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Editorial on the Research Topic
Carbon and nitrogen cycling in grassland ecosystems

Grasslands cover approximately 40% of the world’s terrestrial surface and contain over
one-third of above and belowground organic carbon (C) stocks (Bai and Cotrufo, 2022; Liu
et al., 2023). Grasslands are of particular interest for C capture and sink, and their soil C
sequestration has, therefore, been proposed as a plausible partial climate mitigation strategy
(Tessema et al., 2020). The higher soil organic C (SOC) stocks in grasslands could be due to the
perennial nature of grasslands, resulting in constant carbon inputs from aboveground
vegetation and large amounts of organic carbon released into the subsoil via root exudates
and decomposing deep roots (Zimmermann et al., 2012). Fisher et al. (1994) highlighted the
potential for SOC sequestration by deep-rooted African grasses. Guo and Gifford (2002)
estimated that the conversion of cropland to grassland increases SOC by approximately 19%. A
meta-analysis reported by Conant et al. (2017) also found a 3%–5% increase, with rates ranging
from 0.105 to over 1 Mg C·ha−1·yr−1 under different grassland management practices.
Nevertheless, significant uncertainties exist in grassland C cycling, which determines soil C
sequestration. For example, current estimates of soil C stocks in grasslands range from a
significant source to a small sink. In addition, the significant differences among studies may be
derived from the different approaches used in the estimates (Fang et al., 2010). These
uncertainties and controversies reflect the lack of a comprehensive assessment of C cycling
under different grassland management practices and climate regimes. Moreover, C and
nitrogen (N) cyclings are highly coupled in terrestrial ecosystems, and N is an essential
nutrient that determines the capacity of soils to sequester more C. Quantifying the C and N
cycling processes and how C and N stocks respond to various management practices and
environmental factors is essential to guide land-based mitigation strategies.

Information on C and N storage, stabilization, and estimation in grassland and arable
ecosystems will help to better understand how soil C and N cycling processes have been
affected by global change and management, and their underlying mechanisms. Five original
research articles have been published on this Research Topic.

SOC is vital for sustainable agricultural production. Bursać et al. evaluated a transfer
learning-based neural network model to improve classical machine learning estimation of
SOC using geochemical and physical soil parameters. They found that the transfer learning
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approach provides better or at least equivalent output than the
classical machine learning procedure. They proposed that the
transfer learning methodology could be used to generate a
pedotransfer function for target domains with described samples
and unknown related pedotransfer function outputs if the described
samples with known related pedotransfer function outputs from a
different geographical or similar land class source domain are
available.

The quality of soil organic matter (SOM) is the primary driver of
nutrient cycling affecting the productivity of cropping systems. In a
long-term experiment, Yadav et al. observed that the yields of rice
(Oryza sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays
L.) increased significantly under either organic or inorganic fertilizer
treatments inModipuram, India. Substitution of inorganic fertilizer N
with organic sources to the 100% NPK showed comparable yields,
while partial substitution of chemical fertilizers with either
vermicompost and/or crop residues improved SOM quality and
productivity regardless of cropping systems.

Crop rotation adaptations incorporating temporary grass-clover
leys and organic amendments have been proposed to improve SOC
sequestration andmitigate climate change in agricultural systems. In
a long-term field experiment with different treatments, including
crop rotation, grass-clover ley duration, and fertilizer sources, Zani
et al. found that the soil C stocks were higher under the diversified
organic rotation with a 3-year grass-clover ley period at both
0–30 cm and 30–60 cm soil depth, regardless of the fertilization
source or sampling year. However, the organic rotation seemed to
provide stable soil C stocks only in the subsoil layer. Compost
fertilization, on the other hand, increased topsoil C stocks under
both rotations and appeared stable. These results suggest that
combining a diverse organic rotation with 3-year grass-clover ley
and compost fertilization could be a way for agricultural systems to
achieve stable soil C sequestration.

N is the primary production and decomposition driver in arid
and semi-arid ecosystems. Across 43 shrubland sites spread over
3,000 km2 in temperate desert grasslands of eastern Yanchi County,
Ningxia, China, Zhao et al. found that total soil N showed strong
spatial autocorrelation in 0–5 and 5–15 cm soils and moderate
spatial autocorrelation in 15–40 cm soils. Soil physicochemical
properties were more important than those of topography and
plant biomass in determining the spatial distribution of total soil
N. Soil moisture in the 0–20 cm soil explained 35% of the variation
in the spatial pattern of total N in the 0–5 cm soil, while SOC in
15–40 cm soil explained 64% and 45% of the variations in the spatial
pattern of total soil N in 5–15 cm and 15–40 cm soils, respectively,
suggesting that soil moisture and SOC are the main drivers of spatial
heterogeneity of total soil N in shrublands at the landscape scale in
drylands.

Carbohydrate-active enzymes (CAZymes) are involved in the
hydrolysis and biosynthesis of complex carbohydrates. Through a

metagenomic approach, Zhang et al. observed a higher CAZyme
abundance in severely degraded grasslands compared with the other
three degradation levels (i.e., non-, lightly, and moderately degraded
grasslands) in northern China, while glycoside hydrolase and
glycosyltransferase were identified as the most abundant gene
families. The Mantel test and variation partitioning suggested an
interactive effect of degradation severity and soil depth on CAZyme
gene composition. Structural equation modeling indicated that total
soil carbon, microbial biomass carbon, and SOC were the three most
crucial soil characteristics for CAZyme abundance, suggesting that
degradation and soil carbon fractions interactively determine
CAZyme gene composition. Moreover, both above and
belowground factors associated with SOC play a central role in
determining the abundance of CAZyme gene families.

We hope this Research Topic will provide some novel insights
into C and N cycling, highlighting how these processes relate to
global change and management practices and their underlying
mechanisms in grassland ecosystems globally.
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