly in flux is unknown. There are 60 publications in

the years 2011-2020 that address both plastic pollution and climate

change in marine systems (Ford et al., 2022), but these and later

studies have not yet described the connection in relation to air-sea gas

exchange in a systematic investigation. In this study we identify and

evaluate known factors controlling the air-sea GHG flux (Garbe et al.,

2014) in relation to MPL to enable parameterization and exploration

of the interconnected processes at wider spatial and temporal scales.
2 Plastic litter in the ocean

There are many kinds of plastic litter, consisting of many

different polymer compositions, sizes, shapes, and surfaces. Plastic

size ranges from microplastics (< 5 mm) to macroplastics covering

sizes from 5 mm to large plastic pieces such as lost or discarded

fishing nets. Primary microplastics are made on purpose, for

example, pellets used in manufacturing and microbeads

originating from certain cosmetic products, while secondary

microplastics are a result from fragmentation or wear and tear of

larger plastic pieces in the environment including ship paint, textile

fibers, and vehicle tire wear waste (GESAMP, 2019). As air-sea gas

exchange occurs through the air-sea interface, we are concerned

with MPL near the surface. Macro- and microplastics behave quite

differently in the sea. Microplastics are mostly in suspension below

the water surface (Kukulka et al., 2012; Kooi et al., 2016) while

macroplastics are present at any depth and can float on top of the

sea surface, where they are exposed to air. Our review will examine

both micro- and macroplastics.

MPL concentrations may be low on a global scale but can be

locally significant in certain areas such as coastal zones and river
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plumes. In particular, ocean fronts and eddies are turbulent areas

where frontal dynamics can accumulate MPL of all sizes (van Sebille

et al., 2020). These turbulent areas substantially affect surface

boundary layers, enhancing air-sea gas transfer (D’Asaro et al.,

2011; Rutgersson et al., 2011; Shin et al., 2022). Convergence zones

are also areas known for increased biological productivity affecting

air-sea GHG fluxes. Therefore, both direct and indirect effects of

MPL on air-sea GHG fluxes could be significant in these regions

respectively. Figure 1 identifies important processes, which will be

detailed in following sections.
3 Factors controlling ocean gas fluxes

At the open water surface, we can calculate the air-sea gas flux, F

(mol m-2 s-1) for a chemically unreactive gas as the product of (a)

the concentration difference (thermodynamic driving potential),

and (b) overall gas transfer velocity across the sea surface, Kw (m s-1)

(kinetic forcing function),

F = Kw(
Ca

H
− Cw)

In the above equation, Ca and Cw are the respective

concentrations (mol m-3) of the gas in the lower atmosphere and

upper ocean surface, H is the dimensionless gas-over-liquid form of

the Henry’s law constant (a function of temperature and salinity),

and F is positive for a gas flux from the atmosphere to the ocean. Kw

is dependent on the individual transfer velocities in water, kw, and

in air, ka, and for sparingly soluble gases, such as CO2, N2O, and

CH4, we can take kw as a practical estimation of Kw (Johnson, 2010).

In the following, we assess the links both between MPL and kw, and

between MPL and the concentration difference DC (= Ca/H-Cw).

For a detailed review of gas transfer across the air-sea interface we

refer the reader to Garbe et al. (2014).
3.1 Concentration difference, DC

The most appropriate concentration difference to consider is

that which occurs across a marine microlayer, the mass boundary

layer (MBL), at the sea surface (Woolf et al., 2019). The factors that

affect this difference include sea surface temperature (SST),

transport, biology and chemistry (Garbe et al., 2014) and are

considered in the following sections. We identify MPL as an

additional factor, notably since breaking down plastic can be a

source of GHGs above, within, and below the microlayer (Royer

et al., 2018), and since the presence of MPL can affect factors that

control respective GHG concentrations (Figure 1).
3.2 Gas transfer velocity, kw

The water-side transfer velocity of a gas has a rather

complicated dependence on the properties of the dissolved gas

and upon environmental conditions that control turbulence in air

and in water, and dynamics at the interface. Associated are
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microbreaking, turbulence, waves, bubbles and spray, rain and

surface films, parameterized by wind, heat flux, fetch, mixing

depth, and biological and chemical activity (Garbe et al., 2014).

Energy dissipation directly relates air-sea gas exchange to

turbulence, but this parameter is challenging to measure and

alternatives have been used. Gas transfer is dominated by the

small-scale sea surface roughness generated by sea surface wind

and is parameterized accordingly. For insoluble gases, we should

also account for bubble-mediated gas transfer (Woolf, 1997). In

general, transfer can occur directly across the unbroken sea surface,

or can be mediated by bubbles or particles in the broken sea surface.
4 The role of marine plastic litter in
the air-sea flux of greenhouse gases

4.1 Marine plastic litter and DC

4.1.1 Plastic breakdown
The breakdown of MPL, enhanced by exposure to sunlight, can

produce CH4, and indirect GHG ethylene (C2H4) and other

hydrocarbon gases such as ethane (C2H6) and propylene (C3H6)

(Royer et al., 2018). CH4 is less abundant in the atmosphere than

CO2 but its global warming potential is 23 times that of CO2 while

C2H4, C2H6 and C3H6 are volatile organic compounds that play a

role in the atmospheric production of ozone (O3), the third most

important GHG after CO2 and CH4 (Ehhalt et al., 2001). Royer et al.

(2018) showed that low-density polyethylene (LDPE) produced the

most hydrocarbon gases among plastic materials tested and that

plastic emissions were higher in air than in water, partly explained
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in warm climates by plastic in air reaching higher temperatures than

in water. DC is therefore changed, in the presence of plastic

breakdown, through increases in Cw, as well as Ca likely

accelerated by a warming climate. Their first results imply that

CH4 production by plastics is insignificant on a global scale but for

the other hydrocarbon gases with much lower global emissions to

the atmosphere, production from plastics might have more

significance. Royer et al. (2018) suggest that as macroplastics are

broken down over time into microplastics, and microplastics have a

greater surface area to volume ratio, hydrocarbon gas production

rates will likely accelerate. According to Royer et al. (2018),

biofouling reduces the exposure of the plastic surface to sunlight

and hence hydrocarbon production. The formation of a biofilm on

surfaces exposed to seawater can start within a few hours

(Oberbeckmann et al., 2015).

4.1.2 Sea surface temperature
The thermal skin, the top millimeter or so of the upper ocean, is

generally slightly cooler, on average 0.14 K (Donlon et al., 1999),

than the water below. As solubility of a gas is highly sensitive to SST,

this has consequences for calculating DC across the MBL, and

Woolf et al. (2016) show that the thermal skin increased the net

global air to sea flux by 0.34 Pg C yr-1. An opposing effect on

calculated fluxes is related to warm layers near the surface that can

occur during the day (Woolf et al., 2016). Goddijn-Murphy et al.

(2022) report surface temperatures of floating macroplastic litter

items higher than SST (up to +10 °C) during a summer day around

noon and lower than SST (down to -3 °C) during the night and early

morning hours, after deployment at sea for less than an hour as 1×1

m artificial rafts. MPL may therefore introduce temperature
FIGURE 1

Main processes and factors relating to MPL that control (1) GHG production and consumption (in air as well as in water), and (2) air-sea gas transfer
velocity. Arrow up (down) indicates an increase (decrease) of GHG production or decrease (increase) of GHG consumption. For air-sea gas transfer
velocity, arrow up (down) indicates enhanced (reduced) values.
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anomalies in the surrounding water, varying in a diel cycle, that

result in gas flux anomalies.

4.1.3 Transport
In the context of thermodynamic forcing, vertical transport of

GHGs can be described by a combination of molecular, turbulent

and diffusive transport processes (Garbe et al., 2014). The vertical

distribution of plastic debris within the upper water column is

driven by the wind (Kukulka et al., 2012). The effect of the

microplastic physical properties such as shape, density and size

on turbulent transport processes and settling velocity of its particles

has been discussed in the review paper by Phan and Luscombe

(2023). The formation of biofilms could alter physical properties

that control the buoyancy of microplastics (Oberbeckmann et al.,

2015). Here we consider how MPL could affect Cw at the base of the

MBL and within the upper ocean generally. Directly: changes in

CO2 surface concentrations on a regional scale have been attributed

to lateral and vertical mixing (Takahashi et al., 2009). Could MPL

somehow enhance the mixing of gas concentrations below MBL or

change the mixing depth? Indirectly: through materials attached to

microplastics that accumulate in the surface microlayer, affecting its

geochemistry and hence DC (Galgani and Loiselle, 2019; Galgani

and Loiselle, 2021). Breaking waves and ocean turbulence mix

microplastic particles temporarily down to several meters or even

to tens or hundreds of meters after which the particles rise back to

the surface, as waves and turbulence decay (van Sebille et al., 2020).

Could these microplastics transport materials that change the

biogeochemistry from the deep to the MBL, or conversely,

remove these from the MBL to the deep? Furthermore, numerical

simulations show that microplastic particles can stick to rising

bubbles. This mechanism may be effective in increasing vertical

transport of microplastic particles to the surface but is expected to

be dependent on the hydrophilicity of the plastic particle (Lehmann

et al., 2023).

4.1.4 Biology and chemistry
Most published papers linking MPL and the air-sea flux of

GHGs have focused on biogeochemistry in the upper ocean and

how it is affected by the plastisphere, the aqueous microplastics and

the microbial community growing on it (Galgani and Loiselle, 2019;

Naik et al., 2019; Prata et al., 2019; Cornejo-D’Ottone et al., 2020;

Galgani and Loiselle, 2021). Oberbeckmann et al. (2015) present a

review of biofilms attached to marine microplastic. Cornejo-

D’Ottone et al. (2020) measured CO2 and N2O production as well

as consumption by the plastisphere in the field, depending on the

surrounding waters ’ biogeochemica l charac ter i s t i c s .

Photosynthesizing marine algae (macro as well as micro) remove

CO2 from the environment and play an important role in the

carbon cycle (Arenas and Vaz-Pinto, 2014). Marine microplastics

can induce algal blooms but have conversely been associated with

inhibiting microalgae growth and reducing their chlorophyll and

photosynthesis (Prata et al., 2019; Shen et al., 2020; MacLeod et al.,

2021). Macroplastics in a sheltered location in the sea can show the

first signs of biofouling, in the form of algal coating after two weeks

and a denser biofouling and larger organisms after three months
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(Fazey and Ryan, 2016; Goddijn-Murphy et al., 2022).

Enhancement of marine gel production, enriching the sea-surface

microlayer with surfactants, by the presence of microplastic has

been recently shown in a mesocosm experiment (Galgani et al.,

2023). They found a ~3% reduction in water side CO2

concentration. Conversely, plastic debris around the Antarctic

Peninsula was found to host a wide range of bacteria in biofilm,

including pathogenic species and some strains with multiple

antibiotic resistance (Bargagli and Rota, 2023). Findings in soil

communities show that bacteria in biofilms are a significant source

of CO2, which is hypothesized to be the case in aqueous

communities as well (Nguyen et al., 2021; Rauscher et al., 2023).

Interestingly, this was found specifically on forms of MPL made

from renewable, bio-based materials, which are thought to reduce

the carbon footprint of the industry (Coppola et al., 2021).

Finally, a slightly different biological effect related to MPL

and GHGs is the expansion of oxygen minimum zones (OMZs)

due the presence of microplastics. A recent modelling study

shows that zooplankton consumption of microplastics leads to

an increase in primary producers (Kvale et al., 2021). This can

lead to increased export, subsequent remineralization, and

deoxygenation in some regions. In a follow-on study, Kvale

and Oschlies (2023) show that even if there is complete

removal of microplastic stocks and sources to the ocean, there

may be a lag in recovery from deoxygenation. OMZs are known

to be large producers of N2O (e.g., Ward et al., 2009) and certain

OMZs have been shown to be large producers of CO2 as well

(Paulmier et al., 2011). Kvale et al. (2023) report that

microplastics can alter the sinking rates of zooplankton faecal

pellets and biological calcification in ways that depend on both

ecosystem structure as well as the microplastics themselves;

reduction of sinking pellets leads to less carbon sequestration

in the deep ocean and calcification reduces surface alkalinity

which leads to a decrease in air-sea carbon flux.
4.1.5 Underwater light climate
Macroplastics floating on the water surface change the intensity

and spectral shape of the light transmitted across the air-sea

interface. Floating plastics reduce photosynthetically active

radiation (PAR) from 400–700 nm (and hence reducing

subsurface CO2 consumption), depending on the light

transparency of the plastic ranging from 0% for opaque plastic to

80% for clear plastic (Goddijn-Murphy and Dufaur, 2018), and

abundance. Plastics degrade under the influence of ultraviolet B

(UVB; 280-320 nm) light in the sun (Royer et al., 2018), which

implies that shading by plastic would reduce GHG production from

MPL breakdown. Naidoo and Glassom (2019) measured average

sea surface microplastic concentrations from 0.07 to 42 plastic

particles/100 m2 at various locations in different parts of the

world. Koestner et al. (2023) measured some modification of the

underwater light field by microplastics but not enough to

significantly affect the underwater light levels in UV-PAR.

However, Galgani and Loiselle (2019) observed increased colored

dissolved organic matter (CDOM) at the sea surface and immediate

underlying water in the presence of microplastic particles that may
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provide additional photochemical protection in surface waters

(Tilstone et al., 2010).
4.2 Marine plastic litter and kw

4.2.1 Small scale sea surface roughness
Direct gas transfer through the unbroken surface is dependent

on the short capillary-gravity wave portion of the surface wave

(Bock et al., 1999). Small-scale sea surface roughness, represented

by the mean square slope, 〈s2〉, of short capillary gravity waves, has
therefore been used instead of wind in kw parameterizations as an

alternative. From low to moderate wind speed, kw increases linearly

with 〈s2〉 in laboratory and field observations (Garbe et al., 2014).

Evans and Ruf (2022) associated microplastics with the suppression

of roughening of the ocean surface by winds. However Sun et al.

(2023) found that the damping effect of plastic particles on<s2> can

be only observed for fractions of coverage above O(5~10%), that is

much larger than typical for microplastic of O(0.1%). It is possible

that this damping is caused by a factor correlated with the presence

of microplastics, such as surfactants on the ocean surface (Evans

and Ruf, 2022). According to D’Asaro et al. (2018), man-made and

natural surfactants accumulate in surface current convergence

zones, where debris will also accumulate. It is possible that

biofouling of MPL or increased biological activity due to the

presence of MPL, generates surfactants (section 4.1.4). It is also

possible that surfactants are a by-product of plastic breakdown.

Pereira et al. found up to 32% reduction in CO2 exchange compared

to surfactant-free sea surface water in the Atlantic Ocean (Pereira

et al., 2018) and up to 50% in coastal waters of the North Sea

(Pereira et al., 2016). The addition of plastic particles to the MBL

could create a conduit that breaks the surface film. It is unknown to

what extent floating macroplastics could affect 〈s2〉 and near surface
turbulence. Prytherch et al. (2017) did not find proof of increased

waterside turbulent forcing by floating sea ice.
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4.2.2 Bubbles
For poorly soluble gases such as CO2, N2O, and CH4, and

higher wind speeds, bubble-mediated gas transfer through the

broken sea surface must be included and is expected to scale with

fractional whitecap coverage at the surface, W (Woolf, 1997).

Recent work has shown that relationships between W and the

energy dissipation rate of breaking waves also need to consider the

penetration depth of bubble plumes during active breaking,

suggesting the latter may be a better proxy for bubble-mediated

gas transfer (Callaghan, 2018). The effect of MPL on bubbles and

their depth is not known. Other questions are: does the presence of

MPL increase or decrease W and does MPL affect bubble size, void

fraction of the bubbles, and cleanliness/mobility of the bubble

surface (Woolf et al., 2007). Bubbles and surface debris generally

align with the wind in convergence zones in the ocean surface called

windrows (van Sebille et al., 2020). Windrows are common and

clearly identifiable features of the surface ocean where MPL and

biological materials accumulate and air-sea gas transfer velocity

may be enhanced due to bubble action
5 Discussion

Many different factors control air-sea gas transfer of GHGs and

the presence of MPL can both enhance and reduce DC, kw, and
resulting GHG fluxes (Figure 1; Table 1). Most relevant research has

been about biological and chemical factors, such as plastic

breakdown, plastic biofouling, and consequences for microalgae.

There is less known about physical factors of MPL that could

interfere with air-sea gas exchange, such as SST, transport,<s2>, and

W. MPL is a growing concern, especially where concentrations are

high. More research is required to determine MPL effects on air-sea

gas transfer. For this we will need to study the effect of MPL on

many different factors that control air-sea gas exchange parameters

and the relation between those factors and parameters under
TABLE 1 Main factors that control air-sea gas exchange of poorly soluble GHG CO2, the effect of MPL on those factors, and how these correlate with
air-sea gas transfer parameters.

Factor Effect of MPL on factor Correlation with factor

macro micro Cw Ca DC kw F

Plastic breaking down + ++ + + +/- 0 +/-

SST +/- ? – 0 – 0 –

Transport ? ? ? ? ? 0 ?

Biology - biofouling + + +/- +/- +/- – +/-

Biology - micro algae growth 0 +/- +/- 0 +/- – +/-

Underwater light shading + 0 +/- 0 +/- 0 +/-

Small scale sea surface roughness ? – 0 0 0 + +

Bubbles ? ? 0 0 0 + +
‘+’ indicates heightens, ‘-’ lessens, ‘0’ has no effect, and ‘?’ effect unknown. The result of MPL on an air-sea gas transfer parameter can be estimated by the product of “effect of MPL on factor” in
macro or micro column and “correlation with factor” for this parameter.
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different conditions (Table 1). Production of gases (Royer et al.,

2018) may be less important than alteration of the sea surface

physics, but we need further research to distinguish which

mechanisms could be more important than others, depending on

the type of MPL (e.g., size and composition) and the location and

scale of the investigation. A combination of laboratory and field

experiments is appropriate, since specific mechanisms can be

investigated in the laboratory, but effects must be verified in the

field. This will enable us to better calculate and map air-sea GHG

fluxes in MPL polluted environments at regional and global scales

using existing tools tailored to assess the overall impact of MPL on

the marine environment.
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